Implement Ada operator overloading
[deliverable/binutils-gdb.git] / gdb / printcmd.c
... / ...
CommitLineData
1/* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "frame.h"
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "language.h"
26#include "c-lang.h"
27#include "expression.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "breakpoint.h"
32#include "demangle.h"
33#include "gdb-demangle.h"
34#include "valprint.h"
35#include "annotate.h"
36#include "symfile.h" /* for overlay functions */
37#include "objfiles.h" /* ditto */
38#include "completer.h" /* for completion functions */
39#include "ui-out.h"
40#include "block.h"
41#include "disasm.h"
42#include "target-float.h"
43#include "observable.h"
44#include "solist.h"
45#include "parser-defs.h"
46#include "charset.h"
47#include "arch-utils.h"
48#include "cli/cli-utils.h"
49#include "cli/cli-option.h"
50#include "cli/cli-script.h"
51#include "cli/cli-style.h"
52#include "gdbsupport/format.h"
53#include "source.h"
54#include "gdbsupport/byte-vector.h"
55#include "gdbsupport/gdb_optional.h"
56#include "safe-ctype.h"
57
58/* Last specified output format. */
59
60static char last_format = 0;
61
62/* Last specified examination size. 'b', 'h', 'w' or `q'. */
63
64static char last_size = 'w';
65
66/* Last specified count for the 'x' command. */
67
68static int last_count;
69
70/* Default address to examine next, and associated architecture. */
71
72static struct gdbarch *next_gdbarch;
73static CORE_ADDR next_address;
74
75/* Number of delay instructions following current disassembled insn. */
76
77static int branch_delay_insns;
78
79/* Last address examined. */
80
81static CORE_ADDR last_examine_address;
82
83/* Contents of last address examined.
84 This is not valid past the end of the `x' command! */
85
86static value_ref_ptr last_examine_value;
87
88/* Largest offset between a symbolic value and an address, that will be
89 printed as `0x1234 <symbol+offset>'. */
90
91static unsigned int max_symbolic_offset = UINT_MAX;
92static void
93show_max_symbolic_offset (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95{
96 fprintf_filtered (file,
97 _("The largest offset that will be "
98 "printed in <symbol+1234> form is %s.\n"),
99 value);
100}
101
102/* Append the source filename and linenumber of the symbol when
103 printing a symbolic value as `<symbol at filename:linenum>' if set. */
104static bool print_symbol_filename = false;
105static void
106show_print_symbol_filename (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108{
109 fprintf_filtered (file, _("Printing of source filename and "
110 "line number with <symbol> is %s.\n"),
111 value);
112}
113
114/* Number of auto-display expression currently being displayed.
115 So that we can disable it if we get a signal within it.
116 -1 when not doing one. */
117
118static int current_display_number;
119
120/* Last allocated display number. */
121
122static int display_number;
123
124struct display
125 {
126 display (const char *exp_string_, expression_up &&exp_,
127 const struct format_data &format_, struct program_space *pspace_,
128 const struct block *block_)
129 : exp_string (exp_string_),
130 exp (std::move (exp_)),
131 number (++display_number),
132 format (format_),
133 pspace (pspace_),
134 block (block_),
135 enabled_p (true)
136 {
137 }
138
139 /* The expression as the user typed it. */
140 std::string exp_string;
141
142 /* Expression to be evaluated and displayed. */
143 expression_up exp;
144
145 /* Item number of this auto-display item. */
146 int number;
147
148 /* Display format specified. */
149 struct format_data format;
150
151 /* Program space associated with `block'. */
152 struct program_space *pspace;
153
154 /* Innermost block required by this expression when evaluated. */
155 const struct block *block;
156
157 /* Status of this display (enabled or disabled). */
158 bool enabled_p;
159 };
160
161/* Expressions whose values should be displayed automatically each
162 time the program stops. */
163
164static std::vector<std::unique_ptr<struct display>> all_displays;
165
166/* Prototypes for local functions. */
167
168static void do_one_display (struct display *);
169\f
170
171/* Decode a format specification. *STRING_PTR should point to it.
172 OFORMAT and OSIZE are used as defaults for the format and size
173 if none are given in the format specification.
174 If OSIZE is zero, then the size field of the returned value
175 should be set only if a size is explicitly specified by the
176 user.
177 The structure returned describes all the data
178 found in the specification. In addition, *STRING_PTR is advanced
179 past the specification and past all whitespace following it. */
180
181static struct format_data
182decode_format (const char **string_ptr, int oformat, int osize)
183{
184 struct format_data val;
185 const char *p = *string_ptr;
186
187 val.format = '?';
188 val.size = '?';
189 val.count = 1;
190 val.raw = 0;
191
192 if (*p == '-')
193 {
194 val.count = -1;
195 p++;
196 }
197 if (*p >= '0' && *p <= '9')
198 val.count *= atoi (p);
199 while (*p >= '0' && *p <= '9')
200 p++;
201
202 /* Now process size or format letters that follow. */
203
204 while (1)
205 {
206 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
207 val.size = *p++;
208 else if (*p == 'r')
209 {
210 val.raw = 1;
211 p++;
212 }
213 else if (*p >= 'a' && *p <= 'z')
214 val.format = *p++;
215 else
216 break;
217 }
218
219 *string_ptr = skip_spaces (p);
220
221 /* Set defaults for format and size if not specified. */
222 if (val.format == '?')
223 {
224 if (val.size == '?')
225 {
226 /* Neither has been specified. */
227 val.format = oformat;
228 val.size = osize;
229 }
230 else
231 /* If a size is specified, any format makes a reasonable
232 default except 'i'. */
233 val.format = oformat == 'i' ? 'x' : oformat;
234 }
235 else if (val.size == '?')
236 switch (val.format)
237 {
238 case 'a':
239 /* Pick the appropriate size for an address. This is deferred
240 until do_examine when we know the actual architecture to use.
241 A special size value of 'a' is used to indicate this case. */
242 val.size = osize ? 'a' : osize;
243 break;
244 case 'f':
245 /* Floating point has to be word or giantword. */
246 if (osize == 'w' || osize == 'g')
247 val.size = osize;
248 else
249 /* Default it to giantword if the last used size is not
250 appropriate. */
251 val.size = osize ? 'g' : osize;
252 break;
253 case 'c':
254 /* Characters default to one byte. */
255 val.size = osize ? 'b' : osize;
256 break;
257 case 's':
258 /* Display strings with byte size chars unless explicitly
259 specified. */
260 val.size = '\0';
261 break;
262
263 default:
264 /* The default is the size most recently specified. */
265 val.size = osize;
266 }
267
268 return val;
269}
270\f
271/* Print value VAL on stream according to OPTIONS.
272 Do not end with a newline.
273 SIZE is the letter for the size of datum being printed.
274 This is used to pad hex numbers so they line up. SIZE is 0
275 for print / output and set for examine. */
276
277static void
278print_formatted (struct value *val, int size,
279 const struct value_print_options *options,
280 struct ui_file *stream)
281{
282 struct type *type = check_typedef (value_type (val));
283 int len = TYPE_LENGTH (type);
284
285 if (VALUE_LVAL (val) == lval_memory)
286 next_address = value_address (val) + len;
287
288 if (size)
289 {
290 switch (options->format)
291 {
292 case 's':
293 {
294 struct type *elttype = value_type (val);
295
296 next_address = (value_address (val)
297 + val_print_string (elttype, NULL,
298 value_address (val), -1,
299 stream, options) * len);
300 }
301 return;
302
303 case 'i':
304 /* We often wrap here if there are long symbolic names. */
305 wrap_here (" ");
306 next_address = (value_address (val)
307 + gdb_print_insn (type->arch (),
308 value_address (val), stream,
309 &branch_delay_insns));
310 return;
311 }
312 }
313
314 if (options->format == 0 || options->format == 's'
315 || type->code () == TYPE_CODE_VOID
316 || type->code () == TYPE_CODE_REF
317 || type->code () == TYPE_CODE_ARRAY
318 || type->code () == TYPE_CODE_STRING
319 || type->code () == TYPE_CODE_STRUCT
320 || type->code () == TYPE_CODE_UNION
321 || type->code () == TYPE_CODE_NAMESPACE)
322 value_print (val, stream, options);
323 else
324 /* User specified format, so don't look to the type to tell us
325 what to do. */
326 value_print_scalar_formatted (val, options, size, stream);
327}
328
329/* Return builtin floating point type of same length as TYPE.
330 If no such type is found, return TYPE itself. */
331static struct type *
332float_type_from_length (struct type *type)
333{
334 struct gdbarch *gdbarch = type->arch ();
335 const struct builtin_type *builtin = builtin_type (gdbarch);
336
337 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
338 type = builtin->builtin_float;
339 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
340 type = builtin->builtin_double;
341 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
342 type = builtin->builtin_long_double;
343
344 return type;
345}
346
347/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
348 according to OPTIONS and SIZE on STREAM. Formats s and i are not
349 supported at this level. */
350
351void
352print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
353 const struct value_print_options *options,
354 int size, struct ui_file *stream)
355{
356 struct gdbarch *gdbarch = type->arch ();
357 unsigned int len = TYPE_LENGTH (type);
358 enum bfd_endian byte_order = type_byte_order (type);
359
360 /* String printing should go through val_print_scalar_formatted. */
361 gdb_assert (options->format != 's');
362
363 /* If the value is a pointer, and pointers and addresses are not the
364 same, then at this point, the value's length (in target bytes) is
365 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
366 if (type->code () == TYPE_CODE_PTR)
367 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
368
369 /* If we are printing it as unsigned, truncate it in case it is actually
370 a negative signed value (e.g. "print/u (short)-1" should print 65535
371 (if shorts are 16 bits) instead of 4294967295). */
372 if (options->format != 'c'
373 && (options->format != 'd' || type->is_unsigned ()))
374 {
375 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
376 valaddr += TYPE_LENGTH (type) - len;
377 }
378
379 /* Allow LEN == 0, and in this case, don't assume that VALADDR is
380 valid. */
381 const gdb_byte zero = 0;
382 if (len == 0)
383 {
384 len = 1;
385 valaddr = &zero;
386 }
387
388 if (size != 0 && (options->format == 'x' || options->format == 't'))
389 {
390 /* Truncate to fit. */
391 unsigned newlen;
392 switch (size)
393 {
394 case 'b':
395 newlen = 1;
396 break;
397 case 'h':
398 newlen = 2;
399 break;
400 case 'w':
401 newlen = 4;
402 break;
403 case 'g':
404 newlen = 8;
405 break;
406 default:
407 error (_("Undefined output size \"%c\"."), size);
408 }
409 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
410 valaddr += len - newlen;
411 len = newlen;
412 }
413
414 /* Historically gdb has printed floats by first casting them to a
415 long, and then printing the long. PR cli/16242 suggests changing
416 this to using C-style hex float format.
417
418 Biased range types and sub-word scalar types must also be handled
419 here; the value is correctly computed by unpack_long. */
420 gdb::byte_vector converted_bytes;
421 /* Some cases below will unpack the value again. In the biased
422 range case, we want to avoid this, so we store the unpacked value
423 here for possible use later. */
424 gdb::optional<LONGEST> val_long;
425 if (((type->code () == TYPE_CODE_FLT
426 || is_fixed_point_type (type))
427 && (options->format == 'o'
428 || options->format == 'x'
429 || options->format == 't'
430 || options->format == 'z'
431 || options->format == 'd'
432 || options->format == 'u'))
433 || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
434 || type->bit_size_differs_p ())
435 {
436 val_long.emplace (unpack_long (type, valaddr));
437 converted_bytes.resize (TYPE_LENGTH (type));
438 store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type),
439 byte_order, *val_long);
440 valaddr = converted_bytes.data ();
441 }
442
443 /* Printing a non-float type as 'f' will interpret the data as if it were
444 of a floating-point type of the same length, if that exists. Otherwise,
445 the data is printed as integer. */
446 char format = options->format;
447 if (format == 'f' && type->code () != TYPE_CODE_FLT)
448 {
449 type = float_type_from_length (type);
450 if (type->code () != TYPE_CODE_FLT)
451 format = 0;
452 }
453
454 switch (format)
455 {
456 case 'o':
457 print_octal_chars (stream, valaddr, len, byte_order);
458 break;
459 case 'd':
460 print_decimal_chars (stream, valaddr, len, true, byte_order);
461 break;
462 case 'u':
463 print_decimal_chars (stream, valaddr, len, false, byte_order);
464 break;
465 case 0:
466 if (type->code () != TYPE_CODE_FLT)
467 {
468 print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
469 byte_order);
470 break;
471 }
472 /* FALLTHROUGH */
473 case 'f':
474 print_floating (valaddr, type, stream);
475 break;
476
477 case 't':
478 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
479 break;
480 case 'x':
481 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
482 break;
483 case 'z':
484 print_hex_chars (stream, valaddr, len, byte_order, true);
485 break;
486 case 'c':
487 {
488 struct value_print_options opts = *options;
489
490 if (!val_long.has_value ())
491 val_long.emplace (unpack_long (type, valaddr));
492
493 opts.format = 0;
494 if (type->is_unsigned ())
495 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
496 else
497 type = builtin_type (gdbarch)->builtin_true_char;
498
499 value_print (value_from_longest (type, *val_long), stream, &opts);
500 }
501 break;
502
503 case 'a':
504 {
505 if (!val_long.has_value ())
506 val_long.emplace (unpack_long (type, valaddr));
507 print_address (gdbarch, *val_long, stream);
508 }
509 break;
510
511 default:
512 error (_("Undefined output format \"%c\"."), format);
513 }
514}
515
516/* Specify default address for `x' command.
517 The `info lines' command uses this. */
518
519void
520set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
521{
522 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
523
524 next_gdbarch = gdbarch;
525 next_address = addr;
526
527 /* Make address available to the user as $_. */
528 set_internalvar (lookup_internalvar ("_"),
529 value_from_pointer (ptr_type, addr));
530}
531
532/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
533 after LEADIN. Print nothing if no symbolic name is found nearby.
534 Optionally also print source file and line number, if available.
535 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
536 or to interpret it as a possible C++ name and convert it back to source
537 form. However note that DO_DEMANGLE can be overridden by the specific
538 settings of the demangle and asm_demangle variables. Returns
539 non-zero if anything was printed; zero otherwise. */
540
541int
542print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
543 struct ui_file *stream,
544 int do_demangle, const char *leadin)
545{
546 std::string name, filename;
547 int unmapped = 0;
548 int offset = 0;
549 int line = 0;
550
551 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
552 &offset, &filename, &line, &unmapped))
553 return 0;
554
555 fputs_filtered (leadin, stream);
556 if (unmapped)
557 fputs_filtered ("<*", stream);
558 else
559 fputs_filtered ("<", stream);
560 fputs_styled (name.c_str (), function_name_style.style (), stream);
561 if (offset != 0)
562 fprintf_filtered (stream, "%+d", offset);
563
564 /* Append source filename and line number if desired. Give specific
565 line # of this addr, if we have it; else line # of the nearest symbol. */
566 if (print_symbol_filename && !filename.empty ())
567 {
568 fputs_filtered (line == -1 ? " in " : " at ", stream);
569 fputs_styled (filename.c_str (), file_name_style.style (), stream);
570 if (line != -1)
571 fprintf_filtered (stream, ":%d", line);
572 }
573 if (unmapped)
574 fputs_filtered ("*>", stream);
575 else
576 fputs_filtered (">", stream);
577
578 return 1;
579}
580
581/* See valprint.h. */
582
583int
584build_address_symbolic (struct gdbarch *gdbarch,
585 CORE_ADDR addr, /* IN */
586 bool do_demangle, /* IN */
587 bool prefer_sym_over_minsym, /* IN */
588 std::string *name, /* OUT */
589 int *offset, /* OUT */
590 std::string *filename, /* OUT */
591 int *line, /* OUT */
592 int *unmapped) /* OUT */
593{
594 struct bound_minimal_symbol msymbol;
595 struct symbol *symbol;
596 CORE_ADDR name_location = 0;
597 struct obj_section *section = NULL;
598 const char *name_temp = "";
599
600 /* Let's say it is mapped (not unmapped). */
601 *unmapped = 0;
602
603 /* Determine if the address is in an overlay, and whether it is
604 mapped. */
605 if (overlay_debugging)
606 {
607 section = find_pc_overlay (addr);
608 if (pc_in_unmapped_range (addr, section))
609 {
610 *unmapped = 1;
611 addr = overlay_mapped_address (addr, section);
612 }
613 }
614
615 /* Try to find the address in both the symbol table and the minsyms.
616 In most cases, we'll prefer to use the symbol instead of the
617 minsym. However, there are cases (see below) where we'll choose
618 to use the minsym instead. */
619
620 /* This is defective in the sense that it only finds text symbols. So
621 really this is kind of pointless--we should make sure that the
622 minimal symbols have everything we need (by changing that we could
623 save some memory, but for many debug format--ELF/DWARF or
624 anything/stabs--it would be inconvenient to eliminate those minimal
625 symbols anyway). */
626 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
627 symbol = find_pc_sect_function (addr, section);
628
629 if (symbol)
630 {
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 addr = gdbarch_addr_bits_remove (gdbarch, addr);
637
638 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
639 if (do_demangle || asm_demangle)
640 name_temp = symbol->print_name ();
641 else
642 name_temp = symbol->linkage_name ();
643 }
644
645 if (msymbol.minsym != NULL
646 && MSYMBOL_HAS_SIZE (msymbol.minsym)
647 && MSYMBOL_SIZE (msymbol.minsym) == 0
648 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
649 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
650 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
651 msymbol.minsym = NULL;
652
653 if (msymbol.minsym != NULL)
654 {
655 /* Use the minsym if no symbol is found.
656
657 Additionally, use the minsym instead of a (found) symbol if
658 the following conditions all hold:
659 1) The prefer_sym_over_minsym flag is false.
660 2) The minsym address is identical to that of the address under
661 consideration.
662 3) The symbol address is not identical to that of the address
663 under consideration. */
664 if (symbol == NULL ||
665 (!prefer_sym_over_minsym
666 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
667 && name_location != addr))
668 {
669 /* If this is a function (i.e. a code address), strip out any
670 non-address bits. For instance, display a pointer to the
671 first instruction of a Thumb function as <function>; the
672 second instruction will be <function+2>, even though the
673 pointer is <function+3>. This matches the ISA behavior. */
674 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
675 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
676 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
677 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
678 addr = gdbarch_addr_bits_remove (gdbarch, addr);
679
680 symbol = 0;
681 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
682 if (do_demangle || asm_demangle)
683 name_temp = msymbol.minsym->print_name ();
684 else
685 name_temp = msymbol.minsym->linkage_name ();
686 }
687 }
688 if (symbol == NULL && msymbol.minsym == NULL)
689 return 1;
690
691 /* If the nearest symbol is too far away, don't print anything symbolic. */
692
693 /* For when CORE_ADDR is larger than unsigned int, we do math in
694 CORE_ADDR. But when we detect unsigned wraparound in the
695 CORE_ADDR math, we ignore this test and print the offset,
696 because addr+max_symbolic_offset has wrapped through the end
697 of the address space back to the beginning, giving bogus comparison. */
698 if (addr > name_location + max_symbolic_offset
699 && name_location + max_symbolic_offset > name_location)
700 return 1;
701
702 *offset = (LONGEST) addr - name_location;
703
704 *name = name_temp;
705
706 if (print_symbol_filename)
707 {
708 struct symtab_and_line sal;
709
710 sal = find_pc_sect_line (addr, section, 0);
711
712 if (sal.symtab)
713 {
714 *filename = symtab_to_filename_for_display (sal.symtab);
715 *line = sal.line;
716 }
717 }
718 return 0;
719}
720
721
722/* Print address ADDR symbolically on STREAM.
723 First print it as a number. Then perhaps print
724 <SYMBOL + OFFSET> after the number. */
725
726void
727print_address (struct gdbarch *gdbarch,
728 CORE_ADDR addr, struct ui_file *stream)
729{
730 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
731 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
732}
733
734/* Return a prefix for instruction address:
735 "=> " for current instruction, else " ". */
736
737const char *
738pc_prefix (CORE_ADDR addr)
739{
740 if (has_stack_frames ())
741 {
742 struct frame_info *frame;
743 CORE_ADDR pc;
744
745 frame = get_selected_frame (NULL);
746 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
747 return "=> ";
748 }
749 return " ";
750}
751
752/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
753 controls whether to print the symbolic name "raw" or demangled.
754 Return non-zero if anything was printed; zero otherwise. */
755
756int
757print_address_demangle (const struct value_print_options *opts,
758 struct gdbarch *gdbarch, CORE_ADDR addr,
759 struct ui_file *stream, int do_demangle)
760{
761 if (opts->addressprint)
762 {
763 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
764 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
765 }
766 else
767 {
768 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
769 }
770 return 1;
771}
772\f
773
774/* Find the address of the instruction that is INST_COUNT instructions before
775 the instruction at ADDR.
776 Since some architectures have variable-length instructions, we can't just
777 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
778 number information to locate the nearest known instruction boundary,
779 and disassemble forward from there. If we go out of the symbol range
780 during disassembling, we return the lowest address we've got so far and
781 set the number of instructions read to INST_READ. */
782
783static CORE_ADDR
784find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
785 int inst_count, int *inst_read)
786{
787 /* The vector PCS is used to store instruction addresses within
788 a pc range. */
789 CORE_ADDR loop_start, loop_end, p;
790 std::vector<CORE_ADDR> pcs;
791 struct symtab_and_line sal;
792
793 *inst_read = 0;
794 loop_start = loop_end = addr;
795
796 /* In each iteration of the outer loop, we get a pc range that ends before
797 LOOP_START, then we count and store every instruction address of the range
798 iterated in the loop.
799 If the number of instructions counted reaches INST_COUNT, return the
800 stored address that is located INST_COUNT instructions back from ADDR.
801 If INST_COUNT is not reached, we subtract the number of counted
802 instructions from INST_COUNT, and go to the next iteration. */
803 do
804 {
805 pcs.clear ();
806 sal = find_pc_sect_line (loop_start, NULL, 1);
807 if (sal.line <= 0)
808 {
809 /* We reach here when line info is not available. In this case,
810 we print a message and just exit the loop. The return value
811 is calculated after the loop. */
812 printf_filtered (_("No line number information available "
813 "for address "));
814 wrap_here (" ");
815 print_address (gdbarch, loop_start - 1, gdb_stdout);
816 printf_filtered ("\n");
817 break;
818 }
819
820 loop_end = loop_start;
821 loop_start = sal.pc;
822
823 /* This loop pushes instruction addresses in the range from
824 LOOP_START to LOOP_END. */
825 for (p = loop_start; p < loop_end;)
826 {
827 pcs.push_back (p);
828 p += gdb_insn_length (gdbarch, p);
829 }
830
831 inst_count -= pcs.size ();
832 *inst_read += pcs.size ();
833 }
834 while (inst_count > 0);
835
836 /* After the loop, the vector PCS has instruction addresses of the last
837 source line we processed, and INST_COUNT has a negative value.
838 We return the address at the index of -INST_COUNT in the vector for
839 the reason below.
840 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
841 Line X of File
842 0x4000
843 0x4001
844 0x4005
845 Line Y of File
846 0x4009
847 0x400c
848 => 0x400e
849 0x4011
850 find_instruction_backward is called with INST_COUNT = 4 and expected to
851 return 0x4001. When we reach here, INST_COUNT is set to -1 because
852 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
853 4001 is located at the index 1 of the last iterated line (= Line X),
854 which is simply calculated by -INST_COUNT.
855 The case when the length of PCS is 0 means that we reached an area for
856 which line info is not available. In such case, we return LOOP_START,
857 which was the lowest instruction address that had line info. */
858 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
859
860 /* INST_READ includes all instruction addresses in a pc range. Need to
861 exclude the beginning part up to the address we're returning. That
862 is, exclude {0x4000} in the example above. */
863 if (inst_count < 0)
864 *inst_read += inst_count;
865
866 return p;
867}
868
869/* Backward read LEN bytes of target memory from address MEMADDR + LEN,
870 placing the results in GDB's memory from MYADDR + LEN. Returns
871 a count of the bytes actually read. */
872
873static int
874read_memory_backward (struct gdbarch *gdbarch,
875 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
876{
877 int errcode;
878 int nread; /* Number of bytes actually read. */
879
880 /* First try a complete read. */
881 errcode = target_read_memory (memaddr, myaddr, len);
882 if (errcode == 0)
883 {
884 /* Got it all. */
885 nread = len;
886 }
887 else
888 {
889 /* Loop, reading one byte at a time until we get as much as we can. */
890 memaddr += len;
891 myaddr += len;
892 for (nread = 0; nread < len; ++nread)
893 {
894 errcode = target_read_memory (--memaddr, --myaddr, 1);
895 if (errcode != 0)
896 {
897 /* The read was unsuccessful, so exit the loop. */
898 printf_filtered (_("Cannot access memory at address %s\n"),
899 paddress (gdbarch, memaddr));
900 break;
901 }
902 }
903 }
904 return nread;
905}
906
907/* Returns true if X (which is LEN bytes wide) is the number zero. */
908
909static int
910integer_is_zero (const gdb_byte *x, int len)
911{
912 int i = 0;
913
914 while (i < len && x[i] == 0)
915 ++i;
916 return (i == len);
917}
918
919/* Find the start address of a string in which ADDR is included.
920 Basically we search for '\0' and return the next address,
921 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
922 we stop searching and return the address to print characters as many as
923 PRINT_MAX from the string. */
924
925static CORE_ADDR
926find_string_backward (struct gdbarch *gdbarch,
927 CORE_ADDR addr, int count, int char_size,
928 const struct value_print_options *options,
929 int *strings_counted)
930{
931 const int chunk_size = 0x20;
932 int read_error = 0;
933 int chars_read = 0;
934 int chars_to_read = chunk_size;
935 int chars_counted = 0;
936 int count_original = count;
937 CORE_ADDR string_start_addr = addr;
938
939 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
940 gdb::byte_vector buffer (chars_to_read * char_size);
941 while (count > 0 && read_error == 0)
942 {
943 int i;
944
945 addr -= chars_to_read * char_size;
946 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
947 chars_to_read * char_size);
948 chars_read /= char_size;
949 read_error = (chars_read == chars_to_read) ? 0 : 1;
950 /* Searching for '\0' from the end of buffer in backward direction. */
951 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
952 {
953 int offset = (chars_to_read - i - 1) * char_size;
954
955 if (integer_is_zero (&buffer[offset], char_size)
956 || chars_counted == options->print_max)
957 {
958 /* Found '\0' or reached print_max. As OFFSET is the offset to
959 '\0', we add CHAR_SIZE to return the start address of
960 a string. */
961 --count;
962 string_start_addr = addr + offset + char_size;
963 chars_counted = 0;
964 }
965 }
966 }
967
968 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
969 *strings_counted = count_original - count;
970
971 if (read_error != 0)
972 {
973 /* In error case, STRING_START_ADDR is pointing to the string that
974 was last successfully loaded. Rewind the partially loaded string. */
975 string_start_addr -= chars_counted * char_size;
976 }
977
978 return string_start_addr;
979}
980
981/* Examine data at address ADDR in format FMT.
982 Fetch it from memory and print on gdb_stdout. */
983
984static void
985do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
986{
987 char format = 0;
988 char size;
989 int count = 1;
990 struct type *val_type = NULL;
991 int i;
992 int maxelts;
993 struct value_print_options opts;
994 int need_to_update_next_address = 0;
995 CORE_ADDR addr_rewound = 0;
996
997 format = fmt.format;
998 size = fmt.size;
999 count = fmt.count;
1000 next_gdbarch = gdbarch;
1001 next_address = addr;
1002
1003 /* Instruction format implies fetch single bytes
1004 regardless of the specified size.
1005 The case of strings is handled in decode_format, only explicit
1006 size operator are not changed to 'b'. */
1007 if (format == 'i')
1008 size = 'b';
1009
1010 if (size == 'a')
1011 {
1012 /* Pick the appropriate size for an address. */
1013 if (gdbarch_ptr_bit (next_gdbarch) == 64)
1014 size = 'g';
1015 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
1016 size = 'w';
1017 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1018 size = 'h';
1019 else
1020 /* Bad value for gdbarch_ptr_bit. */
1021 internal_error (__FILE__, __LINE__,
1022 _("failed internal consistency check"));
1023 }
1024
1025 if (size == 'b')
1026 val_type = builtin_type (next_gdbarch)->builtin_int8;
1027 else if (size == 'h')
1028 val_type = builtin_type (next_gdbarch)->builtin_int16;
1029 else if (size == 'w')
1030 val_type = builtin_type (next_gdbarch)->builtin_int32;
1031 else if (size == 'g')
1032 val_type = builtin_type (next_gdbarch)->builtin_int64;
1033
1034 if (format == 's')
1035 {
1036 struct type *char_type = NULL;
1037
1038 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1039 if type is not found. */
1040 if (size == 'h')
1041 char_type = builtin_type (next_gdbarch)->builtin_char16;
1042 else if (size == 'w')
1043 char_type = builtin_type (next_gdbarch)->builtin_char32;
1044 if (char_type)
1045 val_type = char_type;
1046 else
1047 {
1048 if (size != '\0' && size != 'b')
1049 warning (_("Unable to display strings with "
1050 "size '%c', using 'b' instead."), size);
1051 size = 'b';
1052 val_type = builtin_type (next_gdbarch)->builtin_int8;
1053 }
1054 }
1055
1056 maxelts = 8;
1057 if (size == 'w')
1058 maxelts = 4;
1059 if (size == 'g')
1060 maxelts = 2;
1061 if (format == 's' || format == 'i')
1062 maxelts = 1;
1063
1064 get_formatted_print_options (&opts, format);
1065
1066 if (count < 0)
1067 {
1068 /* This is the negative repeat count case.
1069 We rewind the address based on the given repeat count and format,
1070 then examine memory from there in forward direction. */
1071
1072 count = -count;
1073 if (format == 'i')
1074 {
1075 next_address = find_instruction_backward (gdbarch, addr, count,
1076 &count);
1077 }
1078 else if (format == 's')
1079 {
1080 next_address = find_string_backward (gdbarch, addr, count,
1081 TYPE_LENGTH (val_type),
1082 &opts, &count);
1083 }
1084 else
1085 {
1086 next_address = addr - count * TYPE_LENGTH (val_type);
1087 }
1088
1089 /* The following call to print_formatted updates next_address in every
1090 iteration. In backward case, we store the start address here
1091 and update next_address with it before exiting the function. */
1092 addr_rewound = (format == 's'
1093 ? next_address - TYPE_LENGTH (val_type)
1094 : next_address);
1095 need_to_update_next_address = 1;
1096 }
1097
1098 /* Print as many objects as specified in COUNT, at most maxelts per line,
1099 with the address of the next one at the start of each line. */
1100
1101 while (count > 0)
1102 {
1103 QUIT;
1104 if (format == 'i')
1105 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1106 print_address (next_gdbarch, next_address, gdb_stdout);
1107 printf_filtered (":");
1108 for (i = maxelts;
1109 i > 0 && count > 0;
1110 i--, count--)
1111 {
1112 printf_filtered ("\t");
1113 /* Note that print_formatted sets next_address for the next
1114 object. */
1115 last_examine_address = next_address;
1116
1117 /* The value to be displayed is not fetched greedily.
1118 Instead, to avoid the possibility of a fetched value not
1119 being used, its retrieval is delayed until the print code
1120 uses it. When examining an instruction stream, the
1121 disassembler will perform its own memory fetch using just
1122 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1123 the disassembler be modified so that LAST_EXAMINE_VALUE
1124 is left with the byte sequence from the last complete
1125 instruction fetched from memory? */
1126 last_examine_value
1127 = release_value (value_at_lazy (val_type, next_address));
1128
1129 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1130
1131 /* Display any branch delay slots following the final insn. */
1132 if (format == 'i' && count == 1)
1133 count += branch_delay_insns;
1134 }
1135 printf_filtered ("\n");
1136 }
1137
1138 if (need_to_update_next_address)
1139 next_address = addr_rewound;
1140}
1141\f
1142static void
1143validate_format (struct format_data fmt, const char *cmdname)
1144{
1145 if (fmt.size != 0)
1146 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1147 if (fmt.count != 1)
1148 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1149 cmdname);
1150 if (fmt.format == 'i')
1151 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1152 fmt.format, cmdname);
1153}
1154
1155/* Parse print command format string into *OPTS and update *EXPP.
1156 CMDNAME should name the current command. */
1157
1158void
1159print_command_parse_format (const char **expp, const char *cmdname,
1160 value_print_options *opts)
1161{
1162 const char *exp = *expp;
1163
1164 /* opts->raw value might already have been set by 'set print raw-values'
1165 or by using 'print -raw-values'.
1166 So, do not set opts->raw to 0, only set it to 1 if /r is given. */
1167 if (exp && *exp == '/')
1168 {
1169 format_data fmt;
1170
1171 exp++;
1172 fmt = decode_format (&exp, last_format, 0);
1173 validate_format (fmt, cmdname);
1174 last_format = fmt.format;
1175
1176 opts->format = fmt.format;
1177 opts->raw = opts->raw || fmt.raw;
1178 }
1179 else
1180 {
1181 opts->format = 0;
1182 }
1183
1184 *expp = exp;
1185}
1186
1187/* See valprint.h. */
1188
1189void
1190print_value (value *val, const value_print_options &opts)
1191{
1192 int histindex = record_latest_value (val);
1193
1194 annotate_value_history_begin (histindex, value_type (val));
1195
1196 printf_filtered ("$%d = ", histindex);
1197
1198 annotate_value_history_value ();
1199
1200 print_formatted (val, 0, &opts, gdb_stdout);
1201 printf_filtered ("\n");
1202
1203 annotate_value_history_end ();
1204}
1205
1206/* Implementation of the "print" and "call" commands. */
1207
1208static void
1209print_command_1 (const char *args, bool voidprint)
1210{
1211 struct value *val;
1212 value_print_options print_opts;
1213
1214 get_user_print_options (&print_opts);
1215 /* Override global settings with explicit options, if any. */
1216 auto group = make_value_print_options_def_group (&print_opts);
1217 gdb::option::process_options
1218 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1219
1220 print_command_parse_format (&args, "print", &print_opts);
1221
1222 const char *exp = args;
1223
1224 if (exp != nullptr && *exp)
1225 {
1226 /* VOIDPRINT is true to indicate that we do want to print a void
1227 value, so invert it for parse_expression. */
1228 expression_up expr = parse_expression (exp, nullptr, !voidprint);
1229 val = evaluate_expression (expr.get ());
1230 }
1231 else
1232 val = access_value_history (0);
1233
1234 if (voidprint || (val && value_type (val) &&
1235 value_type (val)->code () != TYPE_CODE_VOID))
1236 print_value (val, print_opts);
1237}
1238
1239/* Called from command completion function to skip over /FMT
1240 specifications, allowing the rest of the line to be completed. Returns
1241 true if the /FMT is at the end of the current line and there is nothing
1242 left to complete, otherwise false is returned.
1243
1244 In either case *ARGS can be updated to point after any part of /FMT that
1245 is present.
1246
1247 This function is designed so that trying to complete '/' will offer no
1248 completions, the user needs to insert the format specification
1249 themselves. Trying to complete '/FMT' (where FMT is any non-empty set
1250 of alpha-numeric characters) will cause readline to insert a single
1251 space, setting the user up to enter the expression. */
1252
1253static bool
1254skip_over_slash_fmt (completion_tracker &tracker, const char **args)
1255{
1256 const char *text = *args;
1257
1258 if (text[0] == '/')
1259 {
1260 bool in_fmt;
1261 tracker.set_use_custom_word_point (true);
1262
1263 if (text[1] == '\0')
1264 {
1265 /* The user tried to complete after typing just the '/' character
1266 of the /FMT string. Step the completer past the '/', but we
1267 don't offer any completions. */
1268 in_fmt = true;
1269 ++text;
1270 }
1271 else
1272 {
1273 /* The user has typed some characters after the '/', we assume
1274 this is a complete /FMT string, first skip over it. */
1275 text = skip_to_space (text);
1276
1277 if (*text == '\0')
1278 {
1279 /* We're at the end of the input string. The user has typed
1280 '/FMT' and asked for a completion. Push an empty
1281 completion string, this will cause readline to insert a
1282 space so the user now has '/FMT '. */
1283 in_fmt = true;
1284 tracker.add_completion (make_unique_xstrdup (text));
1285 }
1286 else
1287 {
1288 /* The user has already typed things after the /FMT, skip the
1289 whitespace and return false. Whoever called this function
1290 should then try to complete what comes next. */
1291 in_fmt = false;
1292 text = skip_spaces (text);
1293 }
1294 }
1295
1296 tracker.advance_custom_word_point_by (text - *args);
1297 *args = text;
1298 return in_fmt;
1299 }
1300
1301 return false;
1302}
1303
1304/* See valprint.h. */
1305
1306void
1307print_command_completer (struct cmd_list_element *ignore,
1308 completion_tracker &tracker,
1309 const char *text, const char * /*word*/)
1310{
1311 const auto group = make_value_print_options_def_group (nullptr);
1312 if (gdb::option::complete_options
1313 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1314 return;
1315
1316 if (skip_over_slash_fmt (tracker, &text))
1317 return;
1318
1319 const char *word = advance_to_expression_complete_word_point (tracker, text);
1320 expression_completer (ignore, tracker, text, word);
1321}
1322
1323static void
1324print_command (const char *exp, int from_tty)
1325{
1326 print_command_1 (exp, true);
1327}
1328
1329/* Same as print, except it doesn't print void results. */
1330static void
1331call_command (const char *exp, int from_tty)
1332{
1333 print_command_1 (exp, false);
1334}
1335
1336/* Implementation of the "output" command. */
1337
1338void
1339output_command (const char *exp, int from_tty)
1340{
1341 char format = 0;
1342 struct value *val;
1343 struct format_data fmt;
1344 struct value_print_options opts;
1345
1346 fmt.size = 0;
1347 fmt.raw = 0;
1348
1349 if (exp && *exp == '/')
1350 {
1351 exp++;
1352 fmt = decode_format (&exp, 0, 0);
1353 validate_format (fmt, "output");
1354 format = fmt.format;
1355 }
1356
1357 expression_up expr = parse_expression (exp);
1358
1359 val = evaluate_expression (expr.get ());
1360
1361 annotate_value_begin (value_type (val));
1362
1363 get_formatted_print_options (&opts, format);
1364 opts.raw = fmt.raw;
1365 print_formatted (val, fmt.size, &opts, gdb_stdout);
1366
1367 annotate_value_end ();
1368
1369 wrap_here ("");
1370 gdb_flush (gdb_stdout);
1371}
1372
1373static void
1374set_command (const char *exp, int from_tty)
1375{
1376 expression_up expr = parse_expression (exp);
1377
1378 switch (expr->op->opcode ())
1379 {
1380 case UNOP_PREINCREMENT:
1381 case UNOP_POSTINCREMENT:
1382 case UNOP_PREDECREMENT:
1383 case UNOP_POSTDECREMENT:
1384 case BINOP_ASSIGN:
1385 case BINOP_ASSIGN_MODIFY:
1386 case BINOP_COMMA:
1387 break;
1388 default:
1389 warning
1390 (_("Expression is not an assignment (and might have no effect)"));
1391 }
1392
1393 evaluate_expression (expr.get ());
1394}
1395
1396static void
1397info_symbol_command (const char *arg, int from_tty)
1398{
1399 struct minimal_symbol *msymbol;
1400 struct obj_section *osect;
1401 CORE_ADDR addr, sect_addr;
1402 int matches = 0;
1403 unsigned int offset;
1404
1405 if (!arg)
1406 error_no_arg (_("address"));
1407
1408 addr = parse_and_eval_address (arg);
1409 for (objfile *objfile : current_program_space->objfiles ())
1410 ALL_OBJFILE_OSECTIONS (objfile, osect)
1411 {
1412 /* Only process each object file once, even if there's a separate
1413 debug file. */
1414 if (objfile->separate_debug_objfile_backlink)
1415 continue;
1416
1417 sect_addr = overlay_mapped_address (addr, osect);
1418
1419 if (obj_section_addr (osect) <= sect_addr
1420 && sect_addr < obj_section_endaddr (osect)
1421 && (msymbol
1422 = lookup_minimal_symbol_by_pc_section (sect_addr,
1423 osect).minsym))
1424 {
1425 const char *obj_name, *mapped, *sec_name, *msym_name;
1426 const char *loc_string;
1427
1428 matches = 1;
1429 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1430 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1431 sec_name = osect->the_bfd_section->name;
1432 msym_name = msymbol->print_name ();
1433
1434 /* Don't print the offset if it is zero.
1435 We assume there's no need to handle i18n of "sym + offset". */
1436 std::string string_holder;
1437 if (offset)
1438 {
1439 string_holder = string_printf ("%s + %u", msym_name, offset);
1440 loc_string = string_holder.c_str ();
1441 }
1442 else
1443 loc_string = msym_name;
1444
1445 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1446 obj_name = objfile_name (osect->objfile);
1447
1448 if (current_program_space->multi_objfile_p ())
1449 if (pc_in_unmapped_range (addr, osect))
1450 if (section_is_overlay (osect))
1451 printf_filtered (_("%s in load address range of "
1452 "%s overlay section %s of %s\n"),
1453 loc_string, mapped, sec_name, obj_name);
1454 else
1455 printf_filtered (_("%s in load address range of "
1456 "section %s of %s\n"),
1457 loc_string, sec_name, obj_name);
1458 else
1459 if (section_is_overlay (osect))
1460 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1461 loc_string, mapped, sec_name, obj_name);
1462 else
1463 printf_filtered (_("%s in section %s of %s\n"),
1464 loc_string, sec_name, obj_name);
1465 else
1466 if (pc_in_unmapped_range (addr, osect))
1467 if (section_is_overlay (osect))
1468 printf_filtered (_("%s in load address range of %s overlay "
1469 "section %s\n"),
1470 loc_string, mapped, sec_name);
1471 else
1472 printf_filtered
1473 (_("%s in load address range of section %s\n"),
1474 loc_string, sec_name);
1475 else
1476 if (section_is_overlay (osect))
1477 printf_filtered (_("%s in %s overlay section %s\n"),
1478 loc_string, mapped, sec_name);
1479 else
1480 printf_filtered (_("%s in section %s\n"),
1481 loc_string, sec_name);
1482 }
1483 }
1484 if (matches == 0)
1485 printf_filtered (_("No symbol matches %s.\n"), arg);
1486}
1487
1488static void
1489info_address_command (const char *exp, int from_tty)
1490{
1491 struct gdbarch *gdbarch;
1492 int regno;
1493 struct symbol *sym;
1494 struct bound_minimal_symbol msymbol;
1495 long val;
1496 struct obj_section *section;
1497 CORE_ADDR load_addr, context_pc = 0;
1498 struct field_of_this_result is_a_field_of_this;
1499
1500 if (exp == 0)
1501 error (_("Argument required."));
1502
1503 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1504 &is_a_field_of_this).symbol;
1505 if (sym == NULL)
1506 {
1507 if (is_a_field_of_this.type != NULL)
1508 {
1509 printf_filtered ("Symbol \"");
1510 fprintf_symbol_filtered (gdb_stdout, exp,
1511 current_language->la_language, DMGL_ANSI);
1512 printf_filtered ("\" is a field of the local class variable ");
1513 if (current_language->la_language == language_objc)
1514 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1515 else
1516 printf_filtered ("`this'\n");
1517 return;
1518 }
1519
1520 msymbol = lookup_bound_minimal_symbol (exp);
1521
1522 if (msymbol.minsym != NULL)
1523 {
1524 struct objfile *objfile = msymbol.objfile;
1525
1526 gdbarch = objfile->arch ();
1527 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1528
1529 printf_filtered ("Symbol \"");
1530 fprintf_symbol_filtered (gdb_stdout, exp,
1531 current_language->la_language, DMGL_ANSI);
1532 printf_filtered ("\" is at ");
1533 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1534 gdb_stdout);
1535 printf_filtered (" in a file compiled without debugging");
1536 section = msymbol.minsym->obj_section (objfile);
1537 if (section_is_overlay (section))
1538 {
1539 load_addr = overlay_unmapped_address (load_addr, section);
1540 printf_filtered (",\n -- loaded at ");
1541 fputs_styled (paddress (gdbarch, load_addr),
1542 address_style.style (),
1543 gdb_stdout);
1544 printf_filtered (" in overlay section %s",
1545 section->the_bfd_section->name);
1546 }
1547 printf_filtered (".\n");
1548 }
1549 else
1550 error (_("No symbol \"%s\" in current context."), exp);
1551 return;
1552 }
1553
1554 printf_filtered ("Symbol \"");
1555 fprintf_symbol_filtered (gdb_stdout, sym->print_name (),
1556 current_language->la_language, DMGL_ANSI);
1557 printf_filtered ("\" is ");
1558 val = SYMBOL_VALUE (sym);
1559 if (SYMBOL_OBJFILE_OWNED (sym))
1560 section = sym->obj_section (symbol_objfile (sym));
1561 else
1562 section = NULL;
1563 gdbarch = symbol_arch (sym);
1564
1565 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1566 {
1567 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1568 gdb_stdout);
1569 printf_filtered (".\n");
1570 return;
1571 }
1572
1573 switch (SYMBOL_CLASS (sym))
1574 {
1575 case LOC_CONST:
1576 case LOC_CONST_BYTES:
1577 printf_filtered ("constant");
1578 break;
1579
1580 case LOC_LABEL:
1581 printf_filtered ("a label at address ");
1582 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1583 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1584 gdb_stdout);
1585 if (section_is_overlay (section))
1586 {
1587 load_addr = overlay_unmapped_address (load_addr, section);
1588 printf_filtered (",\n -- loaded at ");
1589 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1590 gdb_stdout);
1591 printf_filtered (" in overlay section %s",
1592 section->the_bfd_section->name);
1593 }
1594 break;
1595
1596 case LOC_COMPUTED:
1597 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1598
1599 case LOC_REGISTER:
1600 /* GDBARCH is the architecture associated with the objfile the symbol
1601 is defined in; the target architecture may be different, and may
1602 provide additional registers. However, we do not know the target
1603 architecture at this point. We assume the objfile architecture
1604 will contain all the standard registers that occur in debug info
1605 in that objfile. */
1606 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1607
1608 if (SYMBOL_IS_ARGUMENT (sym))
1609 printf_filtered (_("an argument in register %s"),
1610 gdbarch_register_name (gdbarch, regno));
1611 else
1612 printf_filtered (_("a variable in register %s"),
1613 gdbarch_register_name (gdbarch, regno));
1614 break;
1615
1616 case LOC_STATIC:
1617 printf_filtered (_("static storage at address "));
1618 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1619 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1620 gdb_stdout);
1621 if (section_is_overlay (section))
1622 {
1623 load_addr = overlay_unmapped_address (load_addr, section);
1624 printf_filtered (_(",\n -- loaded at "));
1625 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1626 gdb_stdout);
1627 printf_filtered (_(" in overlay section %s"),
1628 section->the_bfd_section->name);
1629 }
1630 break;
1631
1632 case LOC_REGPARM_ADDR:
1633 /* Note comment at LOC_REGISTER. */
1634 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1635 printf_filtered (_("address of an argument in register %s"),
1636 gdbarch_register_name (gdbarch, regno));
1637 break;
1638
1639 case LOC_ARG:
1640 printf_filtered (_("an argument at offset %ld"), val);
1641 break;
1642
1643 case LOC_LOCAL:
1644 printf_filtered (_("a local variable at frame offset %ld"), val);
1645 break;
1646
1647 case LOC_REF_ARG:
1648 printf_filtered (_("a reference argument at offset %ld"), val);
1649 break;
1650
1651 case LOC_TYPEDEF:
1652 printf_filtered (_("a typedef"));
1653 break;
1654
1655 case LOC_BLOCK:
1656 printf_filtered (_("a function at address "));
1657 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1658 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1659 gdb_stdout);
1660 if (section_is_overlay (section))
1661 {
1662 load_addr = overlay_unmapped_address (load_addr, section);
1663 printf_filtered (_(",\n -- loaded at "));
1664 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1665 gdb_stdout);
1666 printf_filtered (_(" in overlay section %s"),
1667 section->the_bfd_section->name);
1668 }
1669 break;
1670
1671 case LOC_UNRESOLVED:
1672 {
1673 struct bound_minimal_symbol msym;
1674
1675 msym = lookup_bound_minimal_symbol (sym->linkage_name ());
1676 if (msym.minsym == NULL)
1677 printf_filtered ("unresolved");
1678 else
1679 {
1680 section = msym.obj_section ();
1681
1682 if (section
1683 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1684 {
1685 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1686 printf_filtered (_("a thread-local variable at offset %s "
1687 "in the thread-local storage for `%s'"),
1688 paddress (gdbarch, load_addr),
1689 objfile_name (section->objfile));
1690 }
1691 else
1692 {
1693 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1694 printf_filtered (_("static storage at address "));
1695 fputs_styled (paddress (gdbarch, load_addr),
1696 address_style.style (), gdb_stdout);
1697 if (section_is_overlay (section))
1698 {
1699 load_addr = overlay_unmapped_address (load_addr, section);
1700 printf_filtered (_(",\n -- loaded at "));
1701 fputs_styled (paddress (gdbarch, load_addr),
1702 address_style.style (),
1703 gdb_stdout);
1704 printf_filtered (_(" in overlay section %s"),
1705 section->the_bfd_section->name);
1706 }
1707 }
1708 }
1709 }
1710 break;
1711
1712 case LOC_OPTIMIZED_OUT:
1713 printf_filtered (_("optimized out"));
1714 break;
1715
1716 default:
1717 printf_filtered (_("of unknown (botched) type"));
1718 break;
1719 }
1720 printf_filtered (".\n");
1721}
1722\f
1723
1724static void
1725x_command (const char *exp, int from_tty)
1726{
1727 struct format_data fmt;
1728 struct value *val;
1729
1730 fmt.format = last_format ? last_format : 'x';
1731 fmt.size = last_size;
1732 fmt.count = 1;
1733 fmt.raw = 0;
1734
1735 /* If there is no expression and no format, use the most recent
1736 count. */
1737 if (exp == nullptr && last_count > 0)
1738 fmt.count = last_count;
1739
1740 if (exp && *exp == '/')
1741 {
1742 const char *tmp = exp + 1;
1743
1744 fmt = decode_format (&tmp, last_format, last_size);
1745 exp = (char *) tmp;
1746 }
1747
1748 last_count = fmt.count;
1749
1750 /* If we have an expression, evaluate it and use it as the address. */
1751
1752 if (exp != 0 && *exp != 0)
1753 {
1754 expression_up expr = parse_expression (exp);
1755 /* Cause expression not to be there any more if this command is
1756 repeated with Newline. But don't clobber a user-defined
1757 command's definition. */
1758 if (from_tty)
1759 set_repeat_arguments ("");
1760 val = evaluate_expression (expr.get ());
1761 if (TYPE_IS_REFERENCE (value_type (val)))
1762 val = coerce_ref (val);
1763 /* In rvalue contexts, such as this, functions are coerced into
1764 pointers to functions. This makes "x/i main" work. */
1765 if (value_type (val)->code () == TYPE_CODE_FUNC
1766 && VALUE_LVAL (val) == lval_memory)
1767 next_address = value_address (val);
1768 else
1769 next_address = value_as_address (val);
1770
1771 next_gdbarch = expr->gdbarch;
1772 }
1773
1774 if (!next_gdbarch)
1775 error_no_arg (_("starting display address"));
1776
1777 do_examine (fmt, next_gdbarch, next_address);
1778
1779 /* If the examine succeeds, we remember its size and format for next
1780 time. Set last_size to 'b' for strings. */
1781 if (fmt.format == 's')
1782 last_size = 'b';
1783 else
1784 last_size = fmt.size;
1785 last_format = fmt.format;
1786
1787 /* Set a couple of internal variables if appropriate. */
1788 if (last_examine_value != nullptr)
1789 {
1790 /* Make last address examined available to the user as $_. Use
1791 the correct pointer type. */
1792 struct type *pointer_type
1793 = lookup_pointer_type (value_type (last_examine_value.get ()));
1794 set_internalvar (lookup_internalvar ("_"),
1795 value_from_pointer (pointer_type,
1796 last_examine_address));
1797
1798 /* Make contents of last address examined available to the user
1799 as $__. If the last value has not been fetched from memory
1800 then don't fetch it now; instead mark it by voiding the $__
1801 variable. */
1802 if (value_lazy (last_examine_value.get ()))
1803 clear_internalvar (lookup_internalvar ("__"));
1804 else
1805 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1806 }
1807}
1808
1809/* Command completion for the 'display' and 'x' commands. */
1810
1811static void
1812display_and_x_command_completer (struct cmd_list_element *ignore,
1813 completion_tracker &tracker,
1814 const char *text, const char * /*word*/)
1815{
1816 if (skip_over_slash_fmt (tracker, &text))
1817 return;
1818
1819 const char *word = advance_to_expression_complete_word_point (tracker, text);
1820 expression_completer (ignore, tracker, text, word);
1821}
1822
1823\f
1824
1825/* Add an expression to the auto-display chain.
1826 Specify the expression. */
1827
1828static void
1829display_command (const char *arg, int from_tty)
1830{
1831 struct format_data fmt;
1832 struct display *newobj;
1833 const char *exp = arg;
1834
1835 if (exp == 0)
1836 {
1837 do_displays ();
1838 return;
1839 }
1840
1841 if (*exp == '/')
1842 {
1843 exp++;
1844 fmt = decode_format (&exp, 0, 0);
1845 if (fmt.size && fmt.format == 0)
1846 fmt.format = 'x';
1847 if (fmt.format == 'i' || fmt.format == 's')
1848 fmt.size = 'b';
1849 }
1850 else
1851 {
1852 fmt.format = 0;
1853 fmt.size = 0;
1854 fmt.count = 0;
1855 fmt.raw = 0;
1856 }
1857
1858 innermost_block_tracker tracker;
1859 expression_up expr = parse_expression (exp, &tracker);
1860
1861 newobj = new display (exp, std::move (expr), fmt,
1862 current_program_space, tracker.block ());
1863 all_displays.emplace_back (newobj);
1864
1865 if (from_tty)
1866 do_one_display (newobj);
1867
1868 dont_repeat ();
1869}
1870
1871/* Clear out the display_chain. Done when new symtabs are loaded,
1872 since this invalidates the types stored in many expressions. */
1873
1874void
1875clear_displays ()
1876{
1877 all_displays.clear ();
1878}
1879
1880/* Delete the auto-display DISPLAY. */
1881
1882static void
1883delete_display (struct display *display)
1884{
1885 gdb_assert (display != NULL);
1886
1887 auto iter = std::find_if (all_displays.begin (),
1888 all_displays.end (),
1889 [=] (const std::unique_ptr<struct display> &item)
1890 {
1891 return item.get () == display;
1892 });
1893 gdb_assert (iter != all_displays.end ());
1894 all_displays.erase (iter);
1895}
1896
1897/* Call FUNCTION on each of the displays whose numbers are given in
1898 ARGS. DATA is passed unmodified to FUNCTION. */
1899
1900static void
1901map_display_numbers (const char *args,
1902 gdb::function_view<void (struct display *)> function)
1903{
1904 int num;
1905
1906 if (args == NULL)
1907 error_no_arg (_("one or more display numbers"));
1908
1909 number_or_range_parser parser (args);
1910
1911 while (!parser.finished ())
1912 {
1913 const char *p = parser.cur_tok ();
1914
1915 num = parser.get_number ();
1916 if (num == 0)
1917 warning (_("bad display number at or near '%s'"), p);
1918 else
1919 {
1920 auto iter = std::find_if (all_displays.begin (),
1921 all_displays.end (),
1922 [=] (const std::unique_ptr<display> &item)
1923 {
1924 return item->number == num;
1925 });
1926 if (iter == all_displays.end ())
1927 printf_unfiltered (_("No display number %d.\n"), num);
1928 else
1929 function (iter->get ());
1930 }
1931 }
1932}
1933
1934/* "undisplay" command. */
1935
1936static void
1937undisplay_command (const char *args, int from_tty)
1938{
1939 if (args == NULL)
1940 {
1941 if (query (_("Delete all auto-display expressions? ")))
1942 clear_displays ();
1943 dont_repeat ();
1944 return;
1945 }
1946
1947 map_display_numbers (args, delete_display);
1948 dont_repeat ();
1949}
1950
1951/* Display a single auto-display.
1952 Do nothing if the display cannot be printed in the current context,
1953 or if the display is disabled. */
1954
1955static void
1956do_one_display (struct display *d)
1957{
1958 int within_current_scope;
1959
1960 if (!d->enabled_p)
1961 return;
1962
1963 /* The expression carries the architecture that was used at parse time.
1964 This is a problem if the expression depends on architecture features
1965 (e.g. register numbers), and the current architecture is now different.
1966 For example, a display statement like "display/i $pc" is expected to
1967 display the PC register of the current architecture, not the arch at
1968 the time the display command was given. Therefore, we re-parse the
1969 expression if the current architecture has changed. */
1970 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1971 {
1972 d->exp.reset ();
1973 d->block = NULL;
1974 }
1975
1976 if (d->exp == NULL)
1977 {
1978
1979 try
1980 {
1981 innermost_block_tracker tracker;
1982 d->exp = parse_expression (d->exp_string.c_str (), &tracker);
1983 d->block = tracker.block ();
1984 }
1985 catch (const gdb_exception &ex)
1986 {
1987 /* Can't re-parse the expression. Disable this display item. */
1988 d->enabled_p = false;
1989 warning (_("Unable to display \"%s\": %s"),
1990 d->exp_string.c_str (), ex.what ());
1991 return;
1992 }
1993 }
1994
1995 if (d->block)
1996 {
1997 if (d->pspace == current_program_space)
1998 within_current_scope = contained_in (get_selected_block (0), d->block,
1999 true);
2000 else
2001 within_current_scope = 0;
2002 }
2003 else
2004 within_current_scope = 1;
2005 if (!within_current_scope)
2006 return;
2007
2008 scoped_restore save_display_number
2009 = make_scoped_restore (&current_display_number, d->number);
2010
2011 annotate_display_begin ();
2012 printf_filtered ("%d", d->number);
2013 annotate_display_number_end ();
2014 printf_filtered (": ");
2015 if (d->format.size)
2016 {
2017
2018 annotate_display_format ();
2019
2020 printf_filtered ("x/");
2021 if (d->format.count != 1)
2022 printf_filtered ("%d", d->format.count);
2023 printf_filtered ("%c", d->format.format);
2024 if (d->format.format != 'i' && d->format.format != 's')
2025 printf_filtered ("%c", d->format.size);
2026 printf_filtered (" ");
2027
2028 annotate_display_expression ();
2029
2030 puts_filtered (d->exp_string.c_str ());
2031 annotate_display_expression_end ();
2032
2033 if (d->format.count != 1 || d->format.format == 'i')
2034 printf_filtered ("\n");
2035 else
2036 printf_filtered (" ");
2037
2038 annotate_display_value ();
2039
2040 try
2041 {
2042 struct value *val;
2043 CORE_ADDR addr;
2044
2045 val = evaluate_expression (d->exp.get ());
2046 addr = value_as_address (val);
2047 if (d->format.format == 'i')
2048 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
2049 do_examine (d->format, d->exp->gdbarch, addr);
2050 }
2051 catch (const gdb_exception_error &ex)
2052 {
2053 fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"),
2054 metadata_style.style ().ptr (), ex.what (),
2055 nullptr);
2056 }
2057 }
2058 else
2059 {
2060 struct value_print_options opts;
2061
2062 annotate_display_format ();
2063
2064 if (d->format.format)
2065 printf_filtered ("/%c ", d->format.format);
2066
2067 annotate_display_expression ();
2068
2069 puts_filtered (d->exp_string.c_str ());
2070 annotate_display_expression_end ();
2071
2072 printf_filtered (" = ");
2073
2074 annotate_display_expression ();
2075
2076 get_formatted_print_options (&opts, d->format.format);
2077 opts.raw = d->format.raw;
2078
2079 try
2080 {
2081 struct value *val;
2082
2083 val = evaluate_expression (d->exp.get ());
2084 print_formatted (val, d->format.size, &opts, gdb_stdout);
2085 }
2086 catch (const gdb_exception_error &ex)
2087 {
2088 fprintf_styled (gdb_stdout, metadata_style.style (),
2089 _("<error: %s>"), ex.what ());
2090 }
2091
2092 printf_filtered ("\n");
2093 }
2094
2095 annotate_display_end ();
2096
2097 gdb_flush (gdb_stdout);
2098}
2099
2100/* Display all of the values on the auto-display chain which can be
2101 evaluated in the current scope. */
2102
2103void
2104do_displays (void)
2105{
2106 for (auto &d : all_displays)
2107 do_one_display (d.get ());
2108}
2109
2110/* Delete the auto-display which we were in the process of displaying.
2111 This is done when there is an error or a signal. */
2112
2113void
2114disable_display (int num)
2115{
2116 for (auto &d : all_displays)
2117 if (d->number == num)
2118 {
2119 d->enabled_p = false;
2120 return;
2121 }
2122 printf_unfiltered (_("No display number %d.\n"), num);
2123}
2124
2125void
2126disable_current_display (void)
2127{
2128 if (current_display_number >= 0)
2129 {
2130 disable_display (current_display_number);
2131 fprintf_unfiltered (gdb_stderr,
2132 _("Disabling display %d to "
2133 "avoid infinite recursion.\n"),
2134 current_display_number);
2135 }
2136 current_display_number = -1;
2137}
2138
2139static void
2140info_display_command (const char *ignore, int from_tty)
2141{
2142 if (all_displays.empty ())
2143 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2144 else
2145 printf_filtered (_("Auto-display expressions now in effect:\n\
2146Num Enb Expression\n"));
2147
2148 for (auto &d : all_displays)
2149 {
2150 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2151 if (d->format.size)
2152 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2153 d->format.format);
2154 else if (d->format.format)
2155 printf_filtered ("/%c ", d->format.format);
2156 puts_filtered (d->exp_string.c_str ());
2157 if (d->block && !contained_in (get_selected_block (0), d->block, true))
2158 printf_filtered (_(" (cannot be evaluated in the current context)"));
2159 printf_filtered ("\n");
2160 }
2161}
2162
2163/* Implementation of both the "disable display" and "enable display"
2164 commands. ENABLE decides what to do. */
2165
2166static void
2167enable_disable_display_command (const char *args, int from_tty, bool enable)
2168{
2169 if (args == NULL)
2170 {
2171 for (auto &d : all_displays)
2172 d->enabled_p = enable;
2173 return;
2174 }
2175
2176 map_display_numbers (args,
2177 [=] (struct display *d)
2178 {
2179 d->enabled_p = enable;
2180 });
2181}
2182
2183/* The "enable display" command. */
2184
2185static void
2186enable_display_command (const char *args, int from_tty)
2187{
2188 enable_disable_display_command (args, from_tty, true);
2189}
2190
2191/* The "disable display" command. */
2192
2193static void
2194disable_display_command (const char *args, int from_tty)
2195{
2196 enable_disable_display_command (args, from_tty, false);
2197}
2198
2199/* display_chain items point to blocks and expressions. Some expressions in
2200 turn may point to symbols.
2201 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2202 obstack_free'd when a shared library is unloaded.
2203 Clear pointers that are about to become dangling.
2204 Both .exp and .block fields will be restored next time we need to display
2205 an item by re-parsing .exp_string field in the new execution context. */
2206
2207static void
2208clear_dangling_display_expressions (struct objfile *objfile)
2209{
2210 struct program_space *pspace;
2211
2212 /* With no symbol file we cannot have a block or expression from it. */
2213 if (objfile == NULL)
2214 return;
2215 pspace = objfile->pspace;
2216 if (objfile->separate_debug_objfile_backlink)
2217 {
2218 objfile = objfile->separate_debug_objfile_backlink;
2219 gdb_assert (objfile->pspace == pspace);
2220 }
2221
2222 for (auto &d : all_displays)
2223 {
2224 if (d->pspace != pspace)
2225 continue;
2226
2227 struct objfile *bl_objf = nullptr;
2228 if (d->block != nullptr)
2229 {
2230 bl_objf = block_objfile (d->block);
2231 if (bl_objf->separate_debug_objfile_backlink != nullptr)
2232 bl_objf = bl_objf->separate_debug_objfile_backlink;
2233 }
2234
2235 if (bl_objf == objfile
2236 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2237 {
2238 d->exp.reset ();
2239 d->block = NULL;
2240 }
2241 }
2242}
2243\f
2244
2245/* Print the value in stack frame FRAME of a variable specified by a
2246 struct symbol. NAME is the name to print; if NULL then VAR's print
2247 name will be used. STREAM is the ui_file on which to print the
2248 value. INDENT specifies the number of indent levels to print
2249 before printing the variable name.
2250
2251 This function invalidates FRAME. */
2252
2253void
2254print_variable_and_value (const char *name, struct symbol *var,
2255 struct frame_info *frame,
2256 struct ui_file *stream, int indent)
2257{
2258
2259 if (!name)
2260 name = var->print_name ();
2261
2262 fprintf_filtered (stream, "%*s%ps = ", 2 * indent, "",
2263 styled_string (variable_name_style.style (), name));
2264
2265 try
2266 {
2267 struct value *val;
2268 struct value_print_options opts;
2269
2270 /* READ_VAR_VALUE needs a block in order to deal with non-local
2271 references (i.e. to handle nested functions). In this context, we
2272 print variables that are local to this frame, so we can avoid passing
2273 a block to it. */
2274 val = read_var_value (var, NULL, frame);
2275 get_user_print_options (&opts);
2276 opts.deref_ref = 1;
2277 common_val_print (val, stream, indent, &opts, current_language);
2278
2279 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2280 function. */
2281 frame = NULL;
2282 }
2283 catch (const gdb_exception_error &except)
2284 {
2285 fprintf_styled (stream, metadata_style.style (),
2286 "<error reading variable %s (%s)>", name,
2287 except.what ());
2288 }
2289
2290 fprintf_filtered (stream, "\n");
2291}
2292
2293/* Subroutine of ui_printf to simplify it.
2294 Print VALUE to STREAM using FORMAT.
2295 VALUE is a C-style string either on the target or
2296 in a GDB internal variable. */
2297
2298static void
2299printf_c_string (struct ui_file *stream, const char *format,
2300 struct value *value)
2301{
2302 const gdb_byte *str;
2303
2304 if (value_type (value)->code () != TYPE_CODE_PTR
2305 && VALUE_LVAL (value) == lval_internalvar
2306 && c_is_string_type_p (value_type (value)))
2307 {
2308 size_t len = TYPE_LENGTH (value_type (value));
2309
2310 /* Copy the internal var value to TEM_STR and append a terminating null
2311 character. This protects against corrupted C-style strings that lack
2312 the terminating null char. It also allows Ada-style strings (not
2313 null terminated) to be printed without problems. */
2314 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2315
2316 memcpy (tem_str, value_contents (value), len);
2317 tem_str [len] = 0;
2318 str = tem_str;
2319 }
2320 else
2321 {
2322 CORE_ADDR tem = value_as_address (value);;
2323
2324 if (tem == 0)
2325 {
2326 DIAGNOSTIC_PUSH
2327 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2328 fprintf_filtered (stream, format, "(null)");
2329 DIAGNOSTIC_POP
2330 return;
2331 }
2332
2333 /* This is a %s argument. Find the length of the string. */
2334 size_t len;
2335
2336 for (len = 0;; len++)
2337 {
2338 gdb_byte c;
2339
2340 QUIT;
2341 read_memory (tem + len, &c, 1);
2342 if (c == 0)
2343 break;
2344 }
2345
2346 /* Copy the string contents into a string inside GDB. */
2347 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2348
2349 if (len != 0)
2350 read_memory (tem, tem_str, len);
2351 tem_str[len] = 0;
2352 str = tem_str;
2353 }
2354
2355 DIAGNOSTIC_PUSH
2356 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2357 fprintf_filtered (stream, format, (char *) str);
2358 DIAGNOSTIC_POP
2359}
2360
2361/* Subroutine of ui_printf to simplify it.
2362 Print VALUE to STREAM using FORMAT.
2363 VALUE is a wide C-style string on the target or
2364 in a GDB internal variable. */
2365
2366static void
2367printf_wide_c_string (struct ui_file *stream, const char *format,
2368 struct value *value)
2369{
2370 const gdb_byte *str;
2371 size_t len;
2372 struct gdbarch *gdbarch = value_type (value)->arch ();
2373 struct type *wctype = lookup_typename (current_language,
2374 "wchar_t", NULL, 0);
2375 int wcwidth = TYPE_LENGTH (wctype);
2376
2377 if (VALUE_LVAL (value) == lval_internalvar
2378 && c_is_string_type_p (value_type (value)))
2379 {
2380 str = value_contents (value);
2381 len = TYPE_LENGTH (value_type (value));
2382 }
2383 else
2384 {
2385 CORE_ADDR tem = value_as_address (value);
2386
2387 if (tem == 0)
2388 {
2389 DIAGNOSTIC_PUSH
2390 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2391 fprintf_filtered (stream, format, "(null)");
2392 DIAGNOSTIC_POP
2393 return;
2394 }
2395
2396 /* This is a %s argument. Find the length of the string. */
2397 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2398 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2399
2400 for (len = 0;; len += wcwidth)
2401 {
2402 QUIT;
2403 read_memory (tem + len, buf, wcwidth);
2404 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2405 break;
2406 }
2407
2408 /* Copy the string contents into a string inside GDB. */
2409 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2410
2411 if (len != 0)
2412 read_memory (tem, tem_str, len);
2413 memset (&tem_str[len], 0, wcwidth);
2414 str = tem_str;
2415 }
2416
2417 auto_obstack output;
2418
2419 convert_between_encodings (target_wide_charset (gdbarch),
2420 host_charset (),
2421 str, len, wcwidth,
2422 &output, translit_char);
2423 obstack_grow_str0 (&output, "");
2424
2425 DIAGNOSTIC_PUSH
2426 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2427 fprintf_filtered (stream, format, obstack_base (&output));
2428 DIAGNOSTIC_POP
2429}
2430
2431/* Subroutine of ui_printf to simplify it.
2432 Print VALUE, a floating point value, to STREAM using FORMAT. */
2433
2434static void
2435printf_floating (struct ui_file *stream, const char *format,
2436 struct value *value, enum argclass argclass)
2437{
2438 /* Parameter data. */
2439 struct type *param_type = value_type (value);
2440 struct gdbarch *gdbarch = param_type->arch ();
2441
2442 /* Determine target type corresponding to the format string. */
2443 struct type *fmt_type;
2444 switch (argclass)
2445 {
2446 case double_arg:
2447 fmt_type = builtin_type (gdbarch)->builtin_double;
2448 break;
2449 case long_double_arg:
2450 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2451 break;
2452 case dec32float_arg:
2453 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2454 break;
2455 case dec64float_arg:
2456 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2457 break;
2458 case dec128float_arg:
2459 fmt_type = builtin_type (gdbarch)->builtin_declong;
2460 break;
2461 default:
2462 gdb_assert_not_reached ("unexpected argument class");
2463 }
2464
2465 /* To match the traditional GDB behavior, the conversion is
2466 done differently depending on the type of the parameter:
2467
2468 - if the parameter has floating-point type, it's value
2469 is converted to the target type;
2470
2471 - otherwise, if the parameter has a type that is of the
2472 same size as a built-in floating-point type, the value
2473 bytes are interpreted as if they were of that type, and
2474 then converted to the target type (this is not done for
2475 decimal floating-point argument classes);
2476
2477 - otherwise, if the source value has an integer value,
2478 it's value is converted to the target type;
2479
2480 - otherwise, an error is raised.
2481
2482 In either case, the result of the conversion is a byte buffer
2483 formatted in the target format for the target type. */
2484
2485 if (fmt_type->code () == TYPE_CODE_FLT)
2486 {
2487 param_type = float_type_from_length (param_type);
2488 if (param_type != value_type (value))
2489 value = value_from_contents (param_type, value_contents (value));
2490 }
2491
2492 value = value_cast (fmt_type, value);
2493
2494 /* Convert the value to a string and print it. */
2495 std::string str
2496 = target_float_to_string (value_contents (value), fmt_type, format);
2497 fputs_filtered (str.c_str (), stream);
2498}
2499
2500/* Subroutine of ui_printf to simplify it.
2501 Print VALUE, a target pointer, to STREAM using FORMAT. */
2502
2503static void
2504printf_pointer (struct ui_file *stream, const char *format,
2505 struct value *value)
2506{
2507 /* We avoid the host's %p because pointers are too
2508 likely to be the wrong size. The only interesting
2509 modifier for %p is a width; extract that, and then
2510 handle %p as glibc would: %#x or a literal "(nil)". */
2511
2512 const char *p;
2513 char *fmt, *fmt_p;
2514#ifdef PRINTF_HAS_LONG_LONG
2515 long long val = value_as_long (value);
2516#else
2517 long val = value_as_long (value);
2518#endif
2519
2520 fmt = (char *) alloca (strlen (format) + 5);
2521
2522 /* Copy up to the leading %. */
2523 p = format;
2524 fmt_p = fmt;
2525 while (*p)
2526 {
2527 int is_percent = (*p == '%');
2528
2529 *fmt_p++ = *p++;
2530 if (is_percent)
2531 {
2532 if (*p == '%')
2533 *fmt_p++ = *p++;
2534 else
2535 break;
2536 }
2537 }
2538
2539 if (val != 0)
2540 *fmt_p++ = '#';
2541
2542 /* Copy any width or flags. Only the "-" flag is valid for pointers
2543 -- see the format_pieces constructor. */
2544 while (*p == '-' || (*p >= '0' && *p < '9'))
2545 *fmt_p++ = *p++;
2546
2547 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2548 if (val != 0)
2549 {
2550#ifdef PRINTF_HAS_LONG_LONG
2551 *fmt_p++ = 'l';
2552#endif
2553 *fmt_p++ = 'l';
2554 *fmt_p++ = 'x';
2555 *fmt_p++ = '\0';
2556 DIAGNOSTIC_PUSH
2557 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2558 fprintf_filtered (stream, fmt, val);
2559 DIAGNOSTIC_POP
2560 }
2561 else
2562 {
2563 *fmt_p++ = 's';
2564 *fmt_p++ = '\0';
2565 DIAGNOSTIC_PUSH
2566 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2567 fprintf_filtered (stream, fmt, "(nil)");
2568 DIAGNOSTIC_POP
2569 }
2570}
2571
2572/* printf "printf format string" ARG to STREAM. */
2573
2574static void
2575ui_printf (const char *arg, struct ui_file *stream)
2576{
2577 const char *s = arg;
2578 std::vector<struct value *> val_args;
2579
2580 if (s == 0)
2581 error_no_arg (_("format-control string and values to print"));
2582
2583 s = skip_spaces (s);
2584
2585 /* A format string should follow, enveloped in double quotes. */
2586 if (*s++ != '"')
2587 error (_("Bad format string, missing '\"'."));
2588
2589 format_pieces fpieces (&s);
2590
2591 if (*s++ != '"')
2592 error (_("Bad format string, non-terminated '\"'."));
2593
2594 s = skip_spaces (s);
2595
2596 if (*s != ',' && *s != 0)
2597 error (_("Invalid argument syntax"));
2598
2599 if (*s == ',')
2600 s++;
2601 s = skip_spaces (s);
2602
2603 {
2604 int nargs_wanted;
2605 int i;
2606 const char *current_substring;
2607
2608 nargs_wanted = 0;
2609 for (auto &&piece : fpieces)
2610 if (piece.argclass != literal_piece)
2611 ++nargs_wanted;
2612
2613 /* Now, parse all arguments and evaluate them.
2614 Store the VALUEs in VAL_ARGS. */
2615
2616 while (*s != '\0')
2617 {
2618 const char *s1;
2619
2620 s1 = s;
2621 val_args.push_back (parse_to_comma_and_eval (&s1));
2622
2623 s = s1;
2624 if (*s == ',')
2625 s++;
2626 }
2627
2628 if (val_args.size () != nargs_wanted)
2629 error (_("Wrong number of arguments for specified format-string"));
2630
2631 /* Now actually print them. */
2632 i = 0;
2633 for (auto &&piece : fpieces)
2634 {
2635 current_substring = piece.string;
2636 switch (piece.argclass)
2637 {
2638 case string_arg:
2639 printf_c_string (stream, current_substring, val_args[i]);
2640 break;
2641 case wide_string_arg:
2642 printf_wide_c_string (stream, current_substring, val_args[i]);
2643 break;
2644 case wide_char_arg:
2645 {
2646 struct gdbarch *gdbarch = value_type (val_args[i])->arch ();
2647 struct type *wctype = lookup_typename (current_language,
2648 "wchar_t", NULL, 0);
2649 struct type *valtype;
2650 const gdb_byte *bytes;
2651
2652 valtype = value_type (val_args[i]);
2653 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2654 || valtype->code () != TYPE_CODE_INT)
2655 error (_("expected wchar_t argument for %%lc"));
2656
2657 bytes = value_contents (val_args[i]);
2658
2659 auto_obstack output;
2660
2661 convert_between_encodings (target_wide_charset (gdbarch),
2662 host_charset (),
2663 bytes, TYPE_LENGTH (valtype),
2664 TYPE_LENGTH (valtype),
2665 &output, translit_char);
2666 obstack_grow_str0 (&output, "");
2667
2668 DIAGNOSTIC_PUSH
2669 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2670 fprintf_filtered (stream, current_substring,
2671 obstack_base (&output));
2672 DIAGNOSTIC_POP
2673 }
2674 break;
2675 case long_long_arg:
2676#ifdef PRINTF_HAS_LONG_LONG
2677 {
2678 long long val = value_as_long (val_args[i]);
2679
2680 DIAGNOSTIC_PUSH
2681 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2682 fprintf_filtered (stream, current_substring, val);
2683 DIAGNOSTIC_POP
2684 break;
2685 }
2686#else
2687 error (_("long long not supported in printf"));
2688#endif
2689 case int_arg:
2690 {
2691 int val = value_as_long (val_args[i]);
2692
2693 DIAGNOSTIC_PUSH
2694 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2695 fprintf_filtered (stream, current_substring, val);
2696 DIAGNOSTIC_POP
2697 break;
2698 }
2699 case long_arg:
2700 {
2701 long val = value_as_long (val_args[i]);
2702
2703 DIAGNOSTIC_PUSH
2704 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2705 fprintf_filtered (stream, current_substring, val);
2706 DIAGNOSTIC_POP
2707 break;
2708 }
2709 case size_t_arg:
2710 {
2711 size_t val = value_as_long (val_args[i]);
2712
2713 DIAGNOSTIC_PUSH
2714 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2715 fprintf_filtered (stream, current_substring, val);
2716 DIAGNOSTIC_POP
2717 break;
2718 }
2719 /* Handles floating-point values. */
2720 case double_arg:
2721 case long_double_arg:
2722 case dec32float_arg:
2723 case dec64float_arg:
2724 case dec128float_arg:
2725 printf_floating (stream, current_substring, val_args[i],
2726 piece.argclass);
2727 break;
2728 case ptr_arg:
2729 printf_pointer (stream, current_substring, val_args[i]);
2730 break;
2731 case literal_piece:
2732 /* Print a portion of the format string that has no
2733 directives. Note that this will not include any
2734 ordinary %-specs, but it might include "%%". That is
2735 why we use printf_filtered and not puts_filtered here.
2736 Also, we pass a dummy argument because some platforms
2737 have modified GCC to include -Wformat-security by
2738 default, which will warn here if there is no
2739 argument. */
2740 DIAGNOSTIC_PUSH
2741 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2742 fprintf_filtered (stream, current_substring, 0);
2743 DIAGNOSTIC_POP
2744 break;
2745 default:
2746 internal_error (__FILE__, __LINE__,
2747 _("failed internal consistency check"));
2748 }
2749 /* Maybe advance to the next argument. */
2750 if (piece.argclass != literal_piece)
2751 ++i;
2752 }
2753 }
2754}
2755
2756/* Implement the "printf" command. */
2757
2758static void
2759printf_command (const char *arg, int from_tty)
2760{
2761 ui_printf (arg, gdb_stdout);
2762 reset_terminal_style (gdb_stdout);
2763 wrap_here ("");
2764 gdb_stdout->flush ();
2765}
2766
2767/* Implement the "eval" command. */
2768
2769static void
2770eval_command (const char *arg, int from_tty)
2771{
2772 string_file stb;
2773
2774 ui_printf (arg, &stb);
2775
2776 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2777
2778 execute_command (expanded.c_str (), from_tty);
2779}
2780
2781void _initialize_printcmd ();
2782void
2783_initialize_printcmd ()
2784{
2785 struct cmd_list_element *c;
2786
2787 current_display_number = -1;
2788
2789 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2790
2791 add_info ("address", info_address_command,
2792 _("Describe where symbol SYM is stored.\n\
2793Usage: info address SYM"));
2794
2795 add_info ("symbol", info_symbol_command, _("\
2796Describe what symbol is at location ADDR.\n\
2797Usage: info symbol ADDR\n\
2798Only for symbols with fixed locations (global or static scope)."));
2799
2800 c = add_com ("x", class_vars, x_command, _("\
2801Examine memory: x/FMT ADDRESS.\n\
2802ADDRESS is an expression for the memory address to examine.\n\
2803FMT is a repeat count followed by a format letter and a size letter.\n\
2804Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2805 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2806 and z(hex, zero padded on the left).\n\
2807Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2808The specified number of objects of the specified size are printed\n\
2809according to the format. If a negative number is specified, memory is\n\
2810examined backward from the address.\n\n\
2811Defaults for format and size letters are those previously used.\n\
2812Default count is 1. Default address is following last thing printed\n\
2813with this command or \"print\"."));
2814 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2815
2816 add_info ("display", info_display_command, _("\
2817Expressions to display when program stops, with code numbers.\n\
2818Usage: info display"));
2819
2820 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2821Cancel some expressions to be displayed when program stops.\n\
2822Usage: undisplay [NUM]...\n\
2823Arguments are the code numbers of the expressions to stop displaying.\n\
2824No argument means cancel all automatic-display expressions.\n\
2825\"delete display\" has the same effect as this command.\n\
2826Do \"info display\" to see current list of code numbers."),
2827 &cmdlist);
2828
2829 c = add_com ("display", class_vars, display_command, _("\
2830Print value of expression EXP each time the program stops.\n\
2831Usage: display[/FMT] EXP\n\
2832/FMT may be used before EXP as in the \"print\" command.\n\
2833/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2834as in the \"x\" command, and then EXP is used to get the address to examine\n\
2835and examining is done as in the \"x\" command.\n\n\
2836With no argument, display all currently requested auto-display expressions.\n\
2837Use \"undisplay\" to cancel display requests previously made."));
2838 set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);
2839
2840 add_cmd ("display", class_vars, enable_display_command, _("\
2841Enable some expressions to be displayed when program stops.\n\
2842Usage: enable display [NUM]...\n\
2843Arguments are the code numbers of the expressions to resume displaying.\n\
2844No argument means enable all automatic-display expressions.\n\
2845Do \"info display\" to see current list of code numbers."), &enablelist);
2846
2847 add_cmd ("display", class_vars, disable_display_command, _("\
2848Disable some expressions to be displayed when program stops.\n\
2849Usage: disable display [NUM]...\n\
2850Arguments are the code numbers of the expressions to stop displaying.\n\
2851No argument means disable all automatic-display expressions.\n\
2852Do \"info display\" to see current list of code numbers."), &disablelist);
2853
2854 add_cmd ("display", class_vars, undisplay_command, _("\
2855Cancel some expressions to be displayed when program stops.\n\
2856Usage: delete display [NUM]...\n\
2857Arguments are the code numbers of the expressions to stop displaying.\n\
2858No argument means cancel all automatic-display expressions.\n\
2859Do \"info display\" to see current list of code numbers."), &deletelist);
2860
2861 add_com ("printf", class_vars, printf_command, _("\
2862Formatted printing, like the C \"printf\" function.\n\
2863Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2864This supports most C printf format specifications, like %s, %d, etc."));
2865
2866 add_com ("output", class_vars, output_command, _("\
2867Like \"print\" but don't put in value history and don't print newline.\n\
2868Usage: output EXP\n\
2869This is useful in user-defined commands."));
2870
2871 add_prefix_cmd ("set", class_vars, set_command, _("\
2872Evaluate expression EXP and assign result to variable VAR.\n\
2873Usage: set VAR = EXP\n\
2874This uses assignment syntax appropriate for the current language\n\
2875(VAR = EXP or VAR := EXP for example).\n\
2876VAR may be a debugger \"convenience\" variable (names starting\n\
2877with $), a register (a few standard names starting with $), or an actual\n\
2878variable in the program being debugged. EXP is any valid expression.\n\
2879Use \"set variable\" for variables with names identical to set subcommands.\n\
2880\n\
2881With a subcommand, this command modifies parts of the gdb environment.\n\
2882You can see these environment settings with the \"show\" command."),
2883 &setlist, "set ", 1, &cmdlist);
2884 if (dbx_commands)
2885 add_com ("assign", class_vars, set_command, _("\
2886Evaluate expression EXP and assign result to variable VAR.\n\
2887Usage: assign VAR = EXP\n\
2888This uses assignment syntax appropriate for the current language\n\
2889(VAR = EXP or VAR := EXP for example).\n\
2890VAR may be a debugger \"convenience\" variable (names starting\n\
2891with $), a register (a few standard names starting with $), or an actual\n\
2892variable in the program being debugged. EXP is any valid expression.\n\
2893Use \"set variable\" for variables with names identical to set subcommands.\n\
2894\nWith a subcommand, this command modifies parts of the gdb environment.\n\
2895You can see these environment settings with the \"show\" command."));
2896
2897 /* "call" is the same as "set", but handy for dbx users to call fns. */
2898 c = add_com ("call", class_vars, call_command, _("\
2899Call a function in the program.\n\
2900Usage: call EXP\n\
2901The argument is the function name and arguments, in the notation of the\n\
2902current working language. The result is printed and saved in the value\n\
2903history, if it is not void."));
2904 set_cmd_completer_handle_brkchars (c, print_command_completer);
2905
2906 add_cmd ("variable", class_vars, set_command, _("\
2907Evaluate expression EXP and assign result to variable VAR.\n\
2908Usage: set variable VAR = EXP\n\
2909This uses assignment syntax appropriate for the current language\n\
2910(VAR = EXP or VAR := EXP for example).\n\
2911VAR may be a debugger \"convenience\" variable (names starting\n\
2912with $), a register (a few standard names starting with $), or an actual\n\
2913variable in the program being debugged. EXP is any valid expression.\n\
2914This may usually be abbreviated to simply \"set\"."),
2915 &setlist);
2916 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2917
2918 const auto print_opts = make_value_print_options_def_group (nullptr);
2919
2920 static const std::string print_help = gdb::option::build_help (_("\
2921Print value of expression EXP.\n\
2922Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2923\n\
2924Options:\n\
2925%OPTIONS%\n\
2926\n\
2927Note: because this command accepts arbitrary expressions, if you\n\
2928specify any command option, you must use a double dash (\"--\")\n\
2929to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2930\n\
2931Variables accessible are those of the lexical environment of the selected\n\
2932stack frame, plus all those whose scope is global or an entire file.\n\
2933\n\
2934$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2935$$NUM refers to NUM'th value back from the last one.\n\
2936Names starting with $ refer to registers (with the values they would have\n\
2937if the program were to return to the stack frame now selected, restoring\n\
2938all registers saved by frames farther in) or else to debugger\n\
2939\"convenience\" variables (any such name not a known register).\n\
2940Use assignment expressions to give values to convenience variables.\n\
2941\n\
2942{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2943@ is a binary operator for treating consecutive data objects\n\
2944anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2945element is FOO, whose second element is stored in the space following\n\
2946where FOO is stored, etc. FOO must be an expression whose value\n\
2947resides in memory.\n\
2948\n\
2949EXP may be preceded with /FMT, where FMT is a format letter\n\
2950but no count or size letter (see \"x\" command)."),
2951 print_opts);
2952
2953 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2954 set_cmd_completer_handle_brkchars (c, print_command_completer);
2955 add_com_alias ("p", "print", class_vars, 1);
2956 add_com_alias ("inspect", "print", class_vars, 1);
2957
2958 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2959 &max_symbolic_offset, _("\
2960Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2961Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2962Tell GDB to only display the symbolic form of an address if the\n\
2963offset between the closest earlier symbol and the address is less than\n\
2964the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2965to always print the symbolic form of an address if any symbol precedes\n\
2966it. Zero is equivalent to \"unlimited\"."),
2967 NULL,
2968 show_max_symbolic_offset,
2969 &setprintlist, &showprintlist);
2970 add_setshow_boolean_cmd ("symbol-filename", no_class,
2971 &print_symbol_filename, _("\
2972Set printing of source filename and line number with <SYMBOL>."), _("\
2973Show printing of source filename and line number with <SYMBOL>."), NULL,
2974 NULL,
2975 show_print_symbol_filename,
2976 &setprintlist, &showprintlist);
2977
2978 add_com ("eval", no_class, eval_command, _("\
2979Construct a GDB command and then evaluate it.\n\
2980Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2981Convert the arguments to a string as \"printf\" would, but then\n\
2982treat this string as a command line, and evaluate it."));
2983}
This page took 0.032437 seconds and 4 git commands to generate.