Add some more casts (2/2)
[deliverable/binutils-gdb.git] / gdb / objfiles.c
... / ...
CommitLineData
1/* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22/* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25#include "defs.h"
26#include "bfd.h" /* Binary File Description */
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdb-stabs.h"
31#include "target.h"
32#include "bcache.h"
33#include "expression.h"
34#include "parser-defs.h"
35
36#include <sys/types.h>
37#include <sys/stat.h>
38#include <fcntl.h>
39#include "gdb_obstack.h"
40#include "hashtab.h"
41
42#include "breakpoint.h"
43#include "block.h"
44#include "dictionary.h"
45#include "source.h"
46#include "addrmap.h"
47#include "arch-utils.h"
48#include "exec.h"
49#include "observer.h"
50#include "complaints.h"
51#include "psymtab.h"
52#include "solist.h"
53#include "gdb_bfd.h"
54#include "btrace.h"
55
56/* Keep a registry of per-objfile data-pointers required by other GDB
57 modules. */
58
59DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
60
61/* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64struct objfile_pspace_info
65{
66 struct obj_section **sections;
67 int num_sections;
68
69 /* Nonzero if object files have been added since the section map
70 was last updated. */
71 int new_objfiles_available;
72
73 /* Nonzero if the section map MUST be updated before use. */
74 int section_map_dirty;
75
76 /* Nonzero if section map updates should be inhibited if possible. */
77 int inhibit_updates;
78};
79
80/* Per-program-space data key. */
81static const struct program_space_data *objfiles_pspace_data;
82
83static void
84objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
85{
86 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
87
88 xfree (info->sections);
89 xfree (info);
90}
91
92/* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95static struct objfile_pspace_info *
96get_objfile_pspace_data (struct program_space *pspace)
97{
98 struct objfile_pspace_info *info;
99
100 info = ((struct objfile_pspace_info *)
101 program_space_data (pspace, objfiles_pspace_data));
102 if (info == NULL)
103 {
104 info = XCNEW (struct objfile_pspace_info);
105 set_program_space_data (pspace, objfiles_pspace_data, info);
106 }
107
108 return info;
109}
110
111\f
112
113/* Per-BFD data key. */
114
115static const struct bfd_data *objfiles_bfd_data;
116
117/* Create the per-BFD storage object for OBJFILE. If ABFD is not
118 NULL, and it already has a per-BFD storage object, use that.
119 Otherwise, allocate a new per-BFD storage object. If ABFD is not
120 NULL, the object is allocated on the BFD; otherwise it is allocated
121 on OBJFILE's obstack. Note that it is not safe to call this
122 multiple times for a given OBJFILE -- it can only be called when
123 allocating or re-initializing OBJFILE. */
124
125static struct objfile_per_bfd_storage *
126get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
127{
128 struct objfile_per_bfd_storage *storage = NULL;
129
130 if (abfd != NULL)
131 storage = ((struct objfile_per_bfd_storage *)
132 bfd_data (abfd, objfiles_bfd_data));
133
134 if (storage == NULL)
135 {
136 /* If the object requires gdb to do relocations, we simply fall
137 back to not sharing data across users. These cases are rare
138 enough that this seems reasonable. */
139 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
140 {
141 storage
142 = ((struct objfile_per_bfd_storage *)
143 bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage)));
144 set_bfd_data (abfd, objfiles_bfd_data, storage);
145 }
146 else
147 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
148 struct objfile_per_bfd_storage);
149
150 /* Look up the gdbarch associated with the BFD. */
151 if (abfd != NULL)
152 storage->gdbarch = gdbarch_from_bfd (abfd);
153
154 obstack_init (&storage->storage_obstack);
155 storage->filename_cache = bcache_xmalloc (NULL, NULL);
156 storage->macro_cache = bcache_xmalloc (NULL, NULL);
157 storage->language_of_main = language_unknown;
158 }
159
160 return storage;
161}
162
163/* Free STORAGE. */
164
165static void
166free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
167{
168 bcache_xfree (storage->filename_cache);
169 bcache_xfree (storage->macro_cache);
170 if (storage->demangled_names_hash)
171 htab_delete (storage->demangled_names_hash);
172 obstack_free (&storage->storage_obstack, 0);
173}
174
175/* A wrapper for free_objfile_per_bfd_storage that can be passed as a
176 cleanup function to the BFD registry. */
177
178static void
179objfile_bfd_data_free (struct bfd *unused, void *d)
180{
181 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
182}
183
184/* See objfiles.h. */
185
186void
187set_objfile_per_bfd (struct objfile *objfile)
188{
189 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
190}
191
192/* Set the objfile's per-BFD notion of the "main" name and
193 language. */
194
195void
196set_objfile_main_name (struct objfile *objfile,
197 const char *name, enum language lang)
198{
199 if (objfile->per_bfd->name_of_main == NULL
200 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
201 objfile->per_bfd->name_of_main
202 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
203 strlen (name));
204 objfile->per_bfd->language_of_main = lang;
205}
206
207/* Helper structure to map blocks to static link properties in hash tables. */
208
209struct static_link_htab_entry
210{
211 const struct block *block;
212 const struct dynamic_prop *static_link;
213};
214
215/* Return a hash code for struct static_link_htab_entry *P. */
216
217static hashval_t
218static_link_htab_entry_hash (const void *p)
219{
220 const struct static_link_htab_entry *e
221 = (const struct static_link_htab_entry *) p;
222
223 return htab_hash_pointer (e->block);
224}
225
226/* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
227 mappings for the same block. */
228
229static int
230static_link_htab_entry_eq (const void *p1, const void *p2)
231{
232 const struct static_link_htab_entry *e1
233 = (const struct static_link_htab_entry *) p1;
234 const struct static_link_htab_entry *e2
235 = (const struct static_link_htab_entry *) p2;
236
237 return e1->block == e2->block;
238}
239
240/* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
241 Must not be called more than once for each BLOCK. */
242
243void
244objfile_register_static_link (struct objfile *objfile,
245 const struct block *block,
246 const struct dynamic_prop *static_link)
247{
248 void **slot;
249 struct static_link_htab_entry lookup_entry;
250 struct static_link_htab_entry *entry;
251
252 if (objfile->static_links == NULL)
253 objfile->static_links = htab_create_alloc
254 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
255 xcalloc, xfree);
256
257 /* Create a slot for the mapping, make sure it's the first mapping for this
258 block and then create the mapping itself. */
259 lookup_entry.block = block;
260 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
261 gdb_assert (*slot == NULL);
262
263 entry = (struct static_link_htab_entry *) obstack_alloc
264 (&objfile->objfile_obstack, sizeof (*entry));
265 entry->block = block;
266 entry->static_link = static_link;
267 *slot = (void *) entry;
268}
269
270/* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
271 none was found. */
272
273const struct dynamic_prop *
274objfile_lookup_static_link (struct objfile *objfile,
275 const struct block *block)
276{
277 struct static_link_htab_entry *entry;
278 struct static_link_htab_entry lookup_entry;
279
280 if (objfile->static_links == NULL)
281 return NULL;
282 lookup_entry.block = block;
283 entry
284 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
285 &lookup_entry);
286 if (entry == NULL)
287 return NULL;
288
289 gdb_assert (entry->block == block);
290 return entry->static_link;
291}
292
293\f
294
295/* Called via bfd_map_over_sections to build up the section table that
296 the objfile references. The objfile contains pointers to the start
297 of the table (objfile->sections) and to the first location after
298 the end of the table (objfile->sections_end). */
299
300static void
301add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
302 struct objfile *objfile, int force)
303{
304 struct obj_section *section;
305
306 if (!force)
307 {
308 flagword aflag;
309
310 aflag = bfd_get_section_flags (abfd, asect);
311 if (!(aflag & SEC_ALLOC))
312 return;
313 }
314
315 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
316 section->objfile = objfile;
317 section->the_bfd_section = asect;
318 section->ovly_mapped = 0;
319}
320
321static void
322add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
323 void *objfilep)
324{
325 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
326}
327
328/* Builds a section table for OBJFILE.
329
330 Note that the OFFSET and OVLY_MAPPED in each table entry are
331 initialized to zero. */
332
333void
334build_objfile_section_table (struct objfile *objfile)
335{
336 int count = gdb_bfd_count_sections (objfile->obfd);
337
338 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
339 count,
340 struct obj_section);
341 objfile->sections_end = (objfile->sections + count);
342 bfd_map_over_sections (objfile->obfd,
343 add_to_objfile_sections, (void *) objfile);
344
345 /* See gdb_bfd_section_index. */
346 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
347 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
348 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
349 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
350}
351
352/* Given a pointer to an initialized bfd (ABFD) and some flag bits
353 allocate a new objfile struct, fill it in as best we can, link it
354 into the list of all known objfiles, and return a pointer to the
355 new objfile struct.
356
357 NAME should contain original non-canonicalized filename or other
358 identifier as entered by user. If there is no better source use
359 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
360 NAME content is copied into returned objfile.
361
362 The FLAGS word contains various bits (OBJF_*) that can be taken as
363 requests for specific operations. Other bits like OBJF_SHARED are
364 simply copied through to the new objfile flags member. */
365
366/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
367 by jv-lang.c, to create an artificial objfile used to hold
368 information about dynamically-loaded Java classes. Unfortunately,
369 that branch of this function doesn't get tested very frequently, so
370 it's prone to breakage. (E.g. at one time the name was set to NULL
371 in that situation, which broke a loop over all names in the dynamic
372 library loader.) If you change this function, please try to leave
373 things in a consistent state even if abfd is NULL. */
374
375struct objfile *
376allocate_objfile (bfd *abfd, const char *name, int flags)
377{
378 struct objfile *objfile;
379 char *expanded_name;
380
381 objfile = XCNEW (struct objfile);
382 objfile->psymbol_cache = psymbol_bcache_init ();
383 /* We could use obstack_specify_allocation here instead, but
384 gdb_obstack.h specifies the alloc/dealloc functions. */
385 obstack_init (&objfile->objfile_obstack);
386
387 objfile_alloc_data (objfile);
388
389 if (name == NULL)
390 {
391 gdb_assert (abfd == NULL);
392 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
393 expanded_name = xstrdup ("<<anonymous objfile>>");
394 }
395 else if ((flags & OBJF_NOT_FILENAME) != 0
396 || is_target_filename (name))
397 expanded_name = xstrdup (name);
398 else
399 expanded_name = gdb_abspath (name);
400 objfile->original_name
401 = (char *) obstack_copy0 (&objfile->objfile_obstack,
402 expanded_name,
403 strlen (expanded_name));
404 xfree (expanded_name);
405
406 /* Update the per-objfile information that comes from the bfd, ensuring
407 that any data that is reference is saved in the per-objfile data
408 region. */
409
410 objfile->obfd = abfd;
411 gdb_bfd_ref (abfd);
412 if (abfd != NULL)
413 {
414 objfile->mtime = bfd_get_mtime (abfd);
415
416 /* Build section table. */
417 build_objfile_section_table (objfile);
418 }
419
420 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
421 objfile->pspace = current_program_space;
422
423 terminate_minimal_symbol_table (objfile);
424
425 /* Initialize the section indexes for this objfile, so that we can
426 later detect if they are used w/o being properly assigned to. */
427
428 objfile->sect_index_text = -1;
429 objfile->sect_index_data = -1;
430 objfile->sect_index_bss = -1;
431 objfile->sect_index_rodata = -1;
432
433 /* Add this file onto the tail of the linked list of other such files. */
434
435 objfile->next = NULL;
436 if (object_files == NULL)
437 object_files = objfile;
438 else
439 {
440 struct objfile *last_one;
441
442 for (last_one = object_files;
443 last_one->next;
444 last_one = last_one->next);
445 last_one->next = objfile;
446 }
447
448 /* Save passed in flag bits. */
449 objfile->flags |= flags;
450
451 /* Rebuild section map next time we need it. */
452 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
453
454 return objfile;
455}
456
457/* Retrieve the gdbarch associated with OBJFILE. */
458
459struct gdbarch *
460get_objfile_arch (const struct objfile *objfile)
461{
462 return objfile->per_bfd->gdbarch;
463}
464
465/* If there is a valid and known entry point, function fills *ENTRY_P with it
466 and returns non-zero; otherwise it returns zero. */
467
468int
469entry_point_address_query (CORE_ADDR *entry_p)
470{
471 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
472 return 0;
473
474 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
475 + ANOFFSET (symfile_objfile->section_offsets,
476 symfile_objfile->per_bfd->ei.the_bfd_section_index));
477
478 return 1;
479}
480
481/* Get current entry point address. Call error if it is not known. */
482
483CORE_ADDR
484entry_point_address (void)
485{
486 CORE_ADDR retval;
487
488 if (!entry_point_address_query (&retval))
489 error (_("Entry point address is not known."));
490
491 return retval;
492}
493
494/* Iterator on PARENT and every separate debug objfile of PARENT.
495 The usage pattern is:
496 for (objfile = parent;
497 objfile;
498 objfile = objfile_separate_debug_iterate (parent, objfile))
499 ...
500*/
501
502struct objfile *
503objfile_separate_debug_iterate (const struct objfile *parent,
504 const struct objfile *objfile)
505{
506 struct objfile *res;
507
508 /* If any, return the first child. */
509 res = objfile->separate_debug_objfile;
510 if (res)
511 return res;
512
513 /* Common case where there is no separate debug objfile. */
514 if (objfile == parent)
515 return NULL;
516
517 /* Return the brother if any. Note that we don't iterate on brothers of
518 the parents. */
519 res = objfile->separate_debug_objfile_link;
520 if (res)
521 return res;
522
523 for (res = objfile->separate_debug_objfile_backlink;
524 res != parent;
525 res = res->separate_debug_objfile_backlink)
526 {
527 gdb_assert (res != NULL);
528 if (res->separate_debug_objfile_link)
529 return res->separate_debug_objfile_link;
530 }
531 return NULL;
532}
533
534/* Put one object file before a specified on in the global list.
535 This can be used to make sure an object file is destroyed before
536 another when using ALL_OBJFILES_SAFE to free all objfiles. */
537void
538put_objfile_before (struct objfile *objfile, struct objfile *before_this)
539{
540 struct objfile **objp;
541
542 unlink_objfile (objfile);
543
544 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
545 {
546 if (*objp == before_this)
547 {
548 objfile->next = *objp;
549 *objp = objfile;
550 return;
551 }
552 }
553
554 internal_error (__FILE__, __LINE__,
555 _("put_objfile_before: before objfile not in list"));
556}
557
558/* Unlink OBJFILE from the list of known objfiles, if it is found in the
559 list.
560
561 It is not a bug, or error, to call this function if OBJFILE is not known
562 to be in the current list. This is done in the case of mapped objfiles,
563 for example, just to ensure that the mapped objfile doesn't appear twice
564 in the list. Since the list is threaded, linking in a mapped objfile
565 twice would create a circular list.
566
567 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
568 unlinking it, just to ensure that we have completely severed any linkages
569 between the OBJFILE and the list. */
570
571void
572unlink_objfile (struct objfile *objfile)
573{
574 struct objfile **objpp;
575
576 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
577 {
578 if (*objpp == objfile)
579 {
580 *objpp = (*objpp)->next;
581 objfile->next = NULL;
582 return;
583 }
584 }
585
586 internal_error (__FILE__, __LINE__,
587 _("unlink_objfile: objfile already unlinked"));
588}
589
590/* Add OBJFILE as a separate debug objfile of PARENT. */
591
592void
593add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
594{
595 gdb_assert (objfile && parent);
596
597 /* Must not be already in a list. */
598 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
599 gdb_assert (objfile->separate_debug_objfile_link == NULL);
600 gdb_assert (objfile->separate_debug_objfile == NULL);
601 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
602 gdb_assert (parent->separate_debug_objfile_link == NULL);
603
604 objfile->separate_debug_objfile_backlink = parent;
605 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
606 parent->separate_debug_objfile = objfile;
607
608 /* Put the separate debug object before the normal one, this is so that
609 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
610 put_objfile_before (objfile, parent);
611}
612
613/* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
614 itself. */
615
616void
617free_objfile_separate_debug (struct objfile *objfile)
618{
619 struct objfile *child;
620
621 for (child = objfile->separate_debug_objfile; child;)
622 {
623 struct objfile *next_child = child->separate_debug_objfile_link;
624 free_objfile (child);
625 child = next_child;
626 }
627}
628
629/* Destroy an objfile and all the symtabs and psymtabs under it. */
630
631void
632free_objfile (struct objfile *objfile)
633{
634 /* First notify observers that this objfile is about to be freed. */
635 observer_notify_free_objfile (objfile);
636
637 /* Free all separate debug objfiles. */
638 free_objfile_separate_debug (objfile);
639
640 if (objfile->separate_debug_objfile_backlink)
641 {
642 /* We freed the separate debug file, make sure the base objfile
643 doesn't reference it. */
644 struct objfile *child;
645
646 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
647
648 if (child == objfile)
649 {
650 /* OBJFILE is the first child. */
651 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
652 objfile->separate_debug_objfile_link;
653 }
654 else
655 {
656 /* Find OBJFILE in the list. */
657 while (1)
658 {
659 if (child->separate_debug_objfile_link == objfile)
660 {
661 child->separate_debug_objfile_link =
662 objfile->separate_debug_objfile_link;
663 break;
664 }
665 child = child->separate_debug_objfile_link;
666 gdb_assert (child);
667 }
668 }
669 }
670
671 /* Remove any references to this objfile in the global value
672 lists. */
673 preserve_values (objfile);
674
675 /* It still may reference data modules have associated with the objfile and
676 the symbol file data. */
677 forget_cached_source_info_for_objfile (objfile);
678
679 breakpoint_free_objfile (objfile);
680 btrace_free_objfile (objfile);
681
682 /* First do any symbol file specific actions required when we are
683 finished with a particular symbol file. Note that if the objfile
684 is using reusable symbol information (via mmalloc) then each of
685 these routines is responsible for doing the correct thing, either
686 freeing things which are valid only during this particular gdb
687 execution, or leaving them to be reused during the next one. */
688
689 if (objfile->sf != NULL)
690 {
691 (*objfile->sf->sym_finish) (objfile);
692 }
693
694 /* Discard any data modules have associated with the objfile. The function
695 still may reference objfile->obfd. */
696 objfile_free_data (objfile);
697
698 if (objfile->obfd)
699 gdb_bfd_unref (objfile->obfd);
700 else
701 free_objfile_per_bfd_storage (objfile->per_bfd);
702
703 /* Remove it from the chain of all objfiles. */
704
705 unlink_objfile (objfile);
706
707 if (objfile == symfile_objfile)
708 symfile_objfile = NULL;
709
710 /* Before the symbol table code was redone to make it easier to
711 selectively load and remove information particular to a specific
712 linkage unit, gdb used to do these things whenever the monolithic
713 symbol table was blown away. How much still needs to be done
714 is unknown, but we play it safe for now and keep each action until
715 it is shown to be no longer needed. */
716
717 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
718 for example), so we need to call this here. */
719 clear_pc_function_cache ();
720
721 /* Clear globals which might have pointed into a removed objfile.
722 FIXME: It's not clear which of these are supposed to persist
723 between expressions and which ought to be reset each time. */
724 expression_context_block = NULL;
725 innermost_block = NULL;
726
727 /* Check to see if the current_source_symtab belongs to this objfile,
728 and if so, call clear_current_source_symtab_and_line. */
729
730 {
731 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
732
733 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
734 clear_current_source_symtab_and_line ();
735 }
736
737 if (objfile->global_psymbols.list)
738 xfree (objfile->global_psymbols.list);
739 if (objfile->static_psymbols.list)
740 xfree (objfile->static_psymbols.list);
741 /* Free the obstacks for non-reusable objfiles. */
742 psymbol_bcache_free (objfile->psymbol_cache);
743 obstack_free (&objfile->objfile_obstack, 0);
744
745 /* Rebuild section map next time we need it. */
746 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
747
748 /* Free the map for static links. There's no need to free static link
749 themselves since they were allocated on the objstack. */
750 if (objfile->static_links != NULL)
751 htab_delete (objfile->static_links);
752
753 /* The last thing we do is free the objfile struct itself. */
754 xfree (objfile);
755}
756
757static void
758do_free_objfile_cleanup (void *obj)
759{
760 free_objfile ((struct objfile *) obj);
761}
762
763struct cleanup *
764make_cleanup_free_objfile (struct objfile *obj)
765{
766 return make_cleanup (do_free_objfile_cleanup, obj);
767}
768
769/* Free all the object files at once and clean up their users. */
770
771void
772free_all_objfiles (void)
773{
774 struct objfile *objfile, *temp;
775 struct so_list *so;
776
777 /* Any objfile referencewould become stale. */
778 for (so = master_so_list (); so; so = so->next)
779 gdb_assert (so->objfile == NULL);
780
781 ALL_OBJFILES_SAFE (objfile, temp)
782 {
783 free_objfile (objfile);
784 }
785 clear_symtab_users (0);
786}
787\f
788/* A helper function for objfile_relocate1 that relocates a single
789 symbol. */
790
791static void
792relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
793 struct section_offsets *delta)
794{
795 fixup_symbol_section (sym, objfile);
796
797 /* The RS6000 code from which this was taken skipped
798 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
799 But I'm leaving out that test, on the theory that
800 they can't possibly pass the tests below. */
801 if ((SYMBOL_CLASS (sym) == LOC_LABEL
802 || SYMBOL_CLASS (sym) == LOC_STATIC)
803 && SYMBOL_SECTION (sym) >= 0)
804 {
805 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
806 }
807}
808
809/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
810 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
811 Return non-zero iff any change happened. */
812
813static int
814objfile_relocate1 (struct objfile *objfile,
815 const struct section_offsets *new_offsets)
816{
817 struct obj_section *s;
818 struct section_offsets *delta =
819 ((struct section_offsets *)
820 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
821
822 int i;
823 int something_changed = 0;
824
825 for (i = 0; i < objfile->num_sections; ++i)
826 {
827 delta->offsets[i] =
828 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
829 if (ANOFFSET (delta, i) != 0)
830 something_changed = 1;
831 }
832 if (!something_changed)
833 return 0;
834
835 /* OK, get all the symtabs. */
836 {
837 struct compunit_symtab *cust;
838 struct symtab *s;
839
840 ALL_OBJFILE_FILETABS (objfile, cust, s)
841 {
842 struct linetable *l;
843 int i;
844
845 /* First the line table. */
846 l = SYMTAB_LINETABLE (s);
847 if (l)
848 {
849 for (i = 0; i < l->nitems; ++i)
850 l->item[i].pc += ANOFFSET (delta,
851 COMPUNIT_BLOCK_LINE_SECTION
852 (cust));
853 }
854 }
855
856 ALL_OBJFILE_COMPUNITS (objfile, cust)
857 {
858 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
859 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
860
861 if (BLOCKVECTOR_MAP (bv))
862 addrmap_relocate (BLOCKVECTOR_MAP (bv),
863 ANOFFSET (delta, block_line_section));
864
865 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
866 {
867 struct block *b;
868 struct symbol *sym;
869 struct dict_iterator iter;
870
871 b = BLOCKVECTOR_BLOCK (bv, i);
872 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
873 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
874
875 /* We only want to iterate over the local symbols, not any
876 symbols in included symtabs. */
877 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
878 {
879 relocate_one_symbol (sym, objfile, delta);
880 }
881 }
882 }
883 }
884
885 /* Relocate isolated symbols. */
886 {
887 struct symbol *iter;
888
889 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
890 relocate_one_symbol (iter, objfile, delta);
891 }
892
893 if (objfile->psymtabs_addrmap)
894 addrmap_relocate (objfile->psymtabs_addrmap,
895 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
896
897 if (objfile->sf)
898 objfile->sf->qf->relocate (objfile, new_offsets, delta);
899
900 {
901 int i;
902
903 for (i = 0; i < objfile->num_sections; ++i)
904 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
905 }
906
907 /* Rebuild section map next time we need it. */
908 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
909
910 /* Update the table in exec_ops, used to read memory. */
911 ALL_OBJFILE_OSECTIONS (objfile, s)
912 {
913 int idx = s - objfile->sections;
914
915 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
916 obj_section_addr (s));
917 }
918
919 /* Data changed. */
920 return 1;
921}
922
923/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
924 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
925
926 The number and ordering of sections does differ between the two objfiles.
927 Only their names match. Also the file offsets will differ (objfile being
928 possibly prelinked but separate_debug_objfile is probably not prelinked) but
929 the in-memory absolute address as specified by NEW_OFFSETS must match both
930 files. */
931
932void
933objfile_relocate (struct objfile *objfile,
934 const struct section_offsets *new_offsets)
935{
936 struct objfile *debug_objfile;
937 int changed = 0;
938
939 changed |= objfile_relocate1 (objfile, new_offsets);
940
941 for (debug_objfile = objfile->separate_debug_objfile;
942 debug_objfile;
943 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
944 {
945 struct section_addr_info *objfile_addrs;
946 struct section_offsets *new_debug_offsets;
947 struct cleanup *my_cleanups;
948
949 objfile_addrs = build_section_addr_info_from_objfile (objfile);
950 my_cleanups = make_cleanup (xfree, objfile_addrs);
951
952 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
953 relative ones must be already created according to debug_objfile. */
954
955 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
956
957 gdb_assert (debug_objfile->num_sections
958 == gdb_bfd_count_sections (debug_objfile->obfd));
959 new_debug_offsets =
960 ((struct section_offsets *)
961 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections)));
962 make_cleanup (xfree, new_debug_offsets);
963 relative_addr_info_to_section_offsets (new_debug_offsets,
964 debug_objfile->num_sections,
965 objfile_addrs);
966
967 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
968
969 do_cleanups (my_cleanups);
970 }
971
972 /* Relocate breakpoints as necessary, after things are relocated. */
973 if (changed)
974 breakpoint_re_set ();
975}
976
977/* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
978 not touched here.
979 Return non-zero iff any change happened. */
980
981static int
982objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
983{
984 struct section_offsets *new_offsets =
985 ((struct section_offsets *)
986 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
987 int i;
988
989 for (i = 0; i < objfile->num_sections; ++i)
990 new_offsets->offsets[i] = slide;
991
992 return objfile_relocate1 (objfile, new_offsets);
993}
994
995/* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
996 SEPARATE_DEBUG_OBJFILEs. */
997
998void
999objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
1000{
1001 struct objfile *debug_objfile;
1002 int changed = 0;
1003
1004 changed |= objfile_rebase1 (objfile, slide);
1005
1006 for (debug_objfile = objfile->separate_debug_objfile;
1007 debug_objfile;
1008 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
1009 changed |= objfile_rebase1 (debug_objfile, slide);
1010
1011 /* Relocate breakpoints as necessary, after things are relocated. */
1012 if (changed)
1013 breakpoint_re_set ();
1014}
1015\f
1016/* Return non-zero if OBJFILE has partial symbols. */
1017
1018int
1019objfile_has_partial_symbols (struct objfile *objfile)
1020{
1021 if (!objfile->sf)
1022 return 0;
1023
1024 /* If we have not read psymbols, but we have a function capable of reading
1025 them, then that is an indication that they are in fact available. Without
1026 this function the symbols may have been already read in but they also may
1027 not be present in this objfile. */
1028 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1029 && objfile->sf->sym_read_psymbols != NULL)
1030 return 1;
1031
1032 return objfile->sf->qf->has_symbols (objfile);
1033}
1034
1035/* Return non-zero if OBJFILE has full symbols. */
1036
1037int
1038objfile_has_full_symbols (struct objfile *objfile)
1039{
1040 return objfile->compunit_symtabs != NULL;
1041}
1042
1043/* Return non-zero if OBJFILE has full or partial symbols, either directly
1044 or through a separate debug file. */
1045
1046int
1047objfile_has_symbols (struct objfile *objfile)
1048{
1049 struct objfile *o;
1050
1051 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1052 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1053 return 1;
1054 return 0;
1055}
1056
1057
1058/* Many places in gdb want to test just to see if we have any partial
1059 symbols available. This function returns zero if none are currently
1060 available, nonzero otherwise. */
1061
1062int
1063have_partial_symbols (void)
1064{
1065 struct objfile *ofp;
1066
1067 ALL_OBJFILES (ofp)
1068 {
1069 if (objfile_has_partial_symbols (ofp))
1070 return 1;
1071 }
1072 return 0;
1073}
1074
1075/* Many places in gdb want to test just to see if we have any full
1076 symbols available. This function returns zero if none are currently
1077 available, nonzero otherwise. */
1078
1079int
1080have_full_symbols (void)
1081{
1082 struct objfile *ofp;
1083
1084 ALL_OBJFILES (ofp)
1085 {
1086 if (objfile_has_full_symbols (ofp))
1087 return 1;
1088 }
1089 return 0;
1090}
1091
1092
1093/* This operations deletes all objfile entries that represent solibs that
1094 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1095 command. */
1096
1097void
1098objfile_purge_solibs (void)
1099{
1100 struct objfile *objf;
1101 struct objfile *temp;
1102
1103 ALL_OBJFILES_SAFE (objf, temp)
1104 {
1105 /* We assume that the solib package has been purged already, or will
1106 be soon. */
1107
1108 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1109 free_objfile (objf);
1110 }
1111}
1112
1113
1114/* Many places in gdb want to test just to see if we have any minimal
1115 symbols available. This function returns zero if none are currently
1116 available, nonzero otherwise. */
1117
1118int
1119have_minimal_symbols (void)
1120{
1121 struct objfile *ofp;
1122
1123 ALL_OBJFILES (ofp)
1124 {
1125 if (ofp->per_bfd->minimal_symbol_count > 0)
1126 {
1127 return 1;
1128 }
1129 }
1130 return 0;
1131}
1132
1133/* Qsort comparison function. */
1134
1135static int
1136qsort_cmp (const void *a, const void *b)
1137{
1138 const struct obj_section *sect1 = *(const struct obj_section **) a;
1139 const struct obj_section *sect2 = *(const struct obj_section **) b;
1140 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1141 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1142
1143 if (sect1_addr < sect2_addr)
1144 return -1;
1145 else if (sect1_addr > sect2_addr)
1146 return 1;
1147 else
1148 {
1149 /* Sections are at the same address. This could happen if
1150 A) we have an objfile and a separate debuginfo.
1151 B) we are confused, and have added sections without proper relocation,
1152 or something like that. */
1153
1154 const struct objfile *const objfile1 = sect1->objfile;
1155 const struct objfile *const objfile2 = sect2->objfile;
1156
1157 if (objfile1->separate_debug_objfile == objfile2
1158 || objfile2->separate_debug_objfile == objfile1)
1159 {
1160 /* Case A. The ordering doesn't matter: separate debuginfo files
1161 will be filtered out later. */
1162
1163 return 0;
1164 }
1165
1166 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1167 triage. This section could be slow (since we iterate over all
1168 objfiles in each call to qsort_cmp), but this shouldn't happen
1169 very often (GDB is already in a confused state; one hopes this
1170 doesn't happen at all). If you discover that significant time is
1171 spent in the loops below, do 'set complaints 100' and examine the
1172 resulting complaints. */
1173
1174 if (objfile1 == objfile2)
1175 {
1176 /* Both sections came from the same objfile. We are really confused.
1177 Sort on sequence order of sections within the objfile. */
1178
1179 const struct obj_section *osect;
1180
1181 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1182 if (osect == sect1)
1183 return -1;
1184 else if (osect == sect2)
1185 return 1;
1186
1187 /* We should have found one of the sections before getting here. */
1188 gdb_assert_not_reached ("section not found");
1189 }
1190 else
1191 {
1192 /* Sort on sequence number of the objfile in the chain. */
1193
1194 const struct objfile *objfile;
1195
1196 ALL_OBJFILES (objfile)
1197 if (objfile == objfile1)
1198 return -1;
1199 else if (objfile == objfile2)
1200 return 1;
1201
1202 /* We should have found one of the objfiles before getting here. */
1203 gdb_assert_not_reached ("objfile not found");
1204 }
1205 }
1206
1207 /* Unreachable. */
1208 gdb_assert_not_reached ("unexpected code path");
1209 return 0;
1210}
1211
1212/* Select "better" obj_section to keep. We prefer the one that came from
1213 the real object, rather than the one from separate debuginfo.
1214 Most of the time the two sections are exactly identical, but with
1215 prelinking the .rel.dyn section in the real object may have different
1216 size. */
1217
1218static struct obj_section *
1219preferred_obj_section (struct obj_section *a, struct obj_section *b)
1220{
1221 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1222 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1223 || (b->objfile->separate_debug_objfile == a->objfile));
1224 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1225 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1226
1227 if (a->objfile->separate_debug_objfile != NULL)
1228 return a;
1229 return b;
1230}
1231
1232/* Return 1 if SECTION should be inserted into the section map.
1233 We want to insert only non-overlay and non-TLS section. */
1234
1235static int
1236insert_section_p (const struct bfd *abfd,
1237 const struct bfd_section *section)
1238{
1239 const bfd_vma lma = bfd_section_lma (abfd, section);
1240
1241 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1242 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1243 /* This is an overlay section. IN_MEMORY check is needed to avoid
1244 discarding sections from the "system supplied DSO" (aka vdso)
1245 on some Linux systems (e.g. Fedora 11). */
1246 return 0;
1247 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1248 /* This is a TLS section. */
1249 return 0;
1250
1251 return 1;
1252}
1253
1254/* Filter out overlapping sections where one section came from the real
1255 objfile, and the other from a separate debuginfo file.
1256 Return the size of table after redundant sections have been eliminated. */
1257
1258static int
1259filter_debuginfo_sections (struct obj_section **map, int map_size)
1260{
1261 int i, j;
1262
1263 for (i = 0, j = 0; i < map_size - 1; i++)
1264 {
1265 struct obj_section *const sect1 = map[i];
1266 struct obj_section *const sect2 = map[i + 1];
1267 const struct objfile *const objfile1 = sect1->objfile;
1268 const struct objfile *const objfile2 = sect2->objfile;
1269 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1270 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1271
1272 if (sect1_addr == sect2_addr
1273 && (objfile1->separate_debug_objfile == objfile2
1274 || objfile2->separate_debug_objfile == objfile1))
1275 {
1276 map[j++] = preferred_obj_section (sect1, sect2);
1277 ++i;
1278 }
1279 else
1280 map[j++] = sect1;
1281 }
1282
1283 if (i < map_size)
1284 {
1285 gdb_assert (i == map_size - 1);
1286 map[j++] = map[i];
1287 }
1288
1289 /* The map should not have shrunk to less than half the original size. */
1290 gdb_assert (map_size / 2 <= j);
1291
1292 return j;
1293}
1294
1295/* Filter out overlapping sections, issuing a warning if any are found.
1296 Overlapping sections could really be overlay sections which we didn't
1297 classify as such in insert_section_p, or we could be dealing with a
1298 corrupt binary. */
1299
1300static int
1301filter_overlapping_sections (struct obj_section **map, int map_size)
1302{
1303 int i, j;
1304
1305 for (i = 0, j = 0; i < map_size - 1; )
1306 {
1307 int k;
1308
1309 map[j++] = map[i];
1310 for (k = i + 1; k < map_size; k++)
1311 {
1312 struct obj_section *const sect1 = map[i];
1313 struct obj_section *const sect2 = map[k];
1314 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1315 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1316 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1317
1318 gdb_assert (sect1_addr <= sect2_addr);
1319
1320 if (sect1_endaddr <= sect2_addr)
1321 break;
1322 else
1323 {
1324 /* We have an overlap. Report it. */
1325
1326 struct objfile *const objf1 = sect1->objfile;
1327 struct objfile *const objf2 = sect2->objfile;
1328
1329 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1330 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1331
1332 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1333
1334 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1335
1336 complaint (&symfile_complaints,
1337 _("unexpected overlap between:\n"
1338 " (A) section `%s' from `%s' [%s, %s)\n"
1339 " (B) section `%s' from `%s' [%s, %s).\n"
1340 "Will ignore section B"),
1341 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1342 paddress (gdbarch, sect1_addr),
1343 paddress (gdbarch, sect1_endaddr),
1344 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1345 paddress (gdbarch, sect2_addr),
1346 paddress (gdbarch, sect2_endaddr));
1347 }
1348 }
1349 i = k;
1350 }
1351
1352 if (i < map_size)
1353 {
1354 gdb_assert (i == map_size - 1);
1355 map[j++] = map[i];
1356 }
1357
1358 return j;
1359}
1360
1361
1362/* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1363 TLS, overlay and overlapping sections. */
1364
1365static void
1366update_section_map (struct program_space *pspace,
1367 struct obj_section ***pmap, int *pmap_size)
1368{
1369 struct objfile_pspace_info *pspace_info;
1370 int alloc_size, map_size, i;
1371 struct obj_section *s, **map;
1372 struct objfile *objfile;
1373
1374 pspace_info = get_objfile_pspace_data (pspace);
1375 gdb_assert (pspace_info->section_map_dirty != 0
1376 || pspace_info->new_objfiles_available != 0);
1377
1378 map = *pmap;
1379 xfree (map);
1380
1381 alloc_size = 0;
1382 ALL_PSPACE_OBJFILES (pspace, objfile)
1383 ALL_OBJFILE_OSECTIONS (objfile, s)
1384 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1385 alloc_size += 1;
1386
1387 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1388 if (alloc_size == 0)
1389 {
1390 *pmap = NULL;
1391 *pmap_size = 0;
1392 return;
1393 }
1394
1395 map = XNEWVEC (struct obj_section *, alloc_size);
1396
1397 i = 0;
1398 ALL_PSPACE_OBJFILES (pspace, objfile)
1399 ALL_OBJFILE_OSECTIONS (objfile, s)
1400 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1401 map[i++] = s;
1402
1403 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1404 map_size = filter_debuginfo_sections(map, alloc_size);
1405 map_size = filter_overlapping_sections(map, map_size);
1406
1407 if (map_size < alloc_size)
1408 /* Some sections were eliminated. Trim excess space. */
1409 map = XRESIZEVEC (struct obj_section *, map, map_size);
1410 else
1411 gdb_assert (alloc_size == map_size);
1412
1413 *pmap = map;
1414 *pmap_size = map_size;
1415}
1416
1417/* Bsearch comparison function. */
1418
1419static int
1420bsearch_cmp (const void *key, const void *elt)
1421{
1422 const CORE_ADDR pc = *(CORE_ADDR *) key;
1423 const struct obj_section *section = *(const struct obj_section **) elt;
1424
1425 if (pc < obj_section_addr (section))
1426 return -1;
1427 if (pc < obj_section_endaddr (section))
1428 return 0;
1429 return 1;
1430}
1431
1432/* Returns a section whose range includes PC or NULL if none found. */
1433
1434struct obj_section *
1435find_pc_section (CORE_ADDR pc)
1436{
1437 struct objfile_pspace_info *pspace_info;
1438 struct obj_section *s, **sp;
1439
1440 /* Check for mapped overlay section first. */
1441 s = find_pc_mapped_section (pc);
1442 if (s)
1443 return s;
1444
1445 pspace_info = get_objfile_pspace_data (current_program_space);
1446 if (pspace_info->section_map_dirty
1447 || (pspace_info->new_objfiles_available
1448 && !pspace_info->inhibit_updates))
1449 {
1450 update_section_map (current_program_space,
1451 &pspace_info->sections,
1452 &pspace_info->num_sections);
1453
1454 /* Don't need updates to section map until objfiles are added,
1455 removed or relocated. */
1456 pspace_info->new_objfiles_available = 0;
1457 pspace_info->section_map_dirty = 0;
1458 }
1459
1460 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1461 bsearch be non-NULL. */
1462 if (pspace_info->sections == NULL)
1463 {
1464 gdb_assert (pspace_info->num_sections == 0);
1465 return NULL;
1466 }
1467
1468 sp = (struct obj_section **) bsearch (&pc,
1469 pspace_info->sections,
1470 pspace_info->num_sections,
1471 sizeof (*pspace_info->sections),
1472 bsearch_cmp);
1473 if (sp != NULL)
1474 return *sp;
1475 return NULL;
1476}
1477
1478
1479/* Return non-zero if PC is in a section called NAME. */
1480
1481int
1482pc_in_section (CORE_ADDR pc, char *name)
1483{
1484 struct obj_section *s;
1485 int retval = 0;
1486
1487 s = find_pc_section (pc);
1488
1489 retval = (s != NULL
1490 && s->the_bfd_section->name != NULL
1491 && strcmp (s->the_bfd_section->name, name) == 0);
1492 return (retval);
1493}
1494\f
1495
1496/* Set section_map_dirty so section map will be rebuilt next time it
1497 is used. Called by reread_symbols. */
1498
1499void
1500objfiles_changed (void)
1501{
1502 /* Rebuild section map next time we need it. */
1503 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1504}
1505
1506/* See comments in objfiles.h. */
1507
1508void
1509inhibit_section_map_updates (struct program_space *pspace)
1510{
1511 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1512}
1513
1514/* See comments in objfiles.h. */
1515
1516void
1517resume_section_map_updates (struct program_space *pspace)
1518{
1519 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1520}
1521
1522/* See comments in objfiles.h. */
1523
1524void
1525resume_section_map_updates_cleanup (void *arg)
1526{
1527 resume_section_map_updates ((struct program_space *) arg);
1528}
1529
1530/* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1531 otherwise. */
1532
1533int
1534is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1535{
1536 struct obj_section *osect;
1537
1538 if (objfile == NULL)
1539 return 0;
1540
1541 ALL_OBJFILE_OSECTIONS (objfile, osect)
1542 {
1543 if (section_is_overlay (osect) && !section_is_mapped (osect))
1544 continue;
1545
1546 if (obj_section_addr (osect) <= addr
1547 && addr < obj_section_endaddr (osect))
1548 return 1;
1549 }
1550 return 0;
1551}
1552
1553int
1554shared_objfile_contains_address_p (struct program_space *pspace,
1555 CORE_ADDR address)
1556{
1557 struct objfile *objfile;
1558
1559 ALL_PSPACE_OBJFILES (pspace, objfile)
1560 {
1561 if ((objfile->flags & OBJF_SHARED) != 0
1562 && is_addr_in_objfile (address, objfile))
1563 return 1;
1564 }
1565
1566 return 0;
1567}
1568
1569/* The default implementation for the "iterate_over_objfiles_in_search_order"
1570 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1571 searching the objfiles in the order they are stored internally,
1572 ignoring CURRENT_OBJFILE.
1573
1574 On most platorms, it should be close enough to doing the best
1575 we can without some knowledge specific to the architecture. */
1576
1577void
1578default_iterate_over_objfiles_in_search_order
1579 (struct gdbarch *gdbarch,
1580 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1581 void *cb_data, struct objfile *current_objfile)
1582{
1583 int stop = 0;
1584 struct objfile *objfile;
1585
1586 ALL_OBJFILES (objfile)
1587 {
1588 stop = cb (objfile, cb_data);
1589 if (stop)
1590 return;
1591 }
1592}
1593
1594/* See objfiles.h. */
1595
1596const char *
1597objfile_name (const struct objfile *objfile)
1598{
1599 if (objfile->obfd != NULL)
1600 return bfd_get_filename (objfile->obfd);
1601
1602 return objfile->original_name;
1603}
1604
1605/* See objfiles.h. */
1606
1607const char *
1608objfile_filename (const struct objfile *objfile)
1609{
1610 if (objfile->obfd != NULL)
1611 return bfd_get_filename (objfile->obfd);
1612
1613 return NULL;
1614}
1615
1616/* See objfiles.h. */
1617
1618const char *
1619objfile_debug_name (const struct objfile *objfile)
1620{
1621 return lbasename (objfile->original_name);
1622}
1623
1624/* See objfiles.h. */
1625
1626const char *
1627objfile_flavour_name (struct objfile *objfile)
1628{
1629 if (objfile->obfd != NULL)
1630 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1631 return NULL;
1632}
1633
1634/* Provide a prototype to silence -Wmissing-prototypes. */
1635extern initialize_file_ftype _initialize_objfiles;
1636
1637void
1638_initialize_objfiles (void)
1639{
1640 objfiles_pspace_data
1641 = register_program_space_data_with_cleanup (NULL,
1642 objfiles_pspace_data_cleanup);
1643
1644 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1645 objfile_bfd_data_free);
1646}
This page took 0.032677 seconds and 4 git commands to generate.