Make increase_expout_size static
[deliverable/binutils-gdb.git] / gdb / parse.c
... / ...
CommitLineData
1/* Parse expressions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23/* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32#include "defs.h"
33#include <ctype.h>
34#include "arch-utils.h"
35#include "symtab.h"
36#include "gdbtypes.h"
37#include "frame.h"
38#include "expression.h"
39#include "value.h"
40#include "command.h"
41#include "language.h"
42#include "f-lang.h"
43#include "parser-defs.h"
44#include "gdbcmd.h"
45#include "symfile.h" /* for overlay functions */
46#include "inferior.h"
47#include "target-float.h"
48#include "block.h"
49#include "source.h"
50#include "objfiles.h"
51#include "user-regs.h"
52#include <algorithm>
53#include "common/gdb_optional.h"
54
55/* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67\f
68/* Global variables declared in parser-defs.h (and commented there). */
69const struct block *expression_context_block;
70CORE_ADDR expression_context_pc;
71innermost_block_tracker innermost_block;
72int arglist_len;
73static struct type_stack type_stack;
74const char *lexptr;
75const char *prev_lexptr;
76int paren_depth;
77int comma_terminates;
78
79/* True if parsing an expression to attempt completion. */
80int parse_completion;
81
82/* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85static int expout_last_struct = -1;
86
87/* If we are completing a tagged type name, this will be nonzero. */
88static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90/* The token for tagged type name completion. */
91static gdb::unique_xmalloc_ptr<char> expout_completion_name;
92
93\f
94static unsigned int expressiondebug = 0;
95static void
96show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98{
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100}
101
102
103/* Non-zero if an expression parser should set yydebug. */
104int parser_debug;
105
106static void
107show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111}
112
113
114static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *,
120 innermost_block_tracker_types);
121
122static void increase_expout_size (struct parser_state *ps, size_t lenelt);
123
124
125/* Documented at it's declaration. */
126
127void
128innermost_block_tracker::update (const struct block *b,
129 innermost_block_tracker_types t)
130{
131 if ((m_types & t) != 0
132 && (m_innermost_block == NULL
133 || contained_in (b, m_innermost_block)))
134 m_innermost_block = b;
135}
136
137/* Data structure for saving values of arglist_len for function calls whose
138 arguments contain other function calls. */
139
140static std::vector<int> *funcall_chain;
141
142/* Begin counting arguments for a function call,
143 saving the data about any containing call. */
144
145void
146start_arglist (void)
147{
148 funcall_chain->push_back (arglist_len);
149 arglist_len = 0;
150}
151
152/* Return the number of arguments in a function call just terminated,
153 and restore the data for the containing function call. */
154
155int
156end_arglist (void)
157{
158 int val = arglist_len;
159 arglist_len = funcall_chain->back ();
160 funcall_chain->pop_back ();
161 return val;
162}
163
164\f
165
166/* See definition in parser-defs.h. */
167
168parser_state::parser_state (size_t initial_size,
169 const struct language_defn *lang,
170 struct gdbarch *gdbarch)
171 : expout_size (initial_size),
172 expout (XNEWVAR (expression,
173 (sizeof (expression)
174 + EXP_ELEM_TO_BYTES (expout_size)))),
175 expout_ptr (0)
176{
177 expout->language_defn = lang;
178 expout->gdbarch = gdbarch;
179}
180
181expression_up
182parser_state::release ()
183{
184 /* Record the actual number of expression elements, and then
185 reallocate the expression memory so that we free up any
186 excess elements. */
187
188 expout->nelts = expout_ptr;
189 expout.reset (XRESIZEVAR (expression, expout.release (),
190 (sizeof (expression)
191 + EXP_ELEM_TO_BYTES (expout_ptr))));
192
193 return std::move (expout);
194}
195
196/* This page contains the functions for adding data to the struct expression
197 being constructed. */
198
199/* Add one element to the end of the expression. */
200
201/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
202 a register through here. */
203
204static void
205write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
206{
207 if (ps->expout_ptr >= ps->expout_size)
208 {
209 ps->expout_size *= 2;
210 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
211 (sizeof (expression)
212 + EXP_ELEM_TO_BYTES (ps->expout_size))));
213 }
214 ps->expout->elts[ps->expout_ptr++] = *expelt;
215}
216
217void
218write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
219{
220 union exp_element tmp;
221
222 memset (&tmp, 0, sizeof (union exp_element));
223 tmp.opcode = expelt;
224 write_exp_elt (ps, &tmp);
225}
226
227void
228write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
229{
230 union exp_element tmp;
231
232 memset (&tmp, 0, sizeof (union exp_element));
233 tmp.symbol = expelt;
234 write_exp_elt (ps, &tmp);
235}
236
237void
238write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
239{
240 union exp_element tmp;
241
242 memset (&tmp, 0, sizeof (union exp_element));
243 tmp.msymbol = expelt;
244 write_exp_elt (ps, &tmp);
245}
246
247void
248write_exp_elt_block (struct parser_state *ps, const struct block *b)
249{
250 union exp_element tmp;
251
252 memset (&tmp, 0, sizeof (union exp_element));
253 tmp.block = b;
254 write_exp_elt (ps, &tmp);
255}
256
257void
258write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
259{
260 union exp_element tmp;
261
262 memset (&tmp, 0, sizeof (union exp_element));
263 tmp.objfile = objfile;
264 write_exp_elt (ps, &tmp);
265}
266
267void
268write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
269{
270 union exp_element tmp;
271
272 memset (&tmp, 0, sizeof (union exp_element));
273 tmp.longconst = expelt;
274 write_exp_elt (ps, &tmp);
275}
276
277void
278write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
279{
280 union exp_element tmp;
281 int index;
282
283 for (index = 0; index < 16; index++)
284 tmp.floatconst[index] = expelt[index];
285
286 write_exp_elt (ps, &tmp);
287}
288
289void
290write_exp_elt_type (struct parser_state *ps, struct type *expelt)
291{
292 union exp_element tmp;
293
294 memset (&tmp, 0, sizeof (union exp_element));
295 tmp.type = expelt;
296 write_exp_elt (ps, &tmp);
297}
298
299void
300write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
301{
302 union exp_element tmp;
303
304 memset (&tmp, 0, sizeof (union exp_element));
305 tmp.internalvar = expelt;
306 write_exp_elt (ps, &tmp);
307}
308
309/* Add a string constant to the end of the expression.
310
311 String constants are stored by first writing an expression element
312 that contains the length of the string, then stuffing the string
313 constant itself into however many expression elements are needed
314 to hold it, and then writing another expression element that contains
315 the length of the string. I.e. an expression element at each end of
316 the string records the string length, so you can skip over the
317 expression elements containing the actual string bytes from either
318 end of the string. Note that this also allows gdb to handle
319 strings with embedded null bytes, as is required for some languages.
320
321 Don't be fooled by the fact that the string is null byte terminated,
322 this is strictly for the convenience of debugging gdb itself.
323 Gdb does not depend up the string being null terminated, since the
324 actual length is recorded in expression elements at each end of the
325 string. The null byte is taken into consideration when computing how
326 many expression elements are required to hold the string constant, of
327 course. */
328
329
330void
331write_exp_string (struct parser_state *ps, struct stoken str)
332{
333 int len = str.length;
334 size_t lenelt;
335 char *strdata;
336
337 /* Compute the number of expression elements required to hold the string
338 (including a null byte terminator), along with one expression element
339 at each end to record the actual string length (not including the
340 null byte terminator). */
341
342 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
343
344 increase_expout_size (ps, lenelt);
345
346 /* Write the leading length expression element (which advances the current
347 expression element index), then write the string constant followed by a
348 terminating null byte, and then write the trailing length expression
349 element. */
350
351 write_exp_elt_longcst (ps, (LONGEST) len);
352 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
353 memcpy (strdata, str.ptr, len);
354 *(strdata + len) = '\0';
355 ps->expout_ptr += lenelt - 2;
356 write_exp_elt_longcst (ps, (LONGEST) len);
357}
358
359/* Add a vector of string constants to the end of the expression.
360
361 This adds an OP_STRING operation, but encodes the contents
362 differently from write_exp_string. The language is expected to
363 handle evaluation of this expression itself.
364
365 After the usual OP_STRING header, TYPE is written into the
366 expression as a long constant. The interpretation of this field is
367 up to the language evaluator.
368
369 Next, each string in VEC is written. The length is written as a
370 long constant, followed by the contents of the string. */
371
372void
373write_exp_string_vector (struct parser_state *ps, int type,
374 struct stoken_vector *vec)
375{
376 int i, len;
377 size_t n_slots;
378
379 /* Compute the size. We compute the size in number of slots to
380 avoid issues with string padding. */
381 n_slots = 0;
382 for (i = 0; i < vec->len; ++i)
383 {
384 /* One slot for the length of this element, plus the number of
385 slots needed for this string. */
386 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
387 }
388
389 /* One more slot for the type of the string. */
390 ++n_slots;
391
392 /* Now compute a phony string length. */
393 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
394
395 n_slots += 4;
396 increase_expout_size (ps, n_slots);
397
398 write_exp_elt_opcode (ps, OP_STRING);
399 write_exp_elt_longcst (ps, len);
400 write_exp_elt_longcst (ps, type);
401
402 for (i = 0; i < vec->len; ++i)
403 {
404 write_exp_elt_longcst (ps, vec->tokens[i].length);
405 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
406 vec->tokens[i].length);
407 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
408 }
409
410 write_exp_elt_longcst (ps, len);
411 write_exp_elt_opcode (ps, OP_STRING);
412}
413
414/* Add a bitstring constant to the end of the expression.
415
416 Bitstring constants are stored by first writing an expression element
417 that contains the length of the bitstring (in bits), then stuffing the
418 bitstring constant itself into however many expression elements are
419 needed to hold it, and then writing another expression element that
420 contains the length of the bitstring. I.e. an expression element at
421 each end of the bitstring records the bitstring length, so you can skip
422 over the expression elements containing the actual bitstring bytes from
423 either end of the bitstring. */
424
425void
426write_exp_bitstring (struct parser_state *ps, struct stoken str)
427{
428 int bits = str.length; /* length in bits */
429 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
430 size_t lenelt;
431 char *strdata;
432
433 /* Compute the number of expression elements required to hold the bitstring,
434 along with one expression element at each end to record the actual
435 bitstring length in bits. */
436
437 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
438
439 increase_expout_size (ps, lenelt);
440
441 /* Write the leading length expression element (which advances the current
442 expression element index), then write the bitstring constant, and then
443 write the trailing length expression element. */
444
445 write_exp_elt_longcst (ps, (LONGEST) bits);
446 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
447 memcpy (strdata, str.ptr, len);
448 ps->expout_ptr += lenelt - 2;
449 write_exp_elt_longcst (ps, (LONGEST) bits);
450}
451
452/* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
453 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
454 address. */
455
456type *
457find_minsym_type_and_address (minimal_symbol *msymbol,
458 struct objfile *objfile,
459 CORE_ADDR *address_p)
460{
461 bound_minimal_symbol bound_msym = {msymbol, objfile};
462 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
463 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
464
465 bool is_tls = (section != NULL
466 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
467
468 /* The minimal symbol might point to a function descriptor;
469 resolve it to the actual code address instead. */
470 CORE_ADDR addr;
471 if (is_tls)
472 {
473 /* Addresses of TLS symbols are really offsets into a
474 per-objfile/per-thread storage block. */
475 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
476 }
477 else if (msymbol_is_function (objfile, msymbol, &addr))
478 {
479 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
480 {
481 /* This means we resolved a function descriptor, and we now
482 have an address for a code/text symbol instead of a data
483 symbol. */
484 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
485 type = mst_text_gnu_ifunc;
486 else
487 type = mst_text;
488 section = NULL;
489 }
490 }
491 else
492 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
493
494 if (overlay_debugging)
495 addr = symbol_overlayed_address (addr, section);
496
497 if (is_tls)
498 {
499 /* Skip translation if caller does not need the address. */
500 if (address_p != NULL)
501 *address_p = target_translate_tls_address (objfile, addr);
502 return objfile_type (objfile)->nodebug_tls_symbol;
503 }
504
505 if (address_p != NULL)
506 *address_p = addr;
507
508 switch (type)
509 {
510 case mst_text:
511 case mst_file_text:
512 case mst_solib_trampoline:
513 return objfile_type (objfile)->nodebug_text_symbol;
514
515 case mst_text_gnu_ifunc:
516 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
517
518 case mst_data:
519 case mst_file_data:
520 case mst_bss:
521 case mst_file_bss:
522 return objfile_type (objfile)->nodebug_data_symbol;
523
524 case mst_slot_got_plt:
525 return objfile_type (objfile)->nodebug_got_plt_symbol;
526
527 default:
528 return objfile_type (objfile)->nodebug_unknown_symbol;
529 }
530}
531
532/* Add the appropriate elements for a minimal symbol to the end of
533 the expression. */
534
535void
536write_exp_msymbol (struct parser_state *ps,
537 struct bound_minimal_symbol bound_msym)
538{
539 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
540 write_exp_elt_objfile (ps, bound_msym.objfile);
541 write_exp_elt_msym (ps, bound_msym.minsym);
542 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
543}
544
545/* Mark the current index as the starting location of a structure
546 expression. This is used when completing on field names. */
547
548void
549mark_struct_expression (struct parser_state *ps)
550{
551 gdb_assert (parse_completion
552 && expout_tag_completion_type == TYPE_CODE_UNDEF);
553 expout_last_struct = ps->expout_ptr;
554}
555
556/* Indicate that the current parser invocation is completing a tag.
557 TAG is the type code of the tag, and PTR and LENGTH represent the
558 start of the tag name. */
559
560void
561mark_completion_tag (enum type_code tag, const char *ptr, int length)
562{
563 gdb_assert (parse_completion
564 && expout_tag_completion_type == TYPE_CODE_UNDEF
565 && expout_completion_name == NULL
566 && expout_last_struct == -1);
567 gdb_assert (tag == TYPE_CODE_UNION
568 || tag == TYPE_CODE_STRUCT
569 || tag == TYPE_CODE_ENUM);
570 expout_tag_completion_type = tag;
571 expout_completion_name.reset (xstrndup (ptr, length));
572}
573
574\f
575/* Recognize tokens that start with '$'. These include:
576
577 $regname A native register name or a "standard
578 register name".
579
580 $variable A convenience variable with a name chosen
581 by the user.
582
583 $digits Value history with index <digits>, starting
584 from the first value which has index 1.
585
586 $$digits Value history with index <digits> relative
587 to the last value. I.e. $$0 is the last
588 value, $$1 is the one previous to that, $$2
589 is the one previous to $$1, etc.
590
591 $ | $0 | $$0 The last value in the value history.
592
593 $$ An abbreviation for the second to the last
594 value in the value history, I.e. $$1 */
595
596void
597write_dollar_variable (struct parser_state *ps, struct stoken str)
598{
599 struct block_symbol sym;
600 struct bound_minimal_symbol msym;
601 struct internalvar *isym = NULL;
602
603 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
604 and $$digits (equivalent to $<-digits> if you could type that). */
605
606 int negate = 0;
607 int i = 1;
608 /* Double dollar means negate the number and add -1 as well.
609 Thus $$ alone means -1. */
610 if (str.length >= 2 && str.ptr[1] == '$')
611 {
612 negate = 1;
613 i = 2;
614 }
615 if (i == str.length)
616 {
617 /* Just dollars (one or two). */
618 i = -negate;
619 goto handle_last;
620 }
621 /* Is the rest of the token digits? */
622 for (; i < str.length; i++)
623 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
624 break;
625 if (i == str.length)
626 {
627 i = atoi (str.ptr + 1 + negate);
628 if (negate)
629 i = -i;
630 goto handle_last;
631 }
632
633 /* Handle tokens that refer to machine registers:
634 $ followed by a register name. */
635 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
636 str.ptr + 1, str.length - 1);
637 if (i >= 0)
638 goto handle_register;
639
640 /* Any names starting with $ are probably debugger internal variables. */
641
642 isym = lookup_only_internalvar (copy_name (str) + 1);
643 if (isym)
644 {
645 write_exp_elt_opcode (ps, OP_INTERNALVAR);
646 write_exp_elt_intern (ps, isym);
647 write_exp_elt_opcode (ps, OP_INTERNALVAR);
648 return;
649 }
650
651 /* On some systems, such as HP-UX and hppa-linux, certain system routines
652 have names beginning with $ or $$. Check for those, first. */
653
654 sym = lookup_symbol (copy_name (str), NULL, VAR_DOMAIN, NULL);
655 if (sym.symbol)
656 {
657 write_exp_elt_opcode (ps, OP_VAR_VALUE);
658 write_exp_elt_block (ps, sym.block);
659 write_exp_elt_sym (ps, sym.symbol);
660 write_exp_elt_opcode (ps, OP_VAR_VALUE);
661 return;
662 }
663 msym = lookup_bound_minimal_symbol (copy_name (str));
664 if (msym.minsym)
665 {
666 write_exp_msymbol (ps, msym);
667 return;
668 }
669
670 /* Any other names are assumed to be debugger internal variables. */
671
672 write_exp_elt_opcode (ps, OP_INTERNALVAR);
673 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
674 write_exp_elt_opcode (ps, OP_INTERNALVAR);
675 return;
676handle_last:
677 write_exp_elt_opcode (ps, OP_LAST);
678 write_exp_elt_longcst (ps, (LONGEST) i);
679 write_exp_elt_opcode (ps, OP_LAST);
680 return;
681handle_register:
682 write_exp_elt_opcode (ps, OP_REGISTER);
683 str.length--;
684 str.ptr++;
685 write_exp_string (ps, str);
686 write_exp_elt_opcode (ps, OP_REGISTER);
687 innermost_block.update (expression_context_block,
688 INNERMOST_BLOCK_FOR_REGISTERS);
689 return;
690}
691
692
693const char *
694find_template_name_end (const char *p)
695{
696 int depth = 1;
697 int just_seen_right = 0;
698 int just_seen_colon = 0;
699 int just_seen_space = 0;
700
701 if (!p || (*p != '<'))
702 return 0;
703
704 while (*++p)
705 {
706 switch (*p)
707 {
708 case '\'':
709 case '\"':
710 case '{':
711 case '}':
712 /* In future, may want to allow these?? */
713 return 0;
714 case '<':
715 depth++; /* start nested template */
716 if (just_seen_colon || just_seen_right || just_seen_space)
717 return 0; /* but not after : or :: or > or space */
718 break;
719 case '>':
720 if (just_seen_colon || just_seen_right)
721 return 0; /* end a (nested?) template */
722 just_seen_right = 1; /* but not after : or :: */
723 if (--depth == 0) /* also disallow >>, insist on > > */
724 return ++p; /* if outermost ended, return */
725 break;
726 case ':':
727 if (just_seen_space || (just_seen_colon > 1))
728 return 0; /* nested class spec coming up */
729 just_seen_colon++; /* we allow :: but not :::: */
730 break;
731 case ' ':
732 break;
733 default:
734 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
735 (*p >= 'A' && *p <= 'Z') ||
736 (*p >= '0' && *p <= '9') ||
737 (*p == '_') || (*p == ',') || /* commas for template args */
738 (*p == '&') || (*p == '*') || /* pointer and ref types */
739 (*p == '(') || (*p == ')') || /* function types */
740 (*p == '[') || (*p == ']'))) /* array types */
741 return 0;
742 }
743 if (*p != ' ')
744 just_seen_space = 0;
745 if (*p != ':')
746 just_seen_colon = 0;
747 if (*p != '>')
748 just_seen_right = 0;
749 }
750 return 0;
751}
752\f
753
754/* Return a null-terminated temporary copy of the name of a string token.
755
756 Tokens that refer to names do so with explicit pointer and length,
757 so they can share the storage that lexptr is parsing.
758 When it is necessary to pass a name to a function that expects
759 a null-terminated string, the substring is copied out
760 into a separate block of storage.
761
762 N.B. A single buffer is reused on each call. */
763
764char *
765copy_name (struct stoken token)
766{
767 /* A temporary buffer for identifiers, so we can null-terminate them.
768 We allocate this with xrealloc. parse_exp_1 used to allocate with
769 alloca, using the size of the whole expression as a conservative
770 estimate of the space needed. However, macro expansion can
771 introduce names longer than the original expression; there's no
772 practical way to know beforehand how large that might be. */
773 static char *namecopy;
774 static size_t namecopy_size;
775
776 /* Make sure there's enough space for the token. */
777 if (namecopy_size < token.length + 1)
778 {
779 namecopy_size = token.length + 1;
780 namecopy = (char *) xrealloc (namecopy, token.length + 1);
781 }
782
783 memcpy (namecopy, token.ptr, token.length);
784 namecopy[token.length] = 0;
785
786 return namecopy;
787}
788\f
789
790/* See comments on parser-defs.h. */
791
792int
793prefixify_expression (struct expression *expr)
794{
795 gdb_assert (expr->nelts > 0);
796 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
797 struct expression *temp;
798 int inpos = expr->nelts, outpos = 0;
799
800 temp = (struct expression *) alloca (len);
801
802 /* Copy the original expression into temp. */
803 memcpy (temp, expr, len);
804
805 return prefixify_subexp (temp, expr, inpos, outpos);
806}
807
808/* Return the number of exp_elements in the postfix subexpression
809 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
810
811static int
812length_of_subexp (struct expression *expr, int endpos)
813{
814 int oplen, args;
815
816 operator_length (expr, endpos, &oplen, &args);
817
818 while (args > 0)
819 {
820 oplen += length_of_subexp (expr, endpos - oplen);
821 args--;
822 }
823
824 return oplen;
825}
826
827/* Sets *OPLENP to the length of the operator whose (last) index is
828 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
829 operator takes. */
830
831void
832operator_length (const struct expression *expr, int endpos, int *oplenp,
833 int *argsp)
834{
835 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
836 oplenp, argsp);
837}
838
839/* Default value for operator_length in exp_descriptor vectors. */
840
841void
842operator_length_standard (const struct expression *expr, int endpos,
843 int *oplenp, int *argsp)
844{
845 int oplen = 1;
846 int args = 0;
847 enum range_type range_type;
848 int i;
849
850 if (endpos < 1)
851 error (_("?error in operator_length_standard"));
852
853 i = (int) expr->elts[endpos - 1].opcode;
854
855 switch (i)
856 {
857 /* C++ */
858 case OP_SCOPE:
859 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
860 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
861 break;
862
863 case OP_LONG:
864 case OP_FLOAT:
865 case OP_VAR_VALUE:
866 case OP_VAR_MSYM_VALUE:
867 oplen = 4;
868 break;
869
870 case OP_FUNC_STATIC_VAR:
871 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
872 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
873 args = 1;
874 break;
875
876 case OP_TYPE:
877 case OP_BOOL:
878 case OP_LAST:
879 case OP_INTERNALVAR:
880 case OP_VAR_ENTRY_VALUE:
881 oplen = 3;
882 break;
883
884 case OP_COMPLEX:
885 oplen = 3;
886 args = 2;
887 break;
888
889 case OP_FUNCALL:
890 case OP_F77_UNDETERMINED_ARGLIST:
891 oplen = 3;
892 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893 break;
894
895 case TYPE_INSTANCE:
896 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
897 args = 1;
898 break;
899
900 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
901 oplen = 4;
902 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903 break;
904
905 case UNOP_MAX:
906 case UNOP_MIN:
907 oplen = 3;
908 break;
909
910 case UNOP_CAST_TYPE:
911 case UNOP_DYNAMIC_CAST:
912 case UNOP_REINTERPRET_CAST:
913 case UNOP_MEMVAL_TYPE:
914 oplen = 1;
915 args = 2;
916 break;
917
918 case BINOP_VAL:
919 case UNOP_CAST:
920 case UNOP_MEMVAL:
921 oplen = 3;
922 args = 1;
923 break;
924
925 case UNOP_ABS:
926 case UNOP_CAP:
927 case UNOP_CHR:
928 case UNOP_FLOAT:
929 case UNOP_HIGH:
930 case UNOP_KIND:
931 case UNOP_ODD:
932 case UNOP_ORD:
933 case UNOP_TRUNC:
934 case OP_TYPEOF:
935 case OP_DECLTYPE:
936 case OP_TYPEID:
937 oplen = 1;
938 args = 1;
939 break;
940
941 case OP_ADL_FUNC:
942 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
943 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
944 oplen++;
945 oplen++;
946 break;
947
948 case STRUCTOP_STRUCT:
949 case STRUCTOP_PTR:
950 args = 1;
951 /* fall through */
952 case OP_REGISTER:
953 case OP_M2_STRING:
954 case OP_STRING:
955 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
956 NSString constant. */
957 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
958 case OP_NAME:
959 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
960 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
961 break;
962
963 case OP_ARRAY:
964 oplen = 4;
965 args = longest_to_int (expr->elts[endpos - 2].longconst);
966 args -= longest_to_int (expr->elts[endpos - 3].longconst);
967 args += 1;
968 break;
969
970 case TERNOP_COND:
971 case TERNOP_SLICE:
972 args = 3;
973 break;
974
975 /* Modula-2 */
976 case MULTI_SUBSCRIPT:
977 oplen = 3;
978 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
979 break;
980
981 case BINOP_ASSIGN_MODIFY:
982 oplen = 3;
983 args = 2;
984 break;
985
986 /* C++ */
987 case OP_THIS:
988 oplen = 2;
989 break;
990
991 case OP_RANGE:
992 oplen = 3;
993 range_type = (enum range_type)
994 longest_to_int (expr->elts[endpos - 2].longconst);
995
996 switch (range_type)
997 {
998 case LOW_BOUND_DEFAULT:
999 case LOW_BOUND_DEFAULT_EXCLUSIVE:
1000 case HIGH_BOUND_DEFAULT:
1001 args = 1;
1002 break;
1003 case BOTH_BOUND_DEFAULT:
1004 args = 0;
1005 break;
1006 case NONE_BOUND_DEFAULT:
1007 case NONE_BOUND_DEFAULT_EXCLUSIVE:
1008 args = 2;
1009 break;
1010 }
1011
1012 break;
1013
1014 default:
1015 args = 1 + (i < (int) BINOP_END);
1016 }
1017
1018 *oplenp = oplen;
1019 *argsp = args;
1020}
1021
1022/* Copy the subexpression ending just before index INEND in INEXPR
1023 into OUTEXPR, starting at index OUTBEG.
1024 In the process, convert it from suffix to prefix form.
1025 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1026 Otherwise, it returns the index of the subexpression which is the
1027 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1028
1029static int
1030prefixify_subexp (struct expression *inexpr,
1031 struct expression *outexpr, int inend, int outbeg)
1032{
1033 int oplen;
1034 int args;
1035 int i;
1036 int *arglens;
1037 int result = -1;
1038
1039 operator_length (inexpr, inend, &oplen, &args);
1040
1041 /* Copy the final operator itself, from the end of the input
1042 to the beginning of the output. */
1043 inend -= oplen;
1044 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1045 EXP_ELEM_TO_BYTES (oplen));
1046 outbeg += oplen;
1047
1048 if (expout_last_struct == inend)
1049 result = outbeg - oplen;
1050
1051 /* Find the lengths of the arg subexpressions. */
1052 arglens = (int *) alloca (args * sizeof (int));
1053 for (i = args - 1; i >= 0; i--)
1054 {
1055 oplen = length_of_subexp (inexpr, inend);
1056 arglens[i] = oplen;
1057 inend -= oplen;
1058 }
1059
1060 /* Now copy each subexpression, preserving the order of
1061 the subexpressions, but prefixifying each one.
1062 In this loop, inend starts at the beginning of
1063 the expression this level is working on
1064 and marches forward over the arguments.
1065 outbeg does similarly in the output. */
1066 for (i = 0; i < args; i++)
1067 {
1068 int r;
1069
1070 oplen = arglens[i];
1071 inend += oplen;
1072 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1073 if (r != -1)
1074 {
1075 /* Return immediately. We probably have only parsed a
1076 partial expression, so we don't want to try to reverse
1077 the other operands. */
1078 return r;
1079 }
1080 outbeg += oplen;
1081 }
1082
1083 return result;
1084}
1085\f
1086/* Read an expression from the string *STRINGPTR points to,
1087 parse it, and return a pointer to a struct expression that we malloc.
1088 Use block BLOCK as the lexical context for variable names;
1089 if BLOCK is zero, use the block of the selected stack frame.
1090 Meanwhile, advance *STRINGPTR to point after the expression,
1091 at the first nonwhite character that is not part of the expression
1092 (possibly a null character).
1093
1094 If COMMA is nonzero, stop if a comma is reached. */
1095
1096expression_up
1097parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1098 int comma, innermost_block_tracker_types tracker_types)
1099{
1100 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL,
1101 tracker_types);
1102}
1103
1104/* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1105 no value is expected from the expression.
1106 OUT_SUBEXP is set when attempting to complete a field name; in this
1107 case it is set to the index of the subexpression on the
1108 left-hand-side of the struct op. If not doing such completion, it
1109 is left untouched. */
1110
1111static expression_up
1112parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1113 const struct block *block,
1114 int comma, int void_context_p, int *out_subexp,
1115 innermost_block_tracker_types tracker_types)
1116{
1117 const struct language_defn *lang = NULL;
1118 int subexp;
1119
1120 lexptr = *stringptr;
1121 prev_lexptr = NULL;
1122
1123 paren_depth = 0;
1124 type_stack.elements.clear ();
1125 expout_last_struct = -1;
1126 expout_tag_completion_type = TYPE_CODE_UNDEF;
1127 expout_completion_name.reset ();
1128 innermost_block.reset (tracker_types);
1129
1130 comma_terminates = comma;
1131
1132 if (lexptr == 0 || *lexptr == 0)
1133 error_no_arg (_("expression to compute"));
1134
1135 std::vector<int> funcalls;
1136 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1137 &funcalls);
1138
1139 expression_context_block = block;
1140
1141 /* If no context specified, try using the current frame, if any. */
1142 if (!expression_context_block)
1143 expression_context_block = get_selected_block (&expression_context_pc);
1144 else if (pc == 0)
1145 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1146 else
1147 expression_context_pc = pc;
1148
1149 /* Fall back to using the current source static context, if any. */
1150
1151 if (!expression_context_block)
1152 {
1153 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1154 if (cursal.symtab)
1155 expression_context_block
1156 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1157 STATIC_BLOCK);
1158 if (expression_context_block)
1159 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1160 }
1161
1162 if (language_mode == language_mode_auto && block != NULL)
1163 {
1164 /* Find the language associated to the given context block.
1165 Default to the current language if it can not be determined.
1166
1167 Note that using the language corresponding to the current frame
1168 can sometimes give unexpected results. For instance, this
1169 routine is often called several times during the inferior
1170 startup phase to re-parse breakpoint expressions after
1171 a new shared library has been loaded. The language associated
1172 to the current frame at this moment is not relevant for
1173 the breakpoint. Using it would therefore be silly, so it seems
1174 better to rely on the current language rather than relying on
1175 the current frame language to parse the expression. That's why
1176 we do the following language detection only if the context block
1177 has been specifically provided. */
1178 struct symbol *func = block_linkage_function (block);
1179
1180 if (func != NULL)
1181 lang = language_def (SYMBOL_LANGUAGE (func));
1182 if (lang == NULL || lang->la_language == language_unknown)
1183 lang = current_language;
1184 }
1185 else
1186 lang = current_language;
1187
1188 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1189 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1190 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1191 to the value matching SELECTED_FRAME as set by get_current_arch. */
1192
1193 parser_state ps (10, lang, get_current_arch ());
1194
1195 scoped_restore_current_language lang_saver;
1196 set_language (lang->la_language);
1197
1198 TRY
1199 {
1200 lang->la_parser (&ps);
1201 }
1202 CATCH (except, RETURN_MASK_ALL)
1203 {
1204 /* If parsing for completion, allow this to succeed; but if no
1205 expression elements have been written, then there's nothing
1206 to do, so fail. */
1207 if (! parse_completion || ps.expout_ptr == 0)
1208 throw_exception (except);
1209 }
1210 END_CATCH
1211
1212 /* We have to operate on an "expression *", due to la_post_parser,
1213 which explains this funny-looking double release. */
1214 expression_up result = ps.release ();
1215
1216 /* Convert expression from postfix form as generated by yacc
1217 parser, to a prefix form. */
1218
1219 if (expressiondebug)
1220 dump_raw_expression (result.get (), gdb_stdlog,
1221 "before conversion to prefix form");
1222
1223 subexp = prefixify_expression (result.get ());
1224 if (out_subexp)
1225 *out_subexp = subexp;
1226
1227 lang->la_post_parser (&result, void_context_p);
1228
1229 if (expressiondebug)
1230 dump_prefix_expression (result.get (), gdb_stdlog);
1231
1232 *stringptr = lexptr;
1233 return result;
1234}
1235
1236/* Parse STRING as an expression, and complain if this fails
1237 to use up all of the contents of STRING. */
1238
1239expression_up
1240parse_expression (const char *string)
1241{
1242 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1243 if (*string)
1244 error (_("Junk after end of expression."));
1245 return exp;
1246}
1247
1248/* Same as parse_expression, but using the given language (LANG)
1249 to parse the expression. */
1250
1251expression_up
1252parse_expression_with_language (const char *string, enum language lang)
1253{
1254 gdb::optional<scoped_restore_current_language> lang_saver;
1255 if (current_language->la_language != lang)
1256 {
1257 lang_saver.emplace ();
1258 set_language (lang);
1259 }
1260
1261 return parse_expression (string);
1262}
1263
1264/* Parse STRING as an expression. If parsing ends in the middle of a
1265 field reference, return the type of the left-hand-side of the
1266 reference; furthermore, if the parsing ends in the field name,
1267 return the field name in *NAME. If the parsing ends in the middle
1268 of a field reference, but the reference is somehow invalid, throw
1269 an exception. In all other cases, return NULL. */
1270
1271struct type *
1272parse_expression_for_completion (const char *string,
1273 gdb::unique_xmalloc_ptr<char> *name,
1274 enum type_code *code)
1275{
1276 expression_up exp;
1277 struct value *val;
1278 int subexp;
1279
1280 TRY
1281 {
1282 parse_completion = 1;
1283 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp,
1284 INNERMOST_BLOCK_FOR_SYMBOLS);
1285 }
1286 CATCH (except, RETURN_MASK_ERROR)
1287 {
1288 /* Nothing, EXP remains NULL. */
1289 }
1290 END_CATCH
1291
1292 parse_completion = 0;
1293 if (exp == NULL)
1294 return NULL;
1295
1296 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1297 {
1298 *code = expout_tag_completion_type;
1299 *name = std::move (expout_completion_name);
1300 return NULL;
1301 }
1302
1303 if (expout_last_struct == -1)
1304 return NULL;
1305
1306 const char *fieldname = extract_field_op (exp.get (), &subexp);
1307 if (fieldname == NULL)
1308 {
1309 name->reset ();
1310 return NULL;
1311 }
1312
1313 name->reset (xstrdup (fieldname));
1314 /* This might throw an exception. If so, we want to let it
1315 propagate. */
1316 val = evaluate_subexpression_type (exp.get (), subexp);
1317
1318 return value_type (val);
1319}
1320
1321/* A post-parser that does nothing. */
1322
1323void
1324null_post_parser (expression_up *exp, int void_context_p)
1325{
1326}
1327
1328/* Parse floating point value P of length LEN.
1329 Return false if invalid, true if valid.
1330 The successfully parsed number is stored in DATA in
1331 target format for floating-point type TYPE.
1332
1333 NOTE: This accepts the floating point syntax that sscanf accepts. */
1334
1335bool
1336parse_float (const char *p, int len,
1337 const struct type *type, gdb_byte *data)
1338{
1339 return target_float_from_string (data, type, std::string (p, len));
1340}
1341\f
1342/* Stuff for maintaining a stack of types. Currently just used by C, but
1343 probably useful for any language which declares its types "backwards". */
1344
1345/* A helper function for insert_type and insert_type_address_space.
1346 This does work of expanding the type stack and inserting the new
1347 element, ELEMENT, into the stack at location SLOT. */
1348
1349static void
1350insert_into_type_stack (int slot, union type_stack_elt element)
1351{
1352 gdb_assert (slot <= type_stack.elements.size ());
1353 type_stack.elements.insert (type_stack.elements.begin () + slot, element);
1354}
1355
1356/* Insert a new type, TP, at the bottom of the type stack. If TP is
1357 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1358 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1359 previous tp_pointer) if there is anything on the stack, or simply pushed
1360 if the stack is empty. Other values for TP are invalid. */
1361
1362void
1363insert_type (enum type_pieces tp)
1364{
1365 union type_stack_elt element;
1366 int slot;
1367
1368 gdb_assert (tp == tp_pointer || tp == tp_reference
1369 || tp == tp_rvalue_reference || tp == tp_const
1370 || tp == tp_volatile);
1371
1372 /* If there is anything on the stack (we know it will be a
1373 tp_pointer), insert the qualifier above it. Otherwise, simply
1374 push this on the top of the stack. */
1375 if (!type_stack.elements.empty () && (tp == tp_const || tp == tp_volatile))
1376 slot = 1;
1377 else
1378 slot = 0;
1379
1380 element.piece = tp;
1381 insert_into_type_stack (slot, element);
1382}
1383
1384void
1385push_type (enum type_pieces tp)
1386{
1387 type_stack_elt elt;
1388 elt.piece = tp;
1389 type_stack.elements.push_back (elt);
1390}
1391
1392void
1393push_type_int (int n)
1394{
1395 type_stack_elt elt;
1396 elt.int_val = n;
1397 type_stack.elements.push_back (elt);
1398}
1399
1400/* Insert a tp_space_identifier and the corresponding address space
1401 value into the stack. STRING is the name of an address space, as
1402 recognized by address_space_name_to_int. If the stack is empty,
1403 the new elements are simply pushed. If the stack is not empty,
1404 this function assumes that the first item on the stack is a
1405 tp_pointer, and the new values are inserted above the first
1406 item. */
1407
1408void
1409insert_type_address_space (struct parser_state *pstate, char *string)
1410{
1411 union type_stack_elt element;
1412 int slot;
1413
1414 /* If there is anything on the stack (we know it will be a
1415 tp_pointer), insert the address space qualifier above it.
1416 Otherwise, simply push this on the top of the stack. */
1417 if (!type_stack.elements.empty ())
1418 slot = 1;
1419 else
1420 slot = 0;
1421
1422 element.piece = tp_space_identifier;
1423 insert_into_type_stack (slot, element);
1424 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1425 string);
1426 insert_into_type_stack (slot, element);
1427}
1428
1429enum type_pieces
1430pop_type (void)
1431{
1432 if (!type_stack.elements.empty ())
1433 {
1434 type_stack_elt elt = type_stack.elements.back ();
1435 type_stack.elements.pop_back ();
1436 return elt.piece;
1437 }
1438 return tp_end;
1439}
1440
1441int
1442pop_type_int (void)
1443{
1444 if (!type_stack.elements.empty ())
1445 {
1446 type_stack_elt elt = type_stack.elements.back ();
1447 type_stack.elements.pop_back ();
1448 return elt.int_val;
1449 }
1450 /* "Can't happen". */
1451 return 0;
1452}
1453
1454/* Pop a type list element from the global type stack. */
1455
1456static std::vector<struct type *> *
1457pop_typelist (void)
1458{
1459 gdb_assert (!type_stack.elements.empty ());
1460 type_stack_elt elt = type_stack.elements.back ();
1461 type_stack.elements.pop_back ();
1462 return elt.typelist_val;
1463}
1464
1465/* Pop a type_stack element from the global type stack. */
1466
1467static struct type_stack *
1468pop_type_stack (void)
1469{
1470 gdb_assert (!type_stack.elements.empty ());
1471 type_stack_elt elt = type_stack.elements.back ();
1472 type_stack.elements.pop_back ();
1473 return elt.stack_val;
1474}
1475
1476/* Append the elements of the type stack FROM to the type stack TO.
1477 Always returns TO. */
1478
1479struct type_stack *
1480append_type_stack (struct type_stack *to, struct type_stack *from)
1481{
1482 to->elements.insert (to->elements.end (), from->elements.begin (),
1483 from->elements.end ());
1484 return to;
1485}
1486
1487/* Push the type stack STACK as an element on the global type stack. */
1488
1489void
1490push_type_stack (struct type_stack *stack)
1491{
1492 type_stack_elt elt;
1493 elt.stack_val = stack;
1494 type_stack.elements.push_back (elt);
1495 push_type (tp_type_stack);
1496}
1497
1498/* Copy the global type stack into a newly allocated type stack and
1499 return it. The global stack is cleared. The returned type stack
1500 must be freed with delete. */
1501
1502struct type_stack *
1503get_type_stack (void)
1504{
1505 struct type_stack *result = new struct type_stack (std::move (type_stack));
1506 type_stack.elements.clear ();
1507 return result;
1508}
1509
1510/* Push a function type with arguments onto the global type stack.
1511 LIST holds the argument types. If the final item in LIST is NULL,
1512 then the function will be varargs. */
1513
1514void
1515push_typelist (std::vector<struct type *> *list)
1516{
1517 type_stack_elt elt;
1518 elt.typelist_val = list;
1519 type_stack.elements.push_back (elt);
1520 push_type (tp_function_with_arguments);
1521}
1522
1523/* Pop the type stack and return a type_instance_flags that
1524 corresponds the const/volatile qualifiers on the stack. This is
1525 called by the C++ parser when parsing methods types, and as such no
1526 other kind of type in the type stack is expected. */
1527
1528type_instance_flags
1529follow_type_instance_flags ()
1530{
1531 type_instance_flags flags = 0;
1532
1533 for (;;)
1534 switch (pop_type ())
1535 {
1536 case tp_end:
1537 return flags;
1538 case tp_const:
1539 flags |= TYPE_INSTANCE_FLAG_CONST;
1540 break;
1541 case tp_volatile:
1542 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1543 break;
1544 default:
1545 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1546 }
1547}
1548
1549
1550/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1551 as modified by all the stuff on the stack. */
1552struct type *
1553follow_types (struct type *follow_type)
1554{
1555 int done = 0;
1556 int make_const = 0;
1557 int make_volatile = 0;
1558 int make_addr_space = 0;
1559 int array_size;
1560
1561 while (!done)
1562 switch (pop_type ())
1563 {
1564 case tp_end:
1565 done = 1;
1566 if (make_const)
1567 follow_type = make_cv_type (make_const,
1568 TYPE_VOLATILE (follow_type),
1569 follow_type, 0);
1570 if (make_volatile)
1571 follow_type = make_cv_type (TYPE_CONST (follow_type),
1572 make_volatile,
1573 follow_type, 0);
1574 if (make_addr_space)
1575 follow_type = make_type_with_address_space (follow_type,
1576 make_addr_space);
1577 make_const = make_volatile = 0;
1578 make_addr_space = 0;
1579 break;
1580 case tp_const:
1581 make_const = 1;
1582 break;
1583 case tp_volatile:
1584 make_volatile = 1;
1585 break;
1586 case tp_space_identifier:
1587 make_addr_space = pop_type_int ();
1588 break;
1589 case tp_pointer:
1590 follow_type = lookup_pointer_type (follow_type);
1591 if (make_const)
1592 follow_type = make_cv_type (make_const,
1593 TYPE_VOLATILE (follow_type),
1594 follow_type, 0);
1595 if (make_volatile)
1596 follow_type = make_cv_type (TYPE_CONST (follow_type),
1597 make_volatile,
1598 follow_type, 0);
1599 if (make_addr_space)
1600 follow_type = make_type_with_address_space (follow_type,
1601 make_addr_space);
1602 make_const = make_volatile = 0;
1603 make_addr_space = 0;
1604 break;
1605 case tp_reference:
1606 follow_type = lookup_lvalue_reference_type (follow_type);
1607 goto process_reference;
1608 case tp_rvalue_reference:
1609 follow_type = lookup_rvalue_reference_type (follow_type);
1610 process_reference:
1611 if (make_const)
1612 follow_type = make_cv_type (make_const,
1613 TYPE_VOLATILE (follow_type),
1614 follow_type, 0);
1615 if (make_volatile)
1616 follow_type = make_cv_type (TYPE_CONST (follow_type),
1617 make_volatile,
1618 follow_type, 0);
1619 if (make_addr_space)
1620 follow_type = make_type_with_address_space (follow_type,
1621 make_addr_space);
1622 make_const = make_volatile = 0;
1623 make_addr_space = 0;
1624 break;
1625 case tp_array:
1626 array_size = pop_type_int ();
1627 /* FIXME-type-allocation: need a way to free this type when we are
1628 done with it. */
1629 follow_type =
1630 lookup_array_range_type (follow_type,
1631 0, array_size >= 0 ? array_size - 1 : 0);
1632 if (array_size < 0)
1633 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1634 = PROP_UNDEFINED;
1635 break;
1636 case tp_function:
1637 /* FIXME-type-allocation: need a way to free this type when we are
1638 done with it. */
1639 follow_type = lookup_function_type (follow_type);
1640 break;
1641
1642 case tp_function_with_arguments:
1643 {
1644 std::vector<struct type *> *args = pop_typelist ();
1645
1646 follow_type
1647 = lookup_function_type_with_arguments (follow_type,
1648 args->size (),
1649 args->data ());
1650 }
1651 break;
1652
1653 case tp_type_stack:
1654 {
1655 struct type_stack *stack = pop_type_stack ();
1656 /* Sort of ugly, but not really much worse than the
1657 alternatives. */
1658 struct type_stack save = type_stack;
1659
1660 type_stack = *stack;
1661 follow_type = follow_types (follow_type);
1662 gdb_assert (type_stack.elements.empty ());
1663
1664 type_stack = save;
1665 }
1666 break;
1667 default:
1668 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1669 }
1670 return follow_type;
1671}
1672\f
1673/* This function avoids direct calls to fprintf
1674 in the parser generated debug code. */
1675void
1676parser_fprintf (FILE *x, const char *y, ...)
1677{
1678 va_list args;
1679
1680 va_start (args, y);
1681 if (x == stderr)
1682 vfprintf_unfiltered (gdb_stderr, y, args);
1683 else
1684 {
1685 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1686 vfprintf_unfiltered (gdb_stderr, y, args);
1687 }
1688 va_end (args);
1689}
1690
1691/* Implementation of the exp_descriptor method operator_check. */
1692
1693int
1694operator_check_standard (struct expression *exp, int pos,
1695 int (*objfile_func) (struct objfile *objfile,
1696 void *data),
1697 void *data)
1698{
1699 const union exp_element *const elts = exp->elts;
1700 struct type *type = NULL;
1701 struct objfile *objfile = NULL;
1702
1703 /* Extended operators should have been already handled by exp_descriptor
1704 iterate method of its specific language. */
1705 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1706
1707 /* Track the callers of write_exp_elt_type for this table. */
1708
1709 switch (elts[pos].opcode)
1710 {
1711 case BINOP_VAL:
1712 case OP_COMPLEX:
1713 case OP_FLOAT:
1714 case OP_LONG:
1715 case OP_SCOPE:
1716 case OP_TYPE:
1717 case UNOP_CAST:
1718 case UNOP_MAX:
1719 case UNOP_MEMVAL:
1720 case UNOP_MIN:
1721 type = elts[pos + 1].type;
1722 break;
1723
1724 case TYPE_INSTANCE:
1725 {
1726 LONGEST arg, nargs = elts[pos + 2].longconst;
1727
1728 for (arg = 0; arg < nargs; arg++)
1729 {
1730 struct type *inst_type = elts[pos + 3 + arg].type;
1731 struct objfile *inst_objfile = TYPE_OBJFILE (inst_type);
1732
1733 if (inst_objfile && (*objfile_func) (inst_objfile, data))
1734 return 1;
1735 }
1736 }
1737 break;
1738
1739 case OP_VAR_VALUE:
1740 {
1741 const struct block *const block = elts[pos + 1].block;
1742 const struct symbol *const symbol = elts[pos + 2].symbol;
1743
1744 /* Check objfile where the variable itself is placed.
1745 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1746 if ((*objfile_func) (symbol_objfile (symbol), data))
1747 return 1;
1748
1749 /* Check objfile where is placed the code touching the variable. */
1750 objfile = lookup_objfile_from_block (block);
1751
1752 type = SYMBOL_TYPE (symbol);
1753 }
1754 break;
1755 case OP_VAR_MSYM_VALUE:
1756 objfile = elts[pos + 1].objfile;
1757 break;
1758 }
1759
1760 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1761
1762 if (type && TYPE_OBJFILE (type)
1763 && (*objfile_func) (TYPE_OBJFILE (type), data))
1764 return 1;
1765 if (objfile && (*objfile_func) (objfile, data))
1766 return 1;
1767
1768 return 0;
1769}
1770
1771/* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1772 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1773 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1774 returns non-zero value then (any other) non-zero value is immediately
1775 returned to the caller. Otherwise zero is returned after iterating
1776 through whole EXP. */
1777
1778static int
1779exp_iterate (struct expression *exp,
1780 int (*objfile_func) (struct objfile *objfile, void *data),
1781 void *data)
1782{
1783 int endpos;
1784
1785 for (endpos = exp->nelts; endpos > 0; )
1786 {
1787 int pos, args, oplen = 0;
1788
1789 operator_length (exp, endpos, &oplen, &args);
1790 gdb_assert (oplen > 0);
1791
1792 pos = endpos - oplen;
1793 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1794 objfile_func, data))
1795 return 1;
1796
1797 endpos = pos;
1798 }
1799
1800 return 0;
1801}
1802
1803/* Helper for exp_uses_objfile. */
1804
1805static int
1806exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1807{
1808 struct objfile *objfile = (struct objfile *) objfile_voidp;
1809
1810 if (exp_objfile->separate_debug_objfile_backlink)
1811 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1812
1813 return exp_objfile == objfile;
1814}
1815
1816/* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1817 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1818 file. */
1819
1820int
1821exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1822{
1823 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1824
1825 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1826}
1827
1828/* Reallocate the `expout' pointer inside PS so that it can accommodate
1829 at least LENELT expression elements. This function does nothing if
1830 there is enough room for the elements. */
1831
1832static void
1833increase_expout_size (struct parser_state *ps, size_t lenelt)
1834{
1835 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1836 {
1837 ps->expout_size = std::max (ps->expout_size * 2,
1838 ps->expout_ptr + lenelt + 10);
1839 ps->expout.reset (XRESIZEVAR (expression,
1840 ps->expout.release (),
1841 (sizeof (struct expression)
1842 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1843 }
1844}
1845
1846void
1847_initialize_parse (void)
1848{
1849 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1850 &expressiondebug,
1851 _("Set expression debugging."),
1852 _("Show expression debugging."),
1853 _("When non-zero, the internal representation "
1854 "of expressions will be printed."),
1855 NULL,
1856 show_expressiondebug,
1857 &setdebuglist, &showdebuglist);
1858 add_setshow_boolean_cmd ("parser", class_maintenance,
1859 &parser_debug,
1860 _("Set parser debugging."),
1861 _("Show parser debugging."),
1862 _("When non-zero, expression parser "
1863 "tracing will be enabled."),
1864 NULL,
1865 show_parserdebug,
1866 &setdebuglist, &showdebuglist);
1867}
This page took 0.031443 seconds and 4 git commands to generate.