Change ada_catchpoint::excep_string to be a std::string
[deliverable/binutils-gdb.git] / gdb / printcmd.c
... / ...
CommitLineData
1/* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "frame.h"
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "language.h"
26#include "expression.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "breakpoint.h"
31#include "demangle.h"
32#include "gdb-demangle.h"
33#include "valprint.h"
34#include "annotate.h"
35#include "symfile.h" /* for overlay functions */
36#include "objfiles.h" /* ditto */
37#include "completer.h" /* for completion functions */
38#include "ui-out.h"
39#include "block.h"
40#include "disasm.h"
41#include "target-float.h"
42#include "observable.h"
43#include "solist.h"
44#include "parser-defs.h"
45#include "charset.h"
46#include "arch-utils.h"
47#include "cli/cli-utils.h"
48#include "cli/cli-script.h"
49#include "format.h"
50#include "source.h"
51#include "common/byte-vector.h"
52
53/* Last specified output format. */
54
55static char last_format = 0;
56
57/* Last specified examination size. 'b', 'h', 'w' or `q'. */
58
59static char last_size = 'w';
60
61/* Last specified count for the 'x' command. */
62
63static int last_count;
64
65/* Default address to examine next, and associated architecture. */
66
67static struct gdbarch *next_gdbarch;
68static CORE_ADDR next_address;
69
70/* Number of delay instructions following current disassembled insn. */
71
72static int branch_delay_insns;
73
74/* Last address examined. */
75
76static CORE_ADDR last_examine_address;
77
78/* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
80
81static value_ref_ptr last_examine_value;
82
83/* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
85
86static unsigned int max_symbolic_offset = UINT_MAX;
87static void
88show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
90{
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
94 value);
95}
96
97/* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99static int print_symbol_filename = 0;
100static void
101show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103{
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
106 value);
107}
108
109/* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
112
113static int current_display_number;
114
115struct display
116 {
117 /* Chain link to next auto-display item. */
118 struct display *next;
119
120 /* The expression as the user typed it. */
121 char *exp_string;
122
123 /* Expression to be evaluated and displayed. */
124 expression_up exp;
125
126 /* Item number of this auto-display item. */
127 int number;
128
129 /* Display format specified. */
130 struct format_data format;
131
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
134
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
137
138 /* Status of this display (enabled or disabled). */
139 int enabled_p;
140 };
141
142/* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
144
145static struct display *display_chain;
146
147static int display_number;
148
149/* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
151 display. */
152
153#define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
155
156#define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
159 B = TMP)
160
161/* Prototypes for local functions. */
162
163static void do_one_display (struct display *);
164\f
165
166/* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
171 user.
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
175
176static struct format_data
177decode_format (const char **string_ptr, int oformat, int osize)
178{
179 struct format_data val;
180 const char *p = *string_ptr;
181
182 val.format = '?';
183 val.size = '?';
184 val.count = 1;
185 val.raw = 0;
186
187 if (*p == '-')
188 {
189 val.count = -1;
190 p++;
191 }
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
195 p++;
196
197 /* Now process size or format letters that follow. */
198
199 while (1)
200 {
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
202 val.size = *p++;
203 else if (*p == 'r')
204 {
205 val.raw = 1;
206 p++;
207 }
208 else if (*p >= 'a' && *p <= 'z')
209 val.format = *p++;
210 else
211 break;
212 }
213
214 *string_ptr = skip_spaces (p);
215
216 /* Set defaults for format and size if not specified. */
217 if (val.format == '?')
218 {
219 if (val.size == '?')
220 {
221 /* Neither has been specified. */
222 val.format = oformat;
223 val.size = osize;
224 }
225 else
226 /* If a size is specified, any format makes a reasonable
227 default except 'i'. */
228 val.format = oformat == 'i' ? 'x' : oformat;
229 }
230 else if (val.size == '?')
231 switch (val.format)
232 {
233 case 'a':
234 /* Pick the appropriate size for an address. This is deferred
235 until do_examine when we know the actual architecture to use.
236 A special size value of 'a' is used to indicate this case. */
237 val.size = osize ? 'a' : osize;
238 break;
239 case 'f':
240 /* Floating point has to be word or giantword. */
241 if (osize == 'w' || osize == 'g')
242 val.size = osize;
243 else
244 /* Default it to giantword if the last used size is not
245 appropriate. */
246 val.size = osize ? 'g' : osize;
247 break;
248 case 'c':
249 /* Characters default to one byte. */
250 val.size = osize ? 'b' : osize;
251 break;
252 case 's':
253 /* Display strings with byte size chars unless explicitly
254 specified. */
255 val.size = '\0';
256 break;
257
258 default:
259 /* The default is the size most recently specified. */
260 val.size = osize;
261 }
262
263 return val;
264}
265\f
266/* Print value VAL on stream according to OPTIONS.
267 Do not end with a newline.
268 SIZE is the letter for the size of datum being printed.
269 This is used to pad hex numbers so they line up. SIZE is 0
270 for print / output and set for examine. */
271
272static void
273print_formatted (struct value *val, int size,
274 const struct value_print_options *options,
275 struct ui_file *stream)
276{
277 struct type *type = check_typedef (value_type (val));
278 int len = TYPE_LENGTH (type);
279
280 if (VALUE_LVAL (val) == lval_memory)
281 next_address = value_address (val) + len;
282
283 if (size)
284 {
285 switch (options->format)
286 {
287 case 's':
288 {
289 struct type *elttype = value_type (val);
290
291 next_address = (value_address (val)
292 + val_print_string (elttype, NULL,
293 value_address (val), -1,
294 stream, options) * len);
295 }
296 return;
297
298 case 'i':
299 /* We often wrap here if there are long symbolic names. */
300 wrap_here (" ");
301 next_address = (value_address (val)
302 + gdb_print_insn (get_type_arch (type),
303 value_address (val), stream,
304 &branch_delay_insns));
305 return;
306 }
307 }
308
309 if (options->format == 0 || options->format == 's'
310 || TYPE_CODE (type) == TYPE_CODE_REF
311 || TYPE_CODE (type) == TYPE_CODE_ARRAY
312 || TYPE_CODE (type) == TYPE_CODE_STRING
313 || TYPE_CODE (type) == TYPE_CODE_STRUCT
314 || TYPE_CODE (type) == TYPE_CODE_UNION
315 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
316 value_print (val, stream, options);
317 else
318 /* User specified format, so don't look to the type to tell us
319 what to do. */
320 val_print_scalar_formatted (type,
321 value_embedded_offset (val),
322 val,
323 options, size, stream);
324}
325
326/* Return builtin floating point type of same length as TYPE.
327 If no such type is found, return TYPE itself. */
328static struct type *
329float_type_from_length (struct type *type)
330{
331 struct gdbarch *gdbarch = get_type_arch (type);
332 const struct builtin_type *builtin = builtin_type (gdbarch);
333
334 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
335 type = builtin->builtin_float;
336 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
337 type = builtin->builtin_double;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
339 type = builtin->builtin_long_double;
340
341 return type;
342}
343
344/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
345 according to OPTIONS and SIZE on STREAM. Formats s and i are not
346 supported at this level. */
347
348void
349print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
350 const struct value_print_options *options,
351 int size, struct ui_file *stream)
352{
353 struct gdbarch *gdbarch = get_type_arch (type);
354 unsigned int len = TYPE_LENGTH (type);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356
357 /* String printing should go through val_print_scalar_formatted. */
358 gdb_assert (options->format != 's');
359
360 /* If the value is a pointer, and pointers and addresses are not the
361 same, then at this point, the value's length (in target bytes) is
362 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
364 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
365
366 /* If we are printing it as unsigned, truncate it in case it is actually
367 a negative signed value (e.g. "print/u (short)-1" should print 65535
368 (if shorts are 16 bits) instead of 4294967295). */
369 if (options->format != 'c'
370 && (options->format != 'd' || TYPE_UNSIGNED (type)))
371 {
372 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
373 valaddr += TYPE_LENGTH (type) - len;
374 }
375
376 if (size != 0 && (options->format == 'x' || options->format == 't'))
377 {
378 /* Truncate to fit. */
379 unsigned newlen;
380 switch (size)
381 {
382 case 'b':
383 newlen = 1;
384 break;
385 case 'h':
386 newlen = 2;
387 break;
388 case 'w':
389 newlen = 4;
390 break;
391 case 'g':
392 newlen = 8;
393 break;
394 default:
395 error (_("Undefined output size \"%c\"."), size);
396 }
397 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
398 valaddr += len - newlen;
399 len = newlen;
400 }
401
402 /* Historically gdb has printed floats by first casting them to a
403 long, and then printing the long. PR cli/16242 suggests changing
404 this to using C-style hex float format. */
405 gdb::byte_vector converted_float_bytes;
406 if (TYPE_CODE (type) == TYPE_CODE_FLT
407 && (options->format == 'o'
408 || options->format == 'x'
409 || options->format == 't'
410 || options->format == 'z'
411 || options->format == 'd'
412 || options->format == 'u'))
413 {
414 LONGEST val_long = unpack_long (type, valaddr);
415 converted_float_bytes.resize (TYPE_LENGTH (type));
416 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
417 byte_order, val_long);
418 valaddr = converted_float_bytes.data ();
419 }
420
421 /* Printing a non-float type as 'f' will interpret the data as if it were
422 of a floating-point type of the same length, if that exists. Otherwise,
423 the data is printed as integer. */
424 char format = options->format;
425 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
426 {
427 type = float_type_from_length (type);
428 if (TYPE_CODE (type) != TYPE_CODE_FLT)
429 format = 0;
430 }
431
432 switch (format)
433 {
434 case 'o':
435 print_octal_chars (stream, valaddr, len, byte_order);
436 break;
437 case 'd':
438 print_decimal_chars (stream, valaddr, len, true, byte_order);
439 break;
440 case 'u':
441 print_decimal_chars (stream, valaddr, len, false, byte_order);
442 break;
443 case 0:
444 if (TYPE_CODE (type) != TYPE_CODE_FLT)
445 {
446 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
447 byte_order);
448 break;
449 }
450 /* FALLTHROUGH */
451 case 'f':
452 print_floating (valaddr, type, stream);
453 break;
454
455 case 't':
456 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
457 break;
458 case 'x':
459 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
460 break;
461 case 'z':
462 print_hex_chars (stream, valaddr, len, byte_order, true);
463 break;
464 case 'c':
465 {
466 struct value_print_options opts = *options;
467
468 LONGEST val_long = unpack_long (type, valaddr);
469
470 opts.format = 0;
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
473 else
474 type = builtin_type (gdbarch)->builtin_true_char;
475
476 value_print (value_from_longest (type, val_long), stream, &opts);
477 }
478 break;
479
480 case 'a':
481 {
482 CORE_ADDR addr = unpack_pointer (type, valaddr);
483
484 print_address (gdbarch, addr, stream);
485 }
486 break;
487
488 default:
489 error (_("Undefined output format \"%c\"."), format);
490 }
491}
492
493/* Specify default address for `x' command.
494 The `info lines' command uses this. */
495
496void
497set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
498{
499 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
500
501 next_gdbarch = gdbarch;
502 next_address = addr;
503
504 /* Make address available to the user as $_. */
505 set_internalvar (lookup_internalvar ("_"),
506 value_from_pointer (ptr_type, addr));
507}
508
509/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
510 after LEADIN. Print nothing if no symbolic name is found nearby.
511 Optionally also print source file and line number, if available.
512 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
513 or to interpret it as a possible C++ name and convert it back to source
514 form. However note that DO_DEMANGLE can be overridden by the specific
515 settings of the demangle and asm_demangle variables. Returns
516 non-zero if anything was printed; zero otherwise. */
517
518int
519print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
520 struct ui_file *stream,
521 int do_demangle, const char *leadin)
522{
523 char *name = NULL;
524 char *filename = NULL;
525 int unmapped = 0;
526 int offset = 0;
527 int line = 0;
528
529 /* Throw away both name and filename. */
530 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
531 make_cleanup (free_current_contents, &filename);
532
533 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
534 &filename, &line, &unmapped))
535 {
536 do_cleanups (cleanup_chain);
537 return 0;
538 }
539
540 fputs_filtered (leadin, stream);
541 if (unmapped)
542 fputs_filtered ("<*", stream);
543 else
544 fputs_filtered ("<", stream);
545 fputs_filtered (name, stream);
546 if (offset != 0)
547 fprintf_filtered (stream, "+%u", (unsigned int) offset);
548
549 /* Append source filename and line number if desired. Give specific
550 line # of this addr, if we have it; else line # of the nearest symbol. */
551 if (print_symbol_filename && filename != NULL)
552 {
553 if (line != -1)
554 fprintf_filtered (stream, " at %s:%d", filename, line);
555 else
556 fprintf_filtered (stream, " in %s", filename);
557 }
558 if (unmapped)
559 fputs_filtered ("*>", stream);
560 else
561 fputs_filtered (">", stream);
562
563 do_cleanups (cleanup_chain);
564 return 1;
565}
566
567/* Given an address ADDR return all the elements needed to print the
568 address in a symbolic form. NAME can be mangled or not depending
569 on DO_DEMANGLE (and also on the asm_demangle global variable,
570 manipulated via ''set print asm-demangle''). Return 0 in case of
571 success, when all the info in the OUT paramters is valid. Return 1
572 otherwise. */
573int
574build_address_symbolic (struct gdbarch *gdbarch,
575 CORE_ADDR addr, /* IN */
576 int do_demangle, /* IN */
577 char **name, /* OUT */
578 int *offset, /* OUT */
579 char **filename, /* OUT */
580 int *line, /* OUT */
581 int *unmapped) /* OUT */
582{
583 struct bound_minimal_symbol msymbol;
584 struct symbol *symbol;
585 CORE_ADDR name_location = 0;
586 struct obj_section *section = NULL;
587 const char *name_temp = "";
588
589 /* Let's say it is mapped (not unmapped). */
590 *unmapped = 0;
591
592 /* Determine if the address is in an overlay, and whether it is
593 mapped. */
594 if (overlay_debugging)
595 {
596 section = find_pc_overlay (addr);
597 if (pc_in_unmapped_range (addr, section))
598 {
599 *unmapped = 1;
600 addr = overlay_mapped_address (addr, section);
601 }
602 }
603
604 /* First try to find the address in the symbol table, then
605 in the minsyms. Take the closest one. */
606
607 /* This is defective in the sense that it only finds text symbols. So
608 really this is kind of pointless--we should make sure that the
609 minimal symbols have everything we need (by changing that we could
610 save some memory, but for many debug format--ELF/DWARF or
611 anything/stabs--it would be inconvenient to eliminate those minimal
612 symbols anyway). */
613 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
614 symbol = find_pc_sect_function (addr, section);
615
616 if (symbol)
617 {
618 /* If this is a function (i.e. a code address), strip out any
619 non-address bits. For instance, display a pointer to the
620 first instruction of a Thumb function as <function>; the
621 second instruction will be <function+2>, even though the
622 pointer is <function+3>. This matches the ISA behavior. */
623 addr = gdbarch_addr_bits_remove (gdbarch, addr);
624
625 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
626 if (do_demangle || asm_demangle)
627 name_temp = SYMBOL_PRINT_NAME (symbol);
628 else
629 name_temp = SYMBOL_LINKAGE_NAME (symbol);
630 }
631
632 if (msymbol.minsym != NULL
633 && MSYMBOL_HAS_SIZE (msymbol.minsym)
634 && MSYMBOL_SIZE (msymbol.minsym) == 0
635 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
636 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
637 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
638 msymbol.minsym = NULL;
639
640 if (msymbol.minsym != NULL)
641 {
642 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
643 {
644 /* If this is a function (i.e. a code address), strip out any
645 non-address bits. For instance, display a pointer to the
646 first instruction of a Thumb function as <function>; the
647 second instruction will be <function+2>, even though the
648 pointer is <function+3>. This matches the ISA behavior. */
649 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
650 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
651 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
652 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
653 addr = gdbarch_addr_bits_remove (gdbarch, addr);
654
655 /* The msymbol is closer to the address than the symbol;
656 use the msymbol instead. */
657 symbol = 0;
658 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
659 if (do_demangle || asm_demangle)
660 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
661 else
662 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
663 }
664 }
665 if (symbol == NULL && msymbol.minsym == NULL)
666 return 1;
667
668 /* If the nearest symbol is too far away, don't print anything symbolic. */
669
670 /* For when CORE_ADDR is larger than unsigned int, we do math in
671 CORE_ADDR. But when we detect unsigned wraparound in the
672 CORE_ADDR math, we ignore this test and print the offset,
673 because addr+max_symbolic_offset has wrapped through the end
674 of the address space back to the beginning, giving bogus comparison. */
675 if (addr > name_location + max_symbolic_offset
676 && name_location + max_symbolic_offset > name_location)
677 return 1;
678
679 *offset = addr - name_location;
680
681 *name = xstrdup (name_temp);
682
683 if (print_symbol_filename)
684 {
685 struct symtab_and_line sal;
686
687 sal = find_pc_sect_line (addr, section, 0);
688
689 if (sal.symtab)
690 {
691 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
692 *line = sal.line;
693 }
694 }
695 return 0;
696}
697
698
699/* Print address ADDR symbolically on STREAM.
700 First print it as a number. Then perhaps print
701 <SYMBOL + OFFSET> after the number. */
702
703void
704print_address (struct gdbarch *gdbarch,
705 CORE_ADDR addr, struct ui_file *stream)
706{
707 fputs_filtered (paddress (gdbarch, addr), stream);
708 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
709}
710
711/* Return a prefix for instruction address:
712 "=> " for current instruction, else " ". */
713
714const char *
715pc_prefix (CORE_ADDR addr)
716{
717 if (has_stack_frames ())
718 {
719 struct frame_info *frame;
720 CORE_ADDR pc;
721
722 frame = get_selected_frame (NULL);
723 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
724 return "=> ";
725 }
726 return " ";
727}
728
729/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
730 controls whether to print the symbolic name "raw" or demangled.
731 Return non-zero if anything was printed; zero otherwise. */
732
733int
734print_address_demangle (const struct value_print_options *opts,
735 struct gdbarch *gdbarch, CORE_ADDR addr,
736 struct ui_file *stream, int do_demangle)
737{
738 if (opts->addressprint)
739 {
740 fputs_filtered (paddress (gdbarch, addr), stream);
741 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
742 }
743 else
744 {
745 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
746 }
747 return 1;
748}
749\f
750
751/* Find the address of the instruction that is INST_COUNT instructions before
752 the instruction at ADDR.
753 Since some architectures have variable-length instructions, we can't just
754 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
755 number information to locate the nearest known instruction boundary,
756 and disassemble forward from there. If we go out of the symbol range
757 during disassembling, we return the lowest address we've got so far and
758 set the number of instructions read to INST_READ. */
759
760static CORE_ADDR
761find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
762 int inst_count, int *inst_read)
763{
764 /* The vector PCS is used to store instruction addresses within
765 a pc range. */
766 CORE_ADDR loop_start, loop_end, p;
767 std::vector<CORE_ADDR> pcs;
768 struct symtab_and_line sal;
769
770 *inst_read = 0;
771 loop_start = loop_end = addr;
772
773 /* In each iteration of the outer loop, we get a pc range that ends before
774 LOOP_START, then we count and store every instruction address of the range
775 iterated in the loop.
776 If the number of instructions counted reaches INST_COUNT, return the
777 stored address that is located INST_COUNT instructions back from ADDR.
778 If INST_COUNT is not reached, we subtract the number of counted
779 instructions from INST_COUNT, and go to the next iteration. */
780 do
781 {
782 pcs.clear ();
783 sal = find_pc_sect_line (loop_start, NULL, 1);
784 if (sal.line <= 0)
785 {
786 /* We reach here when line info is not available. In this case,
787 we print a message and just exit the loop. The return value
788 is calculated after the loop. */
789 printf_filtered (_("No line number information available "
790 "for address "));
791 wrap_here (" ");
792 print_address (gdbarch, loop_start - 1, gdb_stdout);
793 printf_filtered ("\n");
794 break;
795 }
796
797 loop_end = loop_start;
798 loop_start = sal.pc;
799
800 /* This loop pushes instruction addresses in the range from
801 LOOP_START to LOOP_END. */
802 for (p = loop_start; p < loop_end;)
803 {
804 pcs.push_back (p);
805 p += gdb_insn_length (gdbarch, p);
806 }
807
808 inst_count -= pcs.size ();
809 *inst_read += pcs.size ();
810 }
811 while (inst_count > 0);
812
813 /* After the loop, the vector PCS has instruction addresses of the last
814 source line we processed, and INST_COUNT has a negative value.
815 We return the address at the index of -INST_COUNT in the vector for
816 the reason below.
817 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
818 Line X of File
819 0x4000
820 0x4001
821 0x4005
822 Line Y of File
823 0x4009
824 0x400c
825 => 0x400e
826 0x4011
827 find_instruction_backward is called with INST_COUNT = 4 and expected to
828 return 0x4001. When we reach here, INST_COUNT is set to -1 because
829 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
830 4001 is located at the index 1 of the last iterated line (= Line X),
831 which is simply calculated by -INST_COUNT.
832 The case when the length of PCS is 0 means that we reached an area for
833 which line info is not available. In such case, we return LOOP_START,
834 which was the lowest instruction address that had line info. */
835 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
836
837 /* INST_READ includes all instruction addresses in a pc range. Need to
838 exclude the beginning part up to the address we're returning. That
839 is, exclude {0x4000} in the example above. */
840 if (inst_count < 0)
841 *inst_read += inst_count;
842
843 return p;
844}
845
846/* Backward read LEN bytes of target memory from address MEMADDR + LEN,
847 placing the results in GDB's memory from MYADDR + LEN. Returns
848 a count of the bytes actually read. */
849
850static int
851read_memory_backward (struct gdbarch *gdbarch,
852 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
853{
854 int errcode;
855 int nread; /* Number of bytes actually read. */
856
857 /* First try a complete read. */
858 errcode = target_read_memory (memaddr, myaddr, len);
859 if (errcode == 0)
860 {
861 /* Got it all. */
862 nread = len;
863 }
864 else
865 {
866 /* Loop, reading one byte at a time until we get as much as we can. */
867 memaddr += len;
868 myaddr += len;
869 for (nread = 0; nread < len; ++nread)
870 {
871 errcode = target_read_memory (--memaddr, --myaddr, 1);
872 if (errcode != 0)
873 {
874 /* The read was unsuccessful, so exit the loop. */
875 printf_filtered (_("Cannot access memory at address %s\n"),
876 paddress (gdbarch, memaddr));
877 break;
878 }
879 }
880 }
881 return nread;
882}
883
884/* Returns true if X (which is LEN bytes wide) is the number zero. */
885
886static int
887integer_is_zero (const gdb_byte *x, int len)
888{
889 int i = 0;
890
891 while (i < len && x[i] == 0)
892 ++i;
893 return (i == len);
894}
895
896/* Find the start address of a string in which ADDR is included.
897 Basically we search for '\0' and return the next address,
898 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
899 we stop searching and return the address to print characters as many as
900 PRINT_MAX from the string. */
901
902static CORE_ADDR
903find_string_backward (struct gdbarch *gdbarch,
904 CORE_ADDR addr, int count, int char_size,
905 const struct value_print_options *options,
906 int *strings_counted)
907{
908 const int chunk_size = 0x20;
909 int read_error = 0;
910 int chars_read = 0;
911 int chars_to_read = chunk_size;
912 int chars_counted = 0;
913 int count_original = count;
914 CORE_ADDR string_start_addr = addr;
915
916 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
917 gdb::byte_vector buffer (chars_to_read * char_size);
918 while (count > 0 && read_error == 0)
919 {
920 int i;
921
922 addr -= chars_to_read * char_size;
923 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
924 chars_to_read * char_size);
925 chars_read /= char_size;
926 read_error = (chars_read == chars_to_read) ? 0 : 1;
927 /* Searching for '\0' from the end of buffer in backward direction. */
928 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
929 {
930 int offset = (chars_to_read - i - 1) * char_size;
931
932 if (integer_is_zero (&buffer[offset], char_size)
933 || chars_counted == options->print_max)
934 {
935 /* Found '\0' or reached print_max. As OFFSET is the offset to
936 '\0', we add CHAR_SIZE to return the start address of
937 a string. */
938 --count;
939 string_start_addr = addr + offset + char_size;
940 chars_counted = 0;
941 }
942 }
943 }
944
945 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
946 *strings_counted = count_original - count;
947
948 if (read_error != 0)
949 {
950 /* In error case, STRING_START_ADDR is pointing to the string that
951 was last successfully loaded. Rewind the partially loaded string. */
952 string_start_addr -= chars_counted * char_size;
953 }
954
955 return string_start_addr;
956}
957
958/* Examine data at address ADDR in format FMT.
959 Fetch it from memory and print on gdb_stdout. */
960
961static void
962do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
963{
964 char format = 0;
965 char size;
966 int count = 1;
967 struct type *val_type = NULL;
968 int i;
969 int maxelts;
970 struct value_print_options opts;
971 int need_to_update_next_address = 0;
972 CORE_ADDR addr_rewound = 0;
973
974 format = fmt.format;
975 size = fmt.size;
976 count = fmt.count;
977 next_gdbarch = gdbarch;
978 next_address = addr;
979
980 /* Instruction format implies fetch single bytes
981 regardless of the specified size.
982 The case of strings is handled in decode_format, only explicit
983 size operator are not changed to 'b'. */
984 if (format == 'i')
985 size = 'b';
986
987 if (size == 'a')
988 {
989 /* Pick the appropriate size for an address. */
990 if (gdbarch_ptr_bit (next_gdbarch) == 64)
991 size = 'g';
992 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
993 size = 'w';
994 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
995 size = 'h';
996 else
997 /* Bad value for gdbarch_ptr_bit. */
998 internal_error (__FILE__, __LINE__,
999 _("failed internal consistency check"));
1000 }
1001
1002 if (size == 'b')
1003 val_type = builtin_type (next_gdbarch)->builtin_int8;
1004 else if (size == 'h')
1005 val_type = builtin_type (next_gdbarch)->builtin_int16;
1006 else if (size == 'w')
1007 val_type = builtin_type (next_gdbarch)->builtin_int32;
1008 else if (size == 'g')
1009 val_type = builtin_type (next_gdbarch)->builtin_int64;
1010
1011 if (format == 's')
1012 {
1013 struct type *char_type = NULL;
1014
1015 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1016 if type is not found. */
1017 if (size == 'h')
1018 char_type = builtin_type (next_gdbarch)->builtin_char16;
1019 else if (size == 'w')
1020 char_type = builtin_type (next_gdbarch)->builtin_char32;
1021 if (char_type)
1022 val_type = char_type;
1023 else
1024 {
1025 if (size != '\0' && size != 'b')
1026 warning (_("Unable to display strings with "
1027 "size '%c', using 'b' instead."), size);
1028 size = 'b';
1029 val_type = builtin_type (next_gdbarch)->builtin_int8;
1030 }
1031 }
1032
1033 maxelts = 8;
1034 if (size == 'w')
1035 maxelts = 4;
1036 if (size == 'g')
1037 maxelts = 2;
1038 if (format == 's' || format == 'i')
1039 maxelts = 1;
1040
1041 get_formatted_print_options (&opts, format);
1042
1043 if (count < 0)
1044 {
1045 /* This is the negative repeat count case.
1046 We rewind the address based on the given repeat count and format,
1047 then examine memory from there in forward direction. */
1048
1049 count = -count;
1050 if (format == 'i')
1051 {
1052 next_address = find_instruction_backward (gdbarch, addr, count,
1053 &count);
1054 }
1055 else if (format == 's')
1056 {
1057 next_address = find_string_backward (gdbarch, addr, count,
1058 TYPE_LENGTH (val_type),
1059 &opts, &count);
1060 }
1061 else
1062 {
1063 next_address = addr - count * TYPE_LENGTH (val_type);
1064 }
1065
1066 /* The following call to print_formatted updates next_address in every
1067 iteration. In backward case, we store the start address here
1068 and update next_address with it before exiting the function. */
1069 addr_rewound = (format == 's'
1070 ? next_address - TYPE_LENGTH (val_type)
1071 : next_address);
1072 need_to_update_next_address = 1;
1073 }
1074
1075 /* Print as many objects as specified in COUNT, at most maxelts per line,
1076 with the address of the next one at the start of each line. */
1077
1078 while (count > 0)
1079 {
1080 QUIT;
1081 if (format == 'i')
1082 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1083 print_address (next_gdbarch, next_address, gdb_stdout);
1084 printf_filtered (":");
1085 for (i = maxelts;
1086 i > 0 && count > 0;
1087 i--, count--)
1088 {
1089 printf_filtered ("\t");
1090 /* Note that print_formatted sets next_address for the next
1091 object. */
1092 last_examine_address = next_address;
1093
1094 /* The value to be displayed is not fetched greedily.
1095 Instead, to avoid the possibility of a fetched value not
1096 being used, its retrieval is delayed until the print code
1097 uses it. When examining an instruction stream, the
1098 disassembler will perform its own memory fetch using just
1099 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1100 the disassembler be modified so that LAST_EXAMINE_VALUE
1101 is left with the byte sequence from the last complete
1102 instruction fetched from memory? */
1103 last_examine_value
1104 = release_value (value_at_lazy (val_type, next_address));
1105
1106 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1107
1108 /* Display any branch delay slots following the final insn. */
1109 if (format == 'i' && count == 1)
1110 count += branch_delay_insns;
1111 }
1112 printf_filtered ("\n");
1113 gdb_flush (gdb_stdout);
1114 }
1115
1116 if (need_to_update_next_address)
1117 next_address = addr_rewound;
1118}
1119\f
1120static void
1121validate_format (struct format_data fmt, const char *cmdname)
1122{
1123 if (fmt.size != 0)
1124 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1125 if (fmt.count != 1)
1126 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1127 cmdname);
1128 if (fmt.format == 'i')
1129 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1130 fmt.format, cmdname);
1131}
1132
1133/* Parse print command format string into *FMTP and update *EXPP.
1134 CMDNAME should name the current command. */
1135
1136void
1137print_command_parse_format (const char **expp, const char *cmdname,
1138 struct format_data *fmtp)
1139{
1140 const char *exp = *expp;
1141
1142 if (exp && *exp == '/')
1143 {
1144 exp++;
1145 *fmtp = decode_format (&exp, last_format, 0);
1146 validate_format (*fmtp, cmdname);
1147 last_format = fmtp->format;
1148 }
1149 else
1150 {
1151 fmtp->count = 1;
1152 fmtp->format = 0;
1153 fmtp->size = 0;
1154 fmtp->raw = 0;
1155 }
1156
1157 *expp = exp;
1158}
1159
1160/* Print VAL to console according to *FMTP, including recording it to
1161 the history. */
1162
1163void
1164print_value (struct value *val, const struct format_data *fmtp)
1165{
1166 struct value_print_options opts;
1167 int histindex = record_latest_value (val);
1168
1169 annotate_value_history_begin (histindex, value_type (val));
1170
1171 printf_filtered ("$%d = ", histindex);
1172
1173 annotate_value_history_value ();
1174
1175 get_formatted_print_options (&opts, fmtp->format);
1176 opts.raw = fmtp->raw;
1177
1178 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1179 printf_filtered ("\n");
1180
1181 annotate_value_history_end ();
1182}
1183
1184/* Evaluate string EXP as an expression in the current language and
1185 print the resulting value. EXP may contain a format specifier as the
1186 first argument ("/x myvar" for example, to print myvar in hex). */
1187
1188static void
1189print_command_1 (const char *exp, int voidprint)
1190{
1191 struct value *val;
1192 struct format_data fmt;
1193
1194 print_command_parse_format (&exp, "print", &fmt);
1195
1196 if (exp && *exp)
1197 {
1198 expression_up expr = parse_expression (exp);
1199 val = evaluate_expression (expr.get ());
1200 }
1201 else
1202 val = access_value_history (0);
1203
1204 if (voidprint || (val && value_type (val) &&
1205 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1206 print_value (val, &fmt);
1207}
1208
1209static void
1210print_command (const char *exp, int from_tty)
1211{
1212 print_command_1 (exp, 1);
1213}
1214
1215/* Same as print, except it doesn't print void results. */
1216static void
1217call_command (const char *exp, int from_tty)
1218{
1219 print_command_1 (exp, 0);
1220}
1221
1222/* Implementation of the "output" command. */
1223
1224static void
1225output_command (const char *exp, int from_tty)
1226{
1227 output_command_const (exp, from_tty);
1228}
1229
1230/* Like output_command, but takes a const string as argument. */
1231
1232void
1233output_command_const (const char *exp, int from_tty)
1234{
1235 char format = 0;
1236 struct value *val;
1237 struct format_data fmt;
1238 struct value_print_options opts;
1239
1240 fmt.size = 0;
1241 fmt.raw = 0;
1242
1243 if (exp && *exp == '/')
1244 {
1245 exp++;
1246 fmt = decode_format (&exp, 0, 0);
1247 validate_format (fmt, "output");
1248 format = fmt.format;
1249 }
1250
1251 expression_up expr = parse_expression (exp);
1252
1253 val = evaluate_expression (expr.get ());
1254
1255 annotate_value_begin (value_type (val));
1256
1257 get_formatted_print_options (&opts, format);
1258 opts.raw = fmt.raw;
1259 print_formatted (val, fmt.size, &opts, gdb_stdout);
1260
1261 annotate_value_end ();
1262
1263 wrap_here ("");
1264 gdb_flush (gdb_stdout);
1265}
1266
1267static void
1268set_command (const char *exp, int from_tty)
1269{
1270 expression_up expr = parse_expression (exp);
1271
1272 if (expr->nelts >= 1)
1273 switch (expr->elts[0].opcode)
1274 {
1275 case UNOP_PREINCREMENT:
1276 case UNOP_POSTINCREMENT:
1277 case UNOP_PREDECREMENT:
1278 case UNOP_POSTDECREMENT:
1279 case BINOP_ASSIGN:
1280 case BINOP_ASSIGN_MODIFY:
1281 case BINOP_COMMA:
1282 break;
1283 default:
1284 warning
1285 (_("Expression is not an assignment (and might have no effect)"));
1286 }
1287
1288 evaluate_expression (expr.get ());
1289}
1290
1291static void
1292info_symbol_command (const char *arg, int from_tty)
1293{
1294 struct minimal_symbol *msymbol;
1295 struct objfile *objfile;
1296 struct obj_section *osect;
1297 CORE_ADDR addr, sect_addr;
1298 int matches = 0;
1299 unsigned int offset;
1300
1301 if (!arg)
1302 error_no_arg (_("address"));
1303
1304 addr = parse_and_eval_address (arg);
1305 ALL_OBJSECTIONS (objfile, osect)
1306 {
1307 /* Only process each object file once, even if there's a separate
1308 debug file. */
1309 if (objfile->separate_debug_objfile_backlink)
1310 continue;
1311
1312 sect_addr = overlay_mapped_address (addr, osect);
1313
1314 if (obj_section_addr (osect) <= sect_addr
1315 && sect_addr < obj_section_endaddr (osect)
1316 && (msymbol
1317 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1318 {
1319 const char *obj_name, *mapped, *sec_name, *msym_name;
1320 const char *loc_string;
1321 struct cleanup *old_chain;
1322
1323 matches = 1;
1324 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1325 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1326 sec_name = osect->the_bfd_section->name;
1327 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1328
1329 /* Don't print the offset if it is zero.
1330 We assume there's no need to handle i18n of "sym + offset". */
1331 std::string string_holder;
1332 if (offset)
1333 {
1334 string_holder = string_printf ("%s + %u", msym_name, offset);
1335 loc_string = string_holder.c_str ();
1336 }
1337 else
1338 loc_string = msym_name;
1339
1340 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1341 obj_name = objfile_name (osect->objfile);
1342
1343 if (MULTI_OBJFILE_P ())
1344 if (pc_in_unmapped_range (addr, osect))
1345 if (section_is_overlay (osect))
1346 printf_filtered (_("%s in load address range of "
1347 "%s overlay section %s of %s\n"),
1348 loc_string, mapped, sec_name, obj_name);
1349 else
1350 printf_filtered (_("%s in load address range of "
1351 "section %s of %s\n"),
1352 loc_string, sec_name, obj_name);
1353 else
1354 if (section_is_overlay (osect))
1355 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1356 loc_string, mapped, sec_name, obj_name);
1357 else
1358 printf_filtered (_("%s in section %s of %s\n"),
1359 loc_string, sec_name, obj_name);
1360 else
1361 if (pc_in_unmapped_range (addr, osect))
1362 if (section_is_overlay (osect))
1363 printf_filtered (_("%s in load address range of %s overlay "
1364 "section %s\n"),
1365 loc_string, mapped, sec_name);
1366 else
1367 printf_filtered (_("%s in load address range of section %s\n"),
1368 loc_string, sec_name);
1369 else
1370 if (section_is_overlay (osect))
1371 printf_filtered (_("%s in %s overlay section %s\n"),
1372 loc_string, mapped, sec_name);
1373 else
1374 printf_filtered (_("%s in section %s\n"),
1375 loc_string, sec_name);
1376 }
1377 }
1378 if (matches == 0)
1379 printf_filtered (_("No symbol matches %s.\n"), arg);
1380}
1381
1382static void
1383info_address_command (const char *exp, int from_tty)
1384{
1385 struct gdbarch *gdbarch;
1386 int regno;
1387 struct symbol *sym;
1388 struct bound_minimal_symbol msymbol;
1389 long val;
1390 struct obj_section *section;
1391 CORE_ADDR load_addr, context_pc = 0;
1392 struct field_of_this_result is_a_field_of_this;
1393
1394 if (exp == 0)
1395 error (_("Argument required."));
1396
1397 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1398 &is_a_field_of_this).symbol;
1399 if (sym == NULL)
1400 {
1401 if (is_a_field_of_this.type != NULL)
1402 {
1403 printf_filtered ("Symbol \"");
1404 fprintf_symbol_filtered (gdb_stdout, exp,
1405 current_language->la_language, DMGL_ANSI);
1406 printf_filtered ("\" is a field of the local class variable ");
1407 if (current_language->la_language == language_objc)
1408 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1409 else
1410 printf_filtered ("`this'\n");
1411 return;
1412 }
1413
1414 msymbol = lookup_bound_minimal_symbol (exp);
1415
1416 if (msymbol.minsym != NULL)
1417 {
1418 struct objfile *objfile = msymbol.objfile;
1419
1420 gdbarch = get_objfile_arch (objfile);
1421 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1422
1423 printf_filtered ("Symbol \"");
1424 fprintf_symbol_filtered (gdb_stdout, exp,
1425 current_language->la_language, DMGL_ANSI);
1426 printf_filtered ("\" is at ");
1427 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1428 printf_filtered (" in a file compiled without debugging");
1429 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1430 if (section_is_overlay (section))
1431 {
1432 load_addr = overlay_unmapped_address (load_addr, section);
1433 printf_filtered (",\n -- loaded at ");
1434 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1435 printf_filtered (" in overlay section %s",
1436 section->the_bfd_section->name);
1437 }
1438 printf_filtered (".\n");
1439 }
1440 else
1441 error (_("No symbol \"%s\" in current context."), exp);
1442 return;
1443 }
1444
1445 printf_filtered ("Symbol \"");
1446 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1447 current_language->la_language, DMGL_ANSI);
1448 printf_filtered ("\" is ");
1449 val = SYMBOL_VALUE (sym);
1450 if (SYMBOL_OBJFILE_OWNED (sym))
1451 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1452 else
1453 section = NULL;
1454 gdbarch = symbol_arch (sym);
1455
1456 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1457 {
1458 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1459 gdb_stdout);
1460 printf_filtered (".\n");
1461 return;
1462 }
1463
1464 switch (SYMBOL_CLASS (sym))
1465 {
1466 case LOC_CONST:
1467 case LOC_CONST_BYTES:
1468 printf_filtered ("constant");
1469 break;
1470
1471 case LOC_LABEL:
1472 printf_filtered ("a label at address ");
1473 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1474 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1475 if (section_is_overlay (section))
1476 {
1477 load_addr = overlay_unmapped_address (load_addr, section);
1478 printf_filtered (",\n -- loaded at ");
1479 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1480 printf_filtered (" in overlay section %s",
1481 section->the_bfd_section->name);
1482 }
1483 break;
1484
1485 case LOC_COMPUTED:
1486 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1487
1488 case LOC_REGISTER:
1489 /* GDBARCH is the architecture associated with the objfile the symbol
1490 is defined in; the target architecture may be different, and may
1491 provide additional registers. However, we do not know the target
1492 architecture at this point. We assume the objfile architecture
1493 will contain all the standard registers that occur in debug info
1494 in that objfile. */
1495 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1496
1497 if (SYMBOL_IS_ARGUMENT (sym))
1498 printf_filtered (_("an argument in register %s"),
1499 gdbarch_register_name (gdbarch, regno));
1500 else
1501 printf_filtered (_("a variable in register %s"),
1502 gdbarch_register_name (gdbarch, regno));
1503 break;
1504
1505 case LOC_STATIC:
1506 printf_filtered (_("static storage at address "));
1507 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1508 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1509 if (section_is_overlay (section))
1510 {
1511 load_addr = overlay_unmapped_address (load_addr, section);
1512 printf_filtered (_(",\n -- loaded at "));
1513 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1514 printf_filtered (_(" in overlay section %s"),
1515 section->the_bfd_section->name);
1516 }
1517 break;
1518
1519 case LOC_REGPARM_ADDR:
1520 /* Note comment at LOC_REGISTER. */
1521 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1522 printf_filtered (_("address of an argument in register %s"),
1523 gdbarch_register_name (gdbarch, regno));
1524 break;
1525
1526 case LOC_ARG:
1527 printf_filtered (_("an argument at offset %ld"), val);
1528 break;
1529
1530 case LOC_LOCAL:
1531 printf_filtered (_("a local variable at frame offset %ld"), val);
1532 break;
1533
1534 case LOC_REF_ARG:
1535 printf_filtered (_("a reference argument at offset %ld"), val);
1536 break;
1537
1538 case LOC_TYPEDEF:
1539 printf_filtered (_("a typedef"));
1540 break;
1541
1542 case LOC_BLOCK:
1543 printf_filtered (_("a function at address "));
1544 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1545 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1546 if (section_is_overlay (section))
1547 {
1548 load_addr = overlay_unmapped_address (load_addr, section);
1549 printf_filtered (_(",\n -- loaded at "));
1550 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1551 printf_filtered (_(" in overlay section %s"),
1552 section->the_bfd_section->name);
1553 }
1554 break;
1555
1556 case LOC_UNRESOLVED:
1557 {
1558 struct bound_minimal_symbol msym;
1559
1560 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1561 if (msym.minsym == NULL)
1562 printf_filtered ("unresolved");
1563 else
1564 {
1565 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1566
1567 if (section
1568 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1569 {
1570 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1571 printf_filtered (_("a thread-local variable at offset %s "
1572 "in the thread-local storage for `%s'"),
1573 paddress (gdbarch, load_addr),
1574 objfile_name (section->objfile));
1575 }
1576 else
1577 {
1578 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1579 printf_filtered (_("static storage at address "));
1580 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1581 if (section_is_overlay (section))
1582 {
1583 load_addr = overlay_unmapped_address (load_addr, section);
1584 printf_filtered (_(",\n -- loaded at "));
1585 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1586 printf_filtered (_(" in overlay section %s"),
1587 section->the_bfd_section->name);
1588 }
1589 }
1590 }
1591 }
1592 break;
1593
1594 case LOC_OPTIMIZED_OUT:
1595 printf_filtered (_("optimized out"));
1596 break;
1597
1598 default:
1599 printf_filtered (_("of unknown (botched) type"));
1600 break;
1601 }
1602 printf_filtered (".\n");
1603}
1604\f
1605
1606static void
1607x_command (const char *exp, int from_tty)
1608{
1609 struct format_data fmt;
1610 struct value *val;
1611
1612 fmt.format = last_format ? last_format : 'x';
1613 fmt.size = last_size;
1614 fmt.count = 1;
1615 fmt.raw = 0;
1616
1617 /* If there is no expression and no format, use the most recent
1618 count. */
1619 if (exp == nullptr && last_count > 0)
1620 fmt.count = last_count;
1621
1622 if (exp && *exp == '/')
1623 {
1624 const char *tmp = exp + 1;
1625
1626 fmt = decode_format (&tmp, last_format, last_size);
1627 exp = (char *) tmp;
1628 }
1629
1630 last_count = fmt.count;
1631
1632 /* If we have an expression, evaluate it and use it as the address. */
1633
1634 if (exp != 0 && *exp != 0)
1635 {
1636 expression_up expr = parse_expression (exp);
1637 /* Cause expression not to be there any more if this command is
1638 repeated with Newline. But don't clobber a user-defined
1639 command's definition. */
1640 if (from_tty)
1641 set_repeat_arguments ("");
1642 val = evaluate_expression (expr.get ());
1643 if (TYPE_IS_REFERENCE (value_type (val)))
1644 val = coerce_ref (val);
1645 /* In rvalue contexts, such as this, functions are coerced into
1646 pointers to functions. This makes "x/i main" work. */
1647 if (/* last_format == 'i' && */
1648 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1649 && VALUE_LVAL (val) == lval_memory)
1650 next_address = value_address (val);
1651 else
1652 next_address = value_as_address (val);
1653
1654 next_gdbarch = expr->gdbarch;
1655 }
1656
1657 if (!next_gdbarch)
1658 error_no_arg (_("starting display address"));
1659
1660 do_examine (fmt, next_gdbarch, next_address);
1661
1662 /* If the examine succeeds, we remember its size and format for next
1663 time. Set last_size to 'b' for strings. */
1664 if (fmt.format == 's')
1665 last_size = 'b';
1666 else
1667 last_size = fmt.size;
1668 last_format = fmt.format;
1669
1670 /* Set a couple of internal variables if appropriate. */
1671 if (last_examine_value != nullptr)
1672 {
1673 /* Make last address examined available to the user as $_. Use
1674 the correct pointer type. */
1675 struct type *pointer_type
1676 = lookup_pointer_type (value_type (last_examine_value.get ()));
1677 set_internalvar (lookup_internalvar ("_"),
1678 value_from_pointer (pointer_type,
1679 last_examine_address));
1680
1681 /* Make contents of last address examined available to the user
1682 as $__. If the last value has not been fetched from memory
1683 then don't fetch it now; instead mark it by voiding the $__
1684 variable. */
1685 if (value_lazy (last_examine_value.get ()))
1686 clear_internalvar (lookup_internalvar ("__"));
1687 else
1688 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1689 }
1690}
1691\f
1692
1693/* Add an expression to the auto-display chain.
1694 Specify the expression. */
1695
1696static void
1697display_command (const char *arg, int from_tty)
1698{
1699 struct format_data fmt;
1700 struct display *newobj;
1701 const char *exp = arg;
1702
1703 if (exp == 0)
1704 {
1705 do_displays ();
1706 return;
1707 }
1708
1709 if (*exp == '/')
1710 {
1711 exp++;
1712 fmt = decode_format (&exp, 0, 0);
1713 if (fmt.size && fmt.format == 0)
1714 fmt.format = 'x';
1715 if (fmt.format == 'i' || fmt.format == 's')
1716 fmt.size = 'b';
1717 }
1718 else
1719 {
1720 fmt.format = 0;
1721 fmt.size = 0;
1722 fmt.count = 0;
1723 fmt.raw = 0;
1724 }
1725
1726 innermost_block.reset ();
1727 expression_up expr = parse_expression (exp);
1728
1729 newobj = new display ();
1730
1731 newobj->exp_string = xstrdup (exp);
1732 newobj->exp = std::move (expr);
1733 newobj->block = innermost_block.block ();
1734 newobj->pspace = current_program_space;
1735 newobj->number = ++display_number;
1736 newobj->format = fmt;
1737 newobj->enabled_p = 1;
1738 newobj->next = NULL;
1739
1740 if (display_chain == NULL)
1741 display_chain = newobj;
1742 else
1743 {
1744 struct display *last;
1745
1746 for (last = display_chain; last->next != NULL; last = last->next)
1747 ;
1748 last->next = newobj;
1749 }
1750
1751 if (from_tty)
1752 do_one_display (newobj);
1753
1754 dont_repeat ();
1755}
1756
1757static void
1758free_display (struct display *d)
1759{
1760 xfree (d->exp_string);
1761 delete d;
1762}
1763
1764/* Clear out the display_chain. Done when new symtabs are loaded,
1765 since this invalidates the types stored in many expressions. */
1766
1767void
1768clear_displays (void)
1769{
1770 struct display *d;
1771
1772 while ((d = display_chain) != NULL)
1773 {
1774 display_chain = d->next;
1775 free_display (d);
1776 }
1777}
1778
1779/* Delete the auto-display DISPLAY. */
1780
1781static void
1782delete_display (struct display *display)
1783{
1784 struct display *d;
1785
1786 gdb_assert (display != NULL);
1787
1788 if (display_chain == display)
1789 display_chain = display->next;
1790
1791 ALL_DISPLAYS (d)
1792 if (d->next == display)
1793 {
1794 d->next = display->next;
1795 break;
1796 }
1797
1798 free_display (display);
1799}
1800
1801/* Call FUNCTION on each of the displays whose numbers are given in
1802 ARGS. DATA is passed unmodified to FUNCTION. */
1803
1804static void
1805map_display_numbers (const char *args,
1806 void (*function) (struct display *,
1807 void *),
1808 void *data)
1809{
1810 int num;
1811
1812 if (args == NULL)
1813 error_no_arg (_("one or more display numbers"));
1814
1815 number_or_range_parser parser (args);
1816
1817 while (!parser.finished ())
1818 {
1819 const char *p = parser.cur_tok ();
1820
1821 num = parser.get_number ();
1822 if (num == 0)
1823 warning (_("bad display number at or near '%s'"), p);
1824 else
1825 {
1826 struct display *d, *tmp;
1827
1828 ALL_DISPLAYS_SAFE (d, tmp)
1829 if (d->number == num)
1830 break;
1831 if (d == NULL)
1832 printf_unfiltered (_("No display number %d.\n"), num);
1833 else
1834 function (d, data);
1835 }
1836 }
1837}
1838
1839/* Callback for map_display_numbers, that deletes a display. */
1840
1841static void
1842do_delete_display (struct display *d, void *data)
1843{
1844 delete_display (d);
1845}
1846
1847/* "undisplay" command. */
1848
1849static void
1850undisplay_command (const char *args, int from_tty)
1851{
1852 if (args == NULL)
1853 {
1854 if (query (_("Delete all auto-display expressions? ")))
1855 clear_displays ();
1856 dont_repeat ();
1857 return;
1858 }
1859
1860 map_display_numbers (args, do_delete_display, NULL);
1861 dont_repeat ();
1862}
1863
1864/* Display a single auto-display.
1865 Do nothing if the display cannot be printed in the current context,
1866 or if the display is disabled. */
1867
1868static void
1869do_one_display (struct display *d)
1870{
1871 int within_current_scope;
1872
1873 if (d->enabled_p == 0)
1874 return;
1875
1876 /* The expression carries the architecture that was used at parse time.
1877 This is a problem if the expression depends on architecture features
1878 (e.g. register numbers), and the current architecture is now different.
1879 For example, a display statement like "display/i $pc" is expected to
1880 display the PC register of the current architecture, not the arch at
1881 the time the display command was given. Therefore, we re-parse the
1882 expression if the current architecture has changed. */
1883 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1884 {
1885 d->exp.reset ();
1886 d->block = NULL;
1887 }
1888
1889 if (d->exp == NULL)
1890 {
1891
1892 TRY
1893 {
1894 innermost_block.reset ();
1895 d->exp = parse_expression (d->exp_string);
1896 d->block = innermost_block.block ();
1897 }
1898 CATCH (ex, RETURN_MASK_ALL)
1899 {
1900 /* Can't re-parse the expression. Disable this display item. */
1901 d->enabled_p = 0;
1902 warning (_("Unable to display \"%s\": %s"),
1903 d->exp_string, ex.message);
1904 return;
1905 }
1906 END_CATCH
1907 }
1908
1909 if (d->block)
1910 {
1911 if (d->pspace == current_program_space)
1912 within_current_scope = contained_in (get_selected_block (0), d->block);
1913 else
1914 within_current_scope = 0;
1915 }
1916 else
1917 within_current_scope = 1;
1918 if (!within_current_scope)
1919 return;
1920
1921 scoped_restore save_display_number
1922 = make_scoped_restore (&current_display_number, d->number);
1923
1924 annotate_display_begin ();
1925 printf_filtered ("%d", d->number);
1926 annotate_display_number_end ();
1927 printf_filtered (": ");
1928 if (d->format.size)
1929 {
1930
1931 annotate_display_format ();
1932
1933 printf_filtered ("x/");
1934 if (d->format.count != 1)
1935 printf_filtered ("%d", d->format.count);
1936 printf_filtered ("%c", d->format.format);
1937 if (d->format.format != 'i' && d->format.format != 's')
1938 printf_filtered ("%c", d->format.size);
1939 printf_filtered (" ");
1940
1941 annotate_display_expression ();
1942
1943 puts_filtered (d->exp_string);
1944 annotate_display_expression_end ();
1945
1946 if (d->format.count != 1 || d->format.format == 'i')
1947 printf_filtered ("\n");
1948 else
1949 printf_filtered (" ");
1950
1951 annotate_display_value ();
1952
1953 TRY
1954 {
1955 struct value *val;
1956 CORE_ADDR addr;
1957
1958 val = evaluate_expression (d->exp.get ());
1959 addr = value_as_address (val);
1960 if (d->format.format == 'i')
1961 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1962 do_examine (d->format, d->exp->gdbarch, addr);
1963 }
1964 CATCH (ex, RETURN_MASK_ERROR)
1965 {
1966 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1967 }
1968 END_CATCH
1969 }
1970 else
1971 {
1972 struct value_print_options opts;
1973
1974 annotate_display_format ();
1975
1976 if (d->format.format)
1977 printf_filtered ("/%c ", d->format.format);
1978
1979 annotate_display_expression ();
1980
1981 puts_filtered (d->exp_string);
1982 annotate_display_expression_end ();
1983
1984 printf_filtered (" = ");
1985
1986 annotate_display_expression ();
1987
1988 get_formatted_print_options (&opts, d->format.format);
1989 opts.raw = d->format.raw;
1990
1991 TRY
1992 {
1993 struct value *val;
1994
1995 val = evaluate_expression (d->exp.get ());
1996 print_formatted (val, d->format.size, &opts, gdb_stdout);
1997 }
1998 CATCH (ex, RETURN_MASK_ERROR)
1999 {
2000 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2001 }
2002 END_CATCH
2003
2004 printf_filtered ("\n");
2005 }
2006
2007 annotate_display_end ();
2008
2009 gdb_flush (gdb_stdout);
2010}
2011
2012/* Display all of the values on the auto-display chain which can be
2013 evaluated in the current scope. */
2014
2015void
2016do_displays (void)
2017{
2018 struct display *d;
2019
2020 for (d = display_chain; d; d = d->next)
2021 do_one_display (d);
2022}
2023
2024/* Delete the auto-display which we were in the process of displaying.
2025 This is done when there is an error or a signal. */
2026
2027void
2028disable_display (int num)
2029{
2030 struct display *d;
2031
2032 for (d = display_chain; d; d = d->next)
2033 if (d->number == num)
2034 {
2035 d->enabled_p = 0;
2036 return;
2037 }
2038 printf_unfiltered (_("No display number %d.\n"), num);
2039}
2040
2041void
2042disable_current_display (void)
2043{
2044 if (current_display_number >= 0)
2045 {
2046 disable_display (current_display_number);
2047 fprintf_unfiltered (gdb_stderr,
2048 _("Disabling display %d to "
2049 "avoid infinite recursion.\n"),
2050 current_display_number);
2051 }
2052 current_display_number = -1;
2053}
2054
2055static void
2056info_display_command (const char *ignore, int from_tty)
2057{
2058 struct display *d;
2059
2060 if (!display_chain)
2061 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2062 else
2063 printf_filtered (_("Auto-display expressions now in effect:\n\
2064Num Enb Expression\n"));
2065
2066 for (d = display_chain; d; d = d->next)
2067 {
2068 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2069 if (d->format.size)
2070 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2071 d->format.format);
2072 else if (d->format.format)
2073 printf_filtered ("/%c ", d->format.format);
2074 puts_filtered (d->exp_string);
2075 if (d->block && !contained_in (get_selected_block (0), d->block))
2076 printf_filtered (_(" (cannot be evaluated in the current context)"));
2077 printf_filtered ("\n");
2078 gdb_flush (gdb_stdout);
2079 }
2080}
2081
2082/* Callback fo map_display_numbers, that enables or disables the
2083 passed in display D. */
2084
2085static void
2086do_enable_disable_display (struct display *d, void *data)
2087{
2088 d->enabled_p = *(int *) data;
2089}
2090
2091/* Implamentation of both the "disable display" and "enable display"
2092 commands. ENABLE decides what to do. */
2093
2094static void
2095enable_disable_display_command (const char *args, int from_tty, int enable)
2096{
2097 if (args == NULL)
2098 {
2099 struct display *d;
2100
2101 ALL_DISPLAYS (d)
2102 d->enabled_p = enable;
2103 return;
2104 }
2105
2106 map_display_numbers (args, do_enable_disable_display, &enable);
2107}
2108
2109/* The "enable display" command. */
2110
2111static void
2112enable_display_command (const char *args, int from_tty)
2113{
2114 enable_disable_display_command (args, from_tty, 1);
2115}
2116
2117/* The "disable display" command. */
2118
2119static void
2120disable_display_command (const char *args, int from_tty)
2121{
2122 enable_disable_display_command (args, from_tty, 0);
2123}
2124
2125/* display_chain items point to blocks and expressions. Some expressions in
2126 turn may point to symbols.
2127 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2128 obstack_free'd when a shared library is unloaded.
2129 Clear pointers that are about to become dangling.
2130 Both .exp and .block fields will be restored next time we need to display
2131 an item by re-parsing .exp_string field in the new execution context. */
2132
2133static void
2134clear_dangling_display_expressions (struct objfile *objfile)
2135{
2136 struct display *d;
2137 struct program_space *pspace;
2138
2139 /* With no symbol file we cannot have a block or expression from it. */
2140 if (objfile == NULL)
2141 return;
2142 pspace = objfile->pspace;
2143 if (objfile->separate_debug_objfile_backlink)
2144 {
2145 objfile = objfile->separate_debug_objfile_backlink;
2146 gdb_assert (objfile->pspace == pspace);
2147 }
2148
2149 for (d = display_chain; d != NULL; d = d->next)
2150 {
2151 if (d->pspace != pspace)
2152 continue;
2153
2154 if (lookup_objfile_from_block (d->block) == objfile
2155 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2156 {
2157 d->exp.reset ();
2158 d->block = NULL;
2159 }
2160 }
2161}
2162\f
2163
2164/* Print the value in stack frame FRAME of a variable specified by a
2165 struct symbol. NAME is the name to print; if NULL then VAR's print
2166 name will be used. STREAM is the ui_file on which to print the
2167 value. INDENT specifies the number of indent levels to print
2168 before printing the variable name.
2169
2170 This function invalidates FRAME. */
2171
2172void
2173print_variable_and_value (const char *name, struct symbol *var,
2174 struct frame_info *frame,
2175 struct ui_file *stream, int indent)
2176{
2177
2178 if (!name)
2179 name = SYMBOL_PRINT_NAME (var);
2180
2181 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2182 TRY
2183 {
2184 struct value *val;
2185 struct value_print_options opts;
2186
2187 /* READ_VAR_VALUE needs a block in order to deal with non-local
2188 references (i.e. to handle nested functions). In this context, we
2189 print variables that are local to this frame, so we can avoid passing
2190 a block to it. */
2191 val = read_var_value (var, NULL, frame);
2192 get_user_print_options (&opts);
2193 opts.deref_ref = 1;
2194 common_val_print (val, stream, indent, &opts, current_language);
2195
2196 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2197 function. */
2198 frame = NULL;
2199 }
2200 CATCH (except, RETURN_MASK_ERROR)
2201 {
2202 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2203 except.message);
2204 }
2205 END_CATCH
2206
2207 fprintf_filtered (stream, "\n");
2208}
2209
2210/* Subroutine of ui_printf to simplify it.
2211 Print VALUE to STREAM using FORMAT.
2212 VALUE is a C-style string on the target. */
2213
2214static void
2215printf_c_string (struct ui_file *stream, const char *format,
2216 struct value *value)
2217{
2218 gdb_byte *str;
2219 CORE_ADDR tem;
2220 int j;
2221
2222 tem = value_as_address (value);
2223 if (tem == 0)
2224 {
2225 fprintf_filtered (stream, format, "(null)");
2226 return;
2227 }
2228
2229 /* This is a %s argument. Find the length of the string. */
2230 for (j = 0;; j++)
2231 {
2232 gdb_byte c;
2233
2234 QUIT;
2235 read_memory (tem + j, &c, 1);
2236 if (c == 0)
2237 break;
2238 }
2239
2240 /* Copy the string contents into a string inside GDB. */
2241 str = (gdb_byte *) alloca (j + 1);
2242 if (j != 0)
2243 read_memory (tem, str, j);
2244 str[j] = 0;
2245
2246 fprintf_filtered (stream, format, (char *) str);
2247}
2248
2249/* Subroutine of ui_printf to simplify it.
2250 Print VALUE to STREAM using FORMAT.
2251 VALUE is a wide C-style string on the target. */
2252
2253static void
2254printf_wide_c_string (struct ui_file *stream, const char *format,
2255 struct value *value)
2256{
2257 gdb_byte *str;
2258 CORE_ADDR tem;
2259 int j;
2260 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2262 struct type *wctype = lookup_typename (current_language, gdbarch,
2263 "wchar_t", NULL, 0);
2264 int wcwidth = TYPE_LENGTH (wctype);
2265 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2266
2267 tem = value_as_address (value);
2268 if (tem == 0)
2269 {
2270 fprintf_filtered (stream, format, "(null)");
2271 return;
2272 }
2273
2274 /* This is a %s argument. Find the length of the string. */
2275 for (j = 0;; j += wcwidth)
2276 {
2277 QUIT;
2278 read_memory (tem + j, buf, wcwidth);
2279 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2280 break;
2281 }
2282
2283 /* Copy the string contents into a string inside GDB. */
2284 str = (gdb_byte *) alloca (j + wcwidth);
2285 if (j != 0)
2286 read_memory (tem, str, j);
2287 memset (&str[j], 0, wcwidth);
2288
2289 auto_obstack output;
2290
2291 convert_between_encodings (target_wide_charset (gdbarch),
2292 host_charset (),
2293 str, j, wcwidth,
2294 &output, translit_char);
2295 obstack_grow_str0 (&output, "");
2296
2297 fprintf_filtered (stream, format, obstack_base (&output));
2298}
2299
2300/* Subroutine of ui_printf to simplify it.
2301 Print VALUE, a floating point value, to STREAM using FORMAT. */
2302
2303static void
2304printf_floating (struct ui_file *stream, const char *format,
2305 struct value *value, enum argclass argclass)
2306{
2307 /* Parameter data. */
2308 struct type *param_type = value_type (value);
2309 struct gdbarch *gdbarch = get_type_arch (param_type);
2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2311
2312 /* Determine target type corresponding to the format string. */
2313 struct type *fmt_type;
2314 switch (argclass)
2315 {
2316 case double_arg:
2317 fmt_type = builtin_type (gdbarch)->builtin_double;
2318 break;
2319 case long_double_arg:
2320 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2321 break;
2322 case dec32float_arg:
2323 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2324 break;
2325 case dec64float_arg:
2326 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2327 break;
2328 case dec128float_arg:
2329 fmt_type = builtin_type (gdbarch)->builtin_declong;
2330 break;
2331 default:
2332 gdb_assert_not_reached ("unexpected argument class");
2333 }
2334
2335 /* To match the traditional GDB behavior, the conversion is
2336 done differently depending on the type of the parameter:
2337
2338 - if the parameter has floating-point type, it's value
2339 is converted to the target type;
2340
2341 - otherwise, if the parameter has a type that is of the
2342 same size as a built-in floating-point type, the value
2343 bytes are interpreted as if they were of that type, and
2344 then converted to the target type (this is not done for
2345 decimal floating-point argument classes);
2346
2347 - otherwise, if the source value has an integer value,
2348 it's value is converted to the target type;
2349
2350 - otherwise, an error is raised.
2351
2352 In either case, the result of the conversion is a byte buffer
2353 formatted in the target format for the target type. */
2354
2355 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2356 {
2357 param_type = float_type_from_length (param_type);
2358 if (param_type != value_type (value))
2359 value = value_from_contents (param_type, value_contents (value));
2360 }
2361
2362 value = value_cast (fmt_type, value);
2363
2364 /* Convert the value to a string and print it. */
2365 std::string str
2366 = target_float_to_string (value_contents (value), fmt_type, format);
2367 fputs_filtered (str.c_str (), stream);
2368}
2369
2370/* Subroutine of ui_printf to simplify it.
2371 Print VALUE, a target pointer, to STREAM using FORMAT. */
2372
2373static void
2374printf_pointer (struct ui_file *stream, const char *format,
2375 struct value *value)
2376{
2377 /* We avoid the host's %p because pointers are too
2378 likely to be the wrong size. The only interesting
2379 modifier for %p is a width; extract that, and then
2380 handle %p as glibc would: %#x or a literal "(nil)". */
2381
2382 const char *p;
2383 char *fmt, *fmt_p;
2384#ifdef PRINTF_HAS_LONG_LONG
2385 long long val = value_as_long (value);
2386#else
2387 long val = value_as_long (value);
2388#endif
2389
2390 fmt = (char *) alloca (strlen (format) + 5);
2391
2392 /* Copy up to the leading %. */
2393 p = format;
2394 fmt_p = fmt;
2395 while (*p)
2396 {
2397 int is_percent = (*p == '%');
2398
2399 *fmt_p++ = *p++;
2400 if (is_percent)
2401 {
2402 if (*p == '%')
2403 *fmt_p++ = *p++;
2404 else
2405 break;
2406 }
2407 }
2408
2409 if (val != 0)
2410 *fmt_p++ = '#';
2411
2412 /* Copy any width or flags. Only the "-" flag is valid for pointers
2413 -- see the format_pieces constructor. */
2414 while (*p == '-' || (*p >= '0' && *p < '9'))
2415 *fmt_p++ = *p++;
2416
2417 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2418 if (val != 0)
2419 {
2420#ifdef PRINTF_HAS_LONG_LONG
2421 *fmt_p++ = 'l';
2422#endif
2423 *fmt_p++ = 'l';
2424 *fmt_p++ = 'x';
2425 *fmt_p++ = '\0';
2426 fprintf_filtered (stream, fmt, val);
2427 }
2428 else
2429 {
2430 *fmt_p++ = 's';
2431 *fmt_p++ = '\0';
2432 fprintf_filtered (stream, fmt, "(nil)");
2433 }
2434}
2435
2436/* printf "printf format string" ARG to STREAM. */
2437
2438static void
2439ui_printf (const char *arg, struct ui_file *stream)
2440{
2441 const char *s = arg;
2442 std::vector<struct value *> val_args;
2443
2444 if (s == 0)
2445 error_no_arg (_("format-control string and values to print"));
2446
2447 s = skip_spaces (s);
2448
2449 /* A format string should follow, enveloped in double quotes. */
2450 if (*s++ != '"')
2451 error (_("Bad format string, missing '\"'."));
2452
2453 format_pieces fpieces (&s);
2454
2455 if (*s++ != '"')
2456 error (_("Bad format string, non-terminated '\"'."));
2457
2458 s = skip_spaces (s);
2459
2460 if (*s != ',' && *s != 0)
2461 error (_("Invalid argument syntax"));
2462
2463 if (*s == ',')
2464 s++;
2465 s = skip_spaces (s);
2466
2467 {
2468 int nargs_wanted;
2469 int i;
2470 const char *current_substring;
2471
2472 nargs_wanted = 0;
2473 for (auto &&piece : fpieces)
2474 if (piece.argclass != literal_piece)
2475 ++nargs_wanted;
2476
2477 /* Now, parse all arguments and evaluate them.
2478 Store the VALUEs in VAL_ARGS. */
2479
2480 while (*s != '\0')
2481 {
2482 const char *s1;
2483
2484 s1 = s;
2485 val_args.push_back (parse_to_comma_and_eval (&s1));
2486
2487 s = s1;
2488 if (*s == ',')
2489 s++;
2490 }
2491
2492 if (val_args.size () != nargs_wanted)
2493 error (_("Wrong number of arguments for specified format-string"));
2494
2495 /* Now actually print them. */
2496 i = 0;
2497 for (auto &&piece : fpieces)
2498 {
2499 current_substring = piece.string;
2500 switch (piece.argclass)
2501 {
2502 case string_arg:
2503 printf_c_string (stream, current_substring, val_args[i]);
2504 break;
2505 case wide_string_arg:
2506 printf_wide_c_string (stream, current_substring, val_args[i]);
2507 break;
2508 case wide_char_arg:
2509 {
2510 struct gdbarch *gdbarch
2511 = get_type_arch (value_type (val_args[i]));
2512 struct type *wctype = lookup_typename (current_language, gdbarch,
2513 "wchar_t", NULL, 0);
2514 struct type *valtype;
2515 const gdb_byte *bytes;
2516
2517 valtype = value_type (val_args[i]);
2518 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2519 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2520 error (_("expected wchar_t argument for %%lc"));
2521
2522 bytes = value_contents (val_args[i]);
2523
2524 auto_obstack output;
2525
2526 convert_between_encodings (target_wide_charset (gdbarch),
2527 host_charset (),
2528 bytes, TYPE_LENGTH (valtype),
2529 TYPE_LENGTH (valtype),
2530 &output, translit_char);
2531 obstack_grow_str0 (&output, "");
2532
2533 fprintf_filtered (stream, current_substring,
2534 obstack_base (&output));
2535 }
2536 break;
2537 case long_long_arg:
2538#ifdef PRINTF_HAS_LONG_LONG
2539 {
2540 long long val = value_as_long (val_args[i]);
2541
2542 fprintf_filtered (stream, current_substring, val);
2543 break;
2544 }
2545#else
2546 error (_("long long not supported in printf"));
2547#endif
2548 case int_arg:
2549 {
2550 int val = value_as_long (val_args[i]);
2551
2552 fprintf_filtered (stream, current_substring, val);
2553 break;
2554 }
2555 case long_arg:
2556 {
2557 long val = value_as_long (val_args[i]);
2558
2559 fprintf_filtered (stream, current_substring, val);
2560 break;
2561 }
2562 /* Handles floating-point values. */
2563 case double_arg:
2564 case long_double_arg:
2565 case dec32float_arg:
2566 case dec64float_arg:
2567 case dec128float_arg:
2568 printf_floating (stream, current_substring, val_args[i],
2569 piece.argclass);
2570 break;
2571 case ptr_arg:
2572 printf_pointer (stream, current_substring, val_args[i]);
2573 break;
2574 case literal_piece:
2575 /* Print a portion of the format string that has no
2576 directives. Note that this will not include any
2577 ordinary %-specs, but it might include "%%". That is
2578 why we use printf_filtered and not puts_filtered here.
2579 Also, we pass a dummy argument because some platforms
2580 have modified GCC to include -Wformat-security by
2581 default, which will warn here if there is no
2582 argument. */
2583 fprintf_filtered (stream, current_substring, 0);
2584 break;
2585 default:
2586 internal_error (__FILE__, __LINE__,
2587 _("failed internal consistency check"));
2588 }
2589 /* Maybe advance to the next argument. */
2590 if (piece.argclass != literal_piece)
2591 ++i;
2592 }
2593 }
2594}
2595
2596/* Implement the "printf" command. */
2597
2598static void
2599printf_command (const char *arg, int from_tty)
2600{
2601 ui_printf (arg, gdb_stdout);
2602 gdb_flush (gdb_stdout);
2603}
2604
2605/* Implement the "eval" command. */
2606
2607static void
2608eval_command (const char *arg, int from_tty)
2609{
2610 string_file stb;
2611
2612 ui_printf (arg, &stb);
2613
2614 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2615
2616 execute_command (expanded.c_str (), from_tty);
2617}
2618
2619void
2620_initialize_printcmd (void)
2621{
2622 struct cmd_list_element *c;
2623
2624 current_display_number = -1;
2625
2626 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2627
2628 add_info ("address", info_address_command,
2629 _("Describe where symbol SYM is stored."));
2630
2631 add_info ("symbol", info_symbol_command, _("\
2632Describe what symbol is at location ADDR.\n\
2633Only for symbols with fixed locations (global or static scope)."));
2634
2635 add_com ("x", class_vars, x_command, _("\
2636Examine memory: x/FMT ADDRESS.\n\
2637ADDRESS is an expression for the memory address to examine.\n\
2638FMT is a repeat count followed by a format letter and a size letter.\n\
2639Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2640 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2641 and z(hex, zero padded on the left).\n\
2642Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2643The specified number of objects of the specified size are printed\n\
2644according to the format. If a negative number is specified, memory is\n\
2645examined backward from the address.\n\n\
2646Defaults for format and size letters are those previously used.\n\
2647Default count is 1. Default address is following last thing printed\n\
2648with this command or \"print\"."));
2649
2650#if 0
2651 add_com ("whereis", class_vars, whereis_command,
2652 _("Print line number and file of definition of variable."));
2653#endif
2654
2655 add_info ("display", info_display_command, _("\
2656Expressions to display when program stops, with code numbers."));
2657
2658 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2659Cancel some expressions to be displayed when program stops.\n\
2660Arguments are the code numbers of the expressions to stop displaying.\n\
2661No argument means cancel all automatic-display expressions.\n\
2662\"delete display\" has the same effect as this command.\n\
2663Do \"info display\" to see current list of code numbers."),
2664 &cmdlist);
2665
2666 add_com ("display", class_vars, display_command, _("\
2667Print value of expression EXP each time the program stops.\n\
2668/FMT may be used before EXP as in the \"print\" command.\n\
2669/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2670as in the \"x\" command, and then EXP is used to get the address to examine\n\
2671and examining is done as in the \"x\" command.\n\n\
2672With no argument, display all currently requested auto-display expressions.\n\
2673Use \"undisplay\" to cancel display requests previously made."));
2674
2675 add_cmd ("display", class_vars, enable_display_command, _("\
2676Enable some expressions to be displayed when program stops.\n\
2677Arguments are the code numbers of the expressions to resume displaying.\n\
2678No argument means enable all automatic-display expressions.\n\
2679Do \"info display\" to see current list of code numbers."), &enablelist);
2680
2681 add_cmd ("display", class_vars, disable_display_command, _("\
2682Disable some expressions to be displayed when program stops.\n\
2683Arguments are the code numbers of the expressions to stop displaying.\n\
2684No argument means disable all automatic-display expressions.\n\
2685Do \"info display\" to see current list of code numbers."), &disablelist);
2686
2687 add_cmd ("display", class_vars, undisplay_command, _("\
2688Cancel some expressions to be displayed when program stops.\n\
2689Arguments are the code numbers of the expressions to stop displaying.\n\
2690No argument means cancel all automatic-display expressions.\n\
2691Do \"info display\" to see current list of code numbers."), &deletelist);
2692
2693 add_com ("printf", class_vars, printf_command, _("\
2694Formatted printing, like the C \"printf\" function.\n\
2695Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2696This supports most C printf format specifications, like %s, %d, etc."));
2697
2698 add_com ("output", class_vars, output_command, _("\
2699Like \"print\" but don't put in value history and don't print newline.\n\
2700This is useful in user-defined commands."));
2701
2702 add_prefix_cmd ("set", class_vars, set_command, _("\
2703Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2704syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2705example). VAR may be a debugger \"convenience\" variable (names starting\n\
2706with $), a register (a few standard names starting with $), or an actual\n\
2707variable in the program being debugged. EXP is any valid expression.\n\
2708Use \"set variable\" for variables with names identical to set subcommands.\n\
2709\n\
2710With a subcommand, this command modifies parts of the gdb environment.\n\
2711You can see these environment settings with the \"show\" command."),
2712 &setlist, "set ", 1, &cmdlist);
2713 if (dbx_commands)
2714 add_com ("assign", class_vars, set_command, _("\
2715Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2716syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2717example). VAR may be a debugger \"convenience\" variable (names starting\n\
2718with $), a register (a few standard names starting with $), or an actual\n\
2719variable in the program being debugged. EXP is any valid expression.\n\
2720Use \"set variable\" for variables with names identical to set subcommands.\n\
2721\nWith a subcommand, this command modifies parts of the gdb environment.\n\
2722You can see these environment settings with the \"show\" command."));
2723
2724 /* "call" is the same as "set", but handy for dbx users to call fns. */
2725 c = add_com ("call", class_vars, call_command, _("\
2726Call a function in the program.\n\
2727The argument is the function name and arguments, in the notation of the\n\
2728current working language. The result is printed and saved in the value\n\
2729history, if it is not void."));
2730 set_cmd_completer (c, expression_completer);
2731
2732 add_cmd ("variable", class_vars, set_command, _("\
2733Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2734syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2735example). VAR may be a debugger \"convenience\" variable (names starting\n\
2736with $), a register (a few standard names starting with $), or an actual\n\
2737variable in the program being debugged. EXP is any valid expression.\n\
2738This may usually be abbreviated to simply \"set\"."),
2739 &setlist);
2740 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2741
2742 c = add_com ("print", class_vars, print_command, _("\
2743Print value of expression EXP.\n\
2744Variables accessible are those of the lexical environment of the selected\n\
2745stack frame, plus all those whose scope is global or an entire file.\n\
2746\n\
2747$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2748$$NUM refers to NUM'th value back from the last one.\n\
2749Names starting with $ refer to registers (with the values they would have\n\
2750if the program were to return to the stack frame now selected, restoring\n\
2751all registers saved by frames farther in) or else to debugger\n\
2752\"convenience\" variables (any such name not a known register).\n\
2753Use assignment expressions to give values to convenience variables.\n\
2754\n\
2755{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2756@ is a binary operator for treating consecutive data objects\n\
2757anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2758element is FOO, whose second element is stored in the space following\n\
2759where FOO is stored, etc. FOO must be an expression whose value\n\
2760resides in memory.\n\
2761\n\
2762EXP may be preceded with /FMT, where FMT is a format letter\n\
2763but no count or size letter (see \"x\" command)."));
2764 set_cmd_completer (c, expression_completer);
2765 add_com_alias ("p", "print", class_vars, 1);
2766 add_com_alias ("inspect", "print", class_vars, 1);
2767
2768 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2769 &max_symbolic_offset, _("\
2770Set the largest offset that will be printed in <symbol+1234> form."), _("\
2771Show the largest offset that will be printed in <symbol+1234> form."), _("\
2772Tell GDB to only display the symbolic form of an address if the\n\
2773offset between the closest earlier symbol and the address is less than\n\
2774the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2775to always print the symbolic form of an address if any symbol precedes\n\
2776it. Zero is equivalent to \"unlimited\"."),
2777 NULL,
2778 show_max_symbolic_offset,
2779 &setprintlist, &showprintlist);
2780 add_setshow_boolean_cmd ("symbol-filename", no_class,
2781 &print_symbol_filename, _("\
2782Set printing of source filename and line number with <symbol>."), _("\
2783Show printing of source filename and line number with <symbol>."), NULL,
2784 NULL,
2785 show_print_symbol_filename,
2786 &setprintlist, &showprintlist);
2787
2788 add_com ("eval", no_class, eval_command, _("\
2789Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2790a command line, and call it."));
2791}
This page took 0.035884 seconds and 4 git commands to generate.