don't share per-BFD data if relocations are needed
[deliverable/binutils-gdb.git] / gdb / objfiles.c
... / ...
CommitLineData
1/* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22/* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25#include "defs.h"
26#include "bfd.h" /* Binary File Description */
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdb-stabs.h"
31#include "target.h"
32#include "bcache.h"
33#include "expression.h"
34#include "parser-defs.h"
35
36#include "gdb_assert.h"
37#include <sys/types.h>
38#include "gdb_stat.h"
39#include <fcntl.h>
40#include "gdb_obstack.h"
41#include "gdb_string.h"
42#include "hashtab.h"
43
44#include "breakpoint.h"
45#include "block.h"
46#include "dictionary.h"
47#include "source.h"
48#include "addrmap.h"
49#include "arch-utils.h"
50#include "exec.h"
51#include "observer.h"
52#include "complaints.h"
53#include "psymtab.h"
54#include "solist.h"
55#include "gdb_bfd.h"
56#include "btrace.h"
57
58/* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63/* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66struct objfile_pspace_info
67{
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80};
81
82/* Per-program-space data key. */
83static const struct program_space_data *objfiles_pspace_data;
84
85static void
86objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87{
88 struct objfile_pspace_info *info;
89
90 info = program_space_data (pspace, objfiles_pspace_data);
91 if (info != NULL)
92 {
93 xfree (info->sections);
94 xfree (info);
95 }
96}
97
98/* Get the current svr4 data. If none is found yet, add it now. This
99 function always returns a valid object. */
100
101static struct objfile_pspace_info *
102get_objfile_pspace_data (struct program_space *pspace)
103{
104 struct objfile_pspace_info *info;
105
106 info = program_space_data (pspace, objfiles_pspace_data);
107 if (info == NULL)
108 {
109 info = XZALLOC (struct objfile_pspace_info);
110 set_program_space_data (pspace, objfiles_pspace_data, info);
111 }
112
113 return info;
114}
115
116\f
117
118/* Per-BFD data key. */
119
120static const struct bfd_data *objfiles_bfd_data;
121
122/* Create the per-BFD storage object for OBJFILE. If ABFD is not
123 NULL, and it already has a per-BFD storage object, use that.
124 Otherwise, allocate a new per-BFD storage object. If ABFD is not
125 NULL, the object is allocated on the BFD; otherwise it is allocated
126 on OBJFILE's obstack. Note that it is not safe to call this
127 multiple times for a given OBJFILE -- it can only be called when
128 allocating or re-initializing OBJFILE. */
129
130static struct objfile_per_bfd_storage *
131get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
132{
133 struct objfile_per_bfd_storage *storage = NULL;
134
135 if (abfd != NULL)
136 storage = bfd_data (abfd, objfiles_bfd_data);
137
138 if (storage == NULL)
139 {
140 /* If the object requires gdb to do relocations, we simply fall
141 back to not sharing data across users. These cases are rare
142 enough that this seems reasonable. */
143 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
144 {
145 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147 }
148 else
149 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
150 struct objfile_per_bfd_storage);
151
152 /* Look up the gdbarch associated with the BFD. */
153 if (abfd != NULL)
154 storage->gdbarch = gdbarch_from_bfd (abfd);
155
156 obstack_init (&storage->storage_obstack);
157 storage->filename_cache = bcache_xmalloc (NULL, NULL);
158 storage->macro_cache = bcache_xmalloc (NULL, NULL);
159 }
160
161 return storage;
162}
163
164/* Free STORAGE. */
165
166static void
167free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
168{
169 bcache_xfree (storage->filename_cache);
170 bcache_xfree (storage->macro_cache);
171 obstack_free (&storage->storage_obstack, 0);
172}
173
174/* A wrapper for free_objfile_per_bfd_storage that can be passed as a
175 cleanup function to the BFD registry. */
176
177static void
178objfile_bfd_data_free (struct bfd *unused, void *d)
179{
180 free_objfile_per_bfd_storage (d);
181}
182
183/* See objfiles.h. */
184
185void
186set_objfile_per_bfd (struct objfile *objfile)
187{
188 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
189}
190
191\f
192
193/* Called via bfd_map_over_sections to build up the section table that
194 the objfile references. The objfile contains pointers to the start
195 of the table (objfile->sections) and to the first location after
196 the end of the table (objfile->sections_end). */
197
198static void
199add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
200 struct objfile *objfile, int force)
201{
202 struct obj_section *section;
203
204 if (!force)
205 {
206 flagword aflag;
207
208 aflag = bfd_get_section_flags (abfd, asect);
209 if (!(aflag & SEC_ALLOC))
210 return;
211 }
212
213 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
214 section->objfile = objfile;
215 section->the_bfd_section = asect;
216 section->ovly_mapped = 0;
217}
218
219static void
220add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
221 void *objfilep)
222{
223 add_to_objfile_sections_full (abfd, asect, objfilep, 0);
224}
225
226/* Builds a section table for OBJFILE.
227
228 Note that the OFFSET and OVLY_MAPPED in each table entry are
229 initialized to zero. */
230
231void
232build_objfile_section_table (struct objfile *objfile)
233{
234 int count = gdb_bfd_count_sections (objfile->obfd);
235
236 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
237 count,
238 struct obj_section);
239 objfile->sections_end = (objfile->sections + count);
240 bfd_map_over_sections (objfile->obfd,
241 add_to_objfile_sections, (void *) objfile);
242
243 /* See gdb_bfd_section_index. */
244 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
245 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
246 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
247 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
248}
249
250/* Given a pointer to an initialized bfd (ABFD) and some flag bits
251 allocate a new objfile struct, fill it in as best we can, link it
252 into the list of all known objfiles, and return a pointer to the
253 new objfile struct.
254
255 NAME should contain original non-canonicalized filename or other
256 identifier as entered by user. If there is no better source use
257 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
258 NAME content is copied into returned objfile.
259
260 The FLAGS word contains various bits (OBJF_*) that can be taken as
261 requests for specific operations. Other bits like OBJF_SHARED are
262 simply copied through to the new objfile flags member. */
263
264/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
265 by jv-lang.c, to create an artificial objfile used to hold
266 information about dynamically-loaded Java classes. Unfortunately,
267 that branch of this function doesn't get tested very frequently, so
268 it's prone to breakage. (E.g. at one time the name was set to NULL
269 in that situation, which broke a loop over all names in the dynamic
270 library loader.) If you change this function, please try to leave
271 things in a consistent state even if abfd is NULL. */
272
273struct objfile *
274allocate_objfile (bfd *abfd, const char *name, int flags)
275{
276 struct objfile *objfile;
277
278 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
279 objfile->psymbol_cache = psymbol_bcache_init ();
280 /* We could use obstack_specify_allocation here instead, but
281 gdb_obstack.h specifies the alloc/dealloc functions. */
282 obstack_init (&objfile->objfile_obstack);
283 terminate_minimal_symbol_table (objfile);
284
285 objfile_alloc_data (objfile);
286
287 if (name == NULL)
288 {
289 gdb_assert (abfd == NULL);
290 name = "<<anonymous objfile>>";
291 }
292 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack, name,
293 strlen (name));
294
295 /* Update the per-objfile information that comes from the bfd, ensuring
296 that any data that is reference is saved in the per-objfile data
297 region. */
298
299 objfile->obfd = abfd;
300 gdb_bfd_ref (abfd);
301 if (abfd != NULL)
302 {
303 objfile->mtime = bfd_get_mtime (abfd);
304
305 /* Build section table. */
306 build_objfile_section_table (objfile);
307 }
308
309 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
310 objfile->pspace = current_program_space;
311
312 /* Initialize the section indexes for this objfile, so that we can
313 later detect if they are used w/o being properly assigned to. */
314
315 objfile->sect_index_text = -1;
316 objfile->sect_index_data = -1;
317 objfile->sect_index_bss = -1;
318 objfile->sect_index_rodata = -1;
319
320 /* Add this file onto the tail of the linked list of other such files. */
321
322 objfile->next = NULL;
323 if (object_files == NULL)
324 object_files = objfile;
325 else
326 {
327 struct objfile *last_one;
328
329 for (last_one = object_files;
330 last_one->next;
331 last_one = last_one->next);
332 last_one->next = objfile;
333 }
334
335 /* Save passed in flag bits. */
336 objfile->flags |= flags;
337
338 /* Rebuild section map next time we need it. */
339 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
340
341 return objfile;
342}
343
344/* Retrieve the gdbarch associated with OBJFILE. */
345struct gdbarch *
346get_objfile_arch (struct objfile *objfile)
347{
348 return objfile->per_bfd->gdbarch;
349}
350
351/* If there is a valid and known entry point, function fills *ENTRY_P with it
352 and returns non-zero; otherwise it returns zero. */
353
354int
355entry_point_address_query (CORE_ADDR *entry_p)
356{
357 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
358 return 0;
359
360 *entry_p = symfile_objfile->ei.entry_point;
361
362 return 1;
363}
364
365/* Get current entry point address. Call error if it is not known. */
366
367CORE_ADDR
368entry_point_address (void)
369{
370 CORE_ADDR retval;
371
372 if (!entry_point_address_query (&retval))
373 error (_("Entry point address is not known."));
374
375 return retval;
376}
377
378/* Iterator on PARENT and every separate debug objfile of PARENT.
379 The usage pattern is:
380 for (objfile = parent;
381 objfile;
382 objfile = objfile_separate_debug_iterate (parent, objfile))
383 ...
384*/
385
386struct objfile *
387objfile_separate_debug_iterate (const struct objfile *parent,
388 const struct objfile *objfile)
389{
390 struct objfile *res;
391
392 /* If any, return the first child. */
393 res = objfile->separate_debug_objfile;
394 if (res)
395 return res;
396
397 /* Common case where there is no separate debug objfile. */
398 if (objfile == parent)
399 return NULL;
400
401 /* Return the brother if any. Note that we don't iterate on brothers of
402 the parents. */
403 res = objfile->separate_debug_objfile_link;
404 if (res)
405 return res;
406
407 for (res = objfile->separate_debug_objfile_backlink;
408 res != parent;
409 res = res->separate_debug_objfile_backlink)
410 {
411 gdb_assert (res != NULL);
412 if (res->separate_debug_objfile_link)
413 return res->separate_debug_objfile_link;
414 }
415 return NULL;
416}
417
418/* Put one object file before a specified on in the global list.
419 This can be used to make sure an object file is destroyed before
420 another when using ALL_OBJFILES_SAFE to free all objfiles. */
421void
422put_objfile_before (struct objfile *objfile, struct objfile *before_this)
423{
424 struct objfile **objp;
425
426 unlink_objfile (objfile);
427
428 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
429 {
430 if (*objp == before_this)
431 {
432 objfile->next = *objp;
433 *objp = objfile;
434 return;
435 }
436 }
437
438 internal_error (__FILE__, __LINE__,
439 _("put_objfile_before: before objfile not in list"));
440}
441
442/* Put OBJFILE at the front of the list. */
443
444void
445objfile_to_front (struct objfile *objfile)
446{
447 struct objfile **objp;
448 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
449 {
450 if (*objp == objfile)
451 {
452 /* Unhook it from where it is. */
453 *objp = objfile->next;
454 /* Put it in the front. */
455 objfile->next = object_files;
456 object_files = objfile;
457 break;
458 }
459 }
460}
461
462/* Unlink OBJFILE from the list of known objfiles, if it is found in the
463 list.
464
465 It is not a bug, or error, to call this function if OBJFILE is not known
466 to be in the current list. This is done in the case of mapped objfiles,
467 for example, just to ensure that the mapped objfile doesn't appear twice
468 in the list. Since the list is threaded, linking in a mapped objfile
469 twice would create a circular list.
470
471 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
472 unlinking it, just to ensure that we have completely severed any linkages
473 between the OBJFILE and the list. */
474
475void
476unlink_objfile (struct objfile *objfile)
477{
478 struct objfile **objpp;
479
480 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
481 {
482 if (*objpp == objfile)
483 {
484 *objpp = (*objpp)->next;
485 objfile->next = NULL;
486 return;
487 }
488 }
489
490 internal_error (__FILE__, __LINE__,
491 _("unlink_objfile: objfile already unlinked"));
492}
493
494/* Add OBJFILE as a separate debug objfile of PARENT. */
495
496void
497add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
498{
499 gdb_assert (objfile && parent);
500
501 /* Must not be already in a list. */
502 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
503 gdb_assert (objfile->separate_debug_objfile_link == NULL);
504 gdb_assert (objfile->separate_debug_objfile == NULL);
505 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
506 gdb_assert (parent->separate_debug_objfile_link == NULL);
507
508 objfile->separate_debug_objfile_backlink = parent;
509 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
510 parent->separate_debug_objfile = objfile;
511
512 /* Put the separate debug object before the normal one, this is so that
513 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
514 put_objfile_before (objfile, parent);
515}
516
517/* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
518 itself. */
519
520void
521free_objfile_separate_debug (struct objfile *objfile)
522{
523 struct objfile *child;
524
525 for (child = objfile->separate_debug_objfile; child;)
526 {
527 struct objfile *next_child = child->separate_debug_objfile_link;
528 free_objfile (child);
529 child = next_child;
530 }
531}
532
533/* Destroy an objfile and all the symtabs and psymtabs under it. Note
534 that as much as possible is allocated on the objfile_obstack
535 so that the memory can be efficiently freed.
536
537 Things which we do NOT free because they are not in malloc'd memory
538 or not in memory specific to the objfile include:
539
540 objfile -> sf
541
542 FIXME: If the objfile is using reusable symbol information (via mmalloc),
543 then we need to take into account the fact that more than one process
544 may be using the symbol information at the same time (when mmalloc is
545 extended to support cooperative locking). When more than one process
546 is using the mapped symbol info, we need to be more careful about when
547 we free objects in the reusable area. */
548
549void
550free_objfile (struct objfile *objfile)
551{
552 /* Free all separate debug objfiles. */
553 free_objfile_separate_debug (objfile);
554
555 if (objfile->separate_debug_objfile_backlink)
556 {
557 /* We freed the separate debug file, make sure the base objfile
558 doesn't reference it. */
559 struct objfile *child;
560
561 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
562
563 if (child == objfile)
564 {
565 /* OBJFILE is the first child. */
566 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
567 objfile->separate_debug_objfile_link;
568 }
569 else
570 {
571 /* Find OBJFILE in the list. */
572 while (1)
573 {
574 if (child->separate_debug_objfile_link == objfile)
575 {
576 child->separate_debug_objfile_link =
577 objfile->separate_debug_objfile_link;
578 break;
579 }
580 child = child->separate_debug_objfile_link;
581 gdb_assert (child);
582 }
583 }
584 }
585
586 /* Remove any references to this objfile in the global value
587 lists. */
588 preserve_values (objfile);
589
590 /* It still may reference data modules have associated with the objfile and
591 the symbol file data. */
592 forget_cached_source_info_for_objfile (objfile);
593
594 breakpoint_free_objfile (objfile);
595 btrace_free_objfile (objfile);
596
597 /* First do any symbol file specific actions required when we are
598 finished with a particular symbol file. Note that if the objfile
599 is using reusable symbol information (via mmalloc) then each of
600 these routines is responsible for doing the correct thing, either
601 freeing things which are valid only during this particular gdb
602 execution, or leaving them to be reused during the next one. */
603
604 if (objfile->sf != NULL)
605 {
606 (*objfile->sf->sym_finish) (objfile);
607 }
608
609 /* Discard any data modules have associated with the objfile. The function
610 still may reference objfile->obfd. */
611 objfile_free_data (objfile);
612
613 if (objfile->obfd)
614 gdb_bfd_unref (objfile->obfd);
615 else
616 free_objfile_per_bfd_storage (objfile->per_bfd);
617
618 /* Remove it from the chain of all objfiles. */
619
620 unlink_objfile (objfile);
621
622 if (objfile == symfile_objfile)
623 symfile_objfile = NULL;
624
625 /* Before the symbol table code was redone to make it easier to
626 selectively load and remove information particular to a specific
627 linkage unit, gdb used to do these things whenever the monolithic
628 symbol table was blown away. How much still needs to be done
629 is unknown, but we play it safe for now and keep each action until
630 it is shown to be no longer needed. */
631
632 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
633 for example), so we need to call this here. */
634 clear_pc_function_cache ();
635
636 /* Clear globals which might have pointed into a removed objfile.
637 FIXME: It's not clear which of these are supposed to persist
638 between expressions and which ought to be reset each time. */
639 expression_context_block = NULL;
640 innermost_block = NULL;
641
642 /* Check to see if the current_source_symtab belongs to this objfile,
643 and if so, call clear_current_source_symtab_and_line. */
644
645 {
646 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
647
648 if (cursal.symtab && cursal.symtab->objfile == objfile)
649 clear_current_source_symtab_and_line ();
650 }
651
652 if (objfile->global_psymbols.list)
653 xfree (objfile->global_psymbols.list);
654 if (objfile->static_psymbols.list)
655 xfree (objfile->static_psymbols.list);
656 /* Free the obstacks for non-reusable objfiles. */
657 psymbol_bcache_free (objfile->psymbol_cache);
658 if (objfile->demangled_names_hash)
659 htab_delete (objfile->demangled_names_hash);
660 obstack_free (&objfile->objfile_obstack, 0);
661
662 /* Rebuild section map next time we need it. */
663 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
664
665 /* The last thing we do is free the objfile struct itself. */
666 xfree (objfile);
667}
668
669static void
670do_free_objfile_cleanup (void *obj)
671{
672 free_objfile (obj);
673}
674
675struct cleanup *
676make_cleanup_free_objfile (struct objfile *obj)
677{
678 return make_cleanup (do_free_objfile_cleanup, obj);
679}
680
681/* Free all the object files at once and clean up their users. */
682
683void
684free_all_objfiles (void)
685{
686 struct objfile *objfile, *temp;
687 struct so_list *so;
688
689 /* Any objfile referencewould become stale. */
690 for (so = master_so_list (); so; so = so->next)
691 gdb_assert (so->objfile == NULL);
692
693 ALL_OBJFILES_SAFE (objfile, temp)
694 {
695 free_objfile (objfile);
696 }
697 clear_symtab_users (0);
698}
699\f
700/* A helper function for objfile_relocate1 that relocates a single
701 symbol. */
702
703static void
704relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
705 struct section_offsets *delta)
706{
707 fixup_symbol_section (sym, objfile);
708
709 /* The RS6000 code from which this was taken skipped
710 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
711 But I'm leaving out that test, on the theory that
712 they can't possibly pass the tests below. */
713 if ((SYMBOL_CLASS (sym) == LOC_LABEL
714 || SYMBOL_CLASS (sym) == LOC_STATIC)
715 && SYMBOL_SECTION (sym) >= 0)
716 {
717 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
718 }
719}
720
721/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
722 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
723 Return non-zero iff any change happened. */
724
725static int
726objfile_relocate1 (struct objfile *objfile,
727 const struct section_offsets *new_offsets)
728{
729 struct obj_section *s;
730 struct section_offsets *delta =
731 ((struct section_offsets *)
732 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
733
734 int i;
735 int something_changed = 0;
736
737 for (i = 0; i < objfile->num_sections; ++i)
738 {
739 delta->offsets[i] =
740 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
741 if (ANOFFSET (delta, i) != 0)
742 something_changed = 1;
743 }
744 if (!something_changed)
745 return 0;
746
747 /* OK, get all the symtabs. */
748 {
749 struct symtab *s;
750
751 ALL_OBJFILE_SYMTABS (objfile, s)
752 {
753 struct linetable *l;
754 struct blockvector *bv;
755 int i;
756
757 /* First the line table. */
758 l = LINETABLE (s);
759 if (l)
760 {
761 for (i = 0; i < l->nitems; ++i)
762 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
763 }
764
765 /* Don't relocate a shared blockvector more than once. */
766 if (!s->primary)
767 continue;
768
769 bv = BLOCKVECTOR (s);
770 if (BLOCKVECTOR_MAP (bv))
771 addrmap_relocate (BLOCKVECTOR_MAP (bv),
772 ANOFFSET (delta, s->block_line_section));
773
774 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
775 {
776 struct block *b;
777 struct symbol *sym;
778 struct dict_iterator iter;
779
780 b = BLOCKVECTOR_BLOCK (bv, i);
781 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
782 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
783
784 /* We only want to iterate over the local symbols, not any
785 symbols in included symtabs. */
786 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
787 {
788 relocate_one_symbol (sym, objfile, delta);
789 }
790 }
791 }
792 }
793
794 /* Relocate isolated symbols. */
795 {
796 struct symbol *iter;
797
798 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
799 relocate_one_symbol (iter, objfile, delta);
800 }
801
802 if (objfile->psymtabs_addrmap)
803 addrmap_relocate (objfile->psymtabs_addrmap,
804 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
805
806 if (objfile->sf)
807 objfile->sf->qf->relocate (objfile, new_offsets, delta);
808
809 {
810 struct minimal_symbol *msym;
811
812 ALL_OBJFILE_MSYMBOLS (objfile, msym)
813 if (SYMBOL_SECTION (msym) >= 0)
814 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
815 }
816 /* Relocating different sections by different amounts may cause the symbols
817 to be out of order. */
818 msymbols_sort (objfile);
819
820 if (objfile->ei.entry_point_p)
821 {
822 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
823 only as a fallback. */
824 struct obj_section *s;
825 s = find_pc_section (objfile->ei.entry_point);
826 if (s)
827 {
828 int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
829
830 objfile->ei.entry_point += ANOFFSET (delta, idx);
831 }
832 else
833 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
834 }
835
836 {
837 int i;
838
839 for (i = 0; i < objfile->num_sections; ++i)
840 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
841 }
842
843 /* Rebuild section map next time we need it. */
844 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
845
846 /* Update the table in exec_ops, used to read memory. */
847 ALL_OBJFILE_OSECTIONS (objfile, s)
848 {
849 int idx = s - objfile->sections;
850
851 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
852 obj_section_addr (s));
853 }
854
855 /* Relocating probes. */
856 if (objfile->sf && objfile->sf->sym_probe_fns)
857 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
858 new_offsets, delta);
859
860 /* Data changed. */
861 return 1;
862}
863
864/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
865 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
866
867 The number and ordering of sections does differ between the two objfiles.
868 Only their names match. Also the file offsets will differ (objfile being
869 possibly prelinked but separate_debug_objfile is probably not prelinked) but
870 the in-memory absolute address as specified by NEW_OFFSETS must match both
871 files. */
872
873void
874objfile_relocate (struct objfile *objfile,
875 const struct section_offsets *new_offsets)
876{
877 struct objfile *debug_objfile;
878 int changed = 0;
879
880 changed |= objfile_relocate1 (objfile, new_offsets);
881
882 for (debug_objfile = objfile->separate_debug_objfile;
883 debug_objfile;
884 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
885 {
886 struct section_addr_info *objfile_addrs;
887 struct section_offsets *new_debug_offsets;
888 struct cleanup *my_cleanups;
889
890 objfile_addrs = build_section_addr_info_from_objfile (objfile);
891 my_cleanups = make_cleanup (xfree, objfile_addrs);
892
893 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
894 relative ones must be already created according to debug_objfile. */
895
896 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
897
898 gdb_assert (debug_objfile->num_sections
899 == gdb_bfd_count_sections (debug_objfile->obfd));
900 new_debug_offsets =
901 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
902 make_cleanup (xfree, new_debug_offsets);
903 relative_addr_info_to_section_offsets (new_debug_offsets,
904 debug_objfile->num_sections,
905 objfile_addrs);
906
907 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
908
909 do_cleanups (my_cleanups);
910 }
911
912 /* Relocate breakpoints as necessary, after things are relocated. */
913 if (changed)
914 breakpoint_re_set ();
915}
916
917/* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
918 not touched here.
919 Return non-zero iff any change happened. */
920
921static int
922objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
923{
924 struct section_offsets *new_offsets =
925 ((struct section_offsets *)
926 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
927 int i;
928
929 for (i = 0; i < objfile->num_sections; ++i)
930 new_offsets->offsets[i] = slide;
931
932 return objfile_relocate1 (objfile, new_offsets);
933}
934
935/* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
936 SEPARATE_DEBUG_OBJFILEs. */
937
938void
939objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
940{
941 struct objfile *debug_objfile;
942 int changed = 0;
943
944 changed |= objfile_rebase1 (objfile, slide);
945
946 for (debug_objfile = objfile->separate_debug_objfile;
947 debug_objfile;
948 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
949 changed |= objfile_rebase1 (debug_objfile, slide);
950
951 /* Relocate breakpoints as necessary, after things are relocated. */
952 if (changed)
953 breakpoint_re_set ();
954}
955\f
956/* Return non-zero if OBJFILE has partial symbols. */
957
958int
959objfile_has_partial_symbols (struct objfile *objfile)
960{
961 if (!objfile->sf)
962 return 0;
963
964 /* If we have not read psymbols, but we have a function capable of reading
965 them, then that is an indication that they are in fact available. Without
966 this function the symbols may have been already read in but they also may
967 not be present in this objfile. */
968 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
969 && objfile->sf->sym_read_psymbols != NULL)
970 return 1;
971
972 return objfile->sf->qf->has_symbols (objfile);
973}
974
975/* Return non-zero if OBJFILE has full symbols. */
976
977int
978objfile_has_full_symbols (struct objfile *objfile)
979{
980 return objfile->symtabs != NULL;
981}
982
983/* Return non-zero if OBJFILE has full or partial symbols, either directly
984 or through a separate debug file. */
985
986int
987objfile_has_symbols (struct objfile *objfile)
988{
989 struct objfile *o;
990
991 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
992 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
993 return 1;
994 return 0;
995}
996
997
998/* Many places in gdb want to test just to see if we have any partial
999 symbols available. This function returns zero if none are currently
1000 available, nonzero otherwise. */
1001
1002int
1003have_partial_symbols (void)
1004{
1005 struct objfile *ofp;
1006
1007 ALL_OBJFILES (ofp)
1008 {
1009 if (objfile_has_partial_symbols (ofp))
1010 return 1;
1011 }
1012 return 0;
1013}
1014
1015/* Many places in gdb want to test just to see if we have any full
1016 symbols available. This function returns zero if none are currently
1017 available, nonzero otherwise. */
1018
1019int
1020have_full_symbols (void)
1021{
1022 struct objfile *ofp;
1023
1024 ALL_OBJFILES (ofp)
1025 {
1026 if (objfile_has_full_symbols (ofp))
1027 return 1;
1028 }
1029 return 0;
1030}
1031
1032
1033/* This operations deletes all objfile entries that represent solibs that
1034 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1035 command. */
1036
1037void
1038objfile_purge_solibs (void)
1039{
1040 struct objfile *objf;
1041 struct objfile *temp;
1042
1043 ALL_OBJFILES_SAFE (objf, temp)
1044 {
1045 /* We assume that the solib package has been purged already, or will
1046 be soon. */
1047
1048 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1049 free_objfile (objf);
1050 }
1051}
1052
1053
1054/* Many places in gdb want to test just to see if we have any minimal
1055 symbols available. This function returns zero if none are currently
1056 available, nonzero otherwise. */
1057
1058int
1059have_minimal_symbols (void)
1060{
1061 struct objfile *ofp;
1062
1063 ALL_OBJFILES (ofp)
1064 {
1065 if (ofp->minimal_symbol_count > 0)
1066 {
1067 return 1;
1068 }
1069 }
1070 return 0;
1071}
1072
1073/* Qsort comparison function. */
1074
1075static int
1076qsort_cmp (const void *a, const void *b)
1077{
1078 const struct obj_section *sect1 = *(const struct obj_section **) a;
1079 const struct obj_section *sect2 = *(const struct obj_section **) b;
1080 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1081 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1082
1083 if (sect1_addr < sect2_addr)
1084 return -1;
1085 else if (sect1_addr > sect2_addr)
1086 return 1;
1087 else
1088 {
1089 /* Sections are at the same address. This could happen if
1090 A) we have an objfile and a separate debuginfo.
1091 B) we are confused, and have added sections without proper relocation,
1092 or something like that. */
1093
1094 const struct objfile *const objfile1 = sect1->objfile;
1095 const struct objfile *const objfile2 = sect2->objfile;
1096
1097 if (objfile1->separate_debug_objfile == objfile2
1098 || objfile2->separate_debug_objfile == objfile1)
1099 {
1100 /* Case A. The ordering doesn't matter: separate debuginfo files
1101 will be filtered out later. */
1102
1103 return 0;
1104 }
1105
1106 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1107 triage. This section could be slow (since we iterate over all
1108 objfiles in each call to qsort_cmp), but this shouldn't happen
1109 very often (GDB is already in a confused state; one hopes this
1110 doesn't happen at all). If you discover that significant time is
1111 spent in the loops below, do 'set complaints 100' and examine the
1112 resulting complaints. */
1113
1114 if (objfile1 == objfile2)
1115 {
1116 /* Both sections came from the same objfile. We are really confused.
1117 Sort on sequence order of sections within the objfile. */
1118
1119 const struct obj_section *osect;
1120
1121 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1122 if (osect == sect1)
1123 return -1;
1124 else if (osect == sect2)
1125 return 1;
1126
1127 /* We should have found one of the sections before getting here. */
1128 gdb_assert_not_reached ("section not found");
1129 }
1130 else
1131 {
1132 /* Sort on sequence number of the objfile in the chain. */
1133
1134 const struct objfile *objfile;
1135
1136 ALL_OBJFILES (objfile)
1137 if (objfile == objfile1)
1138 return -1;
1139 else if (objfile == objfile2)
1140 return 1;
1141
1142 /* We should have found one of the objfiles before getting here. */
1143 gdb_assert_not_reached ("objfile not found");
1144 }
1145 }
1146
1147 /* Unreachable. */
1148 gdb_assert_not_reached ("unexpected code path");
1149 return 0;
1150}
1151
1152/* Select "better" obj_section to keep. We prefer the one that came from
1153 the real object, rather than the one from separate debuginfo.
1154 Most of the time the two sections are exactly identical, but with
1155 prelinking the .rel.dyn section in the real object may have different
1156 size. */
1157
1158static struct obj_section *
1159preferred_obj_section (struct obj_section *a, struct obj_section *b)
1160{
1161 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1162 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1163 || (b->objfile->separate_debug_objfile == a->objfile));
1164 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1165 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1166
1167 if (a->objfile->separate_debug_objfile != NULL)
1168 return a;
1169 return b;
1170}
1171
1172/* Return 1 if SECTION should be inserted into the section map.
1173 We want to insert only non-overlay and non-TLS section. */
1174
1175static int
1176insert_section_p (const struct bfd *abfd,
1177 const struct bfd_section *section)
1178{
1179 const bfd_vma lma = bfd_section_lma (abfd, section);
1180
1181 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1182 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1183 /* This is an overlay section. IN_MEMORY check is needed to avoid
1184 discarding sections from the "system supplied DSO" (aka vdso)
1185 on some Linux systems (e.g. Fedora 11). */
1186 return 0;
1187 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1188 /* This is a TLS section. */
1189 return 0;
1190
1191 return 1;
1192}
1193
1194/* Filter out overlapping sections where one section came from the real
1195 objfile, and the other from a separate debuginfo file.
1196 Return the size of table after redundant sections have been eliminated. */
1197
1198static int
1199filter_debuginfo_sections (struct obj_section **map, int map_size)
1200{
1201 int i, j;
1202
1203 for (i = 0, j = 0; i < map_size - 1; i++)
1204 {
1205 struct obj_section *const sect1 = map[i];
1206 struct obj_section *const sect2 = map[i + 1];
1207 const struct objfile *const objfile1 = sect1->objfile;
1208 const struct objfile *const objfile2 = sect2->objfile;
1209 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1210 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1211
1212 if (sect1_addr == sect2_addr
1213 && (objfile1->separate_debug_objfile == objfile2
1214 || objfile2->separate_debug_objfile == objfile1))
1215 {
1216 map[j++] = preferred_obj_section (sect1, sect2);
1217 ++i;
1218 }
1219 else
1220 map[j++] = sect1;
1221 }
1222
1223 if (i < map_size)
1224 {
1225 gdb_assert (i == map_size - 1);
1226 map[j++] = map[i];
1227 }
1228
1229 /* The map should not have shrunk to less than half the original size. */
1230 gdb_assert (map_size / 2 <= j);
1231
1232 return j;
1233}
1234
1235/* Filter out overlapping sections, issuing a warning if any are found.
1236 Overlapping sections could really be overlay sections which we didn't
1237 classify as such in insert_section_p, or we could be dealing with a
1238 corrupt binary. */
1239
1240static int
1241filter_overlapping_sections (struct obj_section **map, int map_size)
1242{
1243 int i, j;
1244
1245 for (i = 0, j = 0; i < map_size - 1; )
1246 {
1247 int k;
1248
1249 map[j++] = map[i];
1250 for (k = i + 1; k < map_size; k++)
1251 {
1252 struct obj_section *const sect1 = map[i];
1253 struct obj_section *const sect2 = map[k];
1254 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1255 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1256 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1257
1258 gdb_assert (sect1_addr <= sect2_addr);
1259
1260 if (sect1_endaddr <= sect2_addr)
1261 break;
1262 else
1263 {
1264 /* We have an overlap. Report it. */
1265
1266 struct objfile *const objf1 = sect1->objfile;
1267 struct objfile *const objf2 = sect2->objfile;
1268
1269 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1270 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1271
1272 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1273
1274 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1275
1276 complaint (&symfile_complaints,
1277 _("unexpected overlap between:\n"
1278 " (A) section `%s' from `%s' [%s, %s)\n"
1279 " (B) section `%s' from `%s' [%s, %s).\n"
1280 "Will ignore section B"),
1281 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1282 paddress (gdbarch, sect1_addr),
1283 paddress (gdbarch, sect1_endaddr),
1284 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1285 paddress (gdbarch, sect2_addr),
1286 paddress (gdbarch, sect2_endaddr));
1287 }
1288 }
1289 i = k;
1290 }
1291
1292 if (i < map_size)
1293 {
1294 gdb_assert (i == map_size - 1);
1295 map[j++] = map[i];
1296 }
1297
1298 return j;
1299}
1300
1301
1302/* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1303 TLS, overlay and overlapping sections. */
1304
1305static void
1306update_section_map (struct program_space *pspace,
1307 struct obj_section ***pmap, int *pmap_size)
1308{
1309 struct objfile_pspace_info *pspace_info;
1310 int alloc_size, map_size, i;
1311 struct obj_section *s, **map;
1312 struct objfile *objfile;
1313
1314 pspace_info = get_objfile_pspace_data (pspace);
1315 gdb_assert (pspace_info->section_map_dirty != 0
1316 || pspace_info->new_objfiles_available != 0);
1317
1318 map = *pmap;
1319 xfree (map);
1320
1321 alloc_size = 0;
1322 ALL_PSPACE_OBJFILES (pspace, objfile)
1323 ALL_OBJFILE_OSECTIONS (objfile, s)
1324 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1325 alloc_size += 1;
1326
1327 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1328 if (alloc_size == 0)
1329 {
1330 *pmap = NULL;
1331 *pmap_size = 0;
1332 return;
1333 }
1334
1335 map = xmalloc (alloc_size * sizeof (*map));
1336
1337 i = 0;
1338 ALL_PSPACE_OBJFILES (pspace, objfile)
1339 ALL_OBJFILE_OSECTIONS (objfile, s)
1340 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1341 map[i++] = s;
1342
1343 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1344 map_size = filter_debuginfo_sections(map, alloc_size);
1345 map_size = filter_overlapping_sections(map, map_size);
1346
1347 if (map_size < alloc_size)
1348 /* Some sections were eliminated. Trim excess space. */
1349 map = xrealloc (map, map_size * sizeof (*map));
1350 else
1351 gdb_assert (alloc_size == map_size);
1352
1353 *pmap = map;
1354 *pmap_size = map_size;
1355}
1356
1357/* Bsearch comparison function. */
1358
1359static int
1360bsearch_cmp (const void *key, const void *elt)
1361{
1362 const CORE_ADDR pc = *(CORE_ADDR *) key;
1363 const struct obj_section *section = *(const struct obj_section **) elt;
1364
1365 if (pc < obj_section_addr (section))
1366 return -1;
1367 if (pc < obj_section_endaddr (section))
1368 return 0;
1369 return 1;
1370}
1371
1372/* Returns a section whose range includes PC or NULL if none found. */
1373
1374struct obj_section *
1375find_pc_section (CORE_ADDR pc)
1376{
1377 struct objfile_pspace_info *pspace_info;
1378 struct obj_section *s, **sp;
1379
1380 /* Check for mapped overlay section first. */
1381 s = find_pc_mapped_section (pc);
1382 if (s)
1383 return s;
1384
1385 pspace_info = get_objfile_pspace_data (current_program_space);
1386 if (pspace_info->section_map_dirty
1387 || (pspace_info->new_objfiles_available
1388 && !pspace_info->inhibit_updates))
1389 {
1390 update_section_map (current_program_space,
1391 &pspace_info->sections,
1392 &pspace_info->num_sections);
1393
1394 /* Don't need updates to section map until objfiles are added,
1395 removed or relocated. */
1396 pspace_info->new_objfiles_available = 0;
1397 pspace_info->section_map_dirty = 0;
1398 }
1399
1400 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1401 bsearch be non-NULL. */
1402 if (pspace_info->sections == NULL)
1403 {
1404 gdb_assert (pspace_info->num_sections == 0);
1405 return NULL;
1406 }
1407
1408 sp = (struct obj_section **) bsearch (&pc,
1409 pspace_info->sections,
1410 pspace_info->num_sections,
1411 sizeof (*pspace_info->sections),
1412 bsearch_cmp);
1413 if (sp != NULL)
1414 return *sp;
1415 return NULL;
1416}
1417
1418
1419/* Return non-zero if PC is in a section called NAME. */
1420
1421int
1422pc_in_section (CORE_ADDR pc, char *name)
1423{
1424 struct obj_section *s;
1425 int retval = 0;
1426
1427 s = find_pc_section (pc);
1428
1429 retval = (s != NULL
1430 && s->the_bfd_section->name != NULL
1431 && strcmp (s->the_bfd_section->name, name) == 0);
1432 return (retval);
1433}
1434\f
1435
1436/* Set section_map_dirty so section map will be rebuilt next time it
1437 is used. Called by reread_symbols. */
1438
1439void
1440objfiles_changed (void)
1441{
1442 /* Rebuild section map next time we need it. */
1443 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1444}
1445
1446/* See comments in objfiles.h. */
1447
1448void
1449inhibit_section_map_updates (struct program_space *pspace)
1450{
1451 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1452}
1453
1454/* See comments in objfiles.h. */
1455
1456void
1457resume_section_map_updates (struct program_space *pspace)
1458{
1459 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1460}
1461
1462/* See comments in objfiles.h. */
1463
1464void
1465resume_section_map_updates_cleanup (void *arg)
1466{
1467 resume_section_map_updates (arg);
1468}
1469
1470/* The default implementation for the "iterate_over_objfiles_in_search_order"
1471 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1472 searching the objfiles in the order they are stored internally,
1473 ignoring CURRENT_OBJFILE.
1474
1475 On most platorms, it should be close enough to doing the best
1476 we can without some knowledge specific to the architecture. */
1477
1478void
1479default_iterate_over_objfiles_in_search_order
1480 (struct gdbarch *gdbarch,
1481 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1482 void *cb_data, struct objfile *current_objfile)
1483{
1484 int stop = 0;
1485 struct objfile *objfile;
1486
1487 ALL_OBJFILES (objfile)
1488 {
1489 stop = cb (objfile, cb_data);
1490 if (stop)
1491 return;
1492 }
1493}
1494
1495/* Return canonical name for OBJFILE. */
1496
1497const char *
1498objfile_name (const struct objfile *objfile)
1499{
1500 if (objfile->obfd != NULL)
1501 return bfd_get_filename (objfile->obfd);
1502
1503 return objfile->original_name;
1504}
1505
1506/* Provide a prototype to silence -Wmissing-prototypes. */
1507extern initialize_file_ftype _initialize_objfiles;
1508
1509void
1510_initialize_objfiles (void)
1511{
1512 objfiles_pspace_data
1513 = register_program_space_data_with_cleanup (NULL,
1514 objfiles_pspace_data_cleanup);
1515
1516 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1517 objfile_bfd_data_free);
1518}
This page took 0.026892 seconds and 4 git commands to generate.