| 1 | /* Program and address space management, for GDB, the GNU debugger. |
| 2 | |
| 3 | Copyright (C) 2009-2014 Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of GDB. |
| 6 | |
| 7 | This program is free software; you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation; either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | This program is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "defs.h" |
| 21 | #include "gdbcmd.h" |
| 22 | #include "objfiles.h" |
| 23 | #include "arch-utils.h" |
| 24 | #include "gdbcore.h" |
| 25 | #include "solib.h" |
| 26 | #include "gdbthread.h" |
| 27 | |
| 28 | /* The last program space number assigned. */ |
| 29 | int last_program_space_num = 0; |
| 30 | |
| 31 | /* The head of the program spaces list. */ |
| 32 | struct program_space *program_spaces; |
| 33 | |
| 34 | /* Pointer to the current program space. */ |
| 35 | struct program_space *current_program_space; |
| 36 | |
| 37 | /* The last address space number assigned. */ |
| 38 | static int highest_address_space_num; |
| 39 | |
| 40 | \f |
| 41 | |
| 42 | /* Keep a registry of per-program_space data-pointers required by other GDB |
| 43 | modules. */ |
| 44 | |
| 45 | DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD) |
| 46 | |
| 47 | /* An address space. It is used for comparing if pspaces/inferior/threads |
| 48 | see the same address space and for associating caches to each address |
| 49 | space. */ |
| 50 | |
| 51 | struct address_space |
| 52 | { |
| 53 | int num; |
| 54 | |
| 55 | /* Per aspace data-pointers required by other GDB modules. */ |
| 56 | REGISTRY_FIELDS; |
| 57 | }; |
| 58 | |
| 59 | /* Keep a registry of per-address_space data-pointers required by other GDB |
| 60 | modules. */ |
| 61 | |
| 62 | DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD) |
| 63 | |
| 64 | \f |
| 65 | |
| 66 | /* Create a new address space object, and add it to the list. */ |
| 67 | |
| 68 | struct address_space * |
| 69 | new_address_space (void) |
| 70 | { |
| 71 | struct address_space *aspace; |
| 72 | |
| 73 | aspace = XCNEW (struct address_space); |
| 74 | aspace->num = ++highest_address_space_num; |
| 75 | address_space_alloc_data (aspace); |
| 76 | |
| 77 | return aspace; |
| 78 | } |
| 79 | |
| 80 | /* Maybe create a new address space object, and add it to the list, or |
| 81 | return a pointer to an existing address space, in case inferiors |
| 82 | share an address space on this target system. */ |
| 83 | |
| 84 | struct address_space * |
| 85 | maybe_new_address_space (void) |
| 86 | { |
| 87 | int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ()); |
| 88 | |
| 89 | if (shared_aspace) |
| 90 | { |
| 91 | /* Just return the first in the list. */ |
| 92 | return program_spaces->aspace; |
| 93 | } |
| 94 | |
| 95 | return new_address_space (); |
| 96 | } |
| 97 | |
| 98 | static void |
| 99 | free_address_space (struct address_space *aspace) |
| 100 | { |
| 101 | address_space_free_data (aspace); |
| 102 | xfree (aspace); |
| 103 | } |
| 104 | |
| 105 | int |
| 106 | address_space_num (struct address_space *aspace) |
| 107 | { |
| 108 | return aspace->num; |
| 109 | } |
| 110 | |
| 111 | /* Start counting over from scratch. */ |
| 112 | |
| 113 | static void |
| 114 | init_address_spaces (void) |
| 115 | { |
| 116 | highest_address_space_num = 0; |
| 117 | } |
| 118 | |
| 119 | \f |
| 120 | |
| 121 | /* Adds a new empty program space to the program space list, and binds |
| 122 | it to ASPACE. Returns the pointer to the new object. */ |
| 123 | |
| 124 | struct program_space * |
| 125 | add_program_space (struct address_space *aspace) |
| 126 | { |
| 127 | struct program_space *pspace; |
| 128 | |
| 129 | pspace = XCNEW (struct program_space); |
| 130 | |
| 131 | pspace->num = ++last_program_space_num; |
| 132 | pspace->aspace = aspace; |
| 133 | |
| 134 | program_space_alloc_data (pspace); |
| 135 | |
| 136 | pspace->next = program_spaces; |
| 137 | program_spaces = pspace; |
| 138 | |
| 139 | return pspace; |
| 140 | } |
| 141 | |
| 142 | /* Releases program space PSPACE, and all its contents (shared |
| 143 | libraries, objfiles, and any other references to the PSPACE in |
| 144 | other modules). It is an internal error to call this when PSPACE |
| 145 | is the current program space, since there should always be a |
| 146 | program space. */ |
| 147 | |
| 148 | static void |
| 149 | release_program_space (struct program_space *pspace) |
| 150 | { |
| 151 | struct cleanup *old_chain = save_current_program_space (); |
| 152 | |
| 153 | gdb_assert (pspace != current_program_space); |
| 154 | |
| 155 | set_current_program_space (pspace); |
| 156 | |
| 157 | breakpoint_program_space_exit (pspace); |
| 158 | no_shared_libraries (NULL, 0); |
| 159 | exec_close (); |
| 160 | free_all_objfiles (); |
| 161 | if (!gdbarch_has_shared_address_space (target_gdbarch ())) |
| 162 | free_address_space (pspace->aspace); |
| 163 | clear_section_table (&pspace->target_sections); |
| 164 | clear_program_space_solib_cache (pspace); |
| 165 | /* Discard any data modules have associated with the PSPACE. */ |
| 166 | program_space_free_data (pspace); |
| 167 | xfree (pspace); |
| 168 | |
| 169 | do_cleanups (old_chain); |
| 170 | } |
| 171 | |
| 172 | /* Copies program space SRC to DEST. Copies the main executable file, |
| 173 | and the main symbol file. Returns DEST. */ |
| 174 | |
| 175 | struct program_space * |
| 176 | clone_program_space (struct program_space *dest, struct program_space *src) |
| 177 | { |
| 178 | struct cleanup *old_chain; |
| 179 | |
| 180 | old_chain = save_current_program_space (); |
| 181 | |
| 182 | set_current_program_space (dest); |
| 183 | |
| 184 | if (src->pspace_exec_filename != NULL) |
| 185 | exec_file_attach (src->pspace_exec_filename, 0); |
| 186 | |
| 187 | if (src->symfile_object_file != NULL) |
| 188 | symbol_file_add_main (objfile_name (src->symfile_object_file), 0); |
| 189 | |
| 190 | do_cleanups (old_chain); |
| 191 | return dest; |
| 192 | } |
| 193 | |
| 194 | /* Sets PSPACE as the current program space. It is the caller's |
| 195 | responsibility to make sure that the currently selected |
| 196 | inferior/thread matches the selected program space. */ |
| 197 | |
| 198 | void |
| 199 | set_current_program_space (struct program_space *pspace) |
| 200 | { |
| 201 | if (current_program_space == pspace) |
| 202 | return; |
| 203 | |
| 204 | gdb_assert (pspace != NULL); |
| 205 | |
| 206 | current_program_space = pspace; |
| 207 | |
| 208 | /* Different symbols change our view of the frame chain. */ |
| 209 | reinit_frame_cache (); |
| 210 | } |
| 211 | |
| 212 | /* A cleanups callback, helper for save_current_program_space |
| 213 | below. */ |
| 214 | |
| 215 | static void |
| 216 | restore_program_space (void *arg) |
| 217 | { |
| 218 | struct program_space *saved_pspace = arg; |
| 219 | |
| 220 | set_current_program_space (saved_pspace); |
| 221 | } |
| 222 | |
| 223 | /* Save the current program space so that it may be restored by a later |
| 224 | call to do_cleanups. Returns the struct cleanup pointer needed for |
| 225 | later doing the cleanup. */ |
| 226 | |
| 227 | struct cleanup * |
| 228 | save_current_program_space (void) |
| 229 | { |
| 230 | struct cleanup *old_chain = make_cleanup (restore_program_space, |
| 231 | current_program_space); |
| 232 | |
| 233 | return old_chain; |
| 234 | } |
| 235 | |
| 236 | /* Returns true iff there's no inferior bound to PSPACE. */ |
| 237 | |
| 238 | static int |
| 239 | pspace_empty_p (struct program_space *pspace) |
| 240 | { |
| 241 | if (find_inferior_for_program_space (pspace) != NULL) |
| 242 | return 0; |
| 243 | |
| 244 | return 1; |
| 245 | } |
| 246 | |
| 247 | /* Prune away automatically added program spaces that aren't required |
| 248 | anymore. */ |
| 249 | |
| 250 | void |
| 251 | prune_program_spaces (void) |
| 252 | { |
| 253 | struct program_space *ss, **ss_link; |
| 254 | struct program_space *current = current_program_space; |
| 255 | |
| 256 | ss = program_spaces; |
| 257 | ss_link = &program_spaces; |
| 258 | while (ss) |
| 259 | { |
| 260 | if (ss == current || !pspace_empty_p (ss)) |
| 261 | { |
| 262 | ss_link = &ss->next; |
| 263 | ss = *ss_link; |
| 264 | continue; |
| 265 | } |
| 266 | |
| 267 | *ss_link = ss->next; |
| 268 | release_program_space (ss); |
| 269 | ss = *ss_link; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /* Prints the list of program spaces and their details on UIOUT. If |
| 274 | REQUESTED is not -1, it's the ID of the pspace that should be |
| 275 | printed. Otherwise, all spaces are printed. */ |
| 276 | |
| 277 | static void |
| 278 | print_program_space (struct ui_out *uiout, int requested) |
| 279 | { |
| 280 | struct program_space *pspace; |
| 281 | int count = 0; |
| 282 | struct cleanup *old_chain; |
| 283 | |
| 284 | /* Might as well prune away unneeded ones, so the user doesn't even |
| 285 | seem them. */ |
| 286 | prune_program_spaces (); |
| 287 | |
| 288 | /* Compute number of pspaces we will print. */ |
| 289 | ALL_PSPACES (pspace) |
| 290 | { |
| 291 | if (requested != -1 && pspace->num != requested) |
| 292 | continue; |
| 293 | |
| 294 | ++count; |
| 295 | } |
| 296 | |
| 297 | /* There should always be at least one. */ |
| 298 | gdb_assert (count > 0); |
| 299 | |
| 300 | old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces"); |
| 301 | ui_out_table_header (uiout, 1, ui_left, "current", ""); |
| 302 | ui_out_table_header (uiout, 4, ui_left, "id", "Id"); |
| 303 | ui_out_table_header (uiout, 17, ui_left, "exec", "Executable"); |
| 304 | ui_out_table_body (uiout); |
| 305 | |
| 306 | ALL_PSPACES (pspace) |
| 307 | { |
| 308 | struct cleanup *chain2; |
| 309 | struct inferior *inf; |
| 310 | int printed_header; |
| 311 | |
| 312 | if (requested != -1 && requested != pspace->num) |
| 313 | continue; |
| 314 | |
| 315 | chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); |
| 316 | |
| 317 | if (pspace == current_program_space) |
| 318 | ui_out_field_string (uiout, "current", "*"); |
| 319 | else |
| 320 | ui_out_field_skip (uiout, "current"); |
| 321 | |
| 322 | ui_out_field_int (uiout, "id", pspace->num); |
| 323 | |
| 324 | if (pspace->pspace_exec_filename) |
| 325 | ui_out_field_string (uiout, "exec", pspace->pspace_exec_filename); |
| 326 | else |
| 327 | ui_out_field_skip (uiout, "exec"); |
| 328 | |
| 329 | /* Print extra info that doesn't really fit in tabular form. |
| 330 | Currently, we print the list of inferiors bound to a pspace. |
| 331 | There can be more than one inferior bound to the same pspace, |
| 332 | e.g., both parent/child inferiors in a vfork, or, on targets |
| 333 | that share pspaces between inferiors. */ |
| 334 | printed_header = 0; |
| 335 | for (inf = inferior_list; inf; inf = inf->next) |
| 336 | if (inf->pspace == pspace) |
| 337 | { |
| 338 | if (!printed_header) |
| 339 | { |
| 340 | printed_header = 1; |
| 341 | printf_filtered ("\n\tBound inferiors: ID %d (%s)", |
| 342 | inf->num, |
| 343 | target_pid_to_str (pid_to_ptid (inf->pid))); |
| 344 | } |
| 345 | else |
| 346 | printf_filtered (", ID %d (%s)", |
| 347 | inf->num, |
| 348 | target_pid_to_str (pid_to_ptid (inf->pid))); |
| 349 | } |
| 350 | |
| 351 | ui_out_text (uiout, "\n"); |
| 352 | do_cleanups (chain2); |
| 353 | } |
| 354 | |
| 355 | do_cleanups (old_chain); |
| 356 | } |
| 357 | |
| 358 | /* Boolean test for an already-known program space id. */ |
| 359 | |
| 360 | static int |
| 361 | valid_program_space_id (int num) |
| 362 | { |
| 363 | struct program_space *pspace; |
| 364 | |
| 365 | ALL_PSPACES (pspace) |
| 366 | if (pspace->num == num) |
| 367 | return 1; |
| 368 | |
| 369 | return 0; |
| 370 | } |
| 371 | |
| 372 | /* If ARGS is NULL or empty, print information about all program |
| 373 | spaces. Otherwise, ARGS is a text representation of a LONG |
| 374 | indicating which the program space to print information about. */ |
| 375 | |
| 376 | static void |
| 377 | maintenance_info_program_spaces_command (char *args, int from_tty) |
| 378 | { |
| 379 | int requested = -1; |
| 380 | |
| 381 | if (args && *args) |
| 382 | { |
| 383 | requested = parse_and_eval_long (args); |
| 384 | if (!valid_program_space_id (requested)) |
| 385 | error (_("program space ID %d not known."), requested); |
| 386 | } |
| 387 | |
| 388 | print_program_space (current_uiout, requested); |
| 389 | } |
| 390 | |
| 391 | /* Simply returns the count of program spaces. */ |
| 392 | |
| 393 | int |
| 394 | number_of_program_spaces (void) |
| 395 | { |
| 396 | struct program_space *pspace; |
| 397 | int count = 0; |
| 398 | |
| 399 | ALL_PSPACES (pspace) |
| 400 | count++; |
| 401 | |
| 402 | return count; |
| 403 | } |
| 404 | |
| 405 | /* Update all program spaces matching to address spaces. The user may |
| 406 | have created several program spaces, and loaded executables into |
| 407 | them before connecting to the target interface that will create the |
| 408 | inferiors. All that happens before GDB has a chance to know if the |
| 409 | inferiors will share an address space or not. Call this after |
| 410 | having connected to the target interface and having fetched the |
| 411 | target description, to fixup the program/address spaces mappings. |
| 412 | |
| 413 | It is assumed that there are no bound inferiors yet, otherwise, |
| 414 | they'd be left with stale referenced to released aspaces. */ |
| 415 | |
| 416 | void |
| 417 | update_address_spaces (void) |
| 418 | { |
| 419 | int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ()); |
| 420 | struct program_space *pspace; |
| 421 | struct inferior *inf; |
| 422 | |
| 423 | init_address_spaces (); |
| 424 | |
| 425 | if (shared_aspace) |
| 426 | { |
| 427 | struct address_space *aspace = new_address_space (); |
| 428 | |
| 429 | free_address_space (current_program_space->aspace); |
| 430 | ALL_PSPACES (pspace) |
| 431 | pspace->aspace = aspace; |
| 432 | } |
| 433 | else |
| 434 | ALL_PSPACES (pspace) |
| 435 | { |
| 436 | free_address_space (pspace->aspace); |
| 437 | pspace->aspace = new_address_space (); |
| 438 | } |
| 439 | |
| 440 | for (inf = inferior_list; inf; inf = inf->next) |
| 441 | if (gdbarch_has_global_solist (target_gdbarch ())) |
| 442 | inf->aspace = maybe_new_address_space (); |
| 443 | else |
| 444 | inf->aspace = inf->pspace->aspace; |
| 445 | } |
| 446 | |
| 447 | /* Save the current program space so that it may be restored by a later |
| 448 | call to do_cleanups. Returns the struct cleanup pointer needed for |
| 449 | later doing the cleanup. */ |
| 450 | |
| 451 | struct cleanup * |
| 452 | save_current_space_and_thread (void) |
| 453 | { |
| 454 | struct cleanup *old_chain; |
| 455 | |
| 456 | /* If restoring to null thread, we need to restore the pspace as |
| 457 | well, hence, we need to save the current program space first. */ |
| 458 | old_chain = save_current_program_space (); |
| 459 | /* There's no need to save the current inferior here. |
| 460 | That is handled by make_cleanup_restore_current_thread. */ |
| 461 | make_cleanup_restore_current_thread (); |
| 462 | |
| 463 | return old_chain; |
| 464 | } |
| 465 | |
| 466 | /* Switches full context to program space PSPACE. Switches to the |
| 467 | first thread found bound to PSPACE. */ |
| 468 | |
| 469 | void |
| 470 | switch_to_program_space_and_thread (struct program_space *pspace) |
| 471 | { |
| 472 | struct inferior *inf; |
| 473 | |
| 474 | inf = find_inferior_for_program_space (pspace); |
| 475 | if (inf != NULL) |
| 476 | { |
| 477 | struct thread_info *tp; |
| 478 | |
| 479 | tp = any_live_thread_of_process (inf->pid); |
| 480 | if (tp != NULL) |
| 481 | { |
| 482 | switch_to_thread (tp->ptid); |
| 483 | /* Switching thread switches pspace implicitly. We're |
| 484 | done. */ |
| 485 | return; |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | switch_to_thread (null_ptid); |
| 490 | set_current_program_space (pspace); |
| 491 | } |
| 492 | |
| 493 | \f |
| 494 | |
| 495 | /* See progspace.h. */ |
| 496 | |
| 497 | void |
| 498 | clear_program_space_solib_cache (struct program_space *pspace) |
| 499 | { |
| 500 | VEC_free (so_list_ptr, pspace->added_solibs); |
| 501 | |
| 502 | free_char_ptr_vec (pspace->deleted_solibs); |
| 503 | pspace->deleted_solibs = NULL; |
| 504 | } |
| 505 | |
| 506 | \f |
| 507 | |
| 508 | void |
| 509 | initialize_progspace (void) |
| 510 | { |
| 511 | add_cmd ("program-spaces", class_maintenance, |
| 512 | maintenance_info_program_spaces_command, |
| 513 | _("Info about currently known program spaces."), |
| 514 | &maintenanceinfolist); |
| 515 | |
| 516 | /* There's always one program space. Note that this function isn't |
| 517 | an automatic _initialize_foo function, since other |
| 518 | _initialize_foo routines may need to install their per-pspace |
| 519 | data keys. We can only allocate a progspace when all those |
| 520 | modules have done that. Do this before |
| 521 | initialize_current_architecture, because that accesses exec_bfd, |
| 522 | which in turn dereferences current_program_space. */ |
| 523 | current_program_space = add_program_space (new_address_space ()); |
| 524 | } |