2003-05-14 Jeff Johnston <jjohnstn@redhat.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
... / ...
CommitLineData
1/* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25/* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28#include "defs.h"
29#include "bfd.h" /* Binary File Description */
30#include "symtab.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdb-stabs.h"
34#include "target.h"
35#include "bcache.h"
36
37#include <sys/types.h>
38#include "gdb_stat.h"
39#include <fcntl.h>
40#include "gdb_obstack.h"
41#include "gdb_string.h"
42#include "hashtab.h"
43
44#include "breakpoint.h"
45#include "block.h"
46
47/* Prototypes for local functions */
48
49#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
50
51#include "mmalloc.h"
52
53static int open_existing_mapped_file (char *, long, int);
54
55static int open_mapped_file (char *filename, long mtime, int flags);
56
57static void *map_to_file (int);
58
59#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
60
61static void add_to_objfile_sections (bfd *, sec_ptr, void *);
62
63/* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66struct objfile *object_files; /* Linked list of all objfiles */
67struct objfile *current_objfile; /* For symbol file being read in */
68struct objfile *symfile_objfile; /* Main symbol table loaded from */
69struct objfile *rt_common_objfile; /* For runtime common symbols */
70
71int mapped_symbol_files; /* Try to use mapped symbol files */
72
73/* Locate all mappable sections of a BFD file.
74 objfile_p_char is a char * to get it through
75 bfd_map_over_sections; we cast it back to its proper type. */
76
77#ifndef TARGET_KEEP_SECTION
78#define TARGET_KEEP_SECTION(ASECT) 0
79#endif
80
81/* Called via bfd_map_over_sections to build up the section table that
82 the objfile references. The objfile contains pointers to the start
83 of the table (objfile->sections) and to the first location after
84 the end of the table (objfile->sections_end). */
85
86static void
87add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
88{
89 struct objfile *objfile = (struct objfile *) objfile_p_char;
90 struct obj_section section;
91 flagword aflag;
92
93 aflag = bfd_get_section_flags (abfd, asect);
94
95 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
96 return;
97
98 if (0 == bfd_section_size (abfd, asect))
99 return;
100 section.offset = 0;
101 section.objfile = objfile;
102 section.the_bfd_section = asect;
103 section.ovly_mapped = 0;
104 section.addr = bfd_section_vma (abfd, asect);
105 section.endaddr = section.addr + bfd_section_size (abfd, asect);
106 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
107 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
108}
109
110/* Builds a section table for OBJFILE.
111 Returns 0 if OK, 1 on error (in which case bfd_error contains the
112 error).
113
114 Note that while we are building the table, which goes into the
115 psymbol obstack, we hijack the sections_end pointer to instead hold
116 a count of the number of sections. When bfd_map_over_sections
117 returns, this count is used to compute the pointer to the end of
118 the sections table, which then overwrites the count.
119
120 Also note that the OFFSET and OVLY_MAPPED in each table entry
121 are initialized to zero.
122
123 Also note that if anything else writes to the psymbol obstack while
124 we are building the table, we're pretty much hosed. */
125
126int
127build_objfile_section_table (struct objfile *objfile)
128{
129 /* objfile->sections can be already set when reading a mapped symbol
130 file. I believe that we do need to rebuild the section table in
131 this case (we rebuild other things derived from the bfd), but we
132 can't free the old one (it's in the psymbol_obstack). So we just
133 waste some memory. */
134
135 objfile->sections_end = 0;
136 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
137 objfile->sections = (struct obj_section *)
138 obstack_finish (&objfile->psymbol_obstack);
139 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
140 return (0);
141}
142
143/* Given a pointer to an initialized bfd (ABFD) and some flag bits
144 allocate a new objfile struct, fill it in as best we can, link it
145 into the list of all known objfiles, and return a pointer to the
146 new objfile struct.
147
148 The FLAGS word contains various bits (OBJF_*) that can be taken as
149 requests for specific operations, like trying to open a mapped
150 version of the objfile (OBJF_MAPPED). Other bits like
151 OBJF_SHARED are simply copied through to the new objfile flags
152 member. */
153
154/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
155 by jv-lang.c, to create an artificial objfile used to hold
156 information about dynamically-loaded Java classes. Unfortunately,
157 that branch of this function doesn't get tested very frequently, so
158 it's prone to breakage. (E.g. at one time the name was set to NULL
159 in that situation, which broke a loop over all names in the dynamic
160 library loader.) If you change this function, please try to leave
161 things in a consistent state even if abfd is NULL. */
162
163struct objfile *
164allocate_objfile (bfd *abfd, int flags)
165{
166 struct objfile *objfile = NULL;
167 struct objfile *last_one = NULL;
168
169 if (mapped_symbol_files)
170 flags |= OBJF_MAPPED;
171
172#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
173 if (abfd != NULL)
174 {
175
176 /* If we can support mapped symbol files, try to open/reopen the
177 mapped file that corresponds to the file from which we wish to
178 read symbols. If the objfile is to be mapped, we must malloc
179 the structure itself using the mmap version, and arrange that
180 all memory allocation for the objfile uses the mmap routines.
181 If we are reusing an existing mapped file, from which we get
182 our objfile pointer, we have to make sure that we update the
183 pointers to the alloc/free functions in the obstack, in case
184 these functions have moved within the current gdb. */
185
186 int fd;
187
188 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
189 flags);
190 if (fd >= 0)
191 {
192 void *md;
193
194 if ((md = map_to_file (fd)) == NULL)
195 {
196 close (fd);
197 }
198 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
199 {
200 /* Update memory corruption handler function addresses. */
201 init_malloc (md);
202 objfile->md = md;
203 objfile->mmfd = fd;
204 /* Update pointers to functions to *our* copies */
205 if (objfile->demangled_names_hash)
206 htab_set_functions_ex
207 (objfile->demangled_names_hash, htab_hash_string,
208 (int (*) (const void *, const void *)) streq, NULL,
209 objfile->md, xmcalloc, xmfree);
210 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
211 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
212 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
213 obstack_freefun (&objfile->macro_cache.cache, xmfree);
214 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
215 obstack_freefun (&objfile->psymbol_obstack, xmfree);
216 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
217 obstack_freefun (&objfile->symbol_obstack, xmfree);
218 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
219 obstack_freefun (&objfile->type_obstack, xmfree);
220 /* If already in objfile list, unlink it. */
221 unlink_objfile (objfile);
222 /* Forget things specific to a particular gdb, may have changed. */
223 objfile->sf = NULL;
224 }
225 else
226 {
227
228 /* Set up to detect internal memory corruption. MUST be
229 done before the first malloc. See comments in
230 init_malloc() and mmcheck(). */
231
232 init_malloc (md);
233
234 objfile = (struct objfile *)
235 xmmalloc (md, sizeof (struct objfile));
236 memset (objfile, 0, sizeof (struct objfile));
237 objfile->md = md;
238 objfile->mmfd = fd;
239 objfile->flags |= OBJF_MAPPED;
240 mmalloc_setkey (objfile->md, 0, objfile);
241 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
242 0, 0, xmmalloc, xmfree,
243 objfile->md);
244 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
245 0, 0, xmmalloc, xmfree,
246 objfile->md);
247 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
248 0, 0, xmmalloc, xmfree,
249 objfile->md);
250 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
251 0, 0, xmmalloc, xmfree,
252 objfile->md);
253 obstack_specify_allocation_with_arg (&objfile->type_obstack,
254 0, 0, xmmalloc, xmfree,
255 objfile->md);
256 }
257 }
258
259 if ((flags & OBJF_MAPPED) && (objfile == NULL))
260 {
261 warning ("symbol table for '%s' will not be mapped",
262 bfd_get_filename (abfd));
263 flags &= ~OBJF_MAPPED;
264 }
265 }
266#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
267
268 if (flags & OBJF_MAPPED)
269 {
270 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
271
272 /* Turn off the global flag so we don't try to do mapped symbol tables
273 any more, which shuts up gdb unless the user specifically gives the
274 "mapped" keyword again. */
275
276 mapped_symbol_files = 0;
277 flags &= ~OBJF_MAPPED;
278 }
279
280#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
281
282 /* If we don't support mapped symbol files, didn't ask for the file to be
283 mapped, or failed to open the mapped file for some reason, then revert
284 back to an unmapped objfile. */
285
286 if (objfile == NULL)
287 {
288 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
289 memset (objfile, 0, sizeof (struct objfile));
290 objfile->md = NULL;
291 objfile->psymbol_cache = bcache_xmalloc ();
292 objfile->macro_cache = bcache_xmalloc ();
293 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
294 xfree);
295 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
296 xfree);
297 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
298 xfree);
299 flags &= ~OBJF_MAPPED;
300
301 terminate_minimal_symbol_table (objfile);
302 }
303
304 /* Update the per-objfile information that comes from the bfd, ensuring
305 that any data that is reference is saved in the per-objfile data
306 region. */
307
308 objfile->obfd = abfd;
309 if (objfile->name != NULL)
310 {
311 xmfree (objfile->md, objfile->name);
312 }
313 if (abfd != NULL)
314 {
315 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
316 objfile->mtime = bfd_get_mtime (abfd);
317
318 /* Build section table. */
319
320 if (build_objfile_section_table (objfile))
321 {
322 error ("Can't find the file sections in `%s': %s",
323 objfile->name, bfd_errmsg (bfd_get_error ()));
324 }
325 }
326 else
327 {
328 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
329 }
330
331 /* Initialize the section indexes for this objfile, so that we can
332 later detect if they are used w/o being properly assigned to. */
333
334 objfile->sect_index_text = -1;
335 objfile->sect_index_data = -1;
336 objfile->sect_index_bss = -1;
337 objfile->sect_index_rodata = -1;
338
339 /* Add this file onto the tail of the linked list of other such files. */
340
341 objfile->next = NULL;
342 if (object_files == NULL)
343 object_files = objfile;
344 else
345 {
346 for (last_one = object_files;
347 last_one->next;
348 last_one = last_one->next);
349 last_one->next = objfile;
350 }
351
352 /* Save passed in flag bits. */
353 objfile->flags |= flags;
354
355 return (objfile);
356}
357
358
359/* Create the terminating entry of OBJFILE's minimal symbol table.
360 If OBJFILE->msymbols is zero, allocate a single entry from
361 OBJFILE->symbol_obstack; otherwise, just initialize
362 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
363void
364terminate_minimal_symbol_table (struct objfile *objfile)
365{
366 if (! objfile->msymbols)
367 objfile->msymbols = ((struct minimal_symbol *)
368 obstack_alloc (&objfile->symbol_obstack,
369 sizeof (objfile->msymbols[0])));
370
371 {
372 struct minimal_symbol *m
373 = &objfile->msymbols[objfile->minimal_symbol_count];
374
375 memset (m, 0, sizeof (*m));
376 DEPRECATED_SYMBOL_NAME (m) = NULL;
377 SYMBOL_VALUE_ADDRESS (m) = 0;
378 MSYMBOL_INFO (m) = NULL;
379 MSYMBOL_TYPE (m) = mst_unknown;
380 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
381 }
382}
383
384
385/* Put one object file before a specified on in the global list.
386 This can be used to make sure an object file is destroyed before
387 another when using ALL_OBJFILES_SAFE to free all objfiles. */
388void
389put_objfile_before (struct objfile *objfile, struct objfile *before_this)
390{
391 struct objfile **objp;
392
393 unlink_objfile (objfile);
394
395 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
396 {
397 if (*objp == before_this)
398 {
399 objfile->next = *objp;
400 *objp = objfile;
401 return;
402 }
403 }
404
405 internal_error (__FILE__, __LINE__,
406 "put_objfile_before: before objfile not in list");
407}
408
409/* Put OBJFILE at the front of the list. */
410
411void
412objfile_to_front (struct objfile *objfile)
413{
414 struct objfile **objp;
415 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
416 {
417 if (*objp == objfile)
418 {
419 /* Unhook it from where it is. */
420 *objp = objfile->next;
421 /* Put it in the front. */
422 objfile->next = object_files;
423 object_files = objfile;
424 break;
425 }
426 }
427}
428
429/* Unlink OBJFILE from the list of known objfiles, if it is found in the
430 list.
431
432 It is not a bug, or error, to call this function if OBJFILE is not known
433 to be in the current list. This is done in the case of mapped objfiles,
434 for example, just to ensure that the mapped objfile doesn't appear twice
435 in the list. Since the list is threaded, linking in a mapped objfile
436 twice would create a circular list.
437
438 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
439 unlinking it, just to ensure that we have completely severed any linkages
440 between the OBJFILE and the list. */
441
442void
443unlink_objfile (struct objfile *objfile)
444{
445 struct objfile **objpp;
446
447 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
448 {
449 if (*objpp == objfile)
450 {
451 *objpp = (*objpp)->next;
452 objfile->next = NULL;
453 return;
454 }
455 }
456
457 internal_error (__FILE__, __LINE__,
458 "unlink_objfile: objfile already unlinked");
459}
460
461
462/* Destroy an objfile and all the symtabs and psymtabs under it. Note
463 that as much as possible is allocated on the symbol_obstack and
464 psymbol_obstack, so that the memory can be efficiently freed.
465
466 Things which we do NOT free because they are not in malloc'd memory
467 or not in memory specific to the objfile include:
468
469 objfile -> sf
470
471 FIXME: If the objfile is using reusable symbol information (via mmalloc),
472 then we need to take into account the fact that more than one process
473 may be using the symbol information at the same time (when mmalloc is
474 extended to support cooperative locking). When more than one process
475 is using the mapped symbol info, we need to be more careful about when
476 we free objects in the reusable area. */
477
478void
479free_objfile (struct objfile *objfile)
480{
481 if (objfile->separate_debug_objfile)
482 {
483 free_objfile (objfile->separate_debug_objfile);
484 }
485
486 if (objfile->separate_debug_objfile_backlink)
487 {
488 /* We freed the separate debug file, make sure the base objfile
489 doesn't reference it. */
490 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
491 }
492
493 /* First do any symbol file specific actions required when we are
494 finished with a particular symbol file. Note that if the objfile
495 is using reusable symbol information (via mmalloc) then each of
496 these routines is responsible for doing the correct thing, either
497 freeing things which are valid only during this particular gdb
498 execution, or leaving them to be reused during the next one. */
499
500 if (objfile->sf != NULL)
501 {
502 (*objfile->sf->sym_finish) (objfile);
503 }
504
505 /* We always close the bfd. */
506
507 if (objfile->obfd != NULL)
508 {
509 char *name = bfd_get_filename (objfile->obfd);
510 if (!bfd_close (objfile->obfd))
511 warning ("cannot close \"%s\": %s",
512 name, bfd_errmsg (bfd_get_error ()));
513 xfree (name);
514 }
515
516 /* Remove it from the chain of all objfiles. */
517
518 unlink_objfile (objfile);
519
520 /* If we are going to free the runtime common objfile, mark it
521 as unallocated. */
522
523 if (objfile == rt_common_objfile)
524 rt_common_objfile = NULL;
525
526 /* Before the symbol table code was redone to make it easier to
527 selectively load and remove information particular to a specific
528 linkage unit, gdb used to do these things whenever the monolithic
529 symbol table was blown away. How much still needs to be done
530 is unknown, but we play it safe for now and keep each action until
531 it is shown to be no longer needed. */
532
533 /* I *think* all our callers call clear_symtab_users. If so, no need
534 to call this here. */
535 clear_pc_function_cache ();
536
537 /* The last thing we do is free the objfile struct itself for the
538 non-reusable case, or detach from the mapped file for the
539 reusable case. Note that the mmalloc_detach or the xmfree() is
540 the last thing we can do with this objfile. */
541
542#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
543
544 if (objfile->flags & OBJF_MAPPED)
545 {
546 /* Remember the fd so we can close it. We can't close it before
547 doing the detach, and after the detach the objfile is gone. */
548 int mmfd;
549
550 mmfd = objfile->mmfd;
551 mmalloc_detach (objfile->md);
552 objfile = NULL;
553 close (mmfd);
554 }
555
556#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
557
558 /* If we still have an objfile, then either we don't support reusable
559 objfiles or this one was not reusable. So free it normally. */
560
561 if (objfile != NULL)
562 {
563 if (objfile->name != NULL)
564 {
565 xmfree (objfile->md, objfile->name);
566 }
567 if (objfile->global_psymbols.list)
568 xmfree (objfile->md, objfile->global_psymbols.list);
569 if (objfile->static_psymbols.list)
570 xmfree (objfile->md, objfile->static_psymbols.list);
571 /* Free the obstacks for non-reusable objfiles */
572 bcache_xfree (objfile->psymbol_cache);
573 bcache_xfree (objfile->macro_cache);
574 if (objfile->demangled_names_hash)
575 htab_delete (objfile->demangled_names_hash);
576 obstack_free (&objfile->psymbol_obstack, 0);
577 obstack_free (&objfile->symbol_obstack, 0);
578 obstack_free (&objfile->type_obstack, 0);
579 xmfree (objfile->md, objfile);
580 objfile = NULL;
581 }
582}
583
584static void
585do_free_objfile_cleanup (void *obj)
586{
587 free_objfile (obj);
588}
589
590struct cleanup *
591make_cleanup_free_objfile (struct objfile *obj)
592{
593 return make_cleanup (do_free_objfile_cleanup, obj);
594}
595
596/* Free all the object files at once and clean up their users. */
597
598void
599free_all_objfiles (void)
600{
601 struct objfile *objfile, *temp;
602
603 ALL_OBJFILES_SAFE (objfile, temp)
604 {
605 free_objfile (objfile);
606 }
607 clear_symtab_users ();
608}
609\f
610/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
611 entries in new_offsets. */
612void
613objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
614{
615 struct section_offsets *delta =
616 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
617
618 {
619 int i;
620 int something_changed = 0;
621 for (i = 0; i < objfile->num_sections; ++i)
622 {
623 delta->offsets[i] =
624 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
625 if (ANOFFSET (delta, i) != 0)
626 something_changed = 1;
627 }
628 if (!something_changed)
629 return;
630 }
631
632 /* OK, get all the symtabs. */
633 {
634 struct symtab *s;
635
636 ALL_OBJFILE_SYMTABS (objfile, s)
637 {
638 struct linetable *l;
639 struct blockvector *bv;
640 int i;
641
642 /* First the line table. */
643 l = LINETABLE (s);
644 if (l)
645 {
646 for (i = 0; i < l->nitems; ++i)
647 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
648 }
649
650 /* Don't relocate a shared blockvector more than once. */
651 if (!s->primary)
652 continue;
653
654 bv = BLOCKVECTOR (s);
655 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
656 {
657 struct block *b;
658 struct symbol *sym;
659 int j;
660
661 b = BLOCKVECTOR_BLOCK (bv, i);
662 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
663 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
664
665 ALL_BLOCK_SYMBOLS (b, j, sym)
666 {
667 fixup_symbol_section (sym, objfile);
668
669 /* The RS6000 code from which this was taken skipped
670 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
671 But I'm leaving out that test, on the theory that
672 they can't possibly pass the tests below. */
673 if ((SYMBOL_CLASS (sym) == LOC_LABEL
674 || SYMBOL_CLASS (sym) == LOC_STATIC
675 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
676 && SYMBOL_SECTION (sym) >= 0)
677 {
678 SYMBOL_VALUE_ADDRESS (sym) +=
679 ANOFFSET (delta, SYMBOL_SECTION (sym));
680 }
681#ifdef MIPS_EFI_SYMBOL_NAME
682 /* Relocate Extra Function Info for ecoff. */
683
684 else if (SYMBOL_CLASS (sym) == LOC_CONST
685 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
686 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
687 ecoff_relocate_efi (sym, ANOFFSET (delta,
688 s->block_line_section));
689#endif
690 }
691 }
692 }
693 }
694
695 {
696 struct partial_symtab *p;
697
698 ALL_OBJFILE_PSYMTABS (objfile, p)
699 {
700 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
701 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
702 }
703 }
704
705 {
706 struct partial_symbol **psym;
707
708 for (psym = objfile->global_psymbols.list;
709 psym < objfile->global_psymbols.next;
710 psym++)
711 {
712 fixup_psymbol_section (*psym, objfile);
713 if (SYMBOL_SECTION (*psym) >= 0)
714 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
715 SYMBOL_SECTION (*psym));
716 }
717 for (psym = objfile->static_psymbols.list;
718 psym < objfile->static_psymbols.next;
719 psym++)
720 {
721 fixup_psymbol_section (*psym, objfile);
722 if (SYMBOL_SECTION (*psym) >= 0)
723 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
724 SYMBOL_SECTION (*psym));
725 }
726 }
727
728 {
729 struct minimal_symbol *msym;
730 ALL_OBJFILE_MSYMBOLS (objfile, msym)
731 if (SYMBOL_SECTION (msym) >= 0)
732 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
733 }
734 /* Relocating different sections by different amounts may cause the symbols
735 to be out of order. */
736 msymbols_sort (objfile);
737
738 {
739 int i;
740 for (i = 0; i < objfile->num_sections; ++i)
741 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
742 }
743
744 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
745 {
746 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
747 only as a fallback. */
748 struct obj_section *s;
749 s = find_pc_section (objfile->ei.entry_point);
750 if (s)
751 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
752 else
753 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
754 }
755
756 {
757 struct obj_section *s;
758 bfd *abfd;
759
760 abfd = objfile->obfd;
761
762 ALL_OBJFILE_OSECTIONS (objfile, s)
763 {
764 int idx = s->the_bfd_section->index;
765
766 s->addr += ANOFFSET (delta, idx);
767 s->endaddr += ANOFFSET (delta, idx);
768 }
769 }
770
771 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
772 {
773 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
774 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
775 }
776
777 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
778 {
779 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
780 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
781 }
782
783 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
784 {
785 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
786 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
787 }
788
789 /* Relocate breakpoints as necessary, after things are relocated. */
790 breakpoint_re_set ();
791}
792\f
793/* Many places in gdb want to test just to see if we have any partial
794 symbols available. This function returns zero if none are currently
795 available, nonzero otherwise. */
796
797int
798have_partial_symbols (void)
799{
800 struct objfile *ofp;
801
802 ALL_OBJFILES (ofp)
803 {
804 if (ofp->psymtabs != NULL)
805 {
806 return 1;
807 }
808 }
809 return 0;
810}
811
812/* Many places in gdb want to test just to see if we have any full
813 symbols available. This function returns zero if none are currently
814 available, nonzero otherwise. */
815
816int
817have_full_symbols (void)
818{
819 struct objfile *ofp;
820
821 ALL_OBJFILES (ofp)
822 {
823 if (ofp->symtabs != NULL)
824 {
825 return 1;
826 }
827 }
828 return 0;
829}
830
831
832/* This operations deletes all objfile entries that represent solibs that
833 weren't explicitly loaded by the user, via e.g., the add-symbol-file
834 command.
835 */
836void
837objfile_purge_solibs (void)
838{
839 struct objfile *objf;
840 struct objfile *temp;
841
842 ALL_OBJFILES_SAFE (objf, temp)
843 {
844 /* We assume that the solib package has been purged already, or will
845 be soon.
846 */
847 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
848 free_objfile (objf);
849 }
850}
851
852
853/* Many places in gdb want to test just to see if we have any minimal
854 symbols available. This function returns zero if none are currently
855 available, nonzero otherwise. */
856
857int
858have_minimal_symbols (void)
859{
860 struct objfile *ofp;
861
862 ALL_OBJFILES (ofp)
863 {
864 if (ofp->minimal_symbol_count > 0)
865 {
866 return 1;
867 }
868 }
869 return 0;
870}
871
872#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
873
874/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
875 of the corresponding symbol file in MTIME, try to open an existing file
876 with the name SYMSFILENAME and verify it is more recent than the base
877 file by checking it's timestamp against MTIME.
878
879 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
880
881 If SYMSFILENAME does exist, but is out of date, we check to see if the
882 user has specified creation of a mapped file. If so, we don't issue
883 any warning message because we will be creating a new mapped file anyway,
884 overwriting the old one. If not, then we issue a warning message so that
885 the user will know why we aren't using this existing mapped symbol file.
886 In either case, we return -1.
887
888 If SYMSFILENAME does exist and is not out of date, but can't be opened for
889 some reason, then prints an appropriate system error message and returns -1.
890
891 Otherwise, returns the open file descriptor. */
892
893static int
894open_existing_mapped_file (char *symsfilename, long mtime, int flags)
895{
896 int fd = -1;
897 struct stat sbuf;
898
899 if (stat (symsfilename, &sbuf) == 0)
900 {
901 if (sbuf.st_mtime < mtime)
902 {
903 if (!(flags & OBJF_MAPPED))
904 {
905 warning ("mapped symbol file `%s' is out of date, ignored it",
906 symsfilename);
907 }
908 }
909 else if ((fd = open (symsfilename, O_RDWR)) < 0)
910 {
911 if (error_pre_print)
912 {
913 printf_unfiltered (error_pre_print);
914 }
915 print_sys_errmsg (symsfilename, errno);
916 }
917 }
918 return (fd);
919}
920
921/* Look for a mapped symbol file that corresponds to FILENAME and is more
922 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
923 use a mapped symbol file for this file, so create a new one if one does
924 not currently exist.
925
926 If found, then return an open file descriptor for the file, otherwise
927 return -1.
928
929 This routine is responsible for implementing the policy that generates
930 the name of the mapped symbol file from the name of a file containing
931 symbols that gdb would like to read. Currently this policy is to append
932 ".syms" to the name of the file.
933
934 This routine is also responsible for implementing the policy that
935 determines where the mapped symbol file is found (the search path).
936 This policy is that when reading an existing mapped file, a file of
937 the correct name in the current directory takes precedence over a
938 file of the correct name in the same directory as the symbol file.
939 When creating a new mapped file, it is always created in the current
940 directory. This helps to minimize the chances of a user unknowingly
941 creating big mapped files in places like /bin and /usr/local/bin, and
942 allows a local copy to override a manually installed global copy (in
943 /bin for example). */
944
945static int
946open_mapped_file (char *filename, long mtime, int flags)
947{
948 int fd;
949 char *symsfilename;
950
951 /* First try to open an existing file in the current directory, and
952 then try the directory where the symbol file is located. */
953
954 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
955 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
956 {
957 xfree (symsfilename);
958 symsfilename = concat (filename, ".syms", (char *) NULL);
959 fd = open_existing_mapped_file (symsfilename, mtime, flags);
960 }
961
962 /* If we don't have an open file by now, then either the file does not
963 already exist, or the base file has changed since it was created. In
964 either case, if the user has specified use of a mapped file, then
965 create a new mapped file, truncating any existing one. If we can't
966 create one, print a system error message saying why we can't.
967
968 By default the file is rw for everyone, with the user's umask taking
969 care of turning off the permissions the user wants off. */
970
971 if ((fd < 0) && (flags & OBJF_MAPPED))
972 {
973 xfree (symsfilename);
974 symsfilename = concat ("./", lbasename (filename), ".syms",
975 (char *) NULL);
976 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
977 {
978 if (error_pre_print)
979 {
980 printf_unfiltered (error_pre_print);
981 }
982 print_sys_errmsg (symsfilename, errno);
983 }
984 }
985
986 xfree (symsfilename);
987 return (fd);
988}
989
990static void *
991map_to_file (int fd)
992{
993 void *md;
994 CORE_ADDR mapto;
995
996 md = mmalloc_attach (fd, 0);
997 if (md != NULL)
998 {
999 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
1000 md = mmalloc_detach (md);
1001 if (md != NULL)
1002 {
1003 /* FIXME: should figure out why detach failed */
1004 md = NULL;
1005 }
1006 else if (mapto != (CORE_ADDR) NULL)
1007 {
1008 /* This mapping file needs to be remapped at "mapto" */
1009 md = mmalloc_attach (fd, mapto);
1010 }
1011 else
1012 {
1013 /* This is a freshly created mapping file. */
1014 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1015 if (mapto != 0)
1016 {
1017 /* To avoid reusing the freshly created mapping file, at the
1018 address selected by mmap, we must truncate it before trying
1019 to do an attach at the address we want. */
1020 ftruncate (fd, 0);
1021 md = mmalloc_attach (fd, mapto);
1022 if (md != NULL)
1023 {
1024 mmalloc_setkey (md, 1, mapto);
1025 }
1026 }
1027 }
1028 }
1029 return (md);
1030}
1031
1032#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1033
1034/* Returns a section whose range includes PC and SECTION,
1035 or NULL if none found. Note the distinction between the return type,
1036 struct obj_section (which is defined in gdb), and the input type
1037 struct sec (which is a bfd-defined data type). The obj_section
1038 contains a pointer to the bfd struct sec section. */
1039
1040struct obj_section *
1041find_pc_sect_section (CORE_ADDR pc, struct sec *section)
1042{
1043 struct obj_section *s;
1044 struct objfile *objfile;
1045
1046 ALL_OBJSECTIONS (objfile, s)
1047 if ((section == 0 || section == s->the_bfd_section) &&
1048 s->addr <= pc && pc < s->endaddr)
1049 return (s);
1050
1051 return (NULL);
1052}
1053
1054/* Returns a section whose range includes PC or NULL if none found.
1055 Backward compatibility, no section. */
1056
1057struct obj_section *
1058find_pc_section (CORE_ADDR pc)
1059{
1060 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1061}
1062
1063
1064/* In SVR4, we recognize a trampoline by it's section name.
1065 That is, if the pc is in a section named ".plt" then we are in
1066 a trampoline. */
1067
1068int
1069in_plt_section (CORE_ADDR pc, char *name)
1070{
1071 struct obj_section *s;
1072 int retval = 0;
1073
1074 s = find_pc_section (pc);
1075
1076 retval = (s != NULL
1077 && s->the_bfd_section->name != NULL
1078 && STREQ (s->the_bfd_section->name, ".plt"));
1079 return (retval);
1080}
1081
1082/* Return nonzero if NAME is in the import list of OBJFILE. Else
1083 return zero. */
1084
1085int
1086is_in_import_list (char *name, struct objfile *objfile)
1087{
1088 register int i;
1089
1090 if (!objfile || !name || !*name)
1091 return 0;
1092
1093 for (i = 0; i < objfile->import_list_size; i++)
1094 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1095 return 1;
1096 return 0;
1097}
1098
This page took 0.025576 seconds and 4 git commands to generate.