Fix PR remote/15974
[deliverable/binutils-gdb.git] / gdb / remote.c
... / ...
CommitLineData
1/* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20/* See the GDB User Guide for details of the GDB remote protocol. */
21
22#include "defs.h"
23#include <string.h>
24#include <ctype.h>
25#include <fcntl.h>
26#include "inferior.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "exceptions.h"
30#include "target.h"
31/*#include "terminal.h" */
32#include "gdbcmd.h"
33#include "objfiles.h"
34#include "gdb-stabs.h"
35#include "gdbthread.h"
36#include "remote.h"
37#include "remote-notif.h"
38#include "regcache.h"
39#include "value.h"
40#include "gdb_assert.h"
41#include "observer.h"
42#include "solib.h"
43#include "cli/cli-decode.h"
44#include "cli/cli-setshow.h"
45#include "target-descriptions.h"
46#include "gdb_bfd.h"
47#include "filestuff.h"
48
49#include <ctype.h>
50#include <sys/time.h>
51
52#include "event-loop.h"
53#include "event-top.h"
54#include "inf-loop.h"
55
56#include <signal.h>
57#include "serial.h"
58
59#include "gdbcore.h" /* for exec_bfd */
60
61#include "remote-fileio.h"
62#include "gdb/fileio.h"
63#include <sys/stat.h>
64#include "xml-support.h"
65
66#include "memory-map.h"
67
68#include "tracepoint.h"
69#include "ax.h"
70#include "ax-gdb.h"
71#include "agent.h"
72#include "btrace.h"
73
74/* Temp hacks for tracepoint encoding migration. */
75static char *target_buf;
76static long target_buf_size;
77
78/* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88enum { REMOTE_ALIGN_WRITES = 16 };
89
90/* Prototypes for local functions. */
91static void async_cleanup_sigint_signal_handler (void *dummy);
92static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96static void async_handle_remote_sigint (int);
97static void async_handle_remote_sigint_twice (int);
98
99static void remote_files_info (struct target_ops *ignore);
100
101static void remote_prepare_to_store (struct regcache *regcache);
102
103static void remote_open (char *name, int from_tty);
104
105static void extended_remote_open (char *name, int from_tty);
106
107static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109static void remote_close (void);
110
111static void remote_mourn (struct target_ops *ops);
112
113static void extended_remote_restart (void);
114
115static void extended_remote_mourn (struct target_ops *);
116
117static void remote_mourn_1 (struct target_ops *);
118
119static void remote_send (char **buf, long *sizeof_buf_p);
120
121static int readchar (int timeout);
122
123static void remote_serial_write (const char *str, int len);
124
125static void remote_kill (struct target_ops *ops);
126
127static int tohex (int nib);
128
129static int remote_can_async_p (void);
130
131static int remote_is_async_p (void);
132
133static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136static void sync_remote_interrupt_twice (int signo);
137
138static void interrupt_query (void);
139
140static void set_general_thread (struct ptid ptid);
141static void set_continue_thread (struct ptid ptid);
142
143static void get_offsets (void);
144
145static void skip_frame (void);
146
147static long read_frame (char **buf_p, long *sizeof_buf);
148
149static int hexnumlen (ULONGEST num);
150
151static void init_remote_ops (void);
152
153static void init_extended_remote_ops (void);
154
155static void remote_stop (ptid_t);
156
157static int ishex (int ch, int *val);
158
159static int stubhex (int ch);
160
161static int hexnumstr (char *, ULONGEST);
162
163static int hexnumnstr (char *, ULONGEST, int);
164
165static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167static void print_packet (char *);
168
169static void compare_sections_command (char *, int);
170
171static void packet_command (char *, int);
172
173static int stub_unpack_int (char *buff, int fieldlength);
174
175static ptid_t remote_current_thread (ptid_t oldptid);
176
177static void remote_find_new_threads (void);
178
179static int fromhex (int a);
180
181static int putpkt_binary (char *buf, int cnt);
182
183static void check_binary_download (CORE_ADDR addr);
184
185struct packet_config;
186
187static void show_packet_config_cmd (struct packet_config *config);
188
189static void update_packet_config (struct packet_config *config);
190
191static void set_remote_protocol_packet_cmd (char *args, int from_tty,
192 struct cmd_list_element *c);
193
194static void show_remote_protocol_packet_cmd (struct ui_file *file,
195 int from_tty,
196 struct cmd_list_element *c,
197 const char *value);
198
199static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
200static ptid_t read_ptid (char *buf, char **obuf);
201
202static void remote_set_permissions (void);
203
204struct remote_state;
205static int remote_get_trace_status (struct trace_status *ts);
206
207static int remote_upload_tracepoints (struct uploaded_tp **utpp);
208
209static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
210
211static void remote_query_supported (void);
212
213static void remote_check_symbols (void);
214
215void _initialize_remote (void);
216
217struct stop_reply;
218static void stop_reply_xfree (struct stop_reply *);
219static void remote_parse_stop_reply (char *, struct stop_reply *);
220static void push_stop_reply (struct stop_reply *);
221static void discard_pending_stop_replies_in_queue (struct remote_state *);
222static int peek_stop_reply (ptid_t ptid);
223
224static void remote_async_inferior_event_handler (gdb_client_data);
225
226static void remote_terminal_ours (void);
227
228static int remote_read_description_p (struct target_ops *target);
229
230static void remote_console_output (char *msg);
231
232static int remote_supports_cond_breakpoints (void);
233
234static int remote_can_run_breakpoint_commands (void);
235
236/* For "remote". */
237
238static struct cmd_list_element *remote_cmdlist;
239
240/* For "set remote" and "show remote". */
241
242static struct cmd_list_element *remote_set_cmdlist;
243static struct cmd_list_element *remote_show_cmdlist;
244
245/* Stub vCont actions support.
246
247 Each field is a boolean flag indicating whether the stub reports
248 support for the corresponding action. */
249
250struct vCont_action_support
251{
252 /* vCont;t */
253 int t;
254
255 /* vCont;r */
256 int r;
257};
258
259/* Controls whether GDB is willing to use range stepping. */
260
261static int use_range_stepping = 1;
262
263#define OPAQUETHREADBYTES 8
264
265/* a 64 bit opaque identifier */
266typedef unsigned char threadref[OPAQUETHREADBYTES];
267
268/* About this many threadisds fit in a packet. */
269
270#define MAXTHREADLISTRESULTS 32
271
272/* Description of the remote protocol state for the currently
273 connected target. This is per-target state, and independent of the
274 selected architecture. */
275
276struct remote_state
277{
278 /* A buffer to use for incoming packets, and its current size. The
279 buffer is grown dynamically for larger incoming packets.
280 Outgoing packets may also be constructed in this buffer.
281 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
282 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
283 packets. */
284 char *buf;
285 long buf_size;
286
287 /* True if we're going through initial connection setup (finding out
288 about the remote side's threads, relocating symbols, etc.). */
289 int starting_up;
290
291 /* If we negotiated packet size explicitly (and thus can bypass
292 heuristics for the largest packet size that will not overflow
293 a buffer in the stub), this will be set to that packet size.
294 Otherwise zero, meaning to use the guessed size. */
295 long explicit_packet_size;
296
297 /* remote_wait is normally called when the target is running and
298 waits for a stop reply packet. But sometimes we need to call it
299 when the target is already stopped. We can send a "?" packet
300 and have remote_wait read the response. Or, if we already have
301 the response, we can stash it in BUF and tell remote_wait to
302 skip calling getpkt. This flag is set when BUF contains a
303 stop reply packet and the target is not waiting. */
304 int cached_wait_status;
305
306 /* True, if in no ack mode. That is, neither GDB nor the stub will
307 expect acks from each other. The connection is assumed to be
308 reliable. */
309 int noack_mode;
310
311 /* True if we're connected in extended remote mode. */
312 int extended;
313
314 /* True if the stub reported support for multi-process
315 extensions. */
316 int multi_process_aware;
317
318 /* True if we resumed the target and we're waiting for the target to
319 stop. In the mean time, we can't start another command/query.
320 The remote server wouldn't be ready to process it, so we'd
321 timeout waiting for a reply that would never come and eventually
322 we'd close the connection. This can happen in asynchronous mode
323 because we allow GDB commands while the target is running. */
324 int waiting_for_stop_reply;
325
326 /* True if the stub reports support for non-stop mode. */
327 int non_stop_aware;
328
329 /* The status of the stub support for the various vCont actions. */
330 struct vCont_action_support supports_vCont;
331
332 /* True if the stub reports support for conditional tracepoints. */
333 int cond_tracepoints;
334
335 /* True if the stub reports support for target-side breakpoint
336 conditions. */
337 int cond_breakpoints;
338
339 /* True if the stub reports support for target-side breakpoint
340 commands. */
341 int breakpoint_commands;
342
343 /* True if the stub reports support for fast tracepoints. */
344 int fast_tracepoints;
345
346 /* True if the stub reports support for static tracepoints. */
347 int static_tracepoints;
348
349 /* True if the stub reports support for installing tracepoint while
350 tracing. */
351 int install_in_trace;
352
353 /* True if the stub can continue running a trace while GDB is
354 disconnected. */
355 int disconnected_tracing;
356
357 /* True if the stub reports support for enabling and disabling
358 tracepoints while a trace experiment is running. */
359 int enable_disable_tracepoints;
360
361 /* True if the stub can collect strings using tracenz bytecode. */
362 int string_tracing;
363
364 /* True if the stub supports qXfer:libraries-svr4:read with a
365 non-empty annex. */
366 int augmented_libraries_svr4_read;
367
368 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
369 responded to that. */
370 int ctrlc_pending_p;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 struct serial *remote_desc;
376
377 /* These are the threads which we last sent to the remote system. The
378 TID member will be -1 for all or -2 for not sent yet. */
379 ptid_t general_thread;
380 ptid_t continue_thread;
381
382 /* This is the traceframe which we last selected on the remote system.
383 It will be -1 if no traceframe is selected. */
384 int remote_traceframe_number;
385
386 char *last_pass_packet;
387
388 /* The last QProgramSignals packet sent to the target. We bypass
389 sending a new program signals list down to the target if the new
390 packet is exactly the same as the last we sent. IOW, we only let
391 the target know about program signals list changes. */
392 char *last_program_signals_packet;
393
394 enum gdb_signal last_sent_signal;
395
396 int last_sent_step;
397
398 char *finished_object;
399 char *finished_annex;
400 ULONGEST finished_offset;
401
402 /* Should we try the 'ThreadInfo' query packet?
403
404 This variable (NOT available to the user: auto-detect only!)
405 determines whether GDB will use the new, simpler "ThreadInfo"
406 query or the older, more complex syntax for thread queries.
407 This is an auto-detect variable (set to true at each connect,
408 and set to false when the target fails to recognize it). */
409 int use_threadinfo_query;
410 int use_threadextra_query;
411
412 void (*async_client_callback) (enum inferior_event_type event_type,
413 void *context);
414 void *async_client_context;
415
416 /* This is set to the data address of the access causing the target
417 to stop for a watchpoint. */
418 CORE_ADDR remote_watch_data_address;
419
420 /* This is non-zero if target stopped for a watchpoint. */
421 int remote_stopped_by_watchpoint_p;
422
423 threadref echo_nextthread;
424 threadref nextthread;
425 threadref resultthreadlist[MAXTHREADLISTRESULTS];
426
427 /* The state of remote notification. */
428 struct remote_notif_state *notif_state;
429};
430
431/* Private data that we'll store in (struct thread_info)->private. */
432struct private_thread_info
433{
434 char *extra;
435 int core;
436};
437
438static void
439free_private_thread_info (struct private_thread_info *info)
440{
441 xfree (info->extra);
442 xfree (info);
443}
444
445/* Returns true if the multi-process extensions are in effect. */
446static int
447remote_multi_process_p (struct remote_state *rs)
448{
449 return rs->multi_process_aware;
450}
451
452/* This data could be associated with a target, but we do not always
453 have access to the current target when we need it, so for now it is
454 static. This will be fine for as long as only one target is in use
455 at a time. */
456static struct remote_state *remote_state;
457
458static struct remote_state *
459get_remote_state_raw (void)
460{
461 return remote_state;
462}
463
464/* Allocate a new struct remote_state with xmalloc, initialize it, and
465 return it. */
466
467static struct remote_state *
468new_remote_state (void)
469{
470 struct remote_state *result = XCNEW (struct remote_state);
471
472 /* The default buffer size is unimportant; it will be expanded
473 whenever a larger buffer is needed. */
474 result->buf_size = 400;
475 result->buf = xmalloc (result->buf_size);
476 result->remote_traceframe_number = -1;
477 result->last_sent_signal = GDB_SIGNAL_0;
478
479 return result;
480}
481
482/* Description of the remote protocol for a given architecture. */
483
484struct packet_reg
485{
486 long offset; /* Offset into G packet. */
487 long regnum; /* GDB's internal register number. */
488 LONGEST pnum; /* Remote protocol register number. */
489 int in_g_packet; /* Always part of G packet. */
490 /* long size in bytes; == register_size (target_gdbarch (), regnum);
491 at present. */
492 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
493 at present. */
494};
495
496struct remote_arch_state
497{
498 /* Description of the remote protocol registers. */
499 long sizeof_g_packet;
500
501 /* Description of the remote protocol registers indexed by REGNUM
502 (making an array gdbarch_num_regs in size). */
503 struct packet_reg *regs;
504
505 /* This is the size (in chars) of the first response to the ``g''
506 packet. It is used as a heuristic when determining the maximum
507 size of memory-read and memory-write packets. A target will
508 typically only reserve a buffer large enough to hold the ``g''
509 packet. The size does not include packet overhead (headers and
510 trailers). */
511 long actual_register_packet_size;
512
513 /* This is the maximum size (in chars) of a non read/write packet.
514 It is also used as a cap on the size of read/write packets. */
515 long remote_packet_size;
516};
517
518/* Utility: generate error from an incoming stub packet. */
519static void
520trace_error (char *buf)
521{
522 if (*buf++ != 'E')
523 return; /* not an error msg */
524 switch (*buf)
525 {
526 case '1': /* malformed packet error */
527 if (*++buf == '0') /* general case: */
528 error (_("remote.c: error in outgoing packet."));
529 else
530 error (_("remote.c: error in outgoing packet at field #%ld."),
531 strtol (buf, NULL, 16));
532 default:
533 error (_("Target returns error code '%s'."), buf);
534 }
535}
536
537/* Utility: wait for reply from stub, while accepting "O" packets. */
538static char *
539remote_get_noisy_reply (char **buf_p,
540 long *sizeof_buf)
541{
542 do /* Loop on reply from remote stub. */
543 {
544 char *buf;
545
546 QUIT; /* Allow user to bail out with ^C. */
547 getpkt (buf_p, sizeof_buf, 0);
548 buf = *buf_p;
549 if (buf[0] == 'E')
550 trace_error (buf);
551 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
552 {
553 ULONGEST ul;
554 CORE_ADDR from, to, org_to;
555 char *p, *pp;
556 int adjusted_size = 0;
557 volatile struct gdb_exception ex;
558
559 p = buf + strlen ("qRelocInsn:");
560 pp = unpack_varlen_hex (p, &ul);
561 if (*pp != ';')
562 error (_("invalid qRelocInsn packet: %s"), buf);
563 from = ul;
564
565 p = pp + 1;
566 unpack_varlen_hex (p, &ul);
567 to = ul;
568
569 org_to = to;
570
571 TRY_CATCH (ex, RETURN_MASK_ALL)
572 {
573 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
574 }
575 if (ex.reason >= 0)
576 {
577 adjusted_size = to - org_to;
578
579 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
580 putpkt (buf);
581 }
582 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
583 {
584 /* Propagate memory errors silently back to the target.
585 The stub may have limited the range of addresses we
586 can write to, for example. */
587 putpkt ("E01");
588 }
589 else
590 {
591 /* Something unexpectedly bad happened. Be verbose so
592 we can tell what, and propagate the error back to the
593 stub, so it doesn't get stuck waiting for a
594 response. */
595 exception_fprintf (gdb_stderr, ex,
596 _("warning: relocating instruction: "));
597 putpkt ("E01");
598 }
599 }
600 else if (buf[0] == 'O' && buf[1] != 'K')
601 remote_console_output (buf + 1); /* 'O' message from stub */
602 else
603 return buf; /* Here's the actual reply. */
604 }
605 while (1);
606}
607
608/* Handle for retreving the remote protocol data from gdbarch. */
609static struct gdbarch_data *remote_gdbarch_data_handle;
610
611static struct remote_arch_state *
612get_remote_arch_state (void)
613{
614 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
615}
616
617/* Fetch the global remote target state. */
618
619static struct remote_state *
620get_remote_state (void)
621{
622 /* Make sure that the remote architecture state has been
623 initialized, because doing so might reallocate rs->buf. Any
624 function which calls getpkt also needs to be mindful of changes
625 to rs->buf, but this call limits the number of places which run
626 into trouble. */
627 get_remote_arch_state ();
628
629 return get_remote_state_raw ();
630}
631
632static int
633compare_pnums (const void *lhs_, const void *rhs_)
634{
635 const struct packet_reg * const *lhs = lhs_;
636 const struct packet_reg * const *rhs = rhs_;
637
638 if ((*lhs)->pnum < (*rhs)->pnum)
639 return -1;
640 else if ((*lhs)->pnum == (*rhs)->pnum)
641 return 0;
642 else
643 return 1;
644}
645
646static int
647map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
648{
649 int regnum, num_remote_regs, offset;
650 struct packet_reg **remote_regs;
651
652 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
653 {
654 struct packet_reg *r = &regs[regnum];
655
656 if (register_size (gdbarch, regnum) == 0)
657 /* Do not try to fetch zero-sized (placeholder) registers. */
658 r->pnum = -1;
659 else
660 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
661
662 r->regnum = regnum;
663 }
664
665 /* Define the g/G packet format as the contents of each register
666 with a remote protocol number, in order of ascending protocol
667 number. */
668
669 remote_regs = alloca (gdbarch_num_regs (gdbarch)
670 * sizeof (struct packet_reg *));
671 for (num_remote_regs = 0, regnum = 0;
672 regnum < gdbarch_num_regs (gdbarch);
673 regnum++)
674 if (regs[regnum].pnum != -1)
675 remote_regs[num_remote_regs++] = &regs[regnum];
676
677 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
678 compare_pnums);
679
680 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
681 {
682 remote_regs[regnum]->in_g_packet = 1;
683 remote_regs[regnum]->offset = offset;
684 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
685 }
686
687 return offset;
688}
689
690/* Given the architecture described by GDBARCH, return the remote
691 protocol register's number and the register's offset in the g/G
692 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
693 If the target does not have a mapping for REGNUM, return false,
694 otherwise, return true. */
695
696int
697remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
698 int *pnum, int *poffset)
699{
700 int sizeof_g_packet;
701 struct packet_reg *regs;
702 struct cleanup *old_chain;
703
704 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
705
706 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
707 old_chain = make_cleanup (xfree, regs);
708
709 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
710
711 *pnum = regs[regnum].pnum;
712 *poffset = regs[regnum].offset;
713
714 do_cleanups (old_chain);
715
716 return *pnum != -1;
717}
718
719static void *
720init_remote_state (struct gdbarch *gdbarch)
721{
722 struct remote_state *rs = get_remote_state_raw ();
723 struct remote_arch_state *rsa;
724
725 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
726
727 /* Use the architecture to build a regnum<->pnum table, which will be
728 1:1 unless a feature set specifies otherwise. */
729 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
730 gdbarch_num_regs (gdbarch),
731 struct packet_reg);
732
733 /* Record the maximum possible size of the g packet - it may turn out
734 to be smaller. */
735 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
736
737 /* Default maximum number of characters in a packet body. Many
738 remote stubs have a hardwired buffer size of 400 bytes
739 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
740 as the maximum packet-size to ensure that the packet and an extra
741 NUL character can always fit in the buffer. This stops GDB
742 trashing stubs that try to squeeze an extra NUL into what is
743 already a full buffer (As of 1999-12-04 that was most stubs). */
744 rsa->remote_packet_size = 400 - 1;
745
746 /* This one is filled in when a ``g'' packet is received. */
747 rsa->actual_register_packet_size = 0;
748
749 /* Should rsa->sizeof_g_packet needs more space than the
750 default, adjust the size accordingly. Remember that each byte is
751 encoded as two characters. 32 is the overhead for the packet
752 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
753 (``$NN:G...#NN'') is a better guess, the below has been padded a
754 little. */
755 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
756 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
757
758 /* Make sure that the packet buffer is plenty big enough for
759 this architecture. */
760 if (rs->buf_size < rsa->remote_packet_size)
761 {
762 rs->buf_size = 2 * rsa->remote_packet_size;
763 rs->buf = xrealloc (rs->buf, rs->buf_size);
764 }
765
766 return rsa;
767}
768
769/* Return the current allowed size of a remote packet. This is
770 inferred from the current architecture, and should be used to
771 limit the length of outgoing packets. */
772static long
773get_remote_packet_size (void)
774{
775 struct remote_state *rs = get_remote_state ();
776 struct remote_arch_state *rsa = get_remote_arch_state ();
777
778 if (rs->explicit_packet_size)
779 return rs->explicit_packet_size;
780
781 return rsa->remote_packet_size;
782}
783
784static struct packet_reg *
785packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
786{
787 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
788 return NULL;
789 else
790 {
791 struct packet_reg *r = &rsa->regs[regnum];
792
793 gdb_assert (r->regnum == regnum);
794 return r;
795 }
796}
797
798static struct packet_reg *
799packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
800{
801 int i;
802
803 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
804 {
805 struct packet_reg *r = &rsa->regs[i];
806
807 if (r->pnum == pnum)
808 return r;
809 }
810 return NULL;
811}
812
813static struct target_ops remote_ops;
814
815static struct target_ops extended_remote_ops;
816
817/* FIXME: cagney/1999-09-23: Even though getpkt was called with
818 ``forever'' still use the normal timeout mechanism. This is
819 currently used by the ASYNC code to guarentee that target reads
820 during the initial connect always time-out. Once getpkt has been
821 modified to return a timeout indication and, in turn
822 remote_wait()/wait_for_inferior() have gained a timeout parameter
823 this can go away. */
824static int wait_forever_enabled_p = 1;
825
826/* Allow the user to specify what sequence to send to the remote
827 when he requests a program interruption: Although ^C is usually
828 what remote systems expect (this is the default, here), it is
829 sometimes preferable to send a break. On other systems such
830 as the Linux kernel, a break followed by g, which is Magic SysRq g
831 is required in order to interrupt the execution. */
832const char interrupt_sequence_control_c[] = "Ctrl-C";
833const char interrupt_sequence_break[] = "BREAK";
834const char interrupt_sequence_break_g[] = "BREAK-g";
835static const char *const interrupt_sequence_modes[] =
836 {
837 interrupt_sequence_control_c,
838 interrupt_sequence_break,
839 interrupt_sequence_break_g,
840 NULL
841 };
842static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
843
844static void
845show_interrupt_sequence (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c,
847 const char *value)
848{
849 if (interrupt_sequence_mode == interrupt_sequence_control_c)
850 fprintf_filtered (file,
851 _("Send the ASCII ETX character (Ctrl-c) "
852 "to the remote target to interrupt the "
853 "execution of the program.\n"));
854 else if (interrupt_sequence_mode == interrupt_sequence_break)
855 fprintf_filtered (file,
856 _("send a break signal to the remote target "
857 "to interrupt the execution of the program.\n"));
858 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
859 fprintf_filtered (file,
860 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
861 "the remote target to interrupt the execution "
862 "of Linux kernel.\n"));
863 else
864 internal_error (__FILE__, __LINE__,
865 _("Invalid value for interrupt_sequence_mode: %s."),
866 interrupt_sequence_mode);
867}
868
869/* This boolean variable specifies whether interrupt_sequence is sent
870 to the remote target when gdb connects to it.
871 This is mostly needed when you debug the Linux kernel: The Linux kernel
872 expects BREAK g which is Magic SysRq g for connecting gdb. */
873static int interrupt_on_connect = 0;
874
875/* This variable is used to implement the "set/show remotebreak" commands.
876 Since these commands are now deprecated in favor of "set/show remote
877 interrupt-sequence", it no longer has any effect on the code. */
878static int remote_break;
879
880static void
881set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
882{
883 if (remote_break)
884 interrupt_sequence_mode = interrupt_sequence_break;
885 else
886 interrupt_sequence_mode = interrupt_sequence_control_c;
887}
888
889static void
890show_remotebreak (struct ui_file *file, int from_tty,
891 struct cmd_list_element *c,
892 const char *value)
893{
894}
895
896/* This variable sets the number of bits in an address that are to be
897 sent in a memory ("M" or "m") packet. Normally, after stripping
898 leading zeros, the entire address would be sent. This variable
899 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
900 initial implementation of remote.c restricted the address sent in
901 memory packets to ``host::sizeof long'' bytes - (typically 32
902 bits). Consequently, for 64 bit targets, the upper 32 bits of an
903 address was never sent. Since fixing this bug may cause a break in
904 some remote targets this variable is principly provided to
905 facilitate backward compatibility. */
906
907static unsigned int remote_address_size;
908
909/* Temporary to track who currently owns the terminal. See
910 remote_terminal_* for more details. */
911
912static int remote_async_terminal_ours_p;
913
914/* The executable file to use for "run" on the remote side. */
915
916static char *remote_exec_file = "";
917
918\f
919/* User configurable variables for the number of characters in a
920 memory read/write packet. MIN (rsa->remote_packet_size,
921 rsa->sizeof_g_packet) is the default. Some targets need smaller
922 values (fifo overruns, et.al.) and some users need larger values
923 (speed up transfers). The variables ``preferred_*'' (the user
924 request), ``current_*'' (what was actually set) and ``forced_*''
925 (Positive - a soft limit, negative - a hard limit). */
926
927struct memory_packet_config
928{
929 char *name;
930 long size;
931 int fixed_p;
932};
933
934/* Compute the current size of a read/write packet. Since this makes
935 use of ``actual_register_packet_size'' the computation is dynamic. */
936
937static long
938get_memory_packet_size (struct memory_packet_config *config)
939{
940 struct remote_state *rs = get_remote_state ();
941 struct remote_arch_state *rsa = get_remote_arch_state ();
942
943 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
944 law?) that some hosts don't cope very well with large alloca()
945 calls. Eventually the alloca() code will be replaced by calls to
946 xmalloc() and make_cleanups() allowing this restriction to either
947 be lifted or removed. */
948#ifndef MAX_REMOTE_PACKET_SIZE
949#define MAX_REMOTE_PACKET_SIZE 16384
950#endif
951 /* NOTE: 20 ensures we can write at least one byte. */
952#ifndef MIN_REMOTE_PACKET_SIZE
953#define MIN_REMOTE_PACKET_SIZE 20
954#endif
955 long what_they_get;
956 if (config->fixed_p)
957 {
958 if (config->size <= 0)
959 what_they_get = MAX_REMOTE_PACKET_SIZE;
960 else
961 what_they_get = config->size;
962 }
963 else
964 {
965 what_they_get = get_remote_packet_size ();
966 /* Limit the packet to the size specified by the user. */
967 if (config->size > 0
968 && what_they_get > config->size)
969 what_they_get = config->size;
970
971 /* Limit it to the size of the targets ``g'' response unless we have
972 permission from the stub to use a larger packet size. */
973 if (rs->explicit_packet_size == 0
974 && rsa->actual_register_packet_size > 0
975 && what_they_get > rsa->actual_register_packet_size)
976 what_they_get = rsa->actual_register_packet_size;
977 }
978 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
979 what_they_get = MAX_REMOTE_PACKET_SIZE;
980 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
981 what_they_get = MIN_REMOTE_PACKET_SIZE;
982
983 /* Make sure there is room in the global buffer for this packet
984 (including its trailing NUL byte). */
985 if (rs->buf_size < what_they_get + 1)
986 {
987 rs->buf_size = 2 * what_they_get;
988 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
989 }
990
991 return what_they_get;
992}
993
994/* Update the size of a read/write packet. If they user wants
995 something really big then do a sanity check. */
996
997static void
998set_memory_packet_size (char *args, struct memory_packet_config *config)
999{
1000 int fixed_p = config->fixed_p;
1001 long size = config->size;
1002
1003 if (args == NULL)
1004 error (_("Argument required (integer, `fixed' or `limited')."));
1005 else if (strcmp (args, "hard") == 0
1006 || strcmp (args, "fixed") == 0)
1007 fixed_p = 1;
1008 else if (strcmp (args, "soft") == 0
1009 || strcmp (args, "limit") == 0)
1010 fixed_p = 0;
1011 else
1012 {
1013 char *end;
1014
1015 size = strtoul (args, &end, 0);
1016 if (args == end)
1017 error (_("Invalid %s (bad syntax)."), config->name);
1018#if 0
1019 /* Instead of explicitly capping the size of a packet to
1020 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1021 instead allowed to set the size to something arbitrarily
1022 large. */
1023 if (size > MAX_REMOTE_PACKET_SIZE)
1024 error (_("Invalid %s (too large)."), config->name);
1025#endif
1026 }
1027 /* Extra checks? */
1028 if (fixed_p && !config->fixed_p)
1029 {
1030 if (! query (_("The target may not be able to correctly handle a %s\n"
1031 "of %ld bytes. Change the packet size? "),
1032 config->name, size))
1033 error (_("Packet size not changed."));
1034 }
1035 /* Update the config. */
1036 config->fixed_p = fixed_p;
1037 config->size = size;
1038}
1039
1040static void
1041show_memory_packet_size (struct memory_packet_config *config)
1042{
1043 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1044 if (config->fixed_p)
1045 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1046 get_memory_packet_size (config));
1047 else
1048 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1049 get_memory_packet_size (config));
1050}
1051
1052static struct memory_packet_config memory_write_packet_config =
1053{
1054 "memory-write-packet-size",
1055};
1056
1057static void
1058set_memory_write_packet_size (char *args, int from_tty)
1059{
1060 set_memory_packet_size (args, &memory_write_packet_config);
1061}
1062
1063static void
1064show_memory_write_packet_size (char *args, int from_tty)
1065{
1066 show_memory_packet_size (&memory_write_packet_config);
1067}
1068
1069static long
1070get_memory_write_packet_size (void)
1071{
1072 return get_memory_packet_size (&memory_write_packet_config);
1073}
1074
1075static struct memory_packet_config memory_read_packet_config =
1076{
1077 "memory-read-packet-size",
1078};
1079
1080static void
1081set_memory_read_packet_size (char *args, int from_tty)
1082{
1083 set_memory_packet_size (args, &memory_read_packet_config);
1084}
1085
1086static void
1087show_memory_read_packet_size (char *args, int from_tty)
1088{
1089 show_memory_packet_size (&memory_read_packet_config);
1090}
1091
1092static long
1093get_memory_read_packet_size (void)
1094{
1095 long size = get_memory_packet_size (&memory_read_packet_config);
1096
1097 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1098 extra buffer size argument before the memory read size can be
1099 increased beyond this. */
1100 if (size > get_remote_packet_size ())
1101 size = get_remote_packet_size ();
1102 return size;
1103}
1104
1105\f
1106/* Generic configuration support for packets the stub optionally
1107 supports. Allows the user to specify the use of the packet as well
1108 as allowing GDB to auto-detect support in the remote stub. */
1109
1110enum packet_support
1111 {
1112 PACKET_SUPPORT_UNKNOWN = 0,
1113 PACKET_ENABLE,
1114 PACKET_DISABLE
1115 };
1116
1117struct packet_config
1118 {
1119 const char *name;
1120 const char *title;
1121 enum auto_boolean detect;
1122 enum packet_support support;
1123 };
1124
1125/* Analyze a packet's return value and update the packet config
1126 accordingly. */
1127
1128enum packet_result
1129{
1130 PACKET_ERROR,
1131 PACKET_OK,
1132 PACKET_UNKNOWN
1133};
1134
1135static void
1136update_packet_config (struct packet_config *config)
1137{
1138 switch (config->detect)
1139 {
1140 case AUTO_BOOLEAN_TRUE:
1141 config->support = PACKET_ENABLE;
1142 break;
1143 case AUTO_BOOLEAN_FALSE:
1144 config->support = PACKET_DISABLE;
1145 break;
1146 case AUTO_BOOLEAN_AUTO:
1147 config->support = PACKET_SUPPORT_UNKNOWN;
1148 break;
1149 }
1150}
1151
1152static void
1153show_packet_config_cmd (struct packet_config *config)
1154{
1155 char *support = "internal-error";
1156
1157 switch (config->support)
1158 {
1159 case PACKET_ENABLE:
1160 support = "enabled";
1161 break;
1162 case PACKET_DISABLE:
1163 support = "disabled";
1164 break;
1165 case PACKET_SUPPORT_UNKNOWN:
1166 support = "unknown";
1167 break;
1168 }
1169 switch (config->detect)
1170 {
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered (_("Support for the `%s' packet "
1173 "is auto-detected, currently %s.\n"),
1174 config->name, support);
1175 break;
1176 case AUTO_BOOLEAN_TRUE:
1177 case AUTO_BOOLEAN_FALSE:
1178 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1179 config->name, support);
1180 break;
1181 }
1182}
1183
1184static void
1185add_packet_config_cmd (struct packet_config *config, const char *name,
1186 const char *title, int legacy)
1187{
1188 char *set_doc;
1189 char *show_doc;
1190 char *cmd_name;
1191
1192 config->name = name;
1193 config->title = title;
1194 config->detect = AUTO_BOOLEAN_AUTO;
1195 config->support = PACKET_SUPPORT_UNKNOWN;
1196 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1197 name, title);
1198 show_doc = xstrprintf ("Show current use of remote "
1199 "protocol `%s' (%s) packet",
1200 name, title);
1201 /* set/show TITLE-packet {auto,on,off} */
1202 cmd_name = xstrprintf ("%s-packet", title);
1203 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1204 &config->detect, set_doc,
1205 show_doc, NULL, /* help_doc */
1206 set_remote_protocol_packet_cmd,
1207 show_remote_protocol_packet_cmd,
1208 &remote_set_cmdlist, &remote_show_cmdlist);
1209 /* The command code copies the documentation strings. */
1210 xfree (set_doc);
1211 xfree (show_doc);
1212 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1213 if (legacy)
1214 {
1215 char *legacy_name;
1216
1217 legacy_name = xstrprintf ("%s-packet", name);
1218 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1219 &remote_set_cmdlist);
1220 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1221 &remote_show_cmdlist);
1222 }
1223}
1224
1225static enum packet_result
1226packet_check_result (const char *buf)
1227{
1228 if (buf[0] != '\0')
1229 {
1230 /* The stub recognized the packet request. Check that the
1231 operation succeeded. */
1232 if (buf[0] == 'E'
1233 && isxdigit (buf[1]) && isxdigit (buf[2])
1234 && buf[3] == '\0')
1235 /* "Enn" - definitly an error. */
1236 return PACKET_ERROR;
1237
1238 /* Always treat "E." as an error. This will be used for
1239 more verbose error messages, such as E.memtypes. */
1240 if (buf[0] == 'E' && buf[1] == '.')
1241 return PACKET_ERROR;
1242
1243 /* The packet may or may not be OK. Just assume it is. */
1244 return PACKET_OK;
1245 }
1246 else
1247 /* The stub does not support the packet. */
1248 return PACKET_UNKNOWN;
1249}
1250
1251static enum packet_result
1252packet_ok (const char *buf, struct packet_config *config)
1253{
1254 enum packet_result result;
1255
1256 result = packet_check_result (buf);
1257 switch (result)
1258 {
1259 case PACKET_OK:
1260 case PACKET_ERROR:
1261 /* The stub recognized the packet request. */
1262 switch (config->support)
1263 {
1264 case PACKET_SUPPORT_UNKNOWN:
1265 if (remote_debug)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "Packet %s (%s) is supported\n",
1268 config->name, config->title);
1269 config->support = PACKET_ENABLE;
1270 break;
1271 case PACKET_DISABLE:
1272 internal_error (__FILE__, __LINE__,
1273 _("packet_ok: attempt to use a disabled packet"));
1274 break;
1275 case PACKET_ENABLE:
1276 break;
1277 }
1278 break;
1279 case PACKET_UNKNOWN:
1280 /* The stub does not support the packet. */
1281 switch (config->support)
1282 {
1283 case PACKET_ENABLE:
1284 if (config->detect == AUTO_BOOLEAN_AUTO)
1285 /* If the stub previously indicated that the packet was
1286 supported then there is a protocol error.. */
1287 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1288 config->name, config->title);
1289 else
1290 /* The user set it wrong. */
1291 error (_("Enabled packet %s (%s) not recognized by stub"),
1292 config->name, config->title);
1293 break;
1294 case PACKET_SUPPORT_UNKNOWN:
1295 if (remote_debug)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "Packet %s (%s) is NOT supported\n",
1298 config->name, config->title);
1299 config->support = PACKET_DISABLE;
1300 break;
1301 case PACKET_DISABLE:
1302 break;
1303 }
1304 break;
1305 }
1306
1307 return result;
1308}
1309
1310enum {
1311 PACKET_vCont = 0,
1312 PACKET_X,
1313 PACKET_qSymbol,
1314 PACKET_P,
1315 PACKET_p,
1316 PACKET_Z0,
1317 PACKET_Z1,
1318 PACKET_Z2,
1319 PACKET_Z3,
1320 PACKET_Z4,
1321 PACKET_vFile_open,
1322 PACKET_vFile_pread,
1323 PACKET_vFile_pwrite,
1324 PACKET_vFile_close,
1325 PACKET_vFile_unlink,
1326 PACKET_vFile_readlink,
1327 PACKET_qXfer_auxv,
1328 PACKET_qXfer_features,
1329 PACKET_qXfer_libraries,
1330 PACKET_qXfer_libraries_svr4,
1331 PACKET_qXfer_memory_map,
1332 PACKET_qXfer_spu_read,
1333 PACKET_qXfer_spu_write,
1334 PACKET_qXfer_osdata,
1335 PACKET_qXfer_threads,
1336 PACKET_qXfer_statictrace_read,
1337 PACKET_qXfer_traceframe_info,
1338 PACKET_qXfer_uib,
1339 PACKET_qGetTIBAddr,
1340 PACKET_qGetTLSAddr,
1341 PACKET_qSupported,
1342 PACKET_qTStatus,
1343 PACKET_QPassSignals,
1344 PACKET_QProgramSignals,
1345 PACKET_qSearch_memory,
1346 PACKET_vAttach,
1347 PACKET_vRun,
1348 PACKET_QStartNoAckMode,
1349 PACKET_vKill,
1350 PACKET_qXfer_siginfo_read,
1351 PACKET_qXfer_siginfo_write,
1352 PACKET_qAttached,
1353 PACKET_ConditionalTracepoints,
1354 PACKET_ConditionalBreakpoints,
1355 PACKET_BreakpointCommands,
1356 PACKET_FastTracepoints,
1357 PACKET_StaticTracepoints,
1358 PACKET_InstallInTrace,
1359 PACKET_bc,
1360 PACKET_bs,
1361 PACKET_TracepointSource,
1362 PACKET_QAllow,
1363 PACKET_qXfer_fdpic,
1364 PACKET_QDisableRandomization,
1365 PACKET_QAgent,
1366 PACKET_QTBuffer_size,
1367 PACKET_Qbtrace_off,
1368 PACKET_Qbtrace_bts,
1369 PACKET_qXfer_btrace,
1370 PACKET_MAX
1371};
1372
1373static struct packet_config remote_protocol_packets[PACKET_MAX];
1374
1375static void
1376set_remote_protocol_packet_cmd (char *args, int from_tty,
1377 struct cmd_list_element *c)
1378{
1379 struct packet_config *packet;
1380
1381 for (packet = remote_protocol_packets;
1382 packet < &remote_protocol_packets[PACKET_MAX];
1383 packet++)
1384 {
1385 if (&packet->detect == c->var)
1386 {
1387 update_packet_config (packet);
1388 return;
1389 }
1390 }
1391 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1392 c->name);
1393}
1394
1395static void
1396show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c,
1398 const char *value)
1399{
1400 struct packet_config *packet;
1401
1402 for (packet = remote_protocol_packets;
1403 packet < &remote_protocol_packets[PACKET_MAX];
1404 packet++)
1405 {
1406 if (&packet->detect == c->var)
1407 {
1408 show_packet_config_cmd (packet);
1409 return;
1410 }
1411 }
1412 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1413 c->name);
1414}
1415
1416/* Should we try one of the 'Z' requests? */
1417
1418enum Z_packet_type
1419{
1420 Z_PACKET_SOFTWARE_BP,
1421 Z_PACKET_HARDWARE_BP,
1422 Z_PACKET_WRITE_WP,
1423 Z_PACKET_READ_WP,
1424 Z_PACKET_ACCESS_WP,
1425 NR_Z_PACKET_TYPES
1426};
1427
1428/* For compatibility with older distributions. Provide a ``set remote
1429 Z-packet ...'' command that updates all the Z packet types. */
1430
1431static enum auto_boolean remote_Z_packet_detect;
1432
1433static void
1434set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1435 struct cmd_list_element *c)
1436{
1437 int i;
1438
1439 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1440 {
1441 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1442 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1443 }
1444}
1445
1446static void
1447show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1448 struct cmd_list_element *c,
1449 const char *value)
1450{
1451 int i;
1452
1453 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1454 {
1455 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1456 }
1457}
1458
1459/* Tokens for use by the asynchronous signal handlers for SIGINT. */
1460static struct async_signal_handler *async_sigint_remote_twice_token;
1461static struct async_signal_handler *async_sigint_remote_token;
1462
1463\f
1464/* Asynchronous signal handle registered as event loop source for
1465 when we have pending events ready to be passed to the core. */
1466
1467static struct async_event_handler *remote_async_inferior_event_token;
1468
1469\f
1470
1471static ptid_t magic_null_ptid;
1472static ptid_t not_sent_ptid;
1473static ptid_t any_thread_ptid;
1474
1475/* Find out if the stub attached to PID (and hence GDB should offer to
1476 detach instead of killing it when bailing out). */
1477
1478static int
1479remote_query_attached (int pid)
1480{
1481 struct remote_state *rs = get_remote_state ();
1482 size_t size = get_remote_packet_size ();
1483
1484 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1485 return 0;
1486
1487 if (remote_multi_process_p (rs))
1488 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1489 else
1490 xsnprintf (rs->buf, size, "qAttached");
1491
1492 putpkt (rs->buf);
1493 getpkt (&rs->buf, &rs->buf_size, 0);
1494
1495 switch (packet_ok (rs->buf,
1496 &remote_protocol_packets[PACKET_qAttached]))
1497 {
1498 case PACKET_OK:
1499 if (strcmp (rs->buf, "1") == 0)
1500 return 1;
1501 break;
1502 case PACKET_ERROR:
1503 warning (_("Remote failure reply: %s"), rs->buf);
1504 break;
1505 case PACKET_UNKNOWN:
1506 break;
1507 }
1508
1509 return 0;
1510}
1511
1512/* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1513 has been invented by GDB, instead of reported by the target. Since
1514 we can be connected to a remote system before before knowing about
1515 any inferior, mark the target with execution when we find the first
1516 inferior. If ATTACHED is 1, then we had just attached to this
1517 inferior. If it is 0, then we just created this inferior. If it
1518 is -1, then try querying the remote stub to find out if it had
1519 attached to the inferior or not. */
1520
1521static struct inferior *
1522remote_add_inferior (int fake_pid_p, int pid, int attached)
1523{
1524 struct inferior *inf;
1525
1526 /* Check whether this process we're learning about is to be
1527 considered attached, or if is to be considered to have been
1528 spawned by the stub. */
1529 if (attached == -1)
1530 attached = remote_query_attached (pid);
1531
1532 if (gdbarch_has_global_solist (target_gdbarch ()))
1533 {
1534 /* If the target shares code across all inferiors, then every
1535 attach adds a new inferior. */
1536 inf = add_inferior (pid);
1537
1538 /* ... and every inferior is bound to the same program space.
1539 However, each inferior may still have its own address
1540 space. */
1541 inf->aspace = maybe_new_address_space ();
1542 inf->pspace = current_program_space;
1543 }
1544 else
1545 {
1546 /* In the traditional debugging scenario, there's a 1-1 match
1547 between program/address spaces. We simply bind the inferior
1548 to the program space's address space. */
1549 inf = current_inferior ();
1550 inferior_appeared (inf, pid);
1551 }
1552
1553 inf->attach_flag = attached;
1554 inf->fake_pid_p = fake_pid_p;
1555
1556 return inf;
1557}
1558
1559/* Add thread PTID to GDB's thread list. Tag it as executing/running
1560 according to RUNNING. */
1561
1562static void
1563remote_add_thread (ptid_t ptid, int running)
1564{
1565 add_thread (ptid);
1566
1567 set_executing (ptid, running);
1568 set_running (ptid, running);
1569}
1570
1571/* Come here when we learn about a thread id from the remote target.
1572 It may be the first time we hear about such thread, so take the
1573 opportunity to add it to GDB's thread list. In case this is the
1574 first time we're noticing its corresponding inferior, add it to
1575 GDB's inferior list as well. */
1576
1577static void
1578remote_notice_new_inferior (ptid_t currthread, int running)
1579{
1580 /* If this is a new thread, add it to GDB's thread list.
1581 If we leave it up to WFI to do this, bad things will happen. */
1582
1583 if (in_thread_list (currthread) && is_exited (currthread))
1584 {
1585 /* We're seeing an event on a thread id we knew had exited.
1586 This has to be a new thread reusing the old id. Add it. */
1587 remote_add_thread (currthread, running);
1588 return;
1589 }
1590
1591 if (!in_thread_list (currthread))
1592 {
1593 struct inferior *inf = NULL;
1594 int pid = ptid_get_pid (currthread);
1595
1596 if (ptid_is_pid (inferior_ptid)
1597 && pid == ptid_get_pid (inferior_ptid))
1598 {
1599 /* inferior_ptid has no thread member yet. This can happen
1600 with the vAttach -> remote_wait,"TAAthread:" path if the
1601 stub doesn't support qC. This is the first stop reported
1602 after an attach, so this is the main thread. Update the
1603 ptid in the thread list. */
1604 if (in_thread_list (pid_to_ptid (pid)))
1605 thread_change_ptid (inferior_ptid, currthread);
1606 else
1607 {
1608 remote_add_thread (currthread, running);
1609 inferior_ptid = currthread;
1610 }
1611 return;
1612 }
1613
1614 if (ptid_equal (magic_null_ptid, inferior_ptid))
1615 {
1616 /* inferior_ptid is not set yet. This can happen with the
1617 vRun -> remote_wait,"TAAthread:" path if the stub
1618 doesn't support qC. This is the first stop reported
1619 after an attach, so this is the main thread. Update the
1620 ptid in the thread list. */
1621 thread_change_ptid (inferior_ptid, currthread);
1622 return;
1623 }
1624
1625 /* When connecting to a target remote, or to a target
1626 extended-remote which already was debugging an inferior, we
1627 may not know about it yet. Add it before adding its child
1628 thread, so notifications are emitted in a sensible order. */
1629 if (!in_inferior_list (ptid_get_pid (currthread)))
1630 {
1631 struct remote_state *rs = get_remote_state ();
1632 int fake_pid_p = !remote_multi_process_p (rs);
1633
1634 inf = remote_add_inferior (fake_pid_p,
1635 ptid_get_pid (currthread), -1);
1636 }
1637
1638 /* This is really a new thread. Add it. */
1639 remote_add_thread (currthread, running);
1640
1641 /* If we found a new inferior, let the common code do whatever
1642 it needs to with it (e.g., read shared libraries, insert
1643 breakpoints). */
1644 if (inf != NULL)
1645 notice_new_inferior (currthread, running, 0);
1646 }
1647}
1648
1649/* Return the private thread data, creating it if necessary. */
1650
1651static struct private_thread_info *
1652demand_private_info (ptid_t ptid)
1653{
1654 struct thread_info *info = find_thread_ptid (ptid);
1655
1656 gdb_assert (info);
1657
1658 if (!info->private)
1659 {
1660 info->private = xmalloc (sizeof (*(info->private)));
1661 info->private_dtor = free_private_thread_info;
1662 info->private->core = -1;
1663 info->private->extra = 0;
1664 }
1665
1666 return info->private;
1667}
1668
1669/* Call this function as a result of
1670 1) A halt indication (T packet) containing a thread id
1671 2) A direct query of currthread
1672 3) Successful execution of set thread */
1673
1674static void
1675record_currthread (struct remote_state *rs, ptid_t currthread)
1676{
1677 rs->general_thread = currthread;
1678}
1679
1680/* If 'QPassSignals' is supported, tell the remote stub what signals
1681 it can simply pass through to the inferior without reporting. */
1682
1683static void
1684remote_pass_signals (int numsigs, unsigned char *pass_signals)
1685{
1686 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1687 {
1688 char *pass_packet, *p;
1689 int count = 0, i;
1690 struct remote_state *rs = get_remote_state ();
1691
1692 gdb_assert (numsigs < 256);
1693 for (i = 0; i < numsigs; i++)
1694 {
1695 if (pass_signals[i])
1696 count++;
1697 }
1698 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1699 strcpy (pass_packet, "QPassSignals:");
1700 p = pass_packet + strlen (pass_packet);
1701 for (i = 0; i < numsigs; i++)
1702 {
1703 if (pass_signals[i])
1704 {
1705 if (i >= 16)
1706 *p++ = tohex (i >> 4);
1707 *p++ = tohex (i & 15);
1708 if (count)
1709 *p++ = ';';
1710 else
1711 break;
1712 count--;
1713 }
1714 }
1715 *p = 0;
1716 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1717 {
1718 char *buf = rs->buf;
1719
1720 putpkt (pass_packet);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1723 if (rs->last_pass_packet)
1724 xfree (rs->last_pass_packet);
1725 rs->last_pass_packet = pass_packet;
1726 }
1727 else
1728 xfree (pass_packet);
1729 }
1730}
1731
1732/* If 'QProgramSignals' is supported, tell the remote stub what
1733 signals it should pass through to the inferior when detaching. */
1734
1735static void
1736remote_program_signals (int numsigs, unsigned char *signals)
1737{
1738 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1739 {
1740 char *packet, *p;
1741 int count = 0, i;
1742 struct remote_state *rs = get_remote_state ();
1743
1744 gdb_assert (numsigs < 256);
1745 for (i = 0; i < numsigs; i++)
1746 {
1747 if (signals[i])
1748 count++;
1749 }
1750 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1751 strcpy (packet, "QProgramSignals:");
1752 p = packet + strlen (packet);
1753 for (i = 0; i < numsigs; i++)
1754 {
1755 if (signal_pass_state (i))
1756 {
1757 if (i >= 16)
1758 *p++ = tohex (i >> 4);
1759 *p++ = tohex (i & 15);
1760 if (count)
1761 *p++ = ';';
1762 else
1763 break;
1764 count--;
1765 }
1766 }
1767 *p = 0;
1768 if (!rs->last_program_signals_packet
1769 || strcmp (rs->last_program_signals_packet, packet) != 0)
1770 {
1771 char *buf = rs->buf;
1772
1773 putpkt (packet);
1774 getpkt (&rs->buf, &rs->buf_size, 0);
1775 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1776 xfree (rs->last_program_signals_packet);
1777 rs->last_program_signals_packet = packet;
1778 }
1779 else
1780 xfree (packet);
1781 }
1782}
1783
1784/* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1785 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1786 thread. If GEN is set, set the general thread, if not, then set
1787 the step/continue thread. */
1788static void
1789set_thread (struct ptid ptid, int gen)
1790{
1791 struct remote_state *rs = get_remote_state ();
1792 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1793 char *buf = rs->buf;
1794 char *endbuf = rs->buf + get_remote_packet_size ();
1795
1796 if (ptid_equal (state, ptid))
1797 return;
1798
1799 *buf++ = 'H';
1800 *buf++ = gen ? 'g' : 'c';
1801 if (ptid_equal (ptid, magic_null_ptid))
1802 xsnprintf (buf, endbuf - buf, "0");
1803 else if (ptid_equal (ptid, any_thread_ptid))
1804 xsnprintf (buf, endbuf - buf, "0");
1805 else if (ptid_equal (ptid, minus_one_ptid))
1806 xsnprintf (buf, endbuf - buf, "-1");
1807 else
1808 write_ptid (buf, endbuf, ptid);
1809 putpkt (rs->buf);
1810 getpkt (&rs->buf, &rs->buf_size, 0);
1811 if (gen)
1812 rs->general_thread = ptid;
1813 else
1814 rs->continue_thread = ptid;
1815}
1816
1817static void
1818set_general_thread (struct ptid ptid)
1819{
1820 set_thread (ptid, 1);
1821}
1822
1823static void
1824set_continue_thread (struct ptid ptid)
1825{
1826 set_thread (ptid, 0);
1827}
1828
1829/* Change the remote current process. Which thread within the process
1830 ends up selected isn't important, as long as it is the same process
1831 as what INFERIOR_PTID points to.
1832
1833 This comes from that fact that there is no explicit notion of
1834 "selected process" in the protocol. The selected process for
1835 general operations is the process the selected general thread
1836 belongs to. */
1837
1838static void
1839set_general_process (void)
1840{
1841 struct remote_state *rs = get_remote_state ();
1842
1843 /* If the remote can't handle multiple processes, don't bother. */
1844 if (!rs->extended || !remote_multi_process_p (rs))
1845 return;
1846
1847 /* We only need to change the remote current thread if it's pointing
1848 at some other process. */
1849 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1850 set_general_thread (inferior_ptid);
1851}
1852
1853\f
1854/* Return nonzero if the thread PTID is still alive on the remote
1855 system. */
1856
1857static int
1858remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1859{
1860 struct remote_state *rs = get_remote_state ();
1861 char *p, *endp;
1862
1863 if (ptid_equal (ptid, magic_null_ptid))
1864 /* The main thread is always alive. */
1865 return 1;
1866
1867 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1868 /* The main thread is always alive. This can happen after a
1869 vAttach, if the remote side doesn't support
1870 multi-threading. */
1871 return 1;
1872
1873 p = rs->buf;
1874 endp = rs->buf + get_remote_packet_size ();
1875
1876 *p++ = 'T';
1877 write_ptid (p, endp, ptid);
1878
1879 putpkt (rs->buf);
1880 getpkt (&rs->buf, &rs->buf_size, 0);
1881 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1882}
1883
1884/* About these extended threadlist and threadinfo packets. They are
1885 variable length packets but, the fields within them are often fixed
1886 length. They are redundent enough to send over UDP as is the
1887 remote protocol in general. There is a matching unit test module
1888 in libstub. */
1889
1890/* WARNING: This threadref data structure comes from the remote O.S.,
1891 libstub protocol encoding, and remote.c. It is not particularly
1892 changable. */
1893
1894/* Right now, the internal structure is int. We want it to be bigger.
1895 Plan to fix this. */
1896
1897typedef int gdb_threadref; /* Internal GDB thread reference. */
1898
1899/* gdb_ext_thread_info is an internal GDB data structure which is
1900 equivalent to the reply of the remote threadinfo packet. */
1901
1902struct gdb_ext_thread_info
1903 {
1904 threadref threadid; /* External form of thread reference. */
1905 int active; /* Has state interesting to GDB?
1906 regs, stack. */
1907 char display[256]; /* Brief state display, name,
1908 blocked/suspended. */
1909 char shortname[32]; /* To be used to name threads. */
1910 char more_display[256]; /* Long info, statistics, queue depth,
1911 whatever. */
1912 };
1913
1914/* The volume of remote transfers can be limited by submitting
1915 a mask containing bits specifying the desired information.
1916 Use a union of these values as the 'selection' parameter to
1917 get_thread_info. FIXME: Make these TAG names more thread specific. */
1918
1919#define TAG_THREADID 1
1920#define TAG_EXISTS 2
1921#define TAG_DISPLAY 4
1922#define TAG_THREADNAME 8
1923#define TAG_MOREDISPLAY 16
1924
1925#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1926
1927char *unpack_varlen_hex (char *buff, ULONGEST *result);
1928
1929static char *unpack_nibble (char *buf, int *val);
1930
1931static char *pack_nibble (char *buf, int nibble);
1932
1933static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1934
1935static char *unpack_byte (char *buf, int *value);
1936
1937static char *pack_int (char *buf, int value);
1938
1939static char *unpack_int (char *buf, int *value);
1940
1941static char *unpack_string (char *src, char *dest, int length);
1942
1943static char *pack_threadid (char *pkt, threadref *id);
1944
1945static char *unpack_threadid (char *inbuf, threadref *id);
1946
1947void int_to_threadref (threadref *id, int value);
1948
1949static int threadref_to_int (threadref *ref);
1950
1951static void copy_threadref (threadref *dest, threadref *src);
1952
1953static int threadmatch (threadref *dest, threadref *src);
1954
1955static char *pack_threadinfo_request (char *pkt, int mode,
1956 threadref *id);
1957
1958static int remote_unpack_thread_info_response (char *pkt,
1959 threadref *expectedref,
1960 struct gdb_ext_thread_info
1961 *info);
1962
1963
1964static int remote_get_threadinfo (threadref *threadid,
1965 int fieldset, /*TAG mask */
1966 struct gdb_ext_thread_info *info);
1967
1968static char *pack_threadlist_request (char *pkt, int startflag,
1969 int threadcount,
1970 threadref *nextthread);
1971
1972static int parse_threadlist_response (char *pkt,
1973 int result_limit,
1974 threadref *original_echo,
1975 threadref *resultlist,
1976 int *doneflag);
1977
1978static int remote_get_threadlist (int startflag,
1979 threadref *nextthread,
1980 int result_limit,
1981 int *done,
1982 int *result_count,
1983 threadref *threadlist);
1984
1985typedef int (*rmt_thread_action) (threadref *ref, void *context);
1986
1987static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1988 void *context, int looplimit);
1989
1990static int remote_newthread_step (threadref *ref, void *context);
1991
1992
1993/* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1994 buffer we're allowed to write to. Returns
1995 BUF+CHARACTERS_WRITTEN. */
1996
1997static char *
1998write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1999{
2000 int pid, tid;
2001 struct remote_state *rs = get_remote_state ();
2002
2003 if (remote_multi_process_p (rs))
2004 {
2005 pid = ptid_get_pid (ptid);
2006 if (pid < 0)
2007 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2008 else
2009 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2010 }
2011 tid = ptid_get_tid (ptid);
2012 if (tid < 0)
2013 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2014 else
2015 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2016
2017 return buf;
2018}
2019
2020/* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2021 passed the last parsed char. Returns null_ptid on error. */
2022
2023static ptid_t
2024read_ptid (char *buf, char **obuf)
2025{
2026 char *p = buf;
2027 char *pp;
2028 ULONGEST pid = 0, tid = 0;
2029
2030 if (*p == 'p')
2031 {
2032 /* Multi-process ptid. */
2033 pp = unpack_varlen_hex (p + 1, &pid);
2034 if (*pp != '.')
2035 error (_("invalid remote ptid: %s"), p);
2036
2037 p = pp;
2038 pp = unpack_varlen_hex (p + 1, &tid);
2039 if (obuf)
2040 *obuf = pp;
2041 return ptid_build (pid, 0, tid);
2042 }
2043
2044 /* No multi-process. Just a tid. */
2045 pp = unpack_varlen_hex (p, &tid);
2046
2047 /* Since the stub is not sending a process id, then default to
2048 what's in inferior_ptid, unless it's null at this point. If so,
2049 then since there's no way to know the pid of the reported
2050 threads, use the magic number. */
2051 if (ptid_equal (inferior_ptid, null_ptid))
2052 pid = ptid_get_pid (magic_null_ptid);
2053 else
2054 pid = ptid_get_pid (inferior_ptid);
2055
2056 if (obuf)
2057 *obuf = pp;
2058 return ptid_build (pid, 0, tid);
2059}
2060
2061/* Encode 64 bits in 16 chars of hex. */
2062
2063static const char hexchars[] = "0123456789abcdef";
2064
2065static int
2066ishex (int ch, int *val)
2067{
2068 if ((ch >= 'a') && (ch <= 'f'))
2069 {
2070 *val = ch - 'a' + 10;
2071 return 1;
2072 }
2073 if ((ch >= 'A') && (ch <= 'F'))
2074 {
2075 *val = ch - 'A' + 10;
2076 return 1;
2077 }
2078 if ((ch >= '0') && (ch <= '9'))
2079 {
2080 *val = ch - '0';
2081 return 1;
2082 }
2083 return 0;
2084}
2085
2086static int
2087stubhex (int ch)
2088{
2089 if (ch >= 'a' && ch <= 'f')
2090 return ch - 'a' + 10;
2091 if (ch >= '0' && ch <= '9')
2092 return ch - '0';
2093 if (ch >= 'A' && ch <= 'F')
2094 return ch - 'A' + 10;
2095 return -1;
2096}
2097
2098static int
2099stub_unpack_int (char *buff, int fieldlength)
2100{
2101 int nibble;
2102 int retval = 0;
2103
2104 while (fieldlength)
2105 {
2106 nibble = stubhex (*buff++);
2107 retval |= nibble;
2108 fieldlength--;
2109 if (fieldlength)
2110 retval = retval << 4;
2111 }
2112 return retval;
2113}
2114
2115char *
2116unpack_varlen_hex (char *buff, /* packet to parse */
2117 ULONGEST *result)
2118{
2119 int nibble;
2120 ULONGEST retval = 0;
2121
2122 while (ishex (*buff, &nibble))
2123 {
2124 buff++;
2125 retval = retval << 4;
2126 retval |= nibble & 0x0f;
2127 }
2128 *result = retval;
2129 return buff;
2130}
2131
2132static char *
2133unpack_nibble (char *buf, int *val)
2134{
2135 *val = fromhex (*buf++);
2136 return buf;
2137}
2138
2139static char *
2140pack_nibble (char *buf, int nibble)
2141{
2142 *buf++ = hexchars[(nibble & 0x0f)];
2143 return buf;
2144}
2145
2146static char *
2147pack_hex_byte (char *pkt, int byte)
2148{
2149 *pkt++ = hexchars[(byte >> 4) & 0xf];
2150 *pkt++ = hexchars[(byte & 0xf)];
2151 return pkt;
2152}
2153
2154static char *
2155unpack_byte (char *buf, int *value)
2156{
2157 *value = stub_unpack_int (buf, 2);
2158 return buf + 2;
2159}
2160
2161static char *
2162pack_int (char *buf, int value)
2163{
2164 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2165 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2166 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2167 buf = pack_hex_byte (buf, (value & 0xff));
2168 return buf;
2169}
2170
2171static char *
2172unpack_int (char *buf, int *value)
2173{
2174 *value = stub_unpack_int (buf, 8);
2175 return buf + 8;
2176}
2177
2178#if 0 /* Currently unused, uncomment when needed. */
2179static char *pack_string (char *pkt, char *string);
2180
2181static char *
2182pack_string (char *pkt, char *string)
2183{
2184 char ch;
2185 int len;
2186
2187 len = strlen (string);
2188 if (len > 200)
2189 len = 200; /* Bigger than most GDB packets, junk??? */
2190 pkt = pack_hex_byte (pkt, len);
2191 while (len-- > 0)
2192 {
2193 ch = *string++;
2194 if ((ch == '\0') || (ch == '#'))
2195 ch = '*'; /* Protect encapsulation. */
2196 *pkt++ = ch;
2197 }
2198 return pkt;
2199}
2200#endif /* 0 (unused) */
2201
2202static char *
2203unpack_string (char *src, char *dest, int length)
2204{
2205 while (length--)
2206 *dest++ = *src++;
2207 *dest = '\0';
2208 return src;
2209}
2210
2211static char *
2212pack_threadid (char *pkt, threadref *id)
2213{
2214 char *limit;
2215 unsigned char *altid;
2216
2217 altid = (unsigned char *) id;
2218 limit = pkt + BUF_THREAD_ID_SIZE;
2219 while (pkt < limit)
2220 pkt = pack_hex_byte (pkt, *altid++);
2221 return pkt;
2222}
2223
2224
2225static char *
2226unpack_threadid (char *inbuf, threadref *id)
2227{
2228 char *altref;
2229 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2230 int x, y;
2231
2232 altref = (char *) id;
2233
2234 while (inbuf < limit)
2235 {
2236 x = stubhex (*inbuf++);
2237 y = stubhex (*inbuf++);
2238 *altref++ = (x << 4) | y;
2239 }
2240 return inbuf;
2241}
2242
2243/* Externally, threadrefs are 64 bits but internally, they are still
2244 ints. This is due to a mismatch of specifications. We would like
2245 to use 64bit thread references internally. This is an adapter
2246 function. */
2247
2248void
2249int_to_threadref (threadref *id, int value)
2250{
2251 unsigned char *scan;
2252
2253 scan = (unsigned char *) id;
2254 {
2255 int i = 4;
2256 while (i--)
2257 *scan++ = 0;
2258 }
2259 *scan++ = (value >> 24) & 0xff;
2260 *scan++ = (value >> 16) & 0xff;
2261 *scan++ = (value >> 8) & 0xff;
2262 *scan++ = (value & 0xff);
2263}
2264
2265static int
2266threadref_to_int (threadref *ref)
2267{
2268 int i, value = 0;
2269 unsigned char *scan;
2270
2271 scan = *ref;
2272 scan += 4;
2273 i = 4;
2274 while (i-- > 0)
2275 value = (value << 8) | ((*scan++) & 0xff);
2276 return value;
2277}
2278
2279static void
2280copy_threadref (threadref *dest, threadref *src)
2281{
2282 int i;
2283 unsigned char *csrc, *cdest;
2284
2285 csrc = (unsigned char *) src;
2286 cdest = (unsigned char *) dest;
2287 i = 8;
2288 while (i--)
2289 *cdest++ = *csrc++;
2290}
2291
2292static int
2293threadmatch (threadref *dest, threadref *src)
2294{
2295 /* Things are broken right now, so just assume we got a match. */
2296#if 0
2297 unsigned char *srcp, *destp;
2298 int i, result;
2299 srcp = (char *) src;
2300 destp = (char *) dest;
2301
2302 result = 1;
2303 while (i-- > 0)
2304 result &= (*srcp++ == *destp++) ? 1 : 0;
2305 return result;
2306#endif
2307 return 1;
2308}
2309
2310/*
2311 threadid:1, # always request threadid
2312 context_exists:2,
2313 display:4,
2314 unique_name:8,
2315 more_display:16
2316 */
2317
2318/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2319
2320static char *
2321pack_threadinfo_request (char *pkt, int mode, threadref *id)
2322{
2323 *pkt++ = 'q'; /* Info Query */
2324 *pkt++ = 'P'; /* process or thread info */
2325 pkt = pack_int (pkt, mode); /* mode */
2326 pkt = pack_threadid (pkt, id); /* threadid */
2327 *pkt = '\0'; /* terminate */
2328 return pkt;
2329}
2330
2331/* These values tag the fields in a thread info response packet. */
2332/* Tagging the fields allows us to request specific fields and to
2333 add more fields as time goes by. */
2334
2335#define TAG_THREADID 1 /* Echo the thread identifier. */
2336#define TAG_EXISTS 2 /* Is this process defined enough to
2337 fetch registers and its stack? */
2338#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2339#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2340#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2341 the process. */
2342
2343static int
2344remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2345 struct gdb_ext_thread_info *info)
2346{
2347 struct remote_state *rs = get_remote_state ();
2348 int mask, length;
2349 int tag;
2350 threadref ref;
2351 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2352 int retval = 1;
2353
2354 /* info->threadid = 0; FIXME: implement zero_threadref. */
2355 info->active = 0;
2356 info->display[0] = '\0';
2357 info->shortname[0] = '\0';
2358 info->more_display[0] = '\0';
2359
2360 /* Assume the characters indicating the packet type have been
2361 stripped. */
2362 pkt = unpack_int (pkt, &mask); /* arg mask */
2363 pkt = unpack_threadid (pkt, &ref);
2364
2365 if (mask == 0)
2366 warning (_("Incomplete response to threadinfo request."));
2367 if (!threadmatch (&ref, expectedref))
2368 { /* This is an answer to a different request. */
2369 warning (_("ERROR RMT Thread info mismatch."));
2370 return 0;
2371 }
2372 copy_threadref (&info->threadid, &ref);
2373
2374 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2375
2376 /* Packets are terminated with nulls. */
2377 while ((pkt < limit) && mask && *pkt)
2378 {
2379 pkt = unpack_int (pkt, &tag); /* tag */
2380 pkt = unpack_byte (pkt, &length); /* length */
2381 if (!(tag & mask)) /* Tags out of synch with mask. */
2382 {
2383 warning (_("ERROR RMT: threadinfo tag mismatch."));
2384 retval = 0;
2385 break;
2386 }
2387 if (tag == TAG_THREADID)
2388 {
2389 if (length != 16)
2390 {
2391 warning (_("ERROR RMT: length of threadid is not 16."));
2392 retval = 0;
2393 break;
2394 }
2395 pkt = unpack_threadid (pkt, &ref);
2396 mask = mask & ~TAG_THREADID;
2397 continue;
2398 }
2399 if (tag == TAG_EXISTS)
2400 {
2401 info->active = stub_unpack_int (pkt, length);
2402 pkt += length;
2403 mask = mask & ~(TAG_EXISTS);
2404 if (length > 8)
2405 {
2406 warning (_("ERROR RMT: 'exists' length too long."));
2407 retval = 0;
2408 break;
2409 }
2410 continue;
2411 }
2412 if (tag == TAG_THREADNAME)
2413 {
2414 pkt = unpack_string (pkt, &info->shortname[0], length);
2415 mask = mask & ~TAG_THREADNAME;
2416 continue;
2417 }
2418 if (tag == TAG_DISPLAY)
2419 {
2420 pkt = unpack_string (pkt, &info->display[0], length);
2421 mask = mask & ~TAG_DISPLAY;
2422 continue;
2423 }
2424 if (tag == TAG_MOREDISPLAY)
2425 {
2426 pkt = unpack_string (pkt, &info->more_display[0], length);
2427 mask = mask & ~TAG_MOREDISPLAY;
2428 continue;
2429 }
2430 warning (_("ERROR RMT: unknown thread info tag."));
2431 break; /* Not a tag we know about. */
2432 }
2433 return retval;
2434}
2435
2436static int
2437remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2438 struct gdb_ext_thread_info *info)
2439{
2440 struct remote_state *rs = get_remote_state ();
2441 int result;
2442
2443 pack_threadinfo_request (rs->buf, fieldset, threadid);
2444 putpkt (rs->buf);
2445 getpkt (&rs->buf, &rs->buf_size, 0);
2446
2447 if (rs->buf[0] == '\0')
2448 return 0;
2449
2450 result = remote_unpack_thread_info_response (rs->buf + 2,
2451 threadid, info);
2452 return result;
2453}
2454
2455/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2456
2457static char *
2458pack_threadlist_request (char *pkt, int startflag, int threadcount,
2459 threadref *nextthread)
2460{
2461 *pkt++ = 'q'; /* info query packet */
2462 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2463 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2464 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2465 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2466 *pkt = '\0';
2467 return pkt;
2468}
2469
2470/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2471
2472static int
2473parse_threadlist_response (char *pkt, int result_limit,
2474 threadref *original_echo, threadref *resultlist,
2475 int *doneflag)
2476{
2477 struct remote_state *rs = get_remote_state ();
2478 char *limit;
2479 int count, resultcount, done;
2480
2481 resultcount = 0;
2482 /* Assume the 'q' and 'M chars have been stripped. */
2483 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2484 /* done parse past here */
2485 pkt = unpack_byte (pkt, &count); /* count field */
2486 pkt = unpack_nibble (pkt, &done);
2487 /* The first threadid is the argument threadid. */
2488 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2489 while ((count-- > 0) && (pkt < limit))
2490 {
2491 pkt = unpack_threadid (pkt, resultlist++);
2492 if (resultcount++ >= result_limit)
2493 break;
2494 }
2495 if (doneflag)
2496 *doneflag = done;
2497 return resultcount;
2498}
2499
2500static int
2501remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2502 int *done, int *result_count, threadref *threadlist)
2503{
2504 struct remote_state *rs = get_remote_state ();
2505 int result = 1;
2506
2507 /* Trancate result limit to be smaller than the packet size. */
2508 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2509 >= get_remote_packet_size ())
2510 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2511
2512 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2513 putpkt (rs->buf);
2514 getpkt (&rs->buf, &rs->buf_size, 0);
2515
2516 if (*rs->buf == '\0')
2517 return 0;
2518 else
2519 *result_count =
2520 parse_threadlist_response (rs->buf + 2, result_limit,
2521 &rs->echo_nextthread, threadlist, done);
2522
2523 if (!threadmatch (&rs->echo_nextthread, nextthread))
2524 {
2525 /* FIXME: This is a good reason to drop the packet. */
2526 /* Possably, there is a duplicate response. */
2527 /* Possabilities :
2528 retransmit immediatly - race conditions
2529 retransmit after timeout - yes
2530 exit
2531 wait for packet, then exit
2532 */
2533 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2534 return 0; /* I choose simply exiting. */
2535 }
2536 if (*result_count <= 0)
2537 {
2538 if (*done != 1)
2539 {
2540 warning (_("RMT ERROR : failed to get remote thread list."));
2541 result = 0;
2542 }
2543 return result; /* break; */
2544 }
2545 if (*result_count > result_limit)
2546 {
2547 *result_count = 0;
2548 warning (_("RMT ERROR: threadlist response longer than requested."));
2549 return 0;
2550 }
2551 return result;
2552}
2553
2554/* This is the interface between remote and threads, remotes upper
2555 interface. */
2556
2557/* remote_find_new_threads retrieves the thread list and for each
2558 thread in the list, looks up the thread in GDB's internal list,
2559 adding the thread if it does not already exist. This involves
2560 getting partial thread lists from the remote target so, polling the
2561 quit_flag is required. */
2562
2563
2564static int
2565remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2566 int looplimit)
2567{
2568 struct remote_state *rs = get_remote_state ();
2569 int done, i, result_count;
2570 int startflag = 1;
2571 int result = 1;
2572 int loopcount = 0;
2573
2574 done = 0;
2575 while (!done)
2576 {
2577 if (loopcount++ > looplimit)
2578 {
2579 result = 0;
2580 warning (_("Remote fetch threadlist -infinite loop-."));
2581 break;
2582 }
2583 if (!remote_get_threadlist (startflag, &rs->nextthread,
2584 MAXTHREADLISTRESULTS,
2585 &done, &result_count, rs->resultthreadlist))
2586 {
2587 result = 0;
2588 break;
2589 }
2590 /* Clear for later iterations. */
2591 startflag = 0;
2592 /* Setup to resume next batch of thread references, set nextthread. */
2593 if (result_count >= 1)
2594 copy_threadref (&rs->nextthread,
2595 &rs->resultthreadlist[result_count - 1]);
2596 i = 0;
2597 while (result_count--)
2598 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2599 break;
2600 }
2601 return result;
2602}
2603
2604static int
2605remote_newthread_step (threadref *ref, void *context)
2606{
2607 int pid = ptid_get_pid (inferior_ptid);
2608 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2609
2610 if (!in_thread_list (ptid))
2611 add_thread (ptid);
2612 return 1; /* continue iterator */
2613}
2614
2615#define CRAZY_MAX_THREADS 1000
2616
2617static ptid_t
2618remote_current_thread (ptid_t oldpid)
2619{
2620 struct remote_state *rs = get_remote_state ();
2621
2622 putpkt ("qC");
2623 getpkt (&rs->buf, &rs->buf_size, 0);
2624 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2625 return read_ptid (&rs->buf[2], NULL);
2626 else
2627 return oldpid;
2628}
2629
2630/* Find new threads for info threads command.
2631 * Original version, using John Metzler's thread protocol.
2632 */
2633
2634static void
2635remote_find_new_threads (void)
2636{
2637 remote_threadlist_iterator (remote_newthread_step, 0,
2638 CRAZY_MAX_THREADS);
2639}
2640
2641#if defined(HAVE_LIBEXPAT)
2642
2643typedef struct thread_item
2644{
2645 ptid_t ptid;
2646 char *extra;
2647 int core;
2648} thread_item_t;
2649DEF_VEC_O(thread_item_t);
2650
2651struct threads_parsing_context
2652{
2653 VEC (thread_item_t) *items;
2654};
2655
2656static void
2657start_thread (struct gdb_xml_parser *parser,
2658 const struct gdb_xml_element *element,
2659 void *user_data, VEC(gdb_xml_value_s) *attributes)
2660{
2661 struct threads_parsing_context *data = user_data;
2662
2663 struct thread_item item;
2664 char *id;
2665 struct gdb_xml_value *attr;
2666
2667 id = xml_find_attribute (attributes, "id")->value;
2668 item.ptid = read_ptid (id, NULL);
2669
2670 attr = xml_find_attribute (attributes, "core");
2671 if (attr != NULL)
2672 item.core = *(ULONGEST *) attr->value;
2673 else
2674 item.core = -1;
2675
2676 item.extra = 0;
2677
2678 VEC_safe_push (thread_item_t, data->items, &item);
2679}
2680
2681static void
2682end_thread (struct gdb_xml_parser *parser,
2683 const struct gdb_xml_element *element,
2684 void *user_data, const char *body_text)
2685{
2686 struct threads_parsing_context *data = user_data;
2687
2688 if (body_text && *body_text)
2689 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2690}
2691
2692const struct gdb_xml_attribute thread_attributes[] = {
2693 { "id", GDB_XML_AF_NONE, NULL, NULL },
2694 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2695 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2696};
2697
2698const struct gdb_xml_element thread_children[] = {
2699 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2700};
2701
2702const struct gdb_xml_element threads_children[] = {
2703 { "thread", thread_attributes, thread_children,
2704 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2705 start_thread, end_thread },
2706 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2707};
2708
2709const struct gdb_xml_element threads_elements[] = {
2710 { "threads", NULL, threads_children,
2711 GDB_XML_EF_NONE, NULL, NULL },
2712 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2713};
2714
2715/* Discard the contents of the constructed thread info context. */
2716
2717static void
2718clear_threads_parsing_context (void *p)
2719{
2720 struct threads_parsing_context *context = p;
2721 int i;
2722 struct thread_item *item;
2723
2724 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2725 xfree (item->extra);
2726
2727 VEC_free (thread_item_t, context->items);
2728}
2729
2730#endif
2731
2732/*
2733 * Find all threads for info threads command.
2734 * Uses new thread protocol contributed by Cisco.
2735 * Falls back and attempts to use the older method (above)
2736 * if the target doesn't respond to the new method.
2737 */
2738
2739static void
2740remote_threads_info (struct target_ops *ops)
2741{
2742 struct remote_state *rs = get_remote_state ();
2743 char *bufp;
2744 ptid_t new_thread;
2745
2746 if (rs->remote_desc == 0) /* paranoia */
2747 error (_("Command can only be used when connected to the remote target."));
2748
2749#if defined(HAVE_LIBEXPAT)
2750 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2751 {
2752 char *xml = target_read_stralloc (&current_target,
2753 TARGET_OBJECT_THREADS, NULL);
2754
2755 struct cleanup *back_to = make_cleanup (xfree, xml);
2756
2757 if (xml && *xml)
2758 {
2759 struct threads_parsing_context context;
2760
2761 context.items = NULL;
2762 make_cleanup (clear_threads_parsing_context, &context);
2763
2764 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2765 threads_elements, xml, &context) == 0)
2766 {
2767 int i;
2768 struct thread_item *item;
2769
2770 for (i = 0;
2771 VEC_iterate (thread_item_t, context.items, i, item);
2772 ++i)
2773 {
2774 if (!ptid_equal (item->ptid, null_ptid))
2775 {
2776 struct private_thread_info *info;
2777 /* In non-stop mode, we assume new found threads
2778 are running until proven otherwise with a
2779 stop reply. In all-stop, we can only get
2780 here if all threads are stopped. */
2781 int running = non_stop ? 1 : 0;
2782
2783 remote_notice_new_inferior (item->ptid, running);
2784
2785 info = demand_private_info (item->ptid);
2786 info->core = item->core;
2787 info->extra = item->extra;
2788 item->extra = NULL;
2789 }
2790 }
2791 }
2792 }
2793
2794 do_cleanups (back_to);
2795 return;
2796 }
2797#endif
2798
2799 if (rs->use_threadinfo_query)
2800 {
2801 putpkt ("qfThreadInfo");
2802 getpkt (&rs->buf, &rs->buf_size, 0);
2803 bufp = rs->buf;
2804 if (bufp[0] != '\0') /* q packet recognized */
2805 {
2806 struct cleanup *old_chain;
2807 char *saved_reply;
2808
2809 /* remote_notice_new_inferior (in the loop below) may make
2810 new RSP calls, which clobber rs->buf. Work with a
2811 copy. */
2812 bufp = saved_reply = xstrdup (rs->buf);
2813 old_chain = make_cleanup (free_current_contents, &saved_reply);
2814
2815 while (*bufp++ == 'm') /* reply contains one or more TID */
2816 {
2817 do
2818 {
2819 new_thread = read_ptid (bufp, &bufp);
2820 if (!ptid_equal (new_thread, null_ptid))
2821 {
2822 /* In non-stop mode, we assume new found threads
2823 are running until proven otherwise with a
2824 stop reply. In all-stop, we can only get
2825 here if all threads are stopped. */
2826 int running = non_stop ? 1 : 0;
2827
2828 remote_notice_new_inferior (new_thread, running);
2829 }
2830 }
2831 while (*bufp++ == ','); /* comma-separated list */
2832 free_current_contents (&saved_reply);
2833 putpkt ("qsThreadInfo");
2834 getpkt (&rs->buf, &rs->buf_size, 0);
2835 bufp = saved_reply = xstrdup (rs->buf);
2836 }
2837 do_cleanups (old_chain);
2838 return; /* done */
2839 }
2840 }
2841
2842 /* Only qfThreadInfo is supported in non-stop mode. */
2843 if (non_stop)
2844 return;
2845
2846 /* Else fall back to old method based on jmetzler protocol. */
2847 rs->use_threadinfo_query = 0;
2848 remote_find_new_threads ();
2849 return;
2850}
2851
2852/*
2853 * Collect a descriptive string about the given thread.
2854 * The target may say anything it wants to about the thread
2855 * (typically info about its blocked / runnable state, name, etc.).
2856 * This string will appear in the info threads display.
2857 *
2858 * Optional: targets are not required to implement this function.
2859 */
2860
2861static char *
2862remote_threads_extra_info (struct thread_info *tp)
2863{
2864 struct remote_state *rs = get_remote_state ();
2865 int result;
2866 int set;
2867 threadref id;
2868 struct gdb_ext_thread_info threadinfo;
2869 static char display_buf[100]; /* arbitrary... */
2870 int n = 0; /* position in display_buf */
2871
2872 if (rs->remote_desc == 0) /* paranoia */
2873 internal_error (__FILE__, __LINE__,
2874 _("remote_threads_extra_info"));
2875
2876 if (ptid_equal (tp->ptid, magic_null_ptid)
2877 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2878 /* This is the main thread which was added by GDB. The remote
2879 server doesn't know about it. */
2880 return NULL;
2881
2882 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2883 {
2884 struct thread_info *info = find_thread_ptid (tp->ptid);
2885
2886 if (info && info->private)
2887 return info->private->extra;
2888 else
2889 return NULL;
2890 }
2891
2892 if (rs->use_threadextra_query)
2893 {
2894 char *b = rs->buf;
2895 char *endb = rs->buf + get_remote_packet_size ();
2896
2897 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2898 b += strlen (b);
2899 write_ptid (b, endb, tp->ptid);
2900
2901 putpkt (rs->buf);
2902 getpkt (&rs->buf, &rs->buf_size, 0);
2903 if (rs->buf[0] != 0)
2904 {
2905 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2906 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2907 display_buf [result] = '\0';
2908 return display_buf;
2909 }
2910 }
2911
2912 /* If the above query fails, fall back to the old method. */
2913 rs->use_threadextra_query = 0;
2914 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2915 | TAG_MOREDISPLAY | TAG_DISPLAY;
2916 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2917 if (remote_get_threadinfo (&id, set, &threadinfo))
2918 if (threadinfo.active)
2919 {
2920 if (*threadinfo.shortname)
2921 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2922 " Name: %s,", threadinfo.shortname);
2923 if (*threadinfo.display)
2924 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2925 " State: %s,", threadinfo.display);
2926 if (*threadinfo.more_display)
2927 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2928 " Priority: %s", threadinfo.more_display);
2929
2930 if (n > 0)
2931 {
2932 /* For purely cosmetic reasons, clear up trailing commas. */
2933 if (',' == display_buf[n-1])
2934 display_buf[n-1] = ' ';
2935 return display_buf;
2936 }
2937 }
2938 return NULL;
2939}
2940\f
2941
2942static int
2943remote_static_tracepoint_marker_at (CORE_ADDR addr,
2944 struct static_tracepoint_marker *marker)
2945{
2946 struct remote_state *rs = get_remote_state ();
2947 char *p = rs->buf;
2948
2949 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2950 p += strlen (p);
2951 p += hexnumstr (p, addr);
2952 putpkt (rs->buf);
2953 getpkt (&rs->buf, &rs->buf_size, 0);
2954 p = rs->buf;
2955
2956 if (*p == 'E')
2957 error (_("Remote failure reply: %s"), p);
2958
2959 if (*p++ == 'm')
2960 {
2961 parse_static_tracepoint_marker_definition (p, &p, marker);
2962 return 1;
2963 }
2964
2965 return 0;
2966}
2967
2968static VEC(static_tracepoint_marker_p) *
2969remote_static_tracepoint_markers_by_strid (const char *strid)
2970{
2971 struct remote_state *rs = get_remote_state ();
2972 VEC(static_tracepoint_marker_p) *markers = NULL;
2973 struct static_tracepoint_marker *marker = NULL;
2974 struct cleanup *old_chain;
2975 char *p;
2976
2977 /* Ask for a first packet of static tracepoint marker
2978 definition. */
2979 putpkt ("qTfSTM");
2980 getpkt (&rs->buf, &rs->buf_size, 0);
2981 p = rs->buf;
2982 if (*p == 'E')
2983 error (_("Remote failure reply: %s"), p);
2984
2985 old_chain = make_cleanup (free_current_marker, &marker);
2986
2987 while (*p++ == 'm')
2988 {
2989 if (marker == NULL)
2990 marker = XCNEW (struct static_tracepoint_marker);
2991
2992 do
2993 {
2994 parse_static_tracepoint_marker_definition (p, &p, marker);
2995
2996 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2997 {
2998 VEC_safe_push (static_tracepoint_marker_p,
2999 markers, marker);
3000 marker = NULL;
3001 }
3002 else
3003 {
3004 release_static_tracepoint_marker (marker);
3005 memset (marker, 0, sizeof (*marker));
3006 }
3007 }
3008 while (*p++ == ','); /* comma-separated list */
3009 /* Ask for another packet of static tracepoint definition. */
3010 putpkt ("qTsSTM");
3011 getpkt (&rs->buf, &rs->buf_size, 0);
3012 p = rs->buf;
3013 }
3014
3015 do_cleanups (old_chain);
3016 return markers;
3017}
3018
3019\f
3020/* Implement the to_get_ada_task_ptid function for the remote targets. */
3021
3022static ptid_t
3023remote_get_ada_task_ptid (long lwp, long thread)
3024{
3025 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3026}
3027\f
3028
3029/* Restart the remote side; this is an extended protocol operation. */
3030
3031static void
3032extended_remote_restart (void)
3033{
3034 struct remote_state *rs = get_remote_state ();
3035
3036 /* Send the restart command; for reasons I don't understand the
3037 remote side really expects a number after the "R". */
3038 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3039 putpkt (rs->buf);
3040
3041 remote_fileio_reset ();
3042}
3043\f
3044/* Clean up connection to a remote debugger. */
3045
3046static void
3047remote_close (void)
3048{
3049 struct remote_state *rs = get_remote_state ();
3050
3051 if (rs->remote_desc == NULL)
3052 return; /* already closed */
3053
3054 /* Make sure we leave stdin registered in the event loop, and we
3055 don't leave the async SIGINT signal handler installed. */
3056 remote_terminal_ours ();
3057
3058 serial_close (rs->remote_desc);
3059 rs->remote_desc = NULL;
3060
3061 /* We don't have a connection to the remote stub anymore. Get rid
3062 of all the inferiors and their threads we were controlling.
3063 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3064 will be unable to find the thread corresponding to (pid, 0, 0). */
3065 inferior_ptid = null_ptid;
3066 discard_all_inferiors ();
3067
3068 /* We are closing the remote target, so we should discard
3069 everything of this target. */
3070 discard_pending_stop_replies_in_queue (rs);
3071
3072 if (remote_async_inferior_event_token)
3073 delete_async_event_handler (&remote_async_inferior_event_token);
3074
3075 remote_notif_state_xfree (rs->notif_state);
3076
3077 trace_reset_local_state ();
3078}
3079
3080/* Query the remote side for the text, data and bss offsets. */
3081
3082static void
3083get_offsets (void)
3084{
3085 struct remote_state *rs = get_remote_state ();
3086 char *buf;
3087 char *ptr;
3088 int lose, num_segments = 0, do_sections, do_segments;
3089 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3090 struct section_offsets *offs;
3091 struct symfile_segment_data *data;
3092
3093 if (symfile_objfile == NULL)
3094 return;
3095
3096 putpkt ("qOffsets");
3097 getpkt (&rs->buf, &rs->buf_size, 0);
3098 buf = rs->buf;
3099
3100 if (buf[0] == '\000')
3101 return; /* Return silently. Stub doesn't support
3102 this command. */
3103 if (buf[0] == 'E')
3104 {
3105 warning (_("Remote failure reply: %s"), buf);
3106 return;
3107 }
3108
3109 /* Pick up each field in turn. This used to be done with scanf, but
3110 scanf will make trouble if CORE_ADDR size doesn't match
3111 conversion directives correctly. The following code will work
3112 with any size of CORE_ADDR. */
3113 text_addr = data_addr = bss_addr = 0;
3114 ptr = buf;
3115 lose = 0;
3116
3117 if (strncmp (ptr, "Text=", 5) == 0)
3118 {
3119 ptr += 5;
3120 /* Don't use strtol, could lose on big values. */
3121 while (*ptr && *ptr != ';')
3122 text_addr = (text_addr << 4) + fromhex (*ptr++);
3123
3124 if (strncmp (ptr, ";Data=", 6) == 0)
3125 {
3126 ptr += 6;
3127 while (*ptr && *ptr != ';')
3128 data_addr = (data_addr << 4) + fromhex (*ptr++);
3129 }
3130 else
3131 lose = 1;
3132
3133 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3134 {
3135 ptr += 5;
3136 while (*ptr && *ptr != ';')
3137 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3138
3139 if (bss_addr != data_addr)
3140 warning (_("Target reported unsupported offsets: %s"), buf);
3141 }
3142 else
3143 lose = 1;
3144 }
3145 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3146 {
3147 ptr += 8;
3148 /* Don't use strtol, could lose on big values. */
3149 while (*ptr && *ptr != ';')
3150 text_addr = (text_addr << 4) + fromhex (*ptr++);
3151 num_segments = 1;
3152
3153 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3154 {
3155 ptr += 9;
3156 while (*ptr && *ptr != ';')
3157 data_addr = (data_addr << 4) + fromhex (*ptr++);
3158 num_segments++;
3159 }
3160 }
3161 else
3162 lose = 1;
3163
3164 if (lose)
3165 error (_("Malformed response to offset query, %s"), buf);
3166 else if (*ptr != '\0')
3167 warning (_("Target reported unsupported offsets: %s"), buf);
3168
3169 offs = ((struct section_offsets *)
3170 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3171 memcpy (offs, symfile_objfile->section_offsets,
3172 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3173
3174 data = get_symfile_segment_data (symfile_objfile->obfd);
3175 do_segments = (data != NULL);
3176 do_sections = num_segments == 0;
3177
3178 if (num_segments > 0)
3179 {
3180 segments[0] = text_addr;
3181 segments[1] = data_addr;
3182 }
3183 /* If we have two segments, we can still try to relocate everything
3184 by assuming that the .text and .data offsets apply to the whole
3185 text and data segments. Convert the offsets given in the packet
3186 to base addresses for symfile_map_offsets_to_segments. */
3187 else if (data && data->num_segments == 2)
3188 {
3189 segments[0] = data->segment_bases[0] + text_addr;
3190 segments[1] = data->segment_bases[1] + data_addr;
3191 num_segments = 2;
3192 }
3193 /* If the object file has only one segment, assume that it is text
3194 rather than data; main programs with no writable data are rare,
3195 but programs with no code are useless. Of course the code might
3196 have ended up in the data segment... to detect that we would need
3197 the permissions here. */
3198 else if (data && data->num_segments == 1)
3199 {
3200 segments[0] = data->segment_bases[0] + text_addr;
3201 num_segments = 1;
3202 }
3203 /* There's no way to relocate by segment. */
3204 else
3205 do_segments = 0;
3206
3207 if (do_segments)
3208 {
3209 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3210 offs, num_segments, segments);
3211
3212 if (ret == 0 && !do_sections)
3213 error (_("Can not handle qOffsets TextSeg "
3214 "response with this symbol file"));
3215
3216 if (ret > 0)
3217 do_sections = 0;
3218 }
3219
3220 if (data)
3221 free_symfile_segment_data (data);
3222
3223 if (do_sections)
3224 {
3225 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3226
3227 /* This is a temporary kludge to force data and bss to use the
3228 same offsets because that's what nlmconv does now. The real
3229 solution requires changes to the stub and remote.c that I
3230 don't have time to do right now. */
3231
3232 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3233 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3234 }
3235
3236 objfile_relocate (symfile_objfile, offs);
3237}
3238
3239/* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3240 threads we know are stopped already. This is used during the
3241 initial remote connection in non-stop mode --- threads that are
3242 reported as already being stopped are left stopped. */
3243
3244static int
3245set_stop_requested_callback (struct thread_info *thread, void *data)
3246{
3247 /* If we have a stop reply for this thread, it must be stopped. */
3248 if (peek_stop_reply (thread->ptid))
3249 set_stop_requested (thread->ptid, 1);
3250
3251 return 0;
3252}
3253
3254/* Send interrupt_sequence to remote target. */
3255static void
3256send_interrupt_sequence (void)
3257{
3258 struct remote_state *rs = get_remote_state ();
3259
3260 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3261 remote_serial_write ("\x03", 1);
3262 else if (interrupt_sequence_mode == interrupt_sequence_break)
3263 serial_send_break (rs->remote_desc);
3264 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3265 {
3266 serial_send_break (rs->remote_desc);
3267 remote_serial_write ("g", 1);
3268 }
3269 else
3270 internal_error (__FILE__, __LINE__,
3271 _("Invalid value for interrupt_sequence_mode: %s."),
3272 interrupt_sequence_mode);
3273}
3274
3275
3276/* If STOP_REPLY is a T stop reply, look for the "thread" register,
3277 and extract the PTID. Returns NULL_PTID if not found. */
3278
3279static ptid_t
3280stop_reply_extract_thread (char *stop_reply)
3281{
3282 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3283 {
3284 char *p;
3285
3286 /* Txx r:val ; r:val (...) */
3287 p = &stop_reply[3];
3288
3289 /* Look for "register" named "thread". */
3290 while (*p != '\0')
3291 {
3292 char *p1;
3293
3294 p1 = strchr (p, ':');
3295 if (p1 == NULL)
3296 return null_ptid;
3297
3298 if (strncmp (p, "thread", p1 - p) == 0)
3299 return read_ptid (++p1, &p);
3300
3301 p1 = strchr (p, ';');
3302 if (p1 == NULL)
3303 return null_ptid;
3304 p1++;
3305
3306 p = p1;
3307 }
3308 }
3309
3310 return null_ptid;
3311}
3312
3313/* Query the remote target for which is the current thread/process,
3314 add it to our tables, and update INFERIOR_PTID. The caller is
3315 responsible for setting the state such that the remote end is ready
3316 to return the current thread.
3317
3318 This function is called after handling the '?' or 'vRun' packets,
3319 whose response is a stop reply from which we can also try
3320 extracting the thread. If the target doesn't support the explicit
3321 qC query, we infer the current thread from that stop reply, passed
3322 in in WAIT_STATUS, which may be NULL. */
3323
3324static void
3325add_current_inferior_and_thread (char *wait_status)
3326{
3327 struct remote_state *rs = get_remote_state ();
3328 int fake_pid_p = 0;
3329 ptid_t ptid = null_ptid;
3330
3331 inferior_ptid = null_ptid;
3332
3333 /* Now, if we have thread information, update inferior_ptid. First
3334 if we have a stop reply handy, maybe it's a T stop reply with a
3335 "thread" register we can extract the current thread from. If
3336 not, ask the remote which is the current thread, with qC. The
3337 former method avoids a roundtrip. Note we don't use
3338 remote_parse_stop_reply as that makes use of the target
3339 architecture, which we haven't yet fully determined at this
3340 point. */
3341 if (wait_status != NULL)
3342 ptid = stop_reply_extract_thread (wait_status);
3343 if (ptid_equal (ptid, null_ptid))
3344 ptid = remote_current_thread (inferior_ptid);
3345
3346 if (!ptid_equal (ptid, null_ptid))
3347 {
3348 if (!remote_multi_process_p (rs))
3349 fake_pid_p = 1;
3350
3351 inferior_ptid = ptid;
3352 }
3353 else
3354 {
3355 /* Without this, some commands which require an active target
3356 (such as kill) won't work. This variable serves (at least)
3357 double duty as both the pid of the target process (if it has
3358 such), and as a flag indicating that a target is active. */
3359 inferior_ptid = magic_null_ptid;
3360 fake_pid_p = 1;
3361 }
3362
3363 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3364
3365 /* Add the main thread. */
3366 add_thread_silent (inferior_ptid);
3367}
3368
3369static void
3370remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3371{
3372 struct remote_state *rs = get_remote_state ();
3373 struct packet_config *noack_config;
3374 char *wait_status = NULL;
3375
3376 immediate_quit++; /* Allow user to interrupt it. */
3377 QUIT;
3378
3379 if (interrupt_on_connect)
3380 send_interrupt_sequence ();
3381
3382 /* Ack any packet which the remote side has already sent. */
3383 serial_write (rs->remote_desc, "+", 1);
3384
3385 /* Signal other parts that we're going through the initial setup,
3386 and so things may not be stable yet. */
3387 rs->starting_up = 1;
3388
3389 /* The first packet we send to the target is the optional "supported
3390 packets" request. If the target can answer this, it will tell us
3391 which later probes to skip. */
3392 remote_query_supported ();
3393
3394 /* If the stub wants to get a QAllow, compose one and send it. */
3395 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3396 remote_set_permissions ();
3397
3398 /* Next, we possibly activate noack mode.
3399
3400 If the QStartNoAckMode packet configuration is set to AUTO,
3401 enable noack mode if the stub reported a wish for it with
3402 qSupported.
3403
3404 If set to TRUE, then enable noack mode even if the stub didn't
3405 report it in qSupported. If the stub doesn't reply OK, the
3406 session ends with an error.
3407
3408 If FALSE, then don't activate noack mode, regardless of what the
3409 stub claimed should be the default with qSupported. */
3410
3411 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3412
3413 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3414 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3415 && noack_config->support == PACKET_ENABLE))
3416 {
3417 putpkt ("QStartNoAckMode");
3418 getpkt (&rs->buf, &rs->buf_size, 0);
3419 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3420 rs->noack_mode = 1;
3421 }
3422
3423 if (extended_p)
3424 {
3425 /* Tell the remote that we are using the extended protocol. */
3426 putpkt ("!");
3427 getpkt (&rs->buf, &rs->buf_size, 0);
3428 }
3429
3430 /* Let the target know which signals it is allowed to pass down to
3431 the program. */
3432 update_signals_program_target ();
3433
3434 /* Next, if the target can specify a description, read it. We do
3435 this before anything involving memory or registers. */
3436 target_find_description ();
3437
3438 /* Next, now that we know something about the target, update the
3439 address spaces in the program spaces. */
3440 update_address_spaces ();
3441
3442 /* On OSs where the list of libraries is global to all
3443 processes, we fetch them early. */
3444 if (gdbarch_has_global_solist (target_gdbarch ()))
3445 solib_add (NULL, from_tty, target, auto_solib_add);
3446
3447 if (non_stop)
3448 {
3449 if (!rs->non_stop_aware)
3450 error (_("Non-stop mode requested, but remote "
3451 "does not support non-stop"));
3452
3453 putpkt ("QNonStop:1");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455
3456 if (strcmp (rs->buf, "OK") != 0)
3457 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3458
3459 /* Find about threads and processes the stub is already
3460 controlling. We default to adding them in the running state.
3461 The '?' query below will then tell us about which threads are
3462 stopped. */
3463 remote_threads_info (target);
3464 }
3465 else if (rs->non_stop_aware)
3466 {
3467 /* Don't assume that the stub can operate in all-stop mode.
3468 Request it explicitly. */
3469 putpkt ("QNonStop:0");
3470 getpkt (&rs->buf, &rs->buf_size, 0);
3471
3472 if (strcmp (rs->buf, "OK") != 0)
3473 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3474 }
3475
3476 /* Upload TSVs regardless of whether the target is running or not. The
3477 remote stub, such as GDBserver, may have some predefined or builtin
3478 TSVs, even if the target is not running. */
3479 if (remote_get_trace_status (current_trace_status ()) != -1)
3480 {
3481 struct uploaded_tsv *uploaded_tsvs = NULL;
3482
3483 remote_upload_trace_state_variables (&uploaded_tsvs);
3484 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3485 }
3486
3487 /* Check whether the target is running now. */
3488 putpkt ("?");
3489 getpkt (&rs->buf, &rs->buf_size, 0);
3490
3491 if (!non_stop)
3492 {
3493 ptid_t ptid;
3494 int fake_pid_p = 0;
3495 struct inferior *inf;
3496
3497 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3498 {
3499 if (!extended_p)
3500 error (_("The target is not running (try extended-remote?)"));
3501
3502 /* We're connected, but not running. Drop out before we
3503 call start_remote. */
3504 rs->starting_up = 0;
3505 return;
3506 }
3507 else
3508 {
3509 /* Save the reply for later. */
3510 wait_status = alloca (strlen (rs->buf) + 1);
3511 strcpy (wait_status, rs->buf);
3512 }
3513
3514 /* Let the stub know that we want it to return the thread. */
3515 set_continue_thread (minus_one_ptid);
3516
3517 add_current_inferior_and_thread (wait_status);
3518
3519 /* init_wait_for_inferior should be called before get_offsets in order
3520 to manage `inserted' flag in bp loc in a correct state.
3521 breakpoint_init_inferior, called from init_wait_for_inferior, set
3522 `inserted' flag to 0, while before breakpoint_re_set, called from
3523 start_remote, set `inserted' flag to 1. In the initialization of
3524 inferior, breakpoint_init_inferior should be called first, and then
3525 breakpoint_re_set can be called. If this order is broken, state of
3526 `inserted' flag is wrong, and cause some problems on breakpoint
3527 manipulation. */
3528 init_wait_for_inferior ();
3529
3530 get_offsets (); /* Get text, data & bss offsets. */
3531
3532 /* If we could not find a description using qXfer, and we know
3533 how to do it some other way, try again. This is not
3534 supported for non-stop; it could be, but it is tricky if
3535 there are no stopped threads when we connect. */
3536 if (remote_read_description_p (target)
3537 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3538 {
3539 target_clear_description ();
3540 target_find_description ();
3541 }
3542
3543 /* Use the previously fetched status. */
3544 gdb_assert (wait_status != NULL);
3545 strcpy (rs->buf, wait_status);
3546 rs->cached_wait_status = 1;
3547
3548 immediate_quit--;
3549 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3550 }
3551 else
3552 {
3553 /* Clear WFI global state. Do this before finding about new
3554 threads and inferiors, and setting the current inferior.
3555 Otherwise we would clear the proceed status of the current
3556 inferior when we want its stop_soon state to be preserved
3557 (see notice_new_inferior). */
3558 init_wait_for_inferior ();
3559
3560 /* In non-stop, we will either get an "OK", meaning that there
3561 are no stopped threads at this time; or, a regular stop
3562 reply. In the latter case, there may be more than one thread
3563 stopped --- we pull them all out using the vStopped
3564 mechanism. */
3565 if (strcmp (rs->buf, "OK") != 0)
3566 {
3567 struct notif_client *notif = &notif_client_stop;
3568
3569 /* remote_notif_get_pending_replies acks this one, and gets
3570 the rest out. */
3571 rs->notif_state->pending_event[notif_client_stop.id]
3572 = remote_notif_parse (notif, rs->buf);
3573 remote_notif_get_pending_events (notif);
3574
3575 /* Make sure that threads that were stopped remain
3576 stopped. */
3577 iterate_over_threads (set_stop_requested_callback, NULL);
3578 }
3579
3580 if (target_can_async_p ())
3581 target_async (inferior_event_handler, 0);
3582
3583 if (thread_count () == 0)
3584 {
3585 if (!extended_p)
3586 error (_("The target is not running (try extended-remote?)"));
3587
3588 /* We're connected, but not running. Drop out before we
3589 call start_remote. */
3590 rs->starting_up = 0;
3591 return;
3592 }
3593
3594 /* Let the stub know that we want it to return the thread. */
3595
3596 /* Force the stub to choose a thread. */
3597 set_general_thread (null_ptid);
3598
3599 /* Query it. */
3600 inferior_ptid = remote_current_thread (minus_one_ptid);
3601 if (ptid_equal (inferior_ptid, minus_one_ptid))
3602 error (_("remote didn't report the current thread in non-stop mode"));
3603
3604 get_offsets (); /* Get text, data & bss offsets. */
3605
3606 /* In non-stop mode, any cached wait status will be stored in
3607 the stop reply queue. */
3608 gdb_assert (wait_status == NULL);
3609
3610 /* Report all signals during attach/startup. */
3611 remote_pass_signals (0, NULL);
3612 }
3613
3614 /* If we connected to a live target, do some additional setup. */
3615 if (target_has_execution)
3616 {
3617 if (exec_bfd) /* No use without an exec file. */
3618 remote_check_symbols ();
3619 }
3620
3621 /* Possibly the target has been engaged in a trace run started
3622 previously; find out where things are at. */
3623 if (remote_get_trace_status (current_trace_status ()) != -1)
3624 {
3625 struct uploaded_tp *uploaded_tps = NULL;
3626
3627 if (current_trace_status ()->running)
3628 printf_filtered (_("Trace is already running on the target.\n"));
3629
3630 remote_upload_tracepoints (&uploaded_tps);
3631
3632 merge_uploaded_tracepoints (&uploaded_tps);
3633 }
3634
3635 /* The thread and inferior lists are now synchronized with the
3636 target, our symbols have been relocated, and we're merged the
3637 target's tracepoints with ours. We're done with basic start
3638 up. */
3639 rs->starting_up = 0;
3640
3641 /* If breakpoints are global, insert them now. */
3642 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3643 && breakpoints_always_inserted_mode ())
3644 insert_breakpoints ();
3645}
3646
3647/* Open a connection to a remote debugger.
3648 NAME is the filename used for communication. */
3649
3650static void
3651remote_open (char *name, int from_tty)
3652{
3653 remote_open_1 (name, from_tty, &remote_ops, 0);
3654}
3655
3656/* Open a connection to a remote debugger using the extended
3657 remote gdb protocol. NAME is the filename used for communication. */
3658
3659static void
3660extended_remote_open (char *name, int from_tty)
3661{
3662 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3663}
3664
3665/* Generic code for opening a connection to a remote target. */
3666
3667static void
3668init_all_packet_configs (void)
3669{
3670 int i;
3671
3672 for (i = 0; i < PACKET_MAX; i++)
3673 update_packet_config (&remote_protocol_packets[i]);
3674}
3675
3676/* Symbol look-up. */
3677
3678static void
3679remote_check_symbols (void)
3680{
3681 struct remote_state *rs = get_remote_state ();
3682 char *msg, *reply, *tmp;
3683 struct minimal_symbol *sym;
3684 int end;
3685
3686 /* The remote side has no concept of inferiors that aren't running
3687 yet, it only knows about running processes. If we're connected
3688 but our current inferior is not running, we should not invite the
3689 remote target to request symbol lookups related to its
3690 (unrelated) current process. */
3691 if (!target_has_execution)
3692 return;
3693
3694 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3695 return;
3696
3697 /* Make sure the remote is pointing at the right process. Note
3698 there's no way to select "no process". */
3699 set_general_process ();
3700
3701 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3702 because we need both at the same time. */
3703 msg = alloca (get_remote_packet_size ());
3704
3705 /* Invite target to request symbol lookups. */
3706
3707 putpkt ("qSymbol::");
3708 getpkt (&rs->buf, &rs->buf_size, 0);
3709 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3710 reply = rs->buf;
3711
3712 while (strncmp (reply, "qSymbol:", 8) == 0)
3713 {
3714 tmp = &reply[8];
3715 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3716 msg[end] = '\0';
3717 sym = lookup_minimal_symbol (msg, NULL, NULL);
3718 if (sym == NULL)
3719 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3720 else
3721 {
3722 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3723 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3724
3725 /* If this is a function address, return the start of code
3726 instead of any data function descriptor. */
3727 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3728 sym_addr,
3729 &current_target);
3730
3731 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3732 phex_nz (sym_addr, addr_size), &reply[8]);
3733 }
3734
3735 putpkt (msg);
3736 getpkt (&rs->buf, &rs->buf_size, 0);
3737 reply = rs->buf;
3738 }
3739}
3740
3741static struct serial *
3742remote_serial_open (char *name)
3743{
3744 static int udp_warning = 0;
3745
3746 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3747 of in ser-tcp.c, because it is the remote protocol assuming that the
3748 serial connection is reliable and not the serial connection promising
3749 to be. */
3750 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3751 {
3752 warning (_("The remote protocol may be unreliable over UDP.\n"
3753 "Some events may be lost, rendering further debugging "
3754 "impossible."));
3755 udp_warning = 1;
3756 }
3757
3758 return serial_open (name);
3759}
3760
3761/* Inform the target of our permission settings. The permission flags
3762 work without this, but if the target knows the settings, it can do
3763 a couple things. First, it can add its own check, to catch cases
3764 that somehow manage to get by the permissions checks in target
3765 methods. Second, if the target is wired to disallow particular
3766 settings (for instance, a system in the field that is not set up to
3767 be able to stop at a breakpoint), it can object to any unavailable
3768 permissions. */
3769
3770void
3771remote_set_permissions (void)
3772{
3773 struct remote_state *rs = get_remote_state ();
3774
3775 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3776 "WriteReg:%x;WriteMem:%x;"
3777 "InsertBreak:%x;InsertTrace:%x;"
3778 "InsertFastTrace:%x;Stop:%x",
3779 may_write_registers, may_write_memory,
3780 may_insert_breakpoints, may_insert_tracepoints,
3781 may_insert_fast_tracepoints, may_stop);
3782 putpkt (rs->buf);
3783 getpkt (&rs->buf, &rs->buf_size, 0);
3784
3785 /* If the target didn't like the packet, warn the user. Do not try
3786 to undo the user's settings, that would just be maddening. */
3787 if (strcmp (rs->buf, "OK") != 0)
3788 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3789}
3790
3791/* This type describes each known response to the qSupported
3792 packet. */
3793struct protocol_feature
3794{
3795 /* The name of this protocol feature. */
3796 const char *name;
3797
3798 /* The default for this protocol feature. */
3799 enum packet_support default_support;
3800
3801 /* The function to call when this feature is reported, or after
3802 qSupported processing if the feature is not supported.
3803 The first argument points to this structure. The second
3804 argument indicates whether the packet requested support be
3805 enabled, disabled, or probed (or the default, if this function
3806 is being called at the end of processing and this feature was
3807 not reported). The third argument may be NULL; if not NULL, it
3808 is a NUL-terminated string taken from the packet following
3809 this feature's name and an equals sign. */
3810 void (*func) (const struct protocol_feature *, enum packet_support,
3811 const char *);
3812
3813 /* The corresponding packet for this feature. Only used if
3814 FUNC is remote_supported_packet. */
3815 int packet;
3816};
3817
3818static void
3819remote_supported_packet (const struct protocol_feature *feature,
3820 enum packet_support support,
3821 const char *argument)
3822{
3823 if (argument)
3824 {
3825 warning (_("Remote qSupported response supplied an unexpected value for"
3826 " \"%s\"."), feature->name);
3827 return;
3828 }
3829
3830 if (remote_protocol_packets[feature->packet].support
3831 == PACKET_SUPPORT_UNKNOWN)
3832 remote_protocol_packets[feature->packet].support = support;
3833}
3834
3835static void
3836remote_packet_size (const struct protocol_feature *feature,
3837 enum packet_support support, const char *value)
3838{
3839 struct remote_state *rs = get_remote_state ();
3840
3841 int packet_size;
3842 char *value_end;
3843
3844 if (support != PACKET_ENABLE)
3845 return;
3846
3847 if (value == NULL || *value == '\0')
3848 {
3849 warning (_("Remote target reported \"%s\" without a size."),
3850 feature->name);
3851 return;
3852 }
3853
3854 errno = 0;
3855 packet_size = strtol (value, &value_end, 16);
3856 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3857 {
3858 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3859 feature->name, value);
3860 return;
3861 }
3862
3863 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3864 {
3865 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3866 packet_size, MAX_REMOTE_PACKET_SIZE);
3867 packet_size = MAX_REMOTE_PACKET_SIZE;
3868 }
3869
3870 /* Record the new maximum packet size. */
3871 rs->explicit_packet_size = packet_size;
3872}
3873
3874static void
3875remote_multi_process_feature (const struct protocol_feature *feature,
3876 enum packet_support support, const char *value)
3877{
3878 struct remote_state *rs = get_remote_state ();
3879
3880 rs->multi_process_aware = (support == PACKET_ENABLE);
3881}
3882
3883static void
3884remote_non_stop_feature (const struct protocol_feature *feature,
3885 enum packet_support support, const char *value)
3886{
3887 struct remote_state *rs = get_remote_state ();
3888
3889 rs->non_stop_aware = (support == PACKET_ENABLE);
3890}
3891
3892static void
3893remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3894 enum packet_support support,
3895 const char *value)
3896{
3897 struct remote_state *rs = get_remote_state ();
3898
3899 rs->cond_tracepoints = (support == PACKET_ENABLE);
3900}
3901
3902static void
3903remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3904 enum packet_support support,
3905 const char *value)
3906{
3907 struct remote_state *rs = get_remote_state ();
3908
3909 rs->cond_breakpoints = (support == PACKET_ENABLE);
3910}
3911
3912static void
3913remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3914 enum packet_support support,
3915 const char *value)
3916{
3917 struct remote_state *rs = get_remote_state ();
3918
3919 rs->breakpoint_commands = (support == PACKET_ENABLE);
3920}
3921
3922static void
3923remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3924 enum packet_support support,
3925 const char *value)
3926{
3927 struct remote_state *rs = get_remote_state ();
3928
3929 rs->fast_tracepoints = (support == PACKET_ENABLE);
3930}
3931
3932static void
3933remote_static_tracepoint_feature (const struct protocol_feature *feature,
3934 enum packet_support support,
3935 const char *value)
3936{
3937 struct remote_state *rs = get_remote_state ();
3938
3939 rs->static_tracepoints = (support == PACKET_ENABLE);
3940}
3941
3942static void
3943remote_install_in_trace_feature (const struct protocol_feature *feature,
3944 enum packet_support support,
3945 const char *value)
3946{
3947 struct remote_state *rs = get_remote_state ();
3948
3949 rs->install_in_trace = (support == PACKET_ENABLE);
3950}
3951
3952static void
3953remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3954 enum packet_support support,
3955 const char *value)
3956{
3957 struct remote_state *rs = get_remote_state ();
3958
3959 rs->disconnected_tracing = (support == PACKET_ENABLE);
3960}
3961
3962static void
3963remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3964 enum packet_support support,
3965 const char *value)
3966{
3967 struct remote_state *rs = get_remote_state ();
3968
3969 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3970}
3971
3972static void
3973remote_string_tracing_feature (const struct protocol_feature *feature,
3974 enum packet_support support,
3975 const char *value)
3976{
3977 struct remote_state *rs = get_remote_state ();
3978
3979 rs->string_tracing = (support == PACKET_ENABLE);
3980}
3981
3982static void
3983remote_augmented_libraries_svr4_read_feature
3984 (const struct protocol_feature *feature,
3985 enum packet_support support, const char *value)
3986{
3987 struct remote_state *rs = get_remote_state ();
3988
3989 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3990}
3991
3992static const struct protocol_feature remote_protocol_features[] = {
3993 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3994 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3995 PACKET_qXfer_auxv },
3996 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3997 PACKET_qXfer_features },
3998 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3999 PACKET_qXfer_libraries },
4000 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4001 PACKET_qXfer_libraries_svr4 },
4002 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4003 remote_augmented_libraries_svr4_read_feature, -1 },
4004 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4005 PACKET_qXfer_memory_map },
4006 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4007 PACKET_qXfer_spu_read },
4008 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4009 PACKET_qXfer_spu_write },
4010 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4011 PACKET_qXfer_osdata },
4012 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4013 PACKET_qXfer_threads },
4014 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4015 PACKET_qXfer_traceframe_info },
4016 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4017 PACKET_QPassSignals },
4018 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4019 PACKET_QProgramSignals },
4020 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4021 PACKET_QStartNoAckMode },
4022 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4023 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4024 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4025 PACKET_qXfer_siginfo_read },
4026 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4027 PACKET_qXfer_siginfo_write },
4028 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4029 PACKET_ConditionalTracepoints },
4030 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4031 PACKET_ConditionalBreakpoints },
4032 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4033 PACKET_BreakpointCommands },
4034 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4035 PACKET_FastTracepoints },
4036 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4037 PACKET_StaticTracepoints },
4038 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4039 PACKET_InstallInTrace},
4040 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4041 -1 },
4042 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4043 PACKET_bc },
4044 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_bs },
4046 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_TracepointSource },
4048 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_QAllow },
4050 { "EnableDisableTracepoints", PACKET_DISABLE,
4051 remote_enable_disable_tracepoint_feature, -1 },
4052 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4053 PACKET_qXfer_fdpic },
4054 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4055 PACKET_qXfer_uib },
4056 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4057 PACKET_QDisableRandomization },
4058 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4059 { "QTBuffer:size", PACKET_DISABLE,
4060 remote_supported_packet, PACKET_QTBuffer_size},
4061 { "tracenz", PACKET_DISABLE,
4062 remote_string_tracing_feature, -1 },
4063 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4064 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4065 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4066 PACKET_qXfer_btrace }
4067};
4068
4069static char *remote_support_xml;
4070
4071/* Register string appended to "xmlRegisters=" in qSupported query. */
4072
4073void
4074register_remote_support_xml (const char *xml)
4075{
4076#if defined(HAVE_LIBEXPAT)
4077 if (remote_support_xml == NULL)
4078 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4079 else
4080 {
4081 char *copy = xstrdup (remote_support_xml + 13);
4082 char *p = strtok (copy, ",");
4083
4084 do
4085 {
4086 if (strcmp (p, xml) == 0)
4087 {
4088 /* already there */
4089 xfree (copy);
4090 return;
4091 }
4092 }
4093 while ((p = strtok (NULL, ",")) != NULL);
4094 xfree (copy);
4095
4096 remote_support_xml = reconcat (remote_support_xml,
4097 remote_support_xml, ",", xml,
4098 (char *) NULL);
4099 }
4100#endif
4101}
4102
4103static char *
4104remote_query_supported_append (char *msg, const char *append)
4105{
4106 if (msg)
4107 return reconcat (msg, msg, ";", append, (char *) NULL);
4108 else
4109 return xstrdup (append);
4110}
4111
4112static void
4113remote_query_supported (void)
4114{
4115 struct remote_state *rs = get_remote_state ();
4116 char *next;
4117 int i;
4118 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4119
4120 /* The packet support flags are handled differently for this packet
4121 than for most others. We treat an error, a disabled packet, and
4122 an empty response identically: any features which must be reported
4123 to be used will be automatically disabled. An empty buffer
4124 accomplishes this, since that is also the representation for a list
4125 containing no features. */
4126
4127 rs->buf[0] = 0;
4128 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4129 {
4130 char *q = NULL;
4131 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4132
4133 q = remote_query_supported_append (q, "multiprocess+");
4134
4135 if (remote_support_xml)
4136 q = remote_query_supported_append (q, remote_support_xml);
4137
4138 q = remote_query_supported_append (q, "qRelocInsn+");
4139
4140 q = reconcat (q, "qSupported:", q, (char *) NULL);
4141 putpkt (q);
4142
4143 do_cleanups (old_chain);
4144
4145 getpkt (&rs->buf, &rs->buf_size, 0);
4146
4147 /* If an error occured, warn, but do not return - just reset the
4148 buffer to empty and go on to disable features. */
4149 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4150 == PACKET_ERROR)
4151 {
4152 warning (_("Remote failure reply: %s"), rs->buf);
4153 rs->buf[0] = 0;
4154 }
4155 }
4156
4157 memset (seen, 0, sizeof (seen));
4158
4159 next = rs->buf;
4160 while (*next)
4161 {
4162 enum packet_support is_supported;
4163 char *p, *end, *name_end, *value;
4164
4165 /* First separate out this item from the rest of the packet. If
4166 there's another item after this, we overwrite the separator
4167 (terminated strings are much easier to work with). */
4168 p = next;
4169 end = strchr (p, ';');
4170 if (end == NULL)
4171 {
4172 end = p + strlen (p);
4173 next = end;
4174 }
4175 else
4176 {
4177 *end = '\0';
4178 next = end + 1;
4179
4180 if (end == p)
4181 {
4182 warning (_("empty item in \"qSupported\" response"));
4183 continue;
4184 }
4185 }
4186
4187 name_end = strchr (p, '=');
4188 if (name_end)
4189 {
4190 /* This is a name=value entry. */
4191 is_supported = PACKET_ENABLE;
4192 value = name_end + 1;
4193 *name_end = '\0';
4194 }
4195 else
4196 {
4197 value = NULL;
4198 switch (end[-1])
4199 {
4200 case '+':
4201 is_supported = PACKET_ENABLE;
4202 break;
4203
4204 case '-':
4205 is_supported = PACKET_DISABLE;
4206 break;
4207
4208 case '?':
4209 is_supported = PACKET_SUPPORT_UNKNOWN;
4210 break;
4211
4212 default:
4213 warning (_("unrecognized item \"%s\" "
4214 "in \"qSupported\" response"), p);
4215 continue;
4216 }
4217 end[-1] = '\0';
4218 }
4219
4220 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4221 if (strcmp (remote_protocol_features[i].name, p) == 0)
4222 {
4223 const struct protocol_feature *feature;
4224
4225 seen[i] = 1;
4226 feature = &remote_protocol_features[i];
4227 feature->func (feature, is_supported, value);
4228 break;
4229 }
4230 }
4231
4232 /* If we increased the packet size, make sure to increase the global
4233 buffer size also. We delay this until after parsing the entire
4234 qSupported packet, because this is the same buffer we were
4235 parsing. */
4236 if (rs->buf_size < rs->explicit_packet_size)
4237 {
4238 rs->buf_size = rs->explicit_packet_size;
4239 rs->buf = xrealloc (rs->buf, rs->buf_size);
4240 }
4241
4242 /* Handle the defaults for unmentioned features. */
4243 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4244 if (!seen[i])
4245 {
4246 const struct protocol_feature *feature;
4247
4248 feature = &remote_protocol_features[i];
4249 feature->func (feature, feature->default_support, NULL);
4250 }
4251}
4252
4253/* Remove any of the remote.c targets from target stack. Upper targets depend
4254 on it so remove them first. */
4255
4256static void
4257remote_unpush_target (void)
4258{
4259 pop_all_targets_above (process_stratum - 1);
4260}
4261
4262static void
4263remote_open_1 (char *name, int from_tty,
4264 struct target_ops *target, int extended_p)
4265{
4266 struct remote_state *rs = get_remote_state ();
4267
4268 if (name == 0)
4269 error (_("To open a remote debug connection, you need to specify what\n"
4270 "serial device is attached to the remote system\n"
4271 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4272
4273 /* See FIXME above. */
4274 if (!target_async_permitted)
4275 wait_forever_enabled_p = 1;
4276
4277 /* If we're connected to a running target, target_preopen will kill it.
4278 Ask this question first, before target_preopen has a chance to kill
4279 anything. */
4280 if (rs->remote_desc != NULL && !have_inferiors ())
4281 {
4282 if (from_tty
4283 && !query (_("Already connected to a remote target. Disconnect? ")))
4284 error (_("Still connected."));
4285 }
4286
4287 /* Here the possibly existing remote target gets unpushed. */
4288 target_preopen (from_tty);
4289
4290 /* Make sure we send the passed signals list the next time we resume. */
4291 xfree (rs->last_pass_packet);
4292 rs->last_pass_packet = NULL;
4293
4294 /* Make sure we send the program signals list the next time we
4295 resume. */
4296 xfree (rs->last_program_signals_packet);
4297 rs->last_program_signals_packet = NULL;
4298
4299 remote_fileio_reset ();
4300 reopen_exec_file ();
4301 reread_symbols ();
4302
4303 rs->remote_desc = remote_serial_open (name);
4304 if (!rs->remote_desc)
4305 perror_with_name (name);
4306
4307 if (baud_rate != -1)
4308 {
4309 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4310 {
4311 /* The requested speed could not be set. Error out to
4312 top level after closing remote_desc. Take care to
4313 set remote_desc to NULL to avoid closing remote_desc
4314 more than once. */
4315 serial_close (rs->remote_desc);
4316 rs->remote_desc = NULL;
4317 perror_with_name (name);
4318 }
4319 }
4320
4321 serial_raw (rs->remote_desc);
4322
4323 /* If there is something sitting in the buffer we might take it as a
4324 response to a command, which would be bad. */
4325 serial_flush_input (rs->remote_desc);
4326
4327 if (from_tty)
4328 {
4329 puts_filtered ("Remote debugging using ");
4330 puts_filtered (name);
4331 puts_filtered ("\n");
4332 }
4333 push_target (target); /* Switch to using remote target now. */
4334
4335 /* Register extra event sources in the event loop. */
4336 remote_async_inferior_event_token
4337 = create_async_event_handler (remote_async_inferior_event_handler,
4338 NULL);
4339 rs->notif_state = remote_notif_state_allocate ();
4340
4341 /* Reset the target state; these things will be queried either by
4342 remote_query_supported or as they are needed. */
4343 init_all_packet_configs ();
4344 rs->cached_wait_status = 0;
4345 rs->explicit_packet_size = 0;
4346 rs->noack_mode = 0;
4347 rs->multi_process_aware = 0;
4348 rs->extended = extended_p;
4349 rs->non_stop_aware = 0;
4350 rs->waiting_for_stop_reply = 0;
4351 rs->ctrlc_pending_p = 0;
4352
4353 rs->general_thread = not_sent_ptid;
4354 rs->continue_thread = not_sent_ptid;
4355 rs->remote_traceframe_number = -1;
4356
4357 /* Probe for ability to use "ThreadInfo" query, as required. */
4358 rs->use_threadinfo_query = 1;
4359 rs->use_threadextra_query = 1;
4360
4361 if (target_async_permitted)
4362 {
4363 /* With this target we start out by owning the terminal. */
4364 remote_async_terminal_ours_p = 1;
4365
4366 /* FIXME: cagney/1999-09-23: During the initial connection it is
4367 assumed that the target is already ready and able to respond to
4368 requests. Unfortunately remote_start_remote() eventually calls
4369 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4370 around this. Eventually a mechanism that allows
4371 wait_for_inferior() to expect/get timeouts will be
4372 implemented. */
4373 wait_forever_enabled_p = 0;
4374 }
4375
4376 /* First delete any symbols previously loaded from shared libraries. */
4377 no_shared_libraries (NULL, 0);
4378
4379 /* Start afresh. */
4380 init_thread_list ();
4381
4382 /* Start the remote connection. If error() or QUIT, discard this
4383 target (we'd otherwise be in an inconsistent state) and then
4384 propogate the error on up the exception chain. This ensures that
4385 the caller doesn't stumble along blindly assuming that the
4386 function succeeded. The CLI doesn't have this problem but other
4387 UI's, such as MI do.
4388
4389 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4390 this function should return an error indication letting the
4391 caller restore the previous state. Unfortunately the command
4392 ``target remote'' is directly wired to this function making that
4393 impossible. On a positive note, the CLI side of this problem has
4394 been fixed - the function set_cmd_context() makes it possible for
4395 all the ``target ....'' commands to share a common callback
4396 function. See cli-dump.c. */
4397 {
4398 volatile struct gdb_exception ex;
4399
4400 TRY_CATCH (ex, RETURN_MASK_ALL)
4401 {
4402 remote_start_remote (from_tty, target, extended_p);
4403 }
4404 if (ex.reason < 0)
4405 {
4406 /* Pop the partially set up target - unless something else did
4407 already before throwing the exception. */
4408 if (rs->remote_desc != NULL)
4409 remote_unpush_target ();
4410 if (target_async_permitted)
4411 wait_forever_enabled_p = 1;
4412 throw_exception (ex);
4413 }
4414 }
4415
4416 if (target_async_permitted)
4417 wait_forever_enabled_p = 1;
4418}
4419
4420/* This takes a program previously attached to and detaches it. After
4421 this is done, GDB can be used to debug some other program. We
4422 better not have left any breakpoints in the target program or it'll
4423 die when it hits one. */
4424
4425static void
4426remote_detach_1 (const char *args, int from_tty, int extended)
4427{
4428 int pid = ptid_get_pid (inferior_ptid);
4429 struct remote_state *rs = get_remote_state ();
4430
4431 if (args)
4432 error (_("Argument given to \"detach\" when remotely debugging."));
4433
4434 if (!target_has_execution)
4435 error (_("No process to detach from."));
4436
4437 if (from_tty)
4438 {
4439 char *exec_file = get_exec_file (0);
4440 if (exec_file == NULL)
4441 exec_file = "";
4442 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4443 target_pid_to_str (pid_to_ptid (pid)));
4444 gdb_flush (gdb_stdout);
4445 }
4446
4447 /* Tell the remote target to detach. */
4448 if (remote_multi_process_p (rs))
4449 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4450 else
4451 strcpy (rs->buf, "D");
4452
4453 putpkt (rs->buf);
4454 getpkt (&rs->buf, &rs->buf_size, 0);
4455
4456 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4457 ;
4458 else if (rs->buf[0] == '\0')
4459 error (_("Remote doesn't know how to detach"));
4460 else
4461 error (_("Can't detach process."));
4462
4463 if (from_tty && !extended)
4464 puts_filtered (_("Ending remote debugging.\n"));
4465
4466 target_mourn_inferior ();
4467}
4468
4469static void
4470remote_detach (struct target_ops *ops, const char *args, int from_tty)
4471{
4472 remote_detach_1 (args, from_tty, 0);
4473}
4474
4475static void
4476extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4477{
4478 remote_detach_1 (args, from_tty, 1);
4479}
4480
4481/* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4482
4483static void
4484remote_disconnect (struct target_ops *target, char *args, int from_tty)
4485{
4486 if (args)
4487 error (_("Argument given to \"disconnect\" when remotely debugging."));
4488
4489 /* Make sure we unpush even the extended remote targets; mourn
4490 won't do it. So call remote_mourn_1 directly instead of
4491 target_mourn_inferior. */
4492 remote_mourn_1 (target);
4493
4494 if (from_tty)
4495 puts_filtered ("Ending remote debugging.\n");
4496}
4497
4498/* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4499 be chatty about it. */
4500
4501static void
4502extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4503{
4504 struct remote_state *rs = get_remote_state ();
4505 int pid;
4506 char *wait_status = NULL;
4507
4508 pid = parse_pid_to_attach (args);
4509
4510 /* Remote PID can be freely equal to getpid, do not check it here the same
4511 way as in other targets. */
4512
4513 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4514 error (_("This target does not support attaching to a process"));
4515
4516 if (from_tty)
4517 {
4518 char *exec_file = get_exec_file (0);
4519
4520 if (exec_file)
4521 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4522 target_pid_to_str (pid_to_ptid (pid)));
4523 else
4524 printf_unfiltered (_("Attaching to %s\n"),
4525 target_pid_to_str (pid_to_ptid (pid)));
4526
4527 gdb_flush (gdb_stdout);
4528 }
4529
4530 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4531 putpkt (rs->buf);
4532 getpkt (&rs->buf, &rs->buf_size, 0);
4533
4534 if (packet_ok (rs->buf,
4535 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4536 {
4537 if (!non_stop)
4538 {
4539 /* Save the reply for later. */
4540 wait_status = alloca (strlen (rs->buf) + 1);
4541 strcpy (wait_status, rs->buf);
4542 }
4543 else if (strcmp (rs->buf, "OK") != 0)
4544 error (_("Attaching to %s failed with: %s"),
4545 target_pid_to_str (pid_to_ptid (pid)),
4546 rs->buf);
4547 }
4548 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4549 error (_("This target does not support attaching to a process"));
4550 else
4551 error (_("Attaching to %s failed"),
4552 target_pid_to_str (pid_to_ptid (pid)));
4553
4554 set_current_inferior (remote_add_inferior (0, pid, 1));
4555
4556 inferior_ptid = pid_to_ptid (pid);
4557
4558 if (non_stop)
4559 {
4560 struct thread_info *thread;
4561
4562 /* Get list of threads. */
4563 remote_threads_info (target);
4564
4565 thread = first_thread_of_process (pid);
4566 if (thread)
4567 inferior_ptid = thread->ptid;
4568 else
4569 inferior_ptid = pid_to_ptid (pid);
4570
4571 /* Invalidate our notion of the remote current thread. */
4572 record_currthread (rs, minus_one_ptid);
4573 }
4574 else
4575 {
4576 /* Now, if we have thread information, update inferior_ptid. */
4577 inferior_ptid = remote_current_thread (inferior_ptid);
4578
4579 /* Add the main thread to the thread list. */
4580 add_thread_silent (inferior_ptid);
4581 }
4582
4583 /* Next, if the target can specify a description, read it. We do
4584 this before anything involving memory or registers. */
4585 target_find_description ();
4586
4587 if (!non_stop)
4588 {
4589 /* Use the previously fetched status. */
4590 gdb_assert (wait_status != NULL);
4591
4592 if (target_can_async_p ())
4593 {
4594 struct notif_event *reply
4595 = remote_notif_parse (&notif_client_stop, wait_status);
4596
4597 push_stop_reply ((struct stop_reply *) reply);
4598
4599 target_async (inferior_event_handler, 0);
4600 }
4601 else
4602 {
4603 gdb_assert (wait_status != NULL);
4604 strcpy (rs->buf, wait_status);
4605 rs->cached_wait_status = 1;
4606 }
4607 }
4608 else
4609 gdb_assert (wait_status == NULL);
4610}
4611
4612static void
4613extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4614{
4615 extended_remote_attach_1 (ops, args, from_tty);
4616}
4617
4618/* Convert hex digit A to a number. */
4619
4620static int
4621fromhex (int a)
4622{
4623 if (a >= '0' && a <= '9')
4624 return a - '0';
4625 else if (a >= 'a' && a <= 'f')
4626 return a - 'a' + 10;
4627 else if (a >= 'A' && a <= 'F')
4628 return a - 'A' + 10;
4629 else
4630 error (_("Reply contains invalid hex digit %d"), a);
4631}
4632
4633int
4634hex2bin (const char *hex, gdb_byte *bin, int count)
4635{
4636 int i;
4637
4638 for (i = 0; i < count; i++)
4639 {
4640 if (hex[0] == 0 || hex[1] == 0)
4641 {
4642 /* Hex string is short, or of uneven length.
4643 Return the count that has been converted so far. */
4644 return i;
4645 }
4646 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4647 hex += 2;
4648 }
4649 return i;
4650}
4651
4652/* Convert number NIB to a hex digit. */
4653
4654static int
4655tohex (int nib)
4656{
4657 if (nib < 10)
4658 return '0' + nib;
4659 else
4660 return 'a' + nib - 10;
4661}
4662
4663int
4664bin2hex (const gdb_byte *bin, char *hex, int count)
4665{
4666 int i;
4667
4668 /* May use a length, or a nul-terminated string as input. */
4669 if (count == 0)
4670 count = strlen ((char *) bin);
4671
4672 for (i = 0; i < count; i++)
4673 {
4674 *hex++ = tohex ((*bin >> 4) & 0xf);
4675 *hex++ = tohex (*bin++ & 0xf);
4676 }
4677 *hex = 0;
4678 return i;
4679}
4680\f
4681/* Check for the availability of vCont. This function should also check
4682 the response. */
4683
4684static void
4685remote_vcont_probe (struct remote_state *rs)
4686{
4687 char *buf;
4688
4689 strcpy (rs->buf, "vCont?");
4690 putpkt (rs->buf);
4691 getpkt (&rs->buf, &rs->buf_size, 0);
4692 buf = rs->buf;
4693
4694 /* Make sure that the features we assume are supported. */
4695 if (strncmp (buf, "vCont", 5) == 0)
4696 {
4697 char *p = &buf[5];
4698 int support_s, support_S, support_c, support_C;
4699
4700 support_s = 0;
4701 support_S = 0;
4702 support_c = 0;
4703 support_C = 0;
4704 rs->supports_vCont.t = 0;
4705 rs->supports_vCont.r = 0;
4706 while (p && *p == ';')
4707 {
4708 p++;
4709 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4710 support_s = 1;
4711 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4712 support_S = 1;
4713 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4714 support_c = 1;
4715 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4716 support_C = 1;
4717 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4718 rs->supports_vCont.t = 1;
4719 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4720 rs->supports_vCont.r = 1;
4721
4722 p = strchr (p, ';');
4723 }
4724
4725 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4726 BUF will make packet_ok disable the packet. */
4727 if (!support_s || !support_S || !support_c || !support_C)
4728 buf[0] = 0;
4729 }
4730
4731 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4732}
4733
4734/* Helper function for building "vCont" resumptions. Write a
4735 resumption to P. ENDP points to one-passed-the-end of the buffer
4736 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4737 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4738 resumed thread should be single-stepped and/or signalled. If PTID
4739 equals minus_one_ptid, then all threads are resumed; if PTID
4740 represents a process, then all threads of the process are resumed;
4741 the thread to be stepped and/or signalled is given in the global
4742 INFERIOR_PTID. */
4743
4744static char *
4745append_resumption (char *p, char *endp,
4746 ptid_t ptid, int step, enum gdb_signal siggnal)
4747{
4748 struct remote_state *rs = get_remote_state ();
4749
4750 if (step && siggnal != GDB_SIGNAL_0)
4751 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4752 else if (step
4753 /* GDB is willing to range step. */
4754 && use_range_stepping
4755 /* Target supports range stepping. */
4756 && rs->supports_vCont.r
4757 /* We don't currently support range stepping multiple
4758 threads with a wildcard (though the protocol allows it,
4759 so stubs shouldn't make an active effort to forbid
4760 it). */
4761 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4762 {
4763 struct thread_info *tp;
4764
4765 if (ptid_equal (ptid, minus_one_ptid))
4766 {
4767 /* If we don't know about the target thread's tid, then
4768 we're resuming magic_null_ptid (see caller). */
4769 tp = find_thread_ptid (magic_null_ptid);
4770 }
4771 else
4772 tp = find_thread_ptid (ptid);
4773 gdb_assert (tp != NULL);
4774
4775 if (tp->control.may_range_step)
4776 {
4777 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4778
4779 p += xsnprintf (p, endp - p, ";r%s,%s",
4780 phex_nz (tp->control.step_range_start,
4781 addr_size),
4782 phex_nz (tp->control.step_range_end,
4783 addr_size));
4784 }
4785 else
4786 p += xsnprintf (p, endp - p, ";s");
4787 }
4788 else if (step)
4789 p += xsnprintf (p, endp - p, ";s");
4790 else if (siggnal != GDB_SIGNAL_0)
4791 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4792 else
4793 p += xsnprintf (p, endp - p, ";c");
4794
4795 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4796 {
4797 ptid_t nptid;
4798
4799 /* All (-1) threads of process. */
4800 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4801
4802 p += xsnprintf (p, endp - p, ":");
4803 p = write_ptid (p, endp, nptid);
4804 }
4805 else if (!ptid_equal (ptid, minus_one_ptid))
4806 {
4807 p += xsnprintf (p, endp - p, ":");
4808 p = write_ptid (p, endp, ptid);
4809 }
4810
4811 return p;
4812}
4813
4814/* Append a vCont continue-with-signal action for threads that have a
4815 non-zero stop signal. */
4816
4817static char *
4818append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4819{
4820 struct thread_info *thread;
4821
4822 ALL_THREADS (thread)
4823 if (ptid_match (thread->ptid, ptid)
4824 && !ptid_equal (inferior_ptid, thread->ptid)
4825 && thread->suspend.stop_signal != GDB_SIGNAL_0
4826 && signal_pass_state (thread->suspend.stop_signal))
4827 {
4828 p = append_resumption (p, endp, thread->ptid,
4829 0, thread->suspend.stop_signal);
4830 thread->suspend.stop_signal = GDB_SIGNAL_0;
4831 }
4832
4833 return p;
4834}
4835
4836/* Resume the remote inferior by using a "vCont" packet. The thread
4837 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4838 resumed thread should be single-stepped and/or signalled. If PTID
4839 equals minus_one_ptid, then all threads are resumed; the thread to
4840 be stepped and/or signalled is given in the global INFERIOR_PTID.
4841 This function returns non-zero iff it resumes the inferior.
4842
4843 This function issues a strict subset of all possible vCont commands at the
4844 moment. */
4845
4846static int
4847remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4848{
4849 struct remote_state *rs = get_remote_state ();
4850 char *p;
4851 char *endp;
4852
4853 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4854 remote_vcont_probe (rs);
4855
4856 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4857 return 0;
4858
4859 p = rs->buf;
4860 endp = rs->buf + get_remote_packet_size ();
4861
4862 /* If we could generate a wider range of packets, we'd have to worry
4863 about overflowing BUF. Should there be a generic
4864 "multi-part-packet" packet? */
4865
4866 p += xsnprintf (p, endp - p, "vCont");
4867
4868 if (ptid_equal (ptid, magic_null_ptid))
4869 {
4870 /* MAGIC_NULL_PTID means that we don't have any active threads,
4871 so we don't have any TID numbers the inferior will
4872 understand. Make sure to only send forms that do not specify
4873 a TID. */
4874 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4875 }
4876 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4877 {
4878 /* Resume all threads (of all processes, or of a single
4879 process), with preference for INFERIOR_PTID. This assumes
4880 inferior_ptid belongs to the set of all threads we are about
4881 to resume. */
4882 if (step || siggnal != GDB_SIGNAL_0)
4883 {
4884 /* Step inferior_ptid, with or without signal. */
4885 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4886 }
4887
4888 /* Also pass down any pending signaled resumption for other
4889 threads not the current. */
4890 p = append_pending_thread_resumptions (p, endp, ptid);
4891
4892 /* And continue others without a signal. */
4893 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4894 }
4895 else
4896 {
4897 /* Scheduler locking; resume only PTID. */
4898 append_resumption (p, endp, ptid, step, siggnal);
4899 }
4900
4901 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4902 putpkt (rs->buf);
4903
4904 if (non_stop)
4905 {
4906 /* In non-stop, the stub replies to vCont with "OK". The stop
4907 reply will be reported asynchronously by means of a `%Stop'
4908 notification. */
4909 getpkt (&rs->buf, &rs->buf_size, 0);
4910 if (strcmp (rs->buf, "OK") != 0)
4911 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4912 }
4913
4914 return 1;
4915}
4916
4917/* Tell the remote machine to resume. */
4918
4919static void
4920remote_resume (struct target_ops *ops,
4921 ptid_t ptid, int step, enum gdb_signal siggnal)
4922{
4923 struct remote_state *rs = get_remote_state ();
4924 char *buf;
4925
4926 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4927 (explained in remote-notif.c:handle_notification) so
4928 remote_notif_process is not called. We need find a place where
4929 it is safe to start a 'vNotif' sequence. It is good to do it
4930 before resuming inferior, because inferior was stopped and no RSP
4931 traffic at that moment. */
4932 if (!non_stop)
4933 remote_notif_process (rs->notif_state, &notif_client_stop);
4934
4935 rs->last_sent_signal = siggnal;
4936 rs->last_sent_step = step;
4937
4938 /* The vCont packet doesn't need to specify threads via Hc. */
4939 /* No reverse support (yet) for vCont. */
4940 if (execution_direction != EXEC_REVERSE)
4941 if (remote_vcont_resume (ptid, step, siggnal))
4942 goto done;
4943
4944 /* All other supported resume packets do use Hc, so set the continue
4945 thread. */
4946 if (ptid_equal (ptid, minus_one_ptid))
4947 set_continue_thread (any_thread_ptid);
4948 else
4949 set_continue_thread (ptid);
4950
4951 buf = rs->buf;
4952 if (execution_direction == EXEC_REVERSE)
4953 {
4954 /* We don't pass signals to the target in reverse exec mode. */
4955 if (info_verbose && siggnal != GDB_SIGNAL_0)
4956 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4957 siggnal);
4958
4959 if (step
4960 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4961 error (_("Remote reverse-step not supported."));
4962 if (!step
4963 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4964 error (_("Remote reverse-continue not supported."));
4965
4966 strcpy (buf, step ? "bs" : "bc");
4967 }
4968 else if (siggnal != GDB_SIGNAL_0)
4969 {
4970 buf[0] = step ? 'S' : 'C';
4971 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4972 buf[2] = tohex (((int) siggnal) & 0xf);
4973 buf[3] = '\0';
4974 }
4975 else
4976 strcpy (buf, step ? "s" : "c");
4977
4978 putpkt (buf);
4979
4980 done:
4981 /* We are about to start executing the inferior, let's register it
4982 with the event loop. NOTE: this is the one place where all the
4983 execution commands end up. We could alternatively do this in each
4984 of the execution commands in infcmd.c. */
4985 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4986 into infcmd.c in order to allow inferior function calls to work
4987 NOT asynchronously. */
4988 if (target_can_async_p ())
4989 target_async (inferior_event_handler, 0);
4990
4991 /* We've just told the target to resume. The remote server will
4992 wait for the inferior to stop, and then send a stop reply. In
4993 the mean time, we can't start another command/query ourselves
4994 because the stub wouldn't be ready to process it. This applies
4995 only to the base all-stop protocol, however. In non-stop (which
4996 only supports vCont), the stub replies with an "OK", and is
4997 immediate able to process further serial input. */
4998 if (!non_stop)
4999 rs->waiting_for_stop_reply = 1;
5000}
5001\f
5002
5003/* Set up the signal handler for SIGINT, while the target is
5004 executing, ovewriting the 'regular' SIGINT signal handler. */
5005static void
5006async_initialize_sigint_signal_handler (void)
5007{
5008 signal (SIGINT, async_handle_remote_sigint);
5009}
5010
5011/* Signal handler for SIGINT, while the target is executing. */
5012static void
5013async_handle_remote_sigint (int sig)
5014{
5015 signal (sig, async_handle_remote_sigint_twice);
5016 mark_async_signal_handler (async_sigint_remote_token);
5017}
5018
5019/* Signal handler for SIGINT, installed after SIGINT has already been
5020 sent once. It will take effect the second time that the user sends
5021 a ^C. */
5022static void
5023async_handle_remote_sigint_twice (int sig)
5024{
5025 signal (sig, async_handle_remote_sigint);
5026 mark_async_signal_handler (async_sigint_remote_twice_token);
5027}
5028
5029/* Perform the real interruption of the target execution, in response
5030 to a ^C. */
5031static void
5032async_remote_interrupt (gdb_client_data arg)
5033{
5034 if (remote_debug)
5035 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5036
5037 target_stop (inferior_ptid);
5038}
5039
5040/* Perform interrupt, if the first attempt did not succeed. Just give
5041 up on the target alltogether. */
5042static void
5043async_remote_interrupt_twice (gdb_client_data arg)
5044{
5045 if (remote_debug)
5046 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5047
5048 interrupt_query ();
5049}
5050
5051/* Reinstall the usual SIGINT handlers, after the target has
5052 stopped. */
5053static void
5054async_cleanup_sigint_signal_handler (void *dummy)
5055{
5056 signal (SIGINT, handle_sigint);
5057}
5058
5059/* Send ^C to target to halt it. Target will respond, and send us a
5060 packet. */
5061static void (*ofunc) (int);
5062
5063/* The command line interface's stop routine. This function is installed
5064 as a signal handler for SIGINT. The first time a user requests a
5065 stop, we call remote_stop to send a break or ^C. If there is no
5066 response from the target (it didn't stop when the user requested it),
5067 we ask the user if he'd like to detach from the target. */
5068static void
5069sync_remote_interrupt (int signo)
5070{
5071 /* If this doesn't work, try more severe steps. */
5072 signal (signo, sync_remote_interrupt_twice);
5073
5074 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5075}
5076
5077/* The user typed ^C twice. */
5078
5079static void
5080sync_remote_interrupt_twice (int signo)
5081{
5082 signal (signo, ofunc);
5083 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5084 signal (signo, sync_remote_interrupt);
5085}
5086
5087/* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5088 thread, all threads of a remote process, or all threads of all
5089 processes. */
5090
5091static void
5092remote_stop_ns (ptid_t ptid)
5093{
5094 struct remote_state *rs = get_remote_state ();
5095 char *p = rs->buf;
5096 char *endp = rs->buf + get_remote_packet_size ();
5097
5098 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5099 remote_vcont_probe (rs);
5100
5101 if (!rs->supports_vCont.t)
5102 error (_("Remote server does not support stopping threads"));
5103
5104 if (ptid_equal (ptid, minus_one_ptid)
5105 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5106 p += xsnprintf (p, endp - p, "vCont;t");
5107 else
5108 {
5109 ptid_t nptid;
5110
5111 p += xsnprintf (p, endp - p, "vCont;t:");
5112
5113 if (ptid_is_pid (ptid))
5114 /* All (-1) threads of process. */
5115 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5116 else
5117 {
5118 /* Small optimization: if we already have a stop reply for
5119 this thread, no use in telling the stub we want this
5120 stopped. */
5121 if (peek_stop_reply (ptid))
5122 return;
5123
5124 nptid = ptid;
5125 }
5126
5127 write_ptid (p, endp, nptid);
5128 }
5129
5130 /* In non-stop, we get an immediate OK reply. The stop reply will
5131 come in asynchronously by notification. */
5132 putpkt (rs->buf);
5133 getpkt (&rs->buf, &rs->buf_size, 0);
5134 if (strcmp (rs->buf, "OK") != 0)
5135 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5136}
5137
5138/* All-stop version of target_stop. Sends a break or a ^C to stop the
5139 remote target. It is undefined which thread of which process
5140 reports the stop. */
5141
5142static void
5143remote_stop_as (ptid_t ptid)
5144{
5145 struct remote_state *rs = get_remote_state ();
5146
5147 rs->ctrlc_pending_p = 1;
5148
5149 /* If the inferior is stopped already, but the core didn't know
5150 about it yet, just ignore the request. The cached wait status
5151 will be collected in remote_wait. */
5152 if (rs->cached_wait_status)
5153 return;
5154
5155 /* Send interrupt_sequence to remote target. */
5156 send_interrupt_sequence ();
5157}
5158
5159/* This is the generic stop called via the target vector. When a target
5160 interrupt is requested, either by the command line or the GUI, we
5161 will eventually end up here. */
5162
5163static void
5164remote_stop (ptid_t ptid)
5165{
5166 if (remote_debug)
5167 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5168
5169 if (non_stop)
5170 remote_stop_ns (ptid);
5171 else
5172 remote_stop_as (ptid);
5173}
5174
5175/* Ask the user what to do when an interrupt is received. */
5176
5177static void
5178interrupt_query (void)
5179{
5180 target_terminal_ours ();
5181
5182 if (target_can_async_p ())
5183 {
5184 signal (SIGINT, handle_sigint);
5185 quit ();
5186 }
5187 else
5188 {
5189 if (query (_("Interrupted while waiting for the program.\n\
5190Give up (and stop debugging it)? ")))
5191 {
5192 remote_unpush_target ();
5193 quit ();
5194 }
5195 }
5196
5197 target_terminal_inferior ();
5198}
5199
5200/* Enable/disable target terminal ownership. Most targets can use
5201 terminal groups to control terminal ownership. Remote targets are
5202 different in that explicit transfer of ownership to/from GDB/target
5203 is required. */
5204
5205static void
5206remote_terminal_inferior (void)
5207{
5208 if (!target_async_permitted)
5209 /* Nothing to do. */
5210 return;
5211
5212 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5213 idempotent. The event-loop GDB talking to an asynchronous target
5214 with a synchronous command calls this function from both
5215 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5216 transfer the terminal to the target when it shouldn't this guard
5217 can go away. */
5218 if (!remote_async_terminal_ours_p)
5219 return;
5220 delete_file_handler (input_fd);
5221 remote_async_terminal_ours_p = 0;
5222 async_initialize_sigint_signal_handler ();
5223 /* NOTE: At this point we could also register our selves as the
5224 recipient of all input. Any characters typed could then be
5225 passed on down to the target. */
5226}
5227
5228static void
5229remote_terminal_ours (void)
5230{
5231 if (!target_async_permitted)
5232 /* Nothing to do. */
5233 return;
5234
5235 /* See FIXME in remote_terminal_inferior. */
5236 if (remote_async_terminal_ours_p)
5237 return;
5238 async_cleanup_sigint_signal_handler (NULL);
5239 add_file_handler (input_fd, stdin_event_handler, 0);
5240 remote_async_terminal_ours_p = 1;
5241}
5242
5243static void
5244remote_console_output (char *msg)
5245{
5246 char *p;
5247
5248 for (p = msg; p[0] && p[1]; p += 2)
5249 {
5250 char tb[2];
5251 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5252
5253 tb[0] = c;
5254 tb[1] = 0;
5255 fputs_unfiltered (tb, gdb_stdtarg);
5256 }
5257 gdb_flush (gdb_stdtarg);
5258}
5259
5260typedef struct cached_reg
5261{
5262 int num;
5263 gdb_byte data[MAX_REGISTER_SIZE];
5264} cached_reg_t;
5265
5266DEF_VEC_O(cached_reg_t);
5267
5268typedef struct stop_reply
5269{
5270 struct notif_event base;
5271
5272 /* The identifier of the thread about this event */
5273 ptid_t ptid;
5274
5275 /* The remote state this event is associated with. When the remote
5276 connection, represented by a remote_state object, is closed,
5277 all the associated stop_reply events should be released. */
5278 struct remote_state *rs;
5279
5280 struct target_waitstatus ws;
5281
5282 /* Expedited registers. This makes remote debugging a bit more
5283 efficient for those targets that provide critical registers as
5284 part of their normal status mechanism (as another roundtrip to
5285 fetch them is avoided). */
5286 VEC(cached_reg_t) *regcache;
5287
5288 int stopped_by_watchpoint_p;
5289 CORE_ADDR watch_data_address;
5290
5291 int core;
5292} *stop_reply_p;
5293
5294DECLARE_QUEUE_P (stop_reply_p);
5295DEFINE_QUEUE_P (stop_reply_p);
5296/* The list of already fetched and acknowledged stop events. This
5297 queue is used for notification Stop, and other notifications
5298 don't need queue for their events, because the notification events
5299 of Stop can't be consumed immediately, so that events should be
5300 queued first, and be consumed by remote_wait_{ns,as} one per
5301 time. Other notifications can consume their events immediately,
5302 so queue is not needed for them. */
5303static QUEUE (stop_reply_p) *stop_reply_queue;
5304
5305static void
5306stop_reply_xfree (struct stop_reply *r)
5307{
5308 notif_event_xfree ((struct notif_event *) r);
5309}
5310
5311static void
5312remote_notif_stop_parse (struct notif_client *self, char *buf,
5313 struct notif_event *event)
5314{
5315 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5316}
5317
5318static void
5319remote_notif_stop_ack (struct notif_client *self, char *buf,
5320 struct notif_event *event)
5321{
5322 struct stop_reply *stop_reply = (struct stop_reply *) event;
5323
5324 /* acknowledge */
5325 putpkt ((char *) self->ack_command);
5326
5327 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5328 /* We got an unknown stop reply. */
5329 error (_("Unknown stop reply"));
5330
5331 push_stop_reply (stop_reply);
5332}
5333
5334static int
5335remote_notif_stop_can_get_pending_events (struct notif_client *self)
5336{
5337 /* We can't get pending events in remote_notif_process for
5338 notification stop, and we have to do this in remote_wait_ns
5339 instead. If we fetch all queued events from stub, remote stub
5340 may exit and we have no chance to process them back in
5341 remote_wait_ns. */
5342 mark_async_event_handler (remote_async_inferior_event_token);
5343 return 0;
5344}
5345
5346static void
5347stop_reply_dtr (struct notif_event *event)
5348{
5349 struct stop_reply *r = (struct stop_reply *) event;
5350
5351 VEC_free (cached_reg_t, r->regcache);
5352}
5353
5354static struct notif_event *
5355remote_notif_stop_alloc_reply (void)
5356{
5357 struct notif_event *r
5358 = (struct notif_event *) XMALLOC (struct stop_reply);
5359
5360 r->dtr = stop_reply_dtr;
5361
5362 return r;
5363}
5364
5365/* A client of notification Stop. */
5366
5367struct notif_client notif_client_stop =
5368{
5369 "Stop",
5370 "vStopped",
5371 remote_notif_stop_parse,
5372 remote_notif_stop_ack,
5373 remote_notif_stop_can_get_pending_events,
5374 remote_notif_stop_alloc_reply,
5375 REMOTE_NOTIF_STOP,
5376};
5377
5378/* A parameter to pass data in and out. */
5379
5380struct queue_iter_param
5381{
5382 void *input;
5383 struct stop_reply *output;
5384};
5385
5386/* Remove stop replies in the queue if its pid is equal to the given
5387 inferior's pid. */
5388
5389static int
5390remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5391 QUEUE_ITER (stop_reply_p) *iter,
5392 stop_reply_p event,
5393 void *data)
5394{
5395 struct queue_iter_param *param = data;
5396 struct inferior *inf = param->input;
5397
5398 if (ptid_get_pid (event->ptid) == inf->pid)
5399 {
5400 stop_reply_xfree (event);
5401 QUEUE_remove_elem (stop_reply_p, q, iter);
5402 }
5403
5404 return 1;
5405}
5406
5407/* Discard all pending stop replies of inferior INF. */
5408
5409static void
5410discard_pending_stop_replies (struct inferior *inf)
5411{
5412 int i;
5413 struct queue_iter_param param;
5414 struct stop_reply *reply;
5415 struct remote_state *rs = get_remote_state ();
5416 struct remote_notif_state *rns = rs->notif_state;
5417
5418 /* This function can be notified when an inferior exists. When the
5419 target is not remote, the notification state is NULL. */
5420 if (rs->remote_desc == NULL)
5421 return;
5422
5423 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5424
5425 /* Discard the in-flight notification. */
5426 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5427 {
5428 stop_reply_xfree (reply);
5429 rns->pending_event[notif_client_stop.id] = NULL;
5430 }
5431
5432 param.input = inf;
5433 param.output = NULL;
5434 /* Discard the stop replies we have already pulled with
5435 vStopped. */
5436 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5437 remove_stop_reply_for_inferior, &param);
5438}
5439
5440/* If its remote state is equal to the given remote state,
5441 remove EVENT from the stop reply queue. */
5442
5443static int
5444remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5445 QUEUE_ITER (stop_reply_p) *iter,
5446 stop_reply_p event,
5447 void *data)
5448{
5449 struct queue_iter_param *param = data;
5450 struct remote_state *rs = param->input;
5451
5452 if (event->rs == rs)
5453 {
5454 stop_reply_xfree (event);
5455 QUEUE_remove_elem (stop_reply_p, q, iter);
5456 }
5457
5458 return 1;
5459}
5460
5461/* Discard the stop replies for RS in stop_reply_queue. */
5462
5463static void
5464discard_pending_stop_replies_in_queue (struct remote_state *rs)
5465{
5466 struct queue_iter_param param;
5467
5468 param.input = rs;
5469 param.output = NULL;
5470 /* Discard the stop replies we have already pulled with
5471 vStopped. */
5472 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5473 remove_stop_reply_of_remote_state, &param);
5474}
5475
5476/* A parameter to pass data in and out. */
5477
5478static int
5479remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5480 QUEUE_ITER (stop_reply_p) *iter,
5481 stop_reply_p event,
5482 void *data)
5483{
5484 struct queue_iter_param *param = data;
5485 ptid_t *ptid = param->input;
5486
5487 if (ptid_match (event->ptid, *ptid))
5488 {
5489 param->output = event;
5490 QUEUE_remove_elem (stop_reply_p, q, iter);
5491 return 0;
5492 }
5493
5494 return 1;
5495}
5496
5497/* Remove the first reply in 'stop_reply_queue' which matches
5498 PTID. */
5499
5500static struct stop_reply *
5501remote_notif_remove_queued_reply (ptid_t ptid)
5502{
5503 struct queue_iter_param param;
5504
5505 param.input = &ptid;
5506 param.output = NULL;
5507
5508 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5509 remote_notif_remove_once_on_match, &param);
5510 if (notif_debug)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "notif: discard queued event: 'Stop' in %s\n",
5513 target_pid_to_str (ptid));
5514
5515 return param.output;
5516}
5517
5518/* Look for a queued stop reply belonging to PTID. If one is found,
5519 remove it from the queue, and return it. Returns NULL if none is
5520 found. If there are still queued events left to process, tell the
5521 event loop to get back to target_wait soon. */
5522
5523static struct stop_reply *
5524queued_stop_reply (ptid_t ptid)
5525{
5526 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5527
5528 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5529 /* There's still at least an event left. */
5530 mark_async_event_handler (remote_async_inferior_event_token);
5531
5532 return r;
5533}
5534
5535/* Push a fully parsed stop reply in the stop reply queue. Since we
5536 know that we now have at least one queued event left to pass to the
5537 core side, tell the event loop to get back to target_wait soon. */
5538
5539static void
5540push_stop_reply (struct stop_reply *new_event)
5541{
5542 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5543
5544 if (notif_debug)
5545 fprintf_unfiltered (gdb_stdlog,
5546 "notif: push 'Stop' %s to queue %d\n",
5547 target_pid_to_str (new_event->ptid),
5548 QUEUE_length (stop_reply_p,
5549 stop_reply_queue));
5550
5551 mark_async_event_handler (remote_async_inferior_event_token);
5552}
5553
5554static int
5555stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5556 QUEUE_ITER (stop_reply_p) *iter,
5557 struct stop_reply *event,
5558 void *data)
5559{
5560 ptid_t *ptid = data;
5561
5562 return !(ptid_equal (*ptid, event->ptid)
5563 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5564}
5565
5566/* Returns true if we have a stop reply for PTID. */
5567
5568static int
5569peek_stop_reply (ptid_t ptid)
5570{
5571 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5572 stop_reply_match_ptid_and_ws, &ptid);
5573}
5574
5575/* Parse the stop reply in BUF. Either the function succeeds, and the
5576 result is stored in EVENT, or throws an error. */
5577
5578static void
5579remote_parse_stop_reply (char *buf, struct stop_reply *event)
5580{
5581 struct remote_arch_state *rsa = get_remote_arch_state ();
5582 ULONGEST addr;
5583 char *p;
5584
5585 event->ptid = null_ptid;
5586 event->rs = get_remote_state ();
5587 event->ws.kind = TARGET_WAITKIND_IGNORE;
5588 event->ws.value.integer = 0;
5589 event->stopped_by_watchpoint_p = 0;
5590 event->regcache = NULL;
5591 event->core = -1;
5592
5593 switch (buf[0])
5594 {
5595 case 'T': /* Status with PC, SP, FP, ... */
5596 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5597 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5598 ss = signal number
5599 n... = register number
5600 r... = register contents
5601 */
5602
5603 p = &buf[3]; /* after Txx */
5604 while (*p)
5605 {
5606 char *p1;
5607 char *p_temp;
5608 int fieldsize;
5609 LONGEST pnum = 0;
5610
5611 /* If the packet contains a register number, save it in
5612 pnum and set p1 to point to the character following it.
5613 Otherwise p1 points to p. */
5614
5615 /* If this packet is an awatch packet, don't parse the 'a'
5616 as a register number. */
5617
5618 if (strncmp (p, "awatch", strlen("awatch")) != 0
5619 && strncmp (p, "core", strlen ("core") != 0))
5620 {
5621 /* Read the ``P'' register number. */
5622 pnum = strtol (p, &p_temp, 16);
5623 p1 = p_temp;
5624 }
5625 else
5626 p1 = p;
5627
5628 if (p1 == p) /* No register number present here. */
5629 {
5630 p1 = strchr (p, ':');
5631 if (p1 == NULL)
5632 error (_("Malformed packet(a) (missing colon): %s\n\
5633Packet: '%s'\n"),
5634 p, buf);
5635 if (strncmp (p, "thread", p1 - p) == 0)
5636 event->ptid = read_ptid (++p1, &p);
5637 else if ((strncmp (p, "watch", p1 - p) == 0)
5638 || (strncmp (p, "rwatch", p1 - p) == 0)
5639 || (strncmp (p, "awatch", p1 - p) == 0))
5640 {
5641 event->stopped_by_watchpoint_p = 1;
5642 p = unpack_varlen_hex (++p1, &addr);
5643 event->watch_data_address = (CORE_ADDR) addr;
5644 }
5645 else if (strncmp (p, "library", p1 - p) == 0)
5646 {
5647 p1++;
5648 p_temp = p1;
5649 while (*p_temp && *p_temp != ';')
5650 p_temp++;
5651
5652 event->ws.kind = TARGET_WAITKIND_LOADED;
5653 p = p_temp;
5654 }
5655 else if (strncmp (p, "replaylog", p1 - p) == 0)
5656 {
5657 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5658 /* p1 will indicate "begin" or "end", but it makes
5659 no difference for now, so ignore it. */
5660 p_temp = strchr (p1 + 1, ';');
5661 if (p_temp)
5662 p = p_temp;
5663 }
5664 else if (strncmp (p, "core", p1 - p) == 0)
5665 {
5666 ULONGEST c;
5667
5668 p = unpack_varlen_hex (++p1, &c);
5669 event->core = c;
5670 }
5671 else
5672 {
5673 /* Silently skip unknown optional info. */
5674 p_temp = strchr (p1 + 1, ';');
5675 if (p_temp)
5676 p = p_temp;
5677 }
5678 }
5679 else
5680 {
5681 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5682 cached_reg_t cached_reg;
5683
5684 p = p1;
5685
5686 if (*p != ':')
5687 error (_("Malformed packet(b) (missing colon): %s\n\
5688Packet: '%s'\n"),
5689 p, buf);
5690 ++p;
5691
5692 if (reg == NULL)
5693 error (_("Remote sent bad register number %s: %s\n\
5694Packet: '%s'\n"),
5695 hex_string (pnum), p, buf);
5696
5697 cached_reg.num = reg->regnum;
5698
5699 fieldsize = hex2bin (p, cached_reg.data,
5700 register_size (target_gdbarch (),
5701 reg->regnum));
5702 p += 2 * fieldsize;
5703 if (fieldsize < register_size (target_gdbarch (),
5704 reg->regnum))
5705 warning (_("Remote reply is too short: %s"), buf);
5706
5707 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5708 }
5709
5710 if (*p != ';')
5711 error (_("Remote register badly formatted: %s\nhere: %s"),
5712 buf, p);
5713 ++p;
5714 }
5715
5716 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5717 break;
5718
5719 /* fall through */
5720 case 'S': /* Old style status, just signal only. */
5721 {
5722 int sig;
5723
5724 event->ws.kind = TARGET_WAITKIND_STOPPED;
5725 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5726 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5727 event->ws.value.sig = (enum gdb_signal) sig;
5728 else
5729 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5730 }
5731 break;
5732 case 'W': /* Target exited. */
5733 case 'X':
5734 {
5735 char *p;
5736 int pid;
5737 ULONGEST value;
5738
5739 /* GDB used to accept only 2 hex chars here. Stubs should
5740 only send more if they detect GDB supports multi-process
5741 support. */
5742 p = unpack_varlen_hex (&buf[1], &value);
5743
5744 if (buf[0] == 'W')
5745 {
5746 /* The remote process exited. */
5747 event->ws.kind = TARGET_WAITKIND_EXITED;
5748 event->ws.value.integer = value;
5749 }
5750 else
5751 {
5752 /* The remote process exited with a signal. */
5753 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5754 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
5755 event->ws.value.sig = (enum gdb_signal) value;
5756 else
5757 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5758 }
5759
5760 /* If no process is specified, assume inferior_ptid. */
5761 pid = ptid_get_pid (inferior_ptid);
5762 if (*p == '\0')
5763 ;
5764 else if (*p == ';')
5765 {
5766 p++;
5767
5768 if (p == '\0')
5769 ;
5770 else if (strncmp (p,
5771 "process:", sizeof ("process:") - 1) == 0)
5772 {
5773 ULONGEST upid;
5774
5775 p += sizeof ("process:") - 1;
5776 unpack_varlen_hex (p, &upid);
5777 pid = upid;
5778 }
5779 else
5780 error (_("unknown stop reply packet: %s"), buf);
5781 }
5782 else
5783 error (_("unknown stop reply packet: %s"), buf);
5784 event->ptid = pid_to_ptid (pid);
5785 }
5786 break;
5787 }
5788
5789 if (non_stop && ptid_equal (event->ptid, null_ptid))
5790 error (_("No process or thread specified in stop reply: %s"), buf);
5791}
5792
5793/* When the stub wants to tell GDB about a new notification reply, it
5794 sends a notification (%Stop, for example). Those can come it at
5795 any time, hence, we have to make sure that any pending
5796 putpkt/getpkt sequence we're making is finished, before querying
5797 the stub for more events with the corresponding ack command
5798 (vStopped, for example). E.g., if we started a vStopped sequence
5799 immediately upon receiving the notification, something like this
5800 could happen:
5801
5802 1.1) --> Hg 1
5803 1.2) <-- OK
5804 1.3) --> g
5805 1.4) <-- %Stop
5806 1.5) --> vStopped
5807 1.6) <-- (registers reply to step #1.3)
5808
5809 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5810 query.
5811
5812 To solve this, whenever we parse a %Stop notification successfully,
5813 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5814 doing whatever we were doing:
5815
5816 2.1) --> Hg 1
5817 2.2) <-- OK
5818 2.3) --> g
5819 2.4) <-- %Stop
5820 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5821 2.5) <-- (registers reply to step #2.3)
5822
5823 Eventualy after step #2.5, we return to the event loop, which
5824 notices there's an event on the
5825 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5826 associated callback --- the function below. At this point, we're
5827 always safe to start a vStopped sequence. :
5828
5829 2.6) --> vStopped
5830 2.7) <-- T05 thread:2
5831 2.8) --> vStopped
5832 2.9) --> OK
5833*/
5834
5835void
5836remote_notif_get_pending_events (struct notif_client *nc)
5837{
5838 struct remote_state *rs = get_remote_state ();
5839
5840 if (rs->notif_state->pending_event[nc->id] != NULL)
5841 {
5842 if (notif_debug)
5843 fprintf_unfiltered (gdb_stdlog,
5844 "notif: process: '%s' ack pending event\n",
5845 nc->name);
5846
5847 /* acknowledge */
5848 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5849 rs->notif_state->pending_event[nc->id] = NULL;
5850
5851 while (1)
5852 {
5853 getpkt (&rs->buf, &rs->buf_size, 0);
5854 if (strcmp (rs->buf, "OK") == 0)
5855 break;
5856 else
5857 remote_notif_ack (nc, rs->buf);
5858 }
5859 }
5860 else
5861 {
5862 if (notif_debug)
5863 fprintf_unfiltered (gdb_stdlog,
5864 "notif: process: '%s' no pending reply\n",
5865 nc->name);
5866 }
5867}
5868
5869/* Called when it is decided that STOP_REPLY holds the info of the
5870 event that is to be returned to the core. This function always
5871 destroys STOP_REPLY. */
5872
5873static ptid_t
5874process_stop_reply (struct stop_reply *stop_reply,
5875 struct target_waitstatus *status)
5876{
5877 ptid_t ptid;
5878
5879 *status = stop_reply->ws;
5880 ptid = stop_reply->ptid;
5881
5882 /* If no thread/process was reported by the stub, assume the current
5883 inferior. */
5884 if (ptid_equal (ptid, null_ptid))
5885 ptid = inferior_ptid;
5886
5887 if (status->kind != TARGET_WAITKIND_EXITED
5888 && status->kind != TARGET_WAITKIND_SIGNALLED)
5889 {
5890 struct remote_state *rs = get_remote_state ();
5891
5892 /* Expedited registers. */
5893 if (stop_reply->regcache)
5894 {
5895 struct regcache *regcache
5896 = get_thread_arch_regcache (ptid, target_gdbarch ());
5897 cached_reg_t *reg;
5898 int ix;
5899
5900 for (ix = 0;
5901 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5902 ix++)
5903 regcache_raw_supply (regcache, reg->num, reg->data);
5904 VEC_free (cached_reg_t, stop_reply->regcache);
5905 }
5906
5907 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5908 rs->remote_watch_data_address = stop_reply->watch_data_address;
5909
5910 remote_notice_new_inferior (ptid, 0);
5911 demand_private_info (ptid)->core = stop_reply->core;
5912 }
5913
5914 stop_reply_xfree (stop_reply);
5915 return ptid;
5916}
5917
5918/* The non-stop mode version of target_wait. */
5919
5920static ptid_t
5921remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5922{
5923 struct remote_state *rs = get_remote_state ();
5924 struct stop_reply *stop_reply;
5925 int ret;
5926 int is_notif = 0;
5927
5928 /* If in non-stop mode, get out of getpkt even if a
5929 notification is received. */
5930
5931 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5932 0 /* forever */, &is_notif);
5933 while (1)
5934 {
5935 if (ret != -1 && !is_notif)
5936 switch (rs->buf[0])
5937 {
5938 case 'E': /* Error of some sort. */
5939 /* We're out of sync with the target now. Did it continue
5940 or not? We can't tell which thread it was in non-stop,
5941 so just ignore this. */
5942 warning (_("Remote failure reply: %s"), rs->buf);
5943 break;
5944 case 'O': /* Console output. */
5945 remote_console_output (rs->buf + 1);
5946 break;
5947 default:
5948 warning (_("Invalid remote reply: %s"), rs->buf);
5949 break;
5950 }
5951
5952 /* Acknowledge a pending stop reply that may have arrived in the
5953 mean time. */
5954 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
5955 remote_notif_get_pending_events (&notif_client_stop);
5956
5957 /* If indeed we noticed a stop reply, we're done. */
5958 stop_reply = queued_stop_reply (ptid);
5959 if (stop_reply != NULL)
5960 return process_stop_reply (stop_reply, status);
5961
5962 /* Still no event. If we're just polling for an event, then
5963 return to the event loop. */
5964 if (options & TARGET_WNOHANG)
5965 {
5966 status->kind = TARGET_WAITKIND_IGNORE;
5967 return minus_one_ptid;
5968 }
5969
5970 /* Otherwise do a blocking wait. */
5971 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5972 1 /* forever */, &is_notif);
5973 }
5974}
5975
5976/* Wait until the remote machine stops, then return, storing status in
5977 STATUS just as `wait' would. */
5978
5979static ptid_t
5980remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5981{
5982 struct remote_state *rs = get_remote_state ();
5983 ptid_t event_ptid = null_ptid;
5984 char *buf;
5985 struct stop_reply *stop_reply;
5986
5987 again:
5988
5989 status->kind = TARGET_WAITKIND_IGNORE;
5990 status->value.integer = 0;
5991
5992 stop_reply = queued_stop_reply (ptid);
5993 if (stop_reply != NULL)
5994 return process_stop_reply (stop_reply, status);
5995
5996 if (rs->cached_wait_status)
5997 /* Use the cached wait status, but only once. */
5998 rs->cached_wait_status = 0;
5999 else
6000 {
6001 int ret;
6002 int is_notif;
6003
6004 if (!target_is_async_p ())
6005 {
6006 ofunc = signal (SIGINT, sync_remote_interrupt);
6007 /* If the user hit C-c before this packet, or between packets,
6008 pretend that it was hit right here. */
6009 if (check_quit_flag ())
6010 {
6011 clear_quit_flag ();
6012 sync_remote_interrupt (SIGINT);
6013 }
6014 }
6015
6016 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6017 _never_ wait for ever -> test on target_is_async_p().
6018 However, before we do that we need to ensure that the caller
6019 knows how to take the target into/out of async mode. */
6020 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6021 wait_forever_enabled_p, &is_notif);
6022
6023 if (!target_is_async_p ())
6024 signal (SIGINT, ofunc);
6025
6026 /* GDB gets a notification. Return to core as this event is
6027 not interesting. */
6028 if (ret != -1 && is_notif)
6029 return minus_one_ptid;
6030 }
6031
6032 buf = rs->buf;
6033
6034 rs->remote_stopped_by_watchpoint_p = 0;
6035
6036 /* We got something. */
6037 rs->waiting_for_stop_reply = 0;
6038
6039 /* Assume that the target has acknowledged Ctrl-C unless we receive
6040 an 'F' or 'O' packet. */
6041 if (buf[0] != 'F' && buf[0] != 'O')
6042 rs->ctrlc_pending_p = 0;
6043
6044 switch (buf[0])
6045 {
6046 case 'E': /* Error of some sort. */
6047 /* We're out of sync with the target now. Did it continue or
6048 not? Not is more likely, so report a stop. */
6049 warning (_("Remote failure reply: %s"), buf);
6050 status->kind = TARGET_WAITKIND_STOPPED;
6051 status->value.sig = GDB_SIGNAL_0;
6052 break;
6053 case 'F': /* File-I/O request. */
6054 remote_fileio_request (buf, rs->ctrlc_pending_p);
6055 rs->ctrlc_pending_p = 0;
6056 break;
6057 case 'T': case 'S': case 'X': case 'W':
6058 {
6059 struct stop_reply *stop_reply
6060 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6061 rs->buf);
6062
6063 event_ptid = process_stop_reply (stop_reply, status);
6064 break;
6065 }
6066 case 'O': /* Console output. */
6067 remote_console_output (buf + 1);
6068
6069 /* The target didn't really stop; keep waiting. */
6070 rs->waiting_for_stop_reply = 1;
6071
6072 break;
6073 case '\0':
6074 if (rs->last_sent_signal != GDB_SIGNAL_0)
6075 {
6076 /* Zero length reply means that we tried 'S' or 'C' and the
6077 remote system doesn't support it. */
6078 target_terminal_ours_for_output ();
6079 printf_filtered
6080 ("Can't send signals to this remote system. %s not sent.\n",
6081 gdb_signal_to_name (rs->last_sent_signal));
6082 rs->last_sent_signal = GDB_SIGNAL_0;
6083 target_terminal_inferior ();
6084
6085 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6086 putpkt ((char *) buf);
6087
6088 /* We just told the target to resume, so a stop reply is in
6089 order. */
6090 rs->waiting_for_stop_reply = 1;
6091 break;
6092 }
6093 /* else fallthrough */
6094 default:
6095 warning (_("Invalid remote reply: %s"), buf);
6096 /* Keep waiting. */
6097 rs->waiting_for_stop_reply = 1;
6098 break;
6099 }
6100
6101 if (status->kind == TARGET_WAITKIND_IGNORE)
6102 {
6103 /* Nothing interesting happened. If we're doing a non-blocking
6104 poll, we're done. Otherwise, go back to waiting. */
6105 if (options & TARGET_WNOHANG)
6106 return minus_one_ptid;
6107 else
6108 goto again;
6109 }
6110 else if (status->kind != TARGET_WAITKIND_EXITED
6111 && status->kind != TARGET_WAITKIND_SIGNALLED)
6112 {
6113 if (!ptid_equal (event_ptid, null_ptid))
6114 record_currthread (rs, event_ptid);
6115 else
6116 event_ptid = inferior_ptid;
6117 }
6118 else
6119 /* A process exit. Invalidate our notion of current thread. */
6120 record_currthread (rs, minus_one_ptid);
6121
6122 return event_ptid;
6123}
6124
6125/* Wait until the remote machine stops, then return, storing status in
6126 STATUS just as `wait' would. */
6127
6128static ptid_t
6129remote_wait (struct target_ops *ops,
6130 ptid_t ptid, struct target_waitstatus *status, int options)
6131{
6132 ptid_t event_ptid;
6133
6134 if (non_stop)
6135 event_ptid = remote_wait_ns (ptid, status, options);
6136 else
6137 event_ptid = remote_wait_as (ptid, status, options);
6138
6139 if (target_can_async_p ())
6140 {
6141 /* If there are are events left in the queue tell the event loop
6142 to return here. */
6143 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6144 mark_async_event_handler (remote_async_inferior_event_token);
6145 }
6146
6147 return event_ptid;
6148}
6149
6150/* Fetch a single register using a 'p' packet. */
6151
6152static int
6153fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6154{
6155 struct remote_state *rs = get_remote_state ();
6156 char *buf, *p;
6157 char regp[MAX_REGISTER_SIZE];
6158 int i;
6159
6160 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6161 return 0;
6162
6163 if (reg->pnum == -1)
6164 return 0;
6165
6166 p = rs->buf;
6167 *p++ = 'p';
6168 p += hexnumstr (p, reg->pnum);
6169 *p++ = '\0';
6170 putpkt (rs->buf);
6171 getpkt (&rs->buf, &rs->buf_size, 0);
6172
6173 buf = rs->buf;
6174
6175 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6176 {
6177 case PACKET_OK:
6178 break;
6179 case PACKET_UNKNOWN:
6180 return 0;
6181 case PACKET_ERROR:
6182 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6183 gdbarch_register_name (get_regcache_arch (regcache),
6184 reg->regnum),
6185 buf);
6186 }
6187
6188 /* If this register is unfetchable, tell the regcache. */
6189 if (buf[0] == 'x')
6190 {
6191 regcache_raw_supply (regcache, reg->regnum, NULL);
6192 return 1;
6193 }
6194
6195 /* Otherwise, parse and supply the value. */
6196 p = buf;
6197 i = 0;
6198 while (p[0] != 0)
6199 {
6200 if (p[1] == 0)
6201 error (_("fetch_register_using_p: early buf termination"));
6202
6203 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6204 p += 2;
6205 }
6206 regcache_raw_supply (regcache, reg->regnum, regp);
6207 return 1;
6208}
6209
6210/* Fetch the registers included in the target's 'g' packet. */
6211
6212static int
6213send_g_packet (void)
6214{
6215 struct remote_state *rs = get_remote_state ();
6216 int buf_len;
6217
6218 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6219 remote_send (&rs->buf, &rs->buf_size);
6220
6221 /* We can get out of synch in various cases. If the first character
6222 in the buffer is not a hex character, assume that has happened
6223 and try to fetch another packet to read. */
6224 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6225 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6226 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6227 && rs->buf[0] != 'x') /* New: unavailable register value. */
6228 {
6229 if (remote_debug)
6230 fprintf_unfiltered (gdb_stdlog,
6231 "Bad register packet; fetching a new packet\n");
6232 getpkt (&rs->buf, &rs->buf_size, 0);
6233 }
6234
6235 buf_len = strlen (rs->buf);
6236
6237 /* Sanity check the received packet. */
6238 if (buf_len % 2 != 0)
6239 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6240
6241 return buf_len / 2;
6242}
6243
6244static void
6245process_g_packet (struct regcache *regcache)
6246{
6247 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6248 struct remote_state *rs = get_remote_state ();
6249 struct remote_arch_state *rsa = get_remote_arch_state ();
6250 int i, buf_len;
6251 char *p;
6252 char *regs;
6253
6254 buf_len = strlen (rs->buf);
6255
6256 /* Further sanity checks, with knowledge of the architecture. */
6257 if (buf_len > 2 * rsa->sizeof_g_packet)
6258 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6259
6260 /* Save the size of the packet sent to us by the target. It is used
6261 as a heuristic when determining the max size of packets that the
6262 target can safely receive. */
6263 if (rsa->actual_register_packet_size == 0)
6264 rsa->actual_register_packet_size = buf_len;
6265
6266 /* If this is smaller than we guessed the 'g' packet would be,
6267 update our records. A 'g' reply that doesn't include a register's
6268 value implies either that the register is not available, or that
6269 the 'p' packet must be used. */
6270 if (buf_len < 2 * rsa->sizeof_g_packet)
6271 {
6272 rsa->sizeof_g_packet = buf_len / 2;
6273
6274 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6275 {
6276 if (rsa->regs[i].pnum == -1)
6277 continue;
6278
6279 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6280 rsa->regs[i].in_g_packet = 0;
6281 else
6282 rsa->regs[i].in_g_packet = 1;
6283 }
6284 }
6285
6286 regs = alloca (rsa->sizeof_g_packet);
6287
6288 /* Unimplemented registers read as all bits zero. */
6289 memset (regs, 0, rsa->sizeof_g_packet);
6290
6291 /* Reply describes registers byte by byte, each byte encoded as two
6292 hex characters. Suck them all up, then supply them to the
6293 register cacheing/storage mechanism. */
6294
6295 p = rs->buf;
6296 for (i = 0; i < rsa->sizeof_g_packet; i++)
6297 {
6298 if (p[0] == 0 || p[1] == 0)
6299 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6300 internal_error (__FILE__, __LINE__,
6301 _("unexpected end of 'g' packet reply"));
6302
6303 if (p[0] == 'x' && p[1] == 'x')
6304 regs[i] = 0; /* 'x' */
6305 else
6306 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6307 p += 2;
6308 }
6309
6310 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6311 {
6312 struct packet_reg *r = &rsa->regs[i];
6313
6314 if (r->in_g_packet)
6315 {
6316 if (r->offset * 2 >= strlen (rs->buf))
6317 /* This shouldn't happen - we adjusted in_g_packet above. */
6318 internal_error (__FILE__, __LINE__,
6319 _("unexpected end of 'g' packet reply"));
6320 else if (rs->buf[r->offset * 2] == 'x')
6321 {
6322 gdb_assert (r->offset * 2 < strlen (rs->buf));
6323 /* The register isn't available, mark it as such (at
6324 the same time setting the value to zero). */
6325 regcache_raw_supply (regcache, r->regnum, NULL);
6326 }
6327 else
6328 regcache_raw_supply (regcache, r->regnum,
6329 regs + r->offset);
6330 }
6331 }
6332}
6333
6334static void
6335fetch_registers_using_g (struct regcache *regcache)
6336{
6337 send_g_packet ();
6338 process_g_packet (regcache);
6339}
6340
6341/* Make the remote selected traceframe match GDB's selected
6342 traceframe. */
6343
6344static void
6345set_remote_traceframe (void)
6346{
6347 int newnum;
6348 struct remote_state *rs = get_remote_state ();
6349
6350 if (rs->remote_traceframe_number == get_traceframe_number ())
6351 return;
6352
6353 /* Avoid recursion, remote_trace_find calls us again. */
6354 rs->remote_traceframe_number = get_traceframe_number ();
6355
6356 newnum = target_trace_find (tfind_number,
6357 get_traceframe_number (), 0, 0, NULL);
6358
6359 /* Should not happen. If it does, all bets are off. */
6360 if (newnum != get_traceframe_number ())
6361 warning (_("could not set remote traceframe"));
6362}
6363
6364static void
6365remote_fetch_registers (struct target_ops *ops,
6366 struct regcache *regcache, int regnum)
6367{
6368 struct remote_arch_state *rsa = get_remote_arch_state ();
6369 int i;
6370
6371 set_remote_traceframe ();
6372 set_general_thread (inferior_ptid);
6373
6374 if (regnum >= 0)
6375 {
6376 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6377
6378 gdb_assert (reg != NULL);
6379
6380 /* If this register might be in the 'g' packet, try that first -
6381 we are likely to read more than one register. If this is the
6382 first 'g' packet, we might be overly optimistic about its
6383 contents, so fall back to 'p'. */
6384 if (reg->in_g_packet)
6385 {
6386 fetch_registers_using_g (regcache);
6387 if (reg->in_g_packet)
6388 return;
6389 }
6390
6391 if (fetch_register_using_p (regcache, reg))
6392 return;
6393
6394 /* This register is not available. */
6395 regcache_raw_supply (regcache, reg->regnum, NULL);
6396
6397 return;
6398 }
6399
6400 fetch_registers_using_g (regcache);
6401
6402 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6403 if (!rsa->regs[i].in_g_packet)
6404 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6405 {
6406 /* This register is not available. */
6407 regcache_raw_supply (regcache, i, NULL);
6408 }
6409}
6410
6411/* Prepare to store registers. Since we may send them all (using a
6412 'G' request), we have to read out the ones we don't want to change
6413 first. */
6414
6415static void
6416remote_prepare_to_store (struct regcache *regcache)
6417{
6418 struct remote_arch_state *rsa = get_remote_arch_state ();
6419 int i;
6420 gdb_byte buf[MAX_REGISTER_SIZE];
6421
6422 /* Make sure the entire registers array is valid. */
6423 switch (remote_protocol_packets[PACKET_P].support)
6424 {
6425 case PACKET_DISABLE:
6426 case PACKET_SUPPORT_UNKNOWN:
6427 /* Make sure all the necessary registers are cached. */
6428 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6429 if (rsa->regs[i].in_g_packet)
6430 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6431 break;
6432 case PACKET_ENABLE:
6433 break;
6434 }
6435}
6436
6437/* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6438 packet was not recognized. */
6439
6440static int
6441store_register_using_P (const struct regcache *regcache,
6442 struct packet_reg *reg)
6443{
6444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6445 struct remote_state *rs = get_remote_state ();
6446 /* Try storing a single register. */
6447 char *buf = rs->buf;
6448 gdb_byte regp[MAX_REGISTER_SIZE];
6449 char *p;
6450
6451 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6452 return 0;
6453
6454 if (reg->pnum == -1)
6455 return 0;
6456
6457 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6458 p = buf + strlen (buf);
6459 regcache_raw_collect (regcache, reg->regnum, regp);
6460 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6461 putpkt (rs->buf);
6462 getpkt (&rs->buf, &rs->buf_size, 0);
6463
6464 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6465 {
6466 case PACKET_OK:
6467 return 1;
6468 case PACKET_ERROR:
6469 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6470 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6471 case PACKET_UNKNOWN:
6472 return 0;
6473 default:
6474 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6475 }
6476}
6477
6478/* Store register REGNUM, or all registers if REGNUM == -1, from the
6479 contents of the register cache buffer. FIXME: ignores errors. */
6480
6481static void
6482store_registers_using_G (const struct regcache *regcache)
6483{
6484 struct remote_state *rs = get_remote_state ();
6485 struct remote_arch_state *rsa = get_remote_arch_state ();
6486 gdb_byte *regs;
6487 char *p;
6488
6489 /* Extract all the registers in the regcache copying them into a
6490 local buffer. */
6491 {
6492 int i;
6493
6494 regs = alloca (rsa->sizeof_g_packet);
6495 memset (regs, 0, rsa->sizeof_g_packet);
6496 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6497 {
6498 struct packet_reg *r = &rsa->regs[i];
6499
6500 if (r->in_g_packet)
6501 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6502 }
6503 }
6504
6505 /* Command describes registers byte by byte,
6506 each byte encoded as two hex characters. */
6507 p = rs->buf;
6508 *p++ = 'G';
6509 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6510 updated. */
6511 bin2hex (regs, p, rsa->sizeof_g_packet);
6512 putpkt (rs->buf);
6513 getpkt (&rs->buf, &rs->buf_size, 0);
6514 if (packet_check_result (rs->buf) == PACKET_ERROR)
6515 error (_("Could not write registers; remote failure reply '%s'"),
6516 rs->buf);
6517}
6518
6519/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6520 of the register cache buffer. FIXME: ignores errors. */
6521
6522static void
6523remote_store_registers (struct target_ops *ops,
6524 struct regcache *regcache, int regnum)
6525{
6526 struct remote_arch_state *rsa = get_remote_arch_state ();
6527 int i;
6528
6529 set_remote_traceframe ();
6530 set_general_thread (inferior_ptid);
6531
6532 if (regnum >= 0)
6533 {
6534 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6535
6536 gdb_assert (reg != NULL);
6537
6538 /* Always prefer to store registers using the 'P' packet if
6539 possible; we often change only a small number of registers.
6540 Sometimes we change a larger number; we'd need help from a
6541 higher layer to know to use 'G'. */
6542 if (store_register_using_P (regcache, reg))
6543 return;
6544
6545 /* For now, don't complain if we have no way to write the
6546 register. GDB loses track of unavailable registers too
6547 easily. Some day, this may be an error. We don't have
6548 any way to read the register, either... */
6549 if (!reg->in_g_packet)
6550 return;
6551
6552 store_registers_using_G (regcache);
6553 return;
6554 }
6555
6556 store_registers_using_G (regcache);
6557
6558 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6559 if (!rsa->regs[i].in_g_packet)
6560 if (!store_register_using_P (regcache, &rsa->regs[i]))
6561 /* See above for why we do not issue an error here. */
6562 continue;
6563}
6564\f
6565
6566/* Return the number of hex digits in num. */
6567
6568static int
6569hexnumlen (ULONGEST num)
6570{
6571 int i;
6572
6573 for (i = 0; num != 0; i++)
6574 num >>= 4;
6575
6576 return max (i, 1);
6577}
6578
6579/* Set BUF to the minimum number of hex digits representing NUM. */
6580
6581static int
6582hexnumstr (char *buf, ULONGEST num)
6583{
6584 int len = hexnumlen (num);
6585
6586 return hexnumnstr (buf, num, len);
6587}
6588
6589
6590/* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6591
6592static int
6593hexnumnstr (char *buf, ULONGEST num, int width)
6594{
6595 int i;
6596
6597 buf[width] = '\0';
6598
6599 for (i = width - 1; i >= 0; i--)
6600 {
6601 buf[i] = "0123456789abcdef"[(num & 0xf)];
6602 num >>= 4;
6603 }
6604
6605 return width;
6606}
6607
6608/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6609
6610static CORE_ADDR
6611remote_address_masked (CORE_ADDR addr)
6612{
6613 unsigned int address_size = remote_address_size;
6614
6615 /* If "remoteaddresssize" was not set, default to target address size. */
6616 if (!address_size)
6617 address_size = gdbarch_addr_bit (target_gdbarch ());
6618
6619 if (address_size > 0
6620 && address_size < (sizeof (ULONGEST) * 8))
6621 {
6622 /* Only create a mask when that mask can safely be constructed
6623 in a ULONGEST variable. */
6624 ULONGEST mask = 1;
6625
6626 mask = (mask << address_size) - 1;
6627 addr &= mask;
6628 }
6629 return addr;
6630}
6631
6632/* Convert BUFFER, binary data at least LEN bytes long, into escaped
6633 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6634 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6635 (which may be more than *OUT_LEN due to escape characters). The
6636 total number of bytes in the output buffer will be at most
6637 OUT_MAXLEN. */
6638
6639static int
6640remote_escape_output (const gdb_byte *buffer, int len,
6641 gdb_byte *out_buf, int *out_len,
6642 int out_maxlen)
6643{
6644 int input_index, output_index;
6645
6646 output_index = 0;
6647 for (input_index = 0; input_index < len; input_index++)
6648 {
6649 gdb_byte b = buffer[input_index];
6650
6651 if (b == '$' || b == '#' || b == '}')
6652 {
6653 /* These must be escaped. */
6654 if (output_index + 2 > out_maxlen)
6655 break;
6656 out_buf[output_index++] = '}';
6657 out_buf[output_index++] = b ^ 0x20;
6658 }
6659 else
6660 {
6661 if (output_index + 1 > out_maxlen)
6662 break;
6663 out_buf[output_index++] = b;
6664 }
6665 }
6666
6667 *out_len = input_index;
6668 return output_index;
6669}
6670
6671/* Convert BUFFER, escaped data LEN bytes long, into binary data
6672 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6673 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6674
6675 This function reverses remote_escape_output. It allows more
6676 escaped characters than that function does, in particular because
6677 '*' must be escaped to avoid the run-length encoding processing
6678 in reading packets. */
6679
6680static int
6681remote_unescape_input (const gdb_byte *buffer, int len,
6682 gdb_byte *out_buf, int out_maxlen)
6683{
6684 int input_index, output_index;
6685 int escaped;
6686
6687 output_index = 0;
6688 escaped = 0;
6689 for (input_index = 0; input_index < len; input_index++)
6690 {
6691 gdb_byte b = buffer[input_index];
6692
6693 if (output_index + 1 > out_maxlen)
6694 {
6695 warning (_("Received too much data from remote target;"
6696 " ignoring overflow."));
6697 return output_index;
6698 }
6699
6700 if (escaped)
6701 {
6702 out_buf[output_index++] = b ^ 0x20;
6703 escaped = 0;
6704 }
6705 else if (b == '}')
6706 escaped = 1;
6707 else
6708 out_buf[output_index++] = b;
6709 }
6710
6711 if (escaped)
6712 error (_("Unmatched escape character in target response."));
6713
6714 return output_index;
6715}
6716
6717/* Determine whether the remote target supports binary downloading.
6718 This is accomplished by sending a no-op memory write of zero length
6719 to the target at the specified address. It does not suffice to send
6720 the whole packet, since many stubs strip the eighth bit and
6721 subsequently compute a wrong checksum, which causes real havoc with
6722 remote_write_bytes.
6723
6724 NOTE: This can still lose if the serial line is not eight-bit
6725 clean. In cases like this, the user should clear "remote
6726 X-packet". */
6727
6728static void
6729check_binary_download (CORE_ADDR addr)
6730{
6731 struct remote_state *rs = get_remote_state ();
6732
6733 switch (remote_protocol_packets[PACKET_X].support)
6734 {
6735 case PACKET_DISABLE:
6736 break;
6737 case PACKET_ENABLE:
6738 break;
6739 case PACKET_SUPPORT_UNKNOWN:
6740 {
6741 char *p;
6742
6743 p = rs->buf;
6744 *p++ = 'X';
6745 p += hexnumstr (p, (ULONGEST) addr);
6746 *p++ = ',';
6747 p += hexnumstr (p, (ULONGEST) 0);
6748 *p++ = ':';
6749 *p = '\0';
6750
6751 putpkt_binary (rs->buf, (int) (p - rs->buf));
6752 getpkt (&rs->buf, &rs->buf_size, 0);
6753
6754 if (rs->buf[0] == '\0')
6755 {
6756 if (remote_debug)
6757 fprintf_unfiltered (gdb_stdlog,
6758 "binary downloading NOT "
6759 "supported by target\n");
6760 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6761 }
6762 else
6763 {
6764 if (remote_debug)
6765 fprintf_unfiltered (gdb_stdlog,
6766 "binary downloading supported by target\n");
6767 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6768 }
6769 break;
6770 }
6771 }
6772}
6773
6774/* Write memory data directly to the remote machine.
6775 This does not inform the data cache; the data cache uses this.
6776 HEADER is the starting part of the packet.
6777 MEMADDR is the address in the remote memory space.
6778 MYADDR is the address of the buffer in our space.
6779 LEN is the number of bytes.
6780 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6781 should send data as binary ('X'), or hex-encoded ('M').
6782
6783 The function creates packet of the form
6784 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6785
6786 where encoding of <DATA> is termined by PACKET_FORMAT.
6787
6788 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6789 are omitted.
6790
6791 Returns the number of bytes transferred, or a negative value (an
6792 'enum target_xfer_error' value) for error. Only transfer a single
6793 packet. */
6794
6795static LONGEST
6796remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6797 const gdb_byte *myaddr, ssize_t len,
6798 char packet_format, int use_length)
6799{
6800 struct remote_state *rs = get_remote_state ();
6801 char *p;
6802 char *plen = NULL;
6803 int plenlen = 0;
6804 int todo;
6805 int nr_bytes;
6806 int payload_size;
6807 int payload_length;
6808 int header_length;
6809
6810 if (packet_format != 'X' && packet_format != 'M')
6811 internal_error (__FILE__, __LINE__,
6812 _("remote_write_bytes_aux: bad packet format"));
6813
6814 if (len <= 0)
6815 return 0;
6816
6817 payload_size = get_memory_write_packet_size ();
6818
6819 /* The packet buffer will be large enough for the payload;
6820 get_memory_packet_size ensures this. */
6821 rs->buf[0] = '\0';
6822
6823 /* Compute the size of the actual payload by subtracting out the
6824 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6825
6826 payload_size -= strlen ("$,:#NN");
6827 if (!use_length)
6828 /* The comma won't be used. */
6829 payload_size += 1;
6830 header_length = strlen (header);
6831 payload_size -= header_length;
6832 payload_size -= hexnumlen (memaddr);
6833
6834 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6835
6836 strcat (rs->buf, header);
6837 p = rs->buf + strlen (header);
6838
6839 /* Compute a best guess of the number of bytes actually transfered. */
6840 if (packet_format == 'X')
6841 {
6842 /* Best guess at number of bytes that will fit. */
6843 todo = min (len, payload_size);
6844 if (use_length)
6845 payload_size -= hexnumlen (todo);
6846 todo = min (todo, payload_size);
6847 }
6848 else
6849 {
6850 /* Num bytes that will fit. */
6851 todo = min (len, payload_size / 2);
6852 if (use_length)
6853 payload_size -= hexnumlen (todo);
6854 todo = min (todo, payload_size / 2);
6855 }
6856
6857 if (todo <= 0)
6858 internal_error (__FILE__, __LINE__,
6859 _("minimum packet size too small to write data"));
6860
6861 /* If we already need another packet, then try to align the end
6862 of this packet to a useful boundary. */
6863 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6864 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6865
6866 /* Append "<memaddr>". */
6867 memaddr = remote_address_masked (memaddr);
6868 p += hexnumstr (p, (ULONGEST) memaddr);
6869
6870 if (use_length)
6871 {
6872 /* Append ",". */
6873 *p++ = ',';
6874
6875 /* Append <len>. Retain the location/size of <len>. It may need to
6876 be adjusted once the packet body has been created. */
6877 plen = p;
6878 plenlen = hexnumstr (p, (ULONGEST) todo);
6879 p += plenlen;
6880 }
6881
6882 /* Append ":". */
6883 *p++ = ':';
6884 *p = '\0';
6885
6886 /* Append the packet body. */
6887 if (packet_format == 'X')
6888 {
6889 /* Binary mode. Send target system values byte by byte, in
6890 increasing byte addresses. Only escape certain critical
6891 characters. */
6892 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6893 &nr_bytes, payload_size);
6894
6895 /* If not all TODO bytes fit, then we'll need another packet. Make
6896 a second try to keep the end of the packet aligned. Don't do
6897 this if the packet is tiny. */
6898 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6899 {
6900 int new_nr_bytes;
6901
6902 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6903 - memaddr);
6904 if (new_nr_bytes != nr_bytes)
6905 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6906 (gdb_byte *) p, &nr_bytes,
6907 payload_size);
6908 }
6909
6910 p += payload_length;
6911 if (use_length && nr_bytes < todo)
6912 {
6913 /* Escape chars have filled up the buffer prematurely,
6914 and we have actually sent fewer bytes than planned.
6915 Fix-up the length field of the packet. Use the same
6916 number of characters as before. */
6917 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6918 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6919 }
6920 }
6921 else
6922 {
6923 /* Normal mode: Send target system values byte by byte, in
6924 increasing byte addresses. Each byte is encoded as a two hex
6925 value. */
6926 nr_bytes = bin2hex (myaddr, p, todo);
6927 p += 2 * nr_bytes;
6928 }
6929
6930 putpkt_binary (rs->buf, (int) (p - rs->buf));
6931 getpkt (&rs->buf, &rs->buf_size, 0);
6932
6933 if (rs->buf[0] == 'E')
6934 return TARGET_XFER_E_IO;
6935
6936 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6937 fewer bytes than we'd planned. */
6938 return nr_bytes;
6939}
6940
6941/* Write memory data directly to the remote machine.
6942 This does not inform the data cache; the data cache uses this.
6943 MEMADDR is the address in the remote memory space.
6944 MYADDR is the address of the buffer in our space.
6945 LEN is the number of bytes.
6946
6947 Returns number of bytes transferred, or a negative value (an 'enum
6948 target_xfer_error' value) for error. Only transfer a single
6949 packet. */
6950
6951static LONGEST
6952remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6953{
6954 char *packet_format = 0;
6955
6956 /* Check whether the target supports binary download. */
6957 check_binary_download (memaddr);
6958
6959 switch (remote_protocol_packets[PACKET_X].support)
6960 {
6961 case PACKET_ENABLE:
6962 packet_format = "X";
6963 break;
6964 case PACKET_DISABLE:
6965 packet_format = "M";
6966 break;
6967 case PACKET_SUPPORT_UNKNOWN:
6968 internal_error (__FILE__, __LINE__,
6969 _("remote_write_bytes: bad internal state"));
6970 default:
6971 internal_error (__FILE__, __LINE__, _("bad switch"));
6972 }
6973
6974 return remote_write_bytes_aux (packet_format,
6975 memaddr, myaddr, len, packet_format[0], 1);
6976}
6977
6978/* Read memory data directly from the remote machine.
6979 This does not use the data cache; the data cache uses this.
6980 MEMADDR is the address in the remote memory space.
6981 MYADDR is the address of the buffer in our space.
6982 LEN is the number of bytes.
6983
6984 Returns number of bytes transferred, or a negative value (an 'enum
6985 target_xfer_error' value) for error. */
6986
6987static LONGEST
6988remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6989{
6990 struct remote_state *rs = get_remote_state ();
6991 int max_buf_size; /* Max size of packet output buffer. */
6992 char *p;
6993 int todo;
6994 int i;
6995
6996 if (len <= 0)
6997 return 0;
6998
6999 max_buf_size = get_memory_read_packet_size ();
7000 /* The packet buffer will be large enough for the payload;
7001 get_memory_packet_size ensures this. */
7002
7003 /* Number if bytes that will fit. */
7004 todo = min (len, max_buf_size / 2);
7005
7006 /* Construct "m"<memaddr>","<len>". */
7007 memaddr = remote_address_masked (memaddr);
7008 p = rs->buf;
7009 *p++ = 'm';
7010 p += hexnumstr (p, (ULONGEST) memaddr);
7011 *p++ = ',';
7012 p += hexnumstr (p, (ULONGEST) todo);
7013 *p = '\0';
7014 putpkt (rs->buf);
7015 getpkt (&rs->buf, &rs->buf_size, 0);
7016 if (rs->buf[0] == 'E'
7017 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7018 && rs->buf[3] == '\0')
7019 return TARGET_XFER_E_IO;
7020 /* Reply describes memory byte by byte, each byte encoded as two hex
7021 characters. */
7022 p = rs->buf;
7023 i = hex2bin (p, myaddr, todo);
7024 /* Return what we have. Let higher layers handle partial reads. */
7025 return i;
7026}
7027
7028\f
7029
7030/* Sends a packet with content determined by the printf format string
7031 FORMAT and the remaining arguments, then gets the reply. Returns
7032 whether the packet was a success, a failure, or unknown. */
7033
7034static enum packet_result
7035remote_send_printf (const char *format, ...)
7036{
7037 struct remote_state *rs = get_remote_state ();
7038 int max_size = get_remote_packet_size ();
7039 va_list ap;
7040
7041 va_start (ap, format);
7042
7043 rs->buf[0] = '\0';
7044 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7045 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7046
7047 if (putpkt (rs->buf) < 0)
7048 error (_("Communication problem with target."));
7049
7050 rs->buf[0] = '\0';
7051 getpkt (&rs->buf, &rs->buf_size, 0);
7052
7053 return packet_check_result (rs->buf);
7054}
7055
7056static void
7057restore_remote_timeout (void *p)
7058{
7059 int value = *(int *)p;
7060
7061 remote_timeout = value;
7062}
7063
7064/* Flash writing can take quite some time. We'll set
7065 effectively infinite timeout for flash operations.
7066 In future, we'll need to decide on a better approach. */
7067static const int remote_flash_timeout = 1000;
7068
7069static void
7070remote_flash_erase (struct target_ops *ops,
7071 ULONGEST address, LONGEST length)
7072{
7073 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7074 int saved_remote_timeout = remote_timeout;
7075 enum packet_result ret;
7076 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7077 &saved_remote_timeout);
7078
7079 remote_timeout = remote_flash_timeout;
7080
7081 ret = remote_send_printf ("vFlashErase:%s,%s",
7082 phex (address, addr_size),
7083 phex (length, 4));
7084 switch (ret)
7085 {
7086 case PACKET_UNKNOWN:
7087 error (_("Remote target does not support flash erase"));
7088 case PACKET_ERROR:
7089 error (_("Error erasing flash with vFlashErase packet"));
7090 default:
7091 break;
7092 }
7093
7094 do_cleanups (back_to);
7095}
7096
7097static LONGEST
7098remote_flash_write (struct target_ops *ops,
7099 ULONGEST address, LONGEST length,
7100 const gdb_byte *data)
7101{
7102 int saved_remote_timeout = remote_timeout;
7103 LONGEST ret;
7104 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7105 &saved_remote_timeout);
7106
7107 remote_timeout = remote_flash_timeout;
7108 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7109 do_cleanups (back_to);
7110
7111 return ret;
7112}
7113
7114static void
7115remote_flash_done (struct target_ops *ops)
7116{
7117 int saved_remote_timeout = remote_timeout;
7118 int ret;
7119 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7120 &saved_remote_timeout);
7121
7122 remote_timeout = remote_flash_timeout;
7123 ret = remote_send_printf ("vFlashDone");
7124 do_cleanups (back_to);
7125
7126 switch (ret)
7127 {
7128 case PACKET_UNKNOWN:
7129 error (_("Remote target does not support vFlashDone"));
7130 case PACKET_ERROR:
7131 error (_("Error finishing flash operation"));
7132 default:
7133 break;
7134 }
7135}
7136
7137static void
7138remote_files_info (struct target_ops *ignore)
7139{
7140 puts_filtered ("Debugging a target over a serial line.\n");
7141}
7142\f
7143/* Stuff for dealing with the packets which are part of this protocol.
7144 See comment at top of file for details. */
7145
7146/* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7147 error to higher layers. Called when a serial error is detected.
7148 The exception message is STRING, followed by a colon and a blank,
7149 the system error message for errno at function entry and final dot
7150 for output compatibility with throw_perror_with_name. */
7151
7152static void
7153unpush_and_perror (const char *string)
7154{
7155 int saved_errno = errno;
7156
7157 remote_unpush_target ();
7158 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7159 safe_strerror (saved_errno));
7160}
7161
7162/* Read a single character from the remote end. */
7163
7164static int
7165readchar (int timeout)
7166{
7167 int ch;
7168 struct remote_state *rs = get_remote_state ();
7169
7170 ch = serial_readchar (rs->remote_desc, timeout);
7171
7172 if (ch >= 0)
7173 return ch;
7174
7175 switch ((enum serial_rc) ch)
7176 {
7177 case SERIAL_EOF:
7178 remote_unpush_target ();
7179 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7180 /* no return */
7181 case SERIAL_ERROR:
7182 unpush_and_perror (_("Remote communication error. "
7183 "Target disconnected."));
7184 /* no return */
7185 case SERIAL_TIMEOUT:
7186 break;
7187 }
7188 return ch;
7189}
7190
7191/* Wrapper for serial_write that closes the target and throws if
7192 writing fails. */
7193
7194static void
7195remote_serial_write (const char *str, int len)
7196{
7197 struct remote_state *rs = get_remote_state ();
7198
7199 if (serial_write (rs->remote_desc, str, len))
7200 {
7201 unpush_and_perror (_("Remote communication error. "
7202 "Target disconnected."));
7203 }
7204}
7205
7206/* Send the command in *BUF to the remote machine, and read the reply
7207 into *BUF. Report an error if we get an error reply. Resize
7208 *BUF using xrealloc if necessary to hold the result, and update
7209 *SIZEOF_BUF. */
7210
7211static void
7212remote_send (char **buf,
7213 long *sizeof_buf)
7214{
7215 putpkt (*buf);
7216 getpkt (buf, sizeof_buf, 0);
7217
7218 if ((*buf)[0] == 'E')
7219 error (_("Remote failure reply: %s"), *buf);
7220}
7221
7222/* Return a pointer to an xmalloc'ed string representing an escaped
7223 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7224 etc. The caller is responsible for releasing the returned
7225 memory. */
7226
7227static char *
7228escape_buffer (const char *buf, int n)
7229{
7230 struct cleanup *old_chain;
7231 struct ui_file *stb;
7232 char *str;
7233
7234 stb = mem_fileopen ();
7235 old_chain = make_cleanup_ui_file_delete (stb);
7236
7237 fputstrn_unfiltered (buf, n, 0, stb);
7238 str = ui_file_xstrdup (stb, NULL);
7239 do_cleanups (old_chain);
7240 return str;
7241}
7242
7243/* Display a null-terminated packet on stdout, for debugging, using C
7244 string notation. */
7245
7246static void
7247print_packet (char *buf)
7248{
7249 puts_filtered ("\"");
7250 fputstr_filtered (buf, '"', gdb_stdout);
7251 puts_filtered ("\"");
7252}
7253
7254int
7255putpkt (char *buf)
7256{
7257 return putpkt_binary (buf, strlen (buf));
7258}
7259
7260/* Send a packet to the remote machine, with error checking. The data
7261 of the packet is in BUF. The string in BUF can be at most
7262 get_remote_packet_size () - 5 to account for the $, # and checksum,
7263 and for a possible /0 if we are debugging (remote_debug) and want
7264 to print the sent packet as a string. */
7265
7266static int
7267putpkt_binary (char *buf, int cnt)
7268{
7269 struct remote_state *rs = get_remote_state ();
7270 int i;
7271 unsigned char csum = 0;
7272 char *buf2 = alloca (cnt + 6);
7273
7274 int ch;
7275 int tcount = 0;
7276 char *p;
7277 char *message;
7278
7279 /* Catch cases like trying to read memory or listing threads while
7280 we're waiting for a stop reply. The remote server wouldn't be
7281 ready to handle this request, so we'd hang and timeout. We don't
7282 have to worry about this in synchronous mode, because in that
7283 case it's not possible to issue a command while the target is
7284 running. This is not a problem in non-stop mode, because in that
7285 case, the stub is always ready to process serial input. */
7286 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7287 error (_("Cannot execute this command while the target is running."));
7288
7289 /* We're sending out a new packet. Make sure we don't look at a
7290 stale cached response. */
7291 rs->cached_wait_status = 0;
7292
7293 /* Copy the packet into buffer BUF2, encapsulating it
7294 and giving it a checksum. */
7295
7296 p = buf2;
7297 *p++ = '$';
7298
7299 for (i = 0; i < cnt; i++)
7300 {
7301 csum += buf[i];
7302 *p++ = buf[i];
7303 }
7304 *p++ = '#';
7305 *p++ = tohex ((csum >> 4) & 0xf);
7306 *p++ = tohex (csum & 0xf);
7307
7308 /* Send it over and over until we get a positive ack. */
7309
7310 while (1)
7311 {
7312 int started_error_output = 0;
7313
7314 if (remote_debug)
7315 {
7316 struct cleanup *old_chain;
7317 char *str;
7318
7319 *p = '\0';
7320 str = escape_buffer (buf2, p - buf2);
7321 old_chain = make_cleanup (xfree, str);
7322 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7323 gdb_flush (gdb_stdlog);
7324 do_cleanups (old_chain);
7325 }
7326 remote_serial_write (buf2, p - buf2);
7327
7328 /* If this is a no acks version of the remote protocol, send the
7329 packet and move on. */
7330 if (rs->noack_mode)
7331 break;
7332
7333 /* Read until either a timeout occurs (-2) or '+' is read.
7334 Handle any notification that arrives in the mean time. */
7335 while (1)
7336 {
7337 ch = readchar (remote_timeout);
7338
7339 if (remote_debug)
7340 {
7341 switch (ch)
7342 {
7343 case '+':
7344 case '-':
7345 case SERIAL_TIMEOUT:
7346 case '$':
7347 case '%':
7348 if (started_error_output)
7349 {
7350 putchar_unfiltered ('\n');
7351 started_error_output = 0;
7352 }
7353 }
7354 }
7355
7356 switch (ch)
7357 {
7358 case '+':
7359 if (remote_debug)
7360 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7361 return 1;
7362 case '-':
7363 if (remote_debug)
7364 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7365 /* FALLTHROUGH */
7366 case SERIAL_TIMEOUT:
7367 tcount++;
7368 if (tcount > 3)
7369 return 0;
7370 break; /* Retransmit buffer. */
7371 case '$':
7372 {
7373 if (remote_debug)
7374 fprintf_unfiltered (gdb_stdlog,
7375 "Packet instead of Ack, ignoring it\n");
7376 /* It's probably an old response sent because an ACK
7377 was lost. Gobble up the packet and ack it so it
7378 doesn't get retransmitted when we resend this
7379 packet. */
7380 skip_frame ();
7381 remote_serial_write ("+", 1);
7382 continue; /* Now, go look for +. */
7383 }
7384
7385 case '%':
7386 {
7387 int val;
7388
7389 /* If we got a notification, handle it, and go back to looking
7390 for an ack. */
7391 /* We've found the start of a notification. Now
7392 collect the data. */
7393 val = read_frame (&rs->buf, &rs->buf_size);
7394 if (val >= 0)
7395 {
7396 if (remote_debug)
7397 {
7398 struct cleanup *old_chain;
7399 char *str;
7400
7401 str = escape_buffer (rs->buf, val);
7402 old_chain = make_cleanup (xfree, str);
7403 fprintf_unfiltered (gdb_stdlog,
7404 " Notification received: %s\n",
7405 str);
7406 do_cleanups (old_chain);
7407 }
7408 handle_notification (rs->notif_state, rs->buf);
7409 /* We're in sync now, rewait for the ack. */
7410 tcount = 0;
7411 }
7412 else
7413 {
7414 if (remote_debug)
7415 {
7416 if (!started_error_output)
7417 {
7418 started_error_output = 1;
7419 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7420 }
7421 fputc_unfiltered (ch & 0177, gdb_stdlog);
7422 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7423 }
7424 }
7425 continue;
7426 }
7427 /* fall-through */
7428 default:
7429 if (remote_debug)
7430 {
7431 if (!started_error_output)
7432 {
7433 started_error_output = 1;
7434 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7435 }
7436 fputc_unfiltered (ch & 0177, gdb_stdlog);
7437 }
7438 continue;
7439 }
7440 break; /* Here to retransmit. */
7441 }
7442
7443#if 0
7444 /* This is wrong. If doing a long backtrace, the user should be
7445 able to get out next time we call QUIT, without anything as
7446 violent as interrupt_query. If we want to provide a way out of
7447 here without getting to the next QUIT, it should be based on
7448 hitting ^C twice as in remote_wait. */
7449 if (quit_flag)
7450 {
7451 quit_flag = 0;
7452 interrupt_query ();
7453 }
7454#endif
7455 }
7456 return 0;
7457}
7458
7459/* Come here after finding the start of a frame when we expected an
7460 ack. Do our best to discard the rest of this packet. */
7461
7462static void
7463skip_frame (void)
7464{
7465 int c;
7466
7467 while (1)
7468 {
7469 c = readchar (remote_timeout);
7470 switch (c)
7471 {
7472 case SERIAL_TIMEOUT:
7473 /* Nothing we can do. */
7474 return;
7475 case '#':
7476 /* Discard the two bytes of checksum and stop. */
7477 c = readchar (remote_timeout);
7478 if (c >= 0)
7479 c = readchar (remote_timeout);
7480
7481 return;
7482 case '*': /* Run length encoding. */
7483 /* Discard the repeat count. */
7484 c = readchar (remote_timeout);
7485 if (c < 0)
7486 return;
7487 break;
7488 default:
7489 /* A regular character. */
7490 break;
7491 }
7492 }
7493}
7494
7495/* Come here after finding the start of the frame. Collect the rest
7496 into *BUF, verifying the checksum, length, and handling run-length
7497 compression. NUL terminate the buffer. If there is not enough room,
7498 expand *BUF using xrealloc.
7499
7500 Returns -1 on error, number of characters in buffer (ignoring the
7501 trailing NULL) on success. (could be extended to return one of the
7502 SERIAL status indications). */
7503
7504static long
7505read_frame (char **buf_p,
7506 long *sizeof_buf)
7507{
7508 unsigned char csum;
7509 long bc;
7510 int c;
7511 char *buf = *buf_p;
7512 struct remote_state *rs = get_remote_state ();
7513
7514 csum = 0;
7515 bc = 0;
7516
7517 while (1)
7518 {
7519 c = readchar (remote_timeout);
7520 switch (c)
7521 {
7522 case SERIAL_TIMEOUT:
7523 if (remote_debug)
7524 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7525 return -1;
7526 case '$':
7527 if (remote_debug)
7528 fputs_filtered ("Saw new packet start in middle of old one\n",
7529 gdb_stdlog);
7530 return -1; /* Start a new packet, count retries. */
7531 case '#':
7532 {
7533 unsigned char pktcsum;
7534 int check_0 = 0;
7535 int check_1 = 0;
7536
7537 buf[bc] = '\0';
7538
7539 check_0 = readchar (remote_timeout);
7540 if (check_0 >= 0)
7541 check_1 = readchar (remote_timeout);
7542
7543 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7544 {
7545 if (remote_debug)
7546 fputs_filtered ("Timeout in checksum, retrying\n",
7547 gdb_stdlog);
7548 return -1;
7549 }
7550 else if (check_0 < 0 || check_1 < 0)
7551 {
7552 if (remote_debug)
7553 fputs_filtered ("Communication error in checksum\n",
7554 gdb_stdlog);
7555 return -1;
7556 }
7557
7558 /* Don't recompute the checksum; with no ack packets we
7559 don't have any way to indicate a packet retransmission
7560 is necessary. */
7561 if (rs->noack_mode)
7562 return bc;
7563
7564 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7565 if (csum == pktcsum)
7566 return bc;
7567
7568 if (remote_debug)
7569 {
7570 struct cleanup *old_chain;
7571 char *str;
7572
7573 str = escape_buffer (buf, bc);
7574 old_chain = make_cleanup (xfree, str);
7575 fprintf_unfiltered (gdb_stdlog,
7576 "Bad checksum, sentsum=0x%x, "
7577 "csum=0x%x, buf=%s\n",
7578 pktcsum, csum, str);
7579 do_cleanups (old_chain);
7580 }
7581 /* Number of characters in buffer ignoring trailing
7582 NULL. */
7583 return -1;
7584 }
7585 case '*': /* Run length encoding. */
7586 {
7587 int repeat;
7588
7589 csum += c;
7590 c = readchar (remote_timeout);
7591 csum += c;
7592 repeat = c - ' ' + 3; /* Compute repeat count. */
7593
7594 /* The character before ``*'' is repeated. */
7595
7596 if (repeat > 0 && repeat <= 255 && bc > 0)
7597 {
7598 if (bc + repeat - 1 >= *sizeof_buf - 1)
7599 {
7600 /* Make some more room in the buffer. */
7601 *sizeof_buf += repeat;
7602 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7603 buf = *buf_p;
7604 }
7605
7606 memset (&buf[bc], buf[bc - 1], repeat);
7607 bc += repeat;
7608 continue;
7609 }
7610
7611 buf[bc] = '\0';
7612 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7613 return -1;
7614 }
7615 default:
7616 if (bc >= *sizeof_buf - 1)
7617 {
7618 /* Make some more room in the buffer. */
7619 *sizeof_buf *= 2;
7620 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7621 buf = *buf_p;
7622 }
7623
7624 buf[bc++] = c;
7625 csum += c;
7626 continue;
7627 }
7628 }
7629}
7630
7631/* Read a packet from the remote machine, with error checking, and
7632 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7633 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7634 rather than timing out; this is used (in synchronous mode) to wait
7635 for a target that is is executing user code to stop. */
7636/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7637 don't have to change all the calls to getpkt to deal with the
7638 return value, because at the moment I don't know what the right
7639 thing to do it for those. */
7640void
7641getpkt (char **buf,
7642 long *sizeof_buf,
7643 int forever)
7644{
7645 int timed_out;
7646
7647 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7648}
7649
7650
7651/* Read a packet from the remote machine, with error checking, and
7652 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7653 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7654 rather than timing out; this is used (in synchronous mode) to wait
7655 for a target that is is executing user code to stop. If FOREVER ==
7656 0, this function is allowed to time out gracefully and return an
7657 indication of this to the caller. Otherwise return the number of
7658 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7659 enough reason to return to the caller. *IS_NOTIF is an output
7660 boolean that indicates whether *BUF holds a notification or not
7661 (a regular packet). */
7662
7663static int
7664getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7665 int expecting_notif, int *is_notif)
7666{
7667 struct remote_state *rs = get_remote_state ();
7668 int c;
7669 int tries;
7670 int timeout;
7671 int val = -1;
7672
7673 /* We're reading a new response. Make sure we don't look at a
7674 previously cached response. */
7675 rs->cached_wait_status = 0;
7676
7677 strcpy (*buf, "timeout");
7678
7679 if (forever)
7680 timeout = watchdog > 0 ? watchdog : -1;
7681 else if (expecting_notif)
7682 timeout = 0; /* There should already be a char in the buffer. If
7683 not, bail out. */
7684 else
7685 timeout = remote_timeout;
7686
7687#define MAX_TRIES 3
7688
7689 /* Process any number of notifications, and then return when
7690 we get a packet. */
7691 for (;;)
7692 {
7693 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
7694 times. */
7695 for (tries = 1; tries <= MAX_TRIES; tries++)
7696 {
7697 /* This can loop forever if the remote side sends us
7698 characters continuously, but if it pauses, we'll get
7699 SERIAL_TIMEOUT from readchar because of timeout. Then
7700 we'll count that as a retry.
7701
7702 Note that even when forever is set, we will only wait
7703 forever prior to the start of a packet. After that, we
7704 expect characters to arrive at a brisk pace. They should
7705 show up within remote_timeout intervals. */
7706 do
7707 c = readchar (timeout);
7708 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7709
7710 if (c == SERIAL_TIMEOUT)
7711 {
7712 if (expecting_notif)
7713 return -1; /* Don't complain, it's normal to not get
7714 anything in this case. */
7715
7716 if (forever) /* Watchdog went off? Kill the target. */
7717 {
7718 QUIT;
7719 remote_unpush_target ();
7720 throw_error (TARGET_CLOSE_ERROR,
7721 _("Watchdog timeout has expired. "
7722 "Target detached."));
7723 }
7724 if (remote_debug)
7725 fputs_filtered ("Timed out.\n", gdb_stdlog);
7726 }
7727 else
7728 {
7729 /* We've found the start of a packet or notification.
7730 Now collect the data. */
7731 val = read_frame (buf, sizeof_buf);
7732 if (val >= 0)
7733 break;
7734 }
7735
7736 remote_serial_write ("-", 1);
7737 }
7738
7739 if (tries > MAX_TRIES)
7740 {
7741 /* We have tried hard enough, and just can't receive the
7742 packet/notification. Give up. */
7743 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7744
7745 /* Skip the ack char if we're in no-ack mode. */
7746 if (!rs->noack_mode)
7747 remote_serial_write ("+", 1);
7748 return -1;
7749 }
7750
7751 /* If we got an ordinary packet, return that to our caller. */
7752 if (c == '$')
7753 {
7754 if (remote_debug)
7755 {
7756 struct cleanup *old_chain;
7757 char *str;
7758
7759 str = escape_buffer (*buf, val);
7760 old_chain = make_cleanup (xfree, str);
7761 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7762 do_cleanups (old_chain);
7763 }
7764
7765 /* Skip the ack char if we're in no-ack mode. */
7766 if (!rs->noack_mode)
7767 remote_serial_write ("+", 1);
7768 if (is_notif != NULL)
7769 *is_notif = 0;
7770 return val;
7771 }
7772
7773 /* If we got a notification, handle it, and go back to looking
7774 for a packet. */
7775 else
7776 {
7777 gdb_assert (c == '%');
7778
7779 if (remote_debug)
7780 {
7781 struct cleanup *old_chain;
7782 char *str;
7783
7784 str = escape_buffer (*buf, val);
7785 old_chain = make_cleanup (xfree, str);
7786 fprintf_unfiltered (gdb_stdlog,
7787 " Notification received: %s\n",
7788 str);
7789 do_cleanups (old_chain);
7790 }
7791 if (is_notif != NULL)
7792 *is_notif = 1;
7793
7794 handle_notification (rs->notif_state, *buf);
7795
7796 /* Notifications require no acknowledgement. */
7797
7798 if (expecting_notif)
7799 return val;
7800 }
7801 }
7802}
7803
7804static int
7805getpkt_sane (char **buf, long *sizeof_buf, int forever)
7806{
7807 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7808}
7809
7810static int
7811getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7812 int *is_notif)
7813{
7814 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7815 is_notif);
7816}
7817
7818\f
7819/* A helper function that just calls putpkt; for type correctness. */
7820
7821static int
7822putpkt_for_catch_errors (void *arg)
7823{
7824 return putpkt (arg);
7825}
7826
7827static void
7828remote_kill (struct target_ops *ops)
7829{
7830 /* Use catch_errors so the user can quit from gdb even when we
7831 aren't on speaking terms with the remote system. */
7832 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7833
7834 /* Don't wait for it to die. I'm not really sure it matters whether
7835 we do or not. For the existing stubs, kill is a noop. */
7836 target_mourn_inferior ();
7837}
7838
7839static int
7840remote_vkill (int pid, struct remote_state *rs)
7841{
7842 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7843 return -1;
7844
7845 /* Tell the remote target to detach. */
7846 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7847 putpkt (rs->buf);
7848 getpkt (&rs->buf, &rs->buf_size, 0);
7849
7850 if (packet_ok (rs->buf,
7851 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7852 return 0;
7853 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7854 return -1;
7855 else
7856 return 1;
7857}
7858
7859static void
7860extended_remote_kill (struct target_ops *ops)
7861{
7862 int res;
7863 int pid = ptid_get_pid (inferior_ptid);
7864 struct remote_state *rs = get_remote_state ();
7865
7866 res = remote_vkill (pid, rs);
7867 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7868 {
7869 /* Don't try 'k' on a multi-process aware stub -- it has no way
7870 to specify the pid. */
7871
7872 putpkt ("k");
7873#if 0
7874 getpkt (&rs->buf, &rs->buf_size, 0);
7875 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7876 res = 1;
7877#else
7878 /* Don't wait for it to die. I'm not really sure it matters whether
7879 we do or not. For the existing stubs, kill is a noop. */
7880 res = 0;
7881#endif
7882 }
7883
7884 if (res != 0)
7885 error (_("Can't kill process"));
7886
7887 target_mourn_inferior ();
7888}
7889
7890static void
7891remote_mourn (struct target_ops *ops)
7892{
7893 remote_mourn_1 (ops);
7894}
7895
7896/* Worker function for remote_mourn. */
7897static void
7898remote_mourn_1 (struct target_ops *target)
7899{
7900 unpush_target (target);
7901
7902 /* remote_close takes care of doing most of the clean up. */
7903 generic_mourn_inferior ();
7904}
7905
7906static void
7907extended_remote_mourn_1 (struct target_ops *target)
7908{
7909 struct remote_state *rs = get_remote_state ();
7910
7911 /* In case we got here due to an error, but we're going to stay
7912 connected. */
7913 rs->waiting_for_stop_reply = 0;
7914
7915 /* If the current general thread belonged to the process we just
7916 detached from or has exited, the remote side current general
7917 thread becomes undefined. Considering a case like this:
7918
7919 - We just got here due to a detach.
7920 - The process that we're detaching from happens to immediately
7921 report a global breakpoint being hit in non-stop mode, in the
7922 same thread we had selected before.
7923 - GDB attaches to this process again.
7924 - This event happens to be the next event we handle.
7925
7926 GDB would consider that the current general thread didn't need to
7927 be set on the stub side (with Hg), since for all it knew,
7928 GENERAL_THREAD hadn't changed.
7929
7930 Notice that although in all-stop mode, the remote server always
7931 sets the current thread to the thread reporting the stop event,
7932 that doesn't happen in non-stop mode; in non-stop, the stub *must
7933 not* change the current thread when reporting a breakpoint hit,
7934 due to the decoupling of event reporting and event handling.
7935
7936 To keep things simple, we always invalidate our notion of the
7937 current thread. */
7938 record_currthread (rs, minus_one_ptid);
7939
7940 /* Unlike "target remote", we do not want to unpush the target; then
7941 the next time the user says "run", we won't be connected. */
7942
7943 /* Call common code to mark the inferior as not running. */
7944 generic_mourn_inferior ();
7945
7946 if (!have_inferiors ())
7947 {
7948 if (!remote_multi_process_p (rs))
7949 {
7950 /* Check whether the target is running now - some remote stubs
7951 automatically restart after kill. */
7952 putpkt ("?");
7953 getpkt (&rs->buf, &rs->buf_size, 0);
7954
7955 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7956 {
7957 /* Assume that the target has been restarted. Set
7958 inferior_ptid so that bits of core GDB realizes
7959 there's something here, e.g., so that the user can
7960 say "kill" again. */
7961 inferior_ptid = magic_null_ptid;
7962 }
7963 }
7964 }
7965}
7966
7967static void
7968extended_remote_mourn (struct target_ops *ops)
7969{
7970 extended_remote_mourn_1 (ops);
7971}
7972
7973static int
7974extended_remote_supports_disable_randomization (void)
7975{
7976 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7977 == PACKET_ENABLE);
7978}
7979
7980static void
7981extended_remote_disable_randomization (int val)
7982{
7983 struct remote_state *rs = get_remote_state ();
7984 char *reply;
7985
7986 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7987 val);
7988 putpkt (rs->buf);
7989 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7990 if (*reply == '\0')
7991 error (_("Target does not support QDisableRandomization."));
7992 if (strcmp (reply, "OK") != 0)
7993 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7994}
7995
7996static int
7997extended_remote_run (char *args)
7998{
7999 struct remote_state *rs = get_remote_state ();
8000 int len;
8001
8002 /* If the user has disabled vRun support, or we have detected that
8003 support is not available, do not try it. */
8004 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8005 return -1;
8006
8007 strcpy (rs->buf, "vRun;");
8008 len = strlen (rs->buf);
8009
8010 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8011 error (_("Remote file name too long for run packet"));
8012 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8013
8014 gdb_assert (args != NULL);
8015 if (*args)
8016 {
8017 struct cleanup *back_to;
8018 int i;
8019 char **argv;
8020
8021 argv = gdb_buildargv (args);
8022 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8023 for (i = 0; argv[i] != NULL; i++)
8024 {
8025 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8026 error (_("Argument list too long for run packet"));
8027 rs->buf[len++] = ';';
8028 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8029 }
8030 do_cleanups (back_to);
8031 }
8032
8033 rs->buf[len++] = '\0';
8034
8035 putpkt (rs->buf);
8036 getpkt (&rs->buf, &rs->buf_size, 0);
8037
8038 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8039 {
8040 /* We have a wait response. All is well. */
8041 return 0;
8042 }
8043 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8044 /* It wasn't disabled before, but it is now. */
8045 return -1;
8046 else
8047 {
8048 if (remote_exec_file[0] == '\0')
8049 error (_("Running the default executable on the remote target failed; "
8050 "try \"set remote exec-file\"?"));
8051 else
8052 error (_("Running \"%s\" on the remote target failed"),
8053 remote_exec_file);
8054 }
8055}
8056
8057/* In the extended protocol we want to be able to do things like
8058 "run" and have them basically work as expected. So we need
8059 a special create_inferior function. We support changing the
8060 executable file and the command line arguments, but not the
8061 environment. */
8062
8063static void
8064extended_remote_create_inferior_1 (char *exec_file, char *args,
8065 char **env, int from_tty)
8066{
8067 int run_worked;
8068 char *stop_reply;
8069 struct remote_state *rs = get_remote_state ();
8070
8071 /* If running asynchronously, register the target file descriptor
8072 with the event loop. */
8073 if (target_can_async_p ())
8074 target_async (inferior_event_handler, 0);
8075
8076 /* Disable address space randomization if requested (and supported). */
8077 if (extended_remote_supports_disable_randomization ())
8078 extended_remote_disable_randomization (disable_randomization);
8079
8080 /* Now restart the remote server. */
8081 run_worked = extended_remote_run (args) != -1;
8082 if (!run_worked)
8083 {
8084 /* vRun was not supported. Fail if we need it to do what the
8085 user requested. */
8086 if (remote_exec_file[0])
8087 error (_("Remote target does not support \"set remote exec-file\""));
8088 if (args[0])
8089 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8090
8091 /* Fall back to "R". */
8092 extended_remote_restart ();
8093 }
8094
8095 if (!have_inferiors ())
8096 {
8097 /* Clean up from the last time we ran, before we mark the target
8098 running again. This will mark breakpoints uninserted, and
8099 get_offsets may insert breakpoints. */
8100 init_thread_list ();
8101 init_wait_for_inferior ();
8102 }
8103
8104 /* vRun's success return is a stop reply. */
8105 stop_reply = run_worked ? rs->buf : NULL;
8106 add_current_inferior_and_thread (stop_reply);
8107
8108 /* Get updated offsets, if the stub uses qOffsets. */
8109 get_offsets ();
8110}
8111
8112static void
8113extended_remote_create_inferior (struct target_ops *ops,
8114 char *exec_file, char *args,
8115 char **env, int from_tty)
8116{
8117 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8118}
8119\f
8120
8121/* Given a location's target info BP_TGT and the packet buffer BUF, output
8122 the list of conditions (in agent expression bytecode format), if any, the
8123 target needs to evaluate. The output is placed into the packet buffer
8124 started from BUF and ended at BUF_END. */
8125
8126static int
8127remote_add_target_side_condition (struct gdbarch *gdbarch,
8128 struct bp_target_info *bp_tgt, char *buf,
8129 char *buf_end)
8130{
8131 struct agent_expr *aexpr = NULL;
8132 int i, ix;
8133 char *pkt;
8134 char *buf_start = buf;
8135
8136 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8137 return 0;
8138
8139 buf += strlen (buf);
8140 xsnprintf (buf, buf_end - buf, "%s", ";");
8141 buf++;
8142
8143 /* Send conditions to the target and free the vector. */
8144 for (ix = 0;
8145 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8146 ix++)
8147 {
8148 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8149 buf += strlen (buf);
8150 for (i = 0; i < aexpr->len; ++i)
8151 buf = pack_hex_byte (buf, aexpr->buf[i]);
8152 *buf = '\0';
8153 }
8154 return 0;
8155}
8156
8157static void
8158remote_add_target_side_commands (struct gdbarch *gdbarch,
8159 struct bp_target_info *bp_tgt, char *buf)
8160{
8161 struct agent_expr *aexpr = NULL;
8162 int i, ix;
8163
8164 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8165 return;
8166
8167 buf += strlen (buf);
8168
8169 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8170 buf += strlen (buf);
8171
8172 /* Concatenate all the agent expressions that are commands into the
8173 cmds parameter. */
8174 for (ix = 0;
8175 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8176 ix++)
8177 {
8178 sprintf (buf, "X%x,", aexpr->len);
8179 buf += strlen (buf);
8180 for (i = 0; i < aexpr->len; ++i)
8181 buf = pack_hex_byte (buf, aexpr->buf[i]);
8182 *buf = '\0';
8183 }
8184}
8185
8186/* Insert a breakpoint. On targets that have software breakpoint
8187 support, we ask the remote target to do the work; on targets
8188 which don't, we insert a traditional memory breakpoint. */
8189
8190static int
8191remote_insert_breakpoint (struct gdbarch *gdbarch,
8192 struct bp_target_info *bp_tgt)
8193{
8194 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8195 If it succeeds, then set the support to PACKET_ENABLE. If it
8196 fails, and the user has explicitly requested the Z support then
8197 report an error, otherwise, mark it disabled and go on. */
8198
8199 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8200 {
8201 CORE_ADDR addr = bp_tgt->placed_address;
8202 struct remote_state *rs;
8203 char *p, *endbuf;
8204 int bpsize;
8205 struct condition_list *cond = NULL;
8206
8207 /* Make sure the remote is pointing at the right process, if
8208 necessary. */
8209 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8210 set_general_process ();
8211
8212 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8213
8214 rs = get_remote_state ();
8215 p = rs->buf;
8216 endbuf = rs->buf + get_remote_packet_size ();
8217
8218 *(p++) = 'Z';
8219 *(p++) = '0';
8220 *(p++) = ',';
8221 addr = (ULONGEST) remote_address_masked (addr);
8222 p += hexnumstr (p, addr);
8223 xsnprintf (p, endbuf - p, ",%d", bpsize);
8224
8225 if (remote_supports_cond_breakpoints ())
8226 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8227
8228 if (remote_can_run_breakpoint_commands ())
8229 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8230
8231 putpkt (rs->buf);
8232 getpkt (&rs->buf, &rs->buf_size, 0);
8233
8234 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8235 {
8236 case PACKET_ERROR:
8237 return -1;
8238 case PACKET_OK:
8239 bp_tgt->placed_address = addr;
8240 bp_tgt->placed_size = bpsize;
8241 return 0;
8242 case PACKET_UNKNOWN:
8243 break;
8244 }
8245 }
8246
8247 return memory_insert_breakpoint (gdbarch, bp_tgt);
8248}
8249
8250static int
8251remote_remove_breakpoint (struct gdbarch *gdbarch,
8252 struct bp_target_info *bp_tgt)
8253{
8254 CORE_ADDR addr = bp_tgt->placed_address;
8255 struct remote_state *rs = get_remote_state ();
8256
8257 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8258 {
8259 char *p = rs->buf;
8260 char *endbuf = rs->buf + get_remote_packet_size ();
8261
8262 /* Make sure the remote is pointing at the right process, if
8263 necessary. */
8264 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8265 set_general_process ();
8266
8267 *(p++) = 'z';
8268 *(p++) = '0';
8269 *(p++) = ',';
8270
8271 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8272 p += hexnumstr (p, addr);
8273 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8274
8275 putpkt (rs->buf);
8276 getpkt (&rs->buf, &rs->buf_size, 0);
8277
8278 return (rs->buf[0] == 'E');
8279 }
8280
8281 return memory_remove_breakpoint (gdbarch, bp_tgt);
8282}
8283
8284static int
8285watchpoint_to_Z_packet (int type)
8286{
8287 switch (type)
8288 {
8289 case hw_write:
8290 return Z_PACKET_WRITE_WP;
8291 break;
8292 case hw_read:
8293 return Z_PACKET_READ_WP;
8294 break;
8295 case hw_access:
8296 return Z_PACKET_ACCESS_WP;
8297 break;
8298 default:
8299 internal_error (__FILE__, __LINE__,
8300 _("hw_bp_to_z: bad watchpoint type %d"), type);
8301 }
8302}
8303
8304static int
8305remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8306 struct expression *cond)
8307{
8308 struct remote_state *rs = get_remote_state ();
8309 char *endbuf = rs->buf + get_remote_packet_size ();
8310 char *p;
8311 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8312
8313 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8314 return 1;
8315
8316 /* Make sure the remote is pointing at the right process, if
8317 necessary. */
8318 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8319 set_general_process ();
8320
8321 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8322 p = strchr (rs->buf, '\0');
8323 addr = remote_address_masked (addr);
8324 p += hexnumstr (p, (ULONGEST) addr);
8325 xsnprintf (p, endbuf - p, ",%x", len);
8326
8327 putpkt (rs->buf);
8328 getpkt (&rs->buf, &rs->buf_size, 0);
8329
8330 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8331 {
8332 case PACKET_ERROR:
8333 return -1;
8334 case PACKET_UNKNOWN:
8335 return 1;
8336 case PACKET_OK:
8337 return 0;
8338 }
8339 internal_error (__FILE__, __LINE__,
8340 _("remote_insert_watchpoint: reached end of function"));
8341}
8342
8343static int
8344remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8345 CORE_ADDR start, int length)
8346{
8347 CORE_ADDR diff = remote_address_masked (addr - start);
8348
8349 return diff < length;
8350}
8351
8352
8353static int
8354remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8355 struct expression *cond)
8356{
8357 struct remote_state *rs = get_remote_state ();
8358 char *endbuf = rs->buf + get_remote_packet_size ();
8359 char *p;
8360 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8361
8362 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8363 return -1;
8364
8365 /* Make sure the remote is pointing at the right process, if
8366 necessary. */
8367 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8368 set_general_process ();
8369
8370 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8371 p = strchr (rs->buf, '\0');
8372 addr = remote_address_masked (addr);
8373 p += hexnumstr (p, (ULONGEST) addr);
8374 xsnprintf (p, endbuf - p, ",%x", len);
8375 putpkt (rs->buf);
8376 getpkt (&rs->buf, &rs->buf_size, 0);
8377
8378 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8379 {
8380 case PACKET_ERROR:
8381 case PACKET_UNKNOWN:
8382 return -1;
8383 case PACKET_OK:
8384 return 0;
8385 }
8386 internal_error (__FILE__, __LINE__,
8387 _("remote_remove_watchpoint: reached end of function"));
8388}
8389
8390
8391int remote_hw_watchpoint_limit = -1;
8392int remote_hw_watchpoint_length_limit = -1;
8393int remote_hw_breakpoint_limit = -1;
8394
8395static int
8396remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8397{
8398 if (remote_hw_watchpoint_length_limit == 0)
8399 return 0;
8400 else if (remote_hw_watchpoint_length_limit < 0)
8401 return 1;
8402 else if (len <= remote_hw_watchpoint_length_limit)
8403 return 1;
8404 else
8405 return 0;
8406}
8407
8408static int
8409remote_check_watch_resources (int type, int cnt, int ot)
8410{
8411 if (type == bp_hardware_breakpoint)
8412 {
8413 if (remote_hw_breakpoint_limit == 0)
8414 return 0;
8415 else if (remote_hw_breakpoint_limit < 0)
8416 return 1;
8417 else if (cnt <= remote_hw_breakpoint_limit)
8418 return 1;
8419 }
8420 else
8421 {
8422 if (remote_hw_watchpoint_limit == 0)
8423 return 0;
8424 else if (remote_hw_watchpoint_limit < 0)
8425 return 1;
8426 else if (ot)
8427 return -1;
8428 else if (cnt <= remote_hw_watchpoint_limit)
8429 return 1;
8430 }
8431 return -1;
8432}
8433
8434static int
8435remote_stopped_by_watchpoint (void)
8436{
8437 struct remote_state *rs = get_remote_state ();
8438
8439 return rs->remote_stopped_by_watchpoint_p;
8440}
8441
8442static int
8443remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8444{
8445 struct remote_state *rs = get_remote_state ();
8446 int rc = 0;
8447
8448 if (remote_stopped_by_watchpoint ())
8449 {
8450 *addr_p = rs->remote_watch_data_address;
8451 rc = 1;
8452 }
8453
8454 return rc;
8455}
8456
8457
8458static int
8459remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8460 struct bp_target_info *bp_tgt)
8461{
8462 CORE_ADDR addr;
8463 struct remote_state *rs;
8464 char *p, *endbuf;
8465 char *message;
8466
8467 /* The length field should be set to the size of a breakpoint
8468 instruction, even though we aren't inserting one ourselves. */
8469
8470 gdbarch_remote_breakpoint_from_pc
8471 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8472
8473 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8474 return -1;
8475
8476 /* Make sure the remote is pointing at the right process, if
8477 necessary. */
8478 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8479 set_general_process ();
8480
8481 rs = get_remote_state ();
8482 p = rs->buf;
8483 endbuf = rs->buf + get_remote_packet_size ();
8484
8485 *(p++) = 'Z';
8486 *(p++) = '1';
8487 *(p++) = ',';
8488
8489 addr = remote_address_masked (bp_tgt->placed_address);
8490 p += hexnumstr (p, (ULONGEST) addr);
8491 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8492
8493 if (remote_supports_cond_breakpoints ())
8494 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8495
8496 if (remote_can_run_breakpoint_commands ())
8497 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8498
8499 putpkt (rs->buf);
8500 getpkt (&rs->buf, &rs->buf_size, 0);
8501
8502 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8503 {
8504 case PACKET_ERROR:
8505 if (rs->buf[1] == '.')
8506 {
8507 message = strchr (rs->buf + 2, '.');
8508 if (message)
8509 error (_("Remote failure reply: %s"), message + 1);
8510 }
8511 return -1;
8512 case PACKET_UNKNOWN:
8513 return -1;
8514 case PACKET_OK:
8515 return 0;
8516 }
8517 internal_error (__FILE__, __LINE__,
8518 _("remote_insert_hw_breakpoint: reached end of function"));
8519}
8520
8521
8522static int
8523remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8524 struct bp_target_info *bp_tgt)
8525{
8526 CORE_ADDR addr;
8527 struct remote_state *rs = get_remote_state ();
8528 char *p = rs->buf;
8529 char *endbuf = rs->buf + get_remote_packet_size ();
8530
8531 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8532 return -1;
8533
8534 /* Make sure the remote is pointing at the right process, if
8535 necessary. */
8536 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8537 set_general_process ();
8538
8539 *(p++) = 'z';
8540 *(p++) = '1';
8541 *(p++) = ',';
8542
8543 addr = remote_address_masked (bp_tgt->placed_address);
8544 p += hexnumstr (p, (ULONGEST) addr);
8545 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8546
8547 putpkt (rs->buf);
8548 getpkt (&rs->buf, &rs->buf_size, 0);
8549
8550 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8551 {
8552 case PACKET_ERROR:
8553 case PACKET_UNKNOWN:
8554 return -1;
8555 case PACKET_OK:
8556 return 0;
8557 }
8558 internal_error (__FILE__, __LINE__,
8559 _("remote_remove_hw_breakpoint: reached end of function"));
8560}
8561
8562/* Verify memory using the "qCRC:" request. */
8563
8564static int
8565remote_verify_memory (struct target_ops *ops,
8566 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8567{
8568 struct remote_state *rs = get_remote_state ();
8569 unsigned long host_crc, target_crc;
8570 char *tmp;
8571
8572 /* Make sure the remote is pointing at the right process. */
8573 set_general_process ();
8574
8575 /* FIXME: assumes lma can fit into long. */
8576 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8577 (long) lma, (long) size);
8578 putpkt (rs->buf);
8579
8580 /* Be clever; compute the host_crc before waiting for target
8581 reply. */
8582 host_crc = xcrc32 (data, size, 0xffffffff);
8583
8584 getpkt (&rs->buf, &rs->buf_size, 0);
8585 if (rs->buf[0] == 'E')
8586 return -1;
8587
8588 if (rs->buf[0] != 'C')
8589 error (_("remote target does not support this operation"));
8590
8591 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8592 target_crc = target_crc * 16 + fromhex (*tmp);
8593
8594 return (host_crc == target_crc);
8595}
8596
8597/* compare-sections command
8598
8599 With no arguments, compares each loadable section in the exec bfd
8600 with the same memory range on the target, and reports mismatches.
8601 Useful for verifying the image on the target against the exec file. */
8602
8603static void
8604compare_sections_command (char *args, int from_tty)
8605{
8606 asection *s;
8607 struct cleanup *old_chain;
8608 gdb_byte *sectdata;
8609 const char *sectname;
8610 bfd_size_type size;
8611 bfd_vma lma;
8612 int matched = 0;
8613 int mismatched = 0;
8614 int res;
8615
8616 if (!exec_bfd)
8617 error (_("command cannot be used without an exec file"));
8618
8619 /* Make sure the remote is pointing at the right process. */
8620 set_general_process ();
8621
8622 for (s = exec_bfd->sections; s; s = s->next)
8623 {
8624 if (!(s->flags & SEC_LOAD))
8625 continue; /* Skip non-loadable section. */
8626
8627 size = bfd_get_section_size (s);
8628 if (size == 0)
8629 continue; /* Skip zero-length section. */
8630
8631 sectname = bfd_get_section_name (exec_bfd, s);
8632 if (args && strcmp (args, sectname) != 0)
8633 continue; /* Not the section selected by user. */
8634
8635 matched = 1; /* Do this section. */
8636 lma = s->lma;
8637
8638 sectdata = xmalloc (size);
8639 old_chain = make_cleanup (xfree, sectdata);
8640 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8641
8642 res = target_verify_memory (sectdata, lma, size);
8643
8644 if (res == -1)
8645 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8646 paddress (target_gdbarch (), lma),
8647 paddress (target_gdbarch (), lma + size));
8648
8649 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8650 paddress (target_gdbarch (), lma),
8651 paddress (target_gdbarch (), lma + size));
8652 if (res)
8653 printf_filtered ("matched.\n");
8654 else
8655 {
8656 printf_filtered ("MIS-MATCHED!\n");
8657 mismatched++;
8658 }
8659
8660 do_cleanups (old_chain);
8661 }
8662 if (mismatched > 0)
8663 warning (_("One or more sections of the remote executable does not match\n\
8664the loaded file\n"));
8665 if (args && !matched)
8666 printf_filtered (_("No loaded section named '%s'.\n"), args);
8667}
8668
8669/* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8670 into remote target. The number of bytes written to the remote
8671 target is returned, or -1 for error. */
8672
8673static LONGEST
8674remote_write_qxfer (struct target_ops *ops, const char *object_name,
8675 const char *annex, const gdb_byte *writebuf,
8676 ULONGEST offset, LONGEST len,
8677 struct packet_config *packet)
8678{
8679 int i, buf_len;
8680 ULONGEST n;
8681 struct remote_state *rs = get_remote_state ();
8682 int max_size = get_memory_write_packet_size ();
8683
8684 if (packet->support == PACKET_DISABLE)
8685 return -1;
8686
8687 /* Insert header. */
8688 i = snprintf (rs->buf, max_size,
8689 "qXfer:%s:write:%s:%s:",
8690 object_name, annex ? annex : "",
8691 phex_nz (offset, sizeof offset));
8692 max_size -= (i + 1);
8693
8694 /* Escape as much data as fits into rs->buf. */
8695 buf_len = remote_escape_output
8696 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8697
8698 if (putpkt_binary (rs->buf, i + buf_len) < 0
8699 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8700 || packet_ok (rs->buf, packet) != PACKET_OK)
8701 return -1;
8702
8703 unpack_varlen_hex (rs->buf, &n);
8704 return n;
8705}
8706
8707/* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8708 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8709 number of bytes read is returned, or 0 for EOF, or -1 for error.
8710 The number of bytes read may be less than LEN without indicating an
8711 EOF. PACKET is checked and updated to indicate whether the remote
8712 target supports this object. */
8713
8714static LONGEST
8715remote_read_qxfer (struct target_ops *ops, const char *object_name,
8716 const char *annex,
8717 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8718 struct packet_config *packet)
8719{
8720 struct remote_state *rs = get_remote_state ();
8721 LONGEST i, n, packet_len;
8722
8723 if (packet->support == PACKET_DISABLE)
8724 return -1;
8725
8726 /* Check whether we've cached an end-of-object packet that matches
8727 this request. */
8728 if (rs->finished_object)
8729 {
8730 if (strcmp (object_name, rs->finished_object) == 0
8731 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8732 && offset == rs->finished_offset)
8733 return 0;
8734
8735 /* Otherwise, we're now reading something different. Discard
8736 the cache. */
8737 xfree (rs->finished_object);
8738 xfree (rs->finished_annex);
8739 rs->finished_object = NULL;
8740 rs->finished_annex = NULL;
8741 }
8742
8743 /* Request only enough to fit in a single packet. The actual data
8744 may not, since we don't know how much of it will need to be escaped;
8745 the target is free to respond with slightly less data. We subtract
8746 five to account for the response type and the protocol frame. */
8747 n = min (get_remote_packet_size () - 5, len);
8748 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8749 object_name, annex ? annex : "",
8750 phex_nz (offset, sizeof offset),
8751 phex_nz (n, sizeof n));
8752 i = putpkt (rs->buf);
8753 if (i < 0)
8754 return -1;
8755
8756 rs->buf[0] = '\0';
8757 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8758 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8759 return -1;
8760
8761 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8762 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8763
8764 /* 'm' means there is (or at least might be) more data after this
8765 batch. That does not make sense unless there's at least one byte
8766 of data in this reply. */
8767 if (rs->buf[0] == 'm' && packet_len == 1)
8768 error (_("Remote qXfer reply contained no data."));
8769
8770 /* Got some data. */
8771 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8772 packet_len - 1, readbuf, n);
8773
8774 /* 'l' is an EOF marker, possibly including a final block of data,
8775 or possibly empty. If we have the final block of a non-empty
8776 object, record this fact to bypass a subsequent partial read. */
8777 if (rs->buf[0] == 'l' && offset + i > 0)
8778 {
8779 rs->finished_object = xstrdup (object_name);
8780 rs->finished_annex = xstrdup (annex ? annex : "");
8781 rs->finished_offset = offset + i;
8782 }
8783
8784 return i;
8785}
8786
8787static LONGEST
8788remote_xfer_partial (struct target_ops *ops, enum target_object object,
8789 const char *annex, gdb_byte *readbuf,
8790 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8791{
8792 struct remote_state *rs;
8793 int i;
8794 char *p2;
8795 char query_type;
8796
8797 set_remote_traceframe ();
8798 set_general_thread (inferior_ptid);
8799
8800 rs = get_remote_state ();
8801
8802 /* Handle memory using the standard memory routines. */
8803 if (object == TARGET_OBJECT_MEMORY)
8804 {
8805 LONGEST xfered;
8806
8807 /* If the remote target is connected but not running, we should
8808 pass this request down to a lower stratum (e.g. the executable
8809 file). */
8810 if (!target_has_execution)
8811 return 0;
8812
8813 if (writebuf != NULL)
8814 xfered = remote_write_bytes (offset, writebuf, len);
8815 else
8816 xfered = remote_read_bytes (offset, readbuf, len);
8817
8818 return xfered;
8819 }
8820
8821 /* Handle SPU memory using qxfer packets. */
8822 if (object == TARGET_OBJECT_SPU)
8823 {
8824 if (readbuf)
8825 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8826 &remote_protocol_packets
8827 [PACKET_qXfer_spu_read]);
8828 else
8829 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8830 &remote_protocol_packets
8831 [PACKET_qXfer_spu_write]);
8832 }
8833
8834 /* Handle extra signal info using qxfer packets. */
8835 if (object == TARGET_OBJECT_SIGNAL_INFO)
8836 {
8837 if (readbuf)
8838 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8839 &remote_protocol_packets
8840 [PACKET_qXfer_siginfo_read]);
8841 else
8842 return remote_write_qxfer (ops, "siginfo", annex,
8843 writebuf, offset, len,
8844 &remote_protocol_packets
8845 [PACKET_qXfer_siginfo_write]);
8846 }
8847
8848 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8849 {
8850 if (readbuf)
8851 return remote_read_qxfer (ops, "statictrace", annex,
8852 readbuf, offset, len,
8853 &remote_protocol_packets
8854 [PACKET_qXfer_statictrace_read]);
8855 else
8856 return -1;
8857 }
8858
8859 /* Only handle flash writes. */
8860 if (writebuf != NULL)
8861 {
8862 LONGEST xfered;
8863
8864 switch (object)
8865 {
8866 case TARGET_OBJECT_FLASH:
8867 return remote_flash_write (ops, offset, len, writebuf);
8868
8869 default:
8870 return -1;
8871 }
8872 }
8873
8874 /* Map pre-existing objects onto letters. DO NOT do this for new
8875 objects!!! Instead specify new query packets. */
8876 switch (object)
8877 {
8878 case TARGET_OBJECT_AVR:
8879 query_type = 'R';
8880 break;
8881
8882 case TARGET_OBJECT_AUXV:
8883 gdb_assert (annex == NULL);
8884 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8885 &remote_protocol_packets[PACKET_qXfer_auxv]);
8886
8887 case TARGET_OBJECT_AVAILABLE_FEATURES:
8888 return remote_read_qxfer
8889 (ops, "features", annex, readbuf, offset, len,
8890 &remote_protocol_packets[PACKET_qXfer_features]);
8891
8892 case TARGET_OBJECT_LIBRARIES:
8893 return remote_read_qxfer
8894 (ops, "libraries", annex, readbuf, offset, len,
8895 &remote_protocol_packets[PACKET_qXfer_libraries]);
8896
8897 case TARGET_OBJECT_LIBRARIES_SVR4:
8898 return remote_read_qxfer
8899 (ops, "libraries-svr4", annex, readbuf, offset, len,
8900 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8901
8902 case TARGET_OBJECT_MEMORY_MAP:
8903 gdb_assert (annex == NULL);
8904 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8905 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8906
8907 case TARGET_OBJECT_OSDATA:
8908 /* Should only get here if we're connected. */
8909 gdb_assert (rs->remote_desc);
8910 return remote_read_qxfer
8911 (ops, "osdata", annex, readbuf, offset, len,
8912 &remote_protocol_packets[PACKET_qXfer_osdata]);
8913
8914 case TARGET_OBJECT_THREADS:
8915 gdb_assert (annex == NULL);
8916 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8917 &remote_protocol_packets[PACKET_qXfer_threads]);
8918
8919 case TARGET_OBJECT_TRACEFRAME_INFO:
8920 gdb_assert (annex == NULL);
8921 return remote_read_qxfer
8922 (ops, "traceframe-info", annex, readbuf, offset, len,
8923 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8924
8925 case TARGET_OBJECT_FDPIC:
8926 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8927 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8928
8929 case TARGET_OBJECT_OPENVMS_UIB:
8930 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8931 &remote_protocol_packets[PACKET_qXfer_uib]);
8932
8933 case TARGET_OBJECT_BTRACE:
8934 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8935 &remote_protocol_packets[PACKET_qXfer_btrace]);
8936
8937 default:
8938 return -1;
8939 }
8940
8941 /* Note: a zero OFFSET and LEN can be used to query the minimum
8942 buffer size. */
8943 if (offset == 0 && len == 0)
8944 return (get_remote_packet_size ());
8945 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8946 large enough let the caller deal with it. */
8947 if (len < get_remote_packet_size ())
8948 return -1;
8949 len = get_remote_packet_size ();
8950
8951 /* Except for querying the minimum buffer size, target must be open. */
8952 if (!rs->remote_desc)
8953 error (_("remote query is only available after target open"));
8954
8955 gdb_assert (annex != NULL);
8956 gdb_assert (readbuf != NULL);
8957
8958 p2 = rs->buf;
8959 *p2++ = 'q';
8960 *p2++ = query_type;
8961
8962 /* We used one buffer char for the remote protocol q command and
8963 another for the query type. As the remote protocol encapsulation
8964 uses 4 chars plus one extra in case we are debugging
8965 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8966 string. */
8967 i = 0;
8968 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8969 {
8970 /* Bad caller may have sent forbidden characters. */
8971 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8972 *p2++ = annex[i];
8973 i++;
8974 }
8975 *p2 = '\0';
8976 gdb_assert (annex[i] == '\0');
8977
8978 i = putpkt (rs->buf);
8979 if (i < 0)
8980 return i;
8981
8982 getpkt (&rs->buf, &rs->buf_size, 0);
8983 strcpy ((char *) readbuf, rs->buf);
8984
8985 return strlen ((char *) readbuf);
8986}
8987
8988static int
8989remote_search_memory (struct target_ops* ops,
8990 CORE_ADDR start_addr, ULONGEST search_space_len,
8991 const gdb_byte *pattern, ULONGEST pattern_len,
8992 CORE_ADDR *found_addrp)
8993{
8994 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8995 struct remote_state *rs = get_remote_state ();
8996 int max_size = get_memory_write_packet_size ();
8997 struct packet_config *packet =
8998 &remote_protocol_packets[PACKET_qSearch_memory];
8999 /* Number of packet bytes used to encode the pattern;
9000 this could be more than PATTERN_LEN due to escape characters. */
9001 int escaped_pattern_len;
9002 /* Amount of pattern that was encodable in the packet. */
9003 int used_pattern_len;
9004 int i;
9005 int found;
9006 ULONGEST found_addr;
9007
9008 /* Don't go to the target if we don't have to.
9009 This is done before checking packet->support to avoid the possibility that
9010 a success for this edge case means the facility works in general. */
9011 if (pattern_len > search_space_len)
9012 return 0;
9013 if (pattern_len == 0)
9014 {
9015 *found_addrp = start_addr;
9016 return 1;
9017 }
9018
9019 /* If we already know the packet isn't supported, fall back to the simple
9020 way of searching memory. */
9021
9022 if (packet->support == PACKET_DISABLE)
9023 {
9024 /* Target doesn't provided special support, fall back and use the
9025 standard support (copy memory and do the search here). */
9026 return simple_search_memory (ops, start_addr, search_space_len,
9027 pattern, pattern_len, found_addrp);
9028 }
9029
9030 /* Make sure the remote is pointing at the right process. */
9031 set_general_process ();
9032
9033 /* Insert header. */
9034 i = snprintf (rs->buf, max_size,
9035 "qSearch:memory:%s;%s;",
9036 phex_nz (start_addr, addr_size),
9037 phex_nz (search_space_len, sizeof (search_space_len)));
9038 max_size -= (i + 1);
9039
9040 /* Escape as much data as fits into rs->buf. */
9041 escaped_pattern_len =
9042 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9043 &used_pattern_len, max_size);
9044
9045 /* Bail if the pattern is too large. */
9046 if (used_pattern_len != pattern_len)
9047 error (_("Pattern is too large to transmit to remote target."));
9048
9049 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9050 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9051 || packet_ok (rs->buf, packet) != PACKET_OK)
9052 {
9053 /* The request may not have worked because the command is not
9054 supported. If so, fall back to the simple way. */
9055 if (packet->support == PACKET_DISABLE)
9056 {
9057 return simple_search_memory (ops, start_addr, search_space_len,
9058 pattern, pattern_len, found_addrp);
9059 }
9060 return -1;
9061 }
9062
9063 if (rs->buf[0] == '0')
9064 found = 0;
9065 else if (rs->buf[0] == '1')
9066 {
9067 found = 1;
9068 if (rs->buf[1] != ',')
9069 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9070 unpack_varlen_hex (rs->buf + 2, &found_addr);
9071 *found_addrp = found_addr;
9072 }
9073 else
9074 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9075
9076 return found;
9077}
9078
9079static void
9080remote_rcmd (char *command,
9081 struct ui_file *outbuf)
9082{
9083 struct remote_state *rs = get_remote_state ();
9084 char *p = rs->buf;
9085
9086 if (!rs->remote_desc)
9087 error (_("remote rcmd is only available after target open"));
9088
9089 /* Send a NULL command across as an empty command. */
9090 if (command == NULL)
9091 command = "";
9092
9093 /* The query prefix. */
9094 strcpy (rs->buf, "qRcmd,");
9095 p = strchr (rs->buf, '\0');
9096
9097 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9098 > get_remote_packet_size ())
9099 error (_("\"monitor\" command ``%s'' is too long."), command);
9100
9101 /* Encode the actual command. */
9102 bin2hex ((gdb_byte *) command, p, 0);
9103
9104 if (putpkt (rs->buf) < 0)
9105 error (_("Communication problem with target."));
9106
9107 /* get/display the response */
9108 while (1)
9109 {
9110 char *buf;
9111
9112 /* XXX - see also remote_get_noisy_reply(). */
9113 QUIT; /* Allow user to bail out with ^C. */
9114 rs->buf[0] = '\0';
9115 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9116 {
9117 /* Timeout. Continue to (try to) read responses.
9118 This is better than stopping with an error, assuming the stub
9119 is still executing the (long) monitor command.
9120 If needed, the user can interrupt gdb using C-c, obtaining
9121 an effect similar to stop on timeout. */
9122 continue;
9123 }
9124 buf = rs->buf;
9125 if (buf[0] == '\0')
9126 error (_("Target does not support this command."));
9127 if (buf[0] == 'O' && buf[1] != 'K')
9128 {
9129 remote_console_output (buf + 1); /* 'O' message from stub. */
9130 continue;
9131 }
9132 if (strcmp (buf, "OK") == 0)
9133 break;
9134 if (strlen (buf) == 3 && buf[0] == 'E'
9135 && isdigit (buf[1]) && isdigit (buf[2]))
9136 {
9137 error (_("Protocol error with Rcmd"));
9138 }
9139 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9140 {
9141 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9142
9143 fputc_unfiltered (c, outbuf);
9144 }
9145 break;
9146 }
9147}
9148
9149static VEC(mem_region_s) *
9150remote_memory_map (struct target_ops *ops)
9151{
9152 VEC(mem_region_s) *result = NULL;
9153 char *text = target_read_stralloc (&current_target,
9154 TARGET_OBJECT_MEMORY_MAP, NULL);
9155
9156 if (text)
9157 {
9158 struct cleanup *back_to = make_cleanup (xfree, text);
9159
9160 result = parse_memory_map (text);
9161 do_cleanups (back_to);
9162 }
9163
9164 return result;
9165}
9166
9167static void
9168packet_command (char *args, int from_tty)
9169{
9170 struct remote_state *rs = get_remote_state ();
9171
9172 if (!rs->remote_desc)
9173 error (_("command can only be used with remote target"));
9174
9175 if (!args)
9176 error (_("remote-packet command requires packet text as argument"));
9177
9178 puts_filtered ("sending: ");
9179 print_packet (args);
9180 puts_filtered ("\n");
9181 putpkt (args);
9182
9183 getpkt (&rs->buf, &rs->buf_size, 0);
9184 puts_filtered ("received: ");
9185 print_packet (rs->buf);
9186 puts_filtered ("\n");
9187}
9188
9189#if 0
9190/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9191
9192static void display_thread_info (struct gdb_ext_thread_info *info);
9193
9194static void threadset_test_cmd (char *cmd, int tty);
9195
9196static void threadalive_test (char *cmd, int tty);
9197
9198static void threadlist_test_cmd (char *cmd, int tty);
9199
9200int get_and_display_threadinfo (threadref *ref);
9201
9202static void threadinfo_test_cmd (char *cmd, int tty);
9203
9204static int thread_display_step (threadref *ref, void *context);
9205
9206static void threadlist_update_test_cmd (char *cmd, int tty);
9207
9208static void init_remote_threadtests (void);
9209
9210#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9211
9212static void
9213threadset_test_cmd (char *cmd, int tty)
9214{
9215 int sample_thread = SAMPLE_THREAD;
9216
9217 printf_filtered (_("Remote threadset test\n"));
9218 set_general_thread (sample_thread);
9219}
9220
9221
9222static void
9223threadalive_test (char *cmd, int tty)
9224{
9225 int sample_thread = SAMPLE_THREAD;
9226 int pid = ptid_get_pid (inferior_ptid);
9227 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9228
9229 if (remote_thread_alive (ptid))
9230 printf_filtered ("PASS: Thread alive test\n");
9231 else
9232 printf_filtered ("FAIL: Thread alive test\n");
9233}
9234
9235void output_threadid (char *title, threadref *ref);
9236
9237void
9238output_threadid (char *title, threadref *ref)
9239{
9240 char hexid[20];
9241
9242 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9243 hexid[16] = 0;
9244 printf_filtered ("%s %s\n", title, (&hexid[0]));
9245}
9246
9247static void
9248threadlist_test_cmd (char *cmd, int tty)
9249{
9250 int startflag = 1;
9251 threadref nextthread;
9252 int done, result_count;
9253 threadref threadlist[3];
9254
9255 printf_filtered ("Remote Threadlist test\n");
9256 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9257 &result_count, &threadlist[0]))
9258 printf_filtered ("FAIL: threadlist test\n");
9259 else
9260 {
9261 threadref *scan = threadlist;
9262 threadref *limit = scan + result_count;
9263
9264 while (scan < limit)
9265 output_threadid (" thread ", scan++);
9266 }
9267}
9268
9269void
9270display_thread_info (struct gdb_ext_thread_info *info)
9271{
9272 output_threadid ("Threadid: ", &info->threadid);
9273 printf_filtered ("Name: %s\n ", info->shortname);
9274 printf_filtered ("State: %s\n", info->display);
9275 printf_filtered ("other: %s\n\n", info->more_display);
9276}
9277
9278int
9279get_and_display_threadinfo (threadref *ref)
9280{
9281 int result;
9282 int set;
9283 struct gdb_ext_thread_info threadinfo;
9284
9285 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9286 | TAG_MOREDISPLAY | TAG_DISPLAY;
9287 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9288 display_thread_info (&threadinfo);
9289 return result;
9290}
9291
9292static void
9293threadinfo_test_cmd (char *cmd, int tty)
9294{
9295 int athread = SAMPLE_THREAD;
9296 threadref thread;
9297 int set;
9298
9299 int_to_threadref (&thread, athread);
9300 printf_filtered ("Remote Threadinfo test\n");
9301 if (!get_and_display_threadinfo (&thread))
9302 printf_filtered ("FAIL cannot get thread info\n");
9303}
9304
9305static int
9306thread_display_step (threadref *ref, void *context)
9307{
9308 /* output_threadid(" threadstep ",ref); *//* simple test */
9309 return get_and_display_threadinfo (ref);
9310}
9311
9312static void
9313threadlist_update_test_cmd (char *cmd, int tty)
9314{
9315 printf_filtered ("Remote Threadlist update test\n");
9316 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9317}
9318
9319static void
9320init_remote_threadtests (void)
9321{
9322 add_com ("tlist", class_obscure, threadlist_test_cmd,
9323 _("Fetch and print the remote list of "
9324 "thread identifiers, one pkt only"));
9325 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9326 _("Fetch and display info about one thread"));
9327 add_com ("tset", class_obscure, threadset_test_cmd,
9328 _("Test setting to a different thread"));
9329 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9330 _("Iterate through updating all remote thread info"));
9331 add_com ("talive", class_obscure, threadalive_test,
9332 _(" Remote thread alive test "));
9333}
9334
9335#endif /* 0 */
9336
9337/* Convert a thread ID to a string. Returns the string in a static
9338 buffer. */
9339
9340static char *
9341remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9342{
9343 static char buf[64];
9344 struct remote_state *rs = get_remote_state ();
9345
9346 if (ptid_equal (ptid, null_ptid))
9347 return normal_pid_to_str (ptid);
9348 else if (ptid_is_pid (ptid))
9349 {
9350 /* Printing an inferior target id. */
9351
9352 /* When multi-process extensions are off, there's no way in the
9353 remote protocol to know the remote process id, if there's any
9354 at all. There's one exception --- when we're connected with
9355 target extended-remote, and we manually attached to a process
9356 with "attach PID". We don't record anywhere a flag that
9357 allows us to distinguish that case from the case of
9358 connecting with extended-remote and the stub already being
9359 attached to a process, and reporting yes to qAttached, hence
9360 no smart special casing here. */
9361 if (!remote_multi_process_p (rs))
9362 {
9363 xsnprintf (buf, sizeof buf, "Remote target");
9364 return buf;
9365 }
9366
9367 return normal_pid_to_str (ptid);
9368 }
9369 else
9370 {
9371 if (ptid_equal (magic_null_ptid, ptid))
9372 xsnprintf (buf, sizeof buf, "Thread <main>");
9373 else if (rs->extended && remote_multi_process_p (rs))
9374 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9375 ptid_get_pid (ptid), ptid_get_tid (ptid));
9376 else
9377 xsnprintf (buf, sizeof buf, "Thread %ld",
9378 ptid_get_tid (ptid));
9379 return buf;
9380 }
9381}
9382
9383/* Get the address of the thread local variable in OBJFILE which is
9384 stored at OFFSET within the thread local storage for thread PTID. */
9385
9386static CORE_ADDR
9387remote_get_thread_local_address (struct target_ops *ops,
9388 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9389{
9390 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9391 {
9392 struct remote_state *rs = get_remote_state ();
9393 char *p = rs->buf;
9394 char *endp = rs->buf + get_remote_packet_size ();
9395 enum packet_result result;
9396
9397 strcpy (p, "qGetTLSAddr:");
9398 p += strlen (p);
9399 p = write_ptid (p, endp, ptid);
9400 *p++ = ',';
9401 p += hexnumstr (p, offset);
9402 *p++ = ',';
9403 p += hexnumstr (p, lm);
9404 *p++ = '\0';
9405
9406 putpkt (rs->buf);
9407 getpkt (&rs->buf, &rs->buf_size, 0);
9408 result = packet_ok (rs->buf,
9409 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9410 if (result == PACKET_OK)
9411 {
9412 ULONGEST result;
9413
9414 unpack_varlen_hex (rs->buf, &result);
9415 return result;
9416 }
9417 else if (result == PACKET_UNKNOWN)
9418 throw_error (TLS_GENERIC_ERROR,
9419 _("Remote target doesn't support qGetTLSAddr packet"));
9420 else
9421 throw_error (TLS_GENERIC_ERROR,
9422 _("Remote target failed to process qGetTLSAddr request"));
9423 }
9424 else
9425 throw_error (TLS_GENERIC_ERROR,
9426 _("TLS not supported or disabled on this target"));
9427 /* Not reached. */
9428 return 0;
9429}
9430
9431/* Provide thread local base, i.e. Thread Information Block address.
9432 Returns 1 if ptid is found and thread_local_base is non zero. */
9433
9434static int
9435remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9436{
9437 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9438 {
9439 struct remote_state *rs = get_remote_state ();
9440 char *p = rs->buf;
9441 char *endp = rs->buf + get_remote_packet_size ();
9442 enum packet_result result;
9443
9444 strcpy (p, "qGetTIBAddr:");
9445 p += strlen (p);
9446 p = write_ptid (p, endp, ptid);
9447 *p++ = '\0';
9448
9449 putpkt (rs->buf);
9450 getpkt (&rs->buf, &rs->buf_size, 0);
9451 result = packet_ok (rs->buf,
9452 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9453 if (result == PACKET_OK)
9454 {
9455 ULONGEST result;
9456
9457 unpack_varlen_hex (rs->buf, &result);
9458 if (addr)
9459 *addr = (CORE_ADDR) result;
9460 return 1;
9461 }
9462 else if (result == PACKET_UNKNOWN)
9463 error (_("Remote target doesn't support qGetTIBAddr packet"));
9464 else
9465 error (_("Remote target failed to process qGetTIBAddr request"));
9466 }
9467 else
9468 error (_("qGetTIBAddr not supported or disabled on this target"));
9469 /* Not reached. */
9470 return 0;
9471}
9472
9473/* Support for inferring a target description based on the current
9474 architecture and the size of a 'g' packet. While the 'g' packet
9475 can have any size (since optional registers can be left off the
9476 end), some sizes are easily recognizable given knowledge of the
9477 approximate architecture. */
9478
9479struct remote_g_packet_guess
9480{
9481 int bytes;
9482 const struct target_desc *tdesc;
9483};
9484typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9485DEF_VEC_O(remote_g_packet_guess_s);
9486
9487struct remote_g_packet_data
9488{
9489 VEC(remote_g_packet_guess_s) *guesses;
9490};
9491
9492static struct gdbarch_data *remote_g_packet_data_handle;
9493
9494static void *
9495remote_g_packet_data_init (struct obstack *obstack)
9496{
9497 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9498}
9499
9500void
9501register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9502 const struct target_desc *tdesc)
9503{
9504 struct remote_g_packet_data *data
9505 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9506 struct remote_g_packet_guess new_guess, *guess;
9507 int ix;
9508
9509 gdb_assert (tdesc != NULL);
9510
9511 for (ix = 0;
9512 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9513 ix++)
9514 if (guess->bytes == bytes)
9515 internal_error (__FILE__, __LINE__,
9516 _("Duplicate g packet description added for size %d"),
9517 bytes);
9518
9519 new_guess.bytes = bytes;
9520 new_guess.tdesc = tdesc;
9521 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9522}
9523
9524/* Return 1 if remote_read_description would do anything on this target
9525 and architecture, 0 otherwise. */
9526
9527static int
9528remote_read_description_p (struct target_ops *target)
9529{
9530 struct remote_g_packet_data *data
9531 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9532
9533 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9534 return 1;
9535
9536 return 0;
9537}
9538
9539static const struct target_desc *
9540remote_read_description (struct target_ops *target)
9541{
9542 struct remote_g_packet_data *data
9543 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9544
9545 /* Do not try this during initial connection, when we do not know
9546 whether there is a running but stopped thread. */
9547 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9548 return NULL;
9549
9550 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9551 {
9552 struct remote_g_packet_guess *guess;
9553 int ix;
9554 int bytes = send_g_packet ();
9555
9556 for (ix = 0;
9557 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9558 ix++)
9559 if (guess->bytes == bytes)
9560 return guess->tdesc;
9561
9562 /* We discard the g packet. A minor optimization would be to
9563 hold on to it, and fill the register cache once we have selected
9564 an architecture, but it's too tricky to do safely. */
9565 }
9566
9567 return NULL;
9568}
9569
9570/* Remote file transfer support. This is host-initiated I/O, not
9571 target-initiated; for target-initiated, see remote-fileio.c. */
9572
9573/* If *LEFT is at least the length of STRING, copy STRING to
9574 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9575 decrease *LEFT. Otherwise raise an error. */
9576
9577static void
9578remote_buffer_add_string (char **buffer, int *left, char *string)
9579{
9580 int len = strlen (string);
9581
9582 if (len > *left)
9583 error (_("Packet too long for target."));
9584
9585 memcpy (*buffer, string, len);
9586 *buffer += len;
9587 *left -= len;
9588
9589 /* NUL-terminate the buffer as a convenience, if there is
9590 room. */
9591 if (*left)
9592 **buffer = '\0';
9593}
9594
9595/* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9596 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9597 decrease *LEFT. Otherwise raise an error. */
9598
9599static void
9600remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9601 int len)
9602{
9603 if (2 * len > *left)
9604 error (_("Packet too long for target."));
9605
9606 bin2hex (bytes, *buffer, len);
9607 *buffer += 2 * len;
9608 *left -= 2 * len;
9609
9610 /* NUL-terminate the buffer as a convenience, if there is
9611 room. */
9612 if (*left)
9613 **buffer = '\0';
9614}
9615
9616/* If *LEFT is large enough, convert VALUE to hex and add it to
9617 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9618 decrease *LEFT. Otherwise raise an error. */
9619
9620static void
9621remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9622{
9623 int len = hexnumlen (value);
9624
9625 if (len > *left)
9626 error (_("Packet too long for target."));
9627
9628 hexnumstr (*buffer, value);
9629 *buffer += len;
9630 *left -= len;
9631
9632 /* NUL-terminate the buffer as a convenience, if there is
9633 room. */
9634 if (*left)
9635 **buffer = '\0';
9636}
9637
9638/* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9639 value, *REMOTE_ERRNO to the remote error number or zero if none
9640 was included, and *ATTACHMENT to point to the start of the annex
9641 if any. The length of the packet isn't needed here; there may
9642 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9643
9644 Return 0 if the packet could be parsed, -1 if it could not. If
9645 -1 is returned, the other variables may not be initialized. */
9646
9647static int
9648remote_hostio_parse_result (char *buffer, int *retcode,
9649 int *remote_errno, char **attachment)
9650{
9651 char *p, *p2;
9652
9653 *remote_errno = 0;
9654 *attachment = NULL;
9655
9656 if (buffer[0] != 'F')
9657 return -1;
9658
9659 errno = 0;
9660 *retcode = strtol (&buffer[1], &p, 16);
9661 if (errno != 0 || p == &buffer[1])
9662 return -1;
9663
9664 /* Check for ",errno". */
9665 if (*p == ',')
9666 {
9667 errno = 0;
9668 *remote_errno = strtol (p + 1, &p2, 16);
9669 if (errno != 0 || p + 1 == p2)
9670 return -1;
9671 p = p2;
9672 }
9673
9674 /* Check for ";attachment". If there is no attachment, the
9675 packet should end here. */
9676 if (*p == ';')
9677 {
9678 *attachment = p + 1;
9679 return 0;
9680 }
9681 else if (*p == '\0')
9682 return 0;
9683 else
9684 return -1;
9685}
9686
9687/* Send a prepared I/O packet to the target and read its response.
9688 The prepared packet is in the global RS->BUF before this function
9689 is called, and the answer is there when we return.
9690
9691 COMMAND_BYTES is the length of the request to send, which may include
9692 binary data. WHICH_PACKET is the packet configuration to check
9693 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9694 is set to the error number and -1 is returned. Otherwise the value
9695 returned by the function is returned.
9696
9697 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9698 attachment is expected; an error will be reported if there's a
9699 mismatch. If one is found, *ATTACHMENT will be set to point into
9700 the packet buffer and *ATTACHMENT_LEN will be set to the
9701 attachment's length. */
9702
9703static int
9704remote_hostio_send_command (int command_bytes, int which_packet,
9705 int *remote_errno, char **attachment,
9706 int *attachment_len)
9707{
9708 struct remote_state *rs = get_remote_state ();
9709 int ret, bytes_read;
9710 char *attachment_tmp;
9711
9712 if (!rs->remote_desc
9713 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9714 {
9715 *remote_errno = FILEIO_ENOSYS;
9716 return -1;
9717 }
9718
9719 putpkt_binary (rs->buf, command_bytes);
9720 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9721
9722 /* If it timed out, something is wrong. Don't try to parse the
9723 buffer. */
9724 if (bytes_read < 0)
9725 {
9726 *remote_errno = FILEIO_EINVAL;
9727 return -1;
9728 }
9729
9730 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9731 {
9732 case PACKET_ERROR:
9733 *remote_errno = FILEIO_EINVAL;
9734 return -1;
9735 case PACKET_UNKNOWN:
9736 *remote_errno = FILEIO_ENOSYS;
9737 return -1;
9738 case PACKET_OK:
9739 break;
9740 }
9741
9742 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9743 &attachment_tmp))
9744 {
9745 *remote_errno = FILEIO_EINVAL;
9746 return -1;
9747 }
9748
9749 /* Make sure we saw an attachment if and only if we expected one. */
9750 if ((attachment_tmp == NULL && attachment != NULL)
9751 || (attachment_tmp != NULL && attachment == NULL))
9752 {
9753 *remote_errno = FILEIO_EINVAL;
9754 return -1;
9755 }
9756
9757 /* If an attachment was found, it must point into the packet buffer;
9758 work out how many bytes there were. */
9759 if (attachment_tmp != NULL)
9760 {
9761 *attachment = attachment_tmp;
9762 *attachment_len = bytes_read - (*attachment - rs->buf);
9763 }
9764
9765 return ret;
9766}
9767
9768/* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9769 remote file descriptor, or -1 if an error occurs (and set
9770 *REMOTE_ERRNO). */
9771
9772static int
9773remote_hostio_open (const char *filename, int flags, int mode,
9774 int *remote_errno)
9775{
9776 struct remote_state *rs = get_remote_state ();
9777 char *p = rs->buf;
9778 int left = get_remote_packet_size () - 1;
9779
9780 remote_buffer_add_string (&p, &left, "vFile:open:");
9781
9782 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9783 strlen (filename));
9784 remote_buffer_add_string (&p, &left, ",");
9785
9786 remote_buffer_add_int (&p, &left, flags);
9787 remote_buffer_add_string (&p, &left, ",");
9788
9789 remote_buffer_add_int (&p, &left, mode);
9790
9791 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9792 remote_errno, NULL, NULL);
9793}
9794
9795/* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9796 Return the number of bytes written, or -1 if an error occurs (and
9797 set *REMOTE_ERRNO). */
9798
9799static int
9800remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9801 ULONGEST offset, int *remote_errno)
9802{
9803 struct remote_state *rs = get_remote_state ();
9804 char *p = rs->buf;
9805 int left = get_remote_packet_size ();
9806 int out_len;
9807
9808 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9809
9810 remote_buffer_add_int (&p, &left, fd);
9811 remote_buffer_add_string (&p, &left, ",");
9812
9813 remote_buffer_add_int (&p, &left, offset);
9814 remote_buffer_add_string (&p, &left, ",");
9815
9816 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9817 get_remote_packet_size () - (p - rs->buf));
9818
9819 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9820 remote_errno, NULL, NULL);
9821}
9822
9823/* Read up to LEN bytes FD on the remote target into READ_BUF
9824 Return the number of bytes read, or -1 if an error occurs (and
9825 set *REMOTE_ERRNO). */
9826
9827static int
9828remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9829 ULONGEST offset, int *remote_errno)
9830{
9831 struct remote_state *rs = get_remote_state ();
9832 char *p = rs->buf;
9833 char *attachment;
9834 int left = get_remote_packet_size ();
9835 int ret, attachment_len;
9836 int read_len;
9837
9838 remote_buffer_add_string (&p, &left, "vFile:pread:");
9839
9840 remote_buffer_add_int (&p, &left, fd);
9841 remote_buffer_add_string (&p, &left, ",");
9842
9843 remote_buffer_add_int (&p, &left, len);
9844 remote_buffer_add_string (&p, &left, ",");
9845
9846 remote_buffer_add_int (&p, &left, offset);
9847
9848 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9849 remote_errno, &attachment,
9850 &attachment_len);
9851
9852 if (ret < 0)
9853 return ret;
9854
9855 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9856 read_buf, len);
9857 if (read_len != ret)
9858 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9859
9860 return ret;
9861}
9862
9863/* Close FD on the remote target. Return 0, or -1 if an error occurs
9864 (and set *REMOTE_ERRNO). */
9865
9866static int
9867remote_hostio_close (int fd, int *remote_errno)
9868{
9869 struct remote_state *rs = get_remote_state ();
9870 char *p = rs->buf;
9871 int left = get_remote_packet_size () - 1;
9872
9873 remote_buffer_add_string (&p, &left, "vFile:close:");
9874
9875 remote_buffer_add_int (&p, &left, fd);
9876
9877 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9878 remote_errno, NULL, NULL);
9879}
9880
9881/* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9882 occurs (and set *REMOTE_ERRNO). */
9883
9884static int
9885remote_hostio_unlink (const char *filename, int *remote_errno)
9886{
9887 struct remote_state *rs = get_remote_state ();
9888 char *p = rs->buf;
9889 int left = get_remote_packet_size () - 1;
9890
9891 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9892
9893 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9894 strlen (filename));
9895
9896 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9897 remote_errno, NULL, NULL);
9898}
9899
9900/* Read value of symbolic link FILENAME on the remote target. Return
9901 a null-terminated string allocated via xmalloc, or NULL if an error
9902 occurs (and set *REMOTE_ERRNO). */
9903
9904static char *
9905remote_hostio_readlink (const char *filename, int *remote_errno)
9906{
9907 struct remote_state *rs = get_remote_state ();
9908 char *p = rs->buf;
9909 char *attachment;
9910 int left = get_remote_packet_size ();
9911 int len, attachment_len;
9912 int read_len;
9913 char *ret;
9914
9915 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9916
9917 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9918 strlen (filename));
9919
9920 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9921 remote_errno, &attachment,
9922 &attachment_len);
9923
9924 if (len < 0)
9925 return NULL;
9926
9927 ret = xmalloc (len + 1);
9928
9929 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9930 (gdb_byte *) ret, len);
9931 if (read_len != len)
9932 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9933
9934 ret[len] = '\0';
9935 return ret;
9936}
9937
9938static int
9939remote_fileio_errno_to_host (int errnum)
9940{
9941 switch (errnum)
9942 {
9943 case FILEIO_EPERM:
9944 return EPERM;
9945 case FILEIO_ENOENT:
9946 return ENOENT;
9947 case FILEIO_EINTR:
9948 return EINTR;
9949 case FILEIO_EIO:
9950 return EIO;
9951 case FILEIO_EBADF:
9952 return EBADF;
9953 case FILEIO_EACCES:
9954 return EACCES;
9955 case FILEIO_EFAULT:
9956 return EFAULT;
9957 case FILEIO_EBUSY:
9958 return EBUSY;
9959 case FILEIO_EEXIST:
9960 return EEXIST;
9961 case FILEIO_ENODEV:
9962 return ENODEV;
9963 case FILEIO_ENOTDIR:
9964 return ENOTDIR;
9965 case FILEIO_EISDIR:
9966 return EISDIR;
9967 case FILEIO_EINVAL:
9968 return EINVAL;
9969 case FILEIO_ENFILE:
9970 return ENFILE;
9971 case FILEIO_EMFILE:
9972 return EMFILE;
9973 case FILEIO_EFBIG:
9974 return EFBIG;
9975 case FILEIO_ENOSPC:
9976 return ENOSPC;
9977 case FILEIO_ESPIPE:
9978 return ESPIPE;
9979 case FILEIO_EROFS:
9980 return EROFS;
9981 case FILEIO_ENOSYS:
9982 return ENOSYS;
9983 case FILEIO_ENAMETOOLONG:
9984 return ENAMETOOLONG;
9985 }
9986 return -1;
9987}
9988
9989static char *
9990remote_hostio_error (int errnum)
9991{
9992 int host_error = remote_fileio_errno_to_host (errnum);
9993
9994 if (host_error == -1)
9995 error (_("Unknown remote I/O error %d"), errnum);
9996 else
9997 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9998}
9999
10000static void
10001remote_hostio_close_cleanup (void *opaque)
10002{
10003 int fd = *(int *) opaque;
10004 int remote_errno;
10005
10006 remote_hostio_close (fd, &remote_errno);
10007}
10008
10009
10010static void *
10011remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10012{
10013 const char *filename = bfd_get_filename (abfd);
10014 int fd, remote_errno;
10015 int *stream;
10016
10017 gdb_assert (remote_filename_p (filename));
10018
10019 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10020 if (fd == -1)
10021 {
10022 errno = remote_fileio_errno_to_host (remote_errno);
10023 bfd_set_error (bfd_error_system_call);
10024 return NULL;
10025 }
10026
10027 stream = xmalloc (sizeof (int));
10028 *stream = fd;
10029 return stream;
10030}
10031
10032static int
10033remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10034{
10035 int fd = *(int *)stream;
10036 int remote_errno;
10037
10038 xfree (stream);
10039
10040 /* Ignore errors on close; these may happen if the remote
10041 connection was already torn down. */
10042 remote_hostio_close (fd, &remote_errno);
10043
10044 /* Zero means success. */
10045 return 0;
10046}
10047
10048static file_ptr
10049remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10050 file_ptr nbytes, file_ptr offset)
10051{
10052 int fd = *(int *)stream;
10053 int remote_errno;
10054 file_ptr pos, bytes;
10055
10056 pos = 0;
10057 while (nbytes > pos)
10058 {
10059 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10060 offset + pos, &remote_errno);
10061 if (bytes == 0)
10062 /* Success, but no bytes, means end-of-file. */
10063 break;
10064 if (bytes == -1)
10065 {
10066 errno = remote_fileio_errno_to_host (remote_errno);
10067 bfd_set_error (bfd_error_system_call);
10068 return -1;
10069 }
10070
10071 pos += bytes;
10072 }
10073
10074 return pos;
10075}
10076
10077static int
10078remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10079{
10080 /* FIXME: We should probably implement remote_hostio_stat. */
10081 sb->st_size = INT_MAX;
10082 return 0;
10083}
10084
10085int
10086remote_filename_p (const char *filename)
10087{
10088 return strncmp (filename,
10089 REMOTE_SYSROOT_PREFIX,
10090 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10091}
10092
10093bfd *
10094remote_bfd_open (const char *remote_file, const char *target)
10095{
10096 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10097 remote_bfd_iovec_open, NULL,
10098 remote_bfd_iovec_pread,
10099 remote_bfd_iovec_close,
10100 remote_bfd_iovec_stat);
10101
10102 return abfd;
10103}
10104
10105void
10106remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10107{
10108 struct cleanup *back_to, *close_cleanup;
10109 int retcode, fd, remote_errno, bytes, io_size;
10110 FILE *file;
10111 gdb_byte *buffer;
10112 int bytes_in_buffer;
10113 int saw_eof;
10114 ULONGEST offset;
10115 struct remote_state *rs = get_remote_state ();
10116
10117 if (!rs->remote_desc)
10118 error (_("command can only be used with remote target"));
10119
10120 file = gdb_fopen_cloexec (local_file, "rb");
10121 if (file == NULL)
10122 perror_with_name (local_file);
10123 back_to = make_cleanup_fclose (file);
10124
10125 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10126 | FILEIO_O_TRUNC),
10127 0700, &remote_errno);
10128 if (fd == -1)
10129 remote_hostio_error (remote_errno);
10130
10131 /* Send up to this many bytes at once. They won't all fit in the
10132 remote packet limit, so we'll transfer slightly fewer. */
10133 io_size = get_remote_packet_size ();
10134 buffer = xmalloc (io_size);
10135 make_cleanup (xfree, buffer);
10136
10137 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10138
10139 bytes_in_buffer = 0;
10140 saw_eof = 0;
10141 offset = 0;
10142 while (bytes_in_buffer || !saw_eof)
10143 {
10144 if (!saw_eof)
10145 {
10146 bytes = fread (buffer + bytes_in_buffer, 1,
10147 io_size - bytes_in_buffer,
10148 file);
10149 if (bytes == 0)
10150 {
10151 if (ferror (file))
10152 error (_("Error reading %s."), local_file);
10153 else
10154 {
10155 /* EOF. Unless there is something still in the
10156 buffer from the last iteration, we are done. */
10157 saw_eof = 1;
10158 if (bytes_in_buffer == 0)
10159 break;
10160 }
10161 }
10162 }
10163 else
10164 bytes = 0;
10165
10166 bytes += bytes_in_buffer;
10167 bytes_in_buffer = 0;
10168
10169 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10170 offset, &remote_errno);
10171
10172 if (retcode < 0)
10173 remote_hostio_error (remote_errno);
10174 else if (retcode == 0)
10175 error (_("Remote write of %d bytes returned 0!"), bytes);
10176 else if (retcode < bytes)
10177 {
10178 /* Short write. Save the rest of the read data for the next
10179 write. */
10180 bytes_in_buffer = bytes - retcode;
10181 memmove (buffer, buffer + retcode, bytes_in_buffer);
10182 }
10183
10184 offset += retcode;
10185 }
10186
10187 discard_cleanups (close_cleanup);
10188 if (remote_hostio_close (fd, &remote_errno))
10189 remote_hostio_error (remote_errno);
10190
10191 if (from_tty)
10192 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10193 do_cleanups (back_to);
10194}
10195
10196void
10197remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10198{
10199 struct cleanup *back_to, *close_cleanup;
10200 int fd, remote_errno, bytes, io_size;
10201 FILE *file;
10202 gdb_byte *buffer;
10203 ULONGEST offset;
10204 struct remote_state *rs = get_remote_state ();
10205
10206 if (!rs->remote_desc)
10207 error (_("command can only be used with remote target"));
10208
10209 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10210 if (fd == -1)
10211 remote_hostio_error (remote_errno);
10212
10213 file = gdb_fopen_cloexec (local_file, "wb");
10214 if (file == NULL)
10215 perror_with_name (local_file);
10216 back_to = make_cleanup_fclose (file);
10217
10218 /* Send up to this many bytes at once. They won't all fit in the
10219 remote packet limit, so we'll transfer slightly fewer. */
10220 io_size = get_remote_packet_size ();
10221 buffer = xmalloc (io_size);
10222 make_cleanup (xfree, buffer);
10223
10224 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10225
10226 offset = 0;
10227 while (1)
10228 {
10229 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10230 if (bytes == 0)
10231 /* Success, but no bytes, means end-of-file. */
10232 break;
10233 if (bytes == -1)
10234 remote_hostio_error (remote_errno);
10235
10236 offset += bytes;
10237
10238 bytes = fwrite (buffer, 1, bytes, file);
10239 if (bytes == 0)
10240 perror_with_name (local_file);
10241 }
10242
10243 discard_cleanups (close_cleanup);
10244 if (remote_hostio_close (fd, &remote_errno))
10245 remote_hostio_error (remote_errno);
10246
10247 if (from_tty)
10248 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10249 do_cleanups (back_to);
10250}
10251
10252void
10253remote_file_delete (const char *remote_file, int from_tty)
10254{
10255 int retcode, remote_errno;
10256 struct remote_state *rs = get_remote_state ();
10257
10258 if (!rs->remote_desc)
10259 error (_("command can only be used with remote target"));
10260
10261 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10262 if (retcode == -1)
10263 remote_hostio_error (remote_errno);
10264
10265 if (from_tty)
10266 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10267}
10268
10269static void
10270remote_put_command (char *args, int from_tty)
10271{
10272 struct cleanup *back_to;
10273 char **argv;
10274
10275 if (args == NULL)
10276 error_no_arg (_("file to put"));
10277
10278 argv = gdb_buildargv (args);
10279 back_to = make_cleanup_freeargv (argv);
10280 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10281 error (_("Invalid parameters to remote put"));
10282
10283 remote_file_put (argv[0], argv[1], from_tty);
10284
10285 do_cleanups (back_to);
10286}
10287
10288static void
10289remote_get_command (char *args, int from_tty)
10290{
10291 struct cleanup *back_to;
10292 char **argv;
10293
10294 if (args == NULL)
10295 error_no_arg (_("file to get"));
10296
10297 argv = gdb_buildargv (args);
10298 back_to = make_cleanup_freeargv (argv);
10299 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10300 error (_("Invalid parameters to remote get"));
10301
10302 remote_file_get (argv[0], argv[1], from_tty);
10303
10304 do_cleanups (back_to);
10305}
10306
10307static void
10308remote_delete_command (char *args, int from_tty)
10309{
10310 struct cleanup *back_to;
10311 char **argv;
10312
10313 if (args == NULL)
10314 error_no_arg (_("file to delete"));
10315
10316 argv = gdb_buildargv (args);
10317 back_to = make_cleanup_freeargv (argv);
10318 if (argv[0] == NULL || argv[1] != NULL)
10319 error (_("Invalid parameters to remote delete"));
10320
10321 remote_file_delete (argv[0], from_tty);
10322
10323 do_cleanups (back_to);
10324}
10325
10326static void
10327remote_command (char *args, int from_tty)
10328{
10329 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10330}
10331
10332static int
10333remote_can_execute_reverse (void)
10334{
10335 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10336 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10337 return 1;
10338 else
10339 return 0;
10340}
10341
10342static int
10343remote_supports_non_stop (void)
10344{
10345 return 1;
10346}
10347
10348static int
10349remote_supports_disable_randomization (void)
10350{
10351 /* Only supported in extended mode. */
10352 return 0;
10353}
10354
10355static int
10356remote_supports_multi_process (void)
10357{
10358 struct remote_state *rs = get_remote_state ();
10359
10360 /* Only extended-remote handles being attached to multiple
10361 processes, even though plain remote can use the multi-process
10362 thread id extensions, so that GDB knows the target process's
10363 PID. */
10364 return rs->extended && remote_multi_process_p (rs);
10365}
10366
10367static int
10368remote_supports_cond_tracepoints (void)
10369{
10370 struct remote_state *rs = get_remote_state ();
10371
10372 return rs->cond_tracepoints;
10373}
10374
10375static int
10376remote_supports_cond_breakpoints (void)
10377{
10378 struct remote_state *rs = get_remote_state ();
10379
10380 return rs->cond_breakpoints;
10381}
10382
10383static int
10384remote_supports_fast_tracepoints (void)
10385{
10386 struct remote_state *rs = get_remote_state ();
10387
10388 return rs->fast_tracepoints;
10389}
10390
10391static int
10392remote_supports_static_tracepoints (void)
10393{
10394 struct remote_state *rs = get_remote_state ();
10395
10396 return rs->static_tracepoints;
10397}
10398
10399static int
10400remote_supports_install_in_trace (void)
10401{
10402 struct remote_state *rs = get_remote_state ();
10403
10404 return rs->install_in_trace;
10405}
10406
10407static int
10408remote_supports_enable_disable_tracepoint (void)
10409{
10410 struct remote_state *rs = get_remote_state ();
10411
10412 return rs->enable_disable_tracepoints;
10413}
10414
10415static int
10416remote_supports_string_tracing (void)
10417{
10418 struct remote_state *rs = get_remote_state ();
10419
10420 return rs->string_tracing;
10421}
10422
10423static int
10424remote_can_run_breakpoint_commands (void)
10425{
10426 struct remote_state *rs = get_remote_state ();
10427
10428 return rs->breakpoint_commands;
10429}
10430
10431static void
10432remote_trace_init (void)
10433{
10434 putpkt ("QTinit");
10435 remote_get_noisy_reply (&target_buf, &target_buf_size);
10436 if (strcmp (target_buf, "OK") != 0)
10437 error (_("Target does not support this command."));
10438}
10439
10440static void free_actions_list (char **actions_list);
10441static void free_actions_list_cleanup_wrapper (void *);
10442static void
10443free_actions_list_cleanup_wrapper (void *al)
10444{
10445 free_actions_list (al);
10446}
10447
10448static void
10449free_actions_list (char **actions_list)
10450{
10451 int ndx;
10452
10453 if (actions_list == 0)
10454 return;
10455
10456 for (ndx = 0; actions_list[ndx]; ndx++)
10457 xfree (actions_list[ndx]);
10458
10459 xfree (actions_list);
10460}
10461
10462/* Recursive routine to walk through command list including loops, and
10463 download packets for each command. */
10464
10465static void
10466remote_download_command_source (int num, ULONGEST addr,
10467 struct command_line *cmds)
10468{
10469 struct remote_state *rs = get_remote_state ();
10470 struct command_line *cmd;
10471
10472 for (cmd = cmds; cmd; cmd = cmd->next)
10473 {
10474 QUIT; /* Allow user to bail out with ^C. */
10475 strcpy (rs->buf, "QTDPsrc:");
10476 encode_source_string (num, addr, "cmd", cmd->line,
10477 rs->buf + strlen (rs->buf),
10478 rs->buf_size - strlen (rs->buf));
10479 putpkt (rs->buf);
10480 remote_get_noisy_reply (&target_buf, &target_buf_size);
10481 if (strcmp (target_buf, "OK"))
10482 warning (_("Target does not support source download."));
10483
10484 if (cmd->control_type == while_control
10485 || cmd->control_type == while_stepping_control)
10486 {
10487 remote_download_command_source (num, addr, *cmd->body_list);
10488
10489 QUIT; /* Allow user to bail out with ^C. */
10490 strcpy (rs->buf, "QTDPsrc:");
10491 encode_source_string (num, addr, "cmd", "end",
10492 rs->buf + strlen (rs->buf),
10493 rs->buf_size - strlen (rs->buf));
10494 putpkt (rs->buf);
10495 remote_get_noisy_reply (&target_buf, &target_buf_size);
10496 if (strcmp (target_buf, "OK"))
10497 warning (_("Target does not support source download."));
10498 }
10499 }
10500}
10501
10502static void
10503remote_download_tracepoint (struct bp_location *loc)
10504{
10505#define BUF_SIZE 2048
10506
10507 CORE_ADDR tpaddr;
10508 char addrbuf[40];
10509 char buf[BUF_SIZE];
10510 char **tdp_actions;
10511 char **stepping_actions;
10512 int ndx;
10513 struct cleanup *old_chain = NULL;
10514 struct agent_expr *aexpr;
10515 struct cleanup *aexpr_chain = NULL;
10516 char *pkt;
10517 struct breakpoint *b = loc->owner;
10518 struct tracepoint *t = (struct tracepoint *) b;
10519
10520 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10521 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10522 tdp_actions);
10523 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10524 stepping_actions);
10525
10526 tpaddr = loc->address;
10527 sprintf_vma (addrbuf, tpaddr);
10528 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10529 addrbuf, /* address */
10530 (b->enable_state == bp_enabled ? 'E' : 'D'),
10531 t->step_count, t->pass_count);
10532 /* Fast tracepoints are mostly handled by the target, but we can
10533 tell the target how big of an instruction block should be moved
10534 around. */
10535 if (b->type == bp_fast_tracepoint)
10536 {
10537 /* Only test for support at download time; we may not know
10538 target capabilities at definition time. */
10539 if (remote_supports_fast_tracepoints ())
10540 {
10541 int isize;
10542
10543 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10544 tpaddr, &isize, NULL))
10545 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10546 isize);
10547 else
10548 /* If it passed validation at definition but fails now,
10549 something is very wrong. */
10550 internal_error (__FILE__, __LINE__,
10551 _("Fast tracepoint not "
10552 "valid during download"));
10553 }
10554 else
10555 /* Fast tracepoints are functionally identical to regular
10556 tracepoints, so don't take lack of support as a reason to
10557 give up on the trace run. */
10558 warning (_("Target does not support fast tracepoints, "
10559 "downloading %d as regular tracepoint"), b->number);
10560 }
10561 else if (b->type == bp_static_tracepoint)
10562 {
10563 /* Only test for support at download time; we may not know
10564 target capabilities at definition time. */
10565 if (remote_supports_static_tracepoints ())
10566 {
10567 struct static_tracepoint_marker marker;
10568
10569 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10570 strcat (buf, ":S");
10571 else
10572 error (_("Static tracepoint not valid during download"));
10573 }
10574 else
10575 /* Fast tracepoints are functionally identical to regular
10576 tracepoints, so don't take lack of support as a reason
10577 to give up on the trace run. */
10578 error (_("Target does not support static tracepoints"));
10579 }
10580 /* If the tracepoint has a conditional, make it into an agent
10581 expression and append to the definition. */
10582 if (loc->cond)
10583 {
10584 /* Only test support at download time, we may not know target
10585 capabilities at definition time. */
10586 if (remote_supports_cond_tracepoints ())
10587 {
10588 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10589 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10590 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10591 aexpr->len);
10592 pkt = buf + strlen (buf);
10593 for (ndx = 0; ndx < aexpr->len; ++ndx)
10594 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10595 *pkt = '\0';
10596 do_cleanups (aexpr_chain);
10597 }
10598 else
10599 warning (_("Target does not support conditional tracepoints, "
10600 "ignoring tp %d cond"), b->number);
10601 }
10602
10603 if (b->commands || *default_collect)
10604 strcat (buf, "-");
10605 putpkt (buf);
10606 remote_get_noisy_reply (&target_buf, &target_buf_size);
10607 if (strcmp (target_buf, "OK"))
10608 error (_("Target does not support tracepoints."));
10609
10610 /* do_single_steps (t); */
10611 if (tdp_actions)
10612 {
10613 for (ndx = 0; tdp_actions[ndx]; ndx++)
10614 {
10615 QUIT; /* Allow user to bail out with ^C. */
10616 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10617 b->number, addrbuf, /* address */
10618 tdp_actions[ndx],
10619 ((tdp_actions[ndx + 1] || stepping_actions)
10620 ? '-' : 0));
10621 putpkt (buf);
10622 remote_get_noisy_reply (&target_buf,
10623 &target_buf_size);
10624 if (strcmp (target_buf, "OK"))
10625 error (_("Error on target while setting tracepoints."));
10626 }
10627 }
10628 if (stepping_actions)
10629 {
10630 for (ndx = 0; stepping_actions[ndx]; ndx++)
10631 {
10632 QUIT; /* Allow user to bail out with ^C. */
10633 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10634 b->number, addrbuf, /* address */
10635 ((ndx == 0) ? "S" : ""),
10636 stepping_actions[ndx],
10637 (stepping_actions[ndx + 1] ? "-" : ""));
10638 putpkt (buf);
10639 remote_get_noisy_reply (&target_buf,
10640 &target_buf_size);
10641 if (strcmp (target_buf, "OK"))
10642 error (_("Error on target while setting tracepoints."));
10643 }
10644 }
10645
10646 if (remote_protocol_packets[PACKET_TracepointSource].support
10647 == PACKET_ENABLE)
10648 {
10649 if (b->addr_string)
10650 {
10651 strcpy (buf, "QTDPsrc:");
10652 encode_source_string (b->number, loc->address,
10653 "at", b->addr_string, buf + strlen (buf),
10654 2048 - strlen (buf));
10655
10656 putpkt (buf);
10657 remote_get_noisy_reply (&target_buf, &target_buf_size);
10658 if (strcmp (target_buf, "OK"))
10659 warning (_("Target does not support source download."));
10660 }
10661 if (b->cond_string)
10662 {
10663 strcpy (buf, "QTDPsrc:");
10664 encode_source_string (b->number, loc->address,
10665 "cond", b->cond_string, buf + strlen (buf),
10666 2048 - strlen (buf));
10667 putpkt (buf);
10668 remote_get_noisy_reply (&target_buf, &target_buf_size);
10669 if (strcmp (target_buf, "OK"))
10670 warning (_("Target does not support source download."));
10671 }
10672 remote_download_command_source (b->number, loc->address,
10673 breakpoint_commands (b));
10674 }
10675
10676 do_cleanups (old_chain);
10677}
10678
10679static int
10680remote_can_download_tracepoint (void)
10681{
10682 struct remote_state *rs = get_remote_state ();
10683 struct trace_status *ts;
10684 int status;
10685
10686 /* Don't try to install tracepoints until we've relocated our
10687 symbols, and fetched and merged the target's tracepoint list with
10688 ours. */
10689 if (rs->starting_up)
10690 return 0;
10691
10692 ts = current_trace_status ();
10693 status = remote_get_trace_status (ts);
10694
10695 if (status == -1 || !ts->running_known || !ts->running)
10696 return 0;
10697
10698 /* If we are in a tracing experiment, but remote stub doesn't support
10699 installing tracepoint in trace, we have to return. */
10700 if (!remote_supports_install_in_trace ())
10701 return 0;
10702
10703 return 1;
10704}
10705
10706
10707static void
10708remote_download_trace_state_variable (struct trace_state_variable *tsv)
10709{
10710 struct remote_state *rs = get_remote_state ();
10711 char *p;
10712
10713 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10714 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10715 tsv->builtin);
10716 p = rs->buf + strlen (rs->buf);
10717 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10718 error (_("Trace state variable name too long for tsv definition packet"));
10719 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10720 *p++ = '\0';
10721 putpkt (rs->buf);
10722 remote_get_noisy_reply (&target_buf, &target_buf_size);
10723 if (*target_buf == '\0')
10724 error (_("Target does not support this command."));
10725 if (strcmp (target_buf, "OK") != 0)
10726 error (_("Error on target while downloading trace state variable."));
10727}
10728
10729static void
10730remote_enable_tracepoint (struct bp_location *location)
10731{
10732 struct remote_state *rs = get_remote_state ();
10733 char addr_buf[40];
10734
10735 sprintf_vma (addr_buf, location->address);
10736 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10737 location->owner->number, addr_buf);
10738 putpkt (rs->buf);
10739 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10740 if (*rs->buf == '\0')
10741 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10742 if (strcmp (rs->buf, "OK") != 0)
10743 error (_("Error on target while enabling tracepoint."));
10744}
10745
10746static void
10747remote_disable_tracepoint (struct bp_location *location)
10748{
10749 struct remote_state *rs = get_remote_state ();
10750 char addr_buf[40];
10751
10752 sprintf_vma (addr_buf, location->address);
10753 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10754 location->owner->number, addr_buf);
10755 putpkt (rs->buf);
10756 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10757 if (*rs->buf == '\0')
10758 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10759 if (strcmp (rs->buf, "OK") != 0)
10760 error (_("Error on target while disabling tracepoint."));
10761}
10762
10763static void
10764remote_trace_set_readonly_regions (void)
10765{
10766 asection *s;
10767 bfd *abfd = NULL;
10768 bfd_size_type size;
10769 bfd_vma vma;
10770 int anysecs = 0;
10771 int offset = 0;
10772
10773 if (!exec_bfd)
10774 return; /* No information to give. */
10775
10776 strcpy (target_buf, "QTro");
10777 offset = strlen (target_buf);
10778 for (s = exec_bfd->sections; s; s = s->next)
10779 {
10780 char tmp1[40], tmp2[40];
10781 int sec_length;
10782
10783 if ((s->flags & SEC_LOAD) == 0 ||
10784 /* (s->flags & SEC_CODE) == 0 || */
10785 (s->flags & SEC_READONLY) == 0)
10786 continue;
10787
10788 anysecs = 1;
10789 vma = bfd_get_section_vma (abfd, s);
10790 size = bfd_get_section_size (s);
10791 sprintf_vma (tmp1, vma);
10792 sprintf_vma (tmp2, vma + size);
10793 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10794 if (offset + sec_length + 1 > target_buf_size)
10795 {
10796 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10797 != PACKET_ENABLE)
10798 warning (_("\
10799Too many sections for read-only sections definition packet."));
10800 break;
10801 }
10802 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10803 tmp1, tmp2);
10804 offset += sec_length;
10805 }
10806 if (anysecs)
10807 {
10808 putpkt (target_buf);
10809 getpkt (&target_buf, &target_buf_size, 0);
10810 }
10811}
10812
10813static void
10814remote_trace_start (void)
10815{
10816 putpkt ("QTStart");
10817 remote_get_noisy_reply (&target_buf, &target_buf_size);
10818 if (*target_buf == '\0')
10819 error (_("Target does not support this command."));
10820 if (strcmp (target_buf, "OK") != 0)
10821 error (_("Bogus reply from target: %s"), target_buf);
10822}
10823
10824static int
10825remote_get_trace_status (struct trace_status *ts)
10826{
10827 /* Initialize it just to avoid a GCC false warning. */
10828 char *p = NULL;
10829 /* FIXME we need to get register block size some other way. */
10830 extern int trace_regblock_size;
10831 volatile struct gdb_exception ex;
10832 enum packet_result result;
10833
10834 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10835 return -1;
10836
10837 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10838
10839 putpkt ("qTStatus");
10840
10841 TRY_CATCH (ex, RETURN_MASK_ERROR)
10842 {
10843 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10844 }
10845 if (ex.reason < 0)
10846 {
10847 if (ex.error != TARGET_CLOSE_ERROR)
10848 {
10849 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10850 return -1;
10851 }
10852 throw_exception (ex);
10853 }
10854
10855 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10856
10857 /* If the remote target doesn't do tracing, flag it. */
10858 if (result == PACKET_UNKNOWN)
10859 return -1;
10860
10861 /* We're working with a live target. */
10862 ts->filename = NULL;
10863
10864 if (*p++ != 'T')
10865 error (_("Bogus trace status reply from target: %s"), target_buf);
10866
10867 /* Function 'parse_trace_status' sets default value of each field of
10868 'ts' at first, so we don't have to do it here. */
10869 parse_trace_status (p, ts);
10870
10871 return ts->running;
10872}
10873
10874static void
10875remote_get_tracepoint_status (struct breakpoint *bp,
10876 struct uploaded_tp *utp)
10877{
10878 struct remote_state *rs = get_remote_state ();
10879 char *reply;
10880 struct bp_location *loc;
10881 struct tracepoint *tp = (struct tracepoint *) bp;
10882 size_t size = get_remote_packet_size ();
10883
10884 if (tp)
10885 {
10886 tp->base.hit_count = 0;
10887 tp->traceframe_usage = 0;
10888 for (loc = tp->base.loc; loc; loc = loc->next)
10889 {
10890 /* If the tracepoint was never downloaded, don't go asking for
10891 any status. */
10892 if (tp->number_on_target == 0)
10893 continue;
10894 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10895 phex_nz (loc->address, 0));
10896 putpkt (rs->buf);
10897 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10898 if (reply && *reply)
10899 {
10900 if (*reply == 'V')
10901 parse_tracepoint_status (reply + 1, bp, utp);
10902 }
10903 }
10904 }
10905 else if (utp)
10906 {
10907 utp->hit_count = 0;
10908 utp->traceframe_usage = 0;
10909 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10910 phex_nz (utp->addr, 0));
10911 putpkt (rs->buf);
10912 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10913 if (reply && *reply)
10914 {
10915 if (*reply == 'V')
10916 parse_tracepoint_status (reply + 1, bp, utp);
10917 }
10918 }
10919}
10920
10921static void
10922remote_trace_stop (void)
10923{
10924 putpkt ("QTStop");
10925 remote_get_noisy_reply (&target_buf, &target_buf_size);
10926 if (*target_buf == '\0')
10927 error (_("Target does not support this command."));
10928 if (strcmp (target_buf, "OK") != 0)
10929 error (_("Bogus reply from target: %s"), target_buf);
10930}
10931
10932static int
10933remote_trace_find (enum trace_find_type type, int num,
10934 CORE_ADDR addr1, CORE_ADDR addr2,
10935 int *tpp)
10936{
10937 struct remote_state *rs = get_remote_state ();
10938 char *endbuf = rs->buf + get_remote_packet_size ();
10939 char *p, *reply;
10940 int target_frameno = -1, target_tracept = -1;
10941
10942 /* Lookups other than by absolute frame number depend on the current
10943 trace selected, so make sure it is correct on the remote end
10944 first. */
10945 if (type != tfind_number)
10946 set_remote_traceframe ();
10947
10948 p = rs->buf;
10949 strcpy (p, "QTFrame:");
10950 p = strchr (p, '\0');
10951 switch (type)
10952 {
10953 case tfind_number:
10954 xsnprintf (p, endbuf - p, "%x", num);
10955 break;
10956 case tfind_pc:
10957 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10958 break;
10959 case tfind_tp:
10960 xsnprintf (p, endbuf - p, "tdp:%x", num);
10961 break;
10962 case tfind_range:
10963 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10964 phex_nz (addr2, 0));
10965 break;
10966 case tfind_outside:
10967 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10968 phex_nz (addr2, 0));
10969 break;
10970 default:
10971 error (_("Unknown trace find type %d"), type);
10972 }
10973
10974 putpkt (rs->buf);
10975 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
10976 if (*reply == '\0')
10977 error (_("Target does not support this command."));
10978
10979 while (reply && *reply)
10980 switch (*reply)
10981 {
10982 case 'F':
10983 p = ++reply;
10984 target_frameno = (int) strtol (p, &reply, 16);
10985 if (reply == p)
10986 error (_("Unable to parse trace frame number"));
10987 /* Don't update our remote traceframe number cache on failure
10988 to select a remote traceframe. */
10989 if (target_frameno == -1)
10990 return -1;
10991 break;
10992 case 'T':
10993 p = ++reply;
10994 target_tracept = (int) strtol (p, &reply, 16);
10995 if (reply == p)
10996 error (_("Unable to parse tracepoint number"));
10997 break;
10998 case 'O': /* "OK"? */
10999 if (reply[1] == 'K' && reply[2] == '\0')
11000 reply += 2;
11001 else
11002 error (_("Bogus reply from target: %s"), reply);
11003 break;
11004 default:
11005 error (_("Bogus reply from target: %s"), reply);
11006 }
11007 if (tpp)
11008 *tpp = target_tracept;
11009
11010 rs->remote_traceframe_number = target_frameno;
11011 return target_frameno;
11012}
11013
11014static int
11015remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11016{
11017 struct remote_state *rs = get_remote_state ();
11018 char *reply;
11019 ULONGEST uval;
11020
11021 set_remote_traceframe ();
11022
11023 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11024 putpkt (rs->buf);
11025 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11026 if (reply && *reply)
11027 {
11028 if (*reply == 'V')
11029 {
11030 unpack_varlen_hex (reply + 1, &uval);
11031 *val = (LONGEST) uval;
11032 return 1;
11033 }
11034 }
11035 return 0;
11036}
11037
11038static int
11039remote_save_trace_data (const char *filename)
11040{
11041 struct remote_state *rs = get_remote_state ();
11042 char *p, *reply;
11043
11044 p = rs->buf;
11045 strcpy (p, "QTSave:");
11046 p += strlen (p);
11047 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11048 error (_("Remote file name too long for trace save packet"));
11049 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11050 *p++ = '\0';
11051 putpkt (rs->buf);
11052 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11053 if (*reply == '\0')
11054 error (_("Target does not support this command."));
11055 if (strcmp (reply, "OK") != 0)
11056 error (_("Bogus reply from target: %s"), reply);
11057 return 0;
11058}
11059
11060/* This is basically a memory transfer, but needs to be its own packet
11061 because we don't know how the target actually organizes its trace
11062 memory, plus we want to be able to ask for as much as possible, but
11063 not be unhappy if we don't get as much as we ask for. */
11064
11065static LONGEST
11066remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11067{
11068 struct remote_state *rs = get_remote_state ();
11069 char *reply;
11070 char *p;
11071 int rslt;
11072
11073 p = rs->buf;
11074 strcpy (p, "qTBuffer:");
11075 p += strlen (p);
11076 p += hexnumstr (p, offset);
11077 *p++ = ',';
11078 p += hexnumstr (p, len);
11079 *p++ = '\0';
11080
11081 putpkt (rs->buf);
11082 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11083 if (reply && *reply)
11084 {
11085 /* 'l' by itself means we're at the end of the buffer and
11086 there is nothing more to get. */
11087 if (*reply == 'l')
11088 return 0;
11089
11090 /* Convert the reply into binary. Limit the number of bytes to
11091 convert according to our passed-in buffer size, rather than
11092 what was returned in the packet; if the target is
11093 unexpectedly generous and gives us a bigger reply than we
11094 asked for, we don't want to crash. */
11095 rslt = hex2bin (target_buf, buf, len);
11096 return rslt;
11097 }
11098
11099 /* Something went wrong, flag as an error. */
11100 return -1;
11101}
11102
11103static void
11104remote_set_disconnected_tracing (int val)
11105{
11106 struct remote_state *rs = get_remote_state ();
11107
11108 if (rs->disconnected_tracing)
11109 {
11110 char *reply;
11111
11112 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11113 putpkt (rs->buf);
11114 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11115 if (*reply == '\0')
11116 error (_("Target does not support this command."));
11117 if (strcmp (reply, "OK") != 0)
11118 error (_("Bogus reply from target: %s"), reply);
11119 }
11120 else if (val)
11121 warning (_("Target does not support disconnected tracing."));
11122}
11123
11124static int
11125remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11126{
11127 struct thread_info *info = find_thread_ptid (ptid);
11128
11129 if (info && info->private)
11130 return info->private->core;
11131 return -1;
11132}
11133
11134static void
11135remote_set_circular_trace_buffer (int val)
11136{
11137 struct remote_state *rs = get_remote_state ();
11138 char *reply;
11139
11140 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11141 putpkt (rs->buf);
11142 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11143 if (*reply == '\0')
11144 error (_("Target does not support this command."));
11145 if (strcmp (reply, "OK") != 0)
11146 error (_("Bogus reply from target: %s"), reply);
11147}
11148
11149static struct traceframe_info *
11150remote_traceframe_info (void)
11151{
11152 char *text;
11153
11154 /* If current traceframe is not selected, don't bother the remote
11155 stub. */
11156 if (get_traceframe_number () < 0)
11157 return NULL;
11158
11159 text = target_read_stralloc (&current_target,
11160 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11161 if (text != NULL)
11162 {
11163 struct traceframe_info *info;
11164 struct cleanup *back_to = make_cleanup (xfree, text);
11165
11166 info = parse_traceframe_info (text);
11167 do_cleanups (back_to);
11168 return info;
11169 }
11170
11171 return NULL;
11172}
11173
11174/* Handle the qTMinFTPILen packet. Returns the minimum length of
11175 instruction on which a fast tracepoint may be placed. Returns -1
11176 if the packet is not supported, and 0 if the minimum instruction
11177 length is unknown. */
11178
11179static int
11180remote_get_min_fast_tracepoint_insn_len (void)
11181{
11182 struct remote_state *rs = get_remote_state ();
11183 char *reply;
11184
11185 /* If we're not debugging a process yet, the IPA can't be
11186 loaded. */
11187 if (!target_has_execution)
11188 return 0;
11189
11190 /* Make sure the remote is pointing at the right process. */
11191 set_general_process ();
11192
11193 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11194 putpkt (rs->buf);
11195 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11196 if (*reply == '\0')
11197 return -1;
11198 else
11199 {
11200 ULONGEST min_insn_len;
11201
11202 unpack_varlen_hex (reply, &min_insn_len);
11203
11204 return (int) min_insn_len;
11205 }
11206}
11207
11208static void
11209remote_set_trace_buffer_size (LONGEST val)
11210{
11211 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11212 != PACKET_DISABLE)
11213 {
11214 struct remote_state *rs = get_remote_state ();
11215 char *buf = rs->buf;
11216 char *endbuf = rs->buf + get_remote_packet_size ();
11217 enum packet_result result;
11218
11219 gdb_assert (val >= 0 || val == -1);
11220 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11221 /* Send -1 as literal "-1" to avoid host size dependency. */
11222 if (val < 0)
11223 {
11224 *buf++ = '-';
11225 buf += hexnumstr (buf, (ULONGEST) -val);
11226 }
11227 else
11228 buf += hexnumstr (buf, (ULONGEST) val);
11229
11230 putpkt (rs->buf);
11231 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11232 result = packet_ok (rs->buf,
11233 &remote_protocol_packets[PACKET_QTBuffer_size]);
11234
11235 if (result != PACKET_OK)
11236 warning (_("Bogus reply from target: %s"), rs->buf);
11237 }
11238}
11239
11240static int
11241remote_set_trace_notes (const char *user, const char *notes,
11242 const char *stop_notes)
11243{
11244 struct remote_state *rs = get_remote_state ();
11245 char *reply;
11246 char *buf = rs->buf;
11247 char *endbuf = rs->buf + get_remote_packet_size ();
11248 int nbytes;
11249
11250 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11251 if (user)
11252 {
11253 buf += xsnprintf (buf, endbuf - buf, "user:");
11254 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11255 buf += 2 * nbytes;
11256 *buf++ = ';';
11257 }
11258 if (notes)
11259 {
11260 buf += xsnprintf (buf, endbuf - buf, "notes:");
11261 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11262 buf += 2 * nbytes;
11263 *buf++ = ';';
11264 }
11265 if (stop_notes)
11266 {
11267 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11268 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11269 buf += 2 * nbytes;
11270 *buf++ = ';';
11271 }
11272 /* Ensure the buffer is terminated. */
11273 *buf = '\0';
11274
11275 putpkt (rs->buf);
11276 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11277 if (*reply == '\0')
11278 return 0;
11279
11280 if (strcmp (reply, "OK") != 0)
11281 error (_("Bogus reply from target: %s"), reply);
11282
11283 return 1;
11284}
11285
11286static int
11287remote_use_agent (int use)
11288{
11289 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11290 {
11291 struct remote_state *rs = get_remote_state ();
11292
11293 /* If the stub supports QAgent. */
11294 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11295 putpkt (rs->buf);
11296 getpkt (&rs->buf, &rs->buf_size, 0);
11297
11298 if (strcmp (rs->buf, "OK") == 0)
11299 {
11300 use_agent = use;
11301 return 1;
11302 }
11303 }
11304
11305 return 0;
11306}
11307
11308static int
11309remote_can_use_agent (void)
11310{
11311 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11312}
11313
11314struct btrace_target_info
11315{
11316 /* The ptid of the traced thread. */
11317 ptid_t ptid;
11318};
11319
11320/* Check whether the target supports branch tracing. */
11321
11322static int
11323remote_supports_btrace (void)
11324{
11325 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11326 return 0;
11327 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11328 return 0;
11329 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11330 return 0;
11331
11332 return 1;
11333}
11334
11335/* Enable branch tracing. */
11336
11337static struct btrace_target_info *
11338remote_enable_btrace (ptid_t ptid)
11339{
11340 struct btrace_target_info *tinfo = NULL;
11341 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11342 struct remote_state *rs = get_remote_state ();
11343 char *buf = rs->buf;
11344 char *endbuf = rs->buf + get_remote_packet_size ();
11345
11346 if (packet->support != PACKET_ENABLE)
11347 error (_("Target does not support branch tracing."));
11348
11349 set_general_thread (ptid);
11350
11351 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11352 putpkt (rs->buf);
11353 getpkt (&rs->buf, &rs->buf_size, 0);
11354
11355 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11356 {
11357 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11358 error (_("Could not enable branch tracing for %s: %s"),
11359 target_pid_to_str (ptid), rs->buf + 2);
11360 else
11361 error (_("Could not enable branch tracing for %s."),
11362 target_pid_to_str (ptid));
11363 }
11364
11365 tinfo = xzalloc (sizeof (*tinfo));
11366 tinfo->ptid = ptid;
11367
11368 return tinfo;
11369}
11370
11371/* Disable branch tracing. */
11372
11373static void
11374remote_disable_btrace (struct btrace_target_info *tinfo)
11375{
11376 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11377 struct remote_state *rs = get_remote_state ();
11378 char *buf = rs->buf;
11379 char *endbuf = rs->buf + get_remote_packet_size ();
11380
11381 if (packet->support != PACKET_ENABLE)
11382 error (_("Target does not support branch tracing."));
11383
11384 set_general_thread (tinfo->ptid);
11385
11386 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11387 putpkt (rs->buf);
11388 getpkt (&rs->buf, &rs->buf_size, 0);
11389
11390 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11391 {
11392 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11393 error (_("Could not disable branch tracing for %s: %s"),
11394 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11395 else
11396 error (_("Could not disable branch tracing for %s."),
11397 target_pid_to_str (tinfo->ptid));
11398 }
11399
11400 xfree (tinfo);
11401}
11402
11403/* Teardown branch tracing. */
11404
11405static void
11406remote_teardown_btrace (struct btrace_target_info *tinfo)
11407{
11408 /* We must not talk to the target during teardown. */
11409 xfree (tinfo);
11410}
11411
11412/* Read the branch trace. */
11413
11414static VEC (btrace_block_s) *
11415remote_read_btrace (struct btrace_target_info *tinfo,
11416 enum btrace_read_type type)
11417{
11418 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11419 struct remote_state *rs = get_remote_state ();
11420 VEC (btrace_block_s) *btrace = NULL;
11421 const char *annex;
11422 char *xml;
11423
11424 if (packet->support != PACKET_ENABLE)
11425 error (_("Target does not support branch tracing."));
11426
11427#if !defined(HAVE_LIBEXPAT)
11428 error (_("Cannot process branch tracing result. XML parsing not supported."));
11429#endif
11430
11431 switch (type)
11432 {
11433 case btrace_read_all:
11434 annex = "all";
11435 break;
11436 case btrace_read_new:
11437 annex = "new";
11438 break;
11439 default:
11440 internal_error (__FILE__, __LINE__,
11441 _("Bad branch tracing read type: %u."),
11442 (unsigned int) type);
11443 }
11444
11445 xml = target_read_stralloc (&current_target,
11446 TARGET_OBJECT_BTRACE, annex);
11447 if (xml != NULL)
11448 {
11449 struct cleanup *cleanup = make_cleanup (xfree, xml);
11450
11451 btrace = parse_xml_btrace (xml);
11452 do_cleanups (cleanup);
11453 }
11454
11455 return btrace;
11456}
11457
11458static int
11459remote_augmented_libraries_svr4_read (void)
11460{
11461 struct remote_state *rs = get_remote_state ();
11462
11463 return rs->augmented_libraries_svr4_read;
11464}
11465
11466static void
11467init_remote_ops (void)
11468{
11469 remote_ops.to_shortname = "remote";
11470 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11471 remote_ops.to_doc =
11472 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11473Specify the serial device it is connected to\n\
11474(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11475 remote_ops.to_open = remote_open;
11476 remote_ops.to_close = remote_close;
11477 remote_ops.to_detach = remote_detach;
11478 remote_ops.to_disconnect = remote_disconnect;
11479 remote_ops.to_resume = remote_resume;
11480 remote_ops.to_wait = remote_wait;
11481 remote_ops.to_fetch_registers = remote_fetch_registers;
11482 remote_ops.to_store_registers = remote_store_registers;
11483 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11484 remote_ops.to_files_info = remote_files_info;
11485 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11486 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11487 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11488 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11489 remote_ops.to_watchpoint_addr_within_range =
11490 remote_watchpoint_addr_within_range;
11491 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11492 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11493 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11494 remote_ops.to_region_ok_for_hw_watchpoint
11495 = remote_region_ok_for_hw_watchpoint;
11496 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11497 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11498 remote_ops.to_kill = remote_kill;
11499 remote_ops.to_load = generic_load;
11500 remote_ops.to_mourn_inferior = remote_mourn;
11501 remote_ops.to_pass_signals = remote_pass_signals;
11502 remote_ops.to_program_signals = remote_program_signals;
11503 remote_ops.to_thread_alive = remote_thread_alive;
11504 remote_ops.to_find_new_threads = remote_threads_info;
11505 remote_ops.to_pid_to_str = remote_pid_to_str;
11506 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11507 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11508 remote_ops.to_stop = remote_stop;
11509 remote_ops.to_xfer_partial = remote_xfer_partial;
11510 remote_ops.to_rcmd = remote_rcmd;
11511 remote_ops.to_log_command = serial_log_command;
11512 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11513 remote_ops.to_stratum = process_stratum;
11514 remote_ops.to_has_all_memory = default_child_has_all_memory;
11515 remote_ops.to_has_memory = default_child_has_memory;
11516 remote_ops.to_has_stack = default_child_has_stack;
11517 remote_ops.to_has_registers = default_child_has_registers;
11518 remote_ops.to_has_execution = default_child_has_execution;
11519 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11520 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11521 remote_ops.to_magic = OPS_MAGIC;
11522 remote_ops.to_memory_map = remote_memory_map;
11523 remote_ops.to_flash_erase = remote_flash_erase;
11524 remote_ops.to_flash_done = remote_flash_done;
11525 remote_ops.to_read_description = remote_read_description;
11526 remote_ops.to_search_memory = remote_search_memory;
11527 remote_ops.to_can_async_p = remote_can_async_p;
11528 remote_ops.to_is_async_p = remote_is_async_p;
11529 remote_ops.to_async = remote_async;
11530 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11531 remote_ops.to_terminal_ours = remote_terminal_ours;
11532 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11533 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11534 remote_ops.to_supports_disable_randomization
11535 = remote_supports_disable_randomization;
11536 remote_ops.to_fileio_open = remote_hostio_open;
11537 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11538 remote_ops.to_fileio_pread = remote_hostio_pread;
11539 remote_ops.to_fileio_close = remote_hostio_close;
11540 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11541 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11542 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11543 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11544 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11545 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11546 remote_ops.to_trace_init = remote_trace_init;
11547 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11548 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11549 remote_ops.to_download_trace_state_variable
11550 = remote_download_trace_state_variable;
11551 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11552 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11553 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11554 remote_ops.to_trace_start = remote_trace_start;
11555 remote_ops.to_get_trace_status = remote_get_trace_status;
11556 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11557 remote_ops.to_trace_stop = remote_trace_stop;
11558 remote_ops.to_trace_find = remote_trace_find;
11559 remote_ops.to_get_trace_state_variable_value
11560 = remote_get_trace_state_variable_value;
11561 remote_ops.to_save_trace_data = remote_save_trace_data;
11562 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11563 remote_ops.to_upload_trace_state_variables
11564 = remote_upload_trace_state_variables;
11565 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11566 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11567 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11568 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11569 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11570 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11571 remote_ops.to_core_of_thread = remote_core_of_thread;
11572 remote_ops.to_verify_memory = remote_verify_memory;
11573 remote_ops.to_get_tib_address = remote_get_tib_address;
11574 remote_ops.to_set_permissions = remote_set_permissions;
11575 remote_ops.to_static_tracepoint_marker_at
11576 = remote_static_tracepoint_marker_at;
11577 remote_ops.to_static_tracepoint_markers_by_strid
11578 = remote_static_tracepoint_markers_by_strid;
11579 remote_ops.to_traceframe_info = remote_traceframe_info;
11580 remote_ops.to_use_agent = remote_use_agent;
11581 remote_ops.to_can_use_agent = remote_can_use_agent;
11582 remote_ops.to_supports_btrace = remote_supports_btrace;
11583 remote_ops.to_enable_btrace = remote_enable_btrace;
11584 remote_ops.to_disable_btrace = remote_disable_btrace;
11585 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11586 remote_ops.to_read_btrace = remote_read_btrace;
11587 remote_ops.to_augmented_libraries_svr4_read =
11588 remote_augmented_libraries_svr4_read;
11589}
11590
11591/* Set up the extended remote vector by making a copy of the standard
11592 remote vector and adding to it. */
11593
11594static void
11595init_extended_remote_ops (void)
11596{
11597 extended_remote_ops = remote_ops;
11598
11599 extended_remote_ops.to_shortname = "extended-remote";
11600 extended_remote_ops.to_longname =
11601 "Extended remote serial target in gdb-specific protocol";
11602 extended_remote_ops.to_doc =
11603 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11604Specify the serial device it is connected to (e.g. /dev/ttya).";
11605 extended_remote_ops.to_open = extended_remote_open;
11606 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11607 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11608 extended_remote_ops.to_detach = extended_remote_detach;
11609 extended_remote_ops.to_attach = extended_remote_attach;
11610 extended_remote_ops.to_kill = extended_remote_kill;
11611 extended_remote_ops.to_supports_disable_randomization
11612 = extended_remote_supports_disable_randomization;
11613}
11614
11615static int
11616remote_can_async_p (void)
11617{
11618 struct remote_state *rs = get_remote_state ();
11619
11620 if (!target_async_permitted)
11621 /* We only enable async when the user specifically asks for it. */
11622 return 0;
11623
11624 /* We're async whenever the serial device is. */
11625 return serial_can_async_p (rs->remote_desc);
11626}
11627
11628static int
11629remote_is_async_p (void)
11630{
11631 struct remote_state *rs = get_remote_state ();
11632
11633 if (!target_async_permitted)
11634 /* We only enable async when the user specifically asks for it. */
11635 return 0;
11636
11637 /* We're async whenever the serial device is. */
11638 return serial_is_async_p (rs->remote_desc);
11639}
11640
11641/* Pass the SERIAL event on and up to the client. One day this code
11642 will be able to delay notifying the client of an event until the
11643 point where an entire packet has been received. */
11644
11645static serial_event_ftype remote_async_serial_handler;
11646
11647static void
11648remote_async_serial_handler (struct serial *scb, void *context)
11649{
11650 struct remote_state *rs = context;
11651
11652 /* Don't propogate error information up to the client. Instead let
11653 the client find out about the error by querying the target. */
11654 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11655}
11656
11657static void
11658remote_async_inferior_event_handler (gdb_client_data data)
11659{
11660 inferior_event_handler (INF_REG_EVENT, NULL);
11661}
11662
11663static void
11664remote_async (void (*callback) (enum inferior_event_type event_type,
11665 void *context), void *context)
11666{
11667 struct remote_state *rs = get_remote_state ();
11668
11669 if (callback != NULL)
11670 {
11671 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11672 rs->async_client_callback = callback;
11673 rs->async_client_context = context;
11674 }
11675 else
11676 serial_async (rs->remote_desc, NULL, NULL);
11677}
11678
11679static void
11680set_remote_cmd (char *args, int from_tty)
11681{
11682 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11683}
11684
11685static void
11686show_remote_cmd (char *args, int from_tty)
11687{
11688 /* We can't just use cmd_show_list here, because we want to skip
11689 the redundant "show remote Z-packet" and the legacy aliases. */
11690 struct cleanup *showlist_chain;
11691 struct cmd_list_element *list = remote_show_cmdlist;
11692 struct ui_out *uiout = current_uiout;
11693
11694 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11695 for (; list != NULL; list = list->next)
11696 if (strcmp (list->name, "Z-packet") == 0)
11697 continue;
11698 else if (list->type == not_set_cmd)
11699 /* Alias commands are exactly like the original, except they
11700 don't have the normal type. */
11701 continue;
11702 else
11703 {
11704 struct cleanup *option_chain
11705 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11706
11707 ui_out_field_string (uiout, "name", list->name);
11708 ui_out_text (uiout, ": ");
11709 if (list->type == show_cmd)
11710 do_show_command ((char *) NULL, from_tty, list);
11711 else
11712 cmd_func (list, NULL, from_tty);
11713 /* Close the tuple. */
11714 do_cleanups (option_chain);
11715 }
11716
11717 /* Close the tuple. */
11718 do_cleanups (showlist_chain);
11719}
11720
11721
11722/* Function to be called whenever a new objfile (shlib) is detected. */
11723static void
11724remote_new_objfile (struct objfile *objfile)
11725{
11726 struct remote_state *rs = get_remote_state ();
11727
11728 if (rs->remote_desc != 0) /* Have a remote connection. */
11729 remote_check_symbols ();
11730}
11731
11732/* Pull all the tracepoints defined on the target and create local
11733 data structures representing them. We don't want to create real
11734 tracepoints yet, we don't want to mess up the user's existing
11735 collection. */
11736
11737static int
11738remote_upload_tracepoints (struct uploaded_tp **utpp)
11739{
11740 struct remote_state *rs = get_remote_state ();
11741 char *p;
11742
11743 /* Ask for a first packet of tracepoint definition. */
11744 putpkt ("qTfP");
11745 getpkt (&rs->buf, &rs->buf_size, 0);
11746 p = rs->buf;
11747 while (*p && *p != 'l')
11748 {
11749 parse_tracepoint_definition (p, utpp);
11750 /* Ask for another packet of tracepoint definition. */
11751 putpkt ("qTsP");
11752 getpkt (&rs->buf, &rs->buf_size, 0);
11753 p = rs->buf;
11754 }
11755 return 0;
11756}
11757
11758static int
11759remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11760{
11761 struct remote_state *rs = get_remote_state ();
11762 char *p;
11763
11764 /* Ask for a first packet of variable definition. */
11765 putpkt ("qTfV");
11766 getpkt (&rs->buf, &rs->buf_size, 0);
11767 p = rs->buf;
11768 while (*p && *p != 'l')
11769 {
11770 parse_tsv_definition (p, utsvp);
11771 /* Ask for another packet of variable definition. */
11772 putpkt ("qTsV");
11773 getpkt (&rs->buf, &rs->buf_size, 0);
11774 p = rs->buf;
11775 }
11776 return 0;
11777}
11778
11779/* The "set/show range-stepping" show hook. */
11780
11781static void
11782show_range_stepping (struct ui_file *file, int from_tty,
11783 struct cmd_list_element *c,
11784 const char *value)
11785{
11786 fprintf_filtered (file,
11787 _("Debugger's willingness to use range stepping "
11788 "is %s.\n"), value);
11789}
11790
11791/* The "set/show range-stepping" set hook. */
11792
11793static void
11794set_range_stepping (char *ignore_args, int from_tty,
11795 struct cmd_list_element *c)
11796{
11797 struct remote_state *rs = get_remote_state ();
11798
11799 /* Whene enabling, check whether range stepping is actually
11800 supported by the target, and warn if not. */
11801 if (use_range_stepping)
11802 {
11803 if (rs->remote_desc != NULL)
11804 {
11805 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11806 remote_vcont_probe (rs);
11807
11808 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11809 && rs->supports_vCont.r)
11810 return;
11811 }
11812
11813 warning (_("Range stepping is not supported by the current target"));
11814 }
11815}
11816
11817void
11818_initialize_remote (void)
11819{
11820 struct remote_state *rs;
11821 struct cmd_list_element *cmd;
11822 const char *cmd_name;
11823
11824 /* architecture specific data */
11825 remote_gdbarch_data_handle =
11826 gdbarch_data_register_post_init (init_remote_state);
11827 remote_g_packet_data_handle =
11828 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11829
11830 /* Initialize the per-target state. At the moment there is only one
11831 of these, not one per target. Only one target is active at a
11832 time. */
11833 remote_state = new_remote_state ();
11834
11835 init_remote_ops ();
11836 add_target (&remote_ops);
11837
11838 init_extended_remote_ops ();
11839 add_target (&extended_remote_ops);
11840
11841 /* Hook into new objfile notification. */
11842 observer_attach_new_objfile (remote_new_objfile);
11843 /* We're no longer interested in notification events of an inferior
11844 when it exits. */
11845 observer_attach_inferior_exit (discard_pending_stop_replies);
11846
11847 /* Set up signal handlers. */
11848 async_sigint_remote_token =
11849 create_async_signal_handler (async_remote_interrupt, NULL);
11850 async_sigint_remote_twice_token =
11851 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11852
11853#if 0
11854 init_remote_threadtests ();
11855#endif
11856
11857 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11858 /* set/show remote ... */
11859
11860 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11861Remote protocol specific variables\n\
11862Configure various remote-protocol specific variables such as\n\
11863the packets being used"),
11864 &remote_set_cmdlist, "set remote ",
11865 0 /* allow-unknown */, &setlist);
11866 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11867Remote protocol specific variables\n\
11868Configure various remote-protocol specific variables such as\n\
11869the packets being used"),
11870 &remote_show_cmdlist, "show remote ",
11871 0 /* allow-unknown */, &showlist);
11872
11873 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11874Compare section data on target to the exec file.\n\
11875Argument is a single section name (default: all loaded sections)."),
11876 &cmdlist);
11877
11878 add_cmd ("packet", class_maintenance, packet_command, _("\
11879Send an arbitrary packet to a remote target.\n\
11880 maintenance packet TEXT\n\
11881If GDB is talking to an inferior via the GDB serial protocol, then\n\
11882this command sends the string TEXT to the inferior, and displays the\n\
11883response packet. GDB supplies the initial `$' character, and the\n\
11884terminating `#' character and checksum."),
11885 &maintenancelist);
11886
11887 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11888Set whether to send break if interrupted."), _("\
11889Show whether to send break if interrupted."), _("\
11890If set, a break, instead of a cntrl-c, is sent to the remote target."),
11891 set_remotebreak, show_remotebreak,
11892 &setlist, &showlist);
11893 cmd_name = "remotebreak";
11894 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11895 deprecate_cmd (cmd, "set remote interrupt-sequence");
11896 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11897 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11898 deprecate_cmd (cmd, "show remote interrupt-sequence");
11899
11900 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11901 interrupt_sequence_modes, &interrupt_sequence_mode,
11902 _("\
11903Set interrupt sequence to remote target."), _("\
11904Show interrupt sequence to remote target."), _("\
11905Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11906 NULL, show_interrupt_sequence,
11907 &remote_set_cmdlist,
11908 &remote_show_cmdlist);
11909
11910 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11911 &interrupt_on_connect, _("\
11912Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11913Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11914If set, interrupt sequence is sent to remote target."),
11915 NULL, NULL,
11916 &remote_set_cmdlist, &remote_show_cmdlist);
11917
11918 /* Install commands for configuring memory read/write packets. */
11919
11920 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11921Set the maximum number of bytes per memory write packet (deprecated)."),
11922 &setlist);
11923 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11924Show the maximum number of bytes per memory write packet (deprecated)."),
11925 &showlist);
11926 add_cmd ("memory-write-packet-size", no_class,
11927 set_memory_write_packet_size, _("\
11928Set the maximum number of bytes per memory-write packet.\n\
11929Specify the number of bytes in a packet or 0 (zero) for the\n\
11930default packet size. The actual limit is further reduced\n\
11931dependent on the target. Specify ``fixed'' to disable the\n\
11932further restriction and ``limit'' to enable that restriction."),
11933 &remote_set_cmdlist);
11934 add_cmd ("memory-read-packet-size", no_class,
11935 set_memory_read_packet_size, _("\
11936Set the maximum number of bytes per memory-read packet.\n\
11937Specify the number of bytes in a packet or 0 (zero) for the\n\
11938default packet size. The actual limit is further reduced\n\
11939dependent on the target. Specify ``fixed'' to disable the\n\
11940further restriction and ``limit'' to enable that restriction."),
11941 &remote_set_cmdlist);
11942 add_cmd ("memory-write-packet-size", no_class,
11943 show_memory_write_packet_size,
11944 _("Show the maximum number of bytes per memory-write packet."),
11945 &remote_show_cmdlist);
11946 add_cmd ("memory-read-packet-size", no_class,
11947 show_memory_read_packet_size,
11948 _("Show the maximum number of bytes per memory-read packet."),
11949 &remote_show_cmdlist);
11950
11951 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11952 &remote_hw_watchpoint_limit, _("\
11953Set the maximum number of target hardware watchpoints."), _("\
11954Show the maximum number of target hardware watchpoints."), _("\
11955Specify a negative limit for unlimited."),
11956 NULL, NULL, /* FIXME: i18n: The maximum
11957 number of target hardware
11958 watchpoints is %s. */
11959 &remote_set_cmdlist, &remote_show_cmdlist);
11960 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11961 &remote_hw_watchpoint_length_limit, _("\
11962Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11963Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11964Specify a negative limit for unlimited."),
11965 NULL, NULL, /* FIXME: i18n: The maximum
11966 length (in bytes) of a target
11967 hardware watchpoint is %s. */
11968 &remote_set_cmdlist, &remote_show_cmdlist);
11969 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11970 &remote_hw_breakpoint_limit, _("\
11971Set the maximum number of target hardware breakpoints."), _("\
11972Show the maximum number of target hardware breakpoints."), _("\
11973Specify a negative limit for unlimited."),
11974 NULL, NULL, /* FIXME: i18n: The maximum
11975 number of target hardware
11976 breakpoints is %s. */
11977 &remote_set_cmdlist, &remote_show_cmdlist);
11978
11979 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11980 &remote_address_size, _("\
11981Set the maximum size of the address (in bits) in a memory packet."), _("\
11982Show the maximum size of the address (in bits) in a memory packet."), NULL,
11983 NULL,
11984 NULL, /* FIXME: i18n: */
11985 &setlist, &showlist);
11986
11987 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11988 "X", "binary-download", 1);
11989
11990 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11991 "vCont", "verbose-resume", 0);
11992
11993 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11994 "QPassSignals", "pass-signals", 0);
11995
11996 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11997 "QProgramSignals", "program-signals", 0);
11998
11999 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12000 "qSymbol", "symbol-lookup", 0);
12001
12002 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12003 "P", "set-register", 1);
12004
12005 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12006 "p", "fetch-register", 1);
12007
12008 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12009 "Z0", "software-breakpoint", 0);
12010
12011 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12012 "Z1", "hardware-breakpoint", 0);
12013
12014 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12015 "Z2", "write-watchpoint", 0);
12016
12017 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12018 "Z3", "read-watchpoint", 0);
12019
12020 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12021 "Z4", "access-watchpoint", 0);
12022
12023 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12024 "qXfer:auxv:read", "read-aux-vector", 0);
12025
12026 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12027 "qXfer:features:read", "target-features", 0);
12028
12029 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12030 "qXfer:libraries:read", "library-info", 0);
12031
12032 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12033 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12034
12035 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12036 "qXfer:memory-map:read", "memory-map", 0);
12037
12038 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12039 "qXfer:spu:read", "read-spu-object", 0);
12040
12041 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12042 "qXfer:spu:write", "write-spu-object", 0);
12043
12044 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12045 "qXfer:osdata:read", "osdata", 0);
12046
12047 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12048 "qXfer:threads:read", "threads", 0);
12049
12050 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12051 "qXfer:siginfo:read", "read-siginfo-object", 0);
12052
12053 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12054 "qXfer:siginfo:write", "write-siginfo-object", 0);
12055
12056 add_packet_config_cmd
12057 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12058 "qXfer:traceframe-info:read", "traceframe-info", 0);
12059
12060 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12061 "qXfer:uib:read", "unwind-info-block", 0);
12062
12063 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12064 "qGetTLSAddr", "get-thread-local-storage-address",
12065 0);
12066
12067 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12068 "qGetTIBAddr", "get-thread-information-block-address",
12069 0);
12070
12071 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12072 "bc", "reverse-continue", 0);
12073
12074 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12075 "bs", "reverse-step", 0);
12076
12077 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12078 "qSupported", "supported-packets", 0);
12079
12080 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12081 "qSearch:memory", "search-memory", 0);
12082
12083 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12084 "qTStatus", "trace-status", 0);
12085
12086 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12087 "vFile:open", "hostio-open", 0);
12088
12089 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12090 "vFile:pread", "hostio-pread", 0);
12091
12092 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12093 "vFile:pwrite", "hostio-pwrite", 0);
12094
12095 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12096 "vFile:close", "hostio-close", 0);
12097
12098 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12099 "vFile:unlink", "hostio-unlink", 0);
12100
12101 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12102 "vFile:readlink", "hostio-readlink", 0);
12103
12104 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12105 "vAttach", "attach", 0);
12106
12107 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12108 "vRun", "run", 0);
12109
12110 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12111 "QStartNoAckMode", "noack", 0);
12112
12113 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12114 "vKill", "kill", 0);
12115
12116 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12117 "qAttached", "query-attached", 0);
12118
12119 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12120 "ConditionalTracepoints",
12121 "conditional-tracepoints", 0);
12122
12123 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12124 "ConditionalBreakpoints",
12125 "conditional-breakpoints", 0);
12126
12127 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12128 "BreakpointCommands",
12129 "breakpoint-commands", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12132 "FastTracepoints", "fast-tracepoints", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12135 "TracepointSource", "TracepointSource", 0);
12136
12137 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12138 "QAllow", "allow", 0);
12139
12140 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12141 "StaticTracepoints", "static-tracepoints", 0);
12142
12143 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12144 "InstallInTrace", "install-in-trace", 0);
12145
12146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12147 "qXfer:statictrace:read", "read-sdata-object", 0);
12148
12149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12150 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12151
12152 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12153 "QDisableRandomization", "disable-randomization", 0);
12154
12155 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12156 "QAgent", "agent", 0);
12157
12158 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12159 "QTBuffer:size", "trace-buffer-size", 0);
12160
12161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12162 "Qbtrace:off", "disable-btrace", 0);
12163
12164 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12165 "Qbtrace:bts", "enable-btrace", 0);
12166
12167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12168 "qXfer:btrace", "read-btrace", 0);
12169
12170 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12171 Z sub-packet has its own set and show commands, but users may
12172 have sets to this variable in their .gdbinit files (or in their
12173 documentation). */
12174 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12175 &remote_Z_packet_detect, _("\
12176Set use of remote protocol `Z' packets"), _("\
12177Show use of remote protocol `Z' packets "), _("\
12178When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12179packets."),
12180 set_remote_protocol_Z_packet_cmd,
12181 show_remote_protocol_Z_packet_cmd,
12182 /* FIXME: i18n: Use of remote protocol
12183 `Z' packets is %s. */
12184 &remote_set_cmdlist, &remote_show_cmdlist);
12185
12186 add_prefix_cmd ("remote", class_files, remote_command, _("\
12187Manipulate files on the remote system\n\
12188Transfer files to and from the remote target system."),
12189 &remote_cmdlist, "remote ",
12190 0 /* allow-unknown */, &cmdlist);
12191
12192 add_cmd ("put", class_files, remote_put_command,
12193 _("Copy a local file to the remote system."),
12194 &remote_cmdlist);
12195
12196 add_cmd ("get", class_files, remote_get_command,
12197 _("Copy a remote file to the local system."),
12198 &remote_cmdlist);
12199
12200 add_cmd ("delete", class_files, remote_delete_command,
12201 _("Delete a remote file."),
12202 &remote_cmdlist);
12203
12204 remote_exec_file = xstrdup ("");
12205 add_setshow_string_noescape_cmd ("exec-file", class_files,
12206 &remote_exec_file, _("\
12207Set the remote pathname for \"run\""), _("\
12208Show the remote pathname for \"run\""), NULL, NULL, NULL,
12209 &remote_set_cmdlist, &remote_show_cmdlist);
12210
12211 add_setshow_boolean_cmd ("range-stepping", class_run,
12212 &use_range_stepping, _("\
12213Enable or disable range stepping."), _("\
12214Show whether target-assisted range stepping is enabled."), _("\
12215If on, and the target supports it, when stepping a source line, GDB\n\
12216tells the target to step the corresponding range of addresses itself instead\n\
12217of issuing multiple single-steps. This speeds up source level\n\
12218stepping. If off, GDB always issues single-steps, even if range\n\
12219stepping is supported by the target. The default is on."),
12220 set_range_stepping,
12221 show_range_stepping,
12222 &setlist,
12223 &showlist);
12224
12225 /* Eventually initialize fileio. See fileio.c */
12226 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12227
12228 /* Take advantage of the fact that the LWP field is not used, to tag
12229 special ptids with it set to != 0. */
12230 magic_null_ptid = ptid_build (42000, 1, -1);
12231 not_sent_ptid = ptid_build (42000, 1, -2);
12232 any_thread_ptid = ptid_build (42000, 1, 0);
12233
12234 target_buf_size = 2048;
12235 target_buf = xmalloc (target_buf_size);
12236}
12237
This page took 0.091146 seconds and 4 git commands to generate.