Overload catch_command_errors
[deliverable/binutils-gdb.git] / gdb / remote.c
... / ...
CommitLineData
1/* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20/* See the GDB User Guide for details of the GDB remote protocol. */
21
22#include "defs.h"
23#include <ctype.h>
24#include <fcntl.h>
25#include "inferior.h"
26#include "infrun.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "target.h"
30/*#include "terminal.h" */
31#include "gdbcmd.h"
32#include "objfiles.h"
33#include "gdb-stabs.h"
34#include "gdbthread.h"
35#include "remote.h"
36#include "remote-notif.h"
37#include "regcache.h"
38#include "value.h"
39#include "observer.h"
40#include "solib.h"
41#include "cli/cli-decode.h"
42#include "cli/cli-setshow.h"
43#include "target-descriptions.h"
44#include "gdb_bfd.h"
45#include "filestuff.h"
46#include "rsp-low.h"
47#include "disasm.h"
48#include "location.h"
49
50#include "gdb_sys_time.h"
51
52#include "event-loop.h"
53#include "event-top.h"
54#include "inf-loop.h"
55
56#include <signal.h>
57#include "serial.h"
58
59#include "gdbcore.h" /* for exec_bfd */
60
61#include "remote-fileio.h"
62#include "gdb/fileio.h"
63#include <sys/stat.h>
64#include "xml-support.h"
65
66#include "memory-map.h"
67
68#include "tracepoint.h"
69#include "ax.h"
70#include "ax-gdb.h"
71#include "agent.h"
72#include "btrace.h"
73#include "record-btrace.h"
74#include <algorithm>
75#include "common/scoped_restore.h"
76#include "environ.h"
77
78/* Temp hacks for tracepoint encoding migration. */
79static char *target_buf;
80static long target_buf_size;
81
82/* Per-program-space data key. */
83static const struct program_space_data *remote_pspace_data;
84
85/* The variable registered as the control variable used by the
86 remote exec-file commands. While the remote exec-file setting is
87 per-program-space, the set/show machinery uses this as the
88 location of the remote exec-file value. */
89static char *remote_exec_file_var;
90
91/* The size to align memory write packets, when practical. The protocol
92 does not guarantee any alignment, and gdb will generate short
93 writes and unaligned writes, but even as a best-effort attempt this
94 can improve bulk transfers. For instance, if a write is misaligned
95 relative to the target's data bus, the stub may need to make an extra
96 round trip fetching data from the target. This doesn't make a
97 huge difference, but it's easy to do, so we try to be helpful.
98
99 The alignment chosen is arbitrary; usually data bus width is
100 important here, not the possibly larger cache line size. */
101enum { REMOTE_ALIGN_WRITES = 16 };
102
103/* Prototypes for local functions. */
104static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
105static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
106 int forever, int *is_notif);
107
108static void remote_files_info (struct target_ops *ignore);
109
110static void remote_prepare_to_store (struct target_ops *self,
111 struct regcache *regcache);
112
113static void remote_open_1 (const char *, int, struct target_ops *,
114 int extended_p);
115
116static void remote_close (struct target_ops *self);
117
118struct remote_state;
119
120static int remote_vkill (int pid, struct remote_state *rs);
121
122static void remote_kill_k (void);
123
124static void remote_mourn (struct target_ops *ops);
125
126static void extended_remote_restart (void);
127
128static void remote_send (char **buf, long *sizeof_buf_p);
129
130static int readchar (int timeout);
131
132static void remote_serial_write (const char *str, int len);
133
134static void remote_kill (struct target_ops *ops);
135
136static int remote_can_async_p (struct target_ops *);
137
138static int remote_is_async_p (struct target_ops *);
139
140static void remote_async (struct target_ops *ops, int enable);
141
142static void remote_thread_events (struct target_ops *ops, int enable);
143
144static void interrupt_query (void);
145
146static void set_general_thread (ptid_t ptid);
147static void set_continue_thread (ptid_t ptid);
148
149static void get_offsets (void);
150
151static void skip_frame (void);
152
153static long read_frame (char **buf_p, long *sizeof_buf);
154
155static int hexnumlen (ULONGEST num);
156
157static void init_remote_ops (void);
158
159static void init_extended_remote_ops (void);
160
161static void remote_stop (struct target_ops *self, ptid_t);
162
163static int stubhex (int ch);
164
165static int hexnumstr (char *, ULONGEST);
166
167static int hexnumnstr (char *, ULONGEST, int);
168
169static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171static void print_packet (const char *);
172
173static void compare_sections_command (char *, int);
174
175static void packet_command (char *, int);
176
177static int stub_unpack_int (char *buff, int fieldlength);
178
179static ptid_t remote_current_thread (ptid_t oldptid);
180
181static int putpkt_binary (const char *buf, int cnt);
182
183static void check_binary_download (CORE_ADDR addr);
184
185struct packet_config;
186
187static void show_packet_config_cmd (struct packet_config *config);
188
189static void show_remote_protocol_packet_cmd (struct ui_file *file,
190 int from_tty,
191 struct cmd_list_element *c,
192 const char *value);
193
194static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
195static ptid_t read_ptid (char *buf, char **obuf);
196
197static void remote_set_permissions (struct target_ops *self);
198
199static int remote_get_trace_status (struct target_ops *self,
200 struct trace_status *ts);
201
202static int remote_upload_tracepoints (struct target_ops *self,
203 struct uploaded_tp **utpp);
204
205static int remote_upload_trace_state_variables (struct target_ops *self,
206 struct uploaded_tsv **utsvp);
207
208static void remote_query_supported (void);
209
210static void remote_check_symbols (void);
211
212struct stop_reply;
213static void stop_reply_xfree (struct stop_reply *);
214static void remote_parse_stop_reply (char *, struct stop_reply *);
215static void push_stop_reply (struct stop_reply *);
216static void discard_pending_stop_replies_in_queue (struct remote_state *);
217static int peek_stop_reply (ptid_t ptid);
218
219struct threads_listing_context;
220static void remove_new_fork_children (struct threads_listing_context *);
221
222static void remote_async_inferior_event_handler (gdb_client_data);
223
224static void remote_terminal_ours (struct target_ops *self);
225
226static int remote_read_description_p (struct target_ops *target);
227
228static void remote_console_output (char *msg);
229
230static int remote_supports_cond_breakpoints (struct target_ops *self);
231
232static int remote_can_run_breakpoint_commands (struct target_ops *self);
233
234static void remote_btrace_reset (void);
235
236static void remote_btrace_maybe_reopen (void);
237
238static int stop_reply_queue_length (void);
239
240static void readahead_cache_invalidate (void);
241
242static void remote_unpush_and_throw (void);
243
244/* For "remote". */
245
246static struct cmd_list_element *remote_cmdlist;
247
248/* For "set remote" and "show remote". */
249
250static struct cmd_list_element *remote_set_cmdlist;
251static struct cmd_list_element *remote_show_cmdlist;
252
253/* Stub vCont actions support.
254
255 Each field is a boolean flag indicating whether the stub reports
256 support for the corresponding action. */
257
258struct vCont_action_support
259{
260 /* vCont;t */
261 int t;
262
263 /* vCont;r */
264 int r;
265
266 /* vCont;s */
267 int s;
268
269 /* vCont;S */
270 int S;
271};
272
273/* Controls whether GDB is willing to use range stepping. */
274
275static int use_range_stepping = 1;
276
277#define OPAQUETHREADBYTES 8
278
279/* a 64 bit opaque identifier */
280typedef unsigned char threadref[OPAQUETHREADBYTES];
281
282/* About this many threadisds fit in a packet. */
283
284#define MAXTHREADLISTRESULTS 32
285
286/* The max number of chars in debug output. The rest of chars are
287 omitted. */
288
289#define REMOTE_DEBUG_MAX_CHAR 512
290
291/* Data for the vFile:pread readahead cache. */
292
293struct readahead_cache
294{
295 /* The file descriptor for the file that is being cached. -1 if the
296 cache is invalid. */
297 int fd;
298
299 /* The offset into the file that the cache buffer corresponds
300 to. */
301 ULONGEST offset;
302
303 /* The buffer holding the cache contents. */
304 gdb_byte *buf;
305 /* The buffer's size. We try to read as much as fits into a packet
306 at a time. */
307 size_t bufsize;
308
309 /* Cache hit and miss counters. */
310 ULONGEST hit_count;
311 ULONGEST miss_count;
312};
313
314/* Description of the remote protocol state for the currently
315 connected target. This is per-target state, and independent of the
316 selected architecture. */
317
318struct remote_state
319{
320 /* A buffer to use for incoming packets, and its current size. The
321 buffer is grown dynamically for larger incoming packets.
322 Outgoing packets may also be constructed in this buffer.
323 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
324 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
325 packets. */
326 char *buf;
327 long buf_size;
328
329 /* True if we're going through initial connection setup (finding out
330 about the remote side's threads, relocating symbols, etc.). */
331 int starting_up;
332
333 /* If we negotiated packet size explicitly (and thus can bypass
334 heuristics for the largest packet size that will not overflow
335 a buffer in the stub), this will be set to that packet size.
336 Otherwise zero, meaning to use the guessed size. */
337 long explicit_packet_size;
338
339 /* remote_wait is normally called when the target is running and
340 waits for a stop reply packet. But sometimes we need to call it
341 when the target is already stopped. We can send a "?" packet
342 and have remote_wait read the response. Or, if we already have
343 the response, we can stash it in BUF and tell remote_wait to
344 skip calling getpkt. This flag is set when BUF contains a
345 stop reply packet and the target is not waiting. */
346 int cached_wait_status;
347
348 /* True, if in no ack mode. That is, neither GDB nor the stub will
349 expect acks from each other. The connection is assumed to be
350 reliable. */
351 int noack_mode;
352
353 /* True if we're connected in extended remote mode. */
354 int extended;
355
356 /* True if we resumed the target and we're waiting for the target to
357 stop. In the mean time, we can't start another command/query.
358 The remote server wouldn't be ready to process it, so we'd
359 timeout waiting for a reply that would never come and eventually
360 we'd close the connection. This can happen in asynchronous mode
361 because we allow GDB commands while the target is running. */
362 int waiting_for_stop_reply;
363
364 /* The status of the stub support for the various vCont actions. */
365 struct vCont_action_support supports_vCont;
366
367 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
368 responded to that. */
369 int ctrlc_pending_p;
370
371 /* True if we saw a Ctrl-C while reading or writing from/to the
372 remote descriptor. At that point it is not safe to send a remote
373 interrupt packet, so we instead remember we saw the Ctrl-C and
374 process it once we're done with sending/receiving the current
375 packet, which should be shortly. If however that takes too long,
376 and the user presses Ctrl-C again, we offer to disconnect. */
377 int got_ctrlc_during_io;
378
379 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
380 remote_open knows that we don't have a file open when the program
381 starts. */
382 struct serial *remote_desc;
383
384 /* These are the threads which we last sent to the remote system. The
385 TID member will be -1 for all or -2 for not sent yet. */
386 ptid_t general_thread;
387 ptid_t continue_thread;
388
389 /* This is the traceframe which we last selected on the remote system.
390 It will be -1 if no traceframe is selected. */
391 int remote_traceframe_number;
392
393 char *last_pass_packet;
394
395 /* The last QProgramSignals packet sent to the target. We bypass
396 sending a new program signals list down to the target if the new
397 packet is exactly the same as the last we sent. IOW, we only let
398 the target know about program signals list changes. */
399 char *last_program_signals_packet;
400
401 enum gdb_signal last_sent_signal;
402
403 int last_sent_step;
404
405 /* The execution direction of the last resume we got. */
406 enum exec_direction_kind last_resume_exec_dir;
407
408 char *finished_object;
409 char *finished_annex;
410 ULONGEST finished_offset;
411
412 /* Should we try the 'ThreadInfo' query packet?
413
414 This variable (NOT available to the user: auto-detect only!)
415 determines whether GDB will use the new, simpler "ThreadInfo"
416 query or the older, more complex syntax for thread queries.
417 This is an auto-detect variable (set to true at each connect,
418 and set to false when the target fails to recognize it). */
419 int use_threadinfo_query;
420 int use_threadextra_query;
421
422 threadref echo_nextthread;
423 threadref nextthread;
424 threadref resultthreadlist[MAXTHREADLISTRESULTS];
425
426 /* The state of remote notification. */
427 struct remote_notif_state *notif_state;
428
429 /* The branch trace configuration. */
430 struct btrace_config btrace_config;
431
432 /* The argument to the last "vFile:setfs:" packet we sent, used
433 to avoid sending repeated unnecessary "vFile:setfs:" packets.
434 Initialized to -1 to indicate that no "vFile:setfs:" packet
435 has yet been sent. */
436 int fs_pid;
437
438 /* A readahead cache for vFile:pread. Often, reading a binary
439 involves a sequence of small reads. E.g., when parsing an ELF
440 file. A readahead cache helps mostly the case of remote
441 debugging on a connection with higher latency, due to the
442 request/reply nature of the RSP. We only cache data for a single
443 file descriptor at a time. */
444 struct readahead_cache readahead_cache;
445};
446
447/* Private data that we'll store in (struct thread_info)->private. */
448struct private_thread_info
449{
450 char *extra;
451 char *name;
452 int core;
453
454 /* Whether the target stopped for a breakpoint/watchpoint. */
455 enum target_stop_reason stop_reason;
456
457 /* This is set to the data address of the access causing the target
458 to stop for a watchpoint. */
459 CORE_ADDR watch_data_address;
460
461 /* Fields used by the vCont action coalescing implemented in
462 remote_resume / remote_commit_resume. remote_resume stores each
463 thread's last resume request in these fields, so that a later
464 remote_commit_resume knows which is the proper action for this
465 thread to include in the vCont packet. */
466
467 /* True if the last target_resume call for this thread was a step
468 request, false if a continue request. */
469 int last_resume_step;
470
471 /* The signal specified in the last target_resume call for this
472 thread. */
473 enum gdb_signal last_resume_sig;
474
475 /* Whether this thread was already vCont-resumed on the remote
476 side. */
477 int vcont_resumed;
478};
479
480static void
481free_private_thread_info (struct private_thread_info *info)
482{
483 xfree (info->extra);
484 xfree (info->name);
485 xfree (info);
486}
487
488/* This data could be associated with a target, but we do not always
489 have access to the current target when we need it, so for now it is
490 static. This will be fine for as long as only one target is in use
491 at a time. */
492static struct remote_state *remote_state;
493
494static struct remote_state *
495get_remote_state_raw (void)
496{
497 return remote_state;
498}
499
500/* Allocate a new struct remote_state with xmalloc, initialize it, and
501 return it. */
502
503static struct remote_state *
504new_remote_state (void)
505{
506 struct remote_state *result = XCNEW (struct remote_state);
507
508 /* The default buffer size is unimportant; it will be expanded
509 whenever a larger buffer is needed. */
510 result->buf_size = 400;
511 result->buf = (char *) xmalloc (result->buf_size);
512 result->remote_traceframe_number = -1;
513 result->last_sent_signal = GDB_SIGNAL_0;
514 result->last_resume_exec_dir = EXEC_FORWARD;
515 result->fs_pid = -1;
516
517 return result;
518}
519
520/* Description of the remote protocol for a given architecture. */
521
522struct packet_reg
523{
524 long offset; /* Offset into G packet. */
525 long regnum; /* GDB's internal register number. */
526 LONGEST pnum; /* Remote protocol register number. */
527 int in_g_packet; /* Always part of G packet. */
528 /* long size in bytes; == register_size (target_gdbarch (), regnum);
529 at present. */
530 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
531 at present. */
532};
533
534struct remote_arch_state
535{
536 /* Description of the remote protocol registers. */
537 long sizeof_g_packet;
538
539 /* Description of the remote protocol registers indexed by REGNUM
540 (making an array gdbarch_num_regs in size). */
541 struct packet_reg *regs;
542
543 /* This is the size (in chars) of the first response to the ``g''
544 packet. It is used as a heuristic when determining the maximum
545 size of memory-read and memory-write packets. A target will
546 typically only reserve a buffer large enough to hold the ``g''
547 packet. The size does not include packet overhead (headers and
548 trailers). */
549 long actual_register_packet_size;
550
551 /* This is the maximum size (in chars) of a non read/write packet.
552 It is also used as a cap on the size of read/write packets. */
553 long remote_packet_size;
554};
555
556/* Utility: generate error from an incoming stub packet. */
557static void
558trace_error (char *buf)
559{
560 if (*buf++ != 'E')
561 return; /* not an error msg */
562 switch (*buf)
563 {
564 case '1': /* malformed packet error */
565 if (*++buf == '0') /* general case: */
566 error (_("remote.c: error in outgoing packet."));
567 else
568 error (_("remote.c: error in outgoing packet at field #%ld."),
569 strtol (buf, NULL, 16));
570 default:
571 error (_("Target returns error code '%s'."), buf);
572 }
573}
574
575/* Utility: wait for reply from stub, while accepting "O" packets. */
576static char *
577remote_get_noisy_reply (char **buf_p,
578 long *sizeof_buf)
579{
580 do /* Loop on reply from remote stub. */
581 {
582 char *buf;
583
584 QUIT; /* Allow user to bail out with ^C. */
585 getpkt (buf_p, sizeof_buf, 0);
586 buf = *buf_p;
587 if (buf[0] == 'E')
588 trace_error (buf);
589 else if (startswith (buf, "qRelocInsn:"))
590 {
591 ULONGEST ul;
592 CORE_ADDR from, to, org_to;
593 char *p, *pp;
594 int adjusted_size = 0;
595 int relocated = 0;
596
597 p = buf + strlen ("qRelocInsn:");
598 pp = unpack_varlen_hex (p, &ul);
599 if (*pp != ';')
600 error (_("invalid qRelocInsn packet: %s"), buf);
601 from = ul;
602
603 p = pp + 1;
604 unpack_varlen_hex (p, &ul);
605 to = ul;
606
607 org_to = to;
608
609 TRY
610 {
611 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
612 relocated = 1;
613 }
614 CATCH (ex, RETURN_MASK_ALL)
615 {
616 if (ex.error == MEMORY_ERROR)
617 {
618 /* Propagate memory errors silently back to the
619 target. The stub may have limited the range of
620 addresses we can write to, for example. */
621 }
622 else
623 {
624 /* Something unexpectedly bad happened. Be verbose
625 so we can tell what, and propagate the error back
626 to the stub, so it doesn't get stuck waiting for
627 a response. */
628 exception_fprintf (gdb_stderr, ex,
629 _("warning: relocating instruction: "));
630 }
631 putpkt ("E01");
632 }
633 END_CATCH
634
635 if (relocated)
636 {
637 adjusted_size = to - org_to;
638
639 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
640 putpkt (buf);
641 }
642 }
643 else if (buf[0] == 'O' && buf[1] != 'K')
644 remote_console_output (buf + 1); /* 'O' message from stub */
645 else
646 return buf; /* Here's the actual reply. */
647 }
648 while (1);
649}
650
651/* Handle for retreving the remote protocol data from gdbarch. */
652static struct gdbarch_data *remote_gdbarch_data_handle;
653
654static struct remote_arch_state *
655get_remote_arch_state (void)
656{
657 gdb_assert (target_gdbarch () != NULL);
658 return ((struct remote_arch_state *)
659 gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle));
660}
661
662/* Fetch the global remote target state. */
663
664static struct remote_state *
665get_remote_state (void)
666{
667 /* Make sure that the remote architecture state has been
668 initialized, because doing so might reallocate rs->buf. Any
669 function which calls getpkt also needs to be mindful of changes
670 to rs->buf, but this call limits the number of places which run
671 into trouble. */
672 get_remote_arch_state ();
673
674 return get_remote_state_raw ();
675}
676
677/* Cleanup routine for the remote module's pspace data. */
678
679static void
680remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
681{
682 char *remote_exec_file = (char *) arg;
683
684 xfree (remote_exec_file);
685}
686
687/* Fetch the remote exec-file from the current program space. */
688
689static const char *
690get_remote_exec_file (void)
691{
692 char *remote_exec_file;
693
694 remote_exec_file
695 = (char *) program_space_data (current_program_space,
696 remote_pspace_data);
697 if (remote_exec_file == NULL)
698 return "";
699
700 return remote_exec_file;
701}
702
703/* Set the remote exec file for PSPACE. */
704
705static void
706set_pspace_remote_exec_file (struct program_space *pspace,
707 char *remote_exec_file)
708{
709 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
710
711 xfree (old_file);
712 set_program_space_data (pspace, remote_pspace_data,
713 xstrdup (remote_exec_file));
714}
715
716/* The "set/show remote exec-file" set command hook. */
717
718static void
719set_remote_exec_file (char *ignored, int from_tty,
720 struct cmd_list_element *c)
721{
722 gdb_assert (remote_exec_file_var != NULL);
723 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
724}
725
726/* The "set/show remote exec-file" show command hook. */
727
728static void
729show_remote_exec_file (struct ui_file *file, int from_tty,
730 struct cmd_list_element *cmd, const char *value)
731{
732 fprintf_filtered (file, "%s\n", remote_exec_file_var);
733}
734
735static int
736compare_pnums (const void *lhs_, const void *rhs_)
737{
738 const struct packet_reg * const *lhs
739 = (const struct packet_reg * const *) lhs_;
740 const struct packet_reg * const *rhs
741 = (const struct packet_reg * const *) rhs_;
742
743 if ((*lhs)->pnum < (*rhs)->pnum)
744 return -1;
745 else if ((*lhs)->pnum == (*rhs)->pnum)
746 return 0;
747 else
748 return 1;
749}
750
751static int
752map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
753{
754 int regnum, num_remote_regs, offset;
755 struct packet_reg **remote_regs;
756
757 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
758 {
759 struct packet_reg *r = &regs[regnum];
760
761 if (register_size (gdbarch, regnum) == 0)
762 /* Do not try to fetch zero-sized (placeholder) registers. */
763 r->pnum = -1;
764 else
765 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
766
767 r->regnum = regnum;
768 }
769
770 /* Define the g/G packet format as the contents of each register
771 with a remote protocol number, in order of ascending protocol
772 number. */
773
774 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
775 for (num_remote_regs = 0, regnum = 0;
776 regnum < gdbarch_num_regs (gdbarch);
777 regnum++)
778 if (regs[regnum].pnum != -1)
779 remote_regs[num_remote_regs++] = &regs[regnum];
780
781 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
782 compare_pnums);
783
784 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
785 {
786 remote_regs[regnum]->in_g_packet = 1;
787 remote_regs[regnum]->offset = offset;
788 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
789 }
790
791 return offset;
792}
793
794/* Given the architecture described by GDBARCH, return the remote
795 protocol register's number and the register's offset in the g/G
796 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
797 If the target does not have a mapping for REGNUM, return false,
798 otherwise, return true. */
799
800int
801remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
802 int *pnum, int *poffset)
803{
804 struct packet_reg *regs;
805 struct cleanup *old_chain;
806
807 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
808
809 regs = XCNEWVEC (struct packet_reg, gdbarch_num_regs (gdbarch));
810 old_chain = make_cleanup (xfree, regs);
811
812 map_regcache_remote_table (gdbarch, regs);
813
814 *pnum = regs[regnum].pnum;
815 *poffset = regs[regnum].offset;
816
817 do_cleanups (old_chain);
818
819 return *pnum != -1;
820}
821
822static void *
823init_remote_state (struct gdbarch *gdbarch)
824{
825 struct remote_state *rs = get_remote_state_raw ();
826 struct remote_arch_state *rsa;
827
828 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
829
830 /* Use the architecture to build a regnum<->pnum table, which will be
831 1:1 unless a feature set specifies otherwise. */
832 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
833 gdbarch_num_regs (gdbarch),
834 struct packet_reg);
835
836 /* Record the maximum possible size of the g packet - it may turn out
837 to be smaller. */
838 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
839
840 /* Default maximum number of characters in a packet body. Many
841 remote stubs have a hardwired buffer size of 400 bytes
842 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
843 as the maximum packet-size to ensure that the packet and an extra
844 NUL character can always fit in the buffer. This stops GDB
845 trashing stubs that try to squeeze an extra NUL into what is
846 already a full buffer (As of 1999-12-04 that was most stubs). */
847 rsa->remote_packet_size = 400 - 1;
848
849 /* This one is filled in when a ``g'' packet is received. */
850 rsa->actual_register_packet_size = 0;
851
852 /* Should rsa->sizeof_g_packet needs more space than the
853 default, adjust the size accordingly. Remember that each byte is
854 encoded as two characters. 32 is the overhead for the packet
855 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
856 (``$NN:G...#NN'') is a better guess, the below has been padded a
857 little. */
858 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
859 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
860
861 /* Make sure that the packet buffer is plenty big enough for
862 this architecture. */
863 if (rs->buf_size < rsa->remote_packet_size)
864 {
865 rs->buf_size = 2 * rsa->remote_packet_size;
866 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
867 }
868
869 return rsa;
870}
871
872/* Return the current allowed size of a remote packet. This is
873 inferred from the current architecture, and should be used to
874 limit the length of outgoing packets. */
875static long
876get_remote_packet_size (void)
877{
878 struct remote_state *rs = get_remote_state ();
879 struct remote_arch_state *rsa = get_remote_arch_state ();
880
881 if (rs->explicit_packet_size)
882 return rs->explicit_packet_size;
883
884 return rsa->remote_packet_size;
885}
886
887static struct packet_reg *
888packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
889{
890 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
891 return NULL;
892 else
893 {
894 struct packet_reg *r = &rsa->regs[regnum];
895
896 gdb_assert (r->regnum == regnum);
897 return r;
898 }
899}
900
901static struct packet_reg *
902packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
903{
904 int i;
905
906 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
907 {
908 struct packet_reg *r = &rsa->regs[i];
909
910 if (r->pnum == pnum)
911 return r;
912 }
913 return NULL;
914}
915
916static struct target_ops remote_ops;
917
918static struct target_ops extended_remote_ops;
919
920/* FIXME: cagney/1999-09-23: Even though getpkt was called with
921 ``forever'' still use the normal timeout mechanism. This is
922 currently used by the ASYNC code to guarentee that target reads
923 during the initial connect always time-out. Once getpkt has been
924 modified to return a timeout indication and, in turn
925 remote_wait()/wait_for_inferior() have gained a timeout parameter
926 this can go away. */
927static int wait_forever_enabled_p = 1;
928
929/* Allow the user to specify what sequence to send to the remote
930 when he requests a program interruption: Although ^C is usually
931 what remote systems expect (this is the default, here), it is
932 sometimes preferable to send a break. On other systems such
933 as the Linux kernel, a break followed by g, which is Magic SysRq g
934 is required in order to interrupt the execution. */
935const char interrupt_sequence_control_c[] = "Ctrl-C";
936const char interrupt_sequence_break[] = "BREAK";
937const char interrupt_sequence_break_g[] = "BREAK-g";
938static const char *const interrupt_sequence_modes[] =
939 {
940 interrupt_sequence_control_c,
941 interrupt_sequence_break,
942 interrupt_sequence_break_g,
943 NULL
944 };
945static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
946
947static void
948show_interrupt_sequence (struct ui_file *file, int from_tty,
949 struct cmd_list_element *c,
950 const char *value)
951{
952 if (interrupt_sequence_mode == interrupt_sequence_control_c)
953 fprintf_filtered (file,
954 _("Send the ASCII ETX character (Ctrl-c) "
955 "to the remote target to interrupt the "
956 "execution of the program.\n"));
957 else if (interrupt_sequence_mode == interrupt_sequence_break)
958 fprintf_filtered (file,
959 _("send a break signal to the remote target "
960 "to interrupt the execution of the program.\n"));
961 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
962 fprintf_filtered (file,
963 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
964 "the remote target to interrupt the execution "
965 "of Linux kernel.\n"));
966 else
967 internal_error (__FILE__, __LINE__,
968 _("Invalid value for interrupt_sequence_mode: %s."),
969 interrupt_sequence_mode);
970}
971
972/* This boolean variable specifies whether interrupt_sequence is sent
973 to the remote target when gdb connects to it.
974 This is mostly needed when you debug the Linux kernel: The Linux kernel
975 expects BREAK g which is Magic SysRq g for connecting gdb. */
976static int interrupt_on_connect = 0;
977
978/* This variable is used to implement the "set/show remotebreak" commands.
979 Since these commands are now deprecated in favor of "set/show remote
980 interrupt-sequence", it no longer has any effect on the code. */
981static int remote_break;
982
983static void
984set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
985{
986 if (remote_break)
987 interrupt_sequence_mode = interrupt_sequence_break;
988 else
989 interrupt_sequence_mode = interrupt_sequence_control_c;
990}
991
992static void
993show_remotebreak (struct ui_file *file, int from_tty,
994 struct cmd_list_element *c,
995 const char *value)
996{
997}
998
999/* This variable sets the number of bits in an address that are to be
1000 sent in a memory ("M" or "m") packet. Normally, after stripping
1001 leading zeros, the entire address would be sent. This variable
1002 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1003 initial implementation of remote.c restricted the address sent in
1004 memory packets to ``host::sizeof long'' bytes - (typically 32
1005 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1006 address was never sent. Since fixing this bug may cause a break in
1007 some remote targets this variable is principly provided to
1008 facilitate backward compatibility. */
1009
1010static unsigned int remote_address_size;
1011
1012/* Temporary to track who currently owns the terminal. See
1013 remote_terminal_* for more details. */
1014
1015static int remote_async_terminal_ours_p;
1016
1017\f
1018/* User configurable variables for the number of characters in a
1019 memory read/write packet. MIN (rsa->remote_packet_size,
1020 rsa->sizeof_g_packet) is the default. Some targets need smaller
1021 values (fifo overruns, et.al.) and some users need larger values
1022 (speed up transfers). The variables ``preferred_*'' (the user
1023 request), ``current_*'' (what was actually set) and ``forced_*''
1024 (Positive - a soft limit, negative - a hard limit). */
1025
1026struct memory_packet_config
1027{
1028 const char *name;
1029 long size;
1030 int fixed_p;
1031};
1032
1033/* The default max memory-write-packet-size. The 16k is historical.
1034 (It came from older GDB's using alloca for buffers and the
1035 knowledge (folklore?) that some hosts don't cope very well with
1036 large alloca calls.) */
1037#define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1038
1039/* The minimum remote packet size for memory transfers. Ensures we
1040 can write at least one byte. */
1041#define MIN_MEMORY_PACKET_SIZE 20
1042
1043/* Compute the current size of a read/write packet. Since this makes
1044 use of ``actual_register_packet_size'' the computation is dynamic. */
1045
1046static long
1047get_memory_packet_size (struct memory_packet_config *config)
1048{
1049 struct remote_state *rs = get_remote_state ();
1050 struct remote_arch_state *rsa = get_remote_arch_state ();
1051
1052 long what_they_get;
1053 if (config->fixed_p)
1054 {
1055 if (config->size <= 0)
1056 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1057 else
1058 what_they_get = config->size;
1059 }
1060 else
1061 {
1062 what_they_get = get_remote_packet_size ();
1063 /* Limit the packet to the size specified by the user. */
1064 if (config->size > 0
1065 && what_they_get > config->size)
1066 what_they_get = config->size;
1067
1068 /* Limit it to the size of the targets ``g'' response unless we have
1069 permission from the stub to use a larger packet size. */
1070 if (rs->explicit_packet_size == 0
1071 && rsa->actual_register_packet_size > 0
1072 && what_they_get > rsa->actual_register_packet_size)
1073 what_they_get = rsa->actual_register_packet_size;
1074 }
1075 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1076 what_they_get = MIN_MEMORY_PACKET_SIZE;
1077
1078 /* Make sure there is room in the global buffer for this packet
1079 (including its trailing NUL byte). */
1080 if (rs->buf_size < what_they_get + 1)
1081 {
1082 rs->buf_size = 2 * what_they_get;
1083 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1084 }
1085
1086 return what_they_get;
1087}
1088
1089/* Update the size of a read/write packet. If they user wants
1090 something really big then do a sanity check. */
1091
1092static void
1093set_memory_packet_size (char *args, struct memory_packet_config *config)
1094{
1095 int fixed_p = config->fixed_p;
1096 long size = config->size;
1097
1098 if (args == NULL)
1099 error (_("Argument required (integer, `fixed' or `limited')."));
1100 else if (strcmp (args, "hard") == 0
1101 || strcmp (args, "fixed") == 0)
1102 fixed_p = 1;
1103 else if (strcmp (args, "soft") == 0
1104 || strcmp (args, "limit") == 0)
1105 fixed_p = 0;
1106 else
1107 {
1108 char *end;
1109
1110 size = strtoul (args, &end, 0);
1111 if (args == end)
1112 error (_("Invalid %s (bad syntax)."), config->name);
1113
1114 /* Instead of explicitly capping the size of a packet to or
1115 disallowing it, the user is allowed to set the size to
1116 something arbitrarily large. */
1117 }
1118
1119 /* So that the query shows the correct value. */
1120 if (size <= 0)
1121 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1122
1123 /* Extra checks? */
1124 if (fixed_p && !config->fixed_p)
1125 {
1126 if (! query (_("The target may not be able to correctly handle a %s\n"
1127 "of %ld bytes. Change the packet size? "),
1128 config->name, size))
1129 error (_("Packet size not changed."));
1130 }
1131 /* Update the config. */
1132 config->fixed_p = fixed_p;
1133 config->size = size;
1134}
1135
1136static void
1137show_memory_packet_size (struct memory_packet_config *config)
1138{
1139 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1140 if (config->fixed_p)
1141 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1142 get_memory_packet_size (config));
1143 else
1144 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1145 get_memory_packet_size (config));
1146}
1147
1148static struct memory_packet_config memory_write_packet_config =
1149{
1150 "memory-write-packet-size",
1151};
1152
1153static void
1154set_memory_write_packet_size (char *args, int from_tty)
1155{
1156 set_memory_packet_size (args, &memory_write_packet_config);
1157}
1158
1159static void
1160show_memory_write_packet_size (char *args, int from_tty)
1161{
1162 show_memory_packet_size (&memory_write_packet_config);
1163}
1164
1165static long
1166get_memory_write_packet_size (void)
1167{
1168 return get_memory_packet_size (&memory_write_packet_config);
1169}
1170
1171static struct memory_packet_config memory_read_packet_config =
1172{
1173 "memory-read-packet-size",
1174};
1175
1176static void
1177set_memory_read_packet_size (char *args, int from_tty)
1178{
1179 set_memory_packet_size (args, &memory_read_packet_config);
1180}
1181
1182static void
1183show_memory_read_packet_size (char *args, int from_tty)
1184{
1185 show_memory_packet_size (&memory_read_packet_config);
1186}
1187
1188static long
1189get_memory_read_packet_size (void)
1190{
1191 long size = get_memory_packet_size (&memory_read_packet_config);
1192
1193 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1194 extra buffer size argument before the memory read size can be
1195 increased beyond this. */
1196 if (size > get_remote_packet_size ())
1197 size = get_remote_packet_size ();
1198 return size;
1199}
1200
1201\f
1202/* Generic configuration support for packets the stub optionally
1203 supports. Allows the user to specify the use of the packet as well
1204 as allowing GDB to auto-detect support in the remote stub. */
1205
1206enum packet_support
1207 {
1208 PACKET_SUPPORT_UNKNOWN = 0,
1209 PACKET_ENABLE,
1210 PACKET_DISABLE
1211 };
1212
1213struct packet_config
1214 {
1215 const char *name;
1216 const char *title;
1217
1218 /* If auto, GDB auto-detects support for this packet or feature,
1219 either through qSupported, or by trying the packet and looking
1220 at the response. If true, GDB assumes the target supports this
1221 packet. If false, the packet is disabled. Configs that don't
1222 have an associated command always have this set to auto. */
1223 enum auto_boolean detect;
1224
1225 /* Does the target support this packet? */
1226 enum packet_support support;
1227 };
1228
1229/* Analyze a packet's return value and update the packet config
1230 accordingly. */
1231
1232enum packet_result
1233{
1234 PACKET_ERROR,
1235 PACKET_OK,
1236 PACKET_UNKNOWN
1237};
1238
1239static enum packet_support packet_config_support (struct packet_config *config);
1240static enum packet_support packet_support (int packet);
1241
1242static void
1243show_packet_config_cmd (struct packet_config *config)
1244{
1245 const char *support = "internal-error";
1246
1247 switch (packet_config_support (config))
1248 {
1249 case PACKET_ENABLE:
1250 support = "enabled";
1251 break;
1252 case PACKET_DISABLE:
1253 support = "disabled";
1254 break;
1255 case PACKET_SUPPORT_UNKNOWN:
1256 support = "unknown";
1257 break;
1258 }
1259 switch (config->detect)
1260 {
1261 case AUTO_BOOLEAN_AUTO:
1262 printf_filtered (_("Support for the `%s' packet "
1263 "is auto-detected, currently %s.\n"),
1264 config->name, support);
1265 break;
1266 case AUTO_BOOLEAN_TRUE:
1267 case AUTO_BOOLEAN_FALSE:
1268 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1269 config->name, support);
1270 break;
1271 }
1272}
1273
1274static void
1275add_packet_config_cmd (struct packet_config *config, const char *name,
1276 const char *title, int legacy)
1277{
1278 char *set_doc;
1279 char *show_doc;
1280 char *cmd_name;
1281
1282 config->name = name;
1283 config->title = title;
1284 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1285 name, title);
1286 show_doc = xstrprintf ("Show current use of remote "
1287 "protocol `%s' (%s) packet",
1288 name, title);
1289 /* set/show TITLE-packet {auto,on,off} */
1290 cmd_name = xstrprintf ("%s-packet", title);
1291 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1292 &config->detect, set_doc,
1293 show_doc, NULL, /* help_doc */
1294 NULL,
1295 show_remote_protocol_packet_cmd,
1296 &remote_set_cmdlist, &remote_show_cmdlist);
1297 /* The command code copies the documentation strings. */
1298 xfree (set_doc);
1299 xfree (show_doc);
1300 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1301 if (legacy)
1302 {
1303 char *legacy_name;
1304
1305 legacy_name = xstrprintf ("%s-packet", name);
1306 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1307 &remote_set_cmdlist);
1308 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1309 &remote_show_cmdlist);
1310 }
1311}
1312
1313static enum packet_result
1314packet_check_result (const char *buf)
1315{
1316 if (buf[0] != '\0')
1317 {
1318 /* The stub recognized the packet request. Check that the
1319 operation succeeded. */
1320 if (buf[0] == 'E'
1321 && isxdigit (buf[1]) && isxdigit (buf[2])
1322 && buf[3] == '\0')
1323 /* "Enn" - definitly an error. */
1324 return PACKET_ERROR;
1325
1326 /* Always treat "E." as an error. This will be used for
1327 more verbose error messages, such as E.memtypes. */
1328 if (buf[0] == 'E' && buf[1] == '.')
1329 return PACKET_ERROR;
1330
1331 /* The packet may or may not be OK. Just assume it is. */
1332 return PACKET_OK;
1333 }
1334 else
1335 /* The stub does not support the packet. */
1336 return PACKET_UNKNOWN;
1337}
1338
1339static enum packet_result
1340packet_ok (const char *buf, struct packet_config *config)
1341{
1342 enum packet_result result;
1343
1344 if (config->detect != AUTO_BOOLEAN_TRUE
1345 && config->support == PACKET_DISABLE)
1346 internal_error (__FILE__, __LINE__,
1347 _("packet_ok: attempt to use a disabled packet"));
1348
1349 result = packet_check_result (buf);
1350 switch (result)
1351 {
1352 case PACKET_OK:
1353 case PACKET_ERROR:
1354 /* The stub recognized the packet request. */
1355 if (config->support == PACKET_SUPPORT_UNKNOWN)
1356 {
1357 if (remote_debug)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "Packet %s (%s) is supported\n",
1360 config->name, config->title);
1361 config->support = PACKET_ENABLE;
1362 }
1363 break;
1364 case PACKET_UNKNOWN:
1365 /* The stub does not support the packet. */
1366 if (config->detect == AUTO_BOOLEAN_AUTO
1367 && config->support == PACKET_ENABLE)
1368 {
1369 /* If the stub previously indicated that the packet was
1370 supported then there is a protocol error. */
1371 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1372 config->name, config->title);
1373 }
1374 else if (config->detect == AUTO_BOOLEAN_TRUE)
1375 {
1376 /* The user set it wrong. */
1377 error (_("Enabled packet %s (%s) not recognized by stub"),
1378 config->name, config->title);
1379 }
1380
1381 if (remote_debug)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "Packet %s (%s) is NOT supported\n",
1384 config->name, config->title);
1385 config->support = PACKET_DISABLE;
1386 break;
1387 }
1388
1389 return result;
1390}
1391
1392enum {
1393 PACKET_vCont = 0,
1394 PACKET_X,
1395 PACKET_qSymbol,
1396 PACKET_P,
1397 PACKET_p,
1398 PACKET_Z0,
1399 PACKET_Z1,
1400 PACKET_Z2,
1401 PACKET_Z3,
1402 PACKET_Z4,
1403 PACKET_vFile_setfs,
1404 PACKET_vFile_open,
1405 PACKET_vFile_pread,
1406 PACKET_vFile_pwrite,
1407 PACKET_vFile_close,
1408 PACKET_vFile_unlink,
1409 PACKET_vFile_readlink,
1410 PACKET_vFile_fstat,
1411 PACKET_qXfer_auxv,
1412 PACKET_qXfer_features,
1413 PACKET_qXfer_exec_file,
1414 PACKET_qXfer_libraries,
1415 PACKET_qXfer_libraries_svr4,
1416 PACKET_qXfer_memory_map,
1417 PACKET_qXfer_spu_read,
1418 PACKET_qXfer_spu_write,
1419 PACKET_qXfer_osdata,
1420 PACKET_qXfer_threads,
1421 PACKET_qXfer_statictrace_read,
1422 PACKET_qXfer_traceframe_info,
1423 PACKET_qXfer_uib,
1424 PACKET_qGetTIBAddr,
1425 PACKET_qGetTLSAddr,
1426 PACKET_qSupported,
1427 PACKET_qTStatus,
1428 PACKET_QPassSignals,
1429 PACKET_QCatchSyscalls,
1430 PACKET_QProgramSignals,
1431 PACKET_QStartupWithShell,
1432 PACKET_QEnvironmentHexEncoded,
1433 PACKET_QEnvironmentReset,
1434 PACKET_QEnvironmentUnset,
1435 PACKET_qCRC,
1436 PACKET_qSearch_memory,
1437 PACKET_vAttach,
1438 PACKET_vRun,
1439 PACKET_QStartNoAckMode,
1440 PACKET_vKill,
1441 PACKET_qXfer_siginfo_read,
1442 PACKET_qXfer_siginfo_write,
1443 PACKET_qAttached,
1444
1445 /* Support for conditional tracepoints. */
1446 PACKET_ConditionalTracepoints,
1447
1448 /* Support for target-side breakpoint conditions. */
1449 PACKET_ConditionalBreakpoints,
1450
1451 /* Support for target-side breakpoint commands. */
1452 PACKET_BreakpointCommands,
1453
1454 /* Support for fast tracepoints. */
1455 PACKET_FastTracepoints,
1456
1457 /* Support for static tracepoints. */
1458 PACKET_StaticTracepoints,
1459
1460 /* Support for installing tracepoints while a trace experiment is
1461 running. */
1462 PACKET_InstallInTrace,
1463
1464 PACKET_bc,
1465 PACKET_bs,
1466 PACKET_TracepointSource,
1467 PACKET_QAllow,
1468 PACKET_qXfer_fdpic,
1469 PACKET_QDisableRandomization,
1470 PACKET_QAgent,
1471 PACKET_QTBuffer_size,
1472 PACKET_Qbtrace_off,
1473 PACKET_Qbtrace_bts,
1474 PACKET_Qbtrace_pt,
1475 PACKET_qXfer_btrace,
1476
1477 /* Support for the QNonStop packet. */
1478 PACKET_QNonStop,
1479
1480 /* Support for the QThreadEvents packet. */
1481 PACKET_QThreadEvents,
1482
1483 /* Support for multi-process extensions. */
1484 PACKET_multiprocess_feature,
1485
1486 /* Support for enabling and disabling tracepoints while a trace
1487 experiment is running. */
1488 PACKET_EnableDisableTracepoints_feature,
1489
1490 /* Support for collecting strings using the tracenz bytecode. */
1491 PACKET_tracenz_feature,
1492
1493 /* Support for continuing to run a trace experiment while GDB is
1494 disconnected. */
1495 PACKET_DisconnectedTracing_feature,
1496
1497 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1498 PACKET_augmented_libraries_svr4_read_feature,
1499
1500 /* Support for the qXfer:btrace-conf:read packet. */
1501 PACKET_qXfer_btrace_conf,
1502
1503 /* Support for the Qbtrace-conf:bts:size packet. */
1504 PACKET_Qbtrace_conf_bts_size,
1505
1506 /* Support for swbreak+ feature. */
1507 PACKET_swbreak_feature,
1508
1509 /* Support for hwbreak+ feature. */
1510 PACKET_hwbreak_feature,
1511
1512 /* Support for fork events. */
1513 PACKET_fork_event_feature,
1514
1515 /* Support for vfork events. */
1516 PACKET_vfork_event_feature,
1517
1518 /* Support for the Qbtrace-conf:pt:size packet. */
1519 PACKET_Qbtrace_conf_pt_size,
1520
1521 /* Support for exec events. */
1522 PACKET_exec_event_feature,
1523
1524 /* Support for query supported vCont actions. */
1525 PACKET_vContSupported,
1526
1527 /* Support remote CTRL-C. */
1528 PACKET_vCtrlC,
1529
1530 /* Support TARGET_WAITKIND_NO_RESUMED. */
1531 PACKET_no_resumed,
1532
1533 PACKET_MAX
1534};
1535
1536static struct packet_config remote_protocol_packets[PACKET_MAX];
1537
1538/* Returns the packet's corresponding "set remote foo-packet" command
1539 state. See struct packet_config for more details. */
1540
1541static enum auto_boolean
1542packet_set_cmd_state (int packet)
1543{
1544 return remote_protocol_packets[packet].detect;
1545}
1546
1547/* Returns whether a given packet or feature is supported. This takes
1548 into account the state of the corresponding "set remote foo-packet"
1549 command, which may be used to bypass auto-detection. */
1550
1551static enum packet_support
1552packet_config_support (struct packet_config *config)
1553{
1554 switch (config->detect)
1555 {
1556 case AUTO_BOOLEAN_TRUE:
1557 return PACKET_ENABLE;
1558 case AUTO_BOOLEAN_FALSE:
1559 return PACKET_DISABLE;
1560 case AUTO_BOOLEAN_AUTO:
1561 return config->support;
1562 default:
1563 gdb_assert_not_reached (_("bad switch"));
1564 }
1565}
1566
1567/* Same as packet_config_support, but takes the packet's enum value as
1568 argument. */
1569
1570static enum packet_support
1571packet_support (int packet)
1572{
1573 struct packet_config *config = &remote_protocol_packets[packet];
1574
1575 return packet_config_support (config);
1576}
1577
1578static void
1579show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1580 struct cmd_list_element *c,
1581 const char *value)
1582{
1583 struct packet_config *packet;
1584
1585 for (packet = remote_protocol_packets;
1586 packet < &remote_protocol_packets[PACKET_MAX];
1587 packet++)
1588 {
1589 if (&packet->detect == c->var)
1590 {
1591 show_packet_config_cmd (packet);
1592 return;
1593 }
1594 }
1595 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1596 c->name);
1597}
1598
1599/* Should we try one of the 'Z' requests? */
1600
1601enum Z_packet_type
1602{
1603 Z_PACKET_SOFTWARE_BP,
1604 Z_PACKET_HARDWARE_BP,
1605 Z_PACKET_WRITE_WP,
1606 Z_PACKET_READ_WP,
1607 Z_PACKET_ACCESS_WP,
1608 NR_Z_PACKET_TYPES
1609};
1610
1611/* For compatibility with older distributions. Provide a ``set remote
1612 Z-packet ...'' command that updates all the Z packet types. */
1613
1614static enum auto_boolean remote_Z_packet_detect;
1615
1616static void
1617set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1618 struct cmd_list_element *c)
1619{
1620 int i;
1621
1622 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1623 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1624}
1625
1626static void
1627show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1628 struct cmd_list_element *c,
1629 const char *value)
1630{
1631 int i;
1632
1633 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1634 {
1635 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1636 }
1637}
1638
1639/* Returns true if the multi-process extensions are in effect. */
1640
1641static int
1642remote_multi_process_p (struct remote_state *rs)
1643{
1644 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1645}
1646
1647/* Returns true if fork events are supported. */
1648
1649static int
1650remote_fork_event_p (struct remote_state *rs)
1651{
1652 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1653}
1654
1655/* Returns true if vfork events are supported. */
1656
1657static int
1658remote_vfork_event_p (struct remote_state *rs)
1659{
1660 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1661}
1662
1663/* Returns true if exec events are supported. */
1664
1665static int
1666remote_exec_event_p (struct remote_state *rs)
1667{
1668 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1669}
1670
1671/* Insert fork catchpoint target routine. If fork events are enabled
1672 then return success, nothing more to do. */
1673
1674static int
1675remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1676{
1677 struct remote_state *rs = get_remote_state ();
1678
1679 return !remote_fork_event_p (rs);
1680}
1681
1682/* Remove fork catchpoint target routine. Nothing to do, just
1683 return success. */
1684
1685static int
1686remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1687{
1688 return 0;
1689}
1690
1691/* Insert vfork catchpoint target routine. If vfork events are enabled
1692 then return success, nothing more to do. */
1693
1694static int
1695remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1696{
1697 struct remote_state *rs = get_remote_state ();
1698
1699 return !remote_vfork_event_p (rs);
1700}
1701
1702/* Remove vfork catchpoint target routine. Nothing to do, just
1703 return success. */
1704
1705static int
1706remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1707{
1708 return 0;
1709}
1710
1711/* Insert exec catchpoint target routine. If exec events are
1712 enabled, just return success. */
1713
1714static int
1715remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1716{
1717 struct remote_state *rs = get_remote_state ();
1718
1719 return !remote_exec_event_p (rs);
1720}
1721
1722/* Remove exec catchpoint target routine. Nothing to do, just
1723 return success. */
1724
1725static int
1726remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1727{
1728 return 0;
1729}
1730
1731\f
1732/* Asynchronous signal handle registered as event loop source for
1733 when we have pending events ready to be passed to the core. */
1734
1735static struct async_event_handler *remote_async_inferior_event_token;
1736
1737\f
1738
1739static ptid_t magic_null_ptid;
1740static ptid_t not_sent_ptid;
1741static ptid_t any_thread_ptid;
1742
1743/* Find out if the stub attached to PID (and hence GDB should offer to
1744 detach instead of killing it when bailing out). */
1745
1746static int
1747remote_query_attached (int pid)
1748{
1749 struct remote_state *rs = get_remote_state ();
1750 size_t size = get_remote_packet_size ();
1751
1752 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1753 return 0;
1754
1755 if (remote_multi_process_p (rs))
1756 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1757 else
1758 xsnprintf (rs->buf, size, "qAttached");
1759
1760 putpkt (rs->buf);
1761 getpkt (&rs->buf, &rs->buf_size, 0);
1762
1763 switch (packet_ok (rs->buf,
1764 &remote_protocol_packets[PACKET_qAttached]))
1765 {
1766 case PACKET_OK:
1767 if (strcmp (rs->buf, "1") == 0)
1768 return 1;
1769 break;
1770 case PACKET_ERROR:
1771 warning (_("Remote failure reply: %s"), rs->buf);
1772 break;
1773 case PACKET_UNKNOWN:
1774 break;
1775 }
1776
1777 return 0;
1778}
1779
1780/* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1781 has been invented by GDB, instead of reported by the target. Since
1782 we can be connected to a remote system before before knowing about
1783 any inferior, mark the target with execution when we find the first
1784 inferior. If ATTACHED is 1, then we had just attached to this
1785 inferior. If it is 0, then we just created this inferior. If it
1786 is -1, then try querying the remote stub to find out if it had
1787 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1788 attempt to open this inferior's executable as the main executable
1789 if no main executable is open already. */
1790
1791static struct inferior *
1792remote_add_inferior (int fake_pid_p, int pid, int attached,
1793 int try_open_exec)
1794{
1795 struct inferior *inf;
1796
1797 /* Check whether this process we're learning about is to be
1798 considered attached, or if is to be considered to have been
1799 spawned by the stub. */
1800 if (attached == -1)
1801 attached = remote_query_attached (pid);
1802
1803 if (gdbarch_has_global_solist (target_gdbarch ()))
1804 {
1805 /* If the target shares code across all inferiors, then every
1806 attach adds a new inferior. */
1807 inf = add_inferior (pid);
1808
1809 /* ... and every inferior is bound to the same program space.
1810 However, each inferior may still have its own address
1811 space. */
1812 inf->aspace = maybe_new_address_space ();
1813 inf->pspace = current_program_space;
1814 }
1815 else
1816 {
1817 /* In the traditional debugging scenario, there's a 1-1 match
1818 between program/address spaces. We simply bind the inferior
1819 to the program space's address space. */
1820 inf = current_inferior ();
1821 inferior_appeared (inf, pid);
1822 }
1823
1824 inf->attach_flag = attached;
1825 inf->fake_pid_p = fake_pid_p;
1826
1827 /* If no main executable is currently open then attempt to
1828 open the file that was executed to create this inferior. */
1829 if (try_open_exec && get_exec_file (0) == NULL)
1830 exec_file_locate_attach (pid, 0, 1);
1831
1832 return inf;
1833}
1834
1835static struct private_thread_info *
1836 get_private_info_thread (struct thread_info *info);
1837
1838/* Add thread PTID to GDB's thread list. Tag it as executing/running
1839 according to RUNNING. */
1840
1841static void
1842remote_add_thread (ptid_t ptid, int running, int executing)
1843{
1844 struct remote_state *rs = get_remote_state ();
1845 struct thread_info *thread;
1846
1847 /* GDB historically didn't pull threads in the initial connection
1848 setup. If the remote target doesn't even have a concept of
1849 threads (e.g., a bare-metal target), even if internally we
1850 consider that a single-threaded target, mentioning a new thread
1851 might be confusing to the user. Be silent then, preserving the
1852 age old behavior. */
1853 if (rs->starting_up)
1854 thread = add_thread_silent (ptid);
1855 else
1856 thread = add_thread (ptid);
1857
1858 get_private_info_thread (thread)->vcont_resumed = executing;
1859 set_executing (ptid, executing);
1860 set_running (ptid, running);
1861}
1862
1863/* Come here when we learn about a thread id from the remote target.
1864 It may be the first time we hear about such thread, so take the
1865 opportunity to add it to GDB's thread list. In case this is the
1866 first time we're noticing its corresponding inferior, add it to
1867 GDB's inferior list as well. EXECUTING indicates whether the
1868 thread is (internally) executing or stopped. */
1869
1870static void
1871remote_notice_new_inferior (ptid_t currthread, int executing)
1872{
1873 /* In non-stop mode, we assume new found threads are (externally)
1874 running until proven otherwise with a stop reply. In all-stop,
1875 we can only get here if all threads are stopped. */
1876 int running = target_is_non_stop_p () ? 1 : 0;
1877
1878 /* If this is a new thread, add it to GDB's thread list.
1879 If we leave it up to WFI to do this, bad things will happen. */
1880
1881 if (in_thread_list (currthread) && is_exited (currthread))
1882 {
1883 /* We're seeing an event on a thread id we knew had exited.
1884 This has to be a new thread reusing the old id. Add it. */
1885 remote_add_thread (currthread, running, executing);
1886 return;
1887 }
1888
1889 if (!in_thread_list (currthread))
1890 {
1891 struct inferior *inf = NULL;
1892 int pid = ptid_get_pid (currthread);
1893
1894 if (ptid_is_pid (inferior_ptid)
1895 && pid == ptid_get_pid (inferior_ptid))
1896 {
1897 /* inferior_ptid has no thread member yet. This can happen
1898 with the vAttach -> remote_wait,"TAAthread:" path if the
1899 stub doesn't support qC. This is the first stop reported
1900 after an attach, so this is the main thread. Update the
1901 ptid in the thread list. */
1902 if (in_thread_list (pid_to_ptid (pid)))
1903 thread_change_ptid (inferior_ptid, currthread);
1904 else
1905 {
1906 remote_add_thread (currthread, running, executing);
1907 inferior_ptid = currthread;
1908 }
1909 return;
1910 }
1911
1912 if (ptid_equal (magic_null_ptid, inferior_ptid))
1913 {
1914 /* inferior_ptid is not set yet. This can happen with the
1915 vRun -> remote_wait,"TAAthread:" path if the stub
1916 doesn't support qC. This is the first stop reported
1917 after an attach, so this is the main thread. Update the
1918 ptid in the thread list. */
1919 thread_change_ptid (inferior_ptid, currthread);
1920 return;
1921 }
1922
1923 /* When connecting to a target remote, or to a target
1924 extended-remote which already was debugging an inferior, we
1925 may not know about it yet. Add it before adding its child
1926 thread, so notifications are emitted in a sensible order. */
1927 if (!in_inferior_list (ptid_get_pid (currthread)))
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930 int fake_pid_p = !remote_multi_process_p (rs);
1931
1932 inf = remote_add_inferior (fake_pid_p,
1933 ptid_get_pid (currthread), -1, 1);
1934 }
1935
1936 /* This is really a new thread. Add it. */
1937 remote_add_thread (currthread, running, executing);
1938
1939 /* If we found a new inferior, let the common code do whatever
1940 it needs to with it (e.g., read shared libraries, insert
1941 breakpoints), unless we're just setting up an all-stop
1942 connection. */
1943 if (inf != NULL)
1944 {
1945 struct remote_state *rs = get_remote_state ();
1946
1947 if (!rs->starting_up)
1948 notice_new_inferior (currthread, executing, 0);
1949 }
1950 }
1951}
1952
1953/* Return THREAD's private thread data, creating it if necessary. */
1954
1955static struct private_thread_info *
1956get_private_info_thread (struct thread_info *thread)
1957{
1958 gdb_assert (thread != NULL);
1959
1960 if (thread->priv == NULL)
1961 {
1962 struct private_thread_info *priv = XNEW (struct private_thread_info);
1963
1964 thread->private_dtor = free_private_thread_info;
1965 thread->priv = priv;
1966
1967 priv->core = -1;
1968 priv->extra = NULL;
1969 priv->name = NULL;
1970 priv->name = NULL;
1971 priv->last_resume_step = 0;
1972 priv->last_resume_sig = GDB_SIGNAL_0;
1973 priv->vcont_resumed = 0;
1974 }
1975
1976 return thread->priv;
1977}
1978
1979/* Return PTID's private thread data, creating it if necessary. */
1980
1981static struct private_thread_info *
1982get_private_info_ptid (ptid_t ptid)
1983{
1984 struct thread_info *info = find_thread_ptid (ptid);
1985
1986 return get_private_info_thread (info);
1987}
1988
1989/* Call this function as a result of
1990 1) A halt indication (T packet) containing a thread id
1991 2) A direct query of currthread
1992 3) Successful execution of set thread */
1993
1994static void
1995record_currthread (struct remote_state *rs, ptid_t currthread)
1996{
1997 rs->general_thread = currthread;
1998}
1999
2000/* If 'QPassSignals' is supported, tell the remote stub what signals
2001 it can simply pass through to the inferior without reporting. */
2002
2003static void
2004remote_pass_signals (struct target_ops *self,
2005 int numsigs, unsigned char *pass_signals)
2006{
2007 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2008 {
2009 char *pass_packet, *p;
2010 int count = 0, i;
2011 struct remote_state *rs = get_remote_state ();
2012
2013 gdb_assert (numsigs < 256);
2014 for (i = 0; i < numsigs; i++)
2015 {
2016 if (pass_signals[i])
2017 count++;
2018 }
2019 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2020 strcpy (pass_packet, "QPassSignals:");
2021 p = pass_packet + strlen (pass_packet);
2022 for (i = 0; i < numsigs; i++)
2023 {
2024 if (pass_signals[i])
2025 {
2026 if (i >= 16)
2027 *p++ = tohex (i >> 4);
2028 *p++ = tohex (i & 15);
2029 if (count)
2030 *p++ = ';';
2031 else
2032 break;
2033 count--;
2034 }
2035 }
2036 *p = 0;
2037 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2038 {
2039 putpkt (pass_packet);
2040 getpkt (&rs->buf, &rs->buf_size, 0);
2041 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2042 if (rs->last_pass_packet)
2043 xfree (rs->last_pass_packet);
2044 rs->last_pass_packet = pass_packet;
2045 }
2046 else
2047 xfree (pass_packet);
2048 }
2049}
2050
2051/* If 'QCatchSyscalls' is supported, tell the remote stub
2052 to report syscalls to GDB. */
2053
2054static int
2055remote_set_syscall_catchpoint (struct target_ops *self,
2056 int pid, int needed, int any_count,
2057 int table_size, int *table)
2058{
2059 char *catch_packet;
2060 enum packet_result result;
2061 int n_sysno = 0;
2062
2063 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2064 {
2065 /* Not supported. */
2066 return 1;
2067 }
2068
2069 if (needed && !any_count)
2070 {
2071 int i;
2072
2073 /* Count how many syscalls are to be caught (table[sysno] != 0). */
2074 for (i = 0; i < table_size; i++)
2075 {
2076 if (table[i] != 0)
2077 n_sysno++;
2078 }
2079 }
2080
2081 if (remote_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "remote_set_syscall_catchpoint "
2085 "pid %d needed %d any_count %d n_sysno %d\n",
2086 pid, needed, any_count, n_sysno);
2087 }
2088
2089 if (needed)
2090 {
2091 /* Prepare a packet with the sysno list, assuming max 8+1
2092 characters for a sysno. If the resulting packet size is too
2093 big, fallback on the non-selective packet. */
2094 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2095
2096 catch_packet = (char *) xmalloc (maxpktsz);
2097 strcpy (catch_packet, "QCatchSyscalls:1");
2098 if (!any_count)
2099 {
2100 int i;
2101 char *p;
2102
2103 p = catch_packet;
2104 p += strlen (p);
2105
2106 /* Add in catch_packet each syscall to be caught (table[i] != 0). */
2107 for (i = 0; i < table_size; i++)
2108 {
2109 if (table[i] != 0)
2110 p += xsnprintf (p, catch_packet + maxpktsz - p, ";%x", i);
2111 }
2112 }
2113 if (strlen (catch_packet) > get_remote_packet_size ())
2114 {
2115 /* catch_packet too big. Fallback to less efficient
2116 non selective mode, with GDB doing the filtering. */
2117 catch_packet[sizeof ("QCatchSyscalls:1") - 1] = 0;
2118 }
2119 }
2120 else
2121 catch_packet = xstrdup ("QCatchSyscalls:0");
2122
2123 {
2124 struct cleanup *old_chain = make_cleanup (xfree, catch_packet);
2125 struct remote_state *rs = get_remote_state ();
2126
2127 putpkt (catch_packet);
2128 getpkt (&rs->buf, &rs->buf_size, 0);
2129 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2130 do_cleanups (old_chain);
2131 if (result == PACKET_OK)
2132 return 0;
2133 else
2134 return -1;
2135 }
2136}
2137
2138/* If 'QProgramSignals' is supported, tell the remote stub what
2139 signals it should pass through to the inferior when detaching. */
2140
2141static void
2142remote_program_signals (struct target_ops *self,
2143 int numsigs, unsigned char *signals)
2144{
2145 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2146 {
2147 char *packet, *p;
2148 int count = 0, i;
2149 struct remote_state *rs = get_remote_state ();
2150
2151 gdb_assert (numsigs < 256);
2152 for (i = 0; i < numsigs; i++)
2153 {
2154 if (signals[i])
2155 count++;
2156 }
2157 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2158 strcpy (packet, "QProgramSignals:");
2159 p = packet + strlen (packet);
2160 for (i = 0; i < numsigs; i++)
2161 {
2162 if (signal_pass_state (i))
2163 {
2164 if (i >= 16)
2165 *p++ = tohex (i >> 4);
2166 *p++ = tohex (i & 15);
2167 if (count)
2168 *p++ = ';';
2169 else
2170 break;
2171 count--;
2172 }
2173 }
2174 *p = 0;
2175 if (!rs->last_program_signals_packet
2176 || strcmp (rs->last_program_signals_packet, packet) != 0)
2177 {
2178 putpkt (packet);
2179 getpkt (&rs->buf, &rs->buf_size, 0);
2180 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2181 xfree (rs->last_program_signals_packet);
2182 rs->last_program_signals_packet = packet;
2183 }
2184 else
2185 xfree (packet);
2186 }
2187}
2188
2189/* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2190 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2191 thread. If GEN is set, set the general thread, if not, then set
2192 the step/continue thread. */
2193static void
2194set_thread (ptid_t ptid, int gen)
2195{
2196 struct remote_state *rs = get_remote_state ();
2197 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2198 char *buf = rs->buf;
2199 char *endbuf = rs->buf + get_remote_packet_size ();
2200
2201 if (ptid_equal (state, ptid))
2202 return;
2203
2204 *buf++ = 'H';
2205 *buf++ = gen ? 'g' : 'c';
2206 if (ptid_equal (ptid, magic_null_ptid))
2207 xsnprintf (buf, endbuf - buf, "0");
2208 else if (ptid_equal (ptid, any_thread_ptid))
2209 xsnprintf (buf, endbuf - buf, "0");
2210 else if (ptid_equal (ptid, minus_one_ptid))
2211 xsnprintf (buf, endbuf - buf, "-1");
2212 else
2213 write_ptid (buf, endbuf, ptid);
2214 putpkt (rs->buf);
2215 getpkt (&rs->buf, &rs->buf_size, 0);
2216 if (gen)
2217 rs->general_thread = ptid;
2218 else
2219 rs->continue_thread = ptid;
2220}
2221
2222static void
2223set_general_thread (ptid_t ptid)
2224{
2225 set_thread (ptid, 1);
2226}
2227
2228static void
2229set_continue_thread (ptid_t ptid)
2230{
2231 set_thread (ptid, 0);
2232}
2233
2234/* Change the remote current process. Which thread within the process
2235 ends up selected isn't important, as long as it is the same process
2236 as what INFERIOR_PTID points to.
2237
2238 This comes from that fact that there is no explicit notion of
2239 "selected process" in the protocol. The selected process for
2240 general operations is the process the selected general thread
2241 belongs to. */
2242
2243static void
2244set_general_process (void)
2245{
2246 struct remote_state *rs = get_remote_state ();
2247
2248 /* If the remote can't handle multiple processes, don't bother. */
2249 if (!remote_multi_process_p (rs))
2250 return;
2251
2252 /* We only need to change the remote current thread if it's pointing
2253 at some other process. */
2254 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2255 set_general_thread (inferior_ptid);
2256}
2257
2258\f
2259/* Return nonzero if this is the main thread that we made up ourselves
2260 to model non-threaded targets as single-threaded. */
2261
2262static int
2263remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2264{
2265 if (ptid_equal (ptid, magic_null_ptid))
2266 /* The main thread is always alive. */
2267 return 1;
2268
2269 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2270 /* The main thread is always alive. This can happen after a
2271 vAttach, if the remote side doesn't support
2272 multi-threading. */
2273 return 1;
2274
2275 return 0;
2276}
2277
2278/* Return nonzero if the thread PTID is still alive on the remote
2279 system. */
2280
2281static int
2282remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2283{
2284 struct remote_state *rs = get_remote_state ();
2285 char *p, *endp;
2286
2287 /* Check if this is a thread that we made up ourselves to model
2288 non-threaded targets as single-threaded. */
2289 if (remote_thread_always_alive (ops, ptid))
2290 return 1;
2291
2292 p = rs->buf;
2293 endp = rs->buf + get_remote_packet_size ();
2294
2295 *p++ = 'T';
2296 write_ptid (p, endp, ptid);
2297
2298 putpkt (rs->buf);
2299 getpkt (&rs->buf, &rs->buf_size, 0);
2300 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2301}
2302
2303/* Return a pointer to a thread name if we know it and NULL otherwise.
2304 The thread_info object owns the memory for the name. */
2305
2306static const char *
2307remote_thread_name (struct target_ops *ops, struct thread_info *info)
2308{
2309 if (info->priv != NULL)
2310 return info->priv->name;
2311
2312 return NULL;
2313}
2314
2315/* About these extended threadlist and threadinfo packets. They are
2316 variable length packets but, the fields within them are often fixed
2317 length. They are redundent enough to send over UDP as is the
2318 remote protocol in general. There is a matching unit test module
2319 in libstub. */
2320
2321/* WARNING: This threadref data structure comes from the remote O.S.,
2322 libstub protocol encoding, and remote.c. It is not particularly
2323 changable. */
2324
2325/* Right now, the internal structure is int. We want it to be bigger.
2326 Plan to fix this. */
2327
2328typedef int gdb_threadref; /* Internal GDB thread reference. */
2329
2330/* gdb_ext_thread_info is an internal GDB data structure which is
2331 equivalent to the reply of the remote threadinfo packet. */
2332
2333struct gdb_ext_thread_info
2334 {
2335 threadref threadid; /* External form of thread reference. */
2336 int active; /* Has state interesting to GDB?
2337 regs, stack. */
2338 char display[256]; /* Brief state display, name,
2339 blocked/suspended. */
2340 char shortname[32]; /* To be used to name threads. */
2341 char more_display[256]; /* Long info, statistics, queue depth,
2342 whatever. */
2343 };
2344
2345/* The volume of remote transfers can be limited by submitting
2346 a mask containing bits specifying the desired information.
2347 Use a union of these values as the 'selection' parameter to
2348 get_thread_info. FIXME: Make these TAG names more thread specific. */
2349
2350#define TAG_THREADID 1
2351#define TAG_EXISTS 2
2352#define TAG_DISPLAY 4
2353#define TAG_THREADNAME 8
2354#define TAG_MOREDISPLAY 16
2355
2356#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2357
2358static char *unpack_nibble (char *buf, int *val);
2359
2360static char *unpack_byte (char *buf, int *value);
2361
2362static char *pack_int (char *buf, int value);
2363
2364static char *unpack_int (char *buf, int *value);
2365
2366static char *unpack_string (char *src, char *dest, int length);
2367
2368static char *pack_threadid (char *pkt, threadref *id);
2369
2370static char *unpack_threadid (char *inbuf, threadref *id);
2371
2372void int_to_threadref (threadref *id, int value);
2373
2374static int threadref_to_int (threadref *ref);
2375
2376static void copy_threadref (threadref *dest, threadref *src);
2377
2378static int threadmatch (threadref *dest, threadref *src);
2379
2380static char *pack_threadinfo_request (char *pkt, int mode,
2381 threadref *id);
2382
2383static int remote_unpack_thread_info_response (char *pkt,
2384 threadref *expectedref,
2385 struct gdb_ext_thread_info
2386 *info);
2387
2388
2389static int remote_get_threadinfo (threadref *threadid,
2390 int fieldset, /*TAG mask */
2391 struct gdb_ext_thread_info *info);
2392
2393static char *pack_threadlist_request (char *pkt, int startflag,
2394 int threadcount,
2395 threadref *nextthread);
2396
2397static int parse_threadlist_response (char *pkt,
2398 int result_limit,
2399 threadref *original_echo,
2400 threadref *resultlist,
2401 int *doneflag);
2402
2403static int remote_get_threadlist (int startflag,
2404 threadref *nextthread,
2405 int result_limit,
2406 int *done,
2407 int *result_count,
2408 threadref *threadlist);
2409
2410typedef int (*rmt_thread_action) (threadref *ref, void *context);
2411
2412static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2413 void *context, int looplimit);
2414
2415static int remote_newthread_step (threadref *ref, void *context);
2416
2417
2418/* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2419 buffer we're allowed to write to. Returns
2420 BUF+CHARACTERS_WRITTEN. */
2421
2422static char *
2423write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2424{
2425 int pid, tid;
2426 struct remote_state *rs = get_remote_state ();
2427
2428 if (remote_multi_process_p (rs))
2429 {
2430 pid = ptid_get_pid (ptid);
2431 if (pid < 0)
2432 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2433 else
2434 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2435 }
2436 tid = ptid_get_lwp (ptid);
2437 if (tid < 0)
2438 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2439 else
2440 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2441
2442 return buf;
2443}
2444
2445/* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2446 passed the last parsed char. Returns null_ptid on error. */
2447
2448static ptid_t
2449read_ptid (char *buf, char **obuf)
2450{
2451 char *p = buf;
2452 char *pp;
2453 ULONGEST pid = 0, tid = 0;
2454
2455 if (*p == 'p')
2456 {
2457 /* Multi-process ptid. */
2458 pp = unpack_varlen_hex (p + 1, &pid);
2459 if (*pp != '.')
2460 error (_("invalid remote ptid: %s"), p);
2461
2462 p = pp;
2463 pp = unpack_varlen_hex (p + 1, &tid);
2464 if (obuf)
2465 *obuf = pp;
2466 return ptid_build (pid, tid, 0);
2467 }
2468
2469 /* No multi-process. Just a tid. */
2470 pp = unpack_varlen_hex (p, &tid);
2471
2472 /* Return null_ptid when no thread id is found. */
2473 if (p == pp)
2474 {
2475 if (obuf)
2476 *obuf = pp;
2477 return null_ptid;
2478 }
2479
2480 /* Since the stub is not sending a process id, then default to
2481 what's in inferior_ptid, unless it's null at this point. If so,
2482 then since there's no way to know the pid of the reported
2483 threads, use the magic number. */
2484 if (ptid_equal (inferior_ptid, null_ptid))
2485 pid = ptid_get_pid (magic_null_ptid);
2486 else
2487 pid = ptid_get_pid (inferior_ptid);
2488
2489 if (obuf)
2490 *obuf = pp;
2491 return ptid_build (pid, tid, 0);
2492}
2493
2494static int
2495stubhex (int ch)
2496{
2497 if (ch >= 'a' && ch <= 'f')
2498 return ch - 'a' + 10;
2499 if (ch >= '0' && ch <= '9')
2500 return ch - '0';
2501 if (ch >= 'A' && ch <= 'F')
2502 return ch - 'A' + 10;
2503 return -1;
2504}
2505
2506static int
2507stub_unpack_int (char *buff, int fieldlength)
2508{
2509 int nibble;
2510 int retval = 0;
2511
2512 while (fieldlength)
2513 {
2514 nibble = stubhex (*buff++);
2515 retval |= nibble;
2516 fieldlength--;
2517 if (fieldlength)
2518 retval = retval << 4;
2519 }
2520 return retval;
2521}
2522
2523static char *
2524unpack_nibble (char *buf, int *val)
2525{
2526 *val = fromhex (*buf++);
2527 return buf;
2528}
2529
2530static char *
2531unpack_byte (char *buf, int *value)
2532{
2533 *value = stub_unpack_int (buf, 2);
2534 return buf + 2;
2535}
2536
2537static char *
2538pack_int (char *buf, int value)
2539{
2540 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2541 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2542 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2543 buf = pack_hex_byte (buf, (value & 0xff));
2544 return buf;
2545}
2546
2547static char *
2548unpack_int (char *buf, int *value)
2549{
2550 *value = stub_unpack_int (buf, 8);
2551 return buf + 8;
2552}
2553
2554#if 0 /* Currently unused, uncomment when needed. */
2555static char *pack_string (char *pkt, char *string);
2556
2557static char *
2558pack_string (char *pkt, char *string)
2559{
2560 char ch;
2561 int len;
2562
2563 len = strlen (string);
2564 if (len > 200)
2565 len = 200; /* Bigger than most GDB packets, junk??? */
2566 pkt = pack_hex_byte (pkt, len);
2567 while (len-- > 0)
2568 {
2569 ch = *string++;
2570 if ((ch == '\0') || (ch == '#'))
2571 ch = '*'; /* Protect encapsulation. */
2572 *pkt++ = ch;
2573 }
2574 return pkt;
2575}
2576#endif /* 0 (unused) */
2577
2578static char *
2579unpack_string (char *src, char *dest, int length)
2580{
2581 while (length--)
2582 *dest++ = *src++;
2583 *dest = '\0';
2584 return src;
2585}
2586
2587static char *
2588pack_threadid (char *pkt, threadref *id)
2589{
2590 char *limit;
2591 unsigned char *altid;
2592
2593 altid = (unsigned char *) id;
2594 limit = pkt + BUF_THREAD_ID_SIZE;
2595 while (pkt < limit)
2596 pkt = pack_hex_byte (pkt, *altid++);
2597 return pkt;
2598}
2599
2600
2601static char *
2602unpack_threadid (char *inbuf, threadref *id)
2603{
2604 char *altref;
2605 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2606 int x, y;
2607
2608 altref = (char *) id;
2609
2610 while (inbuf < limit)
2611 {
2612 x = stubhex (*inbuf++);
2613 y = stubhex (*inbuf++);
2614 *altref++ = (x << 4) | y;
2615 }
2616 return inbuf;
2617}
2618
2619/* Externally, threadrefs are 64 bits but internally, they are still
2620 ints. This is due to a mismatch of specifications. We would like
2621 to use 64bit thread references internally. This is an adapter
2622 function. */
2623
2624void
2625int_to_threadref (threadref *id, int value)
2626{
2627 unsigned char *scan;
2628
2629 scan = (unsigned char *) id;
2630 {
2631 int i = 4;
2632 while (i--)
2633 *scan++ = 0;
2634 }
2635 *scan++ = (value >> 24) & 0xff;
2636 *scan++ = (value >> 16) & 0xff;
2637 *scan++ = (value >> 8) & 0xff;
2638 *scan++ = (value & 0xff);
2639}
2640
2641static int
2642threadref_to_int (threadref *ref)
2643{
2644 int i, value = 0;
2645 unsigned char *scan;
2646
2647 scan = *ref;
2648 scan += 4;
2649 i = 4;
2650 while (i-- > 0)
2651 value = (value << 8) | ((*scan++) & 0xff);
2652 return value;
2653}
2654
2655static void
2656copy_threadref (threadref *dest, threadref *src)
2657{
2658 int i;
2659 unsigned char *csrc, *cdest;
2660
2661 csrc = (unsigned char *) src;
2662 cdest = (unsigned char *) dest;
2663 i = 8;
2664 while (i--)
2665 *cdest++ = *csrc++;
2666}
2667
2668static int
2669threadmatch (threadref *dest, threadref *src)
2670{
2671 /* Things are broken right now, so just assume we got a match. */
2672#if 0
2673 unsigned char *srcp, *destp;
2674 int i, result;
2675 srcp = (char *) src;
2676 destp = (char *) dest;
2677
2678 result = 1;
2679 while (i-- > 0)
2680 result &= (*srcp++ == *destp++) ? 1 : 0;
2681 return result;
2682#endif
2683 return 1;
2684}
2685
2686/*
2687 threadid:1, # always request threadid
2688 context_exists:2,
2689 display:4,
2690 unique_name:8,
2691 more_display:16
2692 */
2693
2694/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2695
2696static char *
2697pack_threadinfo_request (char *pkt, int mode, threadref *id)
2698{
2699 *pkt++ = 'q'; /* Info Query */
2700 *pkt++ = 'P'; /* process or thread info */
2701 pkt = pack_int (pkt, mode); /* mode */
2702 pkt = pack_threadid (pkt, id); /* threadid */
2703 *pkt = '\0'; /* terminate */
2704 return pkt;
2705}
2706
2707/* These values tag the fields in a thread info response packet. */
2708/* Tagging the fields allows us to request specific fields and to
2709 add more fields as time goes by. */
2710
2711#define TAG_THREADID 1 /* Echo the thread identifier. */
2712#define TAG_EXISTS 2 /* Is this process defined enough to
2713 fetch registers and its stack? */
2714#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2715#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2716#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2717 the process. */
2718
2719static int
2720remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2721 struct gdb_ext_thread_info *info)
2722{
2723 struct remote_state *rs = get_remote_state ();
2724 int mask, length;
2725 int tag;
2726 threadref ref;
2727 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2728 int retval = 1;
2729
2730 /* info->threadid = 0; FIXME: implement zero_threadref. */
2731 info->active = 0;
2732 info->display[0] = '\0';
2733 info->shortname[0] = '\0';
2734 info->more_display[0] = '\0';
2735
2736 /* Assume the characters indicating the packet type have been
2737 stripped. */
2738 pkt = unpack_int (pkt, &mask); /* arg mask */
2739 pkt = unpack_threadid (pkt, &ref);
2740
2741 if (mask == 0)
2742 warning (_("Incomplete response to threadinfo request."));
2743 if (!threadmatch (&ref, expectedref))
2744 { /* This is an answer to a different request. */
2745 warning (_("ERROR RMT Thread info mismatch."));
2746 return 0;
2747 }
2748 copy_threadref (&info->threadid, &ref);
2749
2750 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2751
2752 /* Packets are terminated with nulls. */
2753 while ((pkt < limit) && mask && *pkt)
2754 {
2755 pkt = unpack_int (pkt, &tag); /* tag */
2756 pkt = unpack_byte (pkt, &length); /* length */
2757 if (!(tag & mask)) /* Tags out of synch with mask. */
2758 {
2759 warning (_("ERROR RMT: threadinfo tag mismatch."));
2760 retval = 0;
2761 break;
2762 }
2763 if (tag == TAG_THREADID)
2764 {
2765 if (length != 16)
2766 {
2767 warning (_("ERROR RMT: length of threadid is not 16."));
2768 retval = 0;
2769 break;
2770 }
2771 pkt = unpack_threadid (pkt, &ref);
2772 mask = mask & ~TAG_THREADID;
2773 continue;
2774 }
2775 if (tag == TAG_EXISTS)
2776 {
2777 info->active = stub_unpack_int (pkt, length);
2778 pkt += length;
2779 mask = mask & ~(TAG_EXISTS);
2780 if (length > 8)
2781 {
2782 warning (_("ERROR RMT: 'exists' length too long."));
2783 retval = 0;
2784 break;
2785 }
2786 continue;
2787 }
2788 if (tag == TAG_THREADNAME)
2789 {
2790 pkt = unpack_string (pkt, &info->shortname[0], length);
2791 mask = mask & ~TAG_THREADNAME;
2792 continue;
2793 }
2794 if (tag == TAG_DISPLAY)
2795 {
2796 pkt = unpack_string (pkt, &info->display[0], length);
2797 mask = mask & ~TAG_DISPLAY;
2798 continue;
2799 }
2800 if (tag == TAG_MOREDISPLAY)
2801 {
2802 pkt = unpack_string (pkt, &info->more_display[0], length);
2803 mask = mask & ~TAG_MOREDISPLAY;
2804 continue;
2805 }
2806 warning (_("ERROR RMT: unknown thread info tag."));
2807 break; /* Not a tag we know about. */
2808 }
2809 return retval;
2810}
2811
2812static int
2813remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2814 struct gdb_ext_thread_info *info)
2815{
2816 struct remote_state *rs = get_remote_state ();
2817 int result;
2818
2819 pack_threadinfo_request (rs->buf, fieldset, threadid);
2820 putpkt (rs->buf);
2821 getpkt (&rs->buf, &rs->buf_size, 0);
2822
2823 if (rs->buf[0] == '\0')
2824 return 0;
2825
2826 result = remote_unpack_thread_info_response (rs->buf + 2,
2827 threadid, info);
2828 return result;
2829}
2830
2831/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2832
2833static char *
2834pack_threadlist_request (char *pkt, int startflag, int threadcount,
2835 threadref *nextthread)
2836{
2837 *pkt++ = 'q'; /* info query packet */
2838 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2839 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2840 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2841 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2842 *pkt = '\0';
2843 return pkt;
2844}
2845
2846/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2847
2848static int
2849parse_threadlist_response (char *pkt, int result_limit,
2850 threadref *original_echo, threadref *resultlist,
2851 int *doneflag)
2852{
2853 struct remote_state *rs = get_remote_state ();
2854 char *limit;
2855 int count, resultcount, done;
2856
2857 resultcount = 0;
2858 /* Assume the 'q' and 'M chars have been stripped. */
2859 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2860 /* done parse past here */
2861 pkt = unpack_byte (pkt, &count); /* count field */
2862 pkt = unpack_nibble (pkt, &done);
2863 /* The first threadid is the argument threadid. */
2864 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2865 while ((count-- > 0) && (pkt < limit))
2866 {
2867 pkt = unpack_threadid (pkt, resultlist++);
2868 if (resultcount++ >= result_limit)
2869 break;
2870 }
2871 if (doneflag)
2872 *doneflag = done;
2873 return resultcount;
2874}
2875
2876/* Fetch the next batch of threads from the remote. Returns -1 if the
2877 qL packet is not supported, 0 on error and 1 on success. */
2878
2879static int
2880remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2881 int *done, int *result_count, threadref *threadlist)
2882{
2883 struct remote_state *rs = get_remote_state ();
2884 int result = 1;
2885
2886 /* Trancate result limit to be smaller than the packet size. */
2887 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2888 >= get_remote_packet_size ())
2889 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2890
2891 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2892 putpkt (rs->buf);
2893 getpkt (&rs->buf, &rs->buf_size, 0);
2894 if (*rs->buf == '\0')
2895 {
2896 /* Packet not supported. */
2897 return -1;
2898 }
2899
2900 *result_count =
2901 parse_threadlist_response (rs->buf + 2, result_limit,
2902 &rs->echo_nextthread, threadlist, done);
2903
2904 if (!threadmatch (&rs->echo_nextthread, nextthread))
2905 {
2906 /* FIXME: This is a good reason to drop the packet. */
2907 /* Possably, there is a duplicate response. */
2908 /* Possabilities :
2909 retransmit immediatly - race conditions
2910 retransmit after timeout - yes
2911 exit
2912 wait for packet, then exit
2913 */
2914 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2915 return 0; /* I choose simply exiting. */
2916 }
2917 if (*result_count <= 0)
2918 {
2919 if (*done != 1)
2920 {
2921 warning (_("RMT ERROR : failed to get remote thread list."));
2922 result = 0;
2923 }
2924 return result; /* break; */
2925 }
2926 if (*result_count > result_limit)
2927 {
2928 *result_count = 0;
2929 warning (_("RMT ERROR: threadlist response longer than requested."));
2930 return 0;
2931 }
2932 return result;
2933}
2934
2935/* Fetch the list of remote threads, with the qL packet, and call
2936 STEPFUNCTION for each thread found. Stops iterating and returns 1
2937 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2938 STEPFUNCTION returns false. If the packet is not supported,
2939 returns -1. */
2940
2941static int
2942remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2943 int looplimit)
2944{
2945 struct remote_state *rs = get_remote_state ();
2946 int done, i, result_count;
2947 int startflag = 1;
2948 int result = 1;
2949 int loopcount = 0;
2950
2951 done = 0;
2952 while (!done)
2953 {
2954 if (loopcount++ > looplimit)
2955 {
2956 result = 0;
2957 warning (_("Remote fetch threadlist -infinite loop-."));
2958 break;
2959 }
2960 result = remote_get_threadlist (startflag, &rs->nextthread,
2961 MAXTHREADLISTRESULTS,
2962 &done, &result_count,
2963 rs->resultthreadlist);
2964 if (result <= 0)
2965 break;
2966 /* Clear for later iterations. */
2967 startflag = 0;
2968 /* Setup to resume next batch of thread references, set nextthread. */
2969 if (result_count >= 1)
2970 copy_threadref (&rs->nextthread,
2971 &rs->resultthreadlist[result_count - 1]);
2972 i = 0;
2973 while (result_count--)
2974 {
2975 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2976 {
2977 result = 0;
2978 break;
2979 }
2980 }
2981 }
2982 return result;
2983}
2984
2985/* A thread found on the remote target. */
2986
2987typedef struct thread_item
2988{
2989 /* The thread's PTID. */
2990 ptid_t ptid;
2991
2992 /* The thread's extra info. May be NULL. */
2993 char *extra;
2994
2995 /* The thread's name. May be NULL. */
2996 char *name;
2997
2998 /* The core the thread was running on. -1 if not known. */
2999 int core;
3000} thread_item_t;
3001DEF_VEC_O(thread_item_t);
3002
3003/* Context passed around to the various methods listing remote
3004 threads. As new threads are found, they're added to the ITEMS
3005 vector. */
3006
3007struct threads_listing_context
3008{
3009 /* The threads found on the remote target. */
3010 VEC (thread_item_t) *items;
3011};
3012
3013/* Discard the contents of the constructed thread listing context. */
3014
3015static void
3016clear_threads_listing_context (void *p)
3017{
3018 struct threads_listing_context *context
3019 = (struct threads_listing_context *) p;
3020 int i;
3021 struct thread_item *item;
3022
3023 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3024 {
3025 xfree (item->extra);
3026 xfree (item->name);
3027 }
3028
3029 VEC_free (thread_item_t, context->items);
3030}
3031
3032/* Remove the thread specified as the related_pid field of WS
3033 from the CONTEXT list. */
3034
3035static void
3036threads_listing_context_remove (struct target_waitstatus *ws,
3037 struct threads_listing_context *context)
3038{
3039 struct thread_item *item;
3040 int i;
3041 ptid_t child_ptid = ws->value.related_pid;
3042
3043 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
3044 {
3045 if (ptid_equal (item->ptid, child_ptid))
3046 {
3047 VEC_ordered_remove (thread_item_t, context->items, i);
3048 break;
3049 }
3050 }
3051}
3052
3053static int
3054remote_newthread_step (threadref *ref, void *data)
3055{
3056 struct threads_listing_context *context
3057 = (struct threads_listing_context *) data;
3058 struct thread_item item;
3059 int pid = ptid_get_pid (inferior_ptid);
3060
3061 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
3062 item.core = -1;
3063 item.name = NULL;
3064 item.extra = NULL;
3065
3066 VEC_safe_push (thread_item_t, context->items, &item);
3067
3068 return 1; /* continue iterator */
3069}
3070
3071#define CRAZY_MAX_THREADS 1000
3072
3073static ptid_t
3074remote_current_thread (ptid_t oldpid)
3075{
3076 struct remote_state *rs = get_remote_state ();
3077
3078 putpkt ("qC");
3079 getpkt (&rs->buf, &rs->buf_size, 0);
3080 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3081 {
3082 char *obuf;
3083 ptid_t result;
3084
3085 result = read_ptid (&rs->buf[2], &obuf);
3086 if (*obuf != '\0' && remote_debug)
3087 fprintf_unfiltered (gdb_stdlog,
3088 "warning: garbage in qC reply\n");
3089
3090 return result;
3091 }
3092 else
3093 return oldpid;
3094}
3095
3096/* List remote threads using the deprecated qL packet. */
3097
3098static int
3099remote_get_threads_with_ql (struct target_ops *ops,
3100 struct threads_listing_context *context)
3101{
3102 if (remote_threadlist_iterator (remote_newthread_step, context,
3103 CRAZY_MAX_THREADS) >= 0)
3104 return 1;
3105
3106 return 0;
3107}
3108
3109#if defined(HAVE_LIBEXPAT)
3110
3111static void
3112start_thread (struct gdb_xml_parser *parser,
3113 const struct gdb_xml_element *element,
3114 void *user_data, VEC(gdb_xml_value_s) *attributes)
3115{
3116 struct threads_listing_context *data
3117 = (struct threads_listing_context *) user_data;
3118
3119 struct thread_item item;
3120 char *id;
3121 struct gdb_xml_value *attr;
3122
3123 id = (char *) xml_find_attribute (attributes, "id")->value;
3124 item.ptid = read_ptid (id, NULL);
3125
3126 attr = xml_find_attribute (attributes, "core");
3127 if (attr != NULL)
3128 item.core = *(ULONGEST *) attr->value;
3129 else
3130 item.core = -1;
3131
3132 attr = xml_find_attribute (attributes, "name");
3133 item.name = attr != NULL ? xstrdup ((const char *) attr->value) : NULL;
3134
3135 item.extra = 0;
3136
3137 VEC_safe_push (thread_item_t, data->items, &item);
3138}
3139
3140static void
3141end_thread (struct gdb_xml_parser *parser,
3142 const struct gdb_xml_element *element,
3143 void *user_data, const char *body_text)
3144{
3145 struct threads_listing_context *data
3146 = (struct threads_listing_context *) user_data;
3147
3148 if (body_text && *body_text)
3149 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
3150}
3151
3152const struct gdb_xml_attribute thread_attributes[] = {
3153 { "id", GDB_XML_AF_NONE, NULL, NULL },
3154 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3155 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3156 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3157};
3158
3159const struct gdb_xml_element thread_children[] = {
3160 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3161};
3162
3163const struct gdb_xml_element threads_children[] = {
3164 { "thread", thread_attributes, thread_children,
3165 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3166 start_thread, end_thread },
3167 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3168};
3169
3170const struct gdb_xml_element threads_elements[] = {
3171 { "threads", NULL, threads_children,
3172 GDB_XML_EF_NONE, NULL, NULL },
3173 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3174};
3175
3176#endif
3177
3178/* List remote threads using qXfer:threads:read. */
3179
3180static int
3181remote_get_threads_with_qxfer (struct target_ops *ops,
3182 struct threads_listing_context *context)
3183{
3184#if defined(HAVE_LIBEXPAT)
3185 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3186 {
3187 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3188 struct cleanup *back_to = make_cleanup (xfree, xml);
3189
3190 if (xml != NULL && *xml != '\0')
3191 {
3192 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3193 threads_elements, xml, context);
3194 }
3195
3196 do_cleanups (back_to);
3197 return 1;
3198 }
3199#endif
3200
3201 return 0;
3202}
3203
3204/* List remote threads using qfThreadInfo/qsThreadInfo. */
3205
3206static int
3207remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3208 struct threads_listing_context *context)
3209{
3210 struct remote_state *rs = get_remote_state ();
3211
3212 if (rs->use_threadinfo_query)
3213 {
3214 char *bufp;
3215
3216 putpkt ("qfThreadInfo");
3217 getpkt (&rs->buf, &rs->buf_size, 0);
3218 bufp = rs->buf;
3219 if (bufp[0] != '\0') /* q packet recognized */
3220 {
3221 while (*bufp++ == 'm') /* reply contains one or more TID */
3222 {
3223 do
3224 {
3225 struct thread_item item;
3226
3227 item.ptid = read_ptid (bufp, &bufp);
3228 item.core = -1;
3229 item.name = NULL;
3230 item.extra = NULL;
3231
3232 VEC_safe_push (thread_item_t, context->items, &item);
3233 }
3234 while (*bufp++ == ','); /* comma-separated list */
3235 putpkt ("qsThreadInfo");
3236 getpkt (&rs->buf, &rs->buf_size, 0);
3237 bufp = rs->buf;
3238 }
3239 return 1;
3240 }
3241 else
3242 {
3243 /* Packet not recognized. */
3244 rs->use_threadinfo_query = 0;
3245 }
3246 }
3247
3248 return 0;
3249}
3250
3251/* Implement the to_update_thread_list function for the remote
3252 targets. */
3253
3254static void
3255remote_update_thread_list (struct target_ops *ops)
3256{
3257 struct threads_listing_context context;
3258 struct cleanup *old_chain;
3259 int got_list = 0;
3260
3261 context.items = NULL;
3262 old_chain = make_cleanup (clear_threads_listing_context, &context);
3263
3264 /* We have a few different mechanisms to fetch the thread list. Try
3265 them all, starting with the most preferred one first, falling
3266 back to older methods. */
3267 if (remote_get_threads_with_qxfer (ops, &context)
3268 || remote_get_threads_with_qthreadinfo (ops, &context)
3269 || remote_get_threads_with_ql (ops, &context))
3270 {
3271 int i;
3272 struct thread_item *item;
3273 struct thread_info *tp, *tmp;
3274
3275 got_list = 1;
3276
3277 if (VEC_empty (thread_item_t, context.items)
3278 && remote_thread_always_alive (ops, inferior_ptid))
3279 {
3280 /* Some targets don't really support threads, but still
3281 reply an (empty) thread list in response to the thread
3282 listing packets, instead of replying "packet not
3283 supported". Exit early so we don't delete the main
3284 thread. */
3285 do_cleanups (old_chain);
3286 return;
3287 }
3288
3289 /* CONTEXT now holds the current thread list on the remote
3290 target end. Delete GDB-side threads no longer found on the
3291 target. */
3292 ALL_THREADS_SAFE (tp, tmp)
3293 {
3294 for (i = 0;
3295 VEC_iterate (thread_item_t, context.items, i, item);
3296 ++i)
3297 {
3298 if (ptid_equal (item->ptid, tp->ptid))
3299 break;
3300 }
3301
3302 if (i == VEC_length (thread_item_t, context.items))
3303 {
3304 /* Not found. */
3305 delete_thread (tp->ptid);
3306 }
3307 }
3308
3309 /* Remove any unreported fork child threads from CONTEXT so
3310 that we don't interfere with follow fork, which is where
3311 creation of such threads is handled. */
3312 remove_new_fork_children (&context);
3313
3314 /* And now add threads we don't know about yet to our list. */
3315 for (i = 0;
3316 VEC_iterate (thread_item_t, context.items, i, item);
3317 ++i)
3318 {
3319 if (!ptid_equal (item->ptid, null_ptid))
3320 {
3321 struct private_thread_info *info;
3322 /* In non-stop mode, we assume new found threads are
3323 executing until proven otherwise with a stop reply.
3324 In all-stop, we can only get here if all threads are
3325 stopped. */
3326 int executing = target_is_non_stop_p () ? 1 : 0;
3327
3328 remote_notice_new_inferior (item->ptid, executing);
3329
3330 info = get_private_info_ptid (item->ptid);
3331 info->core = item->core;
3332 info->extra = item->extra;
3333 item->extra = NULL;
3334 info->name = item->name;
3335 item->name = NULL;
3336 }
3337 }
3338 }
3339
3340 if (!got_list)
3341 {
3342 /* If no thread listing method is supported, then query whether
3343 each known thread is alive, one by one, with the T packet.
3344 If the target doesn't support threads at all, then this is a
3345 no-op. See remote_thread_alive. */
3346 prune_threads ();
3347 }
3348
3349 do_cleanups (old_chain);
3350}
3351
3352/*
3353 * Collect a descriptive string about the given thread.
3354 * The target may say anything it wants to about the thread
3355 * (typically info about its blocked / runnable state, name, etc.).
3356 * This string will appear in the info threads display.
3357 *
3358 * Optional: targets are not required to implement this function.
3359 */
3360
3361static const char *
3362remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3363{
3364 struct remote_state *rs = get_remote_state ();
3365 int result;
3366 int set;
3367 threadref id;
3368 struct gdb_ext_thread_info threadinfo;
3369 static char display_buf[100]; /* arbitrary... */
3370 int n = 0; /* position in display_buf */
3371
3372 if (rs->remote_desc == 0) /* paranoia */
3373 internal_error (__FILE__, __LINE__,
3374 _("remote_threads_extra_info"));
3375
3376 if (ptid_equal (tp->ptid, magic_null_ptid)
3377 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3378 /* This is the main thread which was added by GDB. The remote
3379 server doesn't know about it. */
3380 return NULL;
3381
3382 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3383 {
3384 struct thread_info *info = find_thread_ptid (tp->ptid);
3385
3386 if (info && info->priv)
3387 return info->priv->extra;
3388 else
3389 return NULL;
3390 }
3391
3392 if (rs->use_threadextra_query)
3393 {
3394 char *b = rs->buf;
3395 char *endb = rs->buf + get_remote_packet_size ();
3396
3397 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3398 b += strlen (b);
3399 write_ptid (b, endb, tp->ptid);
3400
3401 putpkt (rs->buf);
3402 getpkt (&rs->buf, &rs->buf_size, 0);
3403 if (rs->buf[0] != 0)
3404 {
3405 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3406 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3407 display_buf [result] = '\0';
3408 return display_buf;
3409 }
3410 }
3411
3412 /* If the above query fails, fall back to the old method. */
3413 rs->use_threadextra_query = 0;
3414 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3415 | TAG_MOREDISPLAY | TAG_DISPLAY;
3416 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3417 if (remote_get_threadinfo (&id, set, &threadinfo))
3418 if (threadinfo.active)
3419 {
3420 if (*threadinfo.shortname)
3421 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3422 " Name: %s,", threadinfo.shortname);
3423 if (*threadinfo.display)
3424 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3425 " State: %s,", threadinfo.display);
3426 if (*threadinfo.more_display)
3427 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3428 " Priority: %s", threadinfo.more_display);
3429
3430 if (n > 0)
3431 {
3432 /* For purely cosmetic reasons, clear up trailing commas. */
3433 if (',' == display_buf[n-1])
3434 display_buf[n-1] = ' ';
3435 return display_buf;
3436 }
3437 }
3438 return NULL;
3439}
3440\f
3441
3442static int
3443remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3444 struct static_tracepoint_marker *marker)
3445{
3446 struct remote_state *rs = get_remote_state ();
3447 char *p = rs->buf;
3448
3449 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3450 p += strlen (p);
3451 p += hexnumstr (p, addr);
3452 putpkt (rs->buf);
3453 getpkt (&rs->buf, &rs->buf_size, 0);
3454 p = rs->buf;
3455
3456 if (*p == 'E')
3457 error (_("Remote failure reply: %s"), p);
3458
3459 if (*p++ == 'm')
3460 {
3461 parse_static_tracepoint_marker_definition (p, &p, marker);
3462 return 1;
3463 }
3464
3465 return 0;
3466}
3467
3468static VEC(static_tracepoint_marker_p) *
3469remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3470 const char *strid)
3471{
3472 struct remote_state *rs = get_remote_state ();
3473 VEC(static_tracepoint_marker_p) *markers = NULL;
3474 struct static_tracepoint_marker *marker = NULL;
3475 struct cleanup *old_chain;
3476 char *p;
3477
3478 /* Ask for a first packet of static tracepoint marker
3479 definition. */
3480 putpkt ("qTfSTM");
3481 getpkt (&rs->buf, &rs->buf_size, 0);
3482 p = rs->buf;
3483 if (*p == 'E')
3484 error (_("Remote failure reply: %s"), p);
3485
3486 old_chain = make_cleanup (free_current_marker, &marker);
3487
3488 while (*p++ == 'm')
3489 {
3490 if (marker == NULL)
3491 marker = XCNEW (struct static_tracepoint_marker);
3492
3493 do
3494 {
3495 parse_static_tracepoint_marker_definition (p, &p, marker);
3496
3497 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3498 {
3499 VEC_safe_push (static_tracepoint_marker_p,
3500 markers, marker);
3501 marker = NULL;
3502 }
3503 else
3504 {
3505 release_static_tracepoint_marker (marker);
3506 memset (marker, 0, sizeof (*marker));
3507 }
3508 }
3509 while (*p++ == ','); /* comma-separated list */
3510 /* Ask for another packet of static tracepoint definition. */
3511 putpkt ("qTsSTM");
3512 getpkt (&rs->buf, &rs->buf_size, 0);
3513 p = rs->buf;
3514 }
3515
3516 do_cleanups (old_chain);
3517 return markers;
3518}
3519
3520\f
3521/* Implement the to_get_ada_task_ptid function for the remote targets. */
3522
3523static ptid_t
3524remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3525{
3526 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3527}
3528\f
3529
3530/* Restart the remote side; this is an extended protocol operation. */
3531
3532static void
3533extended_remote_restart (void)
3534{
3535 struct remote_state *rs = get_remote_state ();
3536
3537 /* Send the restart command; for reasons I don't understand the
3538 remote side really expects a number after the "R". */
3539 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3540 putpkt (rs->buf);
3541
3542 remote_fileio_reset ();
3543}
3544\f
3545/* Clean up connection to a remote debugger. */
3546
3547static void
3548remote_close (struct target_ops *self)
3549{
3550 struct remote_state *rs = get_remote_state ();
3551
3552 if (rs->remote_desc == NULL)
3553 return; /* already closed */
3554
3555 /* Make sure we leave stdin registered in the event loop. */
3556 remote_terminal_ours (self);
3557
3558 serial_close (rs->remote_desc);
3559 rs->remote_desc = NULL;
3560
3561 /* We don't have a connection to the remote stub anymore. Get rid
3562 of all the inferiors and their threads we were controlling.
3563 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3564 will be unable to find the thread corresponding to (pid, 0, 0). */
3565 inferior_ptid = null_ptid;
3566 discard_all_inferiors ();
3567
3568 /* We are closing the remote target, so we should discard
3569 everything of this target. */
3570 discard_pending_stop_replies_in_queue (rs);
3571
3572 if (remote_async_inferior_event_token)
3573 delete_async_event_handler (&remote_async_inferior_event_token);
3574
3575 remote_notif_state_xfree (rs->notif_state);
3576
3577 trace_reset_local_state ();
3578}
3579
3580/* Query the remote side for the text, data and bss offsets. */
3581
3582static void
3583get_offsets (void)
3584{
3585 struct remote_state *rs = get_remote_state ();
3586 char *buf;
3587 char *ptr;
3588 int lose, num_segments = 0, do_sections, do_segments;
3589 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3590 struct section_offsets *offs;
3591 struct symfile_segment_data *data;
3592
3593 if (symfile_objfile == NULL)
3594 return;
3595
3596 putpkt ("qOffsets");
3597 getpkt (&rs->buf, &rs->buf_size, 0);
3598 buf = rs->buf;
3599
3600 if (buf[0] == '\000')
3601 return; /* Return silently. Stub doesn't support
3602 this command. */
3603 if (buf[0] == 'E')
3604 {
3605 warning (_("Remote failure reply: %s"), buf);
3606 return;
3607 }
3608
3609 /* Pick up each field in turn. This used to be done with scanf, but
3610 scanf will make trouble if CORE_ADDR size doesn't match
3611 conversion directives correctly. The following code will work
3612 with any size of CORE_ADDR. */
3613 text_addr = data_addr = bss_addr = 0;
3614 ptr = buf;
3615 lose = 0;
3616
3617 if (startswith (ptr, "Text="))
3618 {
3619 ptr += 5;
3620 /* Don't use strtol, could lose on big values. */
3621 while (*ptr && *ptr != ';')
3622 text_addr = (text_addr << 4) + fromhex (*ptr++);
3623
3624 if (startswith (ptr, ";Data="))
3625 {
3626 ptr += 6;
3627 while (*ptr && *ptr != ';')
3628 data_addr = (data_addr << 4) + fromhex (*ptr++);
3629 }
3630 else
3631 lose = 1;
3632
3633 if (!lose && startswith (ptr, ";Bss="))
3634 {
3635 ptr += 5;
3636 while (*ptr && *ptr != ';')
3637 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3638
3639 if (bss_addr != data_addr)
3640 warning (_("Target reported unsupported offsets: %s"), buf);
3641 }
3642 else
3643 lose = 1;
3644 }
3645 else if (startswith (ptr, "TextSeg="))
3646 {
3647 ptr += 8;
3648 /* Don't use strtol, could lose on big values. */
3649 while (*ptr && *ptr != ';')
3650 text_addr = (text_addr << 4) + fromhex (*ptr++);
3651 num_segments = 1;
3652
3653 if (startswith (ptr, ";DataSeg="))
3654 {
3655 ptr += 9;
3656 while (*ptr && *ptr != ';')
3657 data_addr = (data_addr << 4) + fromhex (*ptr++);
3658 num_segments++;
3659 }
3660 }
3661 else
3662 lose = 1;
3663
3664 if (lose)
3665 error (_("Malformed response to offset query, %s"), buf);
3666 else if (*ptr != '\0')
3667 warning (_("Target reported unsupported offsets: %s"), buf);
3668
3669 offs = ((struct section_offsets *)
3670 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3671 memcpy (offs, symfile_objfile->section_offsets,
3672 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3673
3674 data = get_symfile_segment_data (symfile_objfile->obfd);
3675 do_segments = (data != NULL);
3676 do_sections = num_segments == 0;
3677
3678 if (num_segments > 0)
3679 {
3680 segments[0] = text_addr;
3681 segments[1] = data_addr;
3682 }
3683 /* If we have two segments, we can still try to relocate everything
3684 by assuming that the .text and .data offsets apply to the whole
3685 text and data segments. Convert the offsets given in the packet
3686 to base addresses for symfile_map_offsets_to_segments. */
3687 else if (data && data->num_segments == 2)
3688 {
3689 segments[0] = data->segment_bases[0] + text_addr;
3690 segments[1] = data->segment_bases[1] + data_addr;
3691 num_segments = 2;
3692 }
3693 /* If the object file has only one segment, assume that it is text
3694 rather than data; main programs with no writable data are rare,
3695 but programs with no code are useless. Of course the code might
3696 have ended up in the data segment... to detect that we would need
3697 the permissions here. */
3698 else if (data && data->num_segments == 1)
3699 {
3700 segments[0] = data->segment_bases[0] + text_addr;
3701 num_segments = 1;
3702 }
3703 /* There's no way to relocate by segment. */
3704 else
3705 do_segments = 0;
3706
3707 if (do_segments)
3708 {
3709 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3710 offs, num_segments, segments);
3711
3712 if (ret == 0 && !do_sections)
3713 error (_("Can not handle qOffsets TextSeg "
3714 "response with this symbol file"));
3715
3716 if (ret > 0)
3717 do_sections = 0;
3718 }
3719
3720 if (data)
3721 free_symfile_segment_data (data);
3722
3723 if (do_sections)
3724 {
3725 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3726
3727 /* This is a temporary kludge to force data and bss to use the
3728 same offsets because that's what nlmconv does now. The real
3729 solution requires changes to the stub and remote.c that I
3730 don't have time to do right now. */
3731
3732 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3733 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3734 }
3735
3736 objfile_relocate (symfile_objfile, offs);
3737}
3738
3739/* Send interrupt_sequence to remote target. */
3740static void
3741send_interrupt_sequence (void)
3742{
3743 struct remote_state *rs = get_remote_state ();
3744
3745 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3746 remote_serial_write ("\x03", 1);
3747 else if (interrupt_sequence_mode == interrupt_sequence_break)
3748 serial_send_break (rs->remote_desc);
3749 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3750 {
3751 serial_send_break (rs->remote_desc);
3752 remote_serial_write ("g", 1);
3753 }
3754 else
3755 internal_error (__FILE__, __LINE__,
3756 _("Invalid value for interrupt_sequence_mode: %s."),
3757 interrupt_sequence_mode);
3758}
3759
3760
3761/* If STOP_REPLY is a T stop reply, look for the "thread" register,
3762 and extract the PTID. Returns NULL_PTID if not found. */
3763
3764static ptid_t
3765stop_reply_extract_thread (char *stop_reply)
3766{
3767 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3768 {
3769 char *p;
3770
3771 /* Txx r:val ; r:val (...) */
3772 p = &stop_reply[3];
3773
3774 /* Look for "register" named "thread". */
3775 while (*p != '\0')
3776 {
3777 char *p1;
3778
3779 p1 = strchr (p, ':');
3780 if (p1 == NULL)
3781 return null_ptid;
3782
3783 if (strncmp (p, "thread", p1 - p) == 0)
3784 return read_ptid (++p1, &p);
3785
3786 p1 = strchr (p, ';');
3787 if (p1 == NULL)
3788 return null_ptid;
3789 p1++;
3790
3791 p = p1;
3792 }
3793 }
3794
3795 return null_ptid;
3796}
3797
3798/* Determine the remote side's current thread. If we have a stop
3799 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3800 "thread" register we can extract the current thread from. If not,
3801 ask the remote which is the current thread with qC. The former
3802 method avoids a roundtrip. */
3803
3804static ptid_t
3805get_current_thread (char *wait_status)
3806{
3807 ptid_t ptid = null_ptid;
3808
3809 /* Note we don't use remote_parse_stop_reply as that makes use of
3810 the target architecture, which we haven't yet fully determined at
3811 this point. */
3812 if (wait_status != NULL)
3813 ptid = stop_reply_extract_thread (wait_status);
3814 if (ptid_equal (ptid, null_ptid))
3815 ptid = remote_current_thread (inferior_ptid);
3816
3817 return ptid;
3818}
3819
3820/* Query the remote target for which is the current thread/process,
3821 add it to our tables, and update INFERIOR_PTID. The caller is
3822 responsible for setting the state such that the remote end is ready
3823 to return the current thread.
3824
3825 This function is called after handling the '?' or 'vRun' packets,
3826 whose response is a stop reply from which we can also try
3827 extracting the thread. If the target doesn't support the explicit
3828 qC query, we infer the current thread from that stop reply, passed
3829 in in WAIT_STATUS, which may be NULL. */
3830
3831static void
3832add_current_inferior_and_thread (char *wait_status)
3833{
3834 struct remote_state *rs = get_remote_state ();
3835 int fake_pid_p = 0;
3836
3837 inferior_ptid = null_ptid;
3838
3839 /* Now, if we have thread information, update inferior_ptid. */
3840 ptid_t curr_ptid = get_current_thread (wait_status);
3841
3842 if (curr_ptid != null_ptid)
3843 {
3844 if (!remote_multi_process_p (rs))
3845 fake_pid_p = 1;
3846 }
3847 else
3848 {
3849 /* Without this, some commands which require an active target
3850 (such as kill) won't work. This variable serves (at least)
3851 double duty as both the pid of the target process (if it has
3852 such), and as a flag indicating that a target is active. */
3853 curr_ptid = magic_null_ptid;
3854 fake_pid_p = 1;
3855 }
3856
3857 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3858
3859 /* Add the main thread and switch to it. Don't try reading
3860 registers yet, since we haven't fetched the target description
3861 yet. */
3862 thread_info *tp = add_thread_silent (curr_ptid);
3863 switch_to_thread_no_regs (tp);
3864}
3865
3866/* Print info about a thread that was found already stopped on
3867 connection. */
3868
3869static void
3870print_one_stopped_thread (struct thread_info *thread)
3871{
3872 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3873
3874 switch_to_thread (thread->ptid);
3875 stop_pc = get_frame_pc (get_current_frame ());
3876 set_current_sal_from_frame (get_current_frame ());
3877
3878 thread->suspend.waitstatus_pending_p = 0;
3879
3880 if (ws->kind == TARGET_WAITKIND_STOPPED)
3881 {
3882 enum gdb_signal sig = ws->value.sig;
3883
3884 if (signal_print_state (sig))
3885 observer_notify_signal_received (sig);
3886 }
3887 observer_notify_normal_stop (NULL, 1);
3888}
3889
3890/* Process all initial stop replies the remote side sent in response
3891 to the ? packet. These indicate threads that were already stopped
3892 on initial connection. We mark these threads as stopped and print
3893 their current frame before giving the user the prompt. */
3894
3895static void
3896process_initial_stop_replies (int from_tty)
3897{
3898 int pending_stop_replies = stop_reply_queue_length ();
3899 struct inferior *inf;
3900 struct thread_info *thread;
3901 struct thread_info *selected = NULL;
3902 struct thread_info *lowest_stopped = NULL;
3903 struct thread_info *first = NULL;
3904
3905 /* Consume the initial pending events. */
3906 while (pending_stop_replies-- > 0)
3907 {
3908 ptid_t waiton_ptid = minus_one_ptid;
3909 ptid_t event_ptid;
3910 struct target_waitstatus ws;
3911 int ignore_event = 0;
3912 struct thread_info *thread;
3913
3914 memset (&ws, 0, sizeof (ws));
3915 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3916 if (remote_debug)
3917 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3918
3919 switch (ws.kind)
3920 {
3921 case TARGET_WAITKIND_IGNORE:
3922 case TARGET_WAITKIND_NO_RESUMED:
3923 case TARGET_WAITKIND_SIGNALLED:
3924 case TARGET_WAITKIND_EXITED:
3925 /* We shouldn't see these, but if we do, just ignore. */
3926 if (remote_debug)
3927 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3928 ignore_event = 1;
3929 break;
3930
3931 case TARGET_WAITKIND_EXECD:
3932 xfree (ws.value.execd_pathname);
3933 break;
3934 default:
3935 break;
3936 }
3937
3938 if (ignore_event)
3939 continue;
3940
3941 thread = find_thread_ptid (event_ptid);
3942
3943 if (ws.kind == TARGET_WAITKIND_STOPPED)
3944 {
3945 enum gdb_signal sig = ws.value.sig;
3946
3947 /* Stubs traditionally report SIGTRAP as initial signal,
3948 instead of signal 0. Suppress it. */
3949 if (sig == GDB_SIGNAL_TRAP)
3950 sig = GDB_SIGNAL_0;
3951 thread->suspend.stop_signal = sig;
3952 ws.value.sig = sig;
3953 }
3954
3955 thread->suspend.waitstatus = ws;
3956
3957 if (ws.kind != TARGET_WAITKIND_STOPPED
3958 || ws.value.sig != GDB_SIGNAL_0)
3959 thread->suspend.waitstatus_pending_p = 1;
3960
3961 set_executing (event_ptid, 0);
3962 set_running (event_ptid, 0);
3963 thread->priv->vcont_resumed = 0;
3964 }
3965
3966 /* "Notice" the new inferiors before anything related to
3967 registers/memory. */
3968 ALL_INFERIORS (inf)
3969 {
3970 if (inf->pid == 0)
3971 continue;
3972
3973 inf->needs_setup = 1;
3974
3975 if (non_stop)
3976 {
3977 thread = any_live_thread_of_process (inf->pid);
3978 notice_new_inferior (thread->ptid,
3979 thread->state == THREAD_RUNNING,
3980 from_tty);
3981 }
3982 }
3983
3984 /* If all-stop on top of non-stop, pause all threads. Note this
3985 records the threads' stop pc, so must be done after "noticing"
3986 the inferiors. */
3987 if (!non_stop)
3988 {
3989 stop_all_threads ();
3990
3991 /* If all threads of an inferior were already stopped, we
3992 haven't setup the inferior yet. */
3993 ALL_INFERIORS (inf)
3994 {
3995 if (inf->pid == 0)
3996 continue;
3997
3998 if (inf->needs_setup)
3999 {
4000 thread = any_live_thread_of_process (inf->pid);
4001 switch_to_thread_no_regs (thread);
4002 setup_inferior (0);
4003 }
4004 }
4005 }
4006
4007 /* Now go over all threads that are stopped, and print their current
4008 frame. If all-stop, then if there's a signalled thread, pick
4009 that as current. */
4010 ALL_NON_EXITED_THREADS (thread)
4011 {
4012 if (first == NULL)
4013 first = thread;
4014
4015 if (!non_stop)
4016 set_running (thread->ptid, 0);
4017 else if (thread->state != THREAD_STOPPED)
4018 continue;
4019
4020 if (selected == NULL
4021 && thread->suspend.waitstatus_pending_p)
4022 selected = thread;
4023
4024 if (lowest_stopped == NULL
4025 || thread->inf->num < lowest_stopped->inf->num
4026 || thread->per_inf_num < lowest_stopped->per_inf_num)
4027 lowest_stopped = thread;
4028
4029 if (non_stop)
4030 print_one_stopped_thread (thread);
4031 }
4032
4033 /* In all-stop, we only print the status of one thread, and leave
4034 others with their status pending. */
4035 if (!non_stop)
4036 {
4037 thread = selected;
4038 if (thread == NULL)
4039 thread = lowest_stopped;
4040 if (thread == NULL)
4041 thread = first;
4042
4043 print_one_stopped_thread (thread);
4044 }
4045
4046 /* For "info program". */
4047 thread = inferior_thread ();
4048 if (thread->state == THREAD_STOPPED)
4049 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4050}
4051
4052/* Start the remote connection and sync state. */
4053
4054static void
4055remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
4056{
4057 struct remote_state *rs = get_remote_state ();
4058 struct packet_config *noack_config;
4059 char *wait_status = NULL;
4060
4061 /* Signal other parts that we're going through the initial setup,
4062 and so things may not be stable yet. E.g., we don't try to
4063 install tracepoints until we've relocated symbols. Also, a
4064 Ctrl-C before we're connected and synced up can't interrupt the
4065 target. Instead, it offers to drop the (potentially wedged)
4066 connection. */
4067 rs->starting_up = 1;
4068
4069 QUIT;
4070
4071 if (interrupt_on_connect)
4072 send_interrupt_sequence ();
4073
4074 /* Ack any packet which the remote side has already sent. */
4075 remote_serial_write ("+", 1);
4076
4077 /* The first packet we send to the target is the optional "supported
4078 packets" request. If the target can answer this, it will tell us
4079 which later probes to skip. */
4080 remote_query_supported ();
4081
4082 /* If the stub wants to get a QAllow, compose one and send it. */
4083 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4084 remote_set_permissions (target);
4085
4086 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4087 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4088 as a reply to known packet. For packet "vFile:setfs:" it is an
4089 invalid reply and GDB would return error in
4090 remote_hostio_set_filesystem, making remote files access impossible.
4091 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4092 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4093 {
4094 const char v_mustreplyempty[] = "vMustReplyEmpty";
4095
4096 putpkt (v_mustreplyempty);
4097 getpkt (&rs->buf, &rs->buf_size, 0);
4098 if (strcmp (rs->buf, "OK") == 0)
4099 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4100 else if (strcmp (rs->buf, "") != 0)
4101 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4102 rs->buf);
4103 }
4104
4105 /* Next, we possibly activate noack mode.
4106
4107 If the QStartNoAckMode packet configuration is set to AUTO,
4108 enable noack mode if the stub reported a wish for it with
4109 qSupported.
4110
4111 If set to TRUE, then enable noack mode even if the stub didn't
4112 report it in qSupported. If the stub doesn't reply OK, the
4113 session ends with an error.
4114
4115 If FALSE, then don't activate noack mode, regardless of what the
4116 stub claimed should be the default with qSupported. */
4117
4118 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4119 if (packet_config_support (noack_config) != PACKET_DISABLE)
4120 {
4121 putpkt ("QStartNoAckMode");
4122 getpkt (&rs->buf, &rs->buf_size, 0);
4123 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4124 rs->noack_mode = 1;
4125 }
4126
4127 if (extended_p)
4128 {
4129 /* Tell the remote that we are using the extended protocol. */
4130 putpkt ("!");
4131 getpkt (&rs->buf, &rs->buf_size, 0);
4132 }
4133
4134 /* Let the target know which signals it is allowed to pass down to
4135 the program. */
4136 update_signals_program_target ();
4137
4138 /* Next, if the target can specify a description, read it. We do
4139 this before anything involving memory or registers. */
4140 target_find_description ();
4141
4142 /* Next, now that we know something about the target, update the
4143 address spaces in the program spaces. */
4144 update_address_spaces ();
4145
4146 /* On OSs where the list of libraries is global to all
4147 processes, we fetch them early. */
4148 if (gdbarch_has_global_solist (target_gdbarch ()))
4149 solib_add (NULL, from_tty, auto_solib_add);
4150
4151 if (target_is_non_stop_p ())
4152 {
4153 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4154 error (_("Non-stop mode requested, but remote "
4155 "does not support non-stop"));
4156
4157 putpkt ("QNonStop:1");
4158 getpkt (&rs->buf, &rs->buf_size, 0);
4159
4160 if (strcmp (rs->buf, "OK") != 0)
4161 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4162
4163 /* Find about threads and processes the stub is already
4164 controlling. We default to adding them in the running state.
4165 The '?' query below will then tell us about which threads are
4166 stopped. */
4167 remote_update_thread_list (target);
4168 }
4169 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4170 {
4171 /* Don't assume that the stub can operate in all-stop mode.
4172 Request it explicitly. */
4173 putpkt ("QNonStop:0");
4174 getpkt (&rs->buf, &rs->buf_size, 0);
4175
4176 if (strcmp (rs->buf, "OK") != 0)
4177 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4178 }
4179
4180 /* Upload TSVs regardless of whether the target is running or not. The
4181 remote stub, such as GDBserver, may have some predefined or builtin
4182 TSVs, even if the target is not running. */
4183 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4184 {
4185 struct uploaded_tsv *uploaded_tsvs = NULL;
4186
4187 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4188 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4189 }
4190
4191 /* Check whether the target is running now. */
4192 putpkt ("?");
4193 getpkt (&rs->buf, &rs->buf_size, 0);
4194
4195 if (!target_is_non_stop_p ())
4196 {
4197 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4198 {
4199 if (!extended_p)
4200 error (_("The target is not running (try extended-remote?)"));
4201
4202 /* We're connected, but not running. Drop out before we
4203 call start_remote. */
4204 rs->starting_up = 0;
4205 return;
4206 }
4207 else
4208 {
4209 /* Save the reply for later. */
4210 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4211 strcpy (wait_status, rs->buf);
4212 }
4213
4214 /* Fetch thread list. */
4215 target_update_thread_list ();
4216
4217 /* Let the stub know that we want it to return the thread. */
4218 set_continue_thread (minus_one_ptid);
4219
4220 if (thread_count () == 0)
4221 {
4222 /* Target has no concept of threads at all. GDB treats
4223 non-threaded target as single-threaded; add a main
4224 thread. */
4225 add_current_inferior_and_thread (wait_status);
4226 }
4227 else
4228 {
4229 /* We have thread information; select the thread the target
4230 says should be current. If we're reconnecting to a
4231 multi-threaded program, this will ideally be the thread
4232 that last reported an event before GDB disconnected. */
4233 inferior_ptid = get_current_thread (wait_status);
4234 if (ptid_equal (inferior_ptid, null_ptid))
4235 {
4236 /* Odd... The target was able to list threads, but not
4237 tell us which thread was current (no "thread"
4238 register in T stop reply?). Just pick the first
4239 thread in the thread list then. */
4240
4241 if (remote_debug)
4242 fprintf_unfiltered (gdb_stdlog,
4243 "warning: couldn't determine remote "
4244 "current thread; picking first in list.\n");
4245
4246 inferior_ptid = thread_list->ptid;
4247 }
4248 }
4249
4250 /* init_wait_for_inferior should be called before get_offsets in order
4251 to manage `inserted' flag in bp loc in a correct state.
4252 breakpoint_init_inferior, called from init_wait_for_inferior, set
4253 `inserted' flag to 0, while before breakpoint_re_set, called from
4254 start_remote, set `inserted' flag to 1. In the initialization of
4255 inferior, breakpoint_init_inferior should be called first, and then
4256 breakpoint_re_set can be called. If this order is broken, state of
4257 `inserted' flag is wrong, and cause some problems on breakpoint
4258 manipulation. */
4259 init_wait_for_inferior ();
4260
4261 get_offsets (); /* Get text, data & bss offsets. */
4262
4263 /* If we could not find a description using qXfer, and we know
4264 how to do it some other way, try again. This is not
4265 supported for non-stop; it could be, but it is tricky if
4266 there are no stopped threads when we connect. */
4267 if (remote_read_description_p (target)
4268 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4269 {
4270 target_clear_description ();
4271 target_find_description ();
4272 }
4273
4274 /* Use the previously fetched status. */
4275 gdb_assert (wait_status != NULL);
4276 strcpy (rs->buf, wait_status);
4277 rs->cached_wait_status = 1;
4278
4279 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4280 }
4281 else
4282 {
4283 /* Clear WFI global state. Do this before finding about new
4284 threads and inferiors, and setting the current inferior.
4285 Otherwise we would clear the proceed status of the current
4286 inferior when we want its stop_soon state to be preserved
4287 (see notice_new_inferior). */
4288 init_wait_for_inferior ();
4289
4290 /* In non-stop, we will either get an "OK", meaning that there
4291 are no stopped threads at this time; or, a regular stop
4292 reply. In the latter case, there may be more than one thread
4293 stopped --- we pull them all out using the vStopped
4294 mechanism. */
4295 if (strcmp (rs->buf, "OK") != 0)
4296 {
4297 struct notif_client *notif = &notif_client_stop;
4298
4299 /* remote_notif_get_pending_replies acks this one, and gets
4300 the rest out. */
4301 rs->notif_state->pending_event[notif_client_stop.id]
4302 = remote_notif_parse (notif, rs->buf);
4303 remote_notif_get_pending_events (notif);
4304 }
4305
4306 if (thread_count () == 0)
4307 {
4308 if (!extended_p)
4309 error (_("The target is not running (try extended-remote?)"));
4310
4311 /* We're connected, but not running. Drop out before we
4312 call start_remote. */
4313 rs->starting_up = 0;
4314 return;
4315 }
4316
4317 /* In non-stop mode, any cached wait status will be stored in
4318 the stop reply queue. */
4319 gdb_assert (wait_status == NULL);
4320
4321 /* Report all signals during attach/startup. */
4322 remote_pass_signals (target, 0, NULL);
4323
4324 /* If there are already stopped threads, mark them stopped and
4325 report their stops before giving the prompt to the user. */
4326 process_initial_stop_replies (from_tty);
4327
4328 if (target_can_async_p ())
4329 target_async (1);
4330 }
4331
4332 /* If we connected to a live target, do some additional setup. */
4333 if (target_has_execution)
4334 {
4335 if (symfile_objfile) /* No use without a symbol-file. */
4336 remote_check_symbols ();
4337 }
4338
4339 /* Possibly the target has been engaged in a trace run started
4340 previously; find out where things are at. */
4341 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4342 {
4343 struct uploaded_tp *uploaded_tps = NULL;
4344
4345 if (current_trace_status ()->running)
4346 printf_filtered (_("Trace is already running on the target.\n"));
4347
4348 remote_upload_tracepoints (target, &uploaded_tps);
4349
4350 merge_uploaded_tracepoints (&uploaded_tps);
4351 }
4352
4353 /* Possibly the target has been engaged in a btrace record started
4354 previously; find out where things are at. */
4355 remote_btrace_maybe_reopen ();
4356
4357 /* The thread and inferior lists are now synchronized with the
4358 target, our symbols have been relocated, and we're merged the
4359 target's tracepoints with ours. We're done with basic start
4360 up. */
4361 rs->starting_up = 0;
4362
4363 /* Maybe breakpoints are global and need to be inserted now. */
4364 if (breakpoints_should_be_inserted_now ())
4365 insert_breakpoints ();
4366}
4367
4368/* Open a connection to a remote debugger.
4369 NAME is the filename used for communication. */
4370
4371static void
4372remote_open (const char *name, int from_tty)
4373{
4374 remote_open_1 (name, from_tty, &remote_ops, 0);
4375}
4376
4377/* Open a connection to a remote debugger using the extended
4378 remote gdb protocol. NAME is the filename used for communication. */
4379
4380static void
4381extended_remote_open (const char *name, int from_tty)
4382{
4383 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4384}
4385
4386/* Reset all packets back to "unknown support". Called when opening a
4387 new connection to a remote target. */
4388
4389static void
4390reset_all_packet_configs_support (void)
4391{
4392 int i;
4393
4394 for (i = 0; i < PACKET_MAX; i++)
4395 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4396}
4397
4398/* Initialize all packet configs. */
4399
4400static void
4401init_all_packet_configs (void)
4402{
4403 int i;
4404
4405 for (i = 0; i < PACKET_MAX; i++)
4406 {
4407 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4408 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4409 }
4410}
4411
4412/* Symbol look-up. */
4413
4414static void
4415remote_check_symbols (void)
4416{
4417 struct remote_state *rs = get_remote_state ();
4418 char *msg, *reply, *tmp;
4419 int end;
4420 long reply_size;
4421 struct cleanup *old_chain;
4422
4423 /* The remote side has no concept of inferiors that aren't running
4424 yet, it only knows about running processes. If we're connected
4425 but our current inferior is not running, we should not invite the
4426 remote target to request symbol lookups related to its
4427 (unrelated) current process. */
4428 if (!target_has_execution)
4429 return;
4430
4431 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4432 return;
4433
4434 /* Make sure the remote is pointing at the right process. Note
4435 there's no way to select "no process". */
4436 set_general_process ();
4437
4438 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4439 because we need both at the same time. */
4440 msg = (char *) xmalloc (get_remote_packet_size ());
4441 old_chain = make_cleanup (xfree, msg);
4442 reply = (char *) xmalloc (get_remote_packet_size ());
4443 make_cleanup (free_current_contents, &reply);
4444 reply_size = get_remote_packet_size ();
4445
4446 /* Invite target to request symbol lookups. */
4447
4448 putpkt ("qSymbol::");
4449 getpkt (&reply, &reply_size, 0);
4450 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4451
4452 while (startswith (reply, "qSymbol:"))
4453 {
4454 struct bound_minimal_symbol sym;
4455
4456 tmp = &reply[8];
4457 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4458 msg[end] = '\0';
4459 sym = lookup_minimal_symbol (msg, NULL, NULL);
4460 if (sym.minsym == NULL)
4461 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4462 else
4463 {
4464 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4465 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4466
4467 /* If this is a function address, return the start of code
4468 instead of any data function descriptor. */
4469 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4470 sym_addr,
4471 &current_target);
4472
4473 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4474 phex_nz (sym_addr, addr_size), &reply[8]);
4475 }
4476
4477 putpkt (msg);
4478 getpkt (&reply, &reply_size, 0);
4479 }
4480
4481 do_cleanups (old_chain);
4482}
4483
4484static struct serial *
4485remote_serial_open (const char *name)
4486{
4487 static int udp_warning = 0;
4488
4489 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4490 of in ser-tcp.c, because it is the remote protocol assuming that the
4491 serial connection is reliable and not the serial connection promising
4492 to be. */
4493 if (!udp_warning && startswith (name, "udp:"))
4494 {
4495 warning (_("The remote protocol may be unreliable over UDP.\n"
4496 "Some events may be lost, rendering further debugging "
4497 "impossible."));
4498 udp_warning = 1;
4499 }
4500
4501 return serial_open (name);
4502}
4503
4504/* Inform the target of our permission settings. The permission flags
4505 work without this, but if the target knows the settings, it can do
4506 a couple things. First, it can add its own check, to catch cases
4507 that somehow manage to get by the permissions checks in target
4508 methods. Second, if the target is wired to disallow particular
4509 settings (for instance, a system in the field that is not set up to
4510 be able to stop at a breakpoint), it can object to any unavailable
4511 permissions. */
4512
4513void
4514remote_set_permissions (struct target_ops *self)
4515{
4516 struct remote_state *rs = get_remote_state ();
4517
4518 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4519 "WriteReg:%x;WriteMem:%x;"
4520 "InsertBreak:%x;InsertTrace:%x;"
4521 "InsertFastTrace:%x;Stop:%x",
4522 may_write_registers, may_write_memory,
4523 may_insert_breakpoints, may_insert_tracepoints,
4524 may_insert_fast_tracepoints, may_stop);
4525 putpkt (rs->buf);
4526 getpkt (&rs->buf, &rs->buf_size, 0);
4527
4528 /* If the target didn't like the packet, warn the user. Do not try
4529 to undo the user's settings, that would just be maddening. */
4530 if (strcmp (rs->buf, "OK") != 0)
4531 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4532}
4533
4534/* This type describes each known response to the qSupported
4535 packet. */
4536struct protocol_feature
4537{
4538 /* The name of this protocol feature. */
4539 const char *name;
4540
4541 /* The default for this protocol feature. */
4542 enum packet_support default_support;
4543
4544 /* The function to call when this feature is reported, or after
4545 qSupported processing if the feature is not supported.
4546 The first argument points to this structure. The second
4547 argument indicates whether the packet requested support be
4548 enabled, disabled, or probed (or the default, if this function
4549 is being called at the end of processing and this feature was
4550 not reported). The third argument may be NULL; if not NULL, it
4551 is a NUL-terminated string taken from the packet following
4552 this feature's name and an equals sign. */
4553 void (*func) (const struct protocol_feature *, enum packet_support,
4554 const char *);
4555
4556 /* The corresponding packet for this feature. Only used if
4557 FUNC is remote_supported_packet. */
4558 int packet;
4559};
4560
4561static void
4562remote_supported_packet (const struct protocol_feature *feature,
4563 enum packet_support support,
4564 const char *argument)
4565{
4566 if (argument)
4567 {
4568 warning (_("Remote qSupported response supplied an unexpected value for"
4569 " \"%s\"."), feature->name);
4570 return;
4571 }
4572
4573 remote_protocol_packets[feature->packet].support = support;
4574}
4575
4576static void
4577remote_packet_size (const struct protocol_feature *feature,
4578 enum packet_support support, const char *value)
4579{
4580 struct remote_state *rs = get_remote_state ();
4581
4582 int packet_size;
4583 char *value_end;
4584
4585 if (support != PACKET_ENABLE)
4586 return;
4587
4588 if (value == NULL || *value == '\0')
4589 {
4590 warning (_("Remote target reported \"%s\" without a size."),
4591 feature->name);
4592 return;
4593 }
4594
4595 errno = 0;
4596 packet_size = strtol (value, &value_end, 16);
4597 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4598 {
4599 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4600 feature->name, value);
4601 return;
4602 }
4603
4604 /* Record the new maximum packet size. */
4605 rs->explicit_packet_size = packet_size;
4606}
4607
4608static const struct protocol_feature remote_protocol_features[] = {
4609 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4610 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_qXfer_auxv },
4612 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_qXfer_exec_file },
4614 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4615 PACKET_qXfer_features },
4616 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4617 PACKET_qXfer_libraries },
4618 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4619 PACKET_qXfer_libraries_svr4 },
4620 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4621 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4622 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4623 PACKET_qXfer_memory_map },
4624 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4625 PACKET_qXfer_spu_read },
4626 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4627 PACKET_qXfer_spu_write },
4628 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4629 PACKET_qXfer_osdata },
4630 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4631 PACKET_qXfer_threads },
4632 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4633 PACKET_qXfer_traceframe_info },
4634 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4635 PACKET_QPassSignals },
4636 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4637 PACKET_QCatchSyscalls },
4638 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4639 PACKET_QProgramSignals },
4640 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4641 PACKET_QStartupWithShell },
4642 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4643 PACKET_QEnvironmentHexEncoded },
4644 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4645 PACKET_QEnvironmentReset },
4646 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4647 PACKET_QEnvironmentUnset },
4648 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4649 PACKET_QStartNoAckMode },
4650 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4651 PACKET_multiprocess_feature },
4652 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4653 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4654 PACKET_qXfer_siginfo_read },
4655 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4656 PACKET_qXfer_siginfo_write },
4657 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4658 PACKET_ConditionalTracepoints },
4659 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4660 PACKET_ConditionalBreakpoints },
4661 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4662 PACKET_BreakpointCommands },
4663 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4664 PACKET_FastTracepoints },
4665 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4666 PACKET_StaticTracepoints },
4667 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4668 PACKET_InstallInTrace},
4669 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4670 PACKET_DisconnectedTracing_feature },
4671 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4672 PACKET_bc },
4673 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4674 PACKET_bs },
4675 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4676 PACKET_TracepointSource },
4677 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4678 PACKET_QAllow },
4679 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4680 PACKET_EnableDisableTracepoints_feature },
4681 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4682 PACKET_qXfer_fdpic },
4683 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4684 PACKET_qXfer_uib },
4685 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4686 PACKET_QDisableRandomization },
4687 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4688 { "QTBuffer:size", PACKET_DISABLE,
4689 remote_supported_packet, PACKET_QTBuffer_size},
4690 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4691 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4692 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4693 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4694 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4695 PACKET_qXfer_btrace },
4696 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4697 PACKET_qXfer_btrace_conf },
4698 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4699 PACKET_Qbtrace_conf_bts_size },
4700 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4701 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4702 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4703 PACKET_fork_event_feature },
4704 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4705 PACKET_vfork_event_feature },
4706 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4707 PACKET_exec_event_feature },
4708 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4709 PACKET_Qbtrace_conf_pt_size },
4710 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4711 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4712 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4713};
4714
4715static char *remote_support_xml;
4716
4717/* Register string appended to "xmlRegisters=" in qSupported query. */
4718
4719void
4720register_remote_support_xml (const char *xml)
4721{
4722#if defined(HAVE_LIBEXPAT)
4723 if (remote_support_xml == NULL)
4724 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4725 else
4726 {
4727 char *copy = xstrdup (remote_support_xml + 13);
4728 char *p = strtok (copy, ",");
4729
4730 do
4731 {
4732 if (strcmp (p, xml) == 0)
4733 {
4734 /* already there */
4735 xfree (copy);
4736 return;
4737 }
4738 }
4739 while ((p = strtok (NULL, ",")) != NULL);
4740 xfree (copy);
4741
4742 remote_support_xml = reconcat (remote_support_xml,
4743 remote_support_xml, ",", xml,
4744 (char *) NULL);
4745 }
4746#endif
4747}
4748
4749static char *
4750remote_query_supported_append (char *msg, const char *append)
4751{
4752 if (msg)
4753 return reconcat (msg, msg, ";", append, (char *) NULL);
4754 else
4755 return xstrdup (append);
4756}
4757
4758static void
4759remote_query_supported (void)
4760{
4761 struct remote_state *rs = get_remote_state ();
4762 char *next;
4763 int i;
4764 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4765
4766 /* The packet support flags are handled differently for this packet
4767 than for most others. We treat an error, a disabled packet, and
4768 an empty response identically: any features which must be reported
4769 to be used will be automatically disabled. An empty buffer
4770 accomplishes this, since that is also the representation for a list
4771 containing no features. */
4772
4773 rs->buf[0] = 0;
4774 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4775 {
4776 char *q = NULL;
4777 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4778
4779 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4780 q = remote_query_supported_append (q, "multiprocess+");
4781
4782 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4783 q = remote_query_supported_append (q, "swbreak+");
4784 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4785 q = remote_query_supported_append (q, "hwbreak+");
4786
4787 q = remote_query_supported_append (q, "qRelocInsn+");
4788
4789 if (packet_set_cmd_state (PACKET_fork_event_feature)
4790 != AUTO_BOOLEAN_FALSE)
4791 q = remote_query_supported_append (q, "fork-events+");
4792 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4793 != AUTO_BOOLEAN_FALSE)
4794 q = remote_query_supported_append (q, "vfork-events+");
4795 if (packet_set_cmd_state (PACKET_exec_event_feature)
4796 != AUTO_BOOLEAN_FALSE)
4797 q = remote_query_supported_append (q, "exec-events+");
4798
4799 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4800 q = remote_query_supported_append (q, "vContSupported+");
4801
4802 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4803 q = remote_query_supported_append (q, "QThreadEvents+");
4804
4805 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4806 q = remote_query_supported_append (q, "no-resumed+");
4807
4808 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4809 the qSupported:xmlRegisters=i386 handling. */
4810 if (remote_support_xml != NULL)
4811 q = remote_query_supported_append (q, remote_support_xml);
4812
4813 q = reconcat (q, "qSupported:", q, (char *) NULL);
4814 putpkt (q);
4815
4816 do_cleanups (old_chain);
4817
4818 getpkt (&rs->buf, &rs->buf_size, 0);
4819
4820 /* If an error occured, warn, but do not return - just reset the
4821 buffer to empty and go on to disable features. */
4822 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4823 == PACKET_ERROR)
4824 {
4825 warning (_("Remote failure reply: %s"), rs->buf);
4826 rs->buf[0] = 0;
4827 }
4828 }
4829
4830 memset (seen, 0, sizeof (seen));
4831
4832 next = rs->buf;
4833 while (*next)
4834 {
4835 enum packet_support is_supported;
4836 char *p, *end, *name_end, *value;
4837
4838 /* First separate out this item from the rest of the packet. If
4839 there's another item after this, we overwrite the separator
4840 (terminated strings are much easier to work with). */
4841 p = next;
4842 end = strchr (p, ';');
4843 if (end == NULL)
4844 {
4845 end = p + strlen (p);
4846 next = end;
4847 }
4848 else
4849 {
4850 *end = '\0';
4851 next = end + 1;
4852
4853 if (end == p)
4854 {
4855 warning (_("empty item in \"qSupported\" response"));
4856 continue;
4857 }
4858 }
4859
4860 name_end = strchr (p, '=');
4861 if (name_end)
4862 {
4863 /* This is a name=value entry. */
4864 is_supported = PACKET_ENABLE;
4865 value = name_end + 1;
4866 *name_end = '\0';
4867 }
4868 else
4869 {
4870 value = NULL;
4871 switch (end[-1])
4872 {
4873 case '+':
4874 is_supported = PACKET_ENABLE;
4875 break;
4876
4877 case '-':
4878 is_supported = PACKET_DISABLE;
4879 break;
4880
4881 case '?':
4882 is_supported = PACKET_SUPPORT_UNKNOWN;
4883 break;
4884
4885 default:
4886 warning (_("unrecognized item \"%s\" "
4887 "in \"qSupported\" response"), p);
4888 continue;
4889 }
4890 end[-1] = '\0';
4891 }
4892
4893 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4894 if (strcmp (remote_protocol_features[i].name, p) == 0)
4895 {
4896 const struct protocol_feature *feature;
4897
4898 seen[i] = 1;
4899 feature = &remote_protocol_features[i];
4900 feature->func (feature, is_supported, value);
4901 break;
4902 }
4903 }
4904
4905 /* If we increased the packet size, make sure to increase the global
4906 buffer size also. We delay this until after parsing the entire
4907 qSupported packet, because this is the same buffer we were
4908 parsing. */
4909 if (rs->buf_size < rs->explicit_packet_size)
4910 {
4911 rs->buf_size = rs->explicit_packet_size;
4912 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4913 }
4914
4915 /* Handle the defaults for unmentioned features. */
4916 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4917 if (!seen[i])
4918 {
4919 const struct protocol_feature *feature;
4920
4921 feature = &remote_protocol_features[i];
4922 feature->func (feature, feature->default_support, NULL);
4923 }
4924}
4925
4926/* Serial QUIT handler for the remote serial descriptor.
4927
4928 Defers handling a Ctrl-C until we're done with the current
4929 command/response packet sequence, unless:
4930
4931 - We're setting up the connection. Don't send a remote interrupt
4932 request, as we're not fully synced yet. Quit immediately
4933 instead.
4934
4935 - The target has been resumed in the foreground
4936 (target_terminal_is_ours is false) with a synchronous resume
4937 packet, and we're blocked waiting for the stop reply, thus a
4938 Ctrl-C should be immediately sent to the target.
4939
4940 - We get a second Ctrl-C while still within the same serial read or
4941 write. In that case the serial is seemingly wedged --- offer to
4942 quit/disconnect.
4943
4944 - We see a second Ctrl-C without target response, after having
4945 previously interrupted the target. In that case the target/stub
4946 is probably wedged --- offer to quit/disconnect.
4947*/
4948
4949static void
4950remote_serial_quit_handler (void)
4951{
4952 struct remote_state *rs = get_remote_state ();
4953
4954 if (check_quit_flag ())
4955 {
4956 /* If we're starting up, we're not fully synced yet. Quit
4957 immediately. */
4958 if (rs->starting_up)
4959 quit ();
4960 else if (rs->got_ctrlc_during_io)
4961 {
4962 if (query (_("The target is not responding to GDB commands.\n"
4963 "Stop debugging it? ")))
4964 remote_unpush_and_throw ();
4965 }
4966 /* If ^C has already been sent once, offer to disconnect. */
4967 else if (!target_terminal_is_ours () && rs->ctrlc_pending_p)
4968 interrupt_query ();
4969 /* All-stop protocol, and blocked waiting for stop reply. Send
4970 an interrupt request. */
4971 else if (!target_terminal_is_ours () && rs->waiting_for_stop_reply)
4972 target_interrupt (inferior_ptid);
4973 else
4974 rs->got_ctrlc_during_io = 1;
4975 }
4976}
4977
4978/* Remove any of the remote.c targets from target stack. Upper targets depend
4979 on it so remove them first. */
4980
4981static void
4982remote_unpush_target (void)
4983{
4984 pop_all_targets_at_and_above (process_stratum);
4985}
4986
4987static void
4988remote_unpush_and_throw (void)
4989{
4990 remote_unpush_target ();
4991 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4992}
4993
4994static void
4995remote_open_1 (const char *name, int from_tty,
4996 struct target_ops *target, int extended_p)
4997{
4998 struct remote_state *rs = get_remote_state ();
4999
5000 if (name == 0)
5001 error (_("To open a remote debug connection, you need to specify what\n"
5002 "serial device is attached to the remote system\n"
5003 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5004
5005 /* See FIXME above. */
5006 if (!target_async_permitted)
5007 wait_forever_enabled_p = 1;
5008
5009 /* If we're connected to a running target, target_preopen will kill it.
5010 Ask this question first, before target_preopen has a chance to kill
5011 anything. */
5012 if (rs->remote_desc != NULL && !have_inferiors ())
5013 {
5014 if (from_tty
5015 && !query (_("Already connected to a remote target. Disconnect? ")))
5016 error (_("Still connected."));
5017 }
5018
5019 /* Here the possibly existing remote target gets unpushed. */
5020 target_preopen (from_tty);
5021
5022 /* Make sure we send the passed signals list the next time we resume. */
5023 xfree (rs->last_pass_packet);
5024 rs->last_pass_packet = NULL;
5025
5026 /* Make sure we send the program signals list the next time we
5027 resume. */
5028 xfree (rs->last_program_signals_packet);
5029 rs->last_program_signals_packet = NULL;
5030
5031 remote_fileio_reset ();
5032 reopen_exec_file ();
5033 reread_symbols ();
5034
5035 rs->remote_desc = remote_serial_open (name);
5036 if (!rs->remote_desc)
5037 perror_with_name (name);
5038
5039 if (baud_rate != -1)
5040 {
5041 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5042 {
5043 /* The requested speed could not be set. Error out to
5044 top level after closing remote_desc. Take care to
5045 set remote_desc to NULL to avoid closing remote_desc
5046 more than once. */
5047 serial_close (rs->remote_desc);
5048 rs->remote_desc = NULL;
5049 perror_with_name (name);
5050 }
5051 }
5052
5053 serial_setparity (rs->remote_desc, serial_parity);
5054 serial_raw (rs->remote_desc);
5055
5056 /* If there is something sitting in the buffer we might take it as a
5057 response to a command, which would be bad. */
5058 serial_flush_input (rs->remote_desc);
5059
5060 if (from_tty)
5061 {
5062 puts_filtered ("Remote debugging using ");
5063 puts_filtered (name);
5064 puts_filtered ("\n");
5065 }
5066 push_target (target); /* Switch to using remote target now. */
5067
5068 /* Register extra event sources in the event loop. */
5069 remote_async_inferior_event_token
5070 = create_async_event_handler (remote_async_inferior_event_handler,
5071 NULL);
5072 rs->notif_state = remote_notif_state_allocate ();
5073
5074 /* Reset the target state; these things will be queried either by
5075 remote_query_supported or as they are needed. */
5076 reset_all_packet_configs_support ();
5077 rs->cached_wait_status = 0;
5078 rs->explicit_packet_size = 0;
5079 rs->noack_mode = 0;
5080 rs->extended = extended_p;
5081 rs->waiting_for_stop_reply = 0;
5082 rs->ctrlc_pending_p = 0;
5083 rs->got_ctrlc_during_io = 0;
5084
5085 rs->general_thread = not_sent_ptid;
5086 rs->continue_thread = not_sent_ptid;
5087 rs->remote_traceframe_number = -1;
5088
5089 rs->last_resume_exec_dir = EXEC_FORWARD;
5090
5091 /* Probe for ability to use "ThreadInfo" query, as required. */
5092 rs->use_threadinfo_query = 1;
5093 rs->use_threadextra_query = 1;
5094
5095 readahead_cache_invalidate ();
5096
5097 /* Start out by owning the terminal. */
5098 remote_async_terminal_ours_p = 1;
5099
5100 if (target_async_permitted)
5101 {
5102 /* FIXME: cagney/1999-09-23: During the initial connection it is
5103 assumed that the target is already ready and able to respond to
5104 requests. Unfortunately remote_start_remote() eventually calls
5105 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5106 around this. Eventually a mechanism that allows
5107 wait_for_inferior() to expect/get timeouts will be
5108 implemented. */
5109 wait_forever_enabled_p = 0;
5110 }
5111
5112 /* First delete any symbols previously loaded from shared libraries. */
5113 no_shared_libraries (NULL, 0);
5114
5115 /* Start afresh. */
5116 init_thread_list ();
5117
5118 /* Start the remote connection. If error() or QUIT, discard this
5119 target (we'd otherwise be in an inconsistent state) and then
5120 propogate the error on up the exception chain. This ensures that
5121 the caller doesn't stumble along blindly assuming that the
5122 function succeeded. The CLI doesn't have this problem but other
5123 UI's, such as MI do.
5124
5125 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5126 this function should return an error indication letting the
5127 caller restore the previous state. Unfortunately the command
5128 ``target remote'' is directly wired to this function making that
5129 impossible. On a positive note, the CLI side of this problem has
5130 been fixed - the function set_cmd_context() makes it possible for
5131 all the ``target ....'' commands to share a common callback
5132 function. See cli-dump.c. */
5133 {
5134
5135 TRY
5136 {
5137 remote_start_remote (from_tty, target, extended_p);
5138 }
5139 CATCH (ex, RETURN_MASK_ALL)
5140 {
5141 /* Pop the partially set up target - unless something else did
5142 already before throwing the exception. */
5143 if (rs->remote_desc != NULL)
5144 remote_unpush_target ();
5145 if (target_async_permitted)
5146 wait_forever_enabled_p = 1;
5147 throw_exception (ex);
5148 }
5149 END_CATCH
5150 }
5151
5152 remote_btrace_reset ();
5153
5154 if (target_async_permitted)
5155 wait_forever_enabled_p = 1;
5156}
5157
5158/* Detach the specified process. */
5159
5160static void
5161remote_detach_pid (int pid)
5162{
5163 struct remote_state *rs = get_remote_state ();
5164
5165 if (remote_multi_process_p (rs))
5166 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5167 else
5168 strcpy (rs->buf, "D");
5169
5170 putpkt (rs->buf);
5171 getpkt (&rs->buf, &rs->buf_size, 0);
5172
5173 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5174 ;
5175 else if (rs->buf[0] == '\0')
5176 error (_("Remote doesn't know how to detach"));
5177 else
5178 error (_("Can't detach process."));
5179}
5180
5181/* This detaches a program to which we previously attached, using
5182 inferior_ptid to identify the process. After this is done, GDB
5183 can be used to debug some other program. We better not have left
5184 any breakpoints in the target program or it'll die when it hits
5185 one. */
5186
5187static void
5188remote_detach_1 (const char *args, int from_tty)
5189{
5190 int pid = ptid_get_pid (inferior_ptid);
5191 struct remote_state *rs = get_remote_state ();
5192 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5193 int is_fork_parent;
5194
5195 if (args)
5196 error (_("Argument given to \"detach\" when remotely debugging."));
5197
5198 if (!target_has_execution)
5199 error (_("No process to detach from."));
5200
5201 target_announce_detach (from_tty);
5202
5203 /* Tell the remote target to detach. */
5204 remote_detach_pid (pid);
5205
5206 /* Exit only if this is the only active inferior. */
5207 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5208 puts_filtered (_("Ending remote debugging.\n"));
5209
5210 /* Check to see if we are detaching a fork parent. Note that if we
5211 are detaching a fork child, tp == NULL. */
5212 is_fork_parent = (tp != NULL
5213 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5214
5215 /* If doing detach-on-fork, we don't mourn, because that will delete
5216 breakpoints that should be available for the followed inferior. */
5217 if (!is_fork_parent)
5218 target_mourn_inferior (inferior_ptid);
5219 else
5220 {
5221 inferior_ptid = null_ptid;
5222 detach_inferior (pid);
5223 }
5224}
5225
5226static void
5227remote_detach (struct target_ops *ops, const char *args, int from_tty)
5228{
5229 remote_detach_1 (args, from_tty);
5230}
5231
5232static void
5233extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
5234{
5235 remote_detach_1 (args, from_tty);
5236}
5237
5238/* Target follow-fork function for remote targets. On entry, and
5239 at return, the current inferior is the fork parent.
5240
5241 Note that although this is currently only used for extended-remote,
5242 it is named remote_follow_fork in anticipation of using it for the
5243 remote target as well. */
5244
5245static int
5246remote_follow_fork (struct target_ops *ops, int follow_child,
5247 int detach_fork)
5248{
5249 struct remote_state *rs = get_remote_state ();
5250 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5251
5252 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5253 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5254 {
5255 /* When following the parent and detaching the child, we detach
5256 the child here. For the case of following the child and
5257 detaching the parent, the detach is done in the target-
5258 independent follow fork code in infrun.c. We can't use
5259 target_detach when detaching an unfollowed child because
5260 the client side doesn't know anything about the child. */
5261 if (detach_fork && !follow_child)
5262 {
5263 /* Detach the fork child. */
5264 ptid_t child_ptid;
5265 pid_t child_pid;
5266
5267 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5268 child_pid = ptid_get_pid (child_ptid);
5269
5270 remote_detach_pid (child_pid);
5271 detach_inferior (child_pid);
5272 }
5273 }
5274 return 0;
5275}
5276
5277/* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5278 in the program space of the new inferior. On entry and at return the
5279 current inferior is the exec'ing inferior. INF is the new exec'd
5280 inferior, which may be the same as the exec'ing inferior unless
5281 follow-exec-mode is "new". */
5282
5283static void
5284remote_follow_exec (struct target_ops *ops,
5285 struct inferior *inf, char *execd_pathname)
5286{
5287 /* We know that this is a target file name, so if it has the "target:"
5288 prefix we strip it off before saving it in the program space. */
5289 if (is_target_filename (execd_pathname))
5290 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5291
5292 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5293}
5294
5295/* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5296
5297static void
5298remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5299{
5300 if (args)
5301 error (_("Argument given to \"disconnect\" when remotely debugging."));
5302
5303 /* Make sure we unpush even the extended remote targets. Calling
5304 target_mourn_inferior won't unpush, and remote_mourn won't
5305 unpush if there is more than one inferior left. */
5306 unpush_target (target);
5307 generic_mourn_inferior ();
5308
5309 if (from_tty)
5310 puts_filtered ("Ending remote debugging.\n");
5311}
5312
5313/* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5314 be chatty about it. */
5315
5316static void
5317extended_remote_attach (struct target_ops *target, const char *args,
5318 int from_tty)
5319{
5320 struct remote_state *rs = get_remote_state ();
5321 int pid;
5322 char *wait_status = NULL;
5323
5324 pid = parse_pid_to_attach (args);
5325
5326 /* Remote PID can be freely equal to getpid, do not check it here the same
5327 way as in other targets. */
5328
5329 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5330 error (_("This target does not support attaching to a process"));
5331
5332 if (from_tty)
5333 {
5334 char *exec_file = get_exec_file (0);
5335
5336 if (exec_file)
5337 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5338 target_pid_to_str (pid_to_ptid (pid)));
5339 else
5340 printf_unfiltered (_("Attaching to %s\n"),
5341 target_pid_to_str (pid_to_ptid (pid)));
5342
5343 gdb_flush (gdb_stdout);
5344 }
5345
5346 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5347 putpkt (rs->buf);
5348 getpkt (&rs->buf, &rs->buf_size, 0);
5349
5350 switch (packet_ok (rs->buf,
5351 &remote_protocol_packets[PACKET_vAttach]))
5352 {
5353 case PACKET_OK:
5354 if (!target_is_non_stop_p ())
5355 {
5356 /* Save the reply for later. */
5357 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5358 strcpy (wait_status, rs->buf);
5359 }
5360 else if (strcmp (rs->buf, "OK") != 0)
5361 error (_("Attaching to %s failed with: %s"),
5362 target_pid_to_str (pid_to_ptid (pid)),
5363 rs->buf);
5364 break;
5365 case PACKET_UNKNOWN:
5366 error (_("This target does not support attaching to a process"));
5367 default:
5368 error (_("Attaching to %s failed"),
5369 target_pid_to_str (pid_to_ptid (pid)));
5370 }
5371
5372 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5373
5374 inferior_ptid = pid_to_ptid (pid);
5375
5376 if (target_is_non_stop_p ())
5377 {
5378 struct thread_info *thread;
5379
5380 /* Get list of threads. */
5381 remote_update_thread_list (target);
5382
5383 thread = first_thread_of_process (pid);
5384 if (thread)
5385 inferior_ptid = thread->ptid;
5386 else
5387 inferior_ptid = pid_to_ptid (pid);
5388
5389 /* Invalidate our notion of the remote current thread. */
5390 record_currthread (rs, minus_one_ptid);
5391 }
5392 else
5393 {
5394 /* Now, if we have thread information, update inferior_ptid. */
5395 inferior_ptid = remote_current_thread (inferior_ptid);
5396
5397 /* Add the main thread to the thread list. */
5398 add_thread_silent (inferior_ptid);
5399 }
5400
5401 /* Next, if the target can specify a description, read it. We do
5402 this before anything involving memory or registers. */
5403 target_find_description ();
5404
5405 if (!target_is_non_stop_p ())
5406 {
5407 /* Use the previously fetched status. */
5408 gdb_assert (wait_status != NULL);
5409
5410 if (target_can_async_p ())
5411 {
5412 struct notif_event *reply
5413 = remote_notif_parse (&notif_client_stop, wait_status);
5414
5415 push_stop_reply ((struct stop_reply *) reply);
5416
5417 target_async (1);
5418 }
5419 else
5420 {
5421 gdb_assert (wait_status != NULL);
5422 strcpy (rs->buf, wait_status);
5423 rs->cached_wait_status = 1;
5424 }
5425 }
5426 else
5427 gdb_assert (wait_status == NULL);
5428}
5429
5430/* Implementation of the to_post_attach method. */
5431
5432static void
5433extended_remote_post_attach (struct target_ops *ops, int pid)
5434{
5435 /* Get text, data & bss offsets. */
5436 get_offsets ();
5437
5438 /* In certain cases GDB might not have had the chance to start
5439 symbol lookup up until now. This could happen if the debugged
5440 binary is not using shared libraries, the vsyscall page is not
5441 present (on Linux) and the binary itself hadn't changed since the
5442 debugging process was started. */
5443 if (symfile_objfile != NULL)
5444 remote_check_symbols();
5445}
5446
5447\f
5448/* Check for the availability of vCont. This function should also check
5449 the response. */
5450
5451static void
5452remote_vcont_probe (struct remote_state *rs)
5453{
5454 char *buf;
5455
5456 strcpy (rs->buf, "vCont?");
5457 putpkt (rs->buf);
5458 getpkt (&rs->buf, &rs->buf_size, 0);
5459 buf = rs->buf;
5460
5461 /* Make sure that the features we assume are supported. */
5462 if (startswith (buf, "vCont"))
5463 {
5464 char *p = &buf[5];
5465 int support_c, support_C;
5466
5467 rs->supports_vCont.s = 0;
5468 rs->supports_vCont.S = 0;
5469 support_c = 0;
5470 support_C = 0;
5471 rs->supports_vCont.t = 0;
5472 rs->supports_vCont.r = 0;
5473 while (p && *p == ';')
5474 {
5475 p++;
5476 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5477 rs->supports_vCont.s = 1;
5478 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5479 rs->supports_vCont.S = 1;
5480 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5481 support_c = 1;
5482 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5483 support_C = 1;
5484 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5485 rs->supports_vCont.t = 1;
5486 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5487 rs->supports_vCont.r = 1;
5488
5489 p = strchr (p, ';');
5490 }
5491
5492 /* If c, and C are not all supported, we can't use vCont. Clearing
5493 BUF will make packet_ok disable the packet. */
5494 if (!support_c || !support_C)
5495 buf[0] = 0;
5496 }
5497
5498 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5499}
5500
5501/* Helper function for building "vCont" resumptions. Write a
5502 resumption to P. ENDP points to one-passed-the-end of the buffer
5503 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5504 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5505 resumed thread should be single-stepped and/or signalled. If PTID
5506 equals minus_one_ptid, then all threads are resumed; if PTID
5507 represents a process, then all threads of the process are resumed;
5508 the thread to be stepped and/or signalled is given in the global
5509 INFERIOR_PTID. */
5510
5511static char *
5512append_resumption (char *p, char *endp,
5513 ptid_t ptid, int step, enum gdb_signal siggnal)
5514{
5515 struct remote_state *rs = get_remote_state ();
5516
5517 if (step && siggnal != GDB_SIGNAL_0)
5518 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5519 else if (step
5520 /* GDB is willing to range step. */
5521 && use_range_stepping
5522 /* Target supports range stepping. */
5523 && rs->supports_vCont.r
5524 /* We don't currently support range stepping multiple
5525 threads with a wildcard (though the protocol allows it,
5526 so stubs shouldn't make an active effort to forbid
5527 it). */
5528 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5529 {
5530 struct thread_info *tp;
5531
5532 if (ptid_equal (ptid, minus_one_ptid))
5533 {
5534 /* If we don't know about the target thread's tid, then
5535 we're resuming magic_null_ptid (see caller). */
5536 tp = find_thread_ptid (magic_null_ptid);
5537 }
5538 else
5539 tp = find_thread_ptid (ptid);
5540 gdb_assert (tp != NULL);
5541
5542 if (tp->control.may_range_step)
5543 {
5544 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5545
5546 p += xsnprintf (p, endp - p, ";r%s,%s",
5547 phex_nz (tp->control.step_range_start,
5548 addr_size),
5549 phex_nz (tp->control.step_range_end,
5550 addr_size));
5551 }
5552 else
5553 p += xsnprintf (p, endp - p, ";s");
5554 }
5555 else if (step)
5556 p += xsnprintf (p, endp - p, ";s");
5557 else if (siggnal != GDB_SIGNAL_0)
5558 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5559 else
5560 p += xsnprintf (p, endp - p, ";c");
5561
5562 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5563 {
5564 ptid_t nptid;
5565
5566 /* All (-1) threads of process. */
5567 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5568
5569 p += xsnprintf (p, endp - p, ":");
5570 p = write_ptid (p, endp, nptid);
5571 }
5572 else if (!ptid_equal (ptid, minus_one_ptid))
5573 {
5574 p += xsnprintf (p, endp - p, ":");
5575 p = write_ptid (p, endp, ptid);
5576 }
5577
5578 return p;
5579}
5580
5581/* Clear the thread's private info on resume. */
5582
5583static void
5584resume_clear_thread_private_info (struct thread_info *thread)
5585{
5586 if (thread->priv != NULL)
5587 {
5588 thread->priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5589 thread->priv->watch_data_address = 0;
5590 }
5591}
5592
5593/* Append a vCont continue-with-signal action for threads that have a
5594 non-zero stop signal. */
5595
5596static char *
5597append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5598{
5599 struct thread_info *thread;
5600
5601 ALL_NON_EXITED_THREADS (thread)
5602 if (ptid_match (thread->ptid, ptid)
5603 && !ptid_equal (inferior_ptid, thread->ptid)
5604 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5605 {
5606 p = append_resumption (p, endp, thread->ptid,
5607 0, thread->suspend.stop_signal);
5608 thread->suspend.stop_signal = GDB_SIGNAL_0;
5609 resume_clear_thread_private_info (thread);
5610 }
5611
5612 return p;
5613}
5614
5615/* Set the target running, using the packets that use Hc
5616 (c/s/C/S). */
5617
5618static void
5619remote_resume_with_hc (struct target_ops *ops,
5620 ptid_t ptid, int step, enum gdb_signal siggnal)
5621{
5622 struct remote_state *rs = get_remote_state ();
5623 struct thread_info *thread;
5624 char *buf;
5625
5626 rs->last_sent_signal = siggnal;
5627 rs->last_sent_step = step;
5628
5629 /* The c/s/C/S resume packets use Hc, so set the continue
5630 thread. */
5631 if (ptid_equal (ptid, minus_one_ptid))
5632 set_continue_thread (any_thread_ptid);
5633 else
5634 set_continue_thread (ptid);
5635
5636 ALL_NON_EXITED_THREADS (thread)
5637 resume_clear_thread_private_info (thread);
5638
5639 buf = rs->buf;
5640 if (execution_direction == EXEC_REVERSE)
5641 {
5642 /* We don't pass signals to the target in reverse exec mode. */
5643 if (info_verbose && siggnal != GDB_SIGNAL_0)
5644 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5645 siggnal);
5646
5647 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5648 error (_("Remote reverse-step not supported."));
5649 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5650 error (_("Remote reverse-continue not supported."));
5651
5652 strcpy (buf, step ? "bs" : "bc");
5653 }
5654 else if (siggnal != GDB_SIGNAL_0)
5655 {
5656 buf[0] = step ? 'S' : 'C';
5657 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5658 buf[2] = tohex (((int) siggnal) & 0xf);
5659 buf[3] = '\0';
5660 }
5661 else
5662 strcpy (buf, step ? "s" : "c");
5663
5664 putpkt (buf);
5665}
5666
5667/* Resume the remote inferior by using a "vCont" packet. The thread
5668 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5669 resumed thread should be single-stepped and/or signalled. If PTID
5670 equals minus_one_ptid, then all threads are resumed; the thread to
5671 be stepped and/or signalled is given in the global INFERIOR_PTID.
5672 This function returns non-zero iff it resumes the inferior.
5673
5674 This function issues a strict subset of all possible vCont commands
5675 at the moment. */
5676
5677static int
5678remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5679{
5680 struct remote_state *rs = get_remote_state ();
5681 char *p;
5682 char *endp;
5683
5684 /* No reverse execution actions defined for vCont. */
5685 if (execution_direction == EXEC_REVERSE)
5686 return 0;
5687
5688 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5689 remote_vcont_probe (rs);
5690
5691 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5692 return 0;
5693
5694 p = rs->buf;
5695 endp = rs->buf + get_remote_packet_size ();
5696
5697 /* If we could generate a wider range of packets, we'd have to worry
5698 about overflowing BUF. Should there be a generic
5699 "multi-part-packet" packet? */
5700
5701 p += xsnprintf (p, endp - p, "vCont");
5702
5703 if (ptid_equal (ptid, magic_null_ptid))
5704 {
5705 /* MAGIC_NULL_PTID means that we don't have any active threads,
5706 so we don't have any TID numbers the inferior will
5707 understand. Make sure to only send forms that do not specify
5708 a TID. */
5709 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5710 }
5711 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5712 {
5713 /* Resume all threads (of all processes, or of a single
5714 process), with preference for INFERIOR_PTID. This assumes
5715 inferior_ptid belongs to the set of all threads we are about
5716 to resume. */
5717 if (step || siggnal != GDB_SIGNAL_0)
5718 {
5719 /* Step inferior_ptid, with or without signal. */
5720 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5721 }
5722
5723 /* Also pass down any pending signaled resumption for other
5724 threads not the current. */
5725 p = append_pending_thread_resumptions (p, endp, ptid);
5726
5727 /* And continue others without a signal. */
5728 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5729 }
5730 else
5731 {
5732 /* Scheduler locking; resume only PTID. */
5733 append_resumption (p, endp, ptid, step, siggnal);
5734 }
5735
5736 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5737 putpkt (rs->buf);
5738
5739 if (target_is_non_stop_p ())
5740 {
5741 /* In non-stop, the stub replies to vCont with "OK". The stop
5742 reply will be reported asynchronously by means of a `%Stop'
5743 notification. */
5744 getpkt (&rs->buf, &rs->buf_size, 0);
5745 if (strcmp (rs->buf, "OK") != 0)
5746 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5747 }
5748
5749 return 1;
5750}
5751
5752/* Tell the remote machine to resume. */
5753
5754static void
5755remote_resume (struct target_ops *ops,
5756 ptid_t ptid, int step, enum gdb_signal siggnal)
5757{
5758 struct remote_state *rs = get_remote_state ();
5759
5760 /* When connected in non-stop mode, the core resumes threads
5761 individually. Resuming remote threads directly in target_resume
5762 would thus result in sending one packet per thread. Instead, to
5763 minimize roundtrip latency, here we just store the resume
5764 request; the actual remote resumption will be done in
5765 target_commit_resume / remote_commit_resume, where we'll be able
5766 to do vCont action coalescing. */
5767 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5768 {
5769 struct private_thread_info *remote_thr;
5770
5771 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5772 remote_thr = get_private_info_ptid (inferior_ptid);
5773 else
5774 remote_thr = get_private_info_ptid (ptid);
5775 remote_thr->last_resume_step = step;
5776 remote_thr->last_resume_sig = siggnal;
5777 return;
5778 }
5779
5780 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5781 (explained in remote-notif.c:handle_notification) so
5782 remote_notif_process is not called. We need find a place where
5783 it is safe to start a 'vNotif' sequence. It is good to do it
5784 before resuming inferior, because inferior was stopped and no RSP
5785 traffic at that moment. */
5786 if (!target_is_non_stop_p ())
5787 remote_notif_process (rs->notif_state, &notif_client_stop);
5788
5789 rs->last_resume_exec_dir = execution_direction;
5790
5791 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5792 if (!remote_resume_with_vcont (ptid, step, siggnal))
5793 remote_resume_with_hc (ops, ptid, step, siggnal);
5794
5795 /* We are about to start executing the inferior, let's register it
5796 with the event loop. NOTE: this is the one place where all the
5797 execution commands end up. We could alternatively do this in each
5798 of the execution commands in infcmd.c. */
5799 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5800 into infcmd.c in order to allow inferior function calls to work
5801 NOT asynchronously. */
5802 if (target_can_async_p ())
5803 target_async (1);
5804
5805 /* We've just told the target to resume. The remote server will
5806 wait for the inferior to stop, and then send a stop reply. In
5807 the mean time, we can't start another command/query ourselves
5808 because the stub wouldn't be ready to process it. This applies
5809 only to the base all-stop protocol, however. In non-stop (which
5810 only supports vCont), the stub replies with an "OK", and is
5811 immediate able to process further serial input. */
5812 if (!target_is_non_stop_p ())
5813 rs->waiting_for_stop_reply = 1;
5814}
5815
5816static void check_pending_events_prevent_wildcard_vcont
5817 (int *may_global_wildcard_vcont);
5818static int is_pending_fork_parent_thread (struct thread_info *thread);
5819
5820/* Private per-inferior info for target remote processes. */
5821
5822struct private_inferior
5823{
5824 /* Whether we can send a wildcard vCont for this process. */
5825 int may_wildcard_vcont;
5826};
5827
5828/* Structure used to track the construction of a vCont packet in the
5829 outgoing packet buffer. This is used to send multiple vCont
5830 packets if we have more actions than would fit a single packet. */
5831
5832struct vcont_builder
5833{
5834 /* Pointer to the first action. P points here if no action has been
5835 appended yet. */
5836 char *first_action;
5837
5838 /* Where the next action will be appended. */
5839 char *p;
5840
5841 /* The end of the buffer. Must never write past this. */
5842 char *endp;
5843};
5844
5845/* Prepare the outgoing buffer for a new vCont packet. */
5846
5847static void
5848vcont_builder_restart (struct vcont_builder *builder)
5849{
5850 struct remote_state *rs = get_remote_state ();
5851
5852 builder->p = rs->buf;
5853 builder->endp = rs->buf + get_remote_packet_size ();
5854 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5855 builder->first_action = builder->p;
5856}
5857
5858/* If the vCont packet being built has any action, send it to the
5859 remote end. */
5860
5861static void
5862vcont_builder_flush (struct vcont_builder *builder)
5863{
5864 struct remote_state *rs;
5865
5866 if (builder->p == builder->first_action)
5867 return;
5868
5869 rs = get_remote_state ();
5870 putpkt (rs->buf);
5871 getpkt (&rs->buf, &rs->buf_size, 0);
5872 if (strcmp (rs->buf, "OK") != 0)
5873 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5874}
5875
5876/* The largest action is range-stepping, with its two addresses. This
5877 is more than sufficient. If a new, bigger action is created, it'll
5878 quickly trigger a failed assertion in append_resumption (and we'll
5879 just bump this). */
5880#define MAX_ACTION_SIZE 200
5881
5882/* Append a new vCont action in the outgoing packet being built. If
5883 the action doesn't fit the packet along with previous actions, push
5884 what we've got so far to the remote end and start over a new vCont
5885 packet (with the new action). */
5886
5887static void
5888vcont_builder_push_action (struct vcont_builder *builder,
5889 ptid_t ptid, int step, enum gdb_signal siggnal)
5890{
5891 char buf[MAX_ACTION_SIZE + 1];
5892 char *endp;
5893 size_t rsize;
5894
5895 endp = append_resumption (buf, buf + sizeof (buf),
5896 ptid, step, siggnal);
5897
5898 /* Check whether this new action would fit in the vCont packet along
5899 with previous actions. If not, send what we've got so far and
5900 start a new vCont packet. */
5901 rsize = endp - buf;
5902 if (rsize > builder->endp - builder->p)
5903 {
5904 vcont_builder_flush (builder);
5905 vcont_builder_restart (builder);
5906
5907 /* Should now fit. */
5908 gdb_assert (rsize <= builder->endp - builder->p);
5909 }
5910
5911 memcpy (builder->p, buf, rsize);
5912 builder->p += rsize;
5913 *builder->p = '\0';
5914}
5915
5916/* to_commit_resume implementation. */
5917
5918static void
5919remote_commit_resume (struct target_ops *ops)
5920{
5921 struct remote_state *rs = get_remote_state ();
5922 struct inferior *inf;
5923 struct thread_info *tp;
5924 int any_process_wildcard;
5925 int may_global_wildcard_vcont;
5926 struct vcont_builder vcont_builder;
5927
5928 /* If connected in all-stop mode, we'd send the remote resume
5929 request directly from remote_resume. Likewise if
5930 reverse-debugging, as there are no defined vCont actions for
5931 reverse execution. */
5932 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5933 return;
5934
5935 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5936 instead of resuming all threads of each process individually.
5937 However, if any thread of a process must remain halted, we can't
5938 send wildcard resumes and must send one action per thread.
5939
5940 Care must be taken to not resume threads/processes the server
5941 side already told us are stopped, but the core doesn't know about
5942 yet, because the events are still in the vStopped notification
5943 queue. For example:
5944
5945 #1 => vCont s:p1.1;c
5946 #2 <= OK
5947 #3 <= %Stopped T05 p1.1
5948 #4 => vStopped
5949 #5 <= T05 p1.2
5950 #6 => vStopped
5951 #7 <= OK
5952 #8 (infrun handles the stop for p1.1 and continues stepping)
5953 #9 => vCont s:p1.1;c
5954
5955 The last vCont above would resume thread p1.2 by mistake, because
5956 the server has no idea that the event for p1.2 had not been
5957 handled yet.
5958
5959 The server side must similarly ignore resume actions for the
5960 thread that has a pending %Stopped notification (and any other
5961 threads with events pending), until GDB acks the notification
5962 with vStopped. Otherwise, e.g., the following case is
5963 mishandled:
5964
5965 #1 => g (or any other packet)
5966 #2 <= [registers]
5967 #3 <= %Stopped T05 p1.2
5968 #4 => vCont s:p1.1;c
5969 #5 <= OK
5970
5971 Above, the server must not resume thread p1.2. GDB can't know
5972 that p1.2 stopped until it acks the %Stopped notification, and
5973 since from GDB's perspective all threads should be running, it
5974 sends a "c" action.
5975
5976 Finally, special care must also be given to handling fork/vfork
5977 events. A (v)fork event actually tells us that two processes
5978 stopped -- the parent and the child. Until we follow the fork,
5979 we must not resume the child. Therefore, if we have a pending
5980 fork follow, we must not send a global wildcard resume action
5981 (vCont;c). We can still send process-wide wildcards though. */
5982
5983 /* Start by assuming a global wildcard (vCont;c) is possible. */
5984 may_global_wildcard_vcont = 1;
5985
5986 /* And assume every process is individually wildcard-able too. */
5987 ALL_NON_EXITED_INFERIORS (inf)
5988 {
5989 if (inf->priv == NULL)
5990 inf->priv = XNEW (struct private_inferior);
5991 inf->priv->may_wildcard_vcont = 1;
5992 }
5993
5994 /* Check for any pending events (not reported or processed yet) and
5995 disable process and global wildcard resumes appropriately. */
5996 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5997
5998 ALL_NON_EXITED_THREADS (tp)
5999 {
6000 /* If a thread of a process is not meant to be resumed, then we
6001 can't wildcard that process. */
6002 if (!tp->executing)
6003 {
6004 tp->inf->priv->may_wildcard_vcont = 0;
6005
6006 /* And if we can't wildcard a process, we can't wildcard
6007 everything either. */
6008 may_global_wildcard_vcont = 0;
6009 continue;
6010 }
6011
6012 /* If a thread is the parent of an unfollowed fork, then we
6013 can't do a global wildcard, as that would resume the fork
6014 child. */
6015 if (is_pending_fork_parent_thread (tp))
6016 may_global_wildcard_vcont = 0;
6017 }
6018
6019 /* Now let's build the vCont packet(s). Actions must be appended
6020 from narrower to wider scopes (thread -> process -> global). If
6021 we end up with too many actions for a single packet vcont_builder
6022 flushes the current vCont packet to the remote side and starts a
6023 new one. */
6024 vcont_builder_restart (&vcont_builder);
6025
6026 /* Threads first. */
6027 ALL_NON_EXITED_THREADS (tp)
6028 {
6029 struct private_thread_info *remote_thr = tp->priv;
6030
6031 if (!tp->executing || remote_thr->vcont_resumed)
6032 continue;
6033
6034 gdb_assert (!thread_is_in_step_over_chain (tp));
6035
6036 if (!remote_thr->last_resume_step
6037 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6038 && tp->inf->priv->may_wildcard_vcont)
6039 {
6040 /* We'll send a wildcard resume instead. */
6041 remote_thr->vcont_resumed = 1;
6042 continue;
6043 }
6044
6045 vcont_builder_push_action (&vcont_builder, tp->ptid,
6046 remote_thr->last_resume_step,
6047 remote_thr->last_resume_sig);
6048 remote_thr->vcont_resumed = 1;
6049 }
6050
6051 /* Now check whether we can send any process-wide wildcard. This is
6052 to avoid sending a global wildcard in the case nothing is
6053 supposed to be resumed. */
6054 any_process_wildcard = 0;
6055
6056 ALL_NON_EXITED_INFERIORS (inf)
6057 {
6058 if (inf->priv->may_wildcard_vcont)
6059 {
6060 any_process_wildcard = 1;
6061 break;
6062 }
6063 }
6064
6065 if (any_process_wildcard)
6066 {
6067 /* If all processes are wildcard-able, then send a single "c"
6068 action, otherwise, send an "all (-1) threads of process"
6069 continue action for each running process, if any. */
6070 if (may_global_wildcard_vcont)
6071 {
6072 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6073 0, GDB_SIGNAL_0);
6074 }
6075 else
6076 {
6077 ALL_NON_EXITED_INFERIORS (inf)
6078 {
6079 if (inf->priv->may_wildcard_vcont)
6080 {
6081 vcont_builder_push_action (&vcont_builder,
6082 pid_to_ptid (inf->pid),
6083 0, GDB_SIGNAL_0);
6084 }
6085 }
6086 }
6087 }
6088
6089 vcont_builder_flush (&vcont_builder);
6090}
6091
6092\f
6093
6094/* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6095 thread, all threads of a remote process, or all threads of all
6096 processes. */
6097
6098static void
6099remote_stop_ns (ptid_t ptid)
6100{
6101 struct remote_state *rs = get_remote_state ();
6102 char *p = rs->buf;
6103 char *endp = rs->buf + get_remote_packet_size ();
6104
6105 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6106 remote_vcont_probe (rs);
6107
6108 if (!rs->supports_vCont.t)
6109 error (_("Remote server does not support stopping threads"));
6110
6111 if (ptid_equal (ptid, minus_one_ptid)
6112 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6113 p += xsnprintf (p, endp - p, "vCont;t");
6114 else
6115 {
6116 ptid_t nptid;
6117
6118 p += xsnprintf (p, endp - p, "vCont;t:");
6119
6120 if (ptid_is_pid (ptid))
6121 /* All (-1) threads of process. */
6122 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6123 else
6124 {
6125 /* Small optimization: if we already have a stop reply for
6126 this thread, no use in telling the stub we want this
6127 stopped. */
6128 if (peek_stop_reply (ptid))
6129 return;
6130
6131 nptid = ptid;
6132 }
6133
6134 write_ptid (p, endp, nptid);
6135 }
6136
6137 /* In non-stop, we get an immediate OK reply. The stop reply will
6138 come in asynchronously by notification. */
6139 putpkt (rs->buf);
6140 getpkt (&rs->buf, &rs->buf_size, 0);
6141 if (strcmp (rs->buf, "OK") != 0)
6142 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6143}
6144
6145/* All-stop version of target_interrupt. Sends a break or a ^C to
6146 interrupt the remote target. It is undefined which thread of which
6147 process reports the interrupt. */
6148
6149static void
6150remote_interrupt_as (void)
6151{
6152 struct remote_state *rs = get_remote_state ();
6153
6154 rs->ctrlc_pending_p = 1;
6155
6156 /* If the inferior is stopped already, but the core didn't know
6157 about it yet, just ignore the request. The cached wait status
6158 will be collected in remote_wait. */
6159 if (rs->cached_wait_status)
6160 return;
6161
6162 /* Send interrupt_sequence to remote target. */
6163 send_interrupt_sequence ();
6164}
6165
6166/* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6167 the remote target. It is undefined which thread of which process
6168 reports the interrupt. Throws an error if the packet is not
6169 supported by the server. */
6170
6171static void
6172remote_interrupt_ns (void)
6173{
6174 struct remote_state *rs = get_remote_state ();
6175 char *p = rs->buf;
6176 char *endp = rs->buf + get_remote_packet_size ();
6177
6178 xsnprintf (p, endp - p, "vCtrlC");
6179
6180 /* In non-stop, we get an immediate OK reply. The stop reply will
6181 come in asynchronously by notification. */
6182 putpkt (rs->buf);
6183 getpkt (&rs->buf, &rs->buf_size, 0);
6184
6185 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6186 {
6187 case PACKET_OK:
6188 break;
6189 case PACKET_UNKNOWN:
6190 error (_("No support for interrupting the remote target."));
6191 case PACKET_ERROR:
6192 error (_("Interrupting target failed: %s"), rs->buf);
6193 }
6194}
6195
6196/* Implement the to_stop function for the remote targets. */
6197
6198static void
6199remote_stop (struct target_ops *self, ptid_t ptid)
6200{
6201 if (remote_debug)
6202 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6203
6204 if (target_is_non_stop_p ())
6205 remote_stop_ns (ptid);
6206 else
6207 {
6208 /* We don't currently have a way to transparently pause the
6209 remote target in all-stop mode. Interrupt it instead. */
6210 remote_interrupt_as ();
6211 }
6212}
6213
6214/* Implement the to_interrupt function for the remote targets. */
6215
6216static void
6217remote_interrupt (struct target_ops *self, ptid_t ptid)
6218{
6219 struct remote_state *rs = get_remote_state ();
6220
6221 if (remote_debug)
6222 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6223
6224 if (target_is_non_stop_p ())
6225 remote_interrupt_ns ();
6226 else
6227 remote_interrupt_as ();
6228}
6229
6230/* Implement the to_pass_ctrlc function for the remote targets. */
6231
6232static void
6233remote_pass_ctrlc (struct target_ops *self)
6234{
6235 struct remote_state *rs = get_remote_state ();
6236
6237 if (remote_debug)
6238 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6239
6240 /* If we're starting up, we're not fully synced yet. Quit
6241 immediately. */
6242 if (rs->starting_up)
6243 quit ();
6244 /* If ^C has already been sent once, offer to disconnect. */
6245 else if (rs->ctrlc_pending_p)
6246 interrupt_query ();
6247 else
6248 target_interrupt (inferior_ptid);
6249}
6250
6251/* Ask the user what to do when an interrupt is received. */
6252
6253static void
6254interrupt_query (void)
6255{
6256 struct remote_state *rs = get_remote_state ();
6257
6258 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6259 {
6260 if (query (_("The target is not responding to interrupt requests.\n"
6261 "Stop debugging it? ")))
6262 {
6263 remote_unpush_target ();
6264 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6265 }
6266 }
6267 else
6268 {
6269 if (query (_("Interrupted while waiting for the program.\n"
6270 "Give up waiting? ")))
6271 quit ();
6272 }
6273}
6274
6275/* Enable/disable target terminal ownership. Most targets can use
6276 terminal groups to control terminal ownership. Remote targets are
6277 different in that explicit transfer of ownership to/from GDB/target
6278 is required. */
6279
6280static void
6281remote_terminal_inferior (struct target_ops *self)
6282{
6283 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
6284 idempotent. The event-loop GDB talking to an asynchronous target
6285 with a synchronous command calls this function from both
6286 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
6287 transfer the terminal to the target when it shouldn't this guard
6288 can go away. */
6289 if (!remote_async_terminal_ours_p)
6290 return;
6291 remote_async_terminal_ours_p = 0;
6292 /* NOTE: At this point we could also register our selves as the
6293 recipient of all input. Any characters typed could then be
6294 passed on down to the target. */
6295}
6296
6297static void
6298remote_terminal_ours (struct target_ops *self)
6299{
6300 /* See FIXME in remote_terminal_inferior. */
6301 if (remote_async_terminal_ours_p)
6302 return;
6303 remote_async_terminal_ours_p = 1;
6304}
6305
6306static void
6307remote_console_output (char *msg)
6308{
6309 char *p;
6310
6311 for (p = msg; p[0] && p[1]; p += 2)
6312 {
6313 char tb[2];
6314 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6315
6316 tb[0] = c;
6317 tb[1] = 0;
6318 fputs_unfiltered (tb, gdb_stdtarg);
6319 }
6320 gdb_flush (gdb_stdtarg);
6321}
6322
6323DEF_VEC_O(cached_reg_t);
6324
6325typedef struct stop_reply
6326{
6327 struct notif_event base;
6328
6329 /* The identifier of the thread about this event */
6330 ptid_t ptid;
6331
6332 /* The remote state this event is associated with. When the remote
6333 connection, represented by a remote_state object, is closed,
6334 all the associated stop_reply events should be released. */
6335 struct remote_state *rs;
6336
6337 struct target_waitstatus ws;
6338
6339 /* Expedited registers. This makes remote debugging a bit more
6340 efficient for those targets that provide critical registers as
6341 part of their normal status mechanism (as another roundtrip to
6342 fetch them is avoided). */
6343 VEC(cached_reg_t) *regcache;
6344
6345 enum target_stop_reason stop_reason;
6346
6347 CORE_ADDR watch_data_address;
6348
6349 int core;
6350} *stop_reply_p;
6351
6352DECLARE_QUEUE_P (stop_reply_p);
6353DEFINE_QUEUE_P (stop_reply_p);
6354/* The list of already fetched and acknowledged stop events. This
6355 queue is used for notification Stop, and other notifications
6356 don't need queue for their events, because the notification events
6357 of Stop can't be consumed immediately, so that events should be
6358 queued first, and be consumed by remote_wait_{ns,as} one per
6359 time. Other notifications can consume their events immediately,
6360 so queue is not needed for them. */
6361static QUEUE (stop_reply_p) *stop_reply_queue;
6362
6363static void
6364stop_reply_xfree (struct stop_reply *r)
6365{
6366 notif_event_xfree ((struct notif_event *) r);
6367}
6368
6369/* Return the length of the stop reply queue. */
6370
6371static int
6372stop_reply_queue_length (void)
6373{
6374 return QUEUE_length (stop_reply_p, stop_reply_queue);
6375}
6376
6377static void
6378remote_notif_stop_parse (struct notif_client *self, char *buf,
6379 struct notif_event *event)
6380{
6381 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6382}
6383
6384static void
6385remote_notif_stop_ack (struct notif_client *self, char *buf,
6386 struct notif_event *event)
6387{
6388 struct stop_reply *stop_reply = (struct stop_reply *) event;
6389
6390 /* acknowledge */
6391 putpkt (self->ack_command);
6392
6393 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6394 /* We got an unknown stop reply. */
6395 error (_("Unknown stop reply"));
6396
6397 push_stop_reply (stop_reply);
6398}
6399
6400static int
6401remote_notif_stop_can_get_pending_events (struct notif_client *self)
6402{
6403 /* We can't get pending events in remote_notif_process for
6404 notification stop, and we have to do this in remote_wait_ns
6405 instead. If we fetch all queued events from stub, remote stub
6406 may exit and we have no chance to process them back in
6407 remote_wait_ns. */
6408 mark_async_event_handler (remote_async_inferior_event_token);
6409 return 0;
6410}
6411
6412static void
6413stop_reply_dtr (struct notif_event *event)
6414{
6415 struct stop_reply *r = (struct stop_reply *) event;
6416 cached_reg_t *reg;
6417 int ix;
6418
6419 for (ix = 0;
6420 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6421 ix++)
6422 xfree (reg->data);
6423
6424 VEC_free (cached_reg_t, r->regcache);
6425}
6426
6427static struct notif_event *
6428remote_notif_stop_alloc_reply (void)
6429{
6430 /* We cast to a pointer to the "base class". */
6431 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6432
6433 r->dtr = stop_reply_dtr;
6434
6435 return r;
6436}
6437
6438/* A client of notification Stop. */
6439
6440struct notif_client notif_client_stop =
6441{
6442 "Stop",
6443 "vStopped",
6444 remote_notif_stop_parse,
6445 remote_notif_stop_ack,
6446 remote_notif_stop_can_get_pending_events,
6447 remote_notif_stop_alloc_reply,
6448 REMOTE_NOTIF_STOP,
6449};
6450
6451/* A parameter to pass data in and out. */
6452
6453struct queue_iter_param
6454{
6455 void *input;
6456 struct stop_reply *output;
6457};
6458
6459/* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6460 the pid of the process that owns the threads we want to check, or
6461 -1 if we want to check all threads. */
6462
6463static int
6464is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6465 ptid_t thread_ptid)
6466{
6467 if (ws->kind == TARGET_WAITKIND_FORKED
6468 || ws->kind == TARGET_WAITKIND_VFORKED)
6469 {
6470 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6471 return 1;
6472 }
6473
6474 return 0;
6475}
6476
6477/* Return the thread's pending status used to determine whether the
6478 thread is a fork parent stopped at a fork event. */
6479
6480static struct target_waitstatus *
6481thread_pending_fork_status (struct thread_info *thread)
6482{
6483 if (thread->suspend.waitstatus_pending_p)
6484 return &thread->suspend.waitstatus;
6485 else
6486 return &thread->pending_follow;
6487}
6488
6489/* Determine if THREAD is a pending fork parent thread. */
6490
6491static int
6492is_pending_fork_parent_thread (struct thread_info *thread)
6493{
6494 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6495 int pid = -1;
6496
6497 return is_pending_fork_parent (ws, pid, thread->ptid);
6498}
6499
6500/* Check whether EVENT is a fork event, and if it is, remove the
6501 fork child from the context list passed in DATA. */
6502
6503static int
6504remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6505 QUEUE_ITER (stop_reply_p) *iter,
6506 stop_reply_p event,
6507 void *data)
6508{
6509 struct queue_iter_param *param = (struct queue_iter_param *) data;
6510 struct threads_listing_context *context
6511 = (struct threads_listing_context *) param->input;
6512
6513 if (event->ws.kind == TARGET_WAITKIND_FORKED
6514 || event->ws.kind == TARGET_WAITKIND_VFORKED
6515 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6516 threads_listing_context_remove (&event->ws, context);
6517
6518 return 1;
6519}
6520
6521/* If CONTEXT contains any fork child threads that have not been
6522 reported yet, remove them from the CONTEXT list. If such a
6523 thread exists it is because we are stopped at a fork catchpoint
6524 and have not yet called follow_fork, which will set up the
6525 host-side data structures for the new process. */
6526
6527static void
6528remove_new_fork_children (struct threads_listing_context *context)
6529{
6530 struct thread_info * thread;
6531 int pid = -1;
6532 struct notif_client *notif = &notif_client_stop;
6533 struct queue_iter_param param;
6534
6535 /* For any threads stopped at a fork event, remove the corresponding
6536 fork child threads from the CONTEXT list. */
6537 ALL_NON_EXITED_THREADS (thread)
6538 {
6539 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6540
6541 if (is_pending_fork_parent (ws, pid, thread->ptid))
6542 {
6543 threads_listing_context_remove (ws, context);
6544 }
6545 }
6546
6547 /* Check for any pending fork events (not reported or processed yet)
6548 in process PID and remove those fork child threads from the
6549 CONTEXT list as well. */
6550 remote_notif_get_pending_events (notif);
6551 param.input = context;
6552 param.output = NULL;
6553 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6554 remove_child_of_pending_fork, &param);
6555}
6556
6557/* Check whether EVENT would prevent a global or process wildcard
6558 vCont action. */
6559
6560static int
6561check_pending_event_prevents_wildcard_vcont_callback
6562 (QUEUE (stop_reply_p) *q,
6563 QUEUE_ITER (stop_reply_p) *iter,
6564 stop_reply_p event,
6565 void *data)
6566{
6567 struct inferior *inf;
6568 int *may_global_wildcard_vcont = (int *) data;
6569
6570 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6571 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6572 return 1;
6573
6574 if (event->ws.kind == TARGET_WAITKIND_FORKED
6575 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6576 *may_global_wildcard_vcont = 0;
6577
6578 inf = find_inferior_ptid (event->ptid);
6579
6580 /* This may be the first time we heard about this process.
6581 Regardless, we must not do a global wildcard resume, otherwise
6582 we'd resume this process too. */
6583 *may_global_wildcard_vcont = 0;
6584 if (inf != NULL)
6585 inf->priv->may_wildcard_vcont = 0;
6586
6587 return 1;
6588}
6589
6590/* Check whether any event pending in the vStopped queue would prevent
6591 a global or process wildcard vCont action. Clear
6592 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6593 and clear the event inferior's may_wildcard_vcont flag if we can't
6594 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6595
6596static void
6597check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6598{
6599 struct notif_client *notif = &notif_client_stop;
6600
6601 remote_notif_get_pending_events (notif);
6602 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6603 check_pending_event_prevents_wildcard_vcont_callback,
6604 may_global_wildcard);
6605}
6606
6607/* Remove stop replies in the queue if its pid is equal to the given
6608 inferior's pid. */
6609
6610static int
6611remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6612 QUEUE_ITER (stop_reply_p) *iter,
6613 stop_reply_p event,
6614 void *data)
6615{
6616 struct queue_iter_param *param = (struct queue_iter_param *) data;
6617 struct inferior *inf = (struct inferior *) param->input;
6618
6619 if (ptid_get_pid (event->ptid) == inf->pid)
6620 {
6621 stop_reply_xfree (event);
6622 QUEUE_remove_elem (stop_reply_p, q, iter);
6623 }
6624
6625 return 1;
6626}
6627
6628/* Discard all pending stop replies of inferior INF. */
6629
6630static void
6631discard_pending_stop_replies (struct inferior *inf)
6632{
6633 struct queue_iter_param param;
6634 struct stop_reply *reply;
6635 struct remote_state *rs = get_remote_state ();
6636 struct remote_notif_state *rns = rs->notif_state;
6637
6638 /* This function can be notified when an inferior exists. When the
6639 target is not remote, the notification state is NULL. */
6640 if (rs->remote_desc == NULL)
6641 return;
6642
6643 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6644
6645 /* Discard the in-flight notification. */
6646 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6647 {
6648 stop_reply_xfree (reply);
6649 rns->pending_event[notif_client_stop.id] = NULL;
6650 }
6651
6652 param.input = inf;
6653 param.output = NULL;
6654 /* Discard the stop replies we have already pulled with
6655 vStopped. */
6656 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6657 remove_stop_reply_for_inferior, &param);
6658}
6659
6660/* If its remote state is equal to the given remote state,
6661 remove EVENT from the stop reply queue. */
6662
6663static int
6664remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6665 QUEUE_ITER (stop_reply_p) *iter,
6666 stop_reply_p event,
6667 void *data)
6668{
6669 struct queue_iter_param *param = (struct queue_iter_param *) data;
6670 struct remote_state *rs = (struct remote_state *) param->input;
6671
6672 if (event->rs == rs)
6673 {
6674 stop_reply_xfree (event);
6675 QUEUE_remove_elem (stop_reply_p, q, iter);
6676 }
6677
6678 return 1;
6679}
6680
6681/* Discard the stop replies for RS in stop_reply_queue. */
6682
6683static void
6684discard_pending_stop_replies_in_queue (struct remote_state *rs)
6685{
6686 struct queue_iter_param param;
6687
6688 param.input = rs;
6689 param.output = NULL;
6690 /* Discard the stop replies we have already pulled with
6691 vStopped. */
6692 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6693 remove_stop_reply_of_remote_state, &param);
6694}
6695
6696/* A parameter to pass data in and out. */
6697
6698static int
6699remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6700 QUEUE_ITER (stop_reply_p) *iter,
6701 stop_reply_p event,
6702 void *data)
6703{
6704 struct queue_iter_param *param = (struct queue_iter_param *) data;
6705 ptid_t *ptid = (ptid_t *) param->input;
6706
6707 if (ptid_match (event->ptid, *ptid))
6708 {
6709 param->output = event;
6710 QUEUE_remove_elem (stop_reply_p, q, iter);
6711 return 0;
6712 }
6713
6714 return 1;
6715}
6716
6717/* Remove the first reply in 'stop_reply_queue' which matches
6718 PTID. */
6719
6720static struct stop_reply *
6721remote_notif_remove_queued_reply (ptid_t ptid)
6722{
6723 struct queue_iter_param param;
6724
6725 param.input = &ptid;
6726 param.output = NULL;
6727
6728 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6729 remote_notif_remove_once_on_match, &param);
6730 if (notif_debug)
6731 fprintf_unfiltered (gdb_stdlog,
6732 "notif: discard queued event: 'Stop' in %s\n",
6733 target_pid_to_str (ptid));
6734
6735 return param.output;
6736}
6737
6738/* Look for a queued stop reply belonging to PTID. If one is found,
6739 remove it from the queue, and return it. Returns NULL if none is
6740 found. If there are still queued events left to process, tell the
6741 event loop to get back to target_wait soon. */
6742
6743static struct stop_reply *
6744queued_stop_reply (ptid_t ptid)
6745{
6746 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6747
6748 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6749 /* There's still at least an event left. */
6750 mark_async_event_handler (remote_async_inferior_event_token);
6751
6752 return r;
6753}
6754
6755/* Push a fully parsed stop reply in the stop reply queue. Since we
6756 know that we now have at least one queued event left to pass to the
6757 core side, tell the event loop to get back to target_wait soon. */
6758
6759static void
6760push_stop_reply (struct stop_reply *new_event)
6761{
6762 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6763
6764 if (notif_debug)
6765 fprintf_unfiltered (gdb_stdlog,
6766 "notif: push 'Stop' %s to queue %d\n",
6767 target_pid_to_str (new_event->ptid),
6768 QUEUE_length (stop_reply_p,
6769 stop_reply_queue));
6770
6771 mark_async_event_handler (remote_async_inferior_event_token);
6772}
6773
6774static int
6775stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6776 QUEUE_ITER (stop_reply_p) *iter,
6777 struct stop_reply *event,
6778 void *data)
6779{
6780 ptid_t *ptid = (ptid_t *) data;
6781
6782 return !(ptid_equal (*ptid, event->ptid)
6783 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6784}
6785
6786/* Returns true if we have a stop reply for PTID. */
6787
6788static int
6789peek_stop_reply (ptid_t ptid)
6790{
6791 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6792 stop_reply_match_ptid_and_ws, &ptid);
6793}
6794
6795/* Helper for remote_parse_stop_reply. Return nonzero if the substring
6796 starting with P and ending with PEND matches PREFIX. */
6797
6798static int
6799strprefix (const char *p, const char *pend, const char *prefix)
6800{
6801 for ( ; p < pend; p++, prefix++)
6802 if (*p != *prefix)
6803 return 0;
6804 return *prefix == '\0';
6805}
6806
6807/* Parse the stop reply in BUF. Either the function succeeds, and the
6808 result is stored in EVENT, or throws an error. */
6809
6810static void
6811remote_parse_stop_reply (char *buf, struct stop_reply *event)
6812{
6813 struct remote_arch_state *rsa = get_remote_arch_state ();
6814 ULONGEST addr;
6815 char *p;
6816 int skipregs = 0;
6817
6818 event->ptid = null_ptid;
6819 event->rs = get_remote_state ();
6820 event->ws.kind = TARGET_WAITKIND_IGNORE;
6821 event->ws.value.integer = 0;
6822 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6823 event->regcache = NULL;
6824 event->core = -1;
6825
6826 switch (buf[0])
6827 {
6828 case 'T': /* Status with PC, SP, FP, ... */
6829 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6830 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6831 ss = signal number
6832 n... = register number
6833 r... = register contents
6834 */
6835
6836 p = &buf[3]; /* after Txx */
6837 while (*p)
6838 {
6839 char *p1;
6840 int fieldsize;
6841
6842 p1 = strchr (p, ':');
6843 if (p1 == NULL)
6844 error (_("Malformed packet(a) (missing colon): %s\n\
6845Packet: '%s'\n"),
6846 p, buf);
6847 if (p == p1)
6848 error (_("Malformed packet(a) (missing register number): %s\n\
6849Packet: '%s'\n"),
6850 p, buf);
6851
6852 /* Some "registers" are actually extended stop information.
6853 Note if you're adding a new entry here: GDB 7.9 and
6854 earlier assume that all register "numbers" that start
6855 with an hex digit are real register numbers. Make sure
6856 the server only sends such a packet if it knows the
6857 client understands it. */
6858
6859 if (strprefix (p, p1, "thread"))
6860 event->ptid = read_ptid (++p1, &p);
6861 else if (strprefix (p, p1, "syscall_entry"))
6862 {
6863 ULONGEST sysno;
6864
6865 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6866 p = unpack_varlen_hex (++p1, &sysno);
6867 event->ws.value.syscall_number = (int) sysno;
6868 }
6869 else if (strprefix (p, p1, "syscall_return"))
6870 {
6871 ULONGEST sysno;
6872
6873 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6874 p = unpack_varlen_hex (++p1, &sysno);
6875 event->ws.value.syscall_number = (int) sysno;
6876 }
6877 else if (strprefix (p, p1, "watch")
6878 || strprefix (p, p1, "rwatch")
6879 || strprefix (p, p1, "awatch"))
6880 {
6881 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6882 p = unpack_varlen_hex (++p1, &addr);
6883 event->watch_data_address = (CORE_ADDR) addr;
6884 }
6885 else if (strprefix (p, p1, "swbreak"))
6886 {
6887 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6888
6889 /* Make sure the stub doesn't forget to indicate support
6890 with qSupported. */
6891 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6892 error (_("Unexpected swbreak stop reason"));
6893
6894 /* The value part is documented as "must be empty",
6895 though we ignore it, in case we ever decide to make
6896 use of it in a backward compatible way. */
6897 p = strchrnul (p1 + 1, ';');
6898 }
6899 else if (strprefix (p, p1, "hwbreak"))
6900 {
6901 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6902
6903 /* Make sure the stub doesn't forget to indicate support
6904 with qSupported. */
6905 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6906 error (_("Unexpected hwbreak stop reason"));
6907
6908 /* See above. */
6909 p = strchrnul (p1 + 1, ';');
6910 }
6911 else if (strprefix (p, p1, "library"))
6912 {
6913 event->ws.kind = TARGET_WAITKIND_LOADED;
6914 p = strchrnul (p1 + 1, ';');
6915 }
6916 else if (strprefix (p, p1, "replaylog"))
6917 {
6918 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6919 /* p1 will indicate "begin" or "end", but it makes
6920 no difference for now, so ignore it. */
6921 p = strchrnul (p1 + 1, ';');
6922 }
6923 else if (strprefix (p, p1, "core"))
6924 {
6925 ULONGEST c;
6926
6927 p = unpack_varlen_hex (++p1, &c);
6928 event->core = c;
6929 }
6930 else if (strprefix (p, p1, "fork"))
6931 {
6932 event->ws.value.related_pid = read_ptid (++p1, &p);
6933 event->ws.kind = TARGET_WAITKIND_FORKED;
6934 }
6935 else if (strprefix (p, p1, "vfork"))
6936 {
6937 event->ws.value.related_pid = read_ptid (++p1, &p);
6938 event->ws.kind = TARGET_WAITKIND_VFORKED;
6939 }
6940 else if (strprefix (p, p1, "vforkdone"))
6941 {
6942 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6943 p = strchrnul (p1 + 1, ';');
6944 }
6945 else if (strprefix (p, p1, "exec"))
6946 {
6947 ULONGEST ignored;
6948 char pathname[PATH_MAX];
6949 int pathlen;
6950
6951 /* Determine the length of the execd pathname. */
6952 p = unpack_varlen_hex (++p1, &ignored);
6953 pathlen = (p - p1) / 2;
6954
6955 /* Save the pathname for event reporting and for
6956 the next run command. */
6957 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6958 pathname[pathlen] = '\0';
6959
6960 /* This is freed during event handling. */
6961 event->ws.value.execd_pathname = xstrdup (pathname);
6962 event->ws.kind = TARGET_WAITKIND_EXECD;
6963
6964 /* Skip the registers included in this packet, since
6965 they may be for an architecture different from the
6966 one used by the original program. */
6967 skipregs = 1;
6968 }
6969 else if (strprefix (p, p1, "create"))
6970 {
6971 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6972 p = strchrnul (p1 + 1, ';');
6973 }
6974 else
6975 {
6976 ULONGEST pnum;
6977 char *p_temp;
6978
6979 if (skipregs)
6980 {
6981 p = strchrnul (p1 + 1, ';');
6982 p++;
6983 continue;
6984 }
6985
6986 /* Maybe a real ``P'' register number. */
6987 p_temp = unpack_varlen_hex (p, &pnum);
6988 /* If the first invalid character is the colon, we got a
6989 register number. Otherwise, it's an unknown stop
6990 reason. */
6991 if (p_temp == p1)
6992 {
6993 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
6994 cached_reg_t cached_reg;
6995 struct gdbarch *gdbarch = target_gdbarch ();
6996
6997 if (reg == NULL)
6998 error (_("Remote sent bad register number %s: %s\n\
6999Packet: '%s'\n"),
7000 hex_string (pnum), p, buf);
7001
7002 cached_reg.num = reg->regnum;
7003 cached_reg.data = (gdb_byte *)
7004 xmalloc (register_size (gdbarch, reg->regnum));
7005
7006 p = p1 + 1;
7007 fieldsize = hex2bin (p, cached_reg.data,
7008 register_size (gdbarch, reg->regnum));
7009 p += 2 * fieldsize;
7010 if (fieldsize < register_size (gdbarch, reg->regnum))
7011 warning (_("Remote reply is too short: %s"), buf);
7012
7013 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7014 }
7015 else
7016 {
7017 /* Not a number. Silently skip unknown optional
7018 info. */
7019 p = strchrnul (p1 + 1, ';');
7020 }
7021 }
7022
7023 if (*p != ';')
7024 error (_("Remote register badly formatted: %s\nhere: %s"),
7025 buf, p);
7026 ++p;
7027 }
7028
7029 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7030 break;
7031
7032 /* fall through */
7033 case 'S': /* Old style status, just signal only. */
7034 {
7035 int sig;
7036
7037 event->ws.kind = TARGET_WAITKIND_STOPPED;
7038 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7039 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7040 event->ws.value.sig = (enum gdb_signal) sig;
7041 else
7042 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7043 }
7044 break;
7045 case 'w': /* Thread exited. */
7046 {
7047 char *p;
7048 ULONGEST value;
7049
7050 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7051 p = unpack_varlen_hex (&buf[1], &value);
7052 event->ws.value.integer = value;
7053 if (*p != ';')
7054 error (_("stop reply packet badly formatted: %s"), buf);
7055 event->ptid = read_ptid (++p, NULL);
7056 break;
7057 }
7058 case 'W': /* Target exited. */
7059 case 'X':
7060 {
7061 char *p;
7062 int pid;
7063 ULONGEST value;
7064
7065 /* GDB used to accept only 2 hex chars here. Stubs should
7066 only send more if they detect GDB supports multi-process
7067 support. */
7068 p = unpack_varlen_hex (&buf[1], &value);
7069
7070 if (buf[0] == 'W')
7071 {
7072 /* The remote process exited. */
7073 event->ws.kind = TARGET_WAITKIND_EXITED;
7074 event->ws.value.integer = value;
7075 }
7076 else
7077 {
7078 /* The remote process exited with a signal. */
7079 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7080 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7081 event->ws.value.sig = (enum gdb_signal) value;
7082 else
7083 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7084 }
7085
7086 /* If no process is specified, assume inferior_ptid. */
7087 pid = ptid_get_pid (inferior_ptid);
7088 if (*p == '\0')
7089 ;
7090 else if (*p == ';')
7091 {
7092 p++;
7093
7094 if (*p == '\0')
7095 ;
7096 else if (startswith (p, "process:"))
7097 {
7098 ULONGEST upid;
7099
7100 p += sizeof ("process:") - 1;
7101 unpack_varlen_hex (p, &upid);
7102 pid = upid;
7103 }
7104 else
7105 error (_("unknown stop reply packet: %s"), buf);
7106 }
7107 else
7108 error (_("unknown stop reply packet: %s"), buf);
7109 event->ptid = pid_to_ptid (pid);
7110 }
7111 break;
7112 case 'N':
7113 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7114 event->ptid = minus_one_ptid;
7115 break;
7116 }
7117
7118 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7119 error (_("No process or thread specified in stop reply: %s"), buf);
7120}
7121
7122/* When the stub wants to tell GDB about a new notification reply, it
7123 sends a notification (%Stop, for example). Those can come it at
7124 any time, hence, we have to make sure that any pending
7125 putpkt/getpkt sequence we're making is finished, before querying
7126 the stub for more events with the corresponding ack command
7127 (vStopped, for example). E.g., if we started a vStopped sequence
7128 immediately upon receiving the notification, something like this
7129 could happen:
7130
7131 1.1) --> Hg 1
7132 1.2) <-- OK
7133 1.3) --> g
7134 1.4) <-- %Stop
7135 1.5) --> vStopped
7136 1.6) <-- (registers reply to step #1.3)
7137
7138 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7139 query.
7140
7141 To solve this, whenever we parse a %Stop notification successfully,
7142 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7143 doing whatever we were doing:
7144
7145 2.1) --> Hg 1
7146 2.2) <-- OK
7147 2.3) --> g
7148 2.4) <-- %Stop
7149 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7150 2.5) <-- (registers reply to step #2.3)
7151
7152 Eventualy after step #2.5, we return to the event loop, which
7153 notices there's an event on the
7154 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7155 associated callback --- the function below. At this point, we're
7156 always safe to start a vStopped sequence. :
7157
7158 2.6) --> vStopped
7159 2.7) <-- T05 thread:2
7160 2.8) --> vStopped
7161 2.9) --> OK
7162*/
7163
7164void
7165remote_notif_get_pending_events (struct notif_client *nc)
7166{
7167 struct remote_state *rs = get_remote_state ();
7168
7169 if (rs->notif_state->pending_event[nc->id] != NULL)
7170 {
7171 if (notif_debug)
7172 fprintf_unfiltered (gdb_stdlog,
7173 "notif: process: '%s' ack pending event\n",
7174 nc->name);
7175
7176 /* acknowledge */
7177 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7178 rs->notif_state->pending_event[nc->id] = NULL;
7179
7180 while (1)
7181 {
7182 getpkt (&rs->buf, &rs->buf_size, 0);
7183 if (strcmp (rs->buf, "OK") == 0)
7184 break;
7185 else
7186 remote_notif_ack (nc, rs->buf);
7187 }
7188 }
7189 else
7190 {
7191 if (notif_debug)
7192 fprintf_unfiltered (gdb_stdlog,
7193 "notif: process: '%s' no pending reply\n",
7194 nc->name);
7195 }
7196}
7197
7198/* Called when it is decided that STOP_REPLY holds the info of the
7199 event that is to be returned to the core. This function always
7200 destroys STOP_REPLY. */
7201
7202static ptid_t
7203process_stop_reply (struct stop_reply *stop_reply,
7204 struct target_waitstatus *status)
7205{
7206 ptid_t ptid;
7207
7208 *status = stop_reply->ws;
7209 ptid = stop_reply->ptid;
7210
7211 /* If no thread/process was reported by the stub, assume the current
7212 inferior. */
7213 if (ptid_equal (ptid, null_ptid))
7214 ptid = inferior_ptid;
7215
7216 if (status->kind != TARGET_WAITKIND_EXITED
7217 && status->kind != TARGET_WAITKIND_SIGNALLED
7218 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7219 {
7220 struct private_thread_info *remote_thr;
7221
7222 /* Expedited registers. */
7223 if (stop_reply->regcache)
7224 {
7225 struct regcache *regcache
7226 = get_thread_arch_regcache (ptid, target_gdbarch ());
7227 cached_reg_t *reg;
7228 int ix;
7229
7230 for (ix = 0;
7231 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7232 ix++)
7233 {
7234 regcache_raw_supply (regcache, reg->num, reg->data);
7235 xfree (reg->data);
7236 }
7237
7238 VEC_free (cached_reg_t, stop_reply->regcache);
7239 }
7240
7241 remote_notice_new_inferior (ptid, 0);
7242 remote_thr = get_private_info_ptid (ptid);
7243 remote_thr->core = stop_reply->core;
7244 remote_thr->stop_reason = stop_reply->stop_reason;
7245 remote_thr->watch_data_address = stop_reply->watch_data_address;
7246 remote_thr->vcont_resumed = 0;
7247 }
7248
7249 stop_reply_xfree (stop_reply);
7250 return ptid;
7251}
7252
7253/* The non-stop mode version of target_wait. */
7254
7255static ptid_t
7256remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7257{
7258 struct remote_state *rs = get_remote_state ();
7259 struct stop_reply *stop_reply;
7260 int ret;
7261 int is_notif = 0;
7262
7263 /* If in non-stop mode, get out of getpkt even if a
7264 notification is received. */
7265
7266 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7267 0 /* forever */, &is_notif);
7268 while (1)
7269 {
7270 if (ret != -1 && !is_notif)
7271 switch (rs->buf[0])
7272 {
7273 case 'E': /* Error of some sort. */
7274 /* We're out of sync with the target now. Did it continue
7275 or not? We can't tell which thread it was in non-stop,
7276 so just ignore this. */
7277 warning (_("Remote failure reply: %s"), rs->buf);
7278 break;
7279 case 'O': /* Console output. */
7280 remote_console_output (rs->buf + 1);
7281 break;
7282 default:
7283 warning (_("Invalid remote reply: %s"), rs->buf);
7284 break;
7285 }
7286
7287 /* Acknowledge a pending stop reply that may have arrived in the
7288 mean time. */
7289 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7290 remote_notif_get_pending_events (&notif_client_stop);
7291
7292 /* If indeed we noticed a stop reply, we're done. */
7293 stop_reply = queued_stop_reply (ptid);
7294 if (stop_reply != NULL)
7295 return process_stop_reply (stop_reply, status);
7296
7297 /* Still no event. If we're just polling for an event, then
7298 return to the event loop. */
7299 if (options & TARGET_WNOHANG)
7300 {
7301 status->kind = TARGET_WAITKIND_IGNORE;
7302 return minus_one_ptid;
7303 }
7304
7305 /* Otherwise do a blocking wait. */
7306 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7307 1 /* forever */, &is_notif);
7308 }
7309}
7310
7311/* Wait until the remote machine stops, then return, storing status in
7312 STATUS just as `wait' would. */
7313
7314static ptid_t
7315remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7316{
7317 struct remote_state *rs = get_remote_state ();
7318 ptid_t event_ptid = null_ptid;
7319 char *buf;
7320 struct stop_reply *stop_reply;
7321
7322 again:
7323
7324 status->kind = TARGET_WAITKIND_IGNORE;
7325 status->value.integer = 0;
7326
7327 stop_reply = queued_stop_reply (ptid);
7328 if (stop_reply != NULL)
7329 return process_stop_reply (stop_reply, status);
7330
7331 if (rs->cached_wait_status)
7332 /* Use the cached wait status, but only once. */
7333 rs->cached_wait_status = 0;
7334 else
7335 {
7336 int ret;
7337 int is_notif;
7338 int forever = ((options & TARGET_WNOHANG) == 0
7339 && wait_forever_enabled_p);
7340
7341 if (!rs->waiting_for_stop_reply)
7342 {
7343 status->kind = TARGET_WAITKIND_NO_RESUMED;
7344 return minus_one_ptid;
7345 }
7346
7347 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7348 _never_ wait for ever -> test on target_is_async_p().
7349 However, before we do that we need to ensure that the caller
7350 knows how to take the target into/out of async mode. */
7351 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7352 forever, &is_notif);
7353
7354 /* GDB gets a notification. Return to core as this event is
7355 not interesting. */
7356 if (ret != -1 && is_notif)
7357 return minus_one_ptid;
7358
7359 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7360 return minus_one_ptid;
7361 }
7362
7363 buf = rs->buf;
7364
7365 /* Assume that the target has acknowledged Ctrl-C unless we receive
7366 an 'F' or 'O' packet. */
7367 if (buf[0] != 'F' && buf[0] != 'O')
7368 rs->ctrlc_pending_p = 0;
7369
7370 switch (buf[0])
7371 {
7372 case 'E': /* Error of some sort. */
7373 /* We're out of sync with the target now. Did it continue or
7374 not? Not is more likely, so report a stop. */
7375 rs->waiting_for_stop_reply = 0;
7376
7377 warning (_("Remote failure reply: %s"), buf);
7378 status->kind = TARGET_WAITKIND_STOPPED;
7379 status->value.sig = GDB_SIGNAL_0;
7380 break;
7381 case 'F': /* File-I/O request. */
7382 /* GDB may access the inferior memory while handling the File-I/O
7383 request, but we don't want GDB accessing memory while waiting
7384 for a stop reply. See the comments in putpkt_binary. Set
7385 waiting_for_stop_reply to 0 temporarily. */
7386 rs->waiting_for_stop_reply = 0;
7387 remote_fileio_request (buf, rs->ctrlc_pending_p);
7388 rs->ctrlc_pending_p = 0;
7389 /* GDB handled the File-I/O request, and the target is running
7390 again. Keep waiting for events. */
7391 rs->waiting_for_stop_reply = 1;
7392 break;
7393 case 'N': case 'T': case 'S': case 'X': case 'W':
7394 {
7395 struct stop_reply *stop_reply;
7396
7397 /* There is a stop reply to handle. */
7398 rs->waiting_for_stop_reply = 0;
7399
7400 stop_reply
7401 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7402 rs->buf);
7403
7404 event_ptid = process_stop_reply (stop_reply, status);
7405 break;
7406 }
7407 case 'O': /* Console output. */
7408 remote_console_output (buf + 1);
7409 break;
7410 case '\0':
7411 if (rs->last_sent_signal != GDB_SIGNAL_0)
7412 {
7413 /* Zero length reply means that we tried 'S' or 'C' and the
7414 remote system doesn't support it. */
7415 target_terminal_ours_for_output ();
7416 printf_filtered
7417 ("Can't send signals to this remote system. %s not sent.\n",
7418 gdb_signal_to_name (rs->last_sent_signal));
7419 rs->last_sent_signal = GDB_SIGNAL_0;
7420 target_terminal_inferior ();
7421
7422 strcpy (buf, rs->last_sent_step ? "s" : "c");
7423 putpkt (buf);
7424 break;
7425 }
7426 /* else fallthrough */
7427 default:
7428 warning (_("Invalid remote reply: %s"), buf);
7429 break;
7430 }
7431
7432 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7433 return minus_one_ptid;
7434 else if (status->kind == TARGET_WAITKIND_IGNORE)
7435 {
7436 /* Nothing interesting happened. If we're doing a non-blocking
7437 poll, we're done. Otherwise, go back to waiting. */
7438 if (options & TARGET_WNOHANG)
7439 return minus_one_ptid;
7440 else
7441 goto again;
7442 }
7443 else if (status->kind != TARGET_WAITKIND_EXITED
7444 && status->kind != TARGET_WAITKIND_SIGNALLED)
7445 {
7446 if (!ptid_equal (event_ptid, null_ptid))
7447 record_currthread (rs, event_ptid);
7448 else
7449 event_ptid = inferior_ptid;
7450 }
7451 else
7452 /* A process exit. Invalidate our notion of current thread. */
7453 record_currthread (rs, minus_one_ptid);
7454
7455 return event_ptid;
7456}
7457
7458/* Wait until the remote machine stops, then return, storing status in
7459 STATUS just as `wait' would. */
7460
7461static ptid_t
7462remote_wait (struct target_ops *ops,
7463 ptid_t ptid, struct target_waitstatus *status, int options)
7464{
7465 ptid_t event_ptid;
7466
7467 if (target_is_non_stop_p ())
7468 event_ptid = remote_wait_ns (ptid, status, options);
7469 else
7470 event_ptid = remote_wait_as (ptid, status, options);
7471
7472 if (target_is_async_p ())
7473 {
7474 /* If there are are events left in the queue tell the event loop
7475 to return here. */
7476 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7477 mark_async_event_handler (remote_async_inferior_event_token);
7478 }
7479
7480 return event_ptid;
7481}
7482
7483/* Fetch a single register using a 'p' packet. */
7484
7485static int
7486fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7487{
7488 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7489 struct remote_state *rs = get_remote_state ();
7490 char *buf, *p;
7491 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7492 int i;
7493
7494 if (packet_support (PACKET_p) == PACKET_DISABLE)
7495 return 0;
7496
7497 if (reg->pnum == -1)
7498 return 0;
7499
7500 p = rs->buf;
7501 *p++ = 'p';
7502 p += hexnumstr (p, reg->pnum);
7503 *p++ = '\0';
7504 putpkt (rs->buf);
7505 getpkt (&rs->buf, &rs->buf_size, 0);
7506
7507 buf = rs->buf;
7508
7509 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7510 {
7511 case PACKET_OK:
7512 break;
7513 case PACKET_UNKNOWN:
7514 return 0;
7515 case PACKET_ERROR:
7516 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7517 gdbarch_register_name (get_regcache_arch (regcache),
7518 reg->regnum),
7519 buf);
7520 }
7521
7522 /* If this register is unfetchable, tell the regcache. */
7523 if (buf[0] == 'x')
7524 {
7525 regcache_raw_supply (regcache, reg->regnum, NULL);
7526 return 1;
7527 }
7528
7529 /* Otherwise, parse and supply the value. */
7530 p = buf;
7531 i = 0;
7532 while (p[0] != 0)
7533 {
7534 if (p[1] == 0)
7535 error (_("fetch_register_using_p: early buf termination"));
7536
7537 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7538 p += 2;
7539 }
7540 regcache_raw_supply (regcache, reg->regnum, regp);
7541 return 1;
7542}
7543
7544/* Fetch the registers included in the target's 'g' packet. */
7545
7546static int
7547send_g_packet (void)
7548{
7549 struct remote_state *rs = get_remote_state ();
7550 int buf_len;
7551
7552 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7553 remote_send (&rs->buf, &rs->buf_size);
7554
7555 /* We can get out of synch in various cases. If the first character
7556 in the buffer is not a hex character, assume that has happened
7557 and try to fetch another packet to read. */
7558 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7559 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7560 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7561 && rs->buf[0] != 'x') /* New: unavailable register value. */
7562 {
7563 if (remote_debug)
7564 fprintf_unfiltered (gdb_stdlog,
7565 "Bad register packet; fetching a new packet\n");
7566 getpkt (&rs->buf, &rs->buf_size, 0);
7567 }
7568
7569 buf_len = strlen (rs->buf);
7570
7571 /* Sanity check the received packet. */
7572 if (buf_len % 2 != 0)
7573 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7574
7575 return buf_len / 2;
7576}
7577
7578static void
7579process_g_packet (struct regcache *regcache)
7580{
7581 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7582 struct remote_state *rs = get_remote_state ();
7583 struct remote_arch_state *rsa = get_remote_arch_state ();
7584 int i, buf_len;
7585 char *p;
7586 char *regs;
7587
7588 buf_len = strlen (rs->buf);
7589
7590 /* Further sanity checks, with knowledge of the architecture. */
7591 if (buf_len > 2 * rsa->sizeof_g_packet)
7592 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7593 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7594
7595 /* Save the size of the packet sent to us by the target. It is used
7596 as a heuristic when determining the max size of packets that the
7597 target can safely receive. */
7598 if (rsa->actual_register_packet_size == 0)
7599 rsa->actual_register_packet_size = buf_len;
7600
7601 /* If this is smaller than we guessed the 'g' packet would be,
7602 update our records. A 'g' reply that doesn't include a register's
7603 value implies either that the register is not available, or that
7604 the 'p' packet must be used. */
7605 if (buf_len < 2 * rsa->sizeof_g_packet)
7606 {
7607 long sizeof_g_packet = buf_len / 2;
7608
7609 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7610 {
7611 long offset = rsa->regs[i].offset;
7612 long reg_size = register_size (gdbarch, i);
7613
7614 if (rsa->regs[i].pnum == -1)
7615 continue;
7616
7617 if (offset >= sizeof_g_packet)
7618 rsa->regs[i].in_g_packet = 0;
7619 else if (offset + reg_size > sizeof_g_packet)
7620 error (_("Truncated register %d in remote 'g' packet"), i);
7621 else
7622 rsa->regs[i].in_g_packet = 1;
7623 }
7624
7625 /* Looks valid enough, we can assume this is the correct length
7626 for a 'g' packet. It's important not to adjust
7627 rsa->sizeof_g_packet if we have truncated registers otherwise
7628 this "if" won't be run the next time the method is called
7629 with a packet of the same size and one of the internal errors
7630 below will trigger instead. */
7631 rsa->sizeof_g_packet = sizeof_g_packet;
7632 }
7633
7634 regs = (char *) alloca (rsa->sizeof_g_packet);
7635
7636 /* Unimplemented registers read as all bits zero. */
7637 memset (regs, 0, rsa->sizeof_g_packet);
7638
7639 /* Reply describes registers byte by byte, each byte encoded as two
7640 hex characters. Suck them all up, then supply them to the
7641 register cacheing/storage mechanism. */
7642
7643 p = rs->buf;
7644 for (i = 0; i < rsa->sizeof_g_packet; i++)
7645 {
7646 if (p[0] == 0 || p[1] == 0)
7647 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7648 internal_error (__FILE__, __LINE__,
7649 _("unexpected end of 'g' packet reply"));
7650
7651 if (p[0] == 'x' && p[1] == 'x')
7652 regs[i] = 0; /* 'x' */
7653 else
7654 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7655 p += 2;
7656 }
7657
7658 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7659 {
7660 struct packet_reg *r = &rsa->regs[i];
7661 long reg_size = register_size (gdbarch, i);
7662
7663 if (r->in_g_packet)
7664 {
7665 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7666 /* This shouldn't happen - we adjusted in_g_packet above. */
7667 internal_error (__FILE__, __LINE__,
7668 _("unexpected end of 'g' packet reply"));
7669 else if (rs->buf[r->offset * 2] == 'x')
7670 {
7671 gdb_assert (r->offset * 2 < strlen (rs->buf));
7672 /* The register isn't available, mark it as such (at
7673 the same time setting the value to zero). */
7674 regcache_raw_supply (regcache, r->regnum, NULL);
7675 }
7676 else
7677 regcache_raw_supply (regcache, r->regnum,
7678 regs + r->offset);
7679 }
7680 }
7681}
7682
7683static void
7684fetch_registers_using_g (struct regcache *regcache)
7685{
7686 send_g_packet ();
7687 process_g_packet (regcache);
7688}
7689
7690/* Make the remote selected traceframe match GDB's selected
7691 traceframe. */
7692
7693static void
7694set_remote_traceframe (void)
7695{
7696 int newnum;
7697 struct remote_state *rs = get_remote_state ();
7698
7699 if (rs->remote_traceframe_number == get_traceframe_number ())
7700 return;
7701
7702 /* Avoid recursion, remote_trace_find calls us again. */
7703 rs->remote_traceframe_number = get_traceframe_number ();
7704
7705 newnum = target_trace_find (tfind_number,
7706 get_traceframe_number (), 0, 0, NULL);
7707
7708 /* Should not happen. If it does, all bets are off. */
7709 if (newnum != get_traceframe_number ())
7710 warning (_("could not set remote traceframe"));
7711}
7712
7713static void
7714remote_fetch_registers (struct target_ops *ops,
7715 struct regcache *regcache, int regnum)
7716{
7717 struct remote_arch_state *rsa = get_remote_arch_state ();
7718 int i;
7719
7720 set_remote_traceframe ();
7721 set_general_thread (regcache_get_ptid (regcache));
7722
7723 if (regnum >= 0)
7724 {
7725 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7726
7727 gdb_assert (reg != NULL);
7728
7729 /* If this register might be in the 'g' packet, try that first -
7730 we are likely to read more than one register. If this is the
7731 first 'g' packet, we might be overly optimistic about its
7732 contents, so fall back to 'p'. */
7733 if (reg->in_g_packet)
7734 {
7735 fetch_registers_using_g (regcache);
7736 if (reg->in_g_packet)
7737 return;
7738 }
7739
7740 if (fetch_register_using_p (regcache, reg))
7741 return;
7742
7743 /* This register is not available. */
7744 regcache_raw_supply (regcache, reg->regnum, NULL);
7745
7746 return;
7747 }
7748
7749 fetch_registers_using_g (regcache);
7750
7751 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7752 if (!rsa->regs[i].in_g_packet)
7753 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7754 {
7755 /* This register is not available. */
7756 regcache_raw_supply (regcache, i, NULL);
7757 }
7758}
7759
7760/* Prepare to store registers. Since we may send them all (using a
7761 'G' request), we have to read out the ones we don't want to change
7762 first. */
7763
7764static void
7765remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7766{
7767 struct remote_arch_state *rsa = get_remote_arch_state ();
7768 int i;
7769
7770 /* Make sure the entire registers array is valid. */
7771 switch (packet_support (PACKET_P))
7772 {
7773 case PACKET_DISABLE:
7774 case PACKET_SUPPORT_UNKNOWN:
7775 /* Make sure all the necessary registers are cached. */
7776 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7777 if (rsa->regs[i].in_g_packet)
7778 regcache_raw_update (regcache, rsa->regs[i].regnum);
7779 break;
7780 case PACKET_ENABLE:
7781 break;
7782 }
7783}
7784
7785/* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7786 packet was not recognized. */
7787
7788static int
7789store_register_using_P (const struct regcache *regcache,
7790 struct packet_reg *reg)
7791{
7792 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7793 struct remote_state *rs = get_remote_state ();
7794 /* Try storing a single register. */
7795 char *buf = rs->buf;
7796 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7797 char *p;
7798
7799 if (packet_support (PACKET_P) == PACKET_DISABLE)
7800 return 0;
7801
7802 if (reg->pnum == -1)
7803 return 0;
7804
7805 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7806 p = buf + strlen (buf);
7807 regcache_raw_collect (regcache, reg->regnum, regp);
7808 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7809 putpkt (rs->buf);
7810 getpkt (&rs->buf, &rs->buf_size, 0);
7811
7812 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7813 {
7814 case PACKET_OK:
7815 return 1;
7816 case PACKET_ERROR:
7817 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7818 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7819 case PACKET_UNKNOWN:
7820 return 0;
7821 default:
7822 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7823 }
7824}
7825
7826/* Store register REGNUM, or all registers if REGNUM == -1, from the
7827 contents of the register cache buffer. FIXME: ignores errors. */
7828
7829static void
7830store_registers_using_G (const struct regcache *regcache)
7831{
7832 struct remote_state *rs = get_remote_state ();
7833 struct remote_arch_state *rsa = get_remote_arch_state ();
7834 gdb_byte *regs;
7835 char *p;
7836
7837 /* Extract all the registers in the regcache copying them into a
7838 local buffer. */
7839 {
7840 int i;
7841
7842 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7843 memset (regs, 0, rsa->sizeof_g_packet);
7844 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7845 {
7846 struct packet_reg *r = &rsa->regs[i];
7847
7848 if (r->in_g_packet)
7849 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7850 }
7851 }
7852
7853 /* Command describes registers byte by byte,
7854 each byte encoded as two hex characters. */
7855 p = rs->buf;
7856 *p++ = 'G';
7857 bin2hex (regs, p, rsa->sizeof_g_packet);
7858 putpkt (rs->buf);
7859 getpkt (&rs->buf, &rs->buf_size, 0);
7860 if (packet_check_result (rs->buf) == PACKET_ERROR)
7861 error (_("Could not write registers; remote failure reply '%s'"),
7862 rs->buf);
7863}
7864
7865/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7866 of the register cache buffer. FIXME: ignores errors. */
7867
7868static void
7869remote_store_registers (struct target_ops *ops,
7870 struct regcache *regcache, int regnum)
7871{
7872 struct remote_arch_state *rsa = get_remote_arch_state ();
7873 int i;
7874
7875 set_remote_traceframe ();
7876 set_general_thread (regcache_get_ptid (regcache));
7877
7878 if (regnum >= 0)
7879 {
7880 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
7881
7882 gdb_assert (reg != NULL);
7883
7884 /* Always prefer to store registers using the 'P' packet if
7885 possible; we often change only a small number of registers.
7886 Sometimes we change a larger number; we'd need help from a
7887 higher layer to know to use 'G'. */
7888 if (store_register_using_P (regcache, reg))
7889 return;
7890
7891 /* For now, don't complain if we have no way to write the
7892 register. GDB loses track of unavailable registers too
7893 easily. Some day, this may be an error. We don't have
7894 any way to read the register, either... */
7895 if (!reg->in_g_packet)
7896 return;
7897
7898 store_registers_using_G (regcache);
7899 return;
7900 }
7901
7902 store_registers_using_G (regcache);
7903
7904 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
7905 if (!rsa->regs[i].in_g_packet)
7906 if (!store_register_using_P (regcache, &rsa->regs[i]))
7907 /* See above for why we do not issue an error here. */
7908 continue;
7909}
7910\f
7911
7912/* Return the number of hex digits in num. */
7913
7914static int
7915hexnumlen (ULONGEST num)
7916{
7917 int i;
7918
7919 for (i = 0; num != 0; i++)
7920 num >>= 4;
7921
7922 return std::max (i, 1);
7923}
7924
7925/* Set BUF to the minimum number of hex digits representing NUM. */
7926
7927static int
7928hexnumstr (char *buf, ULONGEST num)
7929{
7930 int len = hexnumlen (num);
7931
7932 return hexnumnstr (buf, num, len);
7933}
7934
7935
7936/* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7937
7938static int
7939hexnumnstr (char *buf, ULONGEST num, int width)
7940{
7941 int i;
7942
7943 buf[width] = '\0';
7944
7945 for (i = width - 1; i >= 0; i--)
7946 {
7947 buf[i] = "0123456789abcdef"[(num & 0xf)];
7948 num >>= 4;
7949 }
7950
7951 return width;
7952}
7953
7954/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7955
7956static CORE_ADDR
7957remote_address_masked (CORE_ADDR addr)
7958{
7959 unsigned int address_size = remote_address_size;
7960
7961 /* If "remoteaddresssize" was not set, default to target address size. */
7962 if (!address_size)
7963 address_size = gdbarch_addr_bit (target_gdbarch ());
7964
7965 if (address_size > 0
7966 && address_size < (sizeof (ULONGEST) * 8))
7967 {
7968 /* Only create a mask when that mask can safely be constructed
7969 in a ULONGEST variable. */
7970 ULONGEST mask = 1;
7971
7972 mask = (mask << address_size) - 1;
7973 addr &= mask;
7974 }
7975 return addr;
7976}
7977
7978/* Determine whether the remote target supports binary downloading.
7979 This is accomplished by sending a no-op memory write of zero length
7980 to the target at the specified address. It does not suffice to send
7981 the whole packet, since many stubs strip the eighth bit and
7982 subsequently compute a wrong checksum, which causes real havoc with
7983 remote_write_bytes.
7984
7985 NOTE: This can still lose if the serial line is not eight-bit
7986 clean. In cases like this, the user should clear "remote
7987 X-packet". */
7988
7989static void
7990check_binary_download (CORE_ADDR addr)
7991{
7992 struct remote_state *rs = get_remote_state ();
7993
7994 switch (packet_support (PACKET_X))
7995 {
7996 case PACKET_DISABLE:
7997 break;
7998 case PACKET_ENABLE:
7999 break;
8000 case PACKET_SUPPORT_UNKNOWN:
8001 {
8002 char *p;
8003
8004 p = rs->buf;
8005 *p++ = 'X';
8006 p += hexnumstr (p, (ULONGEST) addr);
8007 *p++ = ',';
8008 p += hexnumstr (p, (ULONGEST) 0);
8009 *p++ = ':';
8010 *p = '\0';
8011
8012 putpkt_binary (rs->buf, (int) (p - rs->buf));
8013 getpkt (&rs->buf, &rs->buf_size, 0);
8014
8015 if (rs->buf[0] == '\0')
8016 {
8017 if (remote_debug)
8018 fprintf_unfiltered (gdb_stdlog,
8019 "binary downloading NOT "
8020 "supported by target\n");
8021 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8022 }
8023 else
8024 {
8025 if (remote_debug)
8026 fprintf_unfiltered (gdb_stdlog,
8027 "binary downloading supported by target\n");
8028 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8029 }
8030 break;
8031 }
8032 }
8033}
8034
8035/* Helper function to resize the payload in order to try to get a good
8036 alignment. We try to write an amount of data such that the next write will
8037 start on an address aligned on REMOTE_ALIGN_WRITES. */
8038
8039static int
8040align_for_efficient_write (int todo, CORE_ADDR memaddr)
8041{
8042 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8043}
8044
8045/* Write memory data directly to the remote machine.
8046 This does not inform the data cache; the data cache uses this.
8047 HEADER is the starting part of the packet.
8048 MEMADDR is the address in the remote memory space.
8049 MYADDR is the address of the buffer in our space.
8050 LEN_UNITS is the number of addressable units to write.
8051 UNIT_SIZE is the length in bytes of an addressable unit.
8052 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8053 should send data as binary ('X'), or hex-encoded ('M').
8054
8055 The function creates packet of the form
8056 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8057
8058 where encoding of <DATA> is terminated by PACKET_FORMAT.
8059
8060 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8061 are omitted.
8062
8063 Return the transferred status, error or OK (an
8064 'enum target_xfer_status' value). Save the number of addressable units
8065 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8066
8067 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8068 exchange between gdb and the stub could look like (?? in place of the
8069 checksum):
8070
8071 -> $m1000,4#??
8072 <- aaaabbbbccccdddd
8073
8074 -> $M1000,3:eeeeffffeeee#??
8075 <- OK
8076
8077 -> $m1000,4#??
8078 <- eeeeffffeeeedddd */
8079
8080static enum target_xfer_status
8081remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8082 const gdb_byte *myaddr, ULONGEST len_units,
8083 int unit_size, ULONGEST *xfered_len_units,
8084 char packet_format, int use_length)
8085{
8086 struct remote_state *rs = get_remote_state ();
8087 char *p;
8088 char *plen = NULL;
8089 int plenlen = 0;
8090 int todo_units;
8091 int units_written;
8092 int payload_capacity_bytes;
8093 int payload_length_bytes;
8094
8095 if (packet_format != 'X' && packet_format != 'M')
8096 internal_error (__FILE__, __LINE__,
8097 _("remote_write_bytes_aux: bad packet format"));
8098
8099 if (len_units == 0)
8100 return TARGET_XFER_EOF;
8101
8102 payload_capacity_bytes = get_memory_write_packet_size ();
8103
8104 /* The packet buffer will be large enough for the payload;
8105 get_memory_packet_size ensures this. */
8106 rs->buf[0] = '\0';
8107
8108 /* Compute the size of the actual payload by subtracting out the
8109 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8110
8111 payload_capacity_bytes -= strlen ("$,:#NN");
8112 if (!use_length)
8113 /* The comma won't be used. */
8114 payload_capacity_bytes += 1;
8115 payload_capacity_bytes -= strlen (header);
8116 payload_capacity_bytes -= hexnumlen (memaddr);
8117
8118 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8119
8120 strcat (rs->buf, header);
8121 p = rs->buf + strlen (header);
8122
8123 /* Compute a best guess of the number of bytes actually transfered. */
8124 if (packet_format == 'X')
8125 {
8126 /* Best guess at number of bytes that will fit. */
8127 todo_units = std::min (len_units,
8128 (ULONGEST) payload_capacity_bytes / unit_size);
8129 if (use_length)
8130 payload_capacity_bytes -= hexnumlen (todo_units);
8131 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8132 }
8133 else
8134 {
8135 /* Number of bytes that will fit. */
8136 todo_units
8137 = std::min (len_units,
8138 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8139 if (use_length)
8140 payload_capacity_bytes -= hexnumlen (todo_units);
8141 todo_units = std::min (todo_units,
8142 (payload_capacity_bytes / unit_size) / 2);
8143 }
8144
8145 if (todo_units <= 0)
8146 internal_error (__FILE__, __LINE__,
8147 _("minimum packet size too small to write data"));
8148
8149 /* If we already need another packet, then try to align the end
8150 of this packet to a useful boundary. */
8151 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8152 todo_units = align_for_efficient_write (todo_units, memaddr);
8153
8154 /* Append "<memaddr>". */
8155 memaddr = remote_address_masked (memaddr);
8156 p += hexnumstr (p, (ULONGEST) memaddr);
8157
8158 if (use_length)
8159 {
8160 /* Append ",". */
8161 *p++ = ',';
8162
8163 /* Append the length and retain its location and size. It may need to be
8164 adjusted once the packet body has been created. */
8165 plen = p;
8166 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8167 p += plenlen;
8168 }
8169
8170 /* Append ":". */
8171 *p++ = ':';
8172 *p = '\0';
8173
8174 /* Append the packet body. */
8175 if (packet_format == 'X')
8176 {
8177 /* Binary mode. Send target system values byte by byte, in
8178 increasing byte addresses. Only escape certain critical
8179 characters. */
8180 payload_length_bytes =
8181 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8182 &units_written, payload_capacity_bytes);
8183
8184 /* If not all TODO units fit, then we'll need another packet. Make
8185 a second try to keep the end of the packet aligned. Don't do
8186 this if the packet is tiny. */
8187 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8188 {
8189 int new_todo_units;
8190
8191 new_todo_units = align_for_efficient_write (units_written, memaddr);
8192
8193 if (new_todo_units != units_written)
8194 payload_length_bytes =
8195 remote_escape_output (myaddr, new_todo_units, unit_size,
8196 (gdb_byte *) p, &units_written,
8197 payload_capacity_bytes);
8198 }
8199
8200 p += payload_length_bytes;
8201 if (use_length && units_written < todo_units)
8202 {
8203 /* Escape chars have filled up the buffer prematurely,
8204 and we have actually sent fewer units than planned.
8205 Fix-up the length field of the packet. Use the same
8206 number of characters as before. */
8207 plen += hexnumnstr (plen, (ULONGEST) units_written,
8208 plenlen);
8209 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8210 }
8211 }
8212 else
8213 {
8214 /* Normal mode: Send target system values byte by byte, in
8215 increasing byte addresses. Each byte is encoded as a two hex
8216 value. */
8217 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8218 units_written = todo_units;
8219 }
8220
8221 putpkt_binary (rs->buf, (int) (p - rs->buf));
8222 getpkt (&rs->buf, &rs->buf_size, 0);
8223
8224 if (rs->buf[0] == 'E')
8225 return TARGET_XFER_E_IO;
8226
8227 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8228 send fewer units than we'd planned. */
8229 *xfered_len_units = (ULONGEST) units_written;
8230 return TARGET_XFER_OK;
8231}
8232
8233/* Write memory data directly to the remote machine.
8234 This does not inform the data cache; the data cache uses this.
8235 MEMADDR is the address in the remote memory space.
8236 MYADDR is the address of the buffer in our space.
8237 LEN is the number of bytes.
8238
8239 Return the transferred status, error or OK (an
8240 'enum target_xfer_status' value). Save the number of bytes
8241 transferred in *XFERED_LEN. Only transfer a single packet. */
8242
8243static enum target_xfer_status
8244remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8245 int unit_size, ULONGEST *xfered_len)
8246{
8247 const char *packet_format = NULL;
8248
8249 /* Check whether the target supports binary download. */
8250 check_binary_download (memaddr);
8251
8252 switch (packet_support (PACKET_X))
8253 {
8254 case PACKET_ENABLE:
8255 packet_format = "X";
8256 break;
8257 case PACKET_DISABLE:
8258 packet_format = "M";
8259 break;
8260 case PACKET_SUPPORT_UNKNOWN:
8261 internal_error (__FILE__, __LINE__,
8262 _("remote_write_bytes: bad internal state"));
8263 default:
8264 internal_error (__FILE__, __LINE__, _("bad switch"));
8265 }
8266
8267 return remote_write_bytes_aux (packet_format,
8268 memaddr, myaddr, len, unit_size, xfered_len,
8269 packet_format[0], 1);
8270}
8271
8272/* Read memory data directly from the remote machine.
8273 This does not use the data cache; the data cache uses this.
8274 MEMADDR is the address in the remote memory space.
8275 MYADDR is the address of the buffer in our space.
8276 LEN_UNITS is the number of addressable memory units to read..
8277 UNIT_SIZE is the length in bytes of an addressable unit.
8278
8279 Return the transferred status, error or OK (an
8280 'enum target_xfer_status' value). Save the number of bytes
8281 transferred in *XFERED_LEN_UNITS.
8282
8283 See the comment of remote_write_bytes_aux for an example of
8284 memory read/write exchange between gdb and the stub. */
8285
8286static enum target_xfer_status
8287remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8288 int unit_size, ULONGEST *xfered_len_units)
8289{
8290 struct remote_state *rs = get_remote_state ();
8291 int buf_size_bytes; /* Max size of packet output buffer. */
8292 char *p;
8293 int todo_units;
8294 int decoded_bytes;
8295
8296 buf_size_bytes = get_memory_read_packet_size ();
8297 /* The packet buffer will be large enough for the payload;
8298 get_memory_packet_size ensures this. */
8299
8300 /* Number of units that will fit. */
8301 todo_units = std::min (len_units,
8302 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8303
8304 /* Construct "m"<memaddr>","<len>". */
8305 memaddr = remote_address_masked (memaddr);
8306 p = rs->buf;
8307 *p++ = 'm';
8308 p += hexnumstr (p, (ULONGEST) memaddr);
8309 *p++ = ',';
8310 p += hexnumstr (p, (ULONGEST) todo_units);
8311 *p = '\0';
8312 putpkt (rs->buf);
8313 getpkt (&rs->buf, &rs->buf_size, 0);
8314 if (rs->buf[0] == 'E'
8315 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8316 && rs->buf[3] == '\0')
8317 return TARGET_XFER_E_IO;
8318 /* Reply describes memory byte by byte, each byte encoded as two hex
8319 characters. */
8320 p = rs->buf;
8321 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8322 /* Return what we have. Let higher layers handle partial reads. */
8323 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8324 return TARGET_XFER_OK;
8325}
8326
8327/* Using the set of read-only target sections of remote, read live
8328 read-only memory.
8329
8330 For interface/parameters/return description see target.h,
8331 to_xfer_partial. */
8332
8333static enum target_xfer_status
8334remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8335 ULONGEST memaddr, ULONGEST len,
8336 int unit_size, ULONGEST *xfered_len)
8337{
8338 struct target_section *secp;
8339 struct target_section_table *table;
8340
8341 secp = target_section_by_addr (ops, memaddr);
8342 if (secp != NULL
8343 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8344 secp->the_bfd_section)
8345 & SEC_READONLY))
8346 {
8347 struct target_section *p;
8348 ULONGEST memend = memaddr + len;
8349
8350 table = target_get_section_table (ops);
8351
8352 for (p = table->sections; p < table->sections_end; p++)
8353 {
8354 if (memaddr >= p->addr)
8355 {
8356 if (memend <= p->endaddr)
8357 {
8358 /* Entire transfer is within this section. */
8359 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8360 xfered_len);
8361 }
8362 else if (memaddr >= p->endaddr)
8363 {
8364 /* This section ends before the transfer starts. */
8365 continue;
8366 }
8367 else
8368 {
8369 /* This section overlaps the transfer. Just do half. */
8370 len = p->endaddr - memaddr;
8371 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8372 xfered_len);
8373 }
8374 }
8375 }
8376 }
8377
8378 return TARGET_XFER_EOF;
8379}
8380
8381/* Similar to remote_read_bytes_1, but it reads from the remote stub
8382 first if the requested memory is unavailable in traceframe.
8383 Otherwise, fall back to remote_read_bytes_1. */
8384
8385static enum target_xfer_status
8386remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8387 gdb_byte *myaddr, ULONGEST len, int unit_size,
8388 ULONGEST *xfered_len)
8389{
8390 if (len == 0)
8391 return TARGET_XFER_EOF;
8392
8393 if (get_traceframe_number () != -1)
8394 {
8395 VEC(mem_range_s) *available;
8396
8397 /* If we fail to get the set of available memory, then the
8398 target does not support querying traceframe info, and so we
8399 attempt reading from the traceframe anyway (assuming the
8400 target implements the old QTro packet then). */
8401 if (traceframe_available_memory (&available, memaddr, len))
8402 {
8403 struct cleanup *old_chain;
8404
8405 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
8406
8407 if (VEC_empty (mem_range_s, available)
8408 || VEC_index (mem_range_s, available, 0)->start != memaddr)
8409 {
8410 enum target_xfer_status res;
8411
8412 /* Don't read into the traceframe's available
8413 memory. */
8414 if (!VEC_empty (mem_range_s, available))
8415 {
8416 LONGEST oldlen = len;
8417
8418 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
8419 gdb_assert (len <= oldlen);
8420 }
8421
8422 do_cleanups (old_chain);
8423
8424 /* This goes through the topmost target again. */
8425 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8426 len, unit_size, xfered_len);
8427 if (res == TARGET_XFER_OK)
8428 return TARGET_XFER_OK;
8429 else
8430 {
8431 /* No use trying further, we know some memory starting
8432 at MEMADDR isn't available. */
8433 *xfered_len = len;
8434 return TARGET_XFER_UNAVAILABLE;
8435 }
8436 }
8437
8438 /* Don't try to read more than how much is available, in
8439 case the target implements the deprecated QTro packet to
8440 cater for older GDBs (the target's knowledge of read-only
8441 sections may be outdated by now). */
8442 len = VEC_index (mem_range_s, available, 0)->length;
8443
8444 do_cleanups (old_chain);
8445 }
8446 }
8447
8448 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8449}
8450
8451\f
8452
8453/* Sends a packet with content determined by the printf format string
8454 FORMAT and the remaining arguments, then gets the reply. Returns
8455 whether the packet was a success, a failure, or unknown. */
8456
8457static enum packet_result remote_send_printf (const char *format, ...)
8458 ATTRIBUTE_PRINTF (1, 2);
8459
8460static enum packet_result
8461remote_send_printf (const char *format, ...)
8462{
8463 struct remote_state *rs = get_remote_state ();
8464 int max_size = get_remote_packet_size ();
8465 va_list ap;
8466
8467 va_start (ap, format);
8468
8469 rs->buf[0] = '\0';
8470 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8471 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8472
8473 if (putpkt (rs->buf) < 0)
8474 error (_("Communication problem with target."));
8475
8476 rs->buf[0] = '\0';
8477 getpkt (&rs->buf, &rs->buf_size, 0);
8478
8479 return packet_check_result (rs->buf);
8480}
8481
8482/* Flash writing can take quite some time. We'll set
8483 effectively infinite timeout for flash operations.
8484 In future, we'll need to decide on a better approach. */
8485static const int remote_flash_timeout = 1000;
8486
8487static void
8488remote_flash_erase (struct target_ops *ops,
8489 ULONGEST address, LONGEST length)
8490{
8491 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8492 enum packet_result ret;
8493 scoped_restore restore_timeout
8494 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8495
8496 ret = remote_send_printf ("vFlashErase:%s,%s",
8497 phex (address, addr_size),
8498 phex (length, 4));
8499 switch (ret)
8500 {
8501 case PACKET_UNKNOWN:
8502 error (_("Remote target does not support flash erase"));
8503 case PACKET_ERROR:
8504 error (_("Error erasing flash with vFlashErase packet"));
8505 default:
8506 break;
8507 }
8508}
8509
8510static enum target_xfer_status
8511remote_flash_write (struct target_ops *ops, ULONGEST address,
8512 ULONGEST length, ULONGEST *xfered_len,
8513 const gdb_byte *data)
8514{
8515 scoped_restore restore_timeout
8516 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8517 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8518 xfered_len,'X', 0);
8519}
8520
8521static void
8522remote_flash_done (struct target_ops *ops)
8523{
8524 int ret;
8525
8526 scoped_restore restore_timeout
8527 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8528
8529 ret = remote_send_printf ("vFlashDone");
8530
8531 switch (ret)
8532 {
8533 case PACKET_UNKNOWN:
8534 error (_("Remote target does not support vFlashDone"));
8535 case PACKET_ERROR:
8536 error (_("Error finishing flash operation"));
8537 default:
8538 break;
8539 }
8540}
8541
8542static void
8543remote_files_info (struct target_ops *ignore)
8544{
8545 puts_filtered ("Debugging a target over a serial line.\n");
8546}
8547\f
8548/* Stuff for dealing with the packets which are part of this protocol.
8549 See comment at top of file for details. */
8550
8551/* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8552 error to higher layers. Called when a serial error is detected.
8553 The exception message is STRING, followed by a colon and a blank,
8554 the system error message for errno at function entry and final dot
8555 for output compatibility with throw_perror_with_name. */
8556
8557static void
8558unpush_and_perror (const char *string)
8559{
8560 int saved_errno = errno;
8561
8562 remote_unpush_target ();
8563 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8564 safe_strerror (saved_errno));
8565}
8566
8567/* Read a single character from the remote end. The current quit
8568 handler is overridden to avoid quitting in the middle of packet
8569 sequence, as that would break communication with the remote server.
8570 See remote_serial_quit_handler for more detail. */
8571
8572static int
8573readchar (int timeout)
8574{
8575 int ch;
8576 struct remote_state *rs = get_remote_state ();
8577
8578 {
8579 scoped_restore restore_quit
8580 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8581
8582 rs->got_ctrlc_during_io = 0;
8583
8584 ch = serial_readchar (rs->remote_desc, timeout);
8585
8586 if (rs->got_ctrlc_during_io)
8587 set_quit_flag ();
8588 }
8589
8590 if (ch >= 0)
8591 return ch;
8592
8593 switch ((enum serial_rc) ch)
8594 {
8595 case SERIAL_EOF:
8596 remote_unpush_target ();
8597 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8598 /* no return */
8599 case SERIAL_ERROR:
8600 unpush_and_perror (_("Remote communication error. "
8601 "Target disconnected."));
8602 /* no return */
8603 case SERIAL_TIMEOUT:
8604 break;
8605 }
8606 return ch;
8607}
8608
8609/* Wrapper for serial_write that closes the target and throws if
8610 writing fails. The current quit handler is overridden to avoid
8611 quitting in the middle of packet sequence, as that would break
8612 communication with the remote server. See
8613 remote_serial_quit_handler for more detail. */
8614
8615static void
8616remote_serial_write (const char *str, int len)
8617{
8618 struct remote_state *rs = get_remote_state ();
8619
8620 scoped_restore restore_quit
8621 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8622
8623 rs->got_ctrlc_during_io = 0;
8624
8625 if (serial_write (rs->remote_desc, str, len))
8626 {
8627 unpush_and_perror (_("Remote communication error. "
8628 "Target disconnected."));
8629 }
8630
8631 if (rs->got_ctrlc_during_io)
8632 set_quit_flag ();
8633}
8634
8635/* Send the command in *BUF to the remote machine, and read the reply
8636 into *BUF. Report an error if we get an error reply. Resize
8637 *BUF using xrealloc if necessary to hold the result, and update
8638 *SIZEOF_BUF. */
8639
8640static void
8641remote_send (char **buf,
8642 long *sizeof_buf)
8643{
8644 putpkt (*buf);
8645 getpkt (buf, sizeof_buf, 0);
8646
8647 if ((*buf)[0] == 'E')
8648 error (_("Remote failure reply: %s"), *buf);
8649}
8650
8651/* Return a string representing an escaped version of BUF, of len N.
8652 E.g. \n is converted to \\n, \t to \\t, etc. */
8653
8654static std::string
8655escape_buffer (const char *buf, int n)
8656{
8657 string_file stb;
8658
8659 stb.putstrn (buf, n, '\\');
8660 return std::move (stb.string ());
8661}
8662
8663/* Display a null-terminated packet on stdout, for debugging, using C
8664 string notation. */
8665
8666static void
8667print_packet (const char *buf)
8668{
8669 puts_filtered ("\"");
8670 fputstr_filtered (buf, '"', gdb_stdout);
8671 puts_filtered ("\"");
8672}
8673
8674int
8675putpkt (const char *buf)
8676{
8677 return putpkt_binary (buf, strlen (buf));
8678}
8679
8680/* Send a packet to the remote machine, with error checking. The data
8681 of the packet is in BUF. The string in BUF can be at most
8682 get_remote_packet_size () - 5 to account for the $, # and checksum,
8683 and for a possible /0 if we are debugging (remote_debug) and want
8684 to print the sent packet as a string. */
8685
8686static int
8687putpkt_binary (const char *buf, int cnt)
8688{
8689 struct remote_state *rs = get_remote_state ();
8690 int i;
8691 unsigned char csum = 0;
8692 char *buf2 = (char *) xmalloc (cnt + 6);
8693 struct cleanup *old_chain = make_cleanup (xfree, buf2);
8694
8695 int ch;
8696 int tcount = 0;
8697 char *p;
8698
8699 /* Catch cases like trying to read memory or listing threads while
8700 we're waiting for a stop reply. The remote server wouldn't be
8701 ready to handle this request, so we'd hang and timeout. We don't
8702 have to worry about this in synchronous mode, because in that
8703 case it's not possible to issue a command while the target is
8704 running. This is not a problem in non-stop mode, because in that
8705 case, the stub is always ready to process serial input. */
8706 if (!target_is_non_stop_p ()
8707 && target_is_async_p ()
8708 && rs->waiting_for_stop_reply)
8709 {
8710 error (_("Cannot execute this command while the target is running.\n"
8711 "Use the \"interrupt\" command to stop the target\n"
8712 "and then try again."));
8713 }
8714
8715 /* We're sending out a new packet. Make sure we don't look at a
8716 stale cached response. */
8717 rs->cached_wait_status = 0;
8718
8719 /* Copy the packet into buffer BUF2, encapsulating it
8720 and giving it a checksum. */
8721
8722 p = buf2;
8723 *p++ = '$';
8724
8725 for (i = 0; i < cnt; i++)
8726 {
8727 csum += buf[i];
8728 *p++ = buf[i];
8729 }
8730 *p++ = '#';
8731 *p++ = tohex ((csum >> 4) & 0xf);
8732 *p++ = tohex (csum & 0xf);
8733
8734 /* Send it over and over until we get a positive ack. */
8735
8736 while (1)
8737 {
8738 int started_error_output = 0;
8739
8740 if (remote_debug)
8741 {
8742 *p = '\0';
8743
8744 int len = (int) (p - buf2);
8745
8746 std::string str
8747 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8748
8749 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8750
8751 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
8752 {
8753 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
8754 str.length () - REMOTE_DEBUG_MAX_CHAR);
8755 }
8756
8757 fprintf_unfiltered (gdb_stdlog, "...");
8758
8759 gdb_flush (gdb_stdlog);
8760 }
8761 remote_serial_write (buf2, p - buf2);
8762
8763 /* If this is a no acks version of the remote protocol, send the
8764 packet and move on. */
8765 if (rs->noack_mode)
8766 break;
8767
8768 /* Read until either a timeout occurs (-2) or '+' is read.
8769 Handle any notification that arrives in the mean time. */
8770 while (1)
8771 {
8772 ch = readchar (remote_timeout);
8773
8774 if (remote_debug)
8775 {
8776 switch (ch)
8777 {
8778 case '+':
8779 case '-':
8780 case SERIAL_TIMEOUT:
8781 case '$':
8782 case '%':
8783 if (started_error_output)
8784 {
8785 putchar_unfiltered ('\n');
8786 started_error_output = 0;
8787 }
8788 }
8789 }
8790
8791 switch (ch)
8792 {
8793 case '+':
8794 if (remote_debug)
8795 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8796 do_cleanups (old_chain);
8797 return 1;
8798 case '-':
8799 if (remote_debug)
8800 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8801 /* FALLTHROUGH */
8802 case SERIAL_TIMEOUT:
8803 tcount++;
8804 if (tcount > 3)
8805 {
8806 do_cleanups (old_chain);
8807 return 0;
8808 }
8809 break; /* Retransmit buffer. */
8810 case '$':
8811 {
8812 if (remote_debug)
8813 fprintf_unfiltered (gdb_stdlog,
8814 "Packet instead of Ack, ignoring it\n");
8815 /* It's probably an old response sent because an ACK
8816 was lost. Gobble up the packet and ack it so it
8817 doesn't get retransmitted when we resend this
8818 packet. */
8819 skip_frame ();
8820 remote_serial_write ("+", 1);
8821 continue; /* Now, go look for +. */
8822 }
8823
8824 case '%':
8825 {
8826 int val;
8827
8828 /* If we got a notification, handle it, and go back to looking
8829 for an ack. */
8830 /* We've found the start of a notification. Now
8831 collect the data. */
8832 val = read_frame (&rs->buf, &rs->buf_size);
8833 if (val >= 0)
8834 {
8835 if (remote_debug)
8836 {
8837 std::string str = escape_buffer (rs->buf, val);
8838
8839 fprintf_unfiltered (gdb_stdlog,
8840 " Notification received: %s\n",
8841 str.c_str ());
8842 }
8843 handle_notification (rs->notif_state, rs->buf);
8844 /* We're in sync now, rewait for the ack. */
8845 tcount = 0;
8846 }
8847 else
8848 {
8849 if (remote_debug)
8850 {
8851 if (!started_error_output)
8852 {
8853 started_error_output = 1;
8854 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8855 }
8856 fputc_unfiltered (ch & 0177, gdb_stdlog);
8857 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8858 }
8859 }
8860 continue;
8861 }
8862 /* fall-through */
8863 default:
8864 if (remote_debug)
8865 {
8866 if (!started_error_output)
8867 {
8868 started_error_output = 1;
8869 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8870 }
8871 fputc_unfiltered (ch & 0177, gdb_stdlog);
8872 }
8873 continue;
8874 }
8875 break; /* Here to retransmit. */
8876 }
8877
8878#if 0
8879 /* This is wrong. If doing a long backtrace, the user should be
8880 able to get out next time we call QUIT, without anything as
8881 violent as interrupt_query. If we want to provide a way out of
8882 here without getting to the next QUIT, it should be based on
8883 hitting ^C twice as in remote_wait. */
8884 if (quit_flag)
8885 {
8886 quit_flag = 0;
8887 interrupt_query ();
8888 }
8889#endif
8890 }
8891
8892 do_cleanups (old_chain);
8893 return 0;
8894}
8895
8896/* Come here after finding the start of a frame when we expected an
8897 ack. Do our best to discard the rest of this packet. */
8898
8899static void
8900skip_frame (void)
8901{
8902 int c;
8903
8904 while (1)
8905 {
8906 c = readchar (remote_timeout);
8907 switch (c)
8908 {
8909 case SERIAL_TIMEOUT:
8910 /* Nothing we can do. */
8911 return;
8912 case '#':
8913 /* Discard the two bytes of checksum and stop. */
8914 c = readchar (remote_timeout);
8915 if (c >= 0)
8916 c = readchar (remote_timeout);
8917
8918 return;
8919 case '*': /* Run length encoding. */
8920 /* Discard the repeat count. */
8921 c = readchar (remote_timeout);
8922 if (c < 0)
8923 return;
8924 break;
8925 default:
8926 /* A regular character. */
8927 break;
8928 }
8929 }
8930}
8931
8932/* Come here after finding the start of the frame. Collect the rest
8933 into *BUF, verifying the checksum, length, and handling run-length
8934 compression. NUL terminate the buffer. If there is not enough room,
8935 expand *BUF using xrealloc.
8936
8937 Returns -1 on error, number of characters in buffer (ignoring the
8938 trailing NULL) on success. (could be extended to return one of the
8939 SERIAL status indications). */
8940
8941static long
8942read_frame (char **buf_p,
8943 long *sizeof_buf)
8944{
8945 unsigned char csum;
8946 long bc;
8947 int c;
8948 char *buf = *buf_p;
8949 struct remote_state *rs = get_remote_state ();
8950
8951 csum = 0;
8952 bc = 0;
8953
8954 while (1)
8955 {
8956 c = readchar (remote_timeout);
8957 switch (c)
8958 {
8959 case SERIAL_TIMEOUT:
8960 if (remote_debug)
8961 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8962 return -1;
8963 case '$':
8964 if (remote_debug)
8965 fputs_filtered ("Saw new packet start in middle of old one\n",
8966 gdb_stdlog);
8967 return -1; /* Start a new packet, count retries. */
8968 case '#':
8969 {
8970 unsigned char pktcsum;
8971 int check_0 = 0;
8972 int check_1 = 0;
8973
8974 buf[bc] = '\0';
8975
8976 check_0 = readchar (remote_timeout);
8977 if (check_0 >= 0)
8978 check_1 = readchar (remote_timeout);
8979
8980 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8981 {
8982 if (remote_debug)
8983 fputs_filtered ("Timeout in checksum, retrying\n",
8984 gdb_stdlog);
8985 return -1;
8986 }
8987 else if (check_0 < 0 || check_1 < 0)
8988 {
8989 if (remote_debug)
8990 fputs_filtered ("Communication error in checksum\n",
8991 gdb_stdlog);
8992 return -1;
8993 }
8994
8995 /* Don't recompute the checksum; with no ack packets we
8996 don't have any way to indicate a packet retransmission
8997 is necessary. */
8998 if (rs->noack_mode)
8999 return bc;
9000
9001 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9002 if (csum == pktcsum)
9003 return bc;
9004
9005 if (remote_debug)
9006 {
9007 std::string str = escape_buffer (buf, bc);
9008
9009 fprintf_unfiltered (gdb_stdlog,
9010 "Bad checksum, sentsum=0x%x, "
9011 "csum=0x%x, buf=%s\n",
9012 pktcsum, csum, str.c_str ());
9013 }
9014 /* Number of characters in buffer ignoring trailing
9015 NULL. */
9016 return -1;
9017 }
9018 case '*': /* Run length encoding. */
9019 {
9020 int repeat;
9021
9022 csum += c;
9023 c = readchar (remote_timeout);
9024 csum += c;
9025 repeat = c - ' ' + 3; /* Compute repeat count. */
9026
9027 /* The character before ``*'' is repeated. */
9028
9029 if (repeat > 0 && repeat <= 255 && bc > 0)
9030 {
9031 if (bc + repeat - 1 >= *sizeof_buf - 1)
9032 {
9033 /* Make some more room in the buffer. */
9034 *sizeof_buf += repeat;
9035 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9036 buf = *buf_p;
9037 }
9038
9039 memset (&buf[bc], buf[bc - 1], repeat);
9040 bc += repeat;
9041 continue;
9042 }
9043
9044 buf[bc] = '\0';
9045 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9046 return -1;
9047 }
9048 default:
9049 if (bc >= *sizeof_buf - 1)
9050 {
9051 /* Make some more room in the buffer. */
9052 *sizeof_buf *= 2;
9053 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9054 buf = *buf_p;
9055 }
9056
9057 buf[bc++] = c;
9058 csum += c;
9059 continue;
9060 }
9061 }
9062}
9063
9064/* Read a packet from the remote machine, with error checking, and
9065 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9066 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9067 rather than timing out; this is used (in synchronous mode) to wait
9068 for a target that is is executing user code to stop. */
9069/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9070 don't have to change all the calls to getpkt to deal with the
9071 return value, because at the moment I don't know what the right
9072 thing to do it for those. */
9073void
9074getpkt (char **buf,
9075 long *sizeof_buf,
9076 int forever)
9077{
9078 getpkt_sane (buf, sizeof_buf, forever);
9079}
9080
9081
9082/* Read a packet from the remote machine, with error checking, and
9083 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9084 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9085 rather than timing out; this is used (in synchronous mode) to wait
9086 for a target that is is executing user code to stop. If FOREVER ==
9087 0, this function is allowed to time out gracefully and return an
9088 indication of this to the caller. Otherwise return the number of
9089 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9090 enough reason to return to the caller. *IS_NOTIF is an output
9091 boolean that indicates whether *BUF holds a notification or not
9092 (a regular packet). */
9093
9094static int
9095getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9096 int expecting_notif, int *is_notif)
9097{
9098 struct remote_state *rs = get_remote_state ();
9099 int c;
9100 int tries;
9101 int timeout;
9102 int val = -1;
9103
9104 /* We're reading a new response. Make sure we don't look at a
9105 previously cached response. */
9106 rs->cached_wait_status = 0;
9107
9108 strcpy (*buf, "timeout");
9109
9110 if (forever)
9111 timeout = watchdog > 0 ? watchdog : -1;
9112 else if (expecting_notif)
9113 timeout = 0; /* There should already be a char in the buffer. If
9114 not, bail out. */
9115 else
9116 timeout = remote_timeout;
9117
9118#define MAX_TRIES 3
9119
9120 /* Process any number of notifications, and then return when
9121 we get a packet. */
9122 for (;;)
9123 {
9124 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9125 times. */
9126 for (tries = 1; tries <= MAX_TRIES; tries++)
9127 {
9128 /* This can loop forever if the remote side sends us
9129 characters continuously, but if it pauses, we'll get
9130 SERIAL_TIMEOUT from readchar because of timeout. Then
9131 we'll count that as a retry.
9132
9133 Note that even when forever is set, we will only wait
9134 forever prior to the start of a packet. After that, we
9135 expect characters to arrive at a brisk pace. They should
9136 show up within remote_timeout intervals. */
9137 do
9138 c = readchar (timeout);
9139 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9140
9141 if (c == SERIAL_TIMEOUT)
9142 {
9143 if (expecting_notif)
9144 return -1; /* Don't complain, it's normal to not get
9145 anything in this case. */
9146
9147 if (forever) /* Watchdog went off? Kill the target. */
9148 {
9149 remote_unpush_target ();
9150 throw_error (TARGET_CLOSE_ERROR,
9151 _("Watchdog timeout has expired. "
9152 "Target detached."));
9153 }
9154 if (remote_debug)
9155 fputs_filtered ("Timed out.\n", gdb_stdlog);
9156 }
9157 else
9158 {
9159 /* We've found the start of a packet or notification.
9160 Now collect the data. */
9161 val = read_frame (buf, sizeof_buf);
9162 if (val >= 0)
9163 break;
9164 }
9165
9166 remote_serial_write ("-", 1);
9167 }
9168
9169 if (tries > MAX_TRIES)
9170 {
9171 /* We have tried hard enough, and just can't receive the
9172 packet/notification. Give up. */
9173 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9174
9175 /* Skip the ack char if we're in no-ack mode. */
9176 if (!rs->noack_mode)
9177 remote_serial_write ("+", 1);
9178 return -1;
9179 }
9180
9181 /* If we got an ordinary packet, return that to our caller. */
9182 if (c == '$')
9183 {
9184 if (remote_debug)
9185 {
9186 std::string str
9187 = escape_buffer (*buf,
9188 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9189
9190 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9191 str.c_str ());
9192
9193 if (str.length () > REMOTE_DEBUG_MAX_CHAR)
9194 {
9195 fprintf_unfiltered (gdb_stdlog, "[%zu bytes omitted]",
9196 str.length () - REMOTE_DEBUG_MAX_CHAR);
9197 }
9198
9199 fprintf_unfiltered (gdb_stdlog, "\n");
9200 }
9201
9202 /* Skip the ack char if we're in no-ack mode. */
9203 if (!rs->noack_mode)
9204 remote_serial_write ("+", 1);
9205 if (is_notif != NULL)
9206 *is_notif = 0;
9207 return val;
9208 }
9209
9210 /* If we got a notification, handle it, and go back to looking
9211 for a packet. */
9212 else
9213 {
9214 gdb_assert (c == '%');
9215
9216 if (remote_debug)
9217 {
9218 std::string str = escape_buffer (*buf, val);
9219
9220 fprintf_unfiltered (gdb_stdlog,
9221 " Notification received: %s\n",
9222 str.c_str ());
9223 }
9224 if (is_notif != NULL)
9225 *is_notif = 1;
9226
9227 handle_notification (rs->notif_state, *buf);
9228
9229 /* Notifications require no acknowledgement. */
9230
9231 if (expecting_notif)
9232 return val;
9233 }
9234 }
9235}
9236
9237static int
9238getpkt_sane (char **buf, long *sizeof_buf, int forever)
9239{
9240 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9241}
9242
9243static int
9244getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9245 int *is_notif)
9246{
9247 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9248 is_notif);
9249}
9250
9251/* Check whether EVENT is a fork event for the process specified
9252 by the pid passed in DATA, and if it is, kill the fork child. */
9253
9254static int
9255kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9256 QUEUE_ITER (stop_reply_p) *iter,
9257 stop_reply_p event,
9258 void *data)
9259{
9260 struct queue_iter_param *param = (struct queue_iter_param *) data;
9261 int parent_pid = *(int *) param->input;
9262
9263 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9264 {
9265 struct remote_state *rs = get_remote_state ();
9266 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9267 int res;
9268
9269 res = remote_vkill (child_pid, rs);
9270 if (res != 0)
9271 error (_("Can't kill fork child process %d"), child_pid);
9272 }
9273
9274 return 1;
9275}
9276
9277/* Kill any new fork children of process PID that haven't been
9278 processed by follow_fork. */
9279
9280static void
9281kill_new_fork_children (int pid, struct remote_state *rs)
9282{
9283 struct thread_info *thread;
9284 struct notif_client *notif = &notif_client_stop;
9285 struct queue_iter_param param;
9286
9287 /* Kill the fork child threads of any threads in process PID
9288 that are stopped at a fork event. */
9289 ALL_NON_EXITED_THREADS (thread)
9290 {
9291 struct target_waitstatus *ws = &thread->pending_follow;
9292
9293 if (is_pending_fork_parent (ws, pid, thread->ptid))
9294 {
9295 struct remote_state *rs = get_remote_state ();
9296 int child_pid = ptid_get_pid (ws->value.related_pid);
9297 int res;
9298
9299 res = remote_vkill (child_pid, rs);
9300 if (res != 0)
9301 error (_("Can't kill fork child process %d"), child_pid);
9302 }
9303 }
9304
9305 /* Check for any pending fork events (not reported or processed yet)
9306 in process PID and kill those fork child threads as well. */
9307 remote_notif_get_pending_events (notif);
9308 param.input = &pid;
9309 param.output = NULL;
9310 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9311 kill_child_of_pending_fork, &param);
9312}
9313
9314\f
9315/* Target hook to kill the current inferior. */
9316
9317static void
9318remote_kill (struct target_ops *ops)
9319{
9320 int res = -1;
9321 int pid = ptid_get_pid (inferior_ptid);
9322 struct remote_state *rs = get_remote_state ();
9323
9324 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9325 {
9326 /* If we're stopped while forking and we haven't followed yet,
9327 kill the child task. We need to do this before killing the
9328 parent task because if this is a vfork then the parent will
9329 be sleeping. */
9330 kill_new_fork_children (pid, rs);
9331
9332 res = remote_vkill (pid, rs);
9333 if (res == 0)
9334 {
9335 target_mourn_inferior (inferior_ptid);
9336 return;
9337 }
9338 }
9339
9340 /* If we are in 'target remote' mode and we are killing the only
9341 inferior, then we will tell gdbserver to exit and unpush the
9342 target. */
9343 if (res == -1 && !remote_multi_process_p (rs)
9344 && number_of_live_inferiors () == 1)
9345 {
9346 remote_kill_k ();
9347
9348 /* We've killed the remote end, we get to mourn it. If we are
9349 not in extended mode, mourning the inferior also unpushes
9350 remote_ops from the target stack, which closes the remote
9351 connection. */
9352 target_mourn_inferior (inferior_ptid);
9353
9354 return;
9355 }
9356
9357 error (_("Can't kill process"));
9358}
9359
9360/* Send a kill request to the target using the 'vKill' packet. */
9361
9362static int
9363remote_vkill (int pid, struct remote_state *rs)
9364{
9365 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9366 return -1;
9367
9368 /* Tell the remote target to detach. */
9369 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9370 putpkt (rs->buf);
9371 getpkt (&rs->buf, &rs->buf_size, 0);
9372
9373 switch (packet_ok (rs->buf,
9374 &remote_protocol_packets[PACKET_vKill]))
9375 {
9376 case PACKET_OK:
9377 return 0;
9378 case PACKET_ERROR:
9379 return 1;
9380 case PACKET_UNKNOWN:
9381 return -1;
9382 default:
9383 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9384 }
9385}
9386
9387/* Send a kill request to the target using the 'k' packet. */
9388
9389static void
9390remote_kill_k (void)
9391{
9392 /* Catch errors so the user can quit from gdb even when we
9393 aren't on speaking terms with the remote system. */
9394 TRY
9395 {
9396 putpkt ("k");
9397 }
9398 CATCH (ex, RETURN_MASK_ERROR)
9399 {
9400 if (ex.error == TARGET_CLOSE_ERROR)
9401 {
9402 /* If we got an (EOF) error that caused the target
9403 to go away, then we're done, that's what we wanted.
9404 "k" is susceptible to cause a premature EOF, given
9405 that the remote server isn't actually required to
9406 reply to "k", and it can happen that it doesn't
9407 even get to reply ACK to the "k". */
9408 return;
9409 }
9410
9411 /* Otherwise, something went wrong. We didn't actually kill
9412 the target. Just propagate the exception, and let the
9413 user or higher layers decide what to do. */
9414 throw_exception (ex);
9415 }
9416 END_CATCH
9417}
9418
9419static void
9420remote_mourn (struct target_ops *target)
9421{
9422 struct remote_state *rs = get_remote_state ();
9423
9424 /* In 'target remote' mode with one inferior, we close the connection. */
9425 if (!rs->extended && number_of_live_inferiors () <= 1)
9426 {
9427 unpush_target (target);
9428
9429 /* remote_close takes care of doing most of the clean up. */
9430 generic_mourn_inferior ();
9431 return;
9432 }
9433
9434 /* In case we got here due to an error, but we're going to stay
9435 connected. */
9436 rs->waiting_for_stop_reply = 0;
9437
9438 /* If the current general thread belonged to the process we just
9439 detached from or has exited, the remote side current general
9440 thread becomes undefined. Considering a case like this:
9441
9442 - We just got here due to a detach.
9443 - The process that we're detaching from happens to immediately
9444 report a global breakpoint being hit in non-stop mode, in the
9445 same thread we had selected before.
9446 - GDB attaches to this process again.
9447 - This event happens to be the next event we handle.
9448
9449 GDB would consider that the current general thread didn't need to
9450 be set on the stub side (with Hg), since for all it knew,
9451 GENERAL_THREAD hadn't changed.
9452
9453 Notice that although in all-stop mode, the remote server always
9454 sets the current thread to the thread reporting the stop event,
9455 that doesn't happen in non-stop mode; in non-stop, the stub *must
9456 not* change the current thread when reporting a breakpoint hit,
9457 due to the decoupling of event reporting and event handling.
9458
9459 To keep things simple, we always invalidate our notion of the
9460 current thread. */
9461 record_currthread (rs, minus_one_ptid);
9462
9463 /* Call common code to mark the inferior as not running. */
9464 generic_mourn_inferior ();
9465
9466 if (!have_inferiors ())
9467 {
9468 if (!remote_multi_process_p (rs))
9469 {
9470 /* Check whether the target is running now - some remote stubs
9471 automatically restart after kill. */
9472 putpkt ("?");
9473 getpkt (&rs->buf, &rs->buf_size, 0);
9474
9475 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9476 {
9477 /* Assume that the target has been restarted. Set
9478 inferior_ptid so that bits of core GDB realizes
9479 there's something here, e.g., so that the user can
9480 say "kill" again. */
9481 inferior_ptid = magic_null_ptid;
9482 }
9483 }
9484 }
9485}
9486
9487static int
9488extended_remote_supports_disable_randomization (struct target_ops *self)
9489{
9490 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9491}
9492
9493static void
9494extended_remote_disable_randomization (int val)
9495{
9496 struct remote_state *rs = get_remote_state ();
9497 char *reply;
9498
9499 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9500 val);
9501 putpkt (rs->buf);
9502 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9503 if (*reply == '\0')
9504 error (_("Target does not support QDisableRandomization."));
9505 if (strcmp (reply, "OK") != 0)
9506 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9507}
9508
9509static int
9510extended_remote_run (const std::string &args)
9511{
9512 struct remote_state *rs = get_remote_state ();
9513 int len;
9514 const char *remote_exec_file = get_remote_exec_file ();
9515
9516 /* If the user has disabled vRun support, or we have detected that
9517 support is not available, do not try it. */
9518 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9519 return -1;
9520
9521 strcpy (rs->buf, "vRun;");
9522 len = strlen (rs->buf);
9523
9524 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9525 error (_("Remote file name too long for run packet"));
9526 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9527 strlen (remote_exec_file));
9528
9529 if (!args.empty ())
9530 {
9531 int i;
9532
9533 gdb_argv argv (args.c_str ());
9534 for (i = 0; argv[i] != NULL; i++)
9535 {
9536 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9537 error (_("Argument list too long for run packet"));
9538 rs->buf[len++] = ';';
9539 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9540 strlen (argv[i]));
9541 }
9542 }
9543
9544 rs->buf[len++] = '\0';
9545
9546 putpkt (rs->buf);
9547 getpkt (&rs->buf, &rs->buf_size, 0);
9548
9549 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9550 {
9551 case PACKET_OK:
9552 /* We have a wait response. All is well. */
9553 return 0;
9554 case PACKET_UNKNOWN:
9555 return -1;
9556 case PACKET_ERROR:
9557 if (remote_exec_file[0] == '\0')
9558 error (_("Running the default executable on the remote target failed; "
9559 "try \"set remote exec-file\"?"));
9560 else
9561 error (_("Running \"%s\" on the remote target failed"),
9562 remote_exec_file);
9563 default:
9564 gdb_assert_not_reached (_("bad switch"));
9565 }
9566}
9567
9568/* Helper function to send set/unset environment packets. ACTION is
9569 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9570 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9571 sent. */
9572
9573static void
9574send_environment_packet (struct remote_state *rs,
9575 const char *action,
9576 const char *packet,
9577 const char *value)
9578{
9579 /* Convert the environment variable to an hex string, which
9580 is the best format to be transmitted over the wire. */
9581 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9582 strlen (value));
9583
9584 xsnprintf (rs->buf, get_remote_packet_size (),
9585 "%s:%s", packet, encoded_value.c_str ());
9586
9587 putpkt (rs->buf);
9588 getpkt (&rs->buf, &rs->buf_size, 0);
9589 if (strcmp (rs->buf, "OK") != 0)
9590 warning (_("Unable to %s environment variable '%s' on remote."),
9591 action, value);
9592}
9593
9594/* Helper function to handle the QEnvironment* packets. */
9595
9596static void
9597extended_remote_environment_support (struct remote_state *rs)
9598{
9599 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9600 {
9601 putpkt ("QEnvironmentReset");
9602 getpkt (&rs->buf, &rs->buf_size, 0);
9603 if (strcmp (rs->buf, "OK") != 0)
9604 warning (_("Unable to reset environment on remote."));
9605 }
9606
9607 gdb_environ *e = &current_inferior ()->environment;
9608
9609 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9610 for (const std::string &el : e->user_set_env ())
9611 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9612 el.c_str ());
9613
9614 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9615 for (const std::string &el : e->user_unset_env ())
9616 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9617}
9618
9619/* In the extended protocol we want to be able to do things like
9620 "run" and have them basically work as expected. So we need
9621 a special create_inferior function. We support changing the
9622 executable file and the command line arguments, but not the
9623 environment. */
9624
9625static void
9626extended_remote_create_inferior (struct target_ops *ops,
9627 const char *exec_file,
9628 const std::string &args,
9629 char **env, int from_tty)
9630{
9631 int run_worked;
9632 char *stop_reply;
9633 struct remote_state *rs = get_remote_state ();
9634 const char *remote_exec_file = get_remote_exec_file ();
9635
9636 /* If running asynchronously, register the target file descriptor
9637 with the event loop. */
9638 if (target_can_async_p ())
9639 target_async (1);
9640
9641 /* Disable address space randomization if requested (and supported). */
9642 if (extended_remote_supports_disable_randomization (ops))
9643 extended_remote_disable_randomization (disable_randomization);
9644
9645 /* If startup-with-shell is on, we inform gdbserver to start the
9646 remote inferior using a shell. */
9647 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9648 {
9649 xsnprintf (rs->buf, get_remote_packet_size (),
9650 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9651 putpkt (rs->buf);
9652 getpkt (&rs->buf, &rs->buf_size, 0);
9653 if (strcmp (rs->buf, "OK") != 0)
9654 error (_("\
9655Remote replied unexpectedly while setting startup-with-shell: %s"),
9656 rs->buf);
9657 }
9658
9659 extended_remote_environment_support (rs);
9660
9661 /* Now restart the remote server. */
9662 run_worked = extended_remote_run (args) != -1;
9663 if (!run_worked)
9664 {
9665 /* vRun was not supported. Fail if we need it to do what the
9666 user requested. */
9667 if (remote_exec_file[0])
9668 error (_("Remote target does not support \"set remote exec-file\""));
9669 if (!args.empty ())
9670 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9671
9672 /* Fall back to "R". */
9673 extended_remote_restart ();
9674 }
9675
9676 if (!have_inferiors ())
9677 {
9678 /* Clean up from the last time we ran, before we mark the target
9679 running again. This will mark breakpoints uninserted, and
9680 get_offsets may insert breakpoints. */
9681 init_thread_list ();
9682 init_wait_for_inferior ();
9683 }
9684
9685 /* vRun's success return is a stop reply. */
9686 stop_reply = run_worked ? rs->buf : NULL;
9687 add_current_inferior_and_thread (stop_reply);
9688
9689 /* Get updated offsets, if the stub uses qOffsets. */
9690 get_offsets ();
9691}
9692\f
9693
9694/* Given a location's target info BP_TGT and the packet buffer BUF, output
9695 the list of conditions (in agent expression bytecode format), if any, the
9696 target needs to evaluate. The output is placed into the packet buffer
9697 started from BUF and ended at BUF_END. */
9698
9699static int
9700remote_add_target_side_condition (struct gdbarch *gdbarch,
9701 struct bp_target_info *bp_tgt, char *buf,
9702 char *buf_end)
9703{
9704 if (bp_tgt->conditions.empty ())
9705 return 0;
9706
9707 buf += strlen (buf);
9708 xsnprintf (buf, buf_end - buf, "%s", ";");
9709 buf++;
9710
9711 /* Send conditions to the target. */
9712 for (agent_expr *aexpr : bp_tgt->conditions)
9713 {
9714 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9715 buf += strlen (buf);
9716 for (int i = 0; i < aexpr->len; ++i)
9717 buf = pack_hex_byte (buf, aexpr->buf[i]);
9718 *buf = '\0';
9719 }
9720 return 0;
9721}
9722
9723static void
9724remote_add_target_side_commands (struct gdbarch *gdbarch,
9725 struct bp_target_info *bp_tgt, char *buf)
9726{
9727 if (bp_tgt->tcommands.empty ())
9728 return;
9729
9730 buf += strlen (buf);
9731
9732 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9733 buf += strlen (buf);
9734
9735 /* Concatenate all the agent expressions that are commands into the
9736 cmds parameter. */
9737 for (agent_expr *aexpr : bp_tgt->tcommands)
9738 {
9739 sprintf (buf, "X%x,", aexpr->len);
9740 buf += strlen (buf);
9741 for (int i = 0; i < aexpr->len; ++i)
9742 buf = pack_hex_byte (buf, aexpr->buf[i]);
9743 *buf = '\0';
9744 }
9745}
9746
9747/* Insert a breakpoint. On targets that have software breakpoint
9748 support, we ask the remote target to do the work; on targets
9749 which don't, we insert a traditional memory breakpoint. */
9750
9751static int
9752remote_insert_breakpoint (struct target_ops *ops,
9753 struct gdbarch *gdbarch,
9754 struct bp_target_info *bp_tgt)
9755{
9756 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9757 If it succeeds, then set the support to PACKET_ENABLE. If it
9758 fails, and the user has explicitly requested the Z support then
9759 report an error, otherwise, mark it disabled and go on. */
9760
9761 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9762 {
9763 CORE_ADDR addr = bp_tgt->reqstd_address;
9764 struct remote_state *rs;
9765 char *p, *endbuf;
9766 int bpsize;
9767
9768 /* Make sure the remote is pointing at the right process, if
9769 necessary. */
9770 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9771 set_general_process ();
9772
9773 rs = get_remote_state ();
9774 p = rs->buf;
9775 endbuf = rs->buf + get_remote_packet_size ();
9776
9777 *(p++) = 'Z';
9778 *(p++) = '0';
9779 *(p++) = ',';
9780 addr = (ULONGEST) remote_address_masked (addr);
9781 p += hexnumstr (p, addr);
9782 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9783
9784 if (remote_supports_cond_breakpoints (ops))
9785 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9786
9787 if (remote_can_run_breakpoint_commands (ops))
9788 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9789
9790 putpkt (rs->buf);
9791 getpkt (&rs->buf, &rs->buf_size, 0);
9792
9793 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9794 {
9795 case PACKET_ERROR:
9796 return -1;
9797 case PACKET_OK:
9798 return 0;
9799 case PACKET_UNKNOWN:
9800 break;
9801 }
9802 }
9803
9804 /* If this breakpoint has target-side commands but this stub doesn't
9805 support Z0 packets, throw error. */
9806 if (!bp_tgt->tcommands.empty ())
9807 throw_error (NOT_SUPPORTED_ERROR, _("\
9808Target doesn't support breakpoints that have target side commands."));
9809
9810 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9811}
9812
9813static int
9814remote_remove_breakpoint (struct target_ops *ops,
9815 struct gdbarch *gdbarch,
9816 struct bp_target_info *bp_tgt,
9817 enum remove_bp_reason reason)
9818{
9819 CORE_ADDR addr = bp_tgt->placed_address;
9820 struct remote_state *rs = get_remote_state ();
9821
9822 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9823 {
9824 char *p = rs->buf;
9825 char *endbuf = rs->buf + get_remote_packet_size ();
9826
9827 /* Make sure the remote is pointing at the right process, if
9828 necessary. */
9829 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9830 set_general_process ();
9831
9832 *(p++) = 'z';
9833 *(p++) = '0';
9834 *(p++) = ',';
9835
9836 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9837 p += hexnumstr (p, addr);
9838 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9839
9840 putpkt (rs->buf);
9841 getpkt (&rs->buf, &rs->buf_size, 0);
9842
9843 return (rs->buf[0] == 'E');
9844 }
9845
9846 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9847}
9848
9849static enum Z_packet_type
9850watchpoint_to_Z_packet (int type)
9851{
9852 switch (type)
9853 {
9854 case hw_write:
9855 return Z_PACKET_WRITE_WP;
9856 break;
9857 case hw_read:
9858 return Z_PACKET_READ_WP;
9859 break;
9860 case hw_access:
9861 return Z_PACKET_ACCESS_WP;
9862 break;
9863 default:
9864 internal_error (__FILE__, __LINE__,
9865 _("hw_bp_to_z: bad watchpoint type %d"), type);
9866 }
9867}
9868
9869static int
9870remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9871 enum target_hw_bp_type type, struct expression *cond)
9872{
9873 struct remote_state *rs = get_remote_state ();
9874 char *endbuf = rs->buf + get_remote_packet_size ();
9875 char *p;
9876 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9877
9878 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9879 return 1;
9880
9881 /* Make sure the remote is pointing at the right process, if
9882 necessary. */
9883 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9884 set_general_process ();
9885
9886 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9887 p = strchr (rs->buf, '\0');
9888 addr = remote_address_masked (addr);
9889 p += hexnumstr (p, (ULONGEST) addr);
9890 xsnprintf (p, endbuf - p, ",%x", len);
9891
9892 putpkt (rs->buf);
9893 getpkt (&rs->buf, &rs->buf_size, 0);
9894
9895 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9896 {
9897 case PACKET_ERROR:
9898 return -1;
9899 case PACKET_UNKNOWN:
9900 return 1;
9901 case PACKET_OK:
9902 return 0;
9903 }
9904 internal_error (__FILE__, __LINE__,
9905 _("remote_insert_watchpoint: reached end of function"));
9906}
9907
9908static int
9909remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9910 CORE_ADDR start, int length)
9911{
9912 CORE_ADDR diff = remote_address_masked (addr - start);
9913
9914 return diff < length;
9915}
9916
9917
9918static int
9919remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9920 enum target_hw_bp_type type, struct expression *cond)
9921{
9922 struct remote_state *rs = get_remote_state ();
9923 char *endbuf = rs->buf + get_remote_packet_size ();
9924 char *p;
9925 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9926
9927 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9928 return -1;
9929
9930 /* Make sure the remote is pointing at the right process, if
9931 necessary. */
9932 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9933 set_general_process ();
9934
9935 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9936 p = strchr (rs->buf, '\0');
9937 addr = remote_address_masked (addr);
9938 p += hexnumstr (p, (ULONGEST) addr);
9939 xsnprintf (p, endbuf - p, ",%x", len);
9940 putpkt (rs->buf);
9941 getpkt (&rs->buf, &rs->buf_size, 0);
9942
9943 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9944 {
9945 case PACKET_ERROR:
9946 case PACKET_UNKNOWN:
9947 return -1;
9948 case PACKET_OK:
9949 return 0;
9950 }
9951 internal_error (__FILE__, __LINE__,
9952 _("remote_remove_watchpoint: reached end of function"));
9953}
9954
9955
9956int remote_hw_watchpoint_limit = -1;
9957int remote_hw_watchpoint_length_limit = -1;
9958int remote_hw_breakpoint_limit = -1;
9959
9960static int
9961remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9962 CORE_ADDR addr, int len)
9963{
9964 if (remote_hw_watchpoint_length_limit == 0)
9965 return 0;
9966 else if (remote_hw_watchpoint_length_limit < 0)
9967 return 1;
9968 else if (len <= remote_hw_watchpoint_length_limit)
9969 return 1;
9970 else
9971 return 0;
9972}
9973
9974static int
9975remote_check_watch_resources (struct target_ops *self,
9976 enum bptype type, int cnt, int ot)
9977{
9978 if (type == bp_hardware_breakpoint)
9979 {
9980 if (remote_hw_breakpoint_limit == 0)
9981 return 0;
9982 else if (remote_hw_breakpoint_limit < 0)
9983 return 1;
9984 else if (cnt <= remote_hw_breakpoint_limit)
9985 return 1;
9986 }
9987 else
9988 {
9989 if (remote_hw_watchpoint_limit == 0)
9990 return 0;
9991 else if (remote_hw_watchpoint_limit < 0)
9992 return 1;
9993 else if (ot)
9994 return -1;
9995 else if (cnt <= remote_hw_watchpoint_limit)
9996 return 1;
9997 }
9998 return -1;
9999}
10000
10001/* The to_stopped_by_sw_breakpoint method of target remote. */
10002
10003static int
10004remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10005{
10006 struct thread_info *thread = inferior_thread ();
10007
10008 return (thread->priv != NULL
10009 && thread->priv->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
10010}
10011
10012/* The to_supports_stopped_by_sw_breakpoint method of target
10013 remote. */
10014
10015static int
10016remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10017{
10018 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10019}
10020
10021/* The to_stopped_by_hw_breakpoint method of target remote. */
10022
10023static int
10024remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10025{
10026 struct thread_info *thread = inferior_thread ();
10027
10028 return (thread->priv != NULL
10029 && thread->priv->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
10030}
10031
10032/* The to_supports_stopped_by_hw_breakpoint method of target
10033 remote. */
10034
10035static int
10036remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10037{
10038 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10039}
10040
10041static int
10042remote_stopped_by_watchpoint (struct target_ops *ops)
10043{
10044 struct thread_info *thread = inferior_thread ();
10045
10046 return (thread->priv != NULL
10047 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT);
10048}
10049
10050static int
10051remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10052{
10053 struct thread_info *thread = inferior_thread ();
10054
10055 if (thread->priv != NULL
10056 && thread->priv->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
10057 {
10058 *addr_p = thread->priv->watch_data_address;
10059 return 1;
10060 }
10061
10062 return 0;
10063}
10064
10065
10066static int
10067remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10068 struct bp_target_info *bp_tgt)
10069{
10070 CORE_ADDR addr = bp_tgt->reqstd_address;
10071 struct remote_state *rs;
10072 char *p, *endbuf;
10073 char *message;
10074
10075 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10076 return -1;
10077
10078 /* Make sure the remote is pointing at the right process, if
10079 necessary. */
10080 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10081 set_general_process ();
10082
10083 rs = get_remote_state ();
10084 p = rs->buf;
10085 endbuf = rs->buf + get_remote_packet_size ();
10086
10087 *(p++) = 'Z';
10088 *(p++) = '1';
10089 *(p++) = ',';
10090
10091 addr = remote_address_masked (addr);
10092 p += hexnumstr (p, (ULONGEST) addr);
10093 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10094
10095 if (remote_supports_cond_breakpoints (self))
10096 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10097
10098 if (remote_can_run_breakpoint_commands (self))
10099 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10100
10101 putpkt (rs->buf);
10102 getpkt (&rs->buf, &rs->buf_size, 0);
10103
10104 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10105 {
10106 case PACKET_ERROR:
10107 if (rs->buf[1] == '.')
10108 {
10109 message = strchr (rs->buf + 2, '.');
10110 if (message)
10111 error (_("Remote failure reply: %s"), message + 1);
10112 }
10113 return -1;
10114 case PACKET_UNKNOWN:
10115 return -1;
10116 case PACKET_OK:
10117 return 0;
10118 }
10119 internal_error (__FILE__, __LINE__,
10120 _("remote_insert_hw_breakpoint: reached end of function"));
10121}
10122
10123
10124static int
10125remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10126 struct bp_target_info *bp_tgt)
10127{
10128 CORE_ADDR addr;
10129 struct remote_state *rs = get_remote_state ();
10130 char *p = rs->buf;
10131 char *endbuf = rs->buf + get_remote_packet_size ();
10132
10133 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10134 return -1;
10135
10136 /* Make sure the remote is pointing at the right process, if
10137 necessary. */
10138 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10139 set_general_process ();
10140
10141 *(p++) = 'z';
10142 *(p++) = '1';
10143 *(p++) = ',';
10144
10145 addr = remote_address_masked (bp_tgt->placed_address);
10146 p += hexnumstr (p, (ULONGEST) addr);
10147 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10148
10149 putpkt (rs->buf);
10150 getpkt (&rs->buf, &rs->buf_size, 0);
10151
10152 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10153 {
10154 case PACKET_ERROR:
10155 case PACKET_UNKNOWN:
10156 return -1;
10157 case PACKET_OK:
10158 return 0;
10159 }
10160 internal_error (__FILE__, __LINE__,
10161 _("remote_remove_hw_breakpoint: reached end of function"));
10162}
10163
10164/* Verify memory using the "qCRC:" request. */
10165
10166static int
10167remote_verify_memory (struct target_ops *ops,
10168 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10169{
10170 struct remote_state *rs = get_remote_state ();
10171 unsigned long host_crc, target_crc;
10172 char *tmp;
10173
10174 /* It doesn't make sense to use qCRC if the remote target is
10175 connected but not running. */
10176 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10177 {
10178 enum packet_result result;
10179
10180 /* Make sure the remote is pointing at the right process. */
10181 set_general_process ();
10182
10183 /* FIXME: assumes lma can fit into long. */
10184 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10185 (long) lma, (long) size);
10186 putpkt (rs->buf);
10187
10188 /* Be clever; compute the host_crc before waiting for target
10189 reply. */
10190 host_crc = xcrc32 (data, size, 0xffffffff);
10191
10192 getpkt (&rs->buf, &rs->buf_size, 0);
10193
10194 result = packet_ok (rs->buf,
10195 &remote_protocol_packets[PACKET_qCRC]);
10196 if (result == PACKET_ERROR)
10197 return -1;
10198 else if (result == PACKET_OK)
10199 {
10200 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10201 target_crc = target_crc * 16 + fromhex (*tmp);
10202
10203 return (host_crc == target_crc);
10204 }
10205 }
10206
10207 return simple_verify_memory (ops, data, lma, size);
10208}
10209
10210/* compare-sections command
10211
10212 With no arguments, compares each loadable section in the exec bfd
10213 with the same memory range on the target, and reports mismatches.
10214 Useful for verifying the image on the target against the exec file. */
10215
10216static void
10217compare_sections_command (char *args, int from_tty)
10218{
10219 asection *s;
10220 struct cleanup *old_chain;
10221 gdb_byte *sectdata;
10222 const char *sectname;
10223 bfd_size_type size;
10224 bfd_vma lma;
10225 int matched = 0;
10226 int mismatched = 0;
10227 int res;
10228 int read_only = 0;
10229
10230 if (!exec_bfd)
10231 error (_("command cannot be used without an exec file"));
10232
10233 /* Make sure the remote is pointing at the right process. */
10234 set_general_process ();
10235
10236 if (args != NULL && strcmp (args, "-r") == 0)
10237 {
10238 read_only = 1;
10239 args = NULL;
10240 }
10241
10242 for (s = exec_bfd->sections; s; s = s->next)
10243 {
10244 if (!(s->flags & SEC_LOAD))
10245 continue; /* Skip non-loadable section. */
10246
10247 if (read_only && (s->flags & SEC_READONLY) == 0)
10248 continue; /* Skip writeable sections */
10249
10250 size = bfd_get_section_size (s);
10251 if (size == 0)
10252 continue; /* Skip zero-length section. */
10253
10254 sectname = bfd_get_section_name (exec_bfd, s);
10255 if (args && strcmp (args, sectname) != 0)
10256 continue; /* Not the section selected by user. */
10257
10258 matched = 1; /* Do this section. */
10259 lma = s->lma;
10260
10261 sectdata = (gdb_byte *) xmalloc (size);
10262 old_chain = make_cleanup (xfree, sectdata);
10263 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
10264
10265 res = target_verify_memory (sectdata, lma, size);
10266
10267 if (res == -1)
10268 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10269 paddress (target_gdbarch (), lma),
10270 paddress (target_gdbarch (), lma + size));
10271
10272 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10273 paddress (target_gdbarch (), lma),
10274 paddress (target_gdbarch (), lma + size));
10275 if (res)
10276 printf_filtered ("matched.\n");
10277 else
10278 {
10279 printf_filtered ("MIS-MATCHED!\n");
10280 mismatched++;
10281 }
10282
10283 do_cleanups (old_chain);
10284 }
10285 if (mismatched > 0)
10286 warning (_("One or more sections of the target image does not match\n\
10287the loaded file\n"));
10288 if (args && !matched)
10289 printf_filtered (_("No loaded section named '%s'.\n"), args);
10290}
10291
10292/* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10293 into remote target. The number of bytes written to the remote
10294 target is returned, or -1 for error. */
10295
10296static enum target_xfer_status
10297remote_write_qxfer (struct target_ops *ops, const char *object_name,
10298 const char *annex, const gdb_byte *writebuf,
10299 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10300 struct packet_config *packet)
10301{
10302 int i, buf_len;
10303 ULONGEST n;
10304 struct remote_state *rs = get_remote_state ();
10305 int max_size = get_memory_write_packet_size ();
10306
10307 if (packet->support == PACKET_DISABLE)
10308 return TARGET_XFER_E_IO;
10309
10310 /* Insert header. */
10311 i = snprintf (rs->buf, max_size,
10312 "qXfer:%s:write:%s:%s:",
10313 object_name, annex ? annex : "",
10314 phex_nz (offset, sizeof offset));
10315 max_size -= (i + 1);
10316
10317 /* Escape as much data as fits into rs->buf. */
10318 buf_len = remote_escape_output
10319 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10320
10321 if (putpkt_binary (rs->buf, i + buf_len) < 0
10322 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10323 || packet_ok (rs->buf, packet) != PACKET_OK)
10324 return TARGET_XFER_E_IO;
10325
10326 unpack_varlen_hex (rs->buf, &n);
10327
10328 *xfered_len = n;
10329 return TARGET_XFER_OK;
10330}
10331
10332/* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10333 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10334 number of bytes read is returned, or 0 for EOF, or -1 for error.
10335 The number of bytes read may be less than LEN without indicating an
10336 EOF. PACKET is checked and updated to indicate whether the remote
10337 target supports this object. */
10338
10339static enum target_xfer_status
10340remote_read_qxfer (struct target_ops *ops, const char *object_name,
10341 const char *annex,
10342 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10343 ULONGEST *xfered_len,
10344 struct packet_config *packet)
10345{
10346 struct remote_state *rs = get_remote_state ();
10347 LONGEST i, n, packet_len;
10348
10349 if (packet->support == PACKET_DISABLE)
10350 return TARGET_XFER_E_IO;
10351
10352 /* Check whether we've cached an end-of-object packet that matches
10353 this request. */
10354 if (rs->finished_object)
10355 {
10356 if (strcmp (object_name, rs->finished_object) == 0
10357 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10358 && offset == rs->finished_offset)
10359 return TARGET_XFER_EOF;
10360
10361
10362 /* Otherwise, we're now reading something different. Discard
10363 the cache. */
10364 xfree (rs->finished_object);
10365 xfree (rs->finished_annex);
10366 rs->finished_object = NULL;
10367 rs->finished_annex = NULL;
10368 }
10369
10370 /* Request only enough to fit in a single packet. The actual data
10371 may not, since we don't know how much of it will need to be escaped;
10372 the target is free to respond with slightly less data. We subtract
10373 five to account for the response type and the protocol frame. */
10374 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10375 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10376 object_name, annex ? annex : "",
10377 phex_nz (offset, sizeof offset),
10378 phex_nz (n, sizeof n));
10379 i = putpkt (rs->buf);
10380 if (i < 0)
10381 return TARGET_XFER_E_IO;
10382
10383 rs->buf[0] = '\0';
10384 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10385 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10386 return TARGET_XFER_E_IO;
10387
10388 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10389 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10390
10391 /* 'm' means there is (or at least might be) more data after this
10392 batch. That does not make sense unless there's at least one byte
10393 of data in this reply. */
10394 if (rs->buf[0] == 'm' && packet_len == 1)
10395 error (_("Remote qXfer reply contained no data."));
10396
10397 /* Got some data. */
10398 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10399 packet_len - 1, readbuf, n);
10400
10401 /* 'l' is an EOF marker, possibly including a final block of data,
10402 or possibly empty. If we have the final block of a non-empty
10403 object, record this fact to bypass a subsequent partial read. */
10404 if (rs->buf[0] == 'l' && offset + i > 0)
10405 {
10406 rs->finished_object = xstrdup (object_name);
10407 rs->finished_annex = xstrdup (annex ? annex : "");
10408 rs->finished_offset = offset + i;
10409 }
10410
10411 if (i == 0)
10412 return TARGET_XFER_EOF;
10413 else
10414 {
10415 *xfered_len = i;
10416 return TARGET_XFER_OK;
10417 }
10418}
10419
10420static enum target_xfer_status
10421remote_xfer_partial (struct target_ops *ops, enum target_object object,
10422 const char *annex, gdb_byte *readbuf,
10423 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10424 ULONGEST *xfered_len)
10425{
10426 struct remote_state *rs;
10427 int i;
10428 char *p2;
10429 char query_type;
10430 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10431
10432 set_remote_traceframe ();
10433 set_general_thread (inferior_ptid);
10434
10435 rs = get_remote_state ();
10436
10437 /* Handle memory using the standard memory routines. */
10438 if (object == TARGET_OBJECT_MEMORY)
10439 {
10440 /* If the remote target is connected but not running, we should
10441 pass this request down to a lower stratum (e.g. the executable
10442 file). */
10443 if (!target_has_execution)
10444 return TARGET_XFER_EOF;
10445
10446 if (writebuf != NULL)
10447 return remote_write_bytes (offset, writebuf, len, unit_size,
10448 xfered_len);
10449 else
10450 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10451 xfered_len);
10452 }
10453
10454 /* Handle SPU memory using qxfer packets. */
10455 if (object == TARGET_OBJECT_SPU)
10456 {
10457 if (readbuf)
10458 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10459 xfered_len, &remote_protocol_packets
10460 [PACKET_qXfer_spu_read]);
10461 else
10462 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10463 xfered_len, &remote_protocol_packets
10464 [PACKET_qXfer_spu_write]);
10465 }
10466
10467 /* Handle extra signal info using qxfer packets. */
10468 if (object == TARGET_OBJECT_SIGNAL_INFO)
10469 {
10470 if (readbuf)
10471 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10472 xfered_len, &remote_protocol_packets
10473 [PACKET_qXfer_siginfo_read]);
10474 else
10475 return remote_write_qxfer (ops, "siginfo", annex,
10476 writebuf, offset, len, xfered_len,
10477 &remote_protocol_packets
10478 [PACKET_qXfer_siginfo_write]);
10479 }
10480
10481 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10482 {
10483 if (readbuf)
10484 return remote_read_qxfer (ops, "statictrace", annex,
10485 readbuf, offset, len, xfered_len,
10486 &remote_protocol_packets
10487 [PACKET_qXfer_statictrace_read]);
10488 else
10489 return TARGET_XFER_E_IO;
10490 }
10491
10492 /* Only handle flash writes. */
10493 if (writebuf != NULL)
10494 {
10495 switch (object)
10496 {
10497 case TARGET_OBJECT_FLASH:
10498 return remote_flash_write (ops, offset, len, xfered_len,
10499 writebuf);
10500
10501 default:
10502 return TARGET_XFER_E_IO;
10503 }
10504 }
10505
10506 /* Map pre-existing objects onto letters. DO NOT do this for new
10507 objects!!! Instead specify new query packets. */
10508 switch (object)
10509 {
10510 case TARGET_OBJECT_AVR:
10511 query_type = 'R';
10512 break;
10513
10514 case TARGET_OBJECT_AUXV:
10515 gdb_assert (annex == NULL);
10516 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10517 xfered_len,
10518 &remote_protocol_packets[PACKET_qXfer_auxv]);
10519
10520 case TARGET_OBJECT_AVAILABLE_FEATURES:
10521 return remote_read_qxfer
10522 (ops, "features", annex, readbuf, offset, len, xfered_len,
10523 &remote_protocol_packets[PACKET_qXfer_features]);
10524
10525 case TARGET_OBJECT_LIBRARIES:
10526 return remote_read_qxfer
10527 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10528 &remote_protocol_packets[PACKET_qXfer_libraries]);
10529
10530 case TARGET_OBJECT_LIBRARIES_SVR4:
10531 return remote_read_qxfer
10532 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10533 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10534
10535 case TARGET_OBJECT_MEMORY_MAP:
10536 gdb_assert (annex == NULL);
10537 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10538 xfered_len,
10539 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10540
10541 case TARGET_OBJECT_OSDATA:
10542 /* Should only get here if we're connected. */
10543 gdb_assert (rs->remote_desc);
10544 return remote_read_qxfer
10545 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10546 &remote_protocol_packets[PACKET_qXfer_osdata]);
10547
10548 case TARGET_OBJECT_THREADS:
10549 gdb_assert (annex == NULL);
10550 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10551 xfered_len,
10552 &remote_protocol_packets[PACKET_qXfer_threads]);
10553
10554 case TARGET_OBJECT_TRACEFRAME_INFO:
10555 gdb_assert (annex == NULL);
10556 return remote_read_qxfer
10557 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10558 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10559
10560 case TARGET_OBJECT_FDPIC:
10561 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10562 xfered_len,
10563 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10564
10565 case TARGET_OBJECT_OPENVMS_UIB:
10566 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10567 xfered_len,
10568 &remote_protocol_packets[PACKET_qXfer_uib]);
10569
10570 case TARGET_OBJECT_BTRACE:
10571 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10572 xfered_len,
10573 &remote_protocol_packets[PACKET_qXfer_btrace]);
10574
10575 case TARGET_OBJECT_BTRACE_CONF:
10576 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10577 len, xfered_len,
10578 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10579
10580 case TARGET_OBJECT_EXEC_FILE:
10581 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10582 len, xfered_len,
10583 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10584
10585 default:
10586 return TARGET_XFER_E_IO;
10587 }
10588
10589 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10590 large enough let the caller deal with it. */
10591 if (len < get_remote_packet_size ())
10592 return TARGET_XFER_E_IO;
10593 len = get_remote_packet_size ();
10594
10595 /* Except for querying the minimum buffer size, target must be open. */
10596 if (!rs->remote_desc)
10597 error (_("remote query is only available after target open"));
10598
10599 gdb_assert (annex != NULL);
10600 gdb_assert (readbuf != NULL);
10601
10602 p2 = rs->buf;
10603 *p2++ = 'q';
10604 *p2++ = query_type;
10605
10606 /* We used one buffer char for the remote protocol q command and
10607 another for the query type. As the remote protocol encapsulation
10608 uses 4 chars plus one extra in case we are debugging
10609 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10610 string. */
10611 i = 0;
10612 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10613 {
10614 /* Bad caller may have sent forbidden characters. */
10615 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10616 *p2++ = annex[i];
10617 i++;
10618 }
10619 *p2 = '\0';
10620 gdb_assert (annex[i] == '\0');
10621
10622 i = putpkt (rs->buf);
10623 if (i < 0)
10624 return TARGET_XFER_E_IO;
10625
10626 getpkt (&rs->buf, &rs->buf_size, 0);
10627 strcpy ((char *) readbuf, rs->buf);
10628
10629 *xfered_len = strlen ((char *) readbuf);
10630 return TARGET_XFER_OK;
10631}
10632
10633/* Implementation of to_get_memory_xfer_limit. */
10634
10635static ULONGEST
10636remote_get_memory_xfer_limit (struct target_ops *ops)
10637{
10638 return get_memory_write_packet_size ();
10639}
10640
10641static int
10642remote_search_memory (struct target_ops* ops,
10643 CORE_ADDR start_addr, ULONGEST search_space_len,
10644 const gdb_byte *pattern, ULONGEST pattern_len,
10645 CORE_ADDR *found_addrp)
10646{
10647 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10648 struct remote_state *rs = get_remote_state ();
10649 int max_size = get_memory_write_packet_size ();
10650 struct packet_config *packet =
10651 &remote_protocol_packets[PACKET_qSearch_memory];
10652 /* Number of packet bytes used to encode the pattern;
10653 this could be more than PATTERN_LEN due to escape characters. */
10654 int escaped_pattern_len;
10655 /* Amount of pattern that was encodable in the packet. */
10656 int used_pattern_len;
10657 int i;
10658 int found;
10659 ULONGEST found_addr;
10660
10661 /* Don't go to the target if we don't have to.
10662 This is done before checking packet->support to avoid the possibility that
10663 a success for this edge case means the facility works in general. */
10664 if (pattern_len > search_space_len)
10665 return 0;
10666 if (pattern_len == 0)
10667 {
10668 *found_addrp = start_addr;
10669 return 1;
10670 }
10671
10672 /* If we already know the packet isn't supported, fall back to the simple
10673 way of searching memory. */
10674
10675 if (packet_config_support (packet) == PACKET_DISABLE)
10676 {
10677 /* Target doesn't provided special support, fall back and use the
10678 standard support (copy memory and do the search here). */
10679 return simple_search_memory (ops, start_addr, search_space_len,
10680 pattern, pattern_len, found_addrp);
10681 }
10682
10683 /* Make sure the remote is pointing at the right process. */
10684 set_general_process ();
10685
10686 /* Insert header. */
10687 i = snprintf (rs->buf, max_size,
10688 "qSearch:memory:%s;%s;",
10689 phex_nz (start_addr, addr_size),
10690 phex_nz (search_space_len, sizeof (search_space_len)));
10691 max_size -= (i + 1);
10692
10693 /* Escape as much data as fits into rs->buf. */
10694 escaped_pattern_len =
10695 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10696 &used_pattern_len, max_size);
10697
10698 /* Bail if the pattern is too large. */
10699 if (used_pattern_len != pattern_len)
10700 error (_("Pattern is too large to transmit to remote target."));
10701
10702 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10703 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10704 || packet_ok (rs->buf, packet) != PACKET_OK)
10705 {
10706 /* The request may not have worked because the command is not
10707 supported. If so, fall back to the simple way. */
10708 if (packet->support == PACKET_DISABLE)
10709 {
10710 return simple_search_memory (ops, start_addr, search_space_len,
10711 pattern, pattern_len, found_addrp);
10712 }
10713 return -1;
10714 }
10715
10716 if (rs->buf[0] == '0')
10717 found = 0;
10718 else if (rs->buf[0] == '1')
10719 {
10720 found = 1;
10721 if (rs->buf[1] != ',')
10722 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10723 unpack_varlen_hex (rs->buf + 2, &found_addr);
10724 *found_addrp = found_addr;
10725 }
10726 else
10727 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10728
10729 return found;
10730}
10731
10732static void
10733remote_rcmd (struct target_ops *self, const char *command,
10734 struct ui_file *outbuf)
10735{
10736 struct remote_state *rs = get_remote_state ();
10737 char *p = rs->buf;
10738
10739 if (!rs->remote_desc)
10740 error (_("remote rcmd is only available after target open"));
10741
10742 /* Send a NULL command across as an empty command. */
10743 if (command == NULL)
10744 command = "";
10745
10746 /* The query prefix. */
10747 strcpy (rs->buf, "qRcmd,");
10748 p = strchr (rs->buf, '\0');
10749
10750 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10751 > get_remote_packet_size ())
10752 error (_("\"monitor\" command ``%s'' is too long."), command);
10753
10754 /* Encode the actual command. */
10755 bin2hex ((const gdb_byte *) command, p, strlen (command));
10756
10757 if (putpkt (rs->buf) < 0)
10758 error (_("Communication problem with target."));
10759
10760 /* get/display the response */
10761 while (1)
10762 {
10763 char *buf;
10764
10765 /* XXX - see also remote_get_noisy_reply(). */
10766 QUIT; /* Allow user to bail out with ^C. */
10767 rs->buf[0] = '\0';
10768 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10769 {
10770 /* Timeout. Continue to (try to) read responses.
10771 This is better than stopping with an error, assuming the stub
10772 is still executing the (long) monitor command.
10773 If needed, the user can interrupt gdb using C-c, obtaining
10774 an effect similar to stop on timeout. */
10775 continue;
10776 }
10777 buf = rs->buf;
10778 if (buf[0] == '\0')
10779 error (_("Target does not support this command."));
10780 if (buf[0] == 'O' && buf[1] != 'K')
10781 {
10782 remote_console_output (buf + 1); /* 'O' message from stub. */
10783 continue;
10784 }
10785 if (strcmp (buf, "OK") == 0)
10786 break;
10787 if (strlen (buf) == 3 && buf[0] == 'E'
10788 && isdigit (buf[1]) && isdigit (buf[2]))
10789 {
10790 error (_("Protocol error with Rcmd"));
10791 }
10792 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10793 {
10794 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10795
10796 fputc_unfiltered (c, outbuf);
10797 }
10798 break;
10799 }
10800}
10801
10802static VEC(mem_region_s) *
10803remote_memory_map (struct target_ops *ops)
10804{
10805 VEC(mem_region_s) *result = NULL;
10806 char *text = target_read_stralloc (&current_target,
10807 TARGET_OBJECT_MEMORY_MAP, NULL);
10808
10809 if (text)
10810 {
10811 struct cleanup *back_to = make_cleanup (xfree, text);
10812
10813 result = parse_memory_map (text);
10814 do_cleanups (back_to);
10815 }
10816
10817 return result;
10818}
10819
10820static void
10821packet_command (char *args, int from_tty)
10822{
10823 struct remote_state *rs = get_remote_state ();
10824
10825 if (!rs->remote_desc)
10826 error (_("command can only be used with remote target"));
10827
10828 if (!args)
10829 error (_("remote-packet command requires packet text as argument"));
10830
10831 puts_filtered ("sending: ");
10832 print_packet (args);
10833 puts_filtered ("\n");
10834 putpkt (args);
10835
10836 getpkt (&rs->buf, &rs->buf_size, 0);
10837 puts_filtered ("received: ");
10838 print_packet (rs->buf);
10839 puts_filtered ("\n");
10840}
10841
10842#if 0
10843/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10844
10845static void display_thread_info (struct gdb_ext_thread_info *info);
10846
10847static void threadset_test_cmd (char *cmd, int tty);
10848
10849static void threadalive_test (char *cmd, int tty);
10850
10851static void threadlist_test_cmd (char *cmd, int tty);
10852
10853int get_and_display_threadinfo (threadref *ref);
10854
10855static void threadinfo_test_cmd (char *cmd, int tty);
10856
10857static int thread_display_step (threadref *ref, void *context);
10858
10859static void threadlist_update_test_cmd (char *cmd, int tty);
10860
10861static void init_remote_threadtests (void);
10862
10863#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10864
10865static void
10866threadset_test_cmd (char *cmd, int tty)
10867{
10868 int sample_thread = SAMPLE_THREAD;
10869
10870 printf_filtered (_("Remote threadset test\n"));
10871 set_general_thread (sample_thread);
10872}
10873
10874
10875static void
10876threadalive_test (char *cmd, int tty)
10877{
10878 int sample_thread = SAMPLE_THREAD;
10879 int pid = ptid_get_pid (inferior_ptid);
10880 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10881
10882 if (remote_thread_alive (ptid))
10883 printf_filtered ("PASS: Thread alive test\n");
10884 else
10885 printf_filtered ("FAIL: Thread alive test\n");
10886}
10887
10888void output_threadid (char *title, threadref *ref);
10889
10890void
10891output_threadid (char *title, threadref *ref)
10892{
10893 char hexid[20];
10894
10895 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10896 hexid[16] = 0;
10897 printf_filtered ("%s %s\n", title, (&hexid[0]));
10898}
10899
10900static void
10901threadlist_test_cmd (char *cmd, int tty)
10902{
10903 int startflag = 1;
10904 threadref nextthread;
10905 int done, result_count;
10906 threadref threadlist[3];
10907
10908 printf_filtered ("Remote Threadlist test\n");
10909 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10910 &result_count, &threadlist[0]))
10911 printf_filtered ("FAIL: threadlist test\n");
10912 else
10913 {
10914 threadref *scan = threadlist;
10915 threadref *limit = scan + result_count;
10916
10917 while (scan < limit)
10918 output_threadid (" thread ", scan++);
10919 }
10920}
10921
10922void
10923display_thread_info (struct gdb_ext_thread_info *info)
10924{
10925 output_threadid ("Threadid: ", &info->threadid);
10926 printf_filtered ("Name: %s\n ", info->shortname);
10927 printf_filtered ("State: %s\n", info->display);
10928 printf_filtered ("other: %s\n\n", info->more_display);
10929}
10930
10931int
10932get_and_display_threadinfo (threadref *ref)
10933{
10934 int result;
10935 int set;
10936 struct gdb_ext_thread_info threadinfo;
10937
10938 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10939 | TAG_MOREDISPLAY | TAG_DISPLAY;
10940 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10941 display_thread_info (&threadinfo);
10942 return result;
10943}
10944
10945static void
10946threadinfo_test_cmd (char *cmd, int tty)
10947{
10948 int athread = SAMPLE_THREAD;
10949 threadref thread;
10950 int set;
10951
10952 int_to_threadref (&thread, athread);
10953 printf_filtered ("Remote Threadinfo test\n");
10954 if (!get_and_display_threadinfo (&thread))
10955 printf_filtered ("FAIL cannot get thread info\n");
10956}
10957
10958static int
10959thread_display_step (threadref *ref, void *context)
10960{
10961 /* output_threadid(" threadstep ",ref); *//* simple test */
10962 return get_and_display_threadinfo (ref);
10963}
10964
10965static void
10966threadlist_update_test_cmd (char *cmd, int tty)
10967{
10968 printf_filtered ("Remote Threadlist update test\n");
10969 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10970}
10971
10972static void
10973init_remote_threadtests (void)
10974{
10975 add_com ("tlist", class_obscure, threadlist_test_cmd,
10976 _("Fetch and print the remote list of "
10977 "thread identifiers, one pkt only"));
10978 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10979 _("Fetch and display info about one thread"));
10980 add_com ("tset", class_obscure, threadset_test_cmd,
10981 _("Test setting to a different thread"));
10982 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10983 _("Iterate through updating all remote thread info"));
10984 add_com ("talive", class_obscure, threadalive_test,
10985 _(" Remote thread alive test "));
10986}
10987
10988#endif /* 0 */
10989
10990/* Convert a thread ID to a string. Returns the string in a static
10991 buffer. */
10992
10993static const char *
10994remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10995{
10996 static char buf[64];
10997 struct remote_state *rs = get_remote_state ();
10998
10999 if (ptid_equal (ptid, null_ptid))
11000 return normal_pid_to_str (ptid);
11001 else if (ptid_is_pid (ptid))
11002 {
11003 /* Printing an inferior target id. */
11004
11005 /* When multi-process extensions are off, there's no way in the
11006 remote protocol to know the remote process id, if there's any
11007 at all. There's one exception --- when we're connected with
11008 target extended-remote, and we manually attached to a process
11009 with "attach PID". We don't record anywhere a flag that
11010 allows us to distinguish that case from the case of
11011 connecting with extended-remote and the stub already being
11012 attached to a process, and reporting yes to qAttached, hence
11013 no smart special casing here. */
11014 if (!remote_multi_process_p (rs))
11015 {
11016 xsnprintf (buf, sizeof buf, "Remote target");
11017 return buf;
11018 }
11019
11020 return normal_pid_to_str (ptid);
11021 }
11022 else
11023 {
11024 if (ptid_equal (magic_null_ptid, ptid))
11025 xsnprintf (buf, sizeof buf, "Thread <main>");
11026 else if (remote_multi_process_p (rs))
11027 if (ptid_get_lwp (ptid) == 0)
11028 return normal_pid_to_str (ptid);
11029 else
11030 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11031 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11032 else
11033 xsnprintf (buf, sizeof buf, "Thread %ld",
11034 ptid_get_lwp (ptid));
11035 return buf;
11036 }
11037}
11038
11039/* Get the address of the thread local variable in OBJFILE which is
11040 stored at OFFSET within the thread local storage for thread PTID. */
11041
11042static CORE_ADDR
11043remote_get_thread_local_address (struct target_ops *ops,
11044 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11045{
11046 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11047 {
11048 struct remote_state *rs = get_remote_state ();
11049 char *p = rs->buf;
11050 char *endp = rs->buf + get_remote_packet_size ();
11051 enum packet_result result;
11052
11053 strcpy (p, "qGetTLSAddr:");
11054 p += strlen (p);
11055 p = write_ptid (p, endp, ptid);
11056 *p++ = ',';
11057 p += hexnumstr (p, offset);
11058 *p++ = ',';
11059 p += hexnumstr (p, lm);
11060 *p++ = '\0';
11061
11062 putpkt (rs->buf);
11063 getpkt (&rs->buf, &rs->buf_size, 0);
11064 result = packet_ok (rs->buf,
11065 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11066 if (result == PACKET_OK)
11067 {
11068 ULONGEST result;
11069
11070 unpack_varlen_hex (rs->buf, &result);
11071 return result;
11072 }
11073 else if (result == PACKET_UNKNOWN)
11074 throw_error (TLS_GENERIC_ERROR,
11075 _("Remote target doesn't support qGetTLSAddr packet"));
11076 else
11077 throw_error (TLS_GENERIC_ERROR,
11078 _("Remote target failed to process qGetTLSAddr request"));
11079 }
11080 else
11081 throw_error (TLS_GENERIC_ERROR,
11082 _("TLS not supported or disabled on this target"));
11083 /* Not reached. */
11084 return 0;
11085}
11086
11087/* Provide thread local base, i.e. Thread Information Block address.
11088 Returns 1 if ptid is found and thread_local_base is non zero. */
11089
11090static int
11091remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11092{
11093 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11094 {
11095 struct remote_state *rs = get_remote_state ();
11096 char *p = rs->buf;
11097 char *endp = rs->buf + get_remote_packet_size ();
11098 enum packet_result result;
11099
11100 strcpy (p, "qGetTIBAddr:");
11101 p += strlen (p);
11102 p = write_ptid (p, endp, ptid);
11103 *p++ = '\0';
11104
11105 putpkt (rs->buf);
11106 getpkt (&rs->buf, &rs->buf_size, 0);
11107 result = packet_ok (rs->buf,
11108 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11109 if (result == PACKET_OK)
11110 {
11111 ULONGEST result;
11112
11113 unpack_varlen_hex (rs->buf, &result);
11114 if (addr)
11115 *addr = (CORE_ADDR) result;
11116 return 1;
11117 }
11118 else if (result == PACKET_UNKNOWN)
11119 error (_("Remote target doesn't support qGetTIBAddr packet"));
11120 else
11121 error (_("Remote target failed to process qGetTIBAddr request"));
11122 }
11123 else
11124 error (_("qGetTIBAddr not supported or disabled on this target"));
11125 /* Not reached. */
11126 return 0;
11127}
11128
11129/* Support for inferring a target description based on the current
11130 architecture and the size of a 'g' packet. While the 'g' packet
11131 can have any size (since optional registers can be left off the
11132 end), some sizes are easily recognizable given knowledge of the
11133 approximate architecture. */
11134
11135struct remote_g_packet_guess
11136{
11137 int bytes;
11138 const struct target_desc *tdesc;
11139};
11140typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11141DEF_VEC_O(remote_g_packet_guess_s);
11142
11143struct remote_g_packet_data
11144{
11145 VEC(remote_g_packet_guess_s) *guesses;
11146};
11147
11148static struct gdbarch_data *remote_g_packet_data_handle;
11149
11150static void *
11151remote_g_packet_data_init (struct obstack *obstack)
11152{
11153 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11154}
11155
11156void
11157register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11158 const struct target_desc *tdesc)
11159{
11160 struct remote_g_packet_data *data
11161 = ((struct remote_g_packet_data *)
11162 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11163 struct remote_g_packet_guess new_guess, *guess;
11164 int ix;
11165
11166 gdb_assert (tdesc != NULL);
11167
11168 for (ix = 0;
11169 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11170 ix++)
11171 if (guess->bytes == bytes)
11172 internal_error (__FILE__, __LINE__,
11173 _("Duplicate g packet description added for size %d"),
11174 bytes);
11175
11176 new_guess.bytes = bytes;
11177 new_guess.tdesc = tdesc;
11178 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11179}
11180
11181/* Return 1 if remote_read_description would do anything on this target
11182 and architecture, 0 otherwise. */
11183
11184static int
11185remote_read_description_p (struct target_ops *target)
11186{
11187 struct remote_g_packet_data *data
11188 = ((struct remote_g_packet_data *)
11189 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11190
11191 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11192 return 1;
11193
11194 return 0;
11195}
11196
11197static const struct target_desc *
11198remote_read_description (struct target_ops *target)
11199{
11200 struct remote_g_packet_data *data
11201 = ((struct remote_g_packet_data *)
11202 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11203
11204 /* Do not try this during initial connection, when we do not know
11205 whether there is a running but stopped thread. */
11206 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11207 return target->beneath->to_read_description (target->beneath);
11208
11209 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11210 {
11211 struct remote_g_packet_guess *guess;
11212 int ix;
11213 int bytes = send_g_packet ();
11214
11215 for (ix = 0;
11216 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11217 ix++)
11218 if (guess->bytes == bytes)
11219 return guess->tdesc;
11220
11221 /* We discard the g packet. A minor optimization would be to
11222 hold on to it, and fill the register cache once we have selected
11223 an architecture, but it's too tricky to do safely. */
11224 }
11225
11226 return target->beneath->to_read_description (target->beneath);
11227}
11228
11229/* Remote file transfer support. This is host-initiated I/O, not
11230 target-initiated; for target-initiated, see remote-fileio.c. */
11231
11232/* If *LEFT is at least the length of STRING, copy STRING to
11233 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11234 decrease *LEFT. Otherwise raise an error. */
11235
11236static void
11237remote_buffer_add_string (char **buffer, int *left, const char *string)
11238{
11239 int len = strlen (string);
11240
11241 if (len > *left)
11242 error (_("Packet too long for target."));
11243
11244 memcpy (*buffer, string, len);
11245 *buffer += len;
11246 *left -= len;
11247
11248 /* NUL-terminate the buffer as a convenience, if there is
11249 room. */
11250 if (*left)
11251 **buffer = '\0';
11252}
11253
11254/* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11255 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11256 decrease *LEFT. Otherwise raise an error. */
11257
11258static void
11259remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11260 int len)
11261{
11262 if (2 * len > *left)
11263 error (_("Packet too long for target."));
11264
11265 bin2hex (bytes, *buffer, len);
11266 *buffer += 2 * len;
11267 *left -= 2 * len;
11268
11269 /* NUL-terminate the buffer as a convenience, if there is
11270 room. */
11271 if (*left)
11272 **buffer = '\0';
11273}
11274
11275/* If *LEFT is large enough, convert VALUE to hex and add it to
11276 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11277 decrease *LEFT. Otherwise raise an error. */
11278
11279static void
11280remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11281{
11282 int len = hexnumlen (value);
11283
11284 if (len > *left)
11285 error (_("Packet too long for target."));
11286
11287 hexnumstr (*buffer, value);
11288 *buffer += len;
11289 *left -= len;
11290
11291 /* NUL-terminate the buffer as a convenience, if there is
11292 room. */
11293 if (*left)
11294 **buffer = '\0';
11295}
11296
11297/* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11298 value, *REMOTE_ERRNO to the remote error number or zero if none
11299 was included, and *ATTACHMENT to point to the start of the annex
11300 if any. The length of the packet isn't needed here; there may
11301 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11302
11303 Return 0 if the packet could be parsed, -1 if it could not. If
11304 -1 is returned, the other variables may not be initialized. */
11305
11306static int
11307remote_hostio_parse_result (char *buffer, int *retcode,
11308 int *remote_errno, char **attachment)
11309{
11310 char *p, *p2;
11311
11312 *remote_errno = 0;
11313 *attachment = NULL;
11314
11315 if (buffer[0] != 'F')
11316 return -1;
11317
11318 errno = 0;
11319 *retcode = strtol (&buffer[1], &p, 16);
11320 if (errno != 0 || p == &buffer[1])
11321 return -1;
11322
11323 /* Check for ",errno". */
11324 if (*p == ',')
11325 {
11326 errno = 0;
11327 *remote_errno = strtol (p + 1, &p2, 16);
11328 if (errno != 0 || p + 1 == p2)
11329 return -1;
11330 p = p2;
11331 }
11332
11333 /* Check for ";attachment". If there is no attachment, the
11334 packet should end here. */
11335 if (*p == ';')
11336 {
11337 *attachment = p + 1;
11338 return 0;
11339 }
11340 else if (*p == '\0')
11341 return 0;
11342 else
11343 return -1;
11344}
11345
11346/* Send a prepared I/O packet to the target and read its response.
11347 The prepared packet is in the global RS->BUF before this function
11348 is called, and the answer is there when we return.
11349
11350 COMMAND_BYTES is the length of the request to send, which may include
11351 binary data. WHICH_PACKET is the packet configuration to check
11352 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11353 is set to the error number and -1 is returned. Otherwise the value
11354 returned by the function is returned.
11355
11356 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11357 attachment is expected; an error will be reported if there's a
11358 mismatch. If one is found, *ATTACHMENT will be set to point into
11359 the packet buffer and *ATTACHMENT_LEN will be set to the
11360 attachment's length. */
11361
11362static int
11363remote_hostio_send_command (int command_bytes, int which_packet,
11364 int *remote_errno, char **attachment,
11365 int *attachment_len)
11366{
11367 struct remote_state *rs = get_remote_state ();
11368 int ret, bytes_read;
11369 char *attachment_tmp;
11370
11371 if (!rs->remote_desc
11372 || packet_support (which_packet) == PACKET_DISABLE)
11373 {
11374 *remote_errno = FILEIO_ENOSYS;
11375 return -1;
11376 }
11377
11378 putpkt_binary (rs->buf, command_bytes);
11379 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11380
11381 /* If it timed out, something is wrong. Don't try to parse the
11382 buffer. */
11383 if (bytes_read < 0)
11384 {
11385 *remote_errno = FILEIO_EINVAL;
11386 return -1;
11387 }
11388
11389 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11390 {
11391 case PACKET_ERROR:
11392 *remote_errno = FILEIO_EINVAL;
11393 return -1;
11394 case PACKET_UNKNOWN:
11395 *remote_errno = FILEIO_ENOSYS;
11396 return -1;
11397 case PACKET_OK:
11398 break;
11399 }
11400
11401 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11402 &attachment_tmp))
11403 {
11404 *remote_errno = FILEIO_EINVAL;
11405 return -1;
11406 }
11407
11408 /* Make sure we saw an attachment if and only if we expected one. */
11409 if ((attachment_tmp == NULL && attachment != NULL)
11410 || (attachment_tmp != NULL && attachment == NULL))
11411 {
11412 *remote_errno = FILEIO_EINVAL;
11413 return -1;
11414 }
11415
11416 /* If an attachment was found, it must point into the packet buffer;
11417 work out how many bytes there were. */
11418 if (attachment_tmp != NULL)
11419 {
11420 *attachment = attachment_tmp;
11421 *attachment_len = bytes_read - (*attachment - rs->buf);
11422 }
11423
11424 return ret;
11425}
11426
11427/* Invalidate the readahead cache. */
11428
11429static void
11430readahead_cache_invalidate (void)
11431{
11432 struct remote_state *rs = get_remote_state ();
11433
11434 rs->readahead_cache.fd = -1;
11435}
11436
11437/* Invalidate the readahead cache if it is holding data for FD. */
11438
11439static void
11440readahead_cache_invalidate_fd (int fd)
11441{
11442 struct remote_state *rs = get_remote_state ();
11443
11444 if (rs->readahead_cache.fd == fd)
11445 rs->readahead_cache.fd = -1;
11446}
11447
11448/* Set the filesystem remote_hostio functions that take FILENAME
11449 arguments will use. Return 0 on success, or -1 if an error
11450 occurs (and set *REMOTE_ERRNO). */
11451
11452static int
11453remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11454{
11455 struct remote_state *rs = get_remote_state ();
11456 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11457 char *p = rs->buf;
11458 int left = get_remote_packet_size () - 1;
11459 char arg[9];
11460 int ret;
11461
11462 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11463 return 0;
11464
11465 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11466 return 0;
11467
11468 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11469
11470 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11471 remote_buffer_add_string (&p, &left, arg);
11472
11473 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11474 remote_errno, NULL, NULL);
11475
11476 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11477 return 0;
11478
11479 if (ret == 0)
11480 rs->fs_pid = required_pid;
11481
11482 return ret;
11483}
11484
11485/* Implementation of to_fileio_open. */
11486
11487static int
11488remote_hostio_open (struct target_ops *self,
11489 struct inferior *inf, const char *filename,
11490 int flags, int mode, int warn_if_slow,
11491 int *remote_errno)
11492{
11493 struct remote_state *rs = get_remote_state ();
11494 char *p = rs->buf;
11495 int left = get_remote_packet_size () - 1;
11496
11497 if (warn_if_slow)
11498 {
11499 static int warning_issued = 0;
11500
11501 printf_unfiltered (_("Reading %s from remote target...\n"),
11502 filename);
11503
11504 if (!warning_issued)
11505 {
11506 warning (_("File transfers from remote targets can be slow."
11507 " Use \"set sysroot\" to access files locally"
11508 " instead."));
11509 warning_issued = 1;
11510 }
11511 }
11512
11513 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11514 return -1;
11515
11516 remote_buffer_add_string (&p, &left, "vFile:open:");
11517
11518 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11519 strlen (filename));
11520 remote_buffer_add_string (&p, &left, ",");
11521
11522 remote_buffer_add_int (&p, &left, flags);
11523 remote_buffer_add_string (&p, &left, ",");
11524
11525 remote_buffer_add_int (&p, &left, mode);
11526
11527 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11528 remote_errno, NULL, NULL);
11529}
11530
11531/* Implementation of to_fileio_pwrite. */
11532
11533static int
11534remote_hostio_pwrite (struct target_ops *self,
11535 int fd, const gdb_byte *write_buf, int len,
11536 ULONGEST offset, int *remote_errno)
11537{
11538 struct remote_state *rs = get_remote_state ();
11539 char *p = rs->buf;
11540 int left = get_remote_packet_size ();
11541 int out_len;
11542
11543 readahead_cache_invalidate_fd (fd);
11544
11545 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11546
11547 remote_buffer_add_int (&p, &left, fd);
11548 remote_buffer_add_string (&p, &left, ",");
11549
11550 remote_buffer_add_int (&p, &left, offset);
11551 remote_buffer_add_string (&p, &left, ",");
11552
11553 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11554 get_remote_packet_size () - (p - rs->buf));
11555
11556 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11557 remote_errno, NULL, NULL);
11558}
11559
11560/* Helper for the implementation of to_fileio_pread. Read the file
11561 from the remote side with vFile:pread. */
11562
11563static int
11564remote_hostio_pread_vFile (struct target_ops *self,
11565 int fd, gdb_byte *read_buf, int len,
11566 ULONGEST offset, int *remote_errno)
11567{
11568 struct remote_state *rs = get_remote_state ();
11569 char *p = rs->buf;
11570 char *attachment;
11571 int left = get_remote_packet_size ();
11572 int ret, attachment_len;
11573 int read_len;
11574
11575 remote_buffer_add_string (&p, &left, "vFile:pread:");
11576
11577 remote_buffer_add_int (&p, &left, fd);
11578 remote_buffer_add_string (&p, &left, ",");
11579
11580 remote_buffer_add_int (&p, &left, len);
11581 remote_buffer_add_string (&p, &left, ",");
11582
11583 remote_buffer_add_int (&p, &left, offset);
11584
11585 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11586 remote_errno, &attachment,
11587 &attachment_len);
11588
11589 if (ret < 0)
11590 return ret;
11591
11592 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11593 read_buf, len);
11594 if (read_len != ret)
11595 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11596
11597 return ret;
11598}
11599
11600/* Serve pread from the readahead cache. Returns number of bytes
11601 read, or 0 if the request can't be served from the cache. */
11602
11603static int
11604remote_hostio_pread_from_cache (struct remote_state *rs,
11605 int fd, gdb_byte *read_buf, size_t len,
11606 ULONGEST offset)
11607{
11608 struct readahead_cache *cache = &rs->readahead_cache;
11609
11610 if (cache->fd == fd
11611 && cache->offset <= offset
11612 && offset < cache->offset + cache->bufsize)
11613 {
11614 ULONGEST max = cache->offset + cache->bufsize;
11615
11616 if (offset + len > max)
11617 len = max - offset;
11618
11619 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11620 return len;
11621 }
11622
11623 return 0;
11624}
11625
11626/* Implementation of to_fileio_pread. */
11627
11628static int
11629remote_hostio_pread (struct target_ops *self,
11630 int fd, gdb_byte *read_buf, int len,
11631 ULONGEST offset, int *remote_errno)
11632{
11633 int ret;
11634 struct remote_state *rs = get_remote_state ();
11635 struct readahead_cache *cache = &rs->readahead_cache;
11636
11637 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11638 if (ret > 0)
11639 {
11640 cache->hit_count++;
11641
11642 if (remote_debug)
11643 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11644 pulongest (cache->hit_count));
11645 return ret;
11646 }
11647
11648 cache->miss_count++;
11649 if (remote_debug)
11650 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11651 pulongest (cache->miss_count));
11652
11653 cache->fd = fd;
11654 cache->offset = offset;
11655 cache->bufsize = get_remote_packet_size ();
11656 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11657
11658 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11659 cache->offset, remote_errno);
11660 if (ret <= 0)
11661 {
11662 readahead_cache_invalidate_fd (fd);
11663 return ret;
11664 }
11665
11666 cache->bufsize = ret;
11667 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11668}
11669
11670/* Implementation of to_fileio_close. */
11671
11672static int
11673remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11674{
11675 struct remote_state *rs = get_remote_state ();
11676 char *p = rs->buf;
11677 int left = get_remote_packet_size () - 1;
11678
11679 readahead_cache_invalidate_fd (fd);
11680
11681 remote_buffer_add_string (&p, &left, "vFile:close:");
11682
11683 remote_buffer_add_int (&p, &left, fd);
11684
11685 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11686 remote_errno, NULL, NULL);
11687}
11688
11689/* Implementation of to_fileio_unlink. */
11690
11691static int
11692remote_hostio_unlink (struct target_ops *self,
11693 struct inferior *inf, const char *filename,
11694 int *remote_errno)
11695{
11696 struct remote_state *rs = get_remote_state ();
11697 char *p = rs->buf;
11698 int left = get_remote_packet_size () - 1;
11699
11700 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11701 return -1;
11702
11703 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11704
11705 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11706 strlen (filename));
11707
11708 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11709 remote_errno, NULL, NULL);
11710}
11711
11712/* Implementation of to_fileio_readlink. */
11713
11714static char *
11715remote_hostio_readlink (struct target_ops *self,
11716 struct inferior *inf, const char *filename,
11717 int *remote_errno)
11718{
11719 struct remote_state *rs = get_remote_state ();
11720 char *p = rs->buf;
11721 char *attachment;
11722 int left = get_remote_packet_size ();
11723 int len, attachment_len;
11724 int read_len;
11725 char *ret;
11726
11727 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11728 return NULL;
11729
11730 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11731
11732 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11733 strlen (filename));
11734
11735 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11736 remote_errno, &attachment,
11737 &attachment_len);
11738
11739 if (len < 0)
11740 return NULL;
11741
11742 ret = (char *) xmalloc (len + 1);
11743
11744 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11745 (gdb_byte *) ret, len);
11746 if (read_len != len)
11747 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11748
11749 ret[len] = '\0';
11750 return ret;
11751}
11752
11753/* Implementation of to_fileio_fstat. */
11754
11755static int
11756remote_hostio_fstat (struct target_ops *self,
11757 int fd, struct stat *st,
11758 int *remote_errno)
11759{
11760 struct remote_state *rs = get_remote_state ();
11761 char *p = rs->buf;
11762 int left = get_remote_packet_size ();
11763 int attachment_len, ret;
11764 char *attachment;
11765 struct fio_stat fst;
11766 int read_len;
11767
11768 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11769
11770 remote_buffer_add_int (&p, &left, fd);
11771
11772 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11773 remote_errno, &attachment,
11774 &attachment_len);
11775 if (ret < 0)
11776 {
11777 if (*remote_errno != FILEIO_ENOSYS)
11778 return ret;
11779
11780 /* Strictly we should return -1, ENOSYS here, but when
11781 "set sysroot remote:" was implemented in August 2008
11782 BFD's need for a stat function was sidestepped with
11783 this hack. This was not remedied until March 2015
11784 so we retain the previous behavior to avoid breaking
11785 compatibility.
11786
11787 Note that the memset is a March 2015 addition; older
11788 GDBs set st_size *and nothing else* so the structure
11789 would have garbage in all other fields. This might
11790 break something but retaining the previous behavior
11791 here would be just too wrong. */
11792
11793 memset (st, 0, sizeof (struct stat));
11794 st->st_size = INT_MAX;
11795 return 0;
11796 }
11797
11798 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11799 (gdb_byte *) &fst, sizeof (fst));
11800
11801 if (read_len != ret)
11802 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11803
11804 if (read_len != sizeof (fst))
11805 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11806 read_len, (int) sizeof (fst));
11807
11808 remote_fileio_to_host_stat (&fst, st);
11809
11810 return 0;
11811}
11812
11813/* Implementation of to_filesystem_is_local. */
11814
11815static int
11816remote_filesystem_is_local (struct target_ops *self)
11817{
11818 /* Valgrind GDB presents itself as a remote target but works
11819 on the local filesystem: it does not implement remote get
11820 and users are not expected to set a sysroot. To handle
11821 this case we treat the remote filesystem as local if the
11822 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11823 does not support vFile:open. */
11824 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11825 {
11826 enum packet_support ps = packet_support (PACKET_vFile_open);
11827
11828 if (ps == PACKET_SUPPORT_UNKNOWN)
11829 {
11830 int fd, remote_errno;
11831
11832 /* Try opening a file to probe support. The supplied
11833 filename is irrelevant, we only care about whether
11834 the stub recognizes the packet or not. */
11835 fd = remote_hostio_open (self, NULL, "just probing",
11836 FILEIO_O_RDONLY, 0700, 0,
11837 &remote_errno);
11838
11839 if (fd >= 0)
11840 remote_hostio_close (self, fd, &remote_errno);
11841
11842 ps = packet_support (PACKET_vFile_open);
11843 }
11844
11845 if (ps == PACKET_DISABLE)
11846 {
11847 static int warning_issued = 0;
11848
11849 if (!warning_issued)
11850 {
11851 warning (_("remote target does not support file"
11852 " transfer, attempting to access files"
11853 " from local filesystem."));
11854 warning_issued = 1;
11855 }
11856
11857 return 1;
11858 }
11859 }
11860
11861 return 0;
11862}
11863
11864static int
11865remote_fileio_errno_to_host (int errnum)
11866{
11867 switch (errnum)
11868 {
11869 case FILEIO_EPERM:
11870 return EPERM;
11871 case FILEIO_ENOENT:
11872 return ENOENT;
11873 case FILEIO_EINTR:
11874 return EINTR;
11875 case FILEIO_EIO:
11876 return EIO;
11877 case FILEIO_EBADF:
11878 return EBADF;
11879 case FILEIO_EACCES:
11880 return EACCES;
11881 case FILEIO_EFAULT:
11882 return EFAULT;
11883 case FILEIO_EBUSY:
11884 return EBUSY;
11885 case FILEIO_EEXIST:
11886 return EEXIST;
11887 case FILEIO_ENODEV:
11888 return ENODEV;
11889 case FILEIO_ENOTDIR:
11890 return ENOTDIR;
11891 case FILEIO_EISDIR:
11892 return EISDIR;
11893 case FILEIO_EINVAL:
11894 return EINVAL;
11895 case FILEIO_ENFILE:
11896 return ENFILE;
11897 case FILEIO_EMFILE:
11898 return EMFILE;
11899 case FILEIO_EFBIG:
11900 return EFBIG;
11901 case FILEIO_ENOSPC:
11902 return ENOSPC;
11903 case FILEIO_ESPIPE:
11904 return ESPIPE;
11905 case FILEIO_EROFS:
11906 return EROFS;
11907 case FILEIO_ENOSYS:
11908 return ENOSYS;
11909 case FILEIO_ENAMETOOLONG:
11910 return ENAMETOOLONG;
11911 }
11912 return -1;
11913}
11914
11915static char *
11916remote_hostio_error (int errnum)
11917{
11918 int host_error = remote_fileio_errno_to_host (errnum);
11919
11920 if (host_error == -1)
11921 error (_("Unknown remote I/O error %d"), errnum);
11922 else
11923 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11924}
11925
11926static void
11927remote_hostio_close_cleanup (void *opaque)
11928{
11929 int fd = *(int *) opaque;
11930 int remote_errno;
11931
11932 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11933}
11934
11935void
11936remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11937{
11938 struct cleanup *back_to, *close_cleanup;
11939 int retcode, fd, remote_errno, bytes, io_size;
11940 gdb_byte *buffer;
11941 int bytes_in_buffer;
11942 int saw_eof;
11943 ULONGEST offset;
11944 struct remote_state *rs = get_remote_state ();
11945
11946 if (!rs->remote_desc)
11947 error (_("command can only be used with remote target"));
11948
11949 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11950 if (file == NULL)
11951 perror_with_name (local_file);
11952
11953 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11954 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11955 | FILEIO_O_TRUNC),
11956 0700, 0, &remote_errno);
11957 if (fd == -1)
11958 remote_hostio_error (remote_errno);
11959
11960 /* Send up to this many bytes at once. They won't all fit in the
11961 remote packet limit, so we'll transfer slightly fewer. */
11962 io_size = get_remote_packet_size ();
11963 buffer = (gdb_byte *) xmalloc (io_size);
11964 back_to = make_cleanup (xfree, buffer);
11965
11966 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11967
11968 bytes_in_buffer = 0;
11969 saw_eof = 0;
11970 offset = 0;
11971 while (bytes_in_buffer || !saw_eof)
11972 {
11973 if (!saw_eof)
11974 {
11975 bytes = fread (buffer + bytes_in_buffer, 1,
11976 io_size - bytes_in_buffer,
11977 file.get ());
11978 if (bytes == 0)
11979 {
11980 if (ferror (file.get ()))
11981 error (_("Error reading %s."), local_file);
11982 else
11983 {
11984 /* EOF. Unless there is something still in the
11985 buffer from the last iteration, we are done. */
11986 saw_eof = 1;
11987 if (bytes_in_buffer == 0)
11988 break;
11989 }
11990 }
11991 }
11992 else
11993 bytes = 0;
11994
11995 bytes += bytes_in_buffer;
11996 bytes_in_buffer = 0;
11997
11998 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11999 fd, buffer, bytes,
12000 offset, &remote_errno);
12001
12002 if (retcode < 0)
12003 remote_hostio_error (remote_errno);
12004 else if (retcode == 0)
12005 error (_("Remote write of %d bytes returned 0!"), bytes);
12006 else if (retcode < bytes)
12007 {
12008 /* Short write. Save the rest of the read data for the next
12009 write. */
12010 bytes_in_buffer = bytes - retcode;
12011 memmove (buffer, buffer + retcode, bytes_in_buffer);
12012 }
12013
12014 offset += retcode;
12015 }
12016
12017 discard_cleanups (close_cleanup);
12018 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12019 remote_hostio_error (remote_errno);
12020
12021 if (from_tty)
12022 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12023 do_cleanups (back_to);
12024}
12025
12026void
12027remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12028{
12029 struct cleanup *back_to, *close_cleanup;
12030 int fd, remote_errno, bytes, io_size;
12031 gdb_byte *buffer;
12032 ULONGEST offset;
12033 struct remote_state *rs = get_remote_state ();
12034
12035 if (!rs->remote_desc)
12036 error (_("command can only be used with remote target"));
12037
12038 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12039 remote_file, FILEIO_O_RDONLY, 0, 0,
12040 &remote_errno);
12041 if (fd == -1)
12042 remote_hostio_error (remote_errno);
12043
12044 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12045 if (file == NULL)
12046 perror_with_name (local_file);
12047
12048 /* Send up to this many bytes at once. They won't all fit in the
12049 remote packet limit, so we'll transfer slightly fewer. */
12050 io_size = get_remote_packet_size ();
12051 buffer = (gdb_byte *) xmalloc (io_size);
12052 back_to = make_cleanup (xfree, buffer);
12053
12054 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12055
12056 offset = 0;
12057 while (1)
12058 {
12059 bytes = remote_hostio_pread (find_target_at (process_stratum),
12060 fd, buffer, io_size, offset, &remote_errno);
12061 if (bytes == 0)
12062 /* Success, but no bytes, means end-of-file. */
12063 break;
12064 if (bytes == -1)
12065 remote_hostio_error (remote_errno);
12066
12067 offset += bytes;
12068
12069 bytes = fwrite (buffer, 1, bytes, file.get ());
12070 if (bytes == 0)
12071 perror_with_name (local_file);
12072 }
12073
12074 discard_cleanups (close_cleanup);
12075 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12076 remote_hostio_error (remote_errno);
12077
12078 if (from_tty)
12079 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12080 do_cleanups (back_to);
12081}
12082
12083void
12084remote_file_delete (const char *remote_file, int from_tty)
12085{
12086 int retcode, remote_errno;
12087 struct remote_state *rs = get_remote_state ();
12088
12089 if (!rs->remote_desc)
12090 error (_("command can only be used with remote target"));
12091
12092 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12093 NULL, remote_file, &remote_errno);
12094 if (retcode == -1)
12095 remote_hostio_error (remote_errno);
12096
12097 if (from_tty)
12098 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12099}
12100
12101static void
12102remote_put_command (char *args, int from_tty)
12103{
12104 if (args == NULL)
12105 error_no_arg (_("file to put"));
12106
12107 gdb_argv argv (args);
12108 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12109 error (_("Invalid parameters to remote put"));
12110
12111 remote_file_put (argv[0], argv[1], from_tty);
12112}
12113
12114static void
12115remote_get_command (char *args, int from_tty)
12116{
12117 if (args == NULL)
12118 error_no_arg (_("file to get"));
12119
12120 gdb_argv argv (args);
12121 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12122 error (_("Invalid parameters to remote get"));
12123
12124 remote_file_get (argv[0], argv[1], from_tty);
12125}
12126
12127static void
12128remote_delete_command (char *args, int from_tty)
12129{
12130 if (args == NULL)
12131 error_no_arg (_("file to delete"));
12132
12133 gdb_argv argv (args);
12134 if (argv[0] == NULL || argv[1] != NULL)
12135 error (_("Invalid parameters to remote delete"));
12136
12137 remote_file_delete (argv[0], from_tty);
12138}
12139
12140static void
12141remote_command (char *args, int from_tty)
12142{
12143 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12144}
12145
12146static int
12147remote_can_execute_reverse (struct target_ops *self)
12148{
12149 if (packet_support (PACKET_bs) == PACKET_ENABLE
12150 || packet_support (PACKET_bc) == PACKET_ENABLE)
12151 return 1;
12152 else
12153 return 0;
12154}
12155
12156static int
12157remote_supports_non_stop (struct target_ops *self)
12158{
12159 return 1;
12160}
12161
12162static int
12163remote_supports_disable_randomization (struct target_ops *self)
12164{
12165 /* Only supported in extended mode. */
12166 return 0;
12167}
12168
12169static int
12170remote_supports_multi_process (struct target_ops *self)
12171{
12172 struct remote_state *rs = get_remote_state ();
12173
12174 return remote_multi_process_p (rs);
12175}
12176
12177static int
12178remote_supports_cond_tracepoints (void)
12179{
12180 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12181}
12182
12183static int
12184remote_supports_cond_breakpoints (struct target_ops *self)
12185{
12186 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12187}
12188
12189static int
12190remote_supports_fast_tracepoints (void)
12191{
12192 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12193}
12194
12195static int
12196remote_supports_static_tracepoints (void)
12197{
12198 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12199}
12200
12201static int
12202remote_supports_install_in_trace (void)
12203{
12204 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12205}
12206
12207static int
12208remote_supports_enable_disable_tracepoint (struct target_ops *self)
12209{
12210 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12211 == PACKET_ENABLE);
12212}
12213
12214static int
12215remote_supports_string_tracing (struct target_ops *self)
12216{
12217 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12218}
12219
12220static int
12221remote_can_run_breakpoint_commands (struct target_ops *self)
12222{
12223 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12224}
12225
12226static void
12227remote_trace_init (struct target_ops *self)
12228{
12229 putpkt ("QTinit");
12230 remote_get_noisy_reply (&target_buf, &target_buf_size);
12231 if (strcmp (target_buf, "OK") != 0)
12232 error (_("Target does not support this command."));
12233}
12234
12235static void free_actions_list (char **actions_list);
12236static void free_actions_list_cleanup_wrapper (void *);
12237static void
12238free_actions_list_cleanup_wrapper (void *al)
12239{
12240 free_actions_list ((char **) al);
12241}
12242
12243static void
12244free_actions_list (char **actions_list)
12245{
12246 int ndx;
12247
12248 if (actions_list == 0)
12249 return;
12250
12251 for (ndx = 0; actions_list[ndx]; ndx++)
12252 xfree (actions_list[ndx]);
12253
12254 xfree (actions_list);
12255}
12256
12257/* Recursive routine to walk through command list including loops, and
12258 download packets for each command. */
12259
12260static void
12261remote_download_command_source (int num, ULONGEST addr,
12262 struct command_line *cmds)
12263{
12264 struct remote_state *rs = get_remote_state ();
12265 struct command_line *cmd;
12266
12267 for (cmd = cmds; cmd; cmd = cmd->next)
12268 {
12269 QUIT; /* Allow user to bail out with ^C. */
12270 strcpy (rs->buf, "QTDPsrc:");
12271 encode_source_string (num, addr, "cmd", cmd->line,
12272 rs->buf + strlen (rs->buf),
12273 rs->buf_size - strlen (rs->buf));
12274 putpkt (rs->buf);
12275 remote_get_noisy_reply (&target_buf, &target_buf_size);
12276 if (strcmp (target_buf, "OK"))
12277 warning (_("Target does not support source download."));
12278
12279 if (cmd->control_type == while_control
12280 || cmd->control_type == while_stepping_control)
12281 {
12282 remote_download_command_source (num, addr, *cmd->body_list);
12283
12284 QUIT; /* Allow user to bail out with ^C. */
12285 strcpy (rs->buf, "QTDPsrc:");
12286 encode_source_string (num, addr, "cmd", "end",
12287 rs->buf + strlen (rs->buf),
12288 rs->buf_size - strlen (rs->buf));
12289 putpkt (rs->buf);
12290 remote_get_noisy_reply (&target_buf, &target_buf_size);
12291 if (strcmp (target_buf, "OK"))
12292 warning (_("Target does not support source download."));
12293 }
12294 }
12295}
12296
12297static void
12298remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12299{
12300#define BUF_SIZE 2048
12301
12302 CORE_ADDR tpaddr;
12303 char addrbuf[40];
12304 char buf[BUF_SIZE];
12305 char **tdp_actions;
12306 char **stepping_actions;
12307 int ndx;
12308 struct cleanup *old_chain = NULL;
12309 char *pkt;
12310 struct breakpoint *b = loc->owner;
12311 struct tracepoint *t = (struct tracepoint *) b;
12312
12313 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12314 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
12315 tdp_actions);
12316 (void) make_cleanup (free_actions_list_cleanup_wrapper,
12317 stepping_actions);
12318
12319 tpaddr = loc->address;
12320 sprintf_vma (addrbuf, tpaddr);
12321 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12322 addrbuf, /* address */
12323 (b->enable_state == bp_enabled ? 'E' : 'D'),
12324 t->step_count, t->pass_count);
12325 /* Fast tracepoints are mostly handled by the target, but we can
12326 tell the target how big of an instruction block should be moved
12327 around. */
12328 if (b->type == bp_fast_tracepoint)
12329 {
12330 /* Only test for support at download time; we may not know
12331 target capabilities at definition time. */
12332 if (remote_supports_fast_tracepoints ())
12333 {
12334 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12335 NULL))
12336 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12337 gdb_insn_length (loc->gdbarch, tpaddr));
12338 else
12339 /* If it passed validation at definition but fails now,
12340 something is very wrong. */
12341 internal_error (__FILE__, __LINE__,
12342 _("Fast tracepoint not "
12343 "valid during download"));
12344 }
12345 else
12346 /* Fast tracepoints are functionally identical to regular
12347 tracepoints, so don't take lack of support as a reason to
12348 give up on the trace run. */
12349 warning (_("Target does not support fast tracepoints, "
12350 "downloading %d as regular tracepoint"), b->number);
12351 }
12352 else if (b->type == bp_static_tracepoint)
12353 {
12354 /* Only test for support at download time; we may not know
12355 target capabilities at definition time. */
12356 if (remote_supports_static_tracepoints ())
12357 {
12358 struct static_tracepoint_marker marker;
12359
12360 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12361 strcat (buf, ":S");
12362 else
12363 error (_("Static tracepoint not valid during download"));
12364 }
12365 else
12366 /* Fast tracepoints are functionally identical to regular
12367 tracepoints, so don't take lack of support as a reason
12368 to give up on the trace run. */
12369 error (_("Target does not support static tracepoints"));
12370 }
12371 /* If the tracepoint has a conditional, make it into an agent
12372 expression and append to the definition. */
12373 if (loc->cond)
12374 {
12375 /* Only test support at download time, we may not know target
12376 capabilities at definition time. */
12377 if (remote_supports_cond_tracepoints ())
12378 {
12379 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12380 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12381 aexpr->len);
12382 pkt = buf + strlen (buf);
12383 for (ndx = 0; ndx < aexpr->len; ++ndx)
12384 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12385 *pkt = '\0';
12386 }
12387 else
12388 warning (_("Target does not support conditional tracepoints, "
12389 "ignoring tp %d cond"), b->number);
12390 }
12391
12392 if (b->commands || *default_collect)
12393 strcat (buf, "-");
12394 putpkt (buf);
12395 remote_get_noisy_reply (&target_buf, &target_buf_size);
12396 if (strcmp (target_buf, "OK"))
12397 error (_("Target does not support tracepoints."));
12398
12399 /* do_single_steps (t); */
12400 if (tdp_actions)
12401 {
12402 for (ndx = 0; tdp_actions[ndx]; ndx++)
12403 {
12404 QUIT; /* Allow user to bail out with ^C. */
12405 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12406 b->number, addrbuf, /* address */
12407 tdp_actions[ndx],
12408 ((tdp_actions[ndx + 1] || stepping_actions)
12409 ? '-' : 0));
12410 putpkt (buf);
12411 remote_get_noisy_reply (&target_buf,
12412 &target_buf_size);
12413 if (strcmp (target_buf, "OK"))
12414 error (_("Error on target while setting tracepoints."));
12415 }
12416 }
12417 if (stepping_actions)
12418 {
12419 for (ndx = 0; stepping_actions[ndx]; ndx++)
12420 {
12421 QUIT; /* Allow user to bail out with ^C. */
12422 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12423 b->number, addrbuf, /* address */
12424 ((ndx == 0) ? "S" : ""),
12425 stepping_actions[ndx],
12426 (stepping_actions[ndx + 1] ? "-" : ""));
12427 putpkt (buf);
12428 remote_get_noisy_reply (&target_buf,
12429 &target_buf_size);
12430 if (strcmp (target_buf, "OK"))
12431 error (_("Error on target while setting tracepoints."));
12432 }
12433 }
12434
12435 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12436 {
12437 if (b->location != NULL)
12438 {
12439 strcpy (buf, "QTDPsrc:");
12440 encode_source_string (b->number, loc->address, "at",
12441 event_location_to_string (b->location.get ()),
12442 buf + strlen (buf), 2048 - strlen (buf));
12443 putpkt (buf);
12444 remote_get_noisy_reply (&target_buf, &target_buf_size);
12445 if (strcmp (target_buf, "OK"))
12446 warning (_("Target does not support source download."));
12447 }
12448 if (b->cond_string)
12449 {
12450 strcpy (buf, "QTDPsrc:");
12451 encode_source_string (b->number, loc->address,
12452 "cond", b->cond_string, buf + strlen (buf),
12453 2048 - strlen (buf));
12454 putpkt (buf);
12455 remote_get_noisy_reply (&target_buf, &target_buf_size);
12456 if (strcmp (target_buf, "OK"))
12457 warning (_("Target does not support source download."));
12458 }
12459 remote_download_command_source (b->number, loc->address,
12460 breakpoint_commands (b));
12461 }
12462
12463 do_cleanups (old_chain);
12464}
12465
12466static int
12467remote_can_download_tracepoint (struct target_ops *self)
12468{
12469 struct remote_state *rs = get_remote_state ();
12470 struct trace_status *ts;
12471 int status;
12472
12473 /* Don't try to install tracepoints until we've relocated our
12474 symbols, and fetched and merged the target's tracepoint list with
12475 ours. */
12476 if (rs->starting_up)
12477 return 0;
12478
12479 ts = current_trace_status ();
12480 status = remote_get_trace_status (self, ts);
12481
12482 if (status == -1 || !ts->running_known || !ts->running)
12483 return 0;
12484
12485 /* If we are in a tracing experiment, but remote stub doesn't support
12486 installing tracepoint in trace, we have to return. */
12487 if (!remote_supports_install_in_trace ())
12488 return 0;
12489
12490 return 1;
12491}
12492
12493
12494static void
12495remote_download_trace_state_variable (struct target_ops *self,
12496 struct trace_state_variable *tsv)
12497{
12498 struct remote_state *rs = get_remote_state ();
12499 char *p;
12500
12501 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12502 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12503 tsv->builtin);
12504 p = rs->buf + strlen (rs->buf);
12505 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12506 error (_("Trace state variable name too long for tsv definition packet"));
12507 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12508 *p++ = '\0';
12509 putpkt (rs->buf);
12510 remote_get_noisy_reply (&target_buf, &target_buf_size);
12511 if (*target_buf == '\0')
12512 error (_("Target does not support this command."));
12513 if (strcmp (target_buf, "OK") != 0)
12514 error (_("Error on target while downloading trace state variable."));
12515}
12516
12517static void
12518remote_enable_tracepoint (struct target_ops *self,
12519 struct bp_location *location)
12520{
12521 struct remote_state *rs = get_remote_state ();
12522 char addr_buf[40];
12523
12524 sprintf_vma (addr_buf, location->address);
12525 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12526 location->owner->number, addr_buf);
12527 putpkt (rs->buf);
12528 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12529 if (*rs->buf == '\0')
12530 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12531 if (strcmp (rs->buf, "OK") != 0)
12532 error (_("Error on target while enabling tracepoint."));
12533}
12534
12535static void
12536remote_disable_tracepoint (struct target_ops *self,
12537 struct bp_location *location)
12538{
12539 struct remote_state *rs = get_remote_state ();
12540 char addr_buf[40];
12541
12542 sprintf_vma (addr_buf, location->address);
12543 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12544 location->owner->number, addr_buf);
12545 putpkt (rs->buf);
12546 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
12547 if (*rs->buf == '\0')
12548 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12549 if (strcmp (rs->buf, "OK") != 0)
12550 error (_("Error on target while disabling tracepoint."));
12551}
12552
12553static void
12554remote_trace_set_readonly_regions (struct target_ops *self)
12555{
12556 asection *s;
12557 bfd *abfd = NULL;
12558 bfd_size_type size;
12559 bfd_vma vma;
12560 int anysecs = 0;
12561 int offset = 0;
12562
12563 if (!exec_bfd)
12564 return; /* No information to give. */
12565
12566 strcpy (target_buf, "QTro");
12567 offset = strlen (target_buf);
12568 for (s = exec_bfd->sections; s; s = s->next)
12569 {
12570 char tmp1[40], tmp2[40];
12571 int sec_length;
12572
12573 if ((s->flags & SEC_LOAD) == 0 ||
12574 /* (s->flags & SEC_CODE) == 0 || */
12575 (s->flags & SEC_READONLY) == 0)
12576 continue;
12577
12578 anysecs = 1;
12579 vma = bfd_get_section_vma (abfd, s);
12580 size = bfd_get_section_size (s);
12581 sprintf_vma (tmp1, vma);
12582 sprintf_vma (tmp2, vma + size);
12583 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12584 if (offset + sec_length + 1 > target_buf_size)
12585 {
12586 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12587 warning (_("\
12588Too many sections for read-only sections definition packet."));
12589 break;
12590 }
12591 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
12592 tmp1, tmp2);
12593 offset += sec_length;
12594 }
12595 if (anysecs)
12596 {
12597 putpkt (target_buf);
12598 getpkt (&target_buf, &target_buf_size, 0);
12599 }
12600}
12601
12602static void
12603remote_trace_start (struct target_ops *self)
12604{
12605 putpkt ("QTStart");
12606 remote_get_noisy_reply (&target_buf, &target_buf_size);
12607 if (*target_buf == '\0')
12608 error (_("Target does not support this command."));
12609 if (strcmp (target_buf, "OK") != 0)
12610 error (_("Bogus reply from target: %s"), target_buf);
12611}
12612
12613static int
12614remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12615{
12616 /* Initialize it just to avoid a GCC false warning. */
12617 char *p = NULL;
12618 /* FIXME we need to get register block size some other way. */
12619 extern int trace_regblock_size;
12620 enum packet_result result;
12621
12622 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12623 return -1;
12624
12625 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
12626
12627 putpkt ("qTStatus");
12628
12629 TRY
12630 {
12631 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
12632 }
12633 CATCH (ex, RETURN_MASK_ERROR)
12634 {
12635 if (ex.error != TARGET_CLOSE_ERROR)
12636 {
12637 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12638 return -1;
12639 }
12640 throw_exception (ex);
12641 }
12642 END_CATCH
12643
12644 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12645
12646 /* If the remote target doesn't do tracing, flag it. */
12647 if (result == PACKET_UNKNOWN)
12648 return -1;
12649
12650 /* We're working with a live target. */
12651 ts->filename = NULL;
12652
12653 if (*p++ != 'T')
12654 error (_("Bogus trace status reply from target: %s"), target_buf);
12655
12656 /* Function 'parse_trace_status' sets default value of each field of
12657 'ts' at first, so we don't have to do it here. */
12658 parse_trace_status (p, ts);
12659
12660 return ts->running;
12661}
12662
12663static void
12664remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12665 struct uploaded_tp *utp)
12666{
12667 struct remote_state *rs = get_remote_state ();
12668 char *reply;
12669 struct bp_location *loc;
12670 struct tracepoint *tp = (struct tracepoint *) bp;
12671 size_t size = get_remote_packet_size ();
12672
12673 if (tp)
12674 {
12675 tp->hit_count = 0;
12676 tp->traceframe_usage = 0;
12677 for (loc = tp->loc; loc; loc = loc->next)
12678 {
12679 /* If the tracepoint was never downloaded, don't go asking for
12680 any status. */
12681 if (tp->number_on_target == 0)
12682 continue;
12683 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12684 phex_nz (loc->address, 0));
12685 putpkt (rs->buf);
12686 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12687 if (reply && *reply)
12688 {
12689 if (*reply == 'V')
12690 parse_tracepoint_status (reply + 1, bp, utp);
12691 }
12692 }
12693 }
12694 else if (utp)
12695 {
12696 utp->hit_count = 0;
12697 utp->traceframe_usage = 0;
12698 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12699 phex_nz (utp->addr, 0));
12700 putpkt (rs->buf);
12701 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12702 if (reply && *reply)
12703 {
12704 if (*reply == 'V')
12705 parse_tracepoint_status (reply + 1, bp, utp);
12706 }
12707 }
12708}
12709
12710static void
12711remote_trace_stop (struct target_ops *self)
12712{
12713 putpkt ("QTStop");
12714 remote_get_noisy_reply (&target_buf, &target_buf_size);
12715 if (*target_buf == '\0')
12716 error (_("Target does not support this command."));
12717 if (strcmp (target_buf, "OK") != 0)
12718 error (_("Bogus reply from target: %s"), target_buf);
12719}
12720
12721static int
12722remote_trace_find (struct target_ops *self,
12723 enum trace_find_type type, int num,
12724 CORE_ADDR addr1, CORE_ADDR addr2,
12725 int *tpp)
12726{
12727 struct remote_state *rs = get_remote_state ();
12728 char *endbuf = rs->buf + get_remote_packet_size ();
12729 char *p, *reply;
12730 int target_frameno = -1, target_tracept = -1;
12731
12732 /* Lookups other than by absolute frame number depend on the current
12733 trace selected, so make sure it is correct on the remote end
12734 first. */
12735 if (type != tfind_number)
12736 set_remote_traceframe ();
12737
12738 p = rs->buf;
12739 strcpy (p, "QTFrame:");
12740 p = strchr (p, '\0');
12741 switch (type)
12742 {
12743 case tfind_number:
12744 xsnprintf (p, endbuf - p, "%x", num);
12745 break;
12746 case tfind_pc:
12747 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12748 break;
12749 case tfind_tp:
12750 xsnprintf (p, endbuf - p, "tdp:%x", num);
12751 break;
12752 case tfind_range:
12753 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12754 phex_nz (addr2, 0));
12755 break;
12756 case tfind_outside:
12757 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12758 phex_nz (addr2, 0));
12759 break;
12760 default:
12761 error (_("Unknown trace find type %d"), type);
12762 }
12763
12764 putpkt (rs->buf);
12765 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
12766 if (*reply == '\0')
12767 error (_("Target does not support this command."));
12768
12769 while (reply && *reply)
12770 switch (*reply)
12771 {
12772 case 'F':
12773 p = ++reply;
12774 target_frameno = (int) strtol (p, &reply, 16);
12775 if (reply == p)
12776 error (_("Unable to parse trace frame number"));
12777 /* Don't update our remote traceframe number cache on failure
12778 to select a remote traceframe. */
12779 if (target_frameno == -1)
12780 return -1;
12781 break;
12782 case 'T':
12783 p = ++reply;
12784 target_tracept = (int) strtol (p, &reply, 16);
12785 if (reply == p)
12786 error (_("Unable to parse tracepoint number"));
12787 break;
12788 case 'O': /* "OK"? */
12789 if (reply[1] == 'K' && reply[2] == '\0')
12790 reply += 2;
12791 else
12792 error (_("Bogus reply from target: %s"), reply);
12793 break;
12794 default:
12795 error (_("Bogus reply from target: %s"), reply);
12796 }
12797 if (tpp)
12798 *tpp = target_tracept;
12799
12800 rs->remote_traceframe_number = target_frameno;
12801 return target_frameno;
12802}
12803
12804static int
12805remote_get_trace_state_variable_value (struct target_ops *self,
12806 int tsvnum, LONGEST *val)
12807{
12808 struct remote_state *rs = get_remote_state ();
12809 char *reply;
12810 ULONGEST uval;
12811
12812 set_remote_traceframe ();
12813
12814 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12815 putpkt (rs->buf);
12816 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12817 if (reply && *reply)
12818 {
12819 if (*reply == 'V')
12820 {
12821 unpack_varlen_hex (reply + 1, &uval);
12822 *val = (LONGEST) uval;
12823 return 1;
12824 }
12825 }
12826 return 0;
12827}
12828
12829static int
12830remote_save_trace_data (struct target_ops *self, const char *filename)
12831{
12832 struct remote_state *rs = get_remote_state ();
12833 char *p, *reply;
12834
12835 p = rs->buf;
12836 strcpy (p, "QTSave:");
12837 p += strlen (p);
12838 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12839 error (_("Remote file name too long for trace save packet"));
12840 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12841 *p++ = '\0';
12842 putpkt (rs->buf);
12843 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12844 if (*reply == '\0')
12845 error (_("Target does not support this command."));
12846 if (strcmp (reply, "OK") != 0)
12847 error (_("Bogus reply from target: %s"), reply);
12848 return 0;
12849}
12850
12851/* This is basically a memory transfer, but needs to be its own packet
12852 because we don't know how the target actually organizes its trace
12853 memory, plus we want to be able to ask for as much as possible, but
12854 not be unhappy if we don't get as much as we ask for. */
12855
12856static LONGEST
12857remote_get_raw_trace_data (struct target_ops *self,
12858 gdb_byte *buf, ULONGEST offset, LONGEST len)
12859{
12860 struct remote_state *rs = get_remote_state ();
12861 char *reply;
12862 char *p;
12863 int rslt;
12864
12865 p = rs->buf;
12866 strcpy (p, "qTBuffer:");
12867 p += strlen (p);
12868 p += hexnumstr (p, offset);
12869 *p++ = ',';
12870 p += hexnumstr (p, len);
12871 *p++ = '\0';
12872
12873 putpkt (rs->buf);
12874 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12875 if (reply && *reply)
12876 {
12877 /* 'l' by itself means we're at the end of the buffer and
12878 there is nothing more to get. */
12879 if (*reply == 'l')
12880 return 0;
12881
12882 /* Convert the reply into binary. Limit the number of bytes to
12883 convert according to our passed-in buffer size, rather than
12884 what was returned in the packet; if the target is
12885 unexpectedly generous and gives us a bigger reply than we
12886 asked for, we don't want to crash. */
12887 rslt = hex2bin (target_buf, buf, len);
12888 return rslt;
12889 }
12890
12891 /* Something went wrong, flag as an error. */
12892 return -1;
12893}
12894
12895static void
12896remote_set_disconnected_tracing (struct target_ops *self, int val)
12897{
12898 struct remote_state *rs = get_remote_state ();
12899
12900 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12901 {
12902 char *reply;
12903
12904 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12905 putpkt (rs->buf);
12906 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12907 if (*reply == '\0')
12908 error (_("Target does not support this command."));
12909 if (strcmp (reply, "OK") != 0)
12910 error (_("Bogus reply from target: %s"), reply);
12911 }
12912 else if (val)
12913 warning (_("Target does not support disconnected tracing."));
12914}
12915
12916static int
12917remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12918{
12919 struct thread_info *info = find_thread_ptid (ptid);
12920
12921 if (info && info->priv)
12922 return info->priv->core;
12923 return -1;
12924}
12925
12926static void
12927remote_set_circular_trace_buffer (struct target_ops *self, int val)
12928{
12929 struct remote_state *rs = get_remote_state ();
12930 char *reply;
12931
12932 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12933 putpkt (rs->buf);
12934 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12935 if (*reply == '\0')
12936 error (_("Target does not support this command."));
12937 if (strcmp (reply, "OK") != 0)
12938 error (_("Bogus reply from target: %s"), reply);
12939}
12940
12941static struct traceframe_info *
12942remote_traceframe_info (struct target_ops *self)
12943{
12944 char *text;
12945
12946 text = target_read_stralloc (&current_target,
12947 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
12948 if (text != NULL)
12949 {
12950 struct traceframe_info *info;
12951 struct cleanup *back_to = make_cleanup (xfree, text);
12952
12953 info = parse_traceframe_info (text);
12954 do_cleanups (back_to);
12955 return info;
12956 }
12957
12958 return NULL;
12959}
12960
12961/* Handle the qTMinFTPILen packet. Returns the minimum length of
12962 instruction on which a fast tracepoint may be placed. Returns -1
12963 if the packet is not supported, and 0 if the minimum instruction
12964 length is unknown. */
12965
12966static int
12967remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12968{
12969 struct remote_state *rs = get_remote_state ();
12970 char *reply;
12971
12972 /* If we're not debugging a process yet, the IPA can't be
12973 loaded. */
12974 if (!target_has_execution)
12975 return 0;
12976
12977 /* Make sure the remote is pointing at the right process. */
12978 set_general_process ();
12979
12980 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12981 putpkt (rs->buf);
12982 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
12983 if (*reply == '\0')
12984 return -1;
12985 else
12986 {
12987 ULONGEST min_insn_len;
12988
12989 unpack_varlen_hex (reply, &min_insn_len);
12990
12991 return (int) min_insn_len;
12992 }
12993}
12994
12995static void
12996remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12997{
12998 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12999 {
13000 struct remote_state *rs = get_remote_state ();
13001 char *buf = rs->buf;
13002 char *endbuf = rs->buf + get_remote_packet_size ();
13003 enum packet_result result;
13004
13005 gdb_assert (val >= 0 || val == -1);
13006 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13007 /* Send -1 as literal "-1" to avoid host size dependency. */
13008 if (val < 0)
13009 {
13010 *buf++ = '-';
13011 buf += hexnumstr (buf, (ULONGEST) -val);
13012 }
13013 else
13014 buf += hexnumstr (buf, (ULONGEST) val);
13015
13016 putpkt (rs->buf);
13017 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
13018 result = packet_ok (rs->buf,
13019 &remote_protocol_packets[PACKET_QTBuffer_size]);
13020
13021 if (result != PACKET_OK)
13022 warning (_("Bogus reply from target: %s"), rs->buf);
13023 }
13024}
13025
13026static int
13027remote_set_trace_notes (struct target_ops *self,
13028 const char *user, const char *notes,
13029 const char *stop_notes)
13030{
13031 struct remote_state *rs = get_remote_state ();
13032 char *reply;
13033 char *buf = rs->buf;
13034 char *endbuf = rs->buf + get_remote_packet_size ();
13035 int nbytes;
13036
13037 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13038 if (user)
13039 {
13040 buf += xsnprintf (buf, endbuf - buf, "user:");
13041 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13042 buf += 2 * nbytes;
13043 *buf++ = ';';
13044 }
13045 if (notes)
13046 {
13047 buf += xsnprintf (buf, endbuf - buf, "notes:");
13048 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13049 buf += 2 * nbytes;
13050 *buf++ = ';';
13051 }
13052 if (stop_notes)
13053 {
13054 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13055 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13056 buf += 2 * nbytes;
13057 *buf++ = ';';
13058 }
13059 /* Ensure the buffer is terminated. */
13060 *buf = '\0';
13061
13062 putpkt (rs->buf);
13063 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
13064 if (*reply == '\0')
13065 return 0;
13066
13067 if (strcmp (reply, "OK") != 0)
13068 error (_("Bogus reply from target: %s"), reply);
13069
13070 return 1;
13071}
13072
13073static int
13074remote_use_agent (struct target_ops *self, int use)
13075{
13076 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13077 {
13078 struct remote_state *rs = get_remote_state ();
13079
13080 /* If the stub supports QAgent. */
13081 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13082 putpkt (rs->buf);
13083 getpkt (&rs->buf, &rs->buf_size, 0);
13084
13085 if (strcmp (rs->buf, "OK") == 0)
13086 {
13087 use_agent = use;
13088 return 1;
13089 }
13090 }
13091
13092 return 0;
13093}
13094
13095static int
13096remote_can_use_agent (struct target_ops *self)
13097{
13098 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13099}
13100
13101struct btrace_target_info
13102{
13103 /* The ptid of the traced thread. */
13104 ptid_t ptid;
13105
13106 /* The obtained branch trace configuration. */
13107 struct btrace_config conf;
13108};
13109
13110/* Reset our idea of our target's btrace configuration. */
13111
13112static void
13113remote_btrace_reset (void)
13114{
13115 struct remote_state *rs = get_remote_state ();
13116
13117 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13118}
13119
13120/* Check whether the target supports branch tracing. */
13121
13122static int
13123remote_supports_btrace (struct target_ops *self, enum btrace_format format)
13124{
13125 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
13126 return 0;
13127 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
13128 return 0;
13129
13130 switch (format)
13131 {
13132 case BTRACE_FORMAT_NONE:
13133 return 0;
13134
13135 case BTRACE_FORMAT_BTS:
13136 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
13137
13138 case BTRACE_FORMAT_PT:
13139 /* The trace is decoded on the host. Even if our target supports it,
13140 we still need to have libipt to decode the trace. */
13141#if defined (HAVE_LIBIPT)
13142 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
13143#else /* !defined (HAVE_LIBIPT) */
13144 return 0;
13145#endif /* !defined (HAVE_LIBIPT) */
13146 }
13147
13148 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
13149}
13150
13151/* Synchronize the configuration with the target. */
13152
13153static void
13154btrace_sync_conf (const struct btrace_config *conf)
13155{
13156 struct packet_config *packet;
13157 struct remote_state *rs;
13158 char *buf, *pos, *endbuf;
13159
13160 rs = get_remote_state ();
13161 buf = rs->buf;
13162 endbuf = buf + get_remote_packet_size ();
13163
13164 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13165 if (packet_config_support (packet) == PACKET_ENABLE
13166 && conf->bts.size != rs->btrace_config.bts.size)
13167 {
13168 pos = buf;
13169 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13170 conf->bts.size);
13171
13172 putpkt (buf);
13173 getpkt (&buf, &rs->buf_size, 0);
13174
13175 if (packet_ok (buf, packet) == PACKET_ERROR)
13176 {
13177 if (buf[0] == 'E' && buf[1] == '.')
13178 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13179 else
13180 error (_("Failed to configure the BTS buffer size."));
13181 }
13182
13183 rs->btrace_config.bts.size = conf->bts.size;
13184 }
13185
13186 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13187 if (packet_config_support (packet) == PACKET_ENABLE
13188 && conf->pt.size != rs->btrace_config.pt.size)
13189 {
13190 pos = buf;
13191 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13192 conf->pt.size);
13193
13194 putpkt (buf);
13195 getpkt (&buf, &rs->buf_size, 0);
13196
13197 if (packet_ok (buf, packet) == PACKET_ERROR)
13198 {
13199 if (buf[0] == 'E' && buf[1] == '.')
13200 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13201 else
13202 error (_("Failed to configure the trace buffer size."));
13203 }
13204
13205 rs->btrace_config.pt.size = conf->pt.size;
13206 }
13207}
13208
13209/* Read the current thread's btrace configuration from the target and
13210 store it into CONF. */
13211
13212static void
13213btrace_read_config (struct btrace_config *conf)
13214{
13215 char *xml;
13216
13217 xml = target_read_stralloc (&current_target,
13218 TARGET_OBJECT_BTRACE_CONF, "");
13219 if (xml != NULL)
13220 {
13221 struct cleanup *cleanup;
13222
13223 cleanup = make_cleanup (xfree, xml);
13224 parse_xml_btrace_conf (conf, xml);
13225 do_cleanups (cleanup);
13226 }
13227}
13228
13229/* Maybe reopen target btrace. */
13230
13231static void
13232remote_btrace_maybe_reopen (void)
13233{
13234 struct remote_state *rs = get_remote_state ();
13235 struct thread_info *tp;
13236 int btrace_target_pushed = 0;
13237 int warned = 0;
13238
13239 scoped_restore_current_thread restore_thread;
13240
13241 ALL_NON_EXITED_THREADS (tp)
13242 {
13243 set_general_thread (tp->ptid);
13244
13245 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13246 btrace_read_config (&rs->btrace_config);
13247
13248 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13249 continue;
13250
13251#if !defined (HAVE_LIBIPT)
13252 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13253 {
13254 if (!warned)
13255 {
13256 warned = 1;
13257 warning (_("GDB does not support Intel Processor Trace. "
13258 "\"record\" will not work in this session."));
13259 }
13260
13261 continue;
13262 }
13263#endif /* !defined (HAVE_LIBIPT) */
13264
13265 /* Push target, once, but before anything else happens. This way our
13266 changes to the threads will be cleaned up by unpushing the target
13267 in case btrace_read_config () throws. */
13268 if (!btrace_target_pushed)
13269 {
13270 btrace_target_pushed = 1;
13271 record_btrace_push_target ();
13272 printf_filtered (_("Target is recording using %s.\n"),
13273 btrace_format_string (rs->btrace_config.format));
13274 }
13275
13276 tp->btrace.target = XCNEW (struct btrace_target_info);
13277 tp->btrace.target->ptid = tp->ptid;
13278 tp->btrace.target->conf = rs->btrace_config;
13279 }
13280}
13281
13282/* Enable branch tracing. */
13283
13284static struct btrace_target_info *
13285remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13286 const struct btrace_config *conf)
13287{
13288 struct btrace_target_info *tinfo = NULL;
13289 struct packet_config *packet = NULL;
13290 struct remote_state *rs = get_remote_state ();
13291 char *buf = rs->buf;
13292 char *endbuf = rs->buf + get_remote_packet_size ();
13293
13294 switch (conf->format)
13295 {
13296 case BTRACE_FORMAT_BTS:
13297 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13298 break;
13299
13300 case BTRACE_FORMAT_PT:
13301 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13302 break;
13303 }
13304
13305 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13306 error (_("Target does not support branch tracing."));
13307
13308 btrace_sync_conf (conf);
13309
13310 set_general_thread (ptid);
13311
13312 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13313 putpkt (rs->buf);
13314 getpkt (&rs->buf, &rs->buf_size, 0);
13315
13316 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13317 {
13318 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13319 error (_("Could not enable branch tracing for %s: %s"),
13320 target_pid_to_str (ptid), rs->buf + 2);
13321 else
13322 error (_("Could not enable branch tracing for %s."),
13323 target_pid_to_str (ptid));
13324 }
13325
13326 tinfo = XCNEW (struct btrace_target_info);
13327 tinfo->ptid = ptid;
13328
13329 /* If we fail to read the configuration, we lose some information, but the
13330 tracing itself is not impacted. */
13331 TRY
13332 {
13333 btrace_read_config (&tinfo->conf);
13334 }
13335 CATCH (err, RETURN_MASK_ERROR)
13336 {
13337 if (err.message != NULL)
13338 warning ("%s", err.message);
13339 }
13340 END_CATCH
13341
13342 return tinfo;
13343}
13344
13345/* Disable branch tracing. */
13346
13347static void
13348remote_disable_btrace (struct target_ops *self,
13349 struct btrace_target_info *tinfo)
13350{
13351 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13352 struct remote_state *rs = get_remote_state ();
13353 char *buf = rs->buf;
13354 char *endbuf = rs->buf + get_remote_packet_size ();
13355
13356 if (packet_config_support (packet) != PACKET_ENABLE)
13357 error (_("Target does not support branch tracing."));
13358
13359 set_general_thread (tinfo->ptid);
13360
13361 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13362 putpkt (rs->buf);
13363 getpkt (&rs->buf, &rs->buf_size, 0);
13364
13365 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13366 {
13367 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13368 error (_("Could not disable branch tracing for %s: %s"),
13369 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13370 else
13371 error (_("Could not disable branch tracing for %s."),
13372 target_pid_to_str (tinfo->ptid));
13373 }
13374
13375 xfree (tinfo);
13376}
13377
13378/* Teardown branch tracing. */
13379
13380static void
13381remote_teardown_btrace (struct target_ops *self,
13382 struct btrace_target_info *tinfo)
13383{
13384 /* We must not talk to the target during teardown. */
13385 xfree (tinfo);
13386}
13387
13388/* Read the branch trace. */
13389
13390static enum btrace_error
13391remote_read_btrace (struct target_ops *self,
13392 struct btrace_data *btrace,
13393 struct btrace_target_info *tinfo,
13394 enum btrace_read_type type)
13395{
13396 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13397 struct cleanup *cleanup;
13398 const char *annex;
13399 char *xml;
13400
13401 if (packet_config_support (packet) != PACKET_ENABLE)
13402 error (_("Target does not support branch tracing."));
13403
13404#if !defined(HAVE_LIBEXPAT)
13405 error (_("Cannot process branch tracing result. XML parsing not supported."));
13406#endif
13407
13408 switch (type)
13409 {
13410 case BTRACE_READ_ALL:
13411 annex = "all";
13412 break;
13413 case BTRACE_READ_NEW:
13414 annex = "new";
13415 break;
13416 case BTRACE_READ_DELTA:
13417 annex = "delta";
13418 break;
13419 default:
13420 internal_error (__FILE__, __LINE__,
13421 _("Bad branch tracing read type: %u."),
13422 (unsigned int) type);
13423 }
13424
13425 xml = target_read_stralloc (&current_target,
13426 TARGET_OBJECT_BTRACE, annex);
13427 if (xml == NULL)
13428 return BTRACE_ERR_UNKNOWN;
13429
13430 cleanup = make_cleanup (xfree, xml);
13431 parse_xml_btrace (btrace, xml);
13432 do_cleanups (cleanup);
13433
13434 return BTRACE_ERR_NONE;
13435}
13436
13437static const struct btrace_config *
13438remote_btrace_conf (struct target_ops *self,
13439 const struct btrace_target_info *tinfo)
13440{
13441 return &tinfo->conf;
13442}
13443
13444static int
13445remote_augmented_libraries_svr4_read (struct target_ops *self)
13446{
13447 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13448 == PACKET_ENABLE);
13449}
13450
13451/* Implementation of to_load. */
13452
13453static void
13454remote_load (struct target_ops *self, const char *name, int from_tty)
13455{
13456 generic_load (name, from_tty);
13457}
13458
13459/* Accepts an integer PID; returns a string representing a file that
13460 can be opened on the remote side to get the symbols for the child
13461 process. Returns NULL if the operation is not supported. */
13462
13463static char *
13464remote_pid_to_exec_file (struct target_ops *self, int pid)
13465{
13466 static char *filename = NULL;
13467 struct inferior *inf;
13468 char *annex = NULL;
13469
13470 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13471 return NULL;
13472
13473 if (filename != NULL)
13474 xfree (filename);
13475
13476 inf = find_inferior_pid (pid);
13477 if (inf == NULL)
13478 internal_error (__FILE__, __LINE__,
13479 _("not currently attached to process %d"), pid);
13480
13481 if (!inf->fake_pid_p)
13482 {
13483 const int annex_size = 9;
13484
13485 annex = (char *) alloca (annex_size);
13486 xsnprintf (annex, annex_size, "%x", pid);
13487 }
13488
13489 filename = target_read_stralloc (&current_target,
13490 TARGET_OBJECT_EXEC_FILE, annex);
13491
13492 return filename;
13493}
13494
13495/* Implement the to_can_do_single_step target_ops method. */
13496
13497static int
13498remote_can_do_single_step (struct target_ops *ops)
13499{
13500 /* We can only tell whether target supports single step or not by
13501 supported s and S vCont actions if the stub supports vContSupported
13502 feature. If the stub doesn't support vContSupported feature,
13503 we have conservatively to think target doesn't supports single
13504 step. */
13505 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13506 {
13507 struct remote_state *rs = get_remote_state ();
13508
13509 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13510 remote_vcont_probe (rs);
13511
13512 return rs->supports_vCont.s && rs->supports_vCont.S;
13513 }
13514 else
13515 return 0;
13516}
13517
13518/* Implementation of the to_execution_direction method for the remote
13519 target. */
13520
13521static enum exec_direction_kind
13522remote_execution_direction (struct target_ops *self)
13523{
13524 struct remote_state *rs = get_remote_state ();
13525
13526 return rs->last_resume_exec_dir;
13527}
13528
13529static void
13530init_remote_ops (void)
13531{
13532 remote_ops.to_shortname = "remote";
13533 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13534 remote_ops.to_doc =
13535 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13536Specify the serial device it is connected to\n\
13537(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13538 remote_ops.to_open = remote_open;
13539 remote_ops.to_close = remote_close;
13540 remote_ops.to_detach = remote_detach;
13541 remote_ops.to_disconnect = remote_disconnect;
13542 remote_ops.to_resume = remote_resume;
13543 remote_ops.to_commit_resume = remote_commit_resume;
13544 remote_ops.to_wait = remote_wait;
13545 remote_ops.to_fetch_registers = remote_fetch_registers;
13546 remote_ops.to_store_registers = remote_store_registers;
13547 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13548 remote_ops.to_files_info = remote_files_info;
13549 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13550 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13551 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13552 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13553 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13554 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13555 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13556 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13557 remote_ops.to_watchpoint_addr_within_range =
13558 remote_watchpoint_addr_within_range;
13559 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13560 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13561 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13562 remote_ops.to_region_ok_for_hw_watchpoint
13563 = remote_region_ok_for_hw_watchpoint;
13564 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13565 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13566 remote_ops.to_kill = remote_kill;
13567 remote_ops.to_load = remote_load;
13568 remote_ops.to_mourn_inferior = remote_mourn;
13569 remote_ops.to_pass_signals = remote_pass_signals;
13570 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13571 remote_ops.to_program_signals = remote_program_signals;
13572 remote_ops.to_thread_alive = remote_thread_alive;
13573 remote_ops.to_thread_name = remote_thread_name;
13574 remote_ops.to_update_thread_list = remote_update_thread_list;
13575 remote_ops.to_pid_to_str = remote_pid_to_str;
13576 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13577 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13578 remote_ops.to_stop = remote_stop;
13579 remote_ops.to_interrupt = remote_interrupt;
13580 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13581 remote_ops.to_xfer_partial = remote_xfer_partial;
13582 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13583 remote_ops.to_rcmd = remote_rcmd;
13584 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13585 remote_ops.to_log_command = serial_log_command;
13586 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13587 remote_ops.to_stratum = process_stratum;
13588 remote_ops.to_has_all_memory = default_child_has_all_memory;
13589 remote_ops.to_has_memory = default_child_has_memory;
13590 remote_ops.to_has_stack = default_child_has_stack;
13591 remote_ops.to_has_registers = default_child_has_registers;
13592 remote_ops.to_has_execution = default_child_has_execution;
13593 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13594 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13595 remote_ops.to_magic = OPS_MAGIC;
13596 remote_ops.to_memory_map = remote_memory_map;
13597 remote_ops.to_flash_erase = remote_flash_erase;
13598 remote_ops.to_flash_done = remote_flash_done;
13599 remote_ops.to_read_description = remote_read_description;
13600 remote_ops.to_search_memory = remote_search_memory;
13601 remote_ops.to_can_async_p = remote_can_async_p;
13602 remote_ops.to_is_async_p = remote_is_async_p;
13603 remote_ops.to_async = remote_async;
13604 remote_ops.to_thread_events = remote_thread_events;
13605 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13606 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13607 remote_ops.to_terminal_ours = remote_terminal_ours;
13608 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13609 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13610 remote_ops.to_supports_disable_randomization
13611 = remote_supports_disable_randomization;
13612 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13613 remote_ops.to_fileio_open = remote_hostio_open;
13614 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13615 remote_ops.to_fileio_pread = remote_hostio_pread;
13616 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13617 remote_ops.to_fileio_close = remote_hostio_close;
13618 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13619 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13620 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13621 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13622 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13623 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13624 remote_ops.to_trace_init = remote_trace_init;
13625 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13626 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13627 remote_ops.to_download_trace_state_variable
13628 = remote_download_trace_state_variable;
13629 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13630 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13631 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13632 remote_ops.to_trace_start = remote_trace_start;
13633 remote_ops.to_get_trace_status = remote_get_trace_status;
13634 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13635 remote_ops.to_trace_stop = remote_trace_stop;
13636 remote_ops.to_trace_find = remote_trace_find;
13637 remote_ops.to_get_trace_state_variable_value
13638 = remote_get_trace_state_variable_value;
13639 remote_ops.to_save_trace_data = remote_save_trace_data;
13640 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13641 remote_ops.to_upload_trace_state_variables
13642 = remote_upload_trace_state_variables;
13643 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13644 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13645 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13646 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13647 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13648 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13649 remote_ops.to_core_of_thread = remote_core_of_thread;
13650 remote_ops.to_verify_memory = remote_verify_memory;
13651 remote_ops.to_get_tib_address = remote_get_tib_address;
13652 remote_ops.to_set_permissions = remote_set_permissions;
13653 remote_ops.to_static_tracepoint_marker_at
13654 = remote_static_tracepoint_marker_at;
13655 remote_ops.to_static_tracepoint_markers_by_strid
13656 = remote_static_tracepoint_markers_by_strid;
13657 remote_ops.to_traceframe_info = remote_traceframe_info;
13658 remote_ops.to_use_agent = remote_use_agent;
13659 remote_ops.to_can_use_agent = remote_can_use_agent;
13660 remote_ops.to_supports_btrace = remote_supports_btrace;
13661 remote_ops.to_enable_btrace = remote_enable_btrace;
13662 remote_ops.to_disable_btrace = remote_disable_btrace;
13663 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13664 remote_ops.to_read_btrace = remote_read_btrace;
13665 remote_ops.to_btrace_conf = remote_btrace_conf;
13666 remote_ops.to_augmented_libraries_svr4_read =
13667 remote_augmented_libraries_svr4_read;
13668 remote_ops.to_follow_fork = remote_follow_fork;
13669 remote_ops.to_follow_exec = remote_follow_exec;
13670 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13671 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13672 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13673 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13674 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13675 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13676 remote_ops.to_execution_direction = remote_execution_direction;
13677}
13678
13679/* Set up the extended remote vector by making a copy of the standard
13680 remote vector and adding to it. */
13681
13682static void
13683init_extended_remote_ops (void)
13684{
13685 extended_remote_ops = remote_ops;
13686
13687 extended_remote_ops.to_shortname = "extended-remote";
13688 extended_remote_ops.to_longname =
13689 "Extended remote serial target in gdb-specific protocol";
13690 extended_remote_ops.to_doc =
13691 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13692Specify the serial device it is connected to (e.g. /dev/ttya).";
13693 extended_remote_ops.to_open = extended_remote_open;
13694 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13695 extended_remote_ops.to_detach = extended_remote_detach;
13696 extended_remote_ops.to_attach = extended_remote_attach;
13697 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13698 extended_remote_ops.to_supports_disable_randomization
13699 = extended_remote_supports_disable_randomization;
13700}
13701
13702static int
13703remote_can_async_p (struct target_ops *ops)
13704{
13705 struct remote_state *rs = get_remote_state ();
13706
13707 /* We don't go async if the user has explicitly prevented it with the
13708 "maint set target-async" command. */
13709 if (!target_async_permitted)
13710 return 0;
13711
13712 /* We're async whenever the serial device is. */
13713 return serial_can_async_p (rs->remote_desc);
13714}
13715
13716static int
13717remote_is_async_p (struct target_ops *ops)
13718{
13719 struct remote_state *rs = get_remote_state ();
13720
13721 if (!target_async_permitted)
13722 /* We only enable async when the user specifically asks for it. */
13723 return 0;
13724
13725 /* We're async whenever the serial device is. */
13726 return serial_is_async_p (rs->remote_desc);
13727}
13728
13729/* Pass the SERIAL event on and up to the client. One day this code
13730 will be able to delay notifying the client of an event until the
13731 point where an entire packet has been received. */
13732
13733static serial_event_ftype remote_async_serial_handler;
13734
13735static void
13736remote_async_serial_handler (struct serial *scb, void *context)
13737{
13738 /* Don't propogate error information up to the client. Instead let
13739 the client find out about the error by querying the target. */
13740 inferior_event_handler (INF_REG_EVENT, NULL);
13741}
13742
13743static void
13744remote_async_inferior_event_handler (gdb_client_data data)
13745{
13746 inferior_event_handler (INF_REG_EVENT, NULL);
13747}
13748
13749static void
13750remote_async (struct target_ops *ops, int enable)
13751{
13752 struct remote_state *rs = get_remote_state ();
13753
13754 if (enable)
13755 {
13756 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13757
13758 /* If there are pending events in the stop reply queue tell the
13759 event loop to process them. */
13760 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13761 mark_async_event_handler (remote_async_inferior_event_token);
13762 /* For simplicity, below we clear the pending events token
13763 without remembering whether it is marked, so here we always
13764 mark it. If there's actually no pending notification to
13765 process, this ends up being a no-op (other than a spurious
13766 event-loop wakeup). */
13767 if (target_is_non_stop_p ())
13768 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13769 }
13770 else
13771 {
13772 serial_async (rs->remote_desc, NULL, NULL);
13773 /* If the core is disabling async, it doesn't want to be
13774 disturbed with target events. Clear all async event sources
13775 too. */
13776 clear_async_event_handler (remote_async_inferior_event_token);
13777 if (target_is_non_stop_p ())
13778 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13779 }
13780}
13781
13782/* Implementation of the to_thread_events method. */
13783
13784static void
13785remote_thread_events (struct target_ops *ops, int enable)
13786{
13787 struct remote_state *rs = get_remote_state ();
13788 size_t size = get_remote_packet_size ();
13789
13790 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13791 return;
13792
13793 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13794 putpkt (rs->buf);
13795 getpkt (&rs->buf, &rs->buf_size, 0);
13796
13797 switch (packet_ok (rs->buf,
13798 &remote_protocol_packets[PACKET_QThreadEvents]))
13799 {
13800 case PACKET_OK:
13801 if (strcmp (rs->buf, "OK") != 0)
13802 error (_("Remote refused setting thread events: %s"), rs->buf);
13803 break;
13804 case PACKET_ERROR:
13805 warning (_("Remote failure reply: %s"), rs->buf);
13806 break;
13807 case PACKET_UNKNOWN:
13808 break;
13809 }
13810}
13811
13812static void
13813set_remote_cmd (char *args, int from_tty)
13814{
13815 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13816}
13817
13818static void
13819show_remote_cmd (char *args, int from_tty)
13820{
13821 /* We can't just use cmd_show_list here, because we want to skip
13822 the redundant "show remote Z-packet" and the legacy aliases. */
13823 struct cmd_list_element *list = remote_show_cmdlist;
13824 struct ui_out *uiout = current_uiout;
13825
13826 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13827 for (; list != NULL; list = list->next)
13828 if (strcmp (list->name, "Z-packet") == 0)
13829 continue;
13830 else if (list->type == not_set_cmd)
13831 /* Alias commands are exactly like the original, except they
13832 don't have the normal type. */
13833 continue;
13834 else
13835 {
13836 ui_out_emit_tuple option_emitter (uiout, "option");
13837
13838 uiout->field_string ("name", list->name);
13839 uiout->text (": ");
13840 if (list->type == show_cmd)
13841 do_show_command (NULL, from_tty, list);
13842 else
13843 cmd_func (list, NULL, from_tty);
13844 }
13845}
13846
13847
13848/* Function to be called whenever a new objfile (shlib) is detected. */
13849static void
13850remote_new_objfile (struct objfile *objfile)
13851{
13852 struct remote_state *rs = get_remote_state ();
13853
13854 if (rs->remote_desc != 0) /* Have a remote connection. */
13855 remote_check_symbols ();
13856}
13857
13858/* Pull all the tracepoints defined on the target and create local
13859 data structures representing them. We don't want to create real
13860 tracepoints yet, we don't want to mess up the user's existing
13861 collection. */
13862
13863static int
13864remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13865{
13866 struct remote_state *rs = get_remote_state ();
13867 char *p;
13868
13869 /* Ask for a first packet of tracepoint definition. */
13870 putpkt ("qTfP");
13871 getpkt (&rs->buf, &rs->buf_size, 0);
13872 p = rs->buf;
13873 while (*p && *p != 'l')
13874 {
13875 parse_tracepoint_definition (p, utpp);
13876 /* Ask for another packet of tracepoint definition. */
13877 putpkt ("qTsP");
13878 getpkt (&rs->buf, &rs->buf_size, 0);
13879 p = rs->buf;
13880 }
13881 return 0;
13882}
13883
13884static int
13885remote_upload_trace_state_variables (struct target_ops *self,
13886 struct uploaded_tsv **utsvp)
13887{
13888 struct remote_state *rs = get_remote_state ();
13889 char *p;
13890
13891 /* Ask for a first packet of variable definition. */
13892 putpkt ("qTfV");
13893 getpkt (&rs->buf, &rs->buf_size, 0);
13894 p = rs->buf;
13895 while (*p && *p != 'l')
13896 {
13897 parse_tsv_definition (p, utsvp);
13898 /* Ask for another packet of variable definition. */
13899 putpkt ("qTsV");
13900 getpkt (&rs->buf, &rs->buf_size, 0);
13901 p = rs->buf;
13902 }
13903 return 0;
13904}
13905
13906/* The "set/show range-stepping" show hook. */
13907
13908static void
13909show_range_stepping (struct ui_file *file, int from_tty,
13910 struct cmd_list_element *c,
13911 const char *value)
13912{
13913 fprintf_filtered (file,
13914 _("Debugger's willingness to use range stepping "
13915 "is %s.\n"), value);
13916}
13917
13918/* The "set/show range-stepping" set hook. */
13919
13920static void
13921set_range_stepping (char *ignore_args, int from_tty,
13922 struct cmd_list_element *c)
13923{
13924 struct remote_state *rs = get_remote_state ();
13925
13926 /* Whene enabling, check whether range stepping is actually
13927 supported by the target, and warn if not. */
13928 if (use_range_stepping)
13929 {
13930 if (rs->remote_desc != NULL)
13931 {
13932 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13933 remote_vcont_probe (rs);
13934
13935 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13936 && rs->supports_vCont.r)
13937 return;
13938 }
13939
13940 warning (_("Range stepping is not supported by the current target"));
13941 }
13942}
13943
13944void
13945_initialize_remote (void)
13946{
13947 struct cmd_list_element *cmd;
13948 const char *cmd_name;
13949
13950 /* architecture specific data */
13951 remote_gdbarch_data_handle =
13952 gdbarch_data_register_post_init (init_remote_state);
13953 remote_g_packet_data_handle =
13954 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13955
13956 remote_pspace_data
13957 = register_program_space_data_with_cleanup (NULL,
13958 remote_pspace_data_cleanup);
13959
13960 /* Initialize the per-target state. At the moment there is only one
13961 of these, not one per target. Only one target is active at a
13962 time. */
13963 remote_state = new_remote_state ();
13964
13965 init_remote_ops ();
13966 add_target (&remote_ops);
13967
13968 init_extended_remote_ops ();
13969 add_target (&extended_remote_ops);
13970
13971 /* Hook into new objfile notification. */
13972 observer_attach_new_objfile (remote_new_objfile);
13973 /* We're no longer interested in notification events of an inferior
13974 when it exits. */
13975 observer_attach_inferior_exit (discard_pending_stop_replies);
13976
13977#if 0
13978 init_remote_threadtests ();
13979#endif
13980
13981 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13982 /* set/show remote ... */
13983
13984 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13985Remote protocol specific variables\n\
13986Configure various remote-protocol specific variables such as\n\
13987the packets being used"),
13988 &remote_set_cmdlist, "set remote ",
13989 0 /* allow-unknown */, &setlist);
13990 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13991Remote protocol specific variables\n\
13992Configure various remote-protocol specific variables such as\n\
13993the packets being used"),
13994 &remote_show_cmdlist, "show remote ",
13995 0 /* allow-unknown */, &showlist);
13996
13997 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13998Compare section data on target to the exec file.\n\
13999Argument is a single section name (default: all loaded sections).\n\
14000To compare only read-only loaded sections, specify the -r option."),
14001 &cmdlist);
14002
14003 add_cmd ("packet", class_maintenance, packet_command, _("\
14004Send an arbitrary packet to a remote target.\n\
14005 maintenance packet TEXT\n\
14006If GDB is talking to an inferior via the GDB serial protocol, then\n\
14007this command sends the string TEXT to the inferior, and displays the\n\
14008response packet. GDB supplies the initial `$' character, and the\n\
14009terminating `#' character and checksum."),
14010 &maintenancelist);
14011
14012 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14013Set whether to send break if interrupted."), _("\
14014Show whether to send break if interrupted."), _("\
14015If set, a break, instead of a cntrl-c, is sent to the remote target."),
14016 set_remotebreak, show_remotebreak,
14017 &setlist, &showlist);
14018 cmd_name = "remotebreak";
14019 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14020 deprecate_cmd (cmd, "set remote interrupt-sequence");
14021 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14022 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14023 deprecate_cmd (cmd, "show remote interrupt-sequence");
14024
14025 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14026 interrupt_sequence_modes, &interrupt_sequence_mode,
14027 _("\
14028Set interrupt sequence to remote target."), _("\
14029Show interrupt sequence to remote target."), _("\
14030Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14031 NULL, show_interrupt_sequence,
14032 &remote_set_cmdlist,
14033 &remote_show_cmdlist);
14034
14035 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14036 &interrupt_on_connect, _("\
14037Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14038Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14039If set, interrupt sequence is sent to remote target."),
14040 NULL, NULL,
14041 &remote_set_cmdlist, &remote_show_cmdlist);
14042
14043 /* Install commands for configuring memory read/write packets. */
14044
14045 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14046Set the maximum number of bytes per memory write packet (deprecated)."),
14047 &setlist);
14048 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14049Show the maximum number of bytes per memory write packet (deprecated)."),
14050 &showlist);
14051 add_cmd ("memory-write-packet-size", no_class,
14052 set_memory_write_packet_size, _("\
14053Set the maximum number of bytes per memory-write packet.\n\
14054Specify the number of bytes in a packet or 0 (zero) for the\n\
14055default packet size. The actual limit is further reduced\n\
14056dependent on the target. Specify ``fixed'' to disable the\n\
14057further restriction and ``limit'' to enable that restriction."),
14058 &remote_set_cmdlist);
14059 add_cmd ("memory-read-packet-size", no_class,
14060 set_memory_read_packet_size, _("\
14061Set the maximum number of bytes per memory-read packet.\n\
14062Specify the number of bytes in a packet or 0 (zero) for the\n\
14063default packet size. The actual limit is further reduced\n\
14064dependent on the target. Specify ``fixed'' to disable the\n\
14065further restriction and ``limit'' to enable that restriction."),
14066 &remote_set_cmdlist);
14067 add_cmd ("memory-write-packet-size", no_class,
14068 show_memory_write_packet_size,
14069 _("Show the maximum number of bytes per memory-write packet."),
14070 &remote_show_cmdlist);
14071 add_cmd ("memory-read-packet-size", no_class,
14072 show_memory_read_packet_size,
14073 _("Show the maximum number of bytes per memory-read packet."),
14074 &remote_show_cmdlist);
14075
14076 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14077 &remote_hw_watchpoint_limit, _("\
14078Set the maximum number of target hardware watchpoints."), _("\
14079Show the maximum number of target hardware watchpoints."), _("\
14080Specify a negative limit for unlimited."),
14081 NULL, NULL, /* FIXME: i18n: The maximum
14082 number of target hardware
14083 watchpoints is %s. */
14084 &remote_set_cmdlist, &remote_show_cmdlist);
14085 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14086 &remote_hw_watchpoint_length_limit, _("\
14087Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14088Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14089Specify a negative limit for unlimited."),
14090 NULL, NULL, /* FIXME: i18n: The maximum
14091 length (in bytes) of a target
14092 hardware watchpoint is %s. */
14093 &remote_set_cmdlist, &remote_show_cmdlist);
14094 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14095 &remote_hw_breakpoint_limit, _("\
14096Set the maximum number of target hardware breakpoints."), _("\
14097Show the maximum number of target hardware breakpoints."), _("\
14098Specify a negative limit for unlimited."),
14099 NULL, NULL, /* FIXME: i18n: The maximum
14100 number of target hardware
14101 breakpoints is %s. */
14102 &remote_set_cmdlist, &remote_show_cmdlist);
14103
14104 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14105 &remote_address_size, _("\
14106Set the maximum size of the address (in bits) in a memory packet."), _("\
14107Show the maximum size of the address (in bits) in a memory packet."), NULL,
14108 NULL,
14109 NULL, /* FIXME: i18n: */
14110 &setlist, &showlist);
14111
14112 init_all_packet_configs ();
14113
14114 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14115 "X", "binary-download", 1);
14116
14117 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14118 "vCont", "verbose-resume", 0);
14119
14120 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14121 "QPassSignals", "pass-signals", 0);
14122
14123 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14124 "QCatchSyscalls", "catch-syscalls", 0);
14125
14126 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14127 "QProgramSignals", "program-signals", 0);
14128
14129 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14130 "QStartupWithShell", "startup-with-shell", 0);
14131
14132 add_packet_config_cmd (&remote_protocol_packets
14133 [PACKET_QEnvironmentHexEncoded],
14134 "QEnvironmentHexEncoded", "environment-hex-encoded",
14135 0);
14136
14137 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14138 "QEnvironmentReset", "environment-reset",
14139 0);
14140
14141 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14142 "QEnvironmentUnset", "environment-unset",
14143 0);
14144
14145 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14146 "qSymbol", "symbol-lookup", 0);
14147
14148 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14149 "P", "set-register", 1);
14150
14151 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14152 "p", "fetch-register", 1);
14153
14154 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14155 "Z0", "software-breakpoint", 0);
14156
14157 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14158 "Z1", "hardware-breakpoint", 0);
14159
14160 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14161 "Z2", "write-watchpoint", 0);
14162
14163 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14164 "Z3", "read-watchpoint", 0);
14165
14166 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14167 "Z4", "access-watchpoint", 0);
14168
14169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14170 "qXfer:auxv:read", "read-aux-vector", 0);
14171
14172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14173 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14176 "qXfer:features:read", "target-features", 0);
14177
14178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14179 "qXfer:libraries:read", "library-info", 0);
14180
14181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14182 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14185 "qXfer:memory-map:read", "memory-map", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14188 "qXfer:spu:read", "read-spu-object", 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14191 "qXfer:spu:write", "write-spu-object", 0);
14192
14193 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14194 "qXfer:osdata:read", "osdata", 0);
14195
14196 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14197 "qXfer:threads:read", "threads", 0);
14198
14199 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14200 "qXfer:siginfo:read", "read-siginfo-object", 0);
14201
14202 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14203 "qXfer:siginfo:write", "write-siginfo-object", 0);
14204
14205 add_packet_config_cmd
14206 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14207 "qXfer:traceframe-info:read", "traceframe-info", 0);
14208
14209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14210 "qXfer:uib:read", "unwind-info-block", 0);
14211
14212 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14213 "qGetTLSAddr", "get-thread-local-storage-address",
14214 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14217 "qGetTIBAddr", "get-thread-information-block-address",
14218 0);
14219
14220 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14221 "bc", "reverse-continue", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14224 "bs", "reverse-step", 0);
14225
14226 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14227 "qSupported", "supported-packets", 0);
14228
14229 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14230 "qSearch:memory", "search-memory", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14233 "qTStatus", "trace-status", 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14236 "vFile:setfs", "hostio-setfs", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14239 "vFile:open", "hostio-open", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14242 "vFile:pread", "hostio-pread", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14245 "vFile:pwrite", "hostio-pwrite", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14248 "vFile:close", "hostio-close", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14251 "vFile:unlink", "hostio-unlink", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14254 "vFile:readlink", "hostio-readlink", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14257 "vFile:fstat", "hostio-fstat", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14260 "vAttach", "attach", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14263 "vRun", "run", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14266 "QStartNoAckMode", "noack", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14269 "vKill", "kill", 0);
14270
14271 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14272 "qAttached", "query-attached", 0);
14273
14274 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14275 "ConditionalTracepoints",
14276 "conditional-tracepoints", 0);
14277
14278 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14279 "ConditionalBreakpoints",
14280 "conditional-breakpoints", 0);
14281
14282 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14283 "BreakpointCommands",
14284 "breakpoint-commands", 0);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14287 "FastTracepoints", "fast-tracepoints", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14290 "TracepointSource", "TracepointSource", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14293 "QAllow", "allow", 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14296 "StaticTracepoints", "static-tracepoints", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14299 "InstallInTrace", "install-in-trace", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14302 "qXfer:statictrace:read", "read-sdata-object", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14305 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14308 "QDisableRandomization", "disable-randomization", 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14311 "QAgent", "agent", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14314 "QTBuffer:size", "trace-buffer-size", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14317 "Qbtrace:off", "disable-btrace", 0);
14318
14319 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14320 "Qbtrace:bts", "enable-btrace-bts", 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14323 "Qbtrace:pt", "enable-btrace-pt", 0);
14324
14325 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14326 "qXfer:btrace", "read-btrace", 0);
14327
14328 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14329 "qXfer:btrace-conf", "read-btrace-conf", 0);
14330
14331 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14332 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14333
14334 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14335 "multiprocess-feature", "multiprocess-feature", 0);
14336
14337 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14338 "swbreak-feature", "swbreak-feature", 0);
14339
14340 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14341 "hwbreak-feature", "hwbreak-feature", 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14344 "fork-event-feature", "fork-event-feature", 0);
14345
14346 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14347 "vfork-event-feature", "vfork-event-feature", 0);
14348
14349 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14350 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14351
14352 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14353 "vContSupported", "verbose-resume-supported", 0);
14354
14355 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14356 "exec-event-feature", "exec-event-feature", 0);
14357
14358 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14359 "vCtrlC", "ctrl-c", 0);
14360
14361 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14362 "QThreadEvents", "thread-events", 0);
14363
14364 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14365 "N stop reply", "no-resumed-stop-reply", 0);
14366
14367 /* Assert that we've registered "set remote foo-packet" commands
14368 for all packet configs. */
14369 {
14370 int i;
14371
14372 for (i = 0; i < PACKET_MAX; i++)
14373 {
14374 /* Ideally all configs would have a command associated. Some
14375 still don't though. */
14376 int excepted;
14377
14378 switch (i)
14379 {
14380 case PACKET_QNonStop:
14381 case PACKET_EnableDisableTracepoints_feature:
14382 case PACKET_tracenz_feature:
14383 case PACKET_DisconnectedTracing_feature:
14384 case PACKET_augmented_libraries_svr4_read_feature:
14385 case PACKET_qCRC:
14386 /* Additions to this list need to be well justified:
14387 pre-existing packets are OK; new packets are not. */
14388 excepted = 1;
14389 break;
14390 default:
14391 excepted = 0;
14392 break;
14393 }
14394
14395 /* This catches both forgetting to add a config command, and
14396 forgetting to remove a packet from the exception list. */
14397 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14398 }
14399 }
14400
14401 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14402 Z sub-packet has its own set and show commands, but users may
14403 have sets to this variable in their .gdbinit files (or in their
14404 documentation). */
14405 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14406 &remote_Z_packet_detect, _("\
14407Set use of remote protocol `Z' packets"), _("\
14408Show use of remote protocol `Z' packets "), _("\
14409When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14410packets."),
14411 set_remote_protocol_Z_packet_cmd,
14412 show_remote_protocol_Z_packet_cmd,
14413 /* FIXME: i18n: Use of remote protocol
14414 `Z' packets is %s. */
14415 &remote_set_cmdlist, &remote_show_cmdlist);
14416
14417 add_prefix_cmd ("remote", class_files, remote_command, _("\
14418Manipulate files on the remote system\n\
14419Transfer files to and from the remote target system."),
14420 &remote_cmdlist, "remote ",
14421 0 /* allow-unknown */, &cmdlist);
14422
14423 add_cmd ("put", class_files, remote_put_command,
14424 _("Copy a local file to the remote system."),
14425 &remote_cmdlist);
14426
14427 add_cmd ("get", class_files, remote_get_command,
14428 _("Copy a remote file to the local system."),
14429 &remote_cmdlist);
14430
14431 add_cmd ("delete", class_files, remote_delete_command,
14432 _("Delete a remote file."),
14433 &remote_cmdlist);
14434
14435 add_setshow_string_noescape_cmd ("exec-file", class_files,
14436 &remote_exec_file_var, _("\
14437Set the remote pathname for \"run\""), _("\
14438Show the remote pathname for \"run\""), NULL,
14439 set_remote_exec_file,
14440 show_remote_exec_file,
14441 &remote_set_cmdlist,
14442 &remote_show_cmdlist);
14443
14444 add_setshow_boolean_cmd ("range-stepping", class_run,
14445 &use_range_stepping, _("\
14446Enable or disable range stepping."), _("\
14447Show whether target-assisted range stepping is enabled."), _("\
14448If on, and the target supports it, when stepping a source line, GDB\n\
14449tells the target to step the corresponding range of addresses itself instead\n\
14450of issuing multiple single-steps. This speeds up source level\n\
14451stepping. If off, GDB always issues single-steps, even if range\n\
14452stepping is supported by the target. The default is on."),
14453 set_range_stepping,
14454 show_range_stepping,
14455 &setlist,
14456 &showlist);
14457
14458 /* Eventually initialize fileio. See fileio.c */
14459 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14460
14461 /* Take advantage of the fact that the TID field is not used, to tag
14462 special ptids with it set to != 0. */
14463 magic_null_ptid = ptid_build (42000, -1, 1);
14464 not_sent_ptid = ptid_build (42000, -2, 1);
14465 any_thread_ptid = ptid_build (42000, 0, 1);
14466
14467 target_buf_size = 2048;
14468 target_buf = (char *) xmalloc (target_buf_size);
14469}
14470
This page took 0.071396 seconds and 4 git commands to generate.