| 1 | /* Target-machine dependent code for Nios II, for GDB. |
| 2 | Copyright (C) 2012-2017 Free Software Foundation, Inc. |
| 3 | Contributed by Peter Brookes (pbrookes@altera.com) |
| 4 | and Andrew Draper (adraper@altera.com). |
| 5 | Contributed by Mentor Graphics, Inc. |
| 6 | |
| 7 | This file is part of GDB. |
| 8 | |
| 9 | This program is free software; you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Public License as published by |
| 11 | the Free Software Foundation; either version 3 of the License, or |
| 12 | (at your option) any later version. |
| 13 | |
| 14 | This program is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #include "defs.h" |
| 23 | #include "frame.h" |
| 24 | #include "frame-unwind.h" |
| 25 | #include "frame-base.h" |
| 26 | #include "trad-frame.h" |
| 27 | #include "dwarf2-frame.h" |
| 28 | #include "symtab.h" |
| 29 | #include "inferior.h" |
| 30 | #include "gdbtypes.h" |
| 31 | #include "gdbcore.h" |
| 32 | #include "gdbcmd.h" |
| 33 | #include "osabi.h" |
| 34 | #include "target.h" |
| 35 | #include "dis-asm.h" |
| 36 | #include "regcache.h" |
| 37 | #include "value.h" |
| 38 | #include "symfile.h" |
| 39 | #include "arch-utils.h" |
| 40 | #include "floatformat.h" |
| 41 | #include "infcall.h" |
| 42 | #include "regset.h" |
| 43 | #include "target-descriptions.h" |
| 44 | |
| 45 | /* To get entry_point_address. */ |
| 46 | #include "objfiles.h" |
| 47 | #include <algorithm> |
| 48 | |
| 49 | /* Nios II specific header. */ |
| 50 | #include "nios2-tdep.h" |
| 51 | |
| 52 | #include "features/nios2.c" |
| 53 | |
| 54 | /* Control debugging information emitted in this file. */ |
| 55 | |
| 56 | static int nios2_debug = 0; |
| 57 | |
| 58 | /* The following structures are used in the cache for prologue |
| 59 | analysis; see the reg_value and reg_saved tables in |
| 60 | struct nios2_unwind_cache, respectively. */ |
| 61 | |
| 62 | /* struct reg_value is used to record that a register has the same value |
| 63 | as reg at the given offset from the start of a function. */ |
| 64 | |
| 65 | struct reg_value |
| 66 | { |
| 67 | int reg; |
| 68 | unsigned int offset; |
| 69 | }; |
| 70 | |
| 71 | /* struct reg_saved is used to record that a register value has been saved at |
| 72 | basereg + addr, for basereg >= 0. If basereg < 0, that indicates |
| 73 | that the register is not known to have been saved. Note that when |
| 74 | basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0), |
| 75 | addr is an absolute address. */ |
| 76 | |
| 77 | struct reg_saved |
| 78 | { |
| 79 | int basereg; |
| 80 | CORE_ADDR addr; |
| 81 | }; |
| 82 | |
| 83 | struct nios2_unwind_cache |
| 84 | { |
| 85 | /* The frame's base, optionally used by the high-level debug info. */ |
| 86 | CORE_ADDR base; |
| 87 | |
| 88 | /* The previous frame's inner most stack address. Used as this |
| 89 | frame ID's stack_addr. */ |
| 90 | CORE_ADDR cfa; |
| 91 | |
| 92 | /* The address of the first instruction in this function. */ |
| 93 | CORE_ADDR pc; |
| 94 | |
| 95 | /* Which register holds the return address for the frame. */ |
| 96 | int return_regnum; |
| 97 | |
| 98 | /* Table indicating what changes have been made to each register. */ |
| 99 | struct reg_value reg_value[NIOS2_NUM_REGS]; |
| 100 | |
| 101 | /* Table indicating where each register has been saved. */ |
| 102 | struct reg_saved reg_saved[NIOS2_NUM_REGS]; |
| 103 | }; |
| 104 | |
| 105 | |
| 106 | /* This array is a mapping from Dwarf-2 register numbering to GDB's. */ |
| 107 | |
| 108 | static int nios2_dwarf2gdb_regno_map[] = |
| 109 | { |
| 110 | 0, 1, 2, 3, |
| 111 | 4, 5, 6, 7, |
| 112 | 8, 9, 10, 11, |
| 113 | 12, 13, 14, 15, |
| 114 | 16, 17, 18, 19, |
| 115 | 20, 21, 22, 23, |
| 116 | 24, 25, |
| 117 | NIOS2_GP_REGNUM, /* 26 */ |
| 118 | NIOS2_SP_REGNUM, /* 27 */ |
| 119 | NIOS2_FP_REGNUM, /* 28 */ |
| 120 | NIOS2_EA_REGNUM, /* 29 */ |
| 121 | NIOS2_BA_REGNUM, /* 30 */ |
| 122 | NIOS2_RA_REGNUM, /* 31 */ |
| 123 | NIOS2_PC_REGNUM, /* 32 */ |
| 124 | NIOS2_STATUS_REGNUM, /* 33 */ |
| 125 | NIOS2_ESTATUS_REGNUM, /* 34 */ |
| 126 | NIOS2_BSTATUS_REGNUM, /* 35 */ |
| 127 | NIOS2_IENABLE_REGNUM, /* 36 */ |
| 128 | NIOS2_IPENDING_REGNUM, /* 37 */ |
| 129 | NIOS2_CPUID_REGNUM, /* 38 */ |
| 130 | 39, /* CTL6 */ /* 39 */ |
| 131 | NIOS2_EXCEPTION_REGNUM, /* 40 */ |
| 132 | NIOS2_PTEADDR_REGNUM, /* 41 */ |
| 133 | NIOS2_TLBACC_REGNUM, /* 42 */ |
| 134 | NIOS2_TLBMISC_REGNUM, /* 43 */ |
| 135 | NIOS2_ECCINJ_REGNUM, /* 44 */ |
| 136 | NIOS2_BADADDR_REGNUM, /* 45 */ |
| 137 | NIOS2_CONFIG_REGNUM, /* 46 */ |
| 138 | NIOS2_MPUBASE_REGNUM, /* 47 */ |
| 139 | NIOS2_MPUACC_REGNUM /* 48 */ |
| 140 | }; |
| 141 | |
| 142 | gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS); |
| 143 | |
| 144 | /* Implement the dwarf2_reg_to_regnum gdbarch method. */ |
| 145 | |
| 146 | static int |
| 147 | nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg) |
| 148 | { |
| 149 | if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS) |
| 150 | return -1; |
| 151 | |
| 152 | return nios2_dwarf2gdb_regno_map[dw_reg]; |
| 153 | } |
| 154 | |
| 155 | /* Canonical names for the 49 registers. */ |
| 156 | |
| 157 | static const char *const nios2_reg_names[NIOS2_NUM_REGS] = |
| 158 | { |
| 159 | "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7", |
| 160 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| 161 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| 162 | "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra", |
| 163 | "pc", |
| 164 | "status", "estatus", "bstatus", "ienable", |
| 165 | "ipending", "cpuid", "ctl6", "exception", |
| 166 | "pteaddr", "tlbacc", "tlbmisc", "eccinj", |
| 167 | "badaddr", "config", "mpubase", "mpuacc" |
| 168 | }; |
| 169 | |
| 170 | /* Implement the register_name gdbarch method. */ |
| 171 | |
| 172 | static const char * |
| 173 | nios2_register_name (struct gdbarch *gdbarch, int regno) |
| 174 | { |
| 175 | /* Use mnemonic aliases for GPRs. */ |
| 176 | if (regno >= 0 && regno < NIOS2_NUM_REGS) |
| 177 | return nios2_reg_names[regno]; |
| 178 | else |
| 179 | return tdesc_register_name (gdbarch, regno); |
| 180 | } |
| 181 | |
| 182 | /* Implement the register_type gdbarch method. */ |
| 183 | |
| 184 | static struct type * |
| 185 | nios2_register_type (struct gdbarch *gdbarch, int regno) |
| 186 | { |
| 187 | /* If the XML description has register information, use that to |
| 188 | determine the register type. */ |
| 189 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) |
| 190 | return tdesc_register_type (gdbarch, regno); |
| 191 | |
| 192 | if (regno == NIOS2_PC_REGNUM) |
| 193 | return builtin_type (gdbarch)->builtin_func_ptr; |
| 194 | else if (regno == NIOS2_SP_REGNUM) |
| 195 | return builtin_type (gdbarch)->builtin_data_ptr; |
| 196 | else |
| 197 | return builtin_type (gdbarch)->builtin_uint32; |
| 198 | } |
| 199 | |
| 200 | /* Given a return value in REGCACHE with a type VALTYPE, |
| 201 | extract and copy its value into VALBUF. */ |
| 202 | |
| 203 | static void |
| 204 | nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype, |
| 205 | struct regcache *regcache, gdb_byte *valbuf) |
| 206 | { |
| 207 | int len = TYPE_LENGTH (valtype); |
| 208 | |
| 209 | /* Return values of up to 8 bytes are returned in $r2 $r3. */ |
| 210 | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) |
| 211 | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); |
| 212 | else |
| 213 | { |
| 214 | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) |
| 215 | + register_size (gdbarch, NIOS2_R3_REGNUM))); |
| 216 | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); |
| 217 | regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /* Write into appropriate registers a function return value |
| 222 | of type TYPE, given in virtual format. */ |
| 223 | |
| 224 | static void |
| 225 | nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype, |
| 226 | struct regcache *regcache, const gdb_byte *valbuf) |
| 227 | { |
| 228 | int len = TYPE_LENGTH (valtype); |
| 229 | |
| 230 | /* Return values of up to 8 bytes are returned in $r2 $r3. */ |
| 231 | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) |
| 232 | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); |
| 233 | else |
| 234 | { |
| 235 | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) |
| 236 | + register_size (gdbarch, NIOS2_R3_REGNUM))); |
| 237 | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); |
| 238 | regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | |
| 243 | /* Set up the default values of the registers. */ |
| 244 | |
| 245 | static void |
| 246 | nios2_setup_default (struct nios2_unwind_cache *cache) |
| 247 | { |
| 248 | int i; |
| 249 | |
| 250 | for (i = 0; i < NIOS2_NUM_REGS; i++) |
| 251 | { |
| 252 | /* All registers start off holding their previous values. */ |
| 253 | cache->reg_value[i].reg = i; |
| 254 | cache->reg_value[i].offset = 0; |
| 255 | |
| 256 | /* All registers start off not saved. */ |
| 257 | cache->reg_saved[i].basereg = -1; |
| 258 | cache->reg_saved[i].addr = 0; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /* Initialize the unwind cache. */ |
| 263 | |
| 264 | static void |
| 265 | nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc) |
| 266 | { |
| 267 | cache->base = 0; |
| 268 | cache->cfa = 0; |
| 269 | cache->pc = pc; |
| 270 | cache->return_regnum = NIOS2_RA_REGNUM; |
| 271 | nios2_setup_default (cache); |
| 272 | } |
| 273 | |
| 274 | /* Read and identify an instruction at PC. If INSNP is non-null, |
| 275 | store the instruction word into that location. Return the opcode |
| 276 | pointer or NULL if the memory couldn't be read or disassembled. */ |
| 277 | |
| 278 | static const struct nios2_opcode * |
| 279 | nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc, |
| 280 | unsigned int *insnp) |
| 281 | { |
| 282 | LONGEST memword; |
| 283 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
| 284 | unsigned int insn; |
| 285 | |
| 286 | if (mach == bfd_mach_nios2r2) |
| 287 | { |
| 288 | if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, |
| 289 | BFD_ENDIAN_LITTLE, &memword) |
| 290 | && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE, |
| 291 | BFD_ENDIAN_LITTLE, &memword)) |
| 292 | return NULL; |
| 293 | } |
| 294 | else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, |
| 295 | gdbarch_byte_order (gdbarch), &memword)) |
| 296 | return NULL; |
| 297 | |
| 298 | insn = (unsigned int) memword; |
| 299 | if (insnp) |
| 300 | *insnp = insn; |
| 301 | return nios2_find_opcode_hash (insn, mach); |
| 302 | } |
| 303 | |
| 304 | |
| 305 | /* Match and disassemble an ADD-type instruction, with 3 register operands. |
| 306 | Returns true on success, and fills in the operand pointers. */ |
| 307 | |
| 308 | static int |
| 309 | nios2_match_add (uint32_t insn, const struct nios2_opcode *op, |
| 310 | unsigned long mach, int *ra, int *rb, int *rc) |
| 311 | { |
| 312 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 313 | |
| 314 | if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV)) |
| 315 | { |
| 316 | *ra = GET_IW_R_A (insn); |
| 317 | *rb = GET_IW_R_B (insn); |
| 318 | *rc = GET_IW_R_C (insn); |
| 319 | return 1; |
| 320 | } |
| 321 | else if (!is_r2) |
| 322 | return 0; |
| 323 | else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV) |
| 324 | { |
| 325 | *ra = GET_IW_F3X6L5_A (insn); |
| 326 | *rb = GET_IW_F3X6L5_B (insn); |
| 327 | *rc = GET_IW_F3X6L5_C (insn); |
| 328 | return 1; |
| 329 | } |
| 330 | else if (op->match == MATCH_R2_ADD_N) |
| 331 | { |
| 332 | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; |
| 333 | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; |
| 334 | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; |
| 335 | return 1; |
| 336 | } |
| 337 | else if (op->match == MATCH_R2_MOV_N) |
| 338 | { |
| 339 | *ra = GET_IW_F2_A (insn); |
| 340 | *rb = 0; |
| 341 | *rc = GET_IW_F2_B (insn); |
| 342 | return 1; |
| 343 | } |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | /* Match and disassemble a SUB-type instruction, with 3 register operands. |
| 348 | Returns true on success, and fills in the operand pointers. */ |
| 349 | |
| 350 | static int |
| 351 | nios2_match_sub (uint32_t insn, const struct nios2_opcode *op, |
| 352 | unsigned long mach, int *ra, int *rb, int *rc) |
| 353 | { |
| 354 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 355 | |
| 356 | if (!is_r2 && op->match == MATCH_R1_SUB) |
| 357 | { |
| 358 | *ra = GET_IW_R_A (insn); |
| 359 | *rb = GET_IW_R_B (insn); |
| 360 | *rc = GET_IW_R_C (insn); |
| 361 | return 1; |
| 362 | } |
| 363 | else if (!is_r2) |
| 364 | return 0; |
| 365 | else if (op->match == MATCH_R2_SUB) |
| 366 | { |
| 367 | *ra = GET_IW_F3X6L5_A (insn); |
| 368 | *rb = GET_IW_F3X6L5_B (insn); |
| 369 | *rc = GET_IW_F3X6L5_C (insn); |
| 370 | return 1; |
| 371 | } |
| 372 | else if (op->match == MATCH_R2_SUB_N) |
| 373 | { |
| 374 | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; |
| 375 | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; |
| 376 | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; |
| 377 | return 1; |
| 378 | } |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | /* Match and disassemble an ADDI-type instruction, with 2 register operands |
| 383 | and one immediate operand. |
| 384 | Returns true on success, and fills in the operand pointers. */ |
| 385 | |
| 386 | static int |
| 387 | nios2_match_addi (uint32_t insn, const struct nios2_opcode *op, |
| 388 | unsigned long mach, int *ra, int *rb, int *imm) |
| 389 | { |
| 390 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 391 | |
| 392 | if (!is_r2 && op->match == MATCH_R1_ADDI) |
| 393 | { |
| 394 | *ra = GET_IW_I_A (insn); |
| 395 | *rb = GET_IW_I_B (insn); |
| 396 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; |
| 397 | return 1; |
| 398 | } |
| 399 | else if (!is_r2) |
| 400 | return 0; |
| 401 | else if (op->match == MATCH_R2_ADDI) |
| 402 | { |
| 403 | *ra = GET_IW_F2I16_A (insn); |
| 404 | *rb = GET_IW_F2I16_B (insn); |
| 405 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; |
| 406 | return 1; |
| 407 | } |
| 408 | else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N) |
| 409 | { |
| 410 | *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)]; |
| 411 | *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)]; |
| 412 | *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)]; |
| 413 | if (op->match == MATCH_R2_SUBI_N) |
| 414 | *imm = - (*imm); |
| 415 | return 1; |
| 416 | } |
| 417 | else if (op->match == MATCH_R2_SPADDI_N) |
| 418 | { |
| 419 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; |
| 420 | *rb = NIOS2_SP_REGNUM; |
| 421 | *imm = GET_IW_T1I7_IMM7 (insn) << 2; |
| 422 | return 1; |
| 423 | } |
| 424 | else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N) |
| 425 | { |
| 426 | *ra = NIOS2_SP_REGNUM; |
| 427 | *rb = NIOS2_SP_REGNUM; |
| 428 | *imm = GET_IW_X1I7_IMM7 (insn) << 2; |
| 429 | if (op->match == MATCH_R2_SPDECI_N) |
| 430 | *imm = - (*imm); |
| 431 | return 1; |
| 432 | } |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | /* Match and disassemble an ORHI-type instruction, with 2 register operands |
| 437 | and one unsigned immediate operand. |
| 438 | Returns true on success, and fills in the operand pointers. */ |
| 439 | |
| 440 | static int |
| 441 | nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op, |
| 442 | unsigned long mach, int *ra, int *rb, unsigned int *uimm) |
| 443 | { |
| 444 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 445 | |
| 446 | if (!is_r2 && op->match == MATCH_R1_ORHI) |
| 447 | { |
| 448 | *ra = GET_IW_I_A (insn); |
| 449 | *rb = GET_IW_I_B (insn); |
| 450 | *uimm = GET_IW_I_IMM16 (insn); |
| 451 | return 1; |
| 452 | } |
| 453 | else if (!is_r2) |
| 454 | return 0; |
| 455 | else if (op->match == MATCH_R2_ORHI) |
| 456 | { |
| 457 | *ra = GET_IW_F2I16_A (insn); |
| 458 | *rb = GET_IW_F2I16_B (insn); |
| 459 | *uimm = GET_IW_F2I16_IMM16 (insn); |
| 460 | return 1; |
| 461 | } |
| 462 | return 0; |
| 463 | } |
| 464 | |
| 465 | /* Match and disassemble a STW-type instruction, with 2 register operands |
| 466 | and one immediate operand. |
| 467 | Returns true on success, and fills in the operand pointers. */ |
| 468 | |
| 469 | static int |
| 470 | nios2_match_stw (uint32_t insn, const struct nios2_opcode *op, |
| 471 | unsigned long mach, int *ra, int *rb, int *imm) |
| 472 | { |
| 473 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 474 | |
| 475 | if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO)) |
| 476 | { |
| 477 | *ra = GET_IW_I_A (insn); |
| 478 | *rb = GET_IW_I_B (insn); |
| 479 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; |
| 480 | return 1; |
| 481 | } |
| 482 | else if (!is_r2) |
| 483 | return 0; |
| 484 | else if (op->match == MATCH_R2_STW) |
| 485 | { |
| 486 | *ra = GET_IW_F2I16_A (insn); |
| 487 | *rb = GET_IW_F2I16_B (insn); |
| 488 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; |
| 489 | return 1; |
| 490 | } |
| 491 | else if (op->match == MATCH_R2_STWIO) |
| 492 | { |
| 493 | *ra = GET_IW_F2X4I12_A (insn); |
| 494 | *rb = GET_IW_F2X4I12_B (insn); |
| 495 | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; |
| 496 | return 1; |
| 497 | } |
| 498 | else if (op->match == MATCH_R2_STW_N) |
| 499 | { |
| 500 | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; |
| 501 | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; |
| 502 | *imm = GET_IW_T2I4_IMM4 (insn) << 2; |
| 503 | return 1; |
| 504 | } |
| 505 | else if (op->match == MATCH_R2_STWSP_N) |
| 506 | { |
| 507 | *ra = NIOS2_SP_REGNUM; |
| 508 | *rb = GET_IW_F1I5_B (insn); |
| 509 | *imm = GET_IW_F1I5_IMM5 (insn) << 2; |
| 510 | return 1; |
| 511 | } |
| 512 | else if (op->match == MATCH_R2_STWZ_N) |
| 513 | { |
| 514 | *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)]; |
| 515 | *rb = 0; |
| 516 | *imm = GET_IW_T1X1I6_IMM6 (insn) << 2; |
| 517 | return 1; |
| 518 | } |
| 519 | return 0; |
| 520 | } |
| 521 | |
| 522 | /* Match and disassemble a LDW-type instruction, with 2 register operands |
| 523 | and one immediate operand. |
| 524 | Returns true on success, and fills in the operand pointers. */ |
| 525 | |
| 526 | static int |
| 527 | nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op, |
| 528 | unsigned long mach, int *ra, int *rb, int *imm) |
| 529 | { |
| 530 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 531 | |
| 532 | if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO)) |
| 533 | { |
| 534 | *ra = GET_IW_I_A (insn); |
| 535 | *rb = GET_IW_I_B (insn); |
| 536 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; |
| 537 | return 1; |
| 538 | } |
| 539 | else if (!is_r2) |
| 540 | return 0; |
| 541 | else if (op->match == MATCH_R2_LDW) |
| 542 | { |
| 543 | *ra = GET_IW_F2I16_A (insn); |
| 544 | *rb = GET_IW_F2I16_B (insn); |
| 545 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; |
| 546 | return 1; |
| 547 | } |
| 548 | else if (op->match == MATCH_R2_LDWIO) |
| 549 | { |
| 550 | *ra = GET_IW_F2X4I12_A (insn); |
| 551 | *rb = GET_IW_F2X4I12_B (insn); |
| 552 | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; |
| 553 | return 1; |
| 554 | } |
| 555 | else if (op->match == MATCH_R2_LDW_N) |
| 556 | { |
| 557 | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; |
| 558 | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; |
| 559 | *imm = GET_IW_T2I4_IMM4 (insn) << 2; |
| 560 | return 1; |
| 561 | } |
| 562 | else if (op->match == MATCH_R2_LDWSP_N) |
| 563 | { |
| 564 | *ra = NIOS2_SP_REGNUM; |
| 565 | *rb = GET_IW_F1I5_B (insn); |
| 566 | *imm = GET_IW_F1I5_IMM5 (insn) << 2; |
| 567 | return 1; |
| 568 | } |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | /* Match and disassemble a RDCTL instruction, with 2 register operands. |
| 573 | Returns true on success, and fills in the operand pointers. */ |
| 574 | |
| 575 | static int |
| 576 | nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op, |
| 577 | unsigned long mach, int *ra, int *rc) |
| 578 | { |
| 579 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 580 | |
| 581 | if (!is_r2 && (op->match == MATCH_R1_RDCTL)) |
| 582 | { |
| 583 | *ra = GET_IW_R_IMM5 (insn); |
| 584 | *rc = GET_IW_R_C (insn); |
| 585 | return 1; |
| 586 | } |
| 587 | else if (!is_r2) |
| 588 | return 0; |
| 589 | else if (op->match == MATCH_R2_RDCTL) |
| 590 | { |
| 591 | *ra = GET_IW_F3X6L5_IMM5 (insn); |
| 592 | *rc = GET_IW_F3X6L5_C (insn); |
| 593 | return 1; |
| 594 | } |
| 595 | return 0; |
| 596 | } |
| 597 | |
| 598 | /* Match and disassemble a PUSH.N or STWM instruction. |
| 599 | Returns true on success, and fills in the operand pointers. */ |
| 600 | |
| 601 | static int |
| 602 | nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op, |
| 603 | unsigned long mach, unsigned int *reglist, |
| 604 | int *ra, int *imm, int *wb, int *id) |
| 605 | { |
| 606 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 607 | |
| 608 | if (!is_r2) |
| 609 | return 0; |
| 610 | else if (op->match == MATCH_R2_PUSH_N) |
| 611 | { |
| 612 | *reglist = 1 << 31; |
| 613 | if (GET_IW_L5I4X1_FP (insn)) |
| 614 | *reglist |= (1 << 28); |
| 615 | if (GET_IW_L5I4X1_CS (insn)) |
| 616 | { |
| 617 | int val = GET_IW_L5I4X1_REGRANGE (insn); |
| 618 | *reglist |= nios2_r2_reg_range_mappings[val]; |
| 619 | } |
| 620 | *ra = NIOS2_SP_REGNUM; |
| 621 | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; |
| 622 | *wb = 1; |
| 623 | *id = 0; |
| 624 | return 1; |
| 625 | } |
| 626 | else if (op->match == MATCH_R2_STWM) |
| 627 | { |
| 628 | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); |
| 629 | if (GET_IW_F1X4L17_RS (insn)) |
| 630 | { |
| 631 | *reglist = ((rawmask << 14) & 0x00ffc000); |
| 632 | if (rawmask & (1 << 10)) |
| 633 | *reglist |= (1 << 28); |
| 634 | if (rawmask & (1 << 11)) |
| 635 | *reglist |= (1 << 31); |
| 636 | } |
| 637 | else |
| 638 | *reglist = rawmask << 2; |
| 639 | *ra = GET_IW_F1X4L17_A (insn); |
| 640 | *imm = 0; |
| 641 | *wb = GET_IW_F1X4L17_WB (insn); |
| 642 | *id = GET_IW_F1X4L17_ID (insn); |
| 643 | return 1; |
| 644 | } |
| 645 | return 0; |
| 646 | } |
| 647 | |
| 648 | /* Match and disassemble a POP.N or LDWM instruction. |
| 649 | Returns true on success, and fills in the operand pointers. */ |
| 650 | |
| 651 | static int |
| 652 | nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op, |
| 653 | unsigned long mach, unsigned int *reglist, |
| 654 | int *ra, int *imm, int *wb, int *id, int *ret) |
| 655 | { |
| 656 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 657 | |
| 658 | if (!is_r2) |
| 659 | return 0; |
| 660 | else if (op->match == MATCH_R2_POP_N) |
| 661 | { |
| 662 | *reglist = 1 << 31; |
| 663 | if (GET_IW_L5I4X1_FP (insn)) |
| 664 | *reglist |= (1 << 28); |
| 665 | if (GET_IW_L5I4X1_CS (insn)) |
| 666 | { |
| 667 | int val = GET_IW_L5I4X1_REGRANGE (insn); |
| 668 | *reglist |= nios2_r2_reg_range_mappings[val]; |
| 669 | } |
| 670 | *ra = NIOS2_SP_REGNUM; |
| 671 | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; |
| 672 | *wb = 1; |
| 673 | *id = 1; |
| 674 | *ret = 1; |
| 675 | return 1; |
| 676 | } |
| 677 | else if (op->match == MATCH_R2_LDWM) |
| 678 | { |
| 679 | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); |
| 680 | if (GET_IW_F1X4L17_RS (insn)) |
| 681 | { |
| 682 | *reglist = ((rawmask << 14) & 0x00ffc000); |
| 683 | if (rawmask & (1 << 10)) |
| 684 | *reglist |= (1 << 28); |
| 685 | if (rawmask & (1 << 11)) |
| 686 | *reglist |= (1 << 31); |
| 687 | } |
| 688 | else |
| 689 | *reglist = rawmask << 2; |
| 690 | *ra = GET_IW_F1X4L17_A (insn); |
| 691 | *imm = 0; |
| 692 | *wb = GET_IW_F1X4L17_WB (insn); |
| 693 | *id = GET_IW_F1X4L17_ID (insn); |
| 694 | *ret = GET_IW_F1X4L17_PC (insn); |
| 695 | return 1; |
| 696 | } |
| 697 | return 0; |
| 698 | } |
| 699 | |
| 700 | /* Match and disassemble a branch instruction, with (potentially) |
| 701 | 2 register operands and one immediate operand. |
| 702 | Returns true on success, and fills in the operand pointers. */ |
| 703 | |
| 704 | enum branch_condition { |
| 705 | branch_none, |
| 706 | branch_eq, |
| 707 | branch_ne, |
| 708 | branch_ge, |
| 709 | branch_geu, |
| 710 | branch_lt, |
| 711 | branch_ltu |
| 712 | }; |
| 713 | |
| 714 | static int |
| 715 | nios2_match_branch (uint32_t insn, const struct nios2_opcode *op, |
| 716 | unsigned long mach, int *ra, int *rb, int *imm, |
| 717 | enum branch_condition *cond) |
| 718 | { |
| 719 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 720 | |
| 721 | if (!is_r2) |
| 722 | { |
| 723 | switch (op->match) |
| 724 | { |
| 725 | case MATCH_R1_BR: |
| 726 | *cond = branch_none; |
| 727 | break; |
| 728 | case MATCH_R1_BEQ: |
| 729 | *cond = branch_eq; |
| 730 | break; |
| 731 | case MATCH_R1_BNE: |
| 732 | *cond = branch_ne; |
| 733 | break; |
| 734 | case MATCH_R1_BGE: |
| 735 | *cond = branch_ge; |
| 736 | break; |
| 737 | case MATCH_R1_BGEU: |
| 738 | *cond = branch_geu; |
| 739 | break; |
| 740 | case MATCH_R1_BLT: |
| 741 | *cond = branch_lt; |
| 742 | break; |
| 743 | case MATCH_R1_BLTU: |
| 744 | *cond = branch_ltu; |
| 745 | break; |
| 746 | default: |
| 747 | return 0; |
| 748 | } |
| 749 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; |
| 750 | *ra = GET_IW_I_A (insn); |
| 751 | *rb = GET_IW_I_B (insn); |
| 752 | return 1; |
| 753 | } |
| 754 | else |
| 755 | { |
| 756 | switch (op->match) |
| 757 | { |
| 758 | case MATCH_R2_BR_N: |
| 759 | *cond = branch_none; |
| 760 | *ra = NIOS2_Z_REGNUM; |
| 761 | *rb = NIOS2_Z_REGNUM; |
| 762 | *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21; |
| 763 | return 1; |
| 764 | case MATCH_R2_BEQZ_N: |
| 765 | *cond = branch_eq; |
| 766 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; |
| 767 | *rb = NIOS2_Z_REGNUM; |
| 768 | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; |
| 769 | return 1; |
| 770 | case MATCH_R2_BNEZ_N: |
| 771 | *cond = branch_ne; |
| 772 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; |
| 773 | *rb = NIOS2_Z_REGNUM; |
| 774 | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; |
| 775 | return 1; |
| 776 | case MATCH_R2_BR: |
| 777 | *cond = branch_none; |
| 778 | break; |
| 779 | case MATCH_R2_BEQ: |
| 780 | *cond = branch_eq; |
| 781 | break; |
| 782 | case MATCH_R2_BNE: |
| 783 | *cond = branch_ne; |
| 784 | break; |
| 785 | case MATCH_R2_BGE: |
| 786 | *cond = branch_ge; |
| 787 | break; |
| 788 | case MATCH_R2_BGEU: |
| 789 | *cond = branch_geu; |
| 790 | break; |
| 791 | case MATCH_R2_BLT: |
| 792 | *cond = branch_lt; |
| 793 | break; |
| 794 | case MATCH_R2_BLTU: |
| 795 | *cond = branch_ltu; |
| 796 | break; |
| 797 | default: |
| 798 | return 0; |
| 799 | } |
| 800 | *ra = GET_IW_F2I16_A (insn); |
| 801 | *rb = GET_IW_F2I16_B (insn); |
| 802 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; |
| 803 | return 1; |
| 804 | } |
| 805 | return 0; |
| 806 | } |
| 807 | |
| 808 | /* Match and disassemble a direct jump instruction, with an |
| 809 | unsigned operand. Returns true on success, and fills in the operand |
| 810 | pointer. */ |
| 811 | |
| 812 | static int |
| 813 | nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op, |
| 814 | unsigned long mach, unsigned int *uimm) |
| 815 | { |
| 816 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 817 | |
| 818 | if (!is_r2 && op->match == MATCH_R1_JMPI) |
| 819 | { |
| 820 | *uimm = GET_IW_J_IMM26 (insn) << 2; |
| 821 | return 1; |
| 822 | } |
| 823 | else if (!is_r2) |
| 824 | return 0; |
| 825 | else if (op->match == MATCH_R2_JMPI) |
| 826 | { |
| 827 | *uimm = GET_IW_L26_IMM26 (insn) << 2; |
| 828 | return 1; |
| 829 | } |
| 830 | return 0; |
| 831 | } |
| 832 | |
| 833 | /* Match and disassemble a direct call instruction, with an |
| 834 | unsigned operand. Returns true on success, and fills in the operand |
| 835 | pointer. */ |
| 836 | |
| 837 | static int |
| 838 | nios2_match_calli (uint32_t insn, const struct nios2_opcode *op, |
| 839 | unsigned long mach, unsigned int *uimm) |
| 840 | { |
| 841 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 842 | |
| 843 | if (!is_r2 && op->match == MATCH_R1_CALL) |
| 844 | { |
| 845 | *uimm = GET_IW_J_IMM26 (insn) << 2; |
| 846 | return 1; |
| 847 | } |
| 848 | else if (!is_r2) |
| 849 | return 0; |
| 850 | else if (op->match == MATCH_R2_CALL) |
| 851 | { |
| 852 | *uimm = GET_IW_L26_IMM26 (insn) << 2; |
| 853 | return 1; |
| 854 | } |
| 855 | return 0; |
| 856 | } |
| 857 | |
| 858 | /* Match and disassemble an indirect jump instruction, with a |
| 859 | (possibly implicit) register operand. Returns true on success, and fills |
| 860 | in the operand pointer. */ |
| 861 | |
| 862 | static int |
| 863 | nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op, |
| 864 | unsigned long mach, int *ra) |
| 865 | { |
| 866 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 867 | |
| 868 | if (!is_r2) |
| 869 | switch (op->match) |
| 870 | { |
| 871 | case MATCH_R1_JMP: |
| 872 | *ra = GET_IW_I_A (insn); |
| 873 | return 1; |
| 874 | case MATCH_R1_RET: |
| 875 | *ra = NIOS2_RA_REGNUM; |
| 876 | return 1; |
| 877 | case MATCH_R1_ERET: |
| 878 | *ra = NIOS2_EA_REGNUM; |
| 879 | return 1; |
| 880 | case MATCH_R1_BRET: |
| 881 | *ra = NIOS2_BA_REGNUM; |
| 882 | return 1; |
| 883 | default: |
| 884 | return 0; |
| 885 | } |
| 886 | else |
| 887 | switch (op->match) |
| 888 | { |
| 889 | case MATCH_R2_JMP: |
| 890 | *ra = GET_IW_F2I16_A (insn); |
| 891 | return 1; |
| 892 | case MATCH_R2_JMPR_N: |
| 893 | *ra = GET_IW_F1X1_A (insn); |
| 894 | return 1; |
| 895 | case MATCH_R2_RET: |
| 896 | case MATCH_R2_RET_N: |
| 897 | *ra = NIOS2_RA_REGNUM; |
| 898 | return 1; |
| 899 | case MATCH_R2_ERET: |
| 900 | *ra = NIOS2_EA_REGNUM; |
| 901 | return 1; |
| 902 | case MATCH_R2_BRET: |
| 903 | *ra = NIOS2_BA_REGNUM; |
| 904 | return 1; |
| 905 | default: |
| 906 | return 0; |
| 907 | } |
| 908 | return 0; |
| 909 | } |
| 910 | |
| 911 | /* Match and disassemble an indirect call instruction, with a register |
| 912 | operand. Returns true on success, and fills in the operand pointer. */ |
| 913 | |
| 914 | static int |
| 915 | nios2_match_callr (uint32_t insn, const struct nios2_opcode *op, |
| 916 | unsigned long mach, int *ra) |
| 917 | { |
| 918 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 919 | |
| 920 | if (!is_r2 && op->match == MATCH_R1_CALLR) |
| 921 | { |
| 922 | *ra = GET_IW_I_A (insn); |
| 923 | return 1; |
| 924 | } |
| 925 | else if (!is_r2) |
| 926 | return 0; |
| 927 | else if (op->match == MATCH_R2_CALLR) |
| 928 | { |
| 929 | *ra = GET_IW_F2I16_A (insn); |
| 930 | return 1; |
| 931 | } |
| 932 | else if (op->match == MATCH_R2_CALLR_N) |
| 933 | { |
| 934 | *ra = GET_IW_F1X1_A (insn); |
| 935 | return 1; |
| 936 | } |
| 937 | return 0; |
| 938 | } |
| 939 | |
| 940 | /* Match and disassemble a break instruction, with an unsigned operand. |
| 941 | Returns true on success, and fills in the operand pointer. */ |
| 942 | |
| 943 | static int |
| 944 | nios2_match_break (uint32_t insn, const struct nios2_opcode *op, |
| 945 | unsigned long mach, unsigned int *uimm) |
| 946 | { |
| 947 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 948 | |
| 949 | if (!is_r2 && op->match == MATCH_R1_BREAK) |
| 950 | { |
| 951 | *uimm = GET_IW_R_IMM5 (insn); |
| 952 | return 1; |
| 953 | } |
| 954 | else if (!is_r2) |
| 955 | return 0; |
| 956 | else if (op->match == MATCH_R2_BREAK) |
| 957 | { |
| 958 | *uimm = GET_IW_F3X6L5_IMM5 (insn); |
| 959 | return 1; |
| 960 | } |
| 961 | else if (op->match == MATCH_R2_BREAK_N) |
| 962 | { |
| 963 | *uimm = GET_IW_X2L5_IMM5 (insn); |
| 964 | return 1; |
| 965 | } |
| 966 | return 0; |
| 967 | } |
| 968 | |
| 969 | /* Match and disassemble a trap instruction, with an unsigned operand. |
| 970 | Returns true on success, and fills in the operand pointer. */ |
| 971 | |
| 972 | static int |
| 973 | nios2_match_trap (uint32_t insn, const struct nios2_opcode *op, |
| 974 | unsigned long mach, unsigned int *uimm) |
| 975 | { |
| 976 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 977 | |
| 978 | if (!is_r2 && op->match == MATCH_R1_TRAP) |
| 979 | { |
| 980 | *uimm = GET_IW_R_IMM5 (insn); |
| 981 | return 1; |
| 982 | } |
| 983 | else if (!is_r2) |
| 984 | return 0; |
| 985 | else if (op->match == MATCH_R2_TRAP) |
| 986 | { |
| 987 | *uimm = GET_IW_F3X6L5_IMM5 (insn); |
| 988 | return 1; |
| 989 | } |
| 990 | else if (op->match == MATCH_R2_TRAP_N) |
| 991 | { |
| 992 | *uimm = GET_IW_X2L5_IMM5 (insn); |
| 993 | return 1; |
| 994 | } |
| 995 | return 0; |
| 996 | } |
| 997 | |
| 998 | /* Helper function to identify when we're in a function epilogue; |
| 999 | that is, the part of the function from the point at which the |
| 1000 | stack adjustments are made, to the return or sibcall. |
| 1001 | Note that we may have several stack adjustment instructions, and |
| 1002 | this function needs to test whether the stack teardown has already |
| 1003 | started before current_pc, not whether it has completed. */ |
| 1004 | |
| 1005 | static int |
| 1006 | nios2_in_epilogue_p (struct gdbarch *gdbarch, |
| 1007 | CORE_ADDR current_pc, |
| 1008 | CORE_ADDR start_pc) |
| 1009 | { |
| 1010 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
| 1011 | int is_r2 = (mach == bfd_mach_nios2r2); |
| 1012 | /* Maximum number of possibly-epilogue instructions to check. |
| 1013 | Note that this number should not be too large, else we can |
| 1014 | potentially end up iterating through unmapped memory. */ |
| 1015 | int ninsns, max_insns = 5; |
| 1016 | unsigned int insn; |
| 1017 | const struct nios2_opcode *op = NULL; |
| 1018 | unsigned int uimm; |
| 1019 | int imm; |
| 1020 | int wb, id, ret; |
| 1021 | int ra, rb, rc; |
| 1022 | enum branch_condition cond; |
| 1023 | CORE_ADDR pc; |
| 1024 | |
| 1025 | /* There has to be a previous instruction in the function. */ |
| 1026 | if (current_pc <= start_pc) |
| 1027 | return 0; |
| 1028 | |
| 1029 | /* Find the previous instruction before current_pc. For R2, it might |
| 1030 | be either a 16-bit or 32-bit instruction; the only way to know for |
| 1031 | sure is to scan through from the beginning of the function, |
| 1032 | disassembling as we go. */ |
| 1033 | if (is_r2) |
| 1034 | for (pc = start_pc; ; ) |
| 1035 | { |
| 1036 | op = nios2_fetch_insn (gdbarch, pc, &insn); |
| 1037 | if (op == NULL) |
| 1038 | return 0; |
| 1039 | if (pc + op->size < current_pc) |
| 1040 | pc += op->size; |
| 1041 | else |
| 1042 | break; |
| 1043 | /* We can skip over insns to a forward branch target. Since |
| 1044 | the branch offset is relative to the next instruction, |
| 1045 | it's correct to do this after incrementing the pc above. */ |
| 1046 | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) |
| 1047 | && imm > 0 |
| 1048 | && pc + imm < current_pc) |
| 1049 | pc += imm; |
| 1050 | } |
| 1051 | /* Otherwise just go back to the previous 32-bit insn. */ |
| 1052 | else |
| 1053 | pc = current_pc - NIOS2_OPCODE_SIZE; |
| 1054 | |
| 1055 | /* Beginning with the previous instruction we just located, check whether |
| 1056 | we are in a sequence of at least one stack adjustment instruction. |
| 1057 | Possible instructions here include: |
| 1058 | ADDI sp, sp, n |
| 1059 | ADD sp, sp, rn |
| 1060 | LDW sp, n(sp) |
| 1061 | SPINCI.N n |
| 1062 | LDWSP.N sp, n(sp) |
| 1063 | LDWM {reglist}, (sp)++, wb */ |
| 1064 | for (ninsns = 0; ninsns < max_insns; ninsns++) |
| 1065 | { |
| 1066 | int ok = 0; |
| 1067 | |
| 1068 | /* Fetch the insn at pc. */ |
| 1069 | op = nios2_fetch_insn (gdbarch, pc, &insn); |
| 1070 | if (op == NULL) |
| 1071 | return 0; |
| 1072 | pc += op->size; |
| 1073 | |
| 1074 | /* Was it a stack adjustment? */ |
| 1075 | if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) |
| 1076 | ok = (rb == NIOS2_SP_REGNUM); |
| 1077 | else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) |
| 1078 | ok = (rc == NIOS2_SP_REGNUM); |
| 1079 | else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm)) |
| 1080 | ok = (rb == NIOS2_SP_REGNUM); |
| 1081 | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, |
| 1082 | &imm, &wb, &ret, &id)) |
| 1083 | ok = (ra == NIOS2_SP_REGNUM && wb && id); |
| 1084 | if (!ok) |
| 1085 | break; |
| 1086 | } |
| 1087 | |
| 1088 | /* No stack adjustments found. */ |
| 1089 | if (ninsns == 0) |
| 1090 | return 0; |
| 1091 | |
| 1092 | /* We found more stack adjustments than we expect GCC to be generating. |
| 1093 | Since it looks like a stack unwind might be in progress tell GDB to |
| 1094 | treat it as such. */ |
| 1095 | if (ninsns == max_insns) |
| 1096 | return 1; |
| 1097 | |
| 1098 | /* The next instruction following the stack adjustments must be a |
| 1099 | return, jump, or unconditional branch, or a CDX pop.n or ldwm |
| 1100 | that does an implicit return. */ |
| 1101 | if (nios2_match_jmpr (insn, op, mach, &ra) |
| 1102 | || nios2_match_jmpi (insn, op, mach, &uimm) |
| 1103 | || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) |
| 1104 | && ret) |
| 1105 | || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) |
| 1106 | && cond == branch_none)) |
| 1107 | return 1; |
| 1108 | |
| 1109 | return 0; |
| 1110 | } |
| 1111 | |
| 1112 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
| 1113 | |
| 1114 | static int |
| 1115 | nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 1116 | { |
| 1117 | CORE_ADDR func_addr; |
| 1118 | |
| 1119 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| 1120 | return nios2_in_epilogue_p (gdbarch, pc, func_addr); |
| 1121 | |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | /* Do prologue analysis, returning the PC of the first instruction |
| 1126 | after the function prologue. Assumes CACHE has already been |
| 1127 | initialized. THIS_FRAME can be null, in which case we are only |
| 1128 | interested in skipping the prologue. Otherwise CACHE is filled in |
| 1129 | from the frame information. |
| 1130 | |
| 1131 | The prologue may consist of the following parts: |
| 1132 | 1) Profiling instrumentation. For non-PIC code it looks like: |
| 1133 | mov r8, ra |
| 1134 | call mcount |
| 1135 | mov ra, r8 |
| 1136 | |
| 1137 | 2) A stack adjustment and save of R4-R7 for varargs functions. |
| 1138 | For R2 CDX this is typically handled with a STWM, otherwise |
| 1139 | this is typically merged with item 3. |
| 1140 | |
| 1141 | 3) A stack adjustment and save of the callee-saved registers. |
| 1142 | For R2 CDX these are typically handled with a PUSH.N or STWM, |
| 1143 | otherwise as an explicit SP decrement and individual register |
| 1144 | saves. |
| 1145 | |
| 1146 | There may also be a stack switch here in an exception handler |
| 1147 | in place of a stack adjustment. It looks like: |
| 1148 | movhi rx, %hiadj(newstack) |
| 1149 | addhi rx, rx, %lo(newstack) |
| 1150 | stw sp, constant(rx) |
| 1151 | mov sp, rx |
| 1152 | |
| 1153 | 4) A frame pointer save, which can be either a MOV or ADDI. |
| 1154 | |
| 1155 | 5) A further stack pointer adjustment. This is normally included |
| 1156 | adjustment in step 3 unless the total adjustment is too large |
| 1157 | to be done in one step. |
| 1158 | |
| 1159 | 7) A stack overflow check, which can take either of these forms: |
| 1160 | bgeu sp, rx, +8 |
| 1161 | trap 3 |
| 1162 | or |
| 1163 | bltu sp, rx, .Lstack_overflow |
| 1164 | ... |
| 1165 | .Lstack_overflow: |
| 1166 | trap 3 |
| 1167 | |
| 1168 | Older versions of GCC emitted "break 3" instead of "trap 3" here, |
| 1169 | so we check for both cases. |
| 1170 | |
| 1171 | Older GCC versions emitted stack overflow checks after the SP |
| 1172 | adjustments in both steps 3 and 4. Starting with GCC 6, there is |
| 1173 | at most one overflow check, which is placed before the first |
| 1174 | stack adjustment for R2 CDX and after the first stack adjustment |
| 1175 | otherwise. |
| 1176 | |
| 1177 | The prologue instructions may be combined or interleaved with other |
| 1178 | instructions. |
| 1179 | |
| 1180 | To cope with all this variability we decode all the instructions |
| 1181 | from the start of the prologue until we hit an instruction that |
| 1182 | cannot possibly be a prologue instruction, such as a branch, call, |
| 1183 | return, or epilogue instruction. The prologue is considered to end |
| 1184 | at the last instruction that can definitely be considered a |
| 1185 | prologue instruction. */ |
| 1186 | |
| 1187 | static CORE_ADDR |
| 1188 | nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, |
| 1189 | const CORE_ADDR current_pc, |
| 1190 | struct nios2_unwind_cache *cache, |
| 1191 | struct frame_info *this_frame) |
| 1192 | { |
| 1193 | /* Maximum number of possibly-prologue instructions to check. |
| 1194 | Note that this number should not be too large, else we can |
| 1195 | potentially end up iterating through unmapped memory. */ |
| 1196 | int ninsns, max_insns = 50; |
| 1197 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1198 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
| 1199 | |
| 1200 | /* Does the frame set up the FP register? */ |
| 1201 | int base_reg = 0; |
| 1202 | |
| 1203 | struct reg_value *value = cache->reg_value; |
| 1204 | struct reg_value temp_value[NIOS2_NUM_REGS]; |
| 1205 | |
| 1206 | int i; |
| 1207 | |
| 1208 | /* Save the starting PC so we can correct the pc after running |
| 1209 | through the prolog, using symbol info. */ |
| 1210 | CORE_ADDR pc = start_pc; |
| 1211 | |
| 1212 | /* Is this an exception handler? */ |
| 1213 | int exception_handler = 0; |
| 1214 | |
| 1215 | /* What was the original value of SP (or fake original value for |
| 1216 | functions which switch stacks? */ |
| 1217 | CORE_ADDR frame_high; |
| 1218 | |
| 1219 | /* The last definitely-prologue instruction seen. */ |
| 1220 | CORE_ADDR prologue_end; |
| 1221 | |
| 1222 | /* Is this the innermost function? */ |
| 1223 | int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1); |
| 1224 | |
| 1225 | if (nios2_debug) |
| 1226 | fprintf_unfiltered (gdb_stdlog, |
| 1227 | "{ nios2_analyze_prologue start=%s, current=%s ", |
| 1228 | paddress (gdbarch, start_pc), |
| 1229 | paddress (gdbarch, current_pc)); |
| 1230 | |
| 1231 | /* Set up the default values of the registers. */ |
| 1232 | nios2_setup_default (cache); |
| 1233 | |
| 1234 | /* Find the prologue instructions. */ |
| 1235 | prologue_end = start_pc; |
| 1236 | for (ninsns = 0; ninsns < max_insns; ninsns++) |
| 1237 | { |
| 1238 | /* Present instruction. */ |
| 1239 | uint32_t insn; |
| 1240 | const struct nios2_opcode *op; |
| 1241 | int ra, rb, rc, imm; |
| 1242 | unsigned int uimm; |
| 1243 | unsigned int reglist; |
| 1244 | int wb, id, ret; |
| 1245 | enum branch_condition cond; |
| 1246 | |
| 1247 | if (pc == current_pc) |
| 1248 | { |
| 1249 | /* When we reach the current PC we must save the current |
| 1250 | register state (for the backtrace) but keep analysing |
| 1251 | because there might be more to find out (eg. is this an |
| 1252 | exception handler). */ |
| 1253 | memcpy (temp_value, value, sizeof (temp_value)); |
| 1254 | value = temp_value; |
| 1255 | if (nios2_debug) |
| 1256 | fprintf_unfiltered (gdb_stdlog, "*"); |
| 1257 | } |
| 1258 | |
| 1259 | op = nios2_fetch_insn (gdbarch, pc, &insn); |
| 1260 | |
| 1261 | /* Unknown opcode? Stop scanning. */ |
| 1262 | if (op == NULL) |
| 1263 | break; |
| 1264 | pc += op->size; |
| 1265 | |
| 1266 | if (nios2_debug) |
| 1267 | { |
| 1268 | if (op->size == 2) |
| 1269 | fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff); |
| 1270 | else |
| 1271 | fprintf_unfiltered (gdb_stdlog, "[%08X]", insn); |
| 1272 | } |
| 1273 | |
| 1274 | /* The following instructions can appear in the prologue. */ |
| 1275 | |
| 1276 | if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) |
| 1277 | { |
| 1278 | /* ADD rc, ra, rb (also used for MOV) */ |
| 1279 | if (rc == NIOS2_SP_REGNUM |
| 1280 | && rb == 0 |
| 1281 | && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg) |
| 1282 | { |
| 1283 | /* If the previous value of SP is available somewhere |
| 1284 | near the new stack pointer value then this is a |
| 1285 | stack switch. */ |
| 1286 | |
| 1287 | /* If any registers were saved on the stack before then |
| 1288 | we can't backtrace into them now. */ |
| 1289 | for (i = 0 ; i < NIOS2_NUM_REGS ; i++) |
| 1290 | { |
| 1291 | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) |
| 1292 | cache->reg_saved[i].basereg = -1; |
| 1293 | if (value[i].reg == NIOS2_SP_REGNUM) |
| 1294 | value[i].reg = -1; |
| 1295 | } |
| 1296 | |
| 1297 | /* Create a fake "high water mark" 4 bytes above where SP |
| 1298 | was stored and fake up the registers to be consistent |
| 1299 | with that. */ |
| 1300 | value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM; |
| 1301 | value[NIOS2_SP_REGNUM].offset |
| 1302 | = (value[ra].offset |
| 1303 | - cache->reg_saved[NIOS2_SP_REGNUM].addr |
| 1304 | - 4); |
| 1305 | cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM; |
| 1306 | cache->reg_saved[NIOS2_SP_REGNUM].addr = -4; |
| 1307 | } |
| 1308 | |
| 1309 | else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) |
| 1310 | /* This is setting SP from FP. This only happens in the |
| 1311 | function epilogue. */ |
| 1312 | break; |
| 1313 | |
| 1314 | else if (rc != 0) |
| 1315 | { |
| 1316 | if (value[rb].reg == 0) |
| 1317 | value[rc].reg = value[ra].reg; |
| 1318 | else if (value[ra].reg == 0) |
| 1319 | value[rc].reg = value[rb].reg; |
| 1320 | else |
| 1321 | value[rc].reg = -1; |
| 1322 | value[rc].offset = value[ra].offset + value[rb].offset; |
| 1323 | } |
| 1324 | |
| 1325 | /* The add/move is only considered a prologue instruction |
| 1326 | if the destination is SP or FP. */ |
| 1327 | if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM) |
| 1328 | prologue_end = pc; |
| 1329 | } |
| 1330 | |
| 1331 | else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc)) |
| 1332 | { |
| 1333 | /* SUB rc, ra, rb */ |
| 1334 | if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM |
| 1335 | && value[rc].reg != 0) |
| 1336 | /* If we are decrementing the SP by a non-constant amount, |
| 1337 | this is alloca, not part of the prologue. */ |
| 1338 | break; |
| 1339 | else if (rc != 0) |
| 1340 | { |
| 1341 | if (value[rb].reg == 0) |
| 1342 | value[rc].reg = value[ra].reg; |
| 1343 | else |
| 1344 | value[rc].reg = -1; |
| 1345 | value[rc].offset = value[ra].offset - value[rb].offset; |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) |
| 1350 | { |
| 1351 | /* ADDI rb, ra, imm */ |
| 1352 | |
| 1353 | /* A positive stack adjustment has to be part of the epilogue. */ |
| 1354 | if (rb == NIOS2_SP_REGNUM |
| 1355 | && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM)) |
| 1356 | break; |
| 1357 | |
| 1358 | /* Likewise restoring SP from FP. */ |
| 1359 | else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) |
| 1360 | break; |
| 1361 | |
| 1362 | if (rb != 0) |
| 1363 | { |
| 1364 | value[rb].reg = value[ra].reg; |
| 1365 | value[rb].offset = value[ra].offset + imm; |
| 1366 | } |
| 1367 | |
| 1368 | /* The add is only considered a prologue instruction |
| 1369 | if the destination is SP or FP. */ |
| 1370 | if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM) |
| 1371 | prologue_end = pc; |
| 1372 | } |
| 1373 | |
| 1374 | else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm)) |
| 1375 | { |
| 1376 | /* ORHI rb, ra, uimm (also used for MOVHI) */ |
| 1377 | if (rb != 0) |
| 1378 | { |
| 1379 | value[rb].reg = (value[ra].reg == 0) ? 0 : -1; |
| 1380 | value[rb].offset = value[ra].offset | (uimm << 16); |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm)) |
| 1385 | { |
| 1386 | /* STW rb, imm(ra) */ |
| 1387 | |
| 1388 | /* Are we storing the original value of a register to the stack? |
| 1389 | For exception handlers the value of EA-4 (return |
| 1390 | address from interrupts etc) is sometimes stored. */ |
| 1391 | int orig = value[rb].reg; |
| 1392 | if (orig > 0 |
| 1393 | && (value[rb].offset == 0 |
| 1394 | || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4)) |
| 1395 | && value[ra].reg == NIOS2_SP_REGNUM) |
| 1396 | { |
| 1397 | if (pc < current_pc) |
| 1398 | { |
| 1399 | /* Save off callee saved registers. */ |
| 1400 | cache->reg_saved[orig].basereg = value[ra].reg; |
| 1401 | cache->reg_saved[orig].addr = value[ra].offset + imm; |
| 1402 | } |
| 1403 | |
| 1404 | prologue_end = pc; |
| 1405 | |
| 1406 | if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM) |
| 1407 | exception_handler = 1; |
| 1408 | } |
| 1409 | else |
| 1410 | /* Non-stack memory writes cannot appear in the prologue. */ |
| 1411 | break; |
| 1412 | } |
| 1413 | |
| 1414 | else if (nios2_match_stwm (insn, op, mach, |
| 1415 | ®list, &ra, &imm, &wb, &id)) |
| 1416 | { |
| 1417 | /* PUSH.N {reglist}, adjust |
| 1418 | or |
| 1419 | STWM {reglist}, --(SP)[, writeback] */ |
| 1420 | int i; |
| 1421 | int off = 0; |
| 1422 | |
| 1423 | if (ra != NIOS2_SP_REGNUM || id != 0) |
| 1424 | /* This is a non-stack-push memory write and cannot be |
| 1425 | part of the prologue. */ |
| 1426 | break; |
| 1427 | |
| 1428 | for (i = 31; i >= 0; i--) |
| 1429 | if (reglist & (1 << i)) |
| 1430 | { |
| 1431 | int orig = value[i].reg; |
| 1432 | |
| 1433 | off += 4; |
| 1434 | if (orig > 0 && value[i].offset == 0 && pc < current_pc) |
| 1435 | { |
| 1436 | cache->reg_saved[orig].basereg |
| 1437 | = value[NIOS2_SP_REGNUM].reg; |
| 1438 | cache->reg_saved[orig].addr |
| 1439 | = value[NIOS2_SP_REGNUM].offset - off; |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | if (wb) |
| 1444 | value[NIOS2_SP_REGNUM].offset -= off; |
| 1445 | value[NIOS2_SP_REGNUM].offset -= imm; |
| 1446 | |
| 1447 | prologue_end = pc; |
| 1448 | } |
| 1449 | |
| 1450 | else if (nios2_match_rdctl (insn, op, mach, &ra, &rc)) |
| 1451 | { |
| 1452 | /* RDCTL rC, ctlN |
| 1453 | This can appear in exception handlers in combination with |
| 1454 | a subsequent save to the stack frame. */ |
| 1455 | if (rc != 0) |
| 1456 | { |
| 1457 | value[rc].reg = NIOS2_STATUS_REGNUM + ra; |
| 1458 | value[rc].offset = 0; |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | else if (nios2_match_calli (insn, op, mach, &uimm)) |
| 1463 | { |
| 1464 | if (value[8].reg == NIOS2_RA_REGNUM |
| 1465 | && value[8].offset == 0 |
| 1466 | && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM |
| 1467 | && value[NIOS2_SP_REGNUM].offset == 0) |
| 1468 | { |
| 1469 | /* A CALL instruction. This is treated as a call to mcount |
| 1470 | if ra has been stored into r8 beforehand and if it's |
| 1471 | before the stack adjust. |
| 1472 | Note mcount corrupts r2-r3, r9-r15 & ra. */ |
| 1473 | for (i = 2 ; i <= 3 ; i++) |
| 1474 | value[i].reg = -1; |
| 1475 | for (i = 9 ; i <= 15 ; i++) |
| 1476 | value[i].reg = -1; |
| 1477 | value[NIOS2_RA_REGNUM].reg = -1; |
| 1478 | |
| 1479 | prologue_end = pc; |
| 1480 | } |
| 1481 | |
| 1482 | /* Other calls are not part of the prologue. */ |
| 1483 | else |
| 1484 | break; |
| 1485 | } |
| 1486 | |
| 1487 | else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) |
| 1488 | { |
| 1489 | /* Branches not involving a stack overflow check aren't part of |
| 1490 | the prologue. */ |
| 1491 | if (ra != NIOS2_SP_REGNUM) |
| 1492 | break; |
| 1493 | else if (cond == branch_geu) |
| 1494 | { |
| 1495 | /* BGEU sp, rx, +8 |
| 1496 | TRAP 3 (or BREAK 3) |
| 1497 | This instruction sequence is used in stack checking; |
| 1498 | we can ignore it. */ |
| 1499 | unsigned int next_insn; |
| 1500 | const struct nios2_opcode *next_op |
| 1501 | = nios2_fetch_insn (gdbarch, pc, &next_insn); |
| 1502 | if (next_op != NULL |
| 1503 | && (nios2_match_trap (next_insn, op, mach, &uimm) |
| 1504 | || nios2_match_break (next_insn, op, mach, &uimm))) |
| 1505 | pc += next_op->size; |
| 1506 | else |
| 1507 | break; |
| 1508 | } |
| 1509 | else if (cond == branch_ltu) |
| 1510 | { |
| 1511 | /* BLTU sp, rx, .Lstackoverflow |
| 1512 | If the location branched to holds a TRAP or BREAK |
| 1513 | instruction then this is also stack overflow detection. */ |
| 1514 | unsigned int next_insn; |
| 1515 | const struct nios2_opcode *next_op |
| 1516 | = nios2_fetch_insn (gdbarch, pc + imm, &next_insn); |
| 1517 | if (next_op != NULL |
| 1518 | && (nios2_match_trap (next_insn, op, mach, &uimm) |
| 1519 | || nios2_match_break (next_insn, op, mach, &uimm))) |
| 1520 | ; |
| 1521 | else |
| 1522 | break; |
| 1523 | } |
| 1524 | else |
| 1525 | break; |
| 1526 | } |
| 1527 | |
| 1528 | /* All other calls, jumps, returns, TRAPs, or BREAKs terminate |
| 1529 | the prologue. */ |
| 1530 | else if (nios2_match_callr (insn, op, mach, &ra) |
| 1531 | || nios2_match_jmpr (insn, op, mach, &ra) |
| 1532 | || nios2_match_jmpi (insn, op, mach, &uimm) |
| 1533 | || (nios2_match_ldwm (insn, op, mach, ®list, &ra, |
| 1534 | &imm, &wb, &id, &ret) |
| 1535 | && ret) |
| 1536 | || nios2_match_trap (insn, op, mach, &uimm) |
| 1537 | || nios2_match_break (insn, op, mach, &uimm)) |
| 1538 | break; |
| 1539 | } |
| 1540 | |
| 1541 | /* If THIS_FRAME is NULL, we are being called from skip_prologue |
| 1542 | and are only interested in the PROLOGUE_END value, so just |
| 1543 | return that now and skip over the cache updates, which depend |
| 1544 | on having frame information. */ |
| 1545 | if (this_frame == NULL) |
| 1546 | return prologue_end; |
| 1547 | |
| 1548 | /* If we are in the function epilogue and have already popped |
| 1549 | registers off the stack in preparation for returning, then we |
| 1550 | want to go back to the original register values. */ |
| 1551 | if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc)) |
| 1552 | nios2_setup_default (cache); |
| 1553 | |
| 1554 | /* Exception handlers use a different return address register. */ |
| 1555 | if (exception_handler) |
| 1556 | cache->return_regnum = NIOS2_EA_REGNUM; |
| 1557 | |
| 1558 | if (nios2_debug) |
| 1559 | fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum); |
| 1560 | |
| 1561 | if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM) |
| 1562 | /* If the FP now holds an offset from the CFA then this is a |
| 1563 | normal frame which uses the frame pointer. */ |
| 1564 | base_reg = NIOS2_FP_REGNUM; |
| 1565 | else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM) |
| 1566 | /* FP doesn't hold an offset from the CFA. If SP still holds an |
| 1567 | offset from the CFA then we might be in a function which omits |
| 1568 | the frame pointer, or we might be partway through the prologue. |
| 1569 | In both cases we can find the CFA using SP. */ |
| 1570 | base_reg = NIOS2_SP_REGNUM; |
| 1571 | else |
| 1572 | { |
| 1573 | /* Somehow the stack pointer has been corrupted. |
| 1574 | We can't return. */ |
| 1575 | if (nios2_debug) |
| 1576 | fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n"); |
| 1577 | return 0; |
| 1578 | } |
| 1579 | |
| 1580 | if (cache->reg_value[base_reg].offset == 0 |
| 1581 | || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM |
| 1582 | || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM) |
| 1583 | { |
| 1584 | /* If the frame didn't adjust the stack, didn't save RA or |
| 1585 | didn't save EA in an exception handler then it must either |
| 1586 | be a leaf function (doesn't call any other functions) or it |
| 1587 | can't return. If it has called another function then it |
| 1588 | can't be a leaf, so set base == 0 to indicate that we can't |
| 1589 | backtrace past it. */ |
| 1590 | |
| 1591 | if (!innermost) |
| 1592 | { |
| 1593 | /* If it isn't the innermost function then it can't be a |
| 1594 | leaf, unless it was interrupted. Check whether RA for |
| 1595 | this frame is the same as PC. If so then it probably |
| 1596 | wasn't interrupted. */ |
| 1597 | CORE_ADDR ra |
| 1598 | = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM); |
| 1599 | |
| 1600 | if (ra == current_pc) |
| 1601 | { |
| 1602 | if (nios2_debug) |
| 1603 | fprintf_unfiltered |
| 1604 | (gdb_stdlog, |
| 1605 | "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n", |
| 1606 | paddress (gdbarch, cache->reg_value[base_reg].offset), |
| 1607 | cache->reg_saved[NIOS2_RA_REGNUM].basereg, |
| 1608 | cache->return_regnum, |
| 1609 | cache->reg_saved[cache->return_regnum].basereg); |
| 1610 | return 0; |
| 1611 | } |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | /* Get the value of whichever register we are using for the |
| 1616 | base. */ |
| 1617 | cache->base = get_frame_register_unsigned (this_frame, base_reg); |
| 1618 | |
| 1619 | /* What was the value of SP at the start of this function (or just |
| 1620 | after the stack switch). */ |
| 1621 | frame_high = cache->base - cache->reg_value[base_reg].offset; |
| 1622 | |
| 1623 | /* Adjust all the saved registers such that they contain addresses |
| 1624 | instead of offsets. */ |
| 1625 | for (i = 0; i < NIOS2_NUM_REGS; i++) |
| 1626 | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) |
| 1627 | { |
| 1628 | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; |
| 1629 | cache->reg_saved[i].addr += frame_high; |
| 1630 | } |
| 1631 | |
| 1632 | for (i = 0; i < NIOS2_NUM_REGS; i++) |
| 1633 | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) |
| 1634 | { |
| 1635 | CORE_ADDR gp = get_frame_register_unsigned (this_frame, |
| 1636 | NIOS2_GP_REGNUM); |
| 1637 | |
| 1638 | for ( ; i < NIOS2_NUM_REGS; i++) |
| 1639 | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) |
| 1640 | { |
| 1641 | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; |
| 1642 | cache->reg_saved[i].addr += gp; |
| 1643 | } |
| 1644 | } |
| 1645 | |
| 1646 | /* Work out what the value of SP was on the first instruction of |
| 1647 | this function. If we didn't switch stacks then this can be |
| 1648 | trivially computed from the base address. */ |
| 1649 | if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM) |
| 1650 | cache->cfa |
| 1651 | = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr, |
| 1652 | 4, byte_order); |
| 1653 | else |
| 1654 | cache->cfa = frame_high; |
| 1655 | |
| 1656 | /* Exception handlers restore ESTATUS into STATUS. */ |
| 1657 | if (exception_handler) |
| 1658 | { |
| 1659 | cache->reg_saved[NIOS2_STATUS_REGNUM] |
| 1660 | = cache->reg_saved[NIOS2_ESTATUS_REGNUM]; |
| 1661 | cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1; |
| 1662 | } |
| 1663 | |
| 1664 | if (nios2_debug) |
| 1665 | fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n", |
| 1666 | paddress (gdbarch, cache->cfa)); |
| 1667 | |
| 1668 | return prologue_end; |
| 1669 | } |
| 1670 | |
| 1671 | /* Implement the skip_prologue gdbarch hook. */ |
| 1672 | |
| 1673 | static CORE_ADDR |
| 1674 | nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) |
| 1675 | { |
| 1676 | CORE_ADDR func_addr; |
| 1677 | |
| 1678 | struct nios2_unwind_cache cache; |
| 1679 | |
| 1680 | /* See if we can determine the end of the prologue via the symbol |
| 1681 | table. If so, then return either PC, or the PC after the |
| 1682 | prologue, whichever is greater. */ |
| 1683 | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) |
| 1684 | { |
| 1685 | CORE_ADDR post_prologue_pc |
| 1686 | = skip_prologue_using_sal (gdbarch, func_addr); |
| 1687 | |
| 1688 | if (post_prologue_pc != 0) |
| 1689 | return std::max (start_pc, post_prologue_pc); |
| 1690 | } |
| 1691 | |
| 1692 | /* Prologue analysis does the rest.... */ |
| 1693 | nios2_init_cache (&cache, start_pc); |
| 1694 | return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL); |
| 1695 | } |
| 1696 | |
| 1697 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
| 1698 | |
| 1699 | static int |
| 1700 | nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) |
| 1701 | { |
| 1702 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
| 1703 | |
| 1704 | if (mach == bfd_mach_nios2r2) |
| 1705 | { |
| 1706 | unsigned int insn; |
| 1707 | const struct nios2_opcode *op |
| 1708 | = nios2_fetch_insn (gdbarch, *pcptr, &insn); |
| 1709 | |
| 1710 | if (op && op->size == NIOS2_CDX_OPCODE_SIZE) |
| 1711 | return NIOS2_CDX_OPCODE_SIZE; |
| 1712 | else |
| 1713 | return NIOS2_OPCODE_SIZE; |
| 1714 | } |
| 1715 | else |
| 1716 | return NIOS2_OPCODE_SIZE; |
| 1717 | } |
| 1718 | |
| 1719 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
| 1720 | |
| 1721 | static const gdb_byte * |
| 1722 | nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) |
| 1723 | { |
| 1724 | /* The Nios II ABI for Linux says: "Userspace programs should not use |
| 1725 | the break instruction and userspace debuggers should not insert |
| 1726 | one." and "Userspace breakpoints are accomplished using the trap |
| 1727 | instruction with immediate operand 31 (all ones)." |
| 1728 | |
| 1729 | So, we use "trap 31" consistently as the breakpoint on bare-metal |
| 1730 | as well as Linux targets. */ |
| 1731 | |
| 1732 | /* R2 trap encoding: |
| 1733 | ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0)) |
| 1734 | 0xb7fd0020 |
| 1735 | CDX trap.n encoding: |
| 1736 | ((0xd << 12) | (0x1f << 6) | (0x9 << 0)) |
| 1737 | 0xd7c9 |
| 1738 | Note that code is always little-endian on R2. */ |
| 1739 | *size = kind; |
| 1740 | |
| 1741 | if (kind == NIOS2_CDX_OPCODE_SIZE) |
| 1742 | { |
| 1743 | static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7}; |
| 1744 | |
| 1745 | return cdx_breakpoint_le; |
| 1746 | } |
| 1747 | else |
| 1748 | { |
| 1749 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
| 1750 | |
| 1751 | if (mach == bfd_mach_nios2r2) |
| 1752 | { |
| 1753 | static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7}; |
| 1754 | |
| 1755 | return r2_breakpoint_le; |
| 1756 | } |
| 1757 | else |
| 1758 | { |
| 1759 | enum bfd_endian byte_order_for_code |
| 1760 | = gdbarch_byte_order_for_code (gdbarch); |
| 1761 | /* R1 trap encoding: |
| 1762 | ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0)) |
| 1763 | 0x003b6ffa */ |
| 1764 | static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0}; |
| 1765 | static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa}; |
| 1766 | |
| 1767 | if (byte_order_for_code == BFD_ENDIAN_BIG) |
| 1768 | return r1_breakpoint_be; |
| 1769 | else |
| 1770 | return r1_breakpoint_le; |
| 1771 | } |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | /* Implement the print_insn gdbarch method. */ |
| 1776 | |
| 1777 | static int |
| 1778 | nios2_print_insn (bfd_vma memaddr, disassemble_info *info) |
| 1779 | { |
| 1780 | if (info->endian == BFD_ENDIAN_BIG) |
| 1781 | return print_insn_big_nios2 (memaddr, info); |
| 1782 | else |
| 1783 | return print_insn_little_nios2 (memaddr, info); |
| 1784 | } |
| 1785 | |
| 1786 | |
| 1787 | /* Implement the frame_align gdbarch method. */ |
| 1788 | |
| 1789 | static CORE_ADDR |
| 1790 | nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| 1791 | { |
| 1792 | return align_down (addr, 4); |
| 1793 | } |
| 1794 | |
| 1795 | |
| 1796 | /* Implement the return_value gdbarch method. */ |
| 1797 | |
| 1798 | static enum return_value_convention |
| 1799 | nios2_return_value (struct gdbarch *gdbarch, struct value *function, |
| 1800 | struct type *type, struct regcache *regcache, |
| 1801 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 1802 | { |
| 1803 | if (TYPE_LENGTH (type) > 8) |
| 1804 | return RETURN_VALUE_STRUCT_CONVENTION; |
| 1805 | |
| 1806 | if (readbuf) |
| 1807 | nios2_extract_return_value (gdbarch, type, regcache, readbuf); |
| 1808 | if (writebuf) |
| 1809 | nios2_store_return_value (gdbarch, type, regcache, writebuf); |
| 1810 | |
| 1811 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 1812 | } |
| 1813 | |
| 1814 | /* Implement the dummy_id gdbarch method. */ |
| 1815 | |
| 1816 | static struct frame_id |
| 1817 | nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 1818 | { |
| 1819 | return frame_id_build |
| 1820 | (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM), |
| 1821 | get_frame_pc (this_frame)); |
| 1822 | } |
| 1823 | |
| 1824 | /* Implement the push_dummy_call gdbarch method. */ |
| 1825 | |
| 1826 | static CORE_ADDR |
| 1827 | nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 1828 | struct regcache *regcache, CORE_ADDR bp_addr, |
| 1829 | int nargs, struct value **args, CORE_ADDR sp, |
| 1830 | int struct_return, CORE_ADDR struct_addr) |
| 1831 | { |
| 1832 | int argreg; |
| 1833 | int float_argreg; |
| 1834 | int argnum; |
| 1835 | int len = 0; |
| 1836 | int stack_offset = 0; |
| 1837 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
| 1838 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 1839 | |
| 1840 | /* Set the return address register to point to the entry point of |
| 1841 | the program, where a breakpoint lies in wait. */ |
| 1842 | regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr); |
| 1843 | |
| 1844 | /* Now make space on the stack for the args. */ |
| 1845 | for (argnum = 0; argnum < nargs; argnum++) |
| 1846 | len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4); |
| 1847 | sp -= len; |
| 1848 | |
| 1849 | /* Initialize the register pointer. */ |
| 1850 | argreg = NIOS2_FIRST_ARGREG; |
| 1851 | |
| 1852 | /* The struct_return pointer occupies the first parameter-passing |
| 1853 | register. */ |
| 1854 | if (struct_return) |
| 1855 | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); |
| 1856 | |
| 1857 | /* Now load as many as possible of the first arguments into |
| 1858 | registers, and push the rest onto the stack. Loop through args |
| 1859 | from first to last. */ |
| 1860 | for (argnum = 0; argnum < nargs; argnum++) |
| 1861 | { |
| 1862 | const gdb_byte *val; |
| 1863 | struct value *arg = args[argnum]; |
| 1864 | struct type *arg_type = check_typedef (value_type (arg)); |
| 1865 | int len = TYPE_LENGTH (arg_type); |
| 1866 | |
| 1867 | val = value_contents (arg); |
| 1868 | |
| 1869 | /* Copy the argument to general registers or the stack in |
| 1870 | register-sized pieces. Large arguments are split between |
| 1871 | registers and stack. */ |
| 1872 | while (len > 0) |
| 1873 | { |
| 1874 | int partial_len = (len < 4 ? len : 4); |
| 1875 | |
| 1876 | if (argreg <= NIOS2_LAST_ARGREG) |
| 1877 | { |
| 1878 | /* The argument is being passed in a register. */ |
| 1879 | CORE_ADDR regval = extract_unsigned_integer (val, partial_len, |
| 1880 | byte_order); |
| 1881 | |
| 1882 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
| 1883 | argreg++; |
| 1884 | } |
| 1885 | else |
| 1886 | { |
| 1887 | /* The argument is being passed on the stack. */ |
| 1888 | CORE_ADDR addr = sp + stack_offset; |
| 1889 | |
| 1890 | write_memory (addr, val, partial_len); |
| 1891 | stack_offset += align_up (partial_len, 4); |
| 1892 | } |
| 1893 | |
| 1894 | len -= partial_len; |
| 1895 | val += partial_len; |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp); |
| 1900 | |
| 1901 | /* Return adjusted stack pointer. */ |
| 1902 | return sp; |
| 1903 | } |
| 1904 | |
| 1905 | /* Implement the unwind_pc gdbarch method. */ |
| 1906 | |
| 1907 | static CORE_ADDR |
| 1908 | nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| 1909 | { |
| 1910 | gdb_byte buf[4]; |
| 1911 | |
| 1912 | frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf); |
| 1913 | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); |
| 1914 | } |
| 1915 | |
| 1916 | /* Implement the unwind_sp gdbarch method. */ |
| 1917 | |
| 1918 | static CORE_ADDR |
| 1919 | nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 1920 | { |
| 1921 | return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM); |
| 1922 | } |
| 1923 | |
| 1924 | /* Use prologue analysis to fill in the register cache |
| 1925 | *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes |
| 1926 | *THIS_PROLOGUE_CACHE first. */ |
| 1927 | |
| 1928 | static struct nios2_unwind_cache * |
| 1929 | nios2_frame_unwind_cache (struct frame_info *this_frame, |
| 1930 | void **this_prologue_cache) |
| 1931 | { |
| 1932 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 1933 | CORE_ADDR current_pc; |
| 1934 | struct nios2_unwind_cache *cache; |
| 1935 | |
| 1936 | if (*this_prologue_cache) |
| 1937 | return (struct nios2_unwind_cache *) *this_prologue_cache; |
| 1938 | |
| 1939 | cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache); |
| 1940 | *this_prologue_cache = cache; |
| 1941 | |
| 1942 | /* Zero all fields. */ |
| 1943 | nios2_init_cache (cache, get_frame_func (this_frame)); |
| 1944 | |
| 1945 | /* Prologue analysis does the rest... */ |
| 1946 | current_pc = get_frame_pc (this_frame); |
| 1947 | if (cache->pc != 0) |
| 1948 | nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); |
| 1949 | |
| 1950 | return cache; |
| 1951 | } |
| 1952 | |
| 1953 | /* Implement the this_id function for the normal unwinder. */ |
| 1954 | |
| 1955 | static void |
| 1956 | nios2_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 1957 | struct frame_id *this_id) |
| 1958 | { |
| 1959 | struct nios2_unwind_cache *cache = |
| 1960 | nios2_frame_unwind_cache (this_frame, this_cache); |
| 1961 | |
| 1962 | /* This marks the outermost frame. */ |
| 1963 | if (cache->base == 0) |
| 1964 | return; |
| 1965 | |
| 1966 | *this_id = frame_id_build (cache->cfa, cache->pc); |
| 1967 | } |
| 1968 | |
| 1969 | /* Implement the prev_register function for the normal unwinder. */ |
| 1970 | |
| 1971 | static struct value * |
| 1972 | nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
| 1973 | int regnum) |
| 1974 | { |
| 1975 | struct nios2_unwind_cache *cache = |
| 1976 | nios2_frame_unwind_cache (this_frame, this_cache); |
| 1977 | |
| 1978 | gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS); |
| 1979 | |
| 1980 | /* The PC of the previous frame is stored in the RA register of |
| 1981 | the current frame. Frob regnum so that we pull the value from |
| 1982 | the correct place. */ |
| 1983 | if (regnum == NIOS2_PC_REGNUM) |
| 1984 | regnum = cache->return_regnum; |
| 1985 | |
| 1986 | if (regnum == NIOS2_SP_REGNUM && cache->cfa) |
| 1987 | return frame_unwind_got_constant (this_frame, regnum, cache->cfa); |
| 1988 | |
| 1989 | /* If we've worked out where a register is stored then load it from |
| 1990 | there. */ |
| 1991 | if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM) |
| 1992 | return frame_unwind_got_memory (this_frame, regnum, |
| 1993 | cache->reg_saved[regnum].addr); |
| 1994 | |
| 1995 | return frame_unwind_got_register (this_frame, regnum, regnum); |
| 1996 | } |
| 1997 | |
| 1998 | /* Implement the this_base, this_locals, and this_args hooks |
| 1999 | for the normal unwinder. */ |
| 2000 | |
| 2001 | static CORE_ADDR |
| 2002 | nios2_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| 2003 | { |
| 2004 | struct nios2_unwind_cache *info |
| 2005 | = nios2_frame_unwind_cache (this_frame, this_cache); |
| 2006 | |
| 2007 | return info->base; |
| 2008 | } |
| 2009 | |
| 2010 | /* Data structures for the normal prologue-analysis-based |
| 2011 | unwinder. */ |
| 2012 | |
| 2013 | static const struct frame_unwind nios2_frame_unwind = |
| 2014 | { |
| 2015 | NORMAL_FRAME, |
| 2016 | default_frame_unwind_stop_reason, |
| 2017 | nios2_frame_this_id, |
| 2018 | nios2_frame_prev_register, |
| 2019 | NULL, |
| 2020 | default_frame_sniffer |
| 2021 | }; |
| 2022 | |
| 2023 | static const struct frame_base nios2_frame_base = |
| 2024 | { |
| 2025 | &nios2_frame_unwind, |
| 2026 | nios2_frame_base_address, |
| 2027 | nios2_frame_base_address, |
| 2028 | nios2_frame_base_address |
| 2029 | }; |
| 2030 | |
| 2031 | /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use |
| 2032 | in the stub unwinder. */ |
| 2033 | |
| 2034 | static struct trad_frame_cache * |
| 2035 | nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache) |
| 2036 | { |
| 2037 | CORE_ADDR pc; |
| 2038 | CORE_ADDR start_addr; |
| 2039 | CORE_ADDR stack_addr; |
| 2040 | struct trad_frame_cache *this_trad_cache; |
| 2041 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| 2042 | |
| 2043 | if (*this_cache != NULL) |
| 2044 | return (struct trad_frame_cache *) *this_cache; |
| 2045 | this_trad_cache = trad_frame_cache_zalloc (this_frame); |
| 2046 | *this_cache = this_trad_cache; |
| 2047 | |
| 2048 | /* The return address is in the link register. */ |
| 2049 | trad_frame_set_reg_realreg (this_trad_cache, |
| 2050 | gdbarch_pc_regnum (gdbarch), |
| 2051 | NIOS2_RA_REGNUM); |
| 2052 | |
| 2053 | /* Frame ID, since it's a frameless / stackless function, no stack |
| 2054 | space is allocated and SP on entry is the current SP. */ |
| 2055 | pc = get_frame_pc (this_frame); |
| 2056 | find_pc_partial_function (pc, NULL, &start_addr, NULL); |
| 2057 | stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM); |
| 2058 | trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr)); |
| 2059 | /* Assume that the frame's base is the same as the stack pointer. */ |
| 2060 | trad_frame_set_this_base (this_trad_cache, stack_addr); |
| 2061 | |
| 2062 | return this_trad_cache; |
| 2063 | } |
| 2064 | |
| 2065 | /* Implement the this_id function for the stub unwinder. */ |
| 2066 | |
| 2067 | static void |
| 2068 | nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| 2069 | struct frame_id *this_id) |
| 2070 | { |
| 2071 | struct trad_frame_cache *this_trad_cache |
| 2072 | = nios2_stub_frame_cache (this_frame, this_cache); |
| 2073 | |
| 2074 | trad_frame_get_id (this_trad_cache, this_id); |
| 2075 | } |
| 2076 | |
| 2077 | /* Implement the prev_register function for the stub unwinder. */ |
| 2078 | |
| 2079 | static struct value * |
| 2080 | nios2_stub_frame_prev_register (struct frame_info *this_frame, |
| 2081 | void **this_cache, int regnum) |
| 2082 | { |
| 2083 | struct trad_frame_cache *this_trad_cache |
| 2084 | = nios2_stub_frame_cache (this_frame, this_cache); |
| 2085 | |
| 2086 | return trad_frame_get_register (this_trad_cache, this_frame, regnum); |
| 2087 | } |
| 2088 | |
| 2089 | /* Implement the sniffer function for the stub unwinder. |
| 2090 | This unwinder is used for cases where the normal |
| 2091 | prologue-analysis-based unwinder can't work, |
| 2092 | such as PLT stubs. */ |
| 2093 | |
| 2094 | static int |
| 2095 | nios2_stub_frame_sniffer (const struct frame_unwind *self, |
| 2096 | struct frame_info *this_frame, void **cache) |
| 2097 | { |
| 2098 | gdb_byte dummy[4]; |
| 2099 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
| 2100 | |
| 2101 | /* Use the stub unwinder for unreadable code. */ |
| 2102 | if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) |
| 2103 | return 1; |
| 2104 | |
| 2105 | if (in_plt_section (pc)) |
| 2106 | return 1; |
| 2107 | |
| 2108 | return 0; |
| 2109 | } |
| 2110 | |
| 2111 | /* Define the data structures for the stub unwinder. */ |
| 2112 | |
| 2113 | static const struct frame_unwind nios2_stub_frame_unwind = |
| 2114 | { |
| 2115 | NORMAL_FRAME, |
| 2116 | default_frame_unwind_stop_reason, |
| 2117 | nios2_stub_frame_this_id, |
| 2118 | nios2_stub_frame_prev_register, |
| 2119 | NULL, |
| 2120 | nios2_stub_frame_sniffer |
| 2121 | }; |
| 2122 | |
| 2123 | |
| 2124 | |
| 2125 | /* Determine where to set a single step breakpoint while considering |
| 2126 | branch prediction. */ |
| 2127 | |
| 2128 | static CORE_ADDR |
| 2129 | nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc) |
| 2130 | { |
| 2131 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| 2132 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2133 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
| 2134 | unsigned int insn; |
| 2135 | const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn); |
| 2136 | int ra; |
| 2137 | int rb; |
| 2138 | int imm; |
| 2139 | unsigned int uimm; |
| 2140 | int wb, id, ret; |
| 2141 | enum branch_condition cond; |
| 2142 | |
| 2143 | /* Do something stupid if we can't disassemble the insn at pc. */ |
| 2144 | if (op == NULL) |
| 2145 | return pc + NIOS2_OPCODE_SIZE; |
| 2146 | |
| 2147 | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) |
| 2148 | { |
| 2149 | int ras = regcache_raw_get_signed (regcache, ra); |
| 2150 | int rbs = regcache_raw_get_signed (regcache, rb); |
| 2151 | unsigned int rau = regcache_raw_get_unsigned (regcache, ra); |
| 2152 | unsigned int rbu = regcache_raw_get_unsigned (regcache, rb); |
| 2153 | |
| 2154 | pc += op->size; |
| 2155 | switch (cond) |
| 2156 | { |
| 2157 | case branch_none: |
| 2158 | pc += imm; |
| 2159 | break; |
| 2160 | case branch_eq: |
| 2161 | if (ras == rbs) |
| 2162 | pc += imm; |
| 2163 | break; |
| 2164 | case branch_ne: |
| 2165 | if (ras != rbs) |
| 2166 | pc += imm; |
| 2167 | break; |
| 2168 | case branch_ge: |
| 2169 | if (ras >= rbs) |
| 2170 | pc += imm; |
| 2171 | break; |
| 2172 | case branch_geu: |
| 2173 | if (rau >= rbu) |
| 2174 | pc += imm; |
| 2175 | break; |
| 2176 | case branch_lt: |
| 2177 | if (ras < rbs) |
| 2178 | pc += imm; |
| 2179 | break; |
| 2180 | case branch_ltu: |
| 2181 | if (rau < rbu) |
| 2182 | pc += imm; |
| 2183 | break; |
| 2184 | default: |
| 2185 | break; |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | else if (nios2_match_jmpi (insn, op, mach, &uimm) |
| 2190 | || nios2_match_calli (insn, op, mach, &uimm)) |
| 2191 | pc = (pc & 0xf0000000) | uimm; |
| 2192 | |
| 2193 | else if (nios2_match_jmpr (insn, op, mach, &ra) |
| 2194 | || nios2_match_callr (insn, op, mach, &ra)) |
| 2195 | pc = regcache_raw_get_unsigned (regcache, ra); |
| 2196 | |
| 2197 | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) |
| 2198 | && ret) |
| 2199 | { |
| 2200 | /* If ra is in the reglist, we have to use the value saved in the |
| 2201 | stack frame rather than the current value. */ |
| 2202 | if (uimm & (1 << NIOS2_RA_REGNUM)) |
| 2203 | pc = nios2_unwind_pc (gdbarch, get_current_frame ()); |
| 2204 | else |
| 2205 | pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM); |
| 2206 | } |
| 2207 | |
| 2208 | else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0) |
| 2209 | { |
| 2210 | if (tdep->syscall_next_pc != NULL) |
| 2211 | return tdep->syscall_next_pc (get_current_frame (), op); |
| 2212 | } |
| 2213 | |
| 2214 | else |
| 2215 | pc += op->size; |
| 2216 | |
| 2217 | return pc; |
| 2218 | } |
| 2219 | |
| 2220 | /* Implement the software_single_step gdbarch method. */ |
| 2221 | |
| 2222 | static VEC (CORE_ADDR) * |
| 2223 | nios2_software_single_step (struct regcache *regcache) |
| 2224 | { |
| 2225 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| 2226 | CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache)); |
| 2227 | VEC (CORE_ADDR) *next_pcs = NULL; |
| 2228 | |
| 2229 | VEC_safe_push (CORE_ADDR, next_pcs, next_pc); |
| 2230 | |
| 2231 | return next_pcs; |
| 2232 | } |
| 2233 | |
| 2234 | /* Implement the get_longjump_target gdbarch method. */ |
| 2235 | |
| 2236 | static int |
| 2237 | nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
| 2238 | { |
| 2239 | struct gdbarch *gdbarch = get_frame_arch (frame); |
| 2240 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| 2241 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 2242 | CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM); |
| 2243 | gdb_byte buf[4]; |
| 2244 | |
| 2245 | if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4)) |
| 2246 | return 0; |
| 2247 | |
| 2248 | *pc = extract_unsigned_integer (buf, 4, byte_order); |
| 2249 | return 1; |
| 2250 | } |
| 2251 | |
| 2252 | /* Initialize the Nios II gdbarch. */ |
| 2253 | |
| 2254 | static struct gdbarch * |
| 2255 | nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| 2256 | { |
| 2257 | struct gdbarch *gdbarch; |
| 2258 | struct gdbarch_tdep *tdep; |
| 2259 | int i; |
| 2260 | struct tdesc_arch_data *tdesc_data = NULL; |
| 2261 | const struct target_desc *tdesc = info.target_desc; |
| 2262 | |
| 2263 | if (!tdesc_has_registers (tdesc)) |
| 2264 | /* Pick a default target description. */ |
| 2265 | tdesc = tdesc_nios2; |
| 2266 | |
| 2267 | /* Check any target description for validity. */ |
| 2268 | if (tdesc_has_registers (tdesc)) |
| 2269 | { |
| 2270 | const struct tdesc_feature *feature; |
| 2271 | int valid_p; |
| 2272 | |
| 2273 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu"); |
| 2274 | if (feature == NULL) |
| 2275 | return NULL; |
| 2276 | |
| 2277 | tdesc_data = tdesc_data_alloc (); |
| 2278 | |
| 2279 | valid_p = 1; |
| 2280 | |
| 2281 | for (i = 0; i < NIOS2_NUM_REGS; i++) |
| 2282 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, |
| 2283 | nios2_reg_names[i]); |
| 2284 | |
| 2285 | if (!valid_p) |
| 2286 | { |
| 2287 | tdesc_data_cleanup (tdesc_data); |
| 2288 | return NULL; |
| 2289 | } |
| 2290 | } |
| 2291 | |
| 2292 | /* Find a candidate among the list of pre-declared architectures. */ |
| 2293 | arches = gdbarch_list_lookup_by_info (arches, &info); |
| 2294 | if (arches != NULL) |
| 2295 | return arches->gdbarch; |
| 2296 | |
| 2297 | /* None found, create a new architecture from the information |
| 2298 | provided. */ |
| 2299 | tdep = XCNEW (struct gdbarch_tdep); |
| 2300 | gdbarch = gdbarch_alloc (&info, tdep); |
| 2301 | |
| 2302 | /* longjmp support not enabled by default. */ |
| 2303 | tdep->jb_pc = -1; |
| 2304 | |
| 2305 | /* Data type sizes. */ |
| 2306 | set_gdbarch_ptr_bit (gdbarch, 32); |
| 2307 | set_gdbarch_addr_bit (gdbarch, 32); |
| 2308 | set_gdbarch_short_bit (gdbarch, 16); |
| 2309 | set_gdbarch_int_bit (gdbarch, 32); |
| 2310 | set_gdbarch_long_bit (gdbarch, 32); |
| 2311 | set_gdbarch_long_long_bit (gdbarch, 64); |
| 2312 | set_gdbarch_float_bit (gdbarch, 32); |
| 2313 | set_gdbarch_double_bit (gdbarch, 64); |
| 2314 | |
| 2315 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
| 2316 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); |
| 2317 | |
| 2318 | /* The register set. */ |
| 2319 | set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS); |
| 2320 | set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM); |
| 2321 | set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */ |
| 2322 | |
| 2323 | set_gdbarch_register_name (gdbarch, nios2_register_name); |
| 2324 | set_gdbarch_register_type (gdbarch, nios2_register_type); |
| 2325 | |
| 2326 | /* Provide register mappings for stabs and dwarf2. */ |
| 2327 | set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); |
| 2328 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); |
| 2329 | |
| 2330 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| 2331 | |
| 2332 | /* Call dummy code. */ |
| 2333 | set_gdbarch_frame_align (gdbarch, nios2_frame_align); |
| 2334 | |
| 2335 | set_gdbarch_return_value (gdbarch, nios2_return_value); |
| 2336 | |
| 2337 | set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue); |
| 2338 | set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p); |
| 2339 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc); |
| 2340 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind); |
| 2341 | |
| 2342 | set_gdbarch_dummy_id (gdbarch, nios2_dummy_id); |
| 2343 | set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc); |
| 2344 | set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp); |
| 2345 | |
| 2346 | /* The dwarf2 unwinder will normally produce the best results if |
| 2347 | the debug information is available, so register it first. */ |
| 2348 | dwarf2_append_unwinders (gdbarch); |
| 2349 | frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind); |
| 2350 | frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind); |
| 2351 | |
| 2352 | /* Single stepping. */ |
| 2353 | set_gdbarch_software_single_step (gdbarch, nios2_software_single_step); |
| 2354 | |
| 2355 | /* Hook in ABI-specific overrides, if they have been registered. */ |
| 2356 | gdbarch_init_osabi (info, gdbarch); |
| 2357 | |
| 2358 | if (tdep->jb_pc >= 0) |
| 2359 | set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target); |
| 2360 | |
| 2361 | frame_base_set_default (gdbarch, &nios2_frame_base); |
| 2362 | |
| 2363 | set_gdbarch_print_insn (gdbarch, nios2_print_insn); |
| 2364 | |
| 2365 | /* Enable inferior call support. */ |
| 2366 | set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call); |
| 2367 | |
| 2368 | if (tdesc_data) |
| 2369 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
| 2370 | |
| 2371 | return gdbarch; |
| 2372 | } |
| 2373 | |
| 2374 | extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */ |
| 2375 | |
| 2376 | void |
| 2377 | _initialize_nios2_tdep (void) |
| 2378 | { |
| 2379 | gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL); |
| 2380 | initialize_tdesc_nios2 (); |
| 2381 | |
| 2382 | /* Allow debugging this file's internals. */ |
| 2383 | add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug, |
| 2384 | _("Set Nios II debugging."), |
| 2385 | _("Show Nios II debugging."), |
| 2386 | _("When on, Nios II specific debugging is enabled."), |
| 2387 | NULL, |
| 2388 | NULL, |
| 2389 | &setdebuglist, &showdebuglist); |
| 2390 | } |