* breakpoint.c (insert_catchpoint): New function.
[deliverable/binutils-gdb.git] / gdb / remote.c
... / ...
CommitLineData
1/* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23/* See the GDB User Guide for details of the GDB remote protocol. */
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include <fcntl.h>
29#include "inferior.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "target.h"
33/*#include "terminal.h" */
34#include "gdbcmd.h"
35#include "objfiles.h"
36#include "gdb-stabs.h"
37#include "gdbthread.h"
38#include "remote.h"
39#include "regcache.h"
40#include "value.h"
41#include "gdb_assert.h"
42
43#include <ctype.h>
44#include <sys/time.h>
45#ifdef USG
46#include <sys/types.h>
47#endif
48
49#include "event-loop.h"
50#include "event-top.h"
51#include "inf-loop.h"
52
53#include <signal.h>
54#include "serial.h"
55
56#include "gdbcore.h" /* for exec_bfd */
57
58#include "remote-fileio.h"
59
60/* Prototypes for local functions */
61static void cleanup_sigint_signal_handler (void *dummy);
62static void initialize_sigint_signal_handler (void);
63static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65static void handle_remote_sigint (int);
66static void handle_remote_sigint_twice (int);
67static void async_remote_interrupt (gdb_client_data);
68void async_remote_interrupt_twice (gdb_client_data);
69
70static void build_remote_gdbarch_data (void);
71
72static void remote_files_info (struct target_ops *ignore);
73
74static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79static void remote_prepare_to_store (void);
80
81static void remote_fetch_registers (int regno);
82
83static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87static int remote_start_remote (struct ui_out *uiout, void *dummy);
88
89static void remote_open (char *name, int from_tty);
90static void remote_async_open (char *name, int from_tty);
91
92static void extended_remote_open (char *name, int from_tty);
93static void extended_remote_async_open (char *name, int from_tty);
94
95static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
96 int async_p);
97
98static void remote_close (int quitting);
99
100static void remote_store_registers (int regno);
101
102static void remote_mourn (void);
103static void remote_async_mourn (void);
104
105static void extended_remote_restart (void);
106
107static void extended_remote_mourn (void);
108
109static void extended_remote_create_inferior (char *, char *, char **);
110static void extended_remote_async_create_inferior (char *, char *, char **);
111
112static void remote_mourn_1 (struct target_ops *);
113
114static void remote_send (char *buf, long sizeof_buf);
115
116static int readchar (int timeout);
117
118static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123static void remote_kill (void);
124static void remote_async_kill (void);
125
126static int tohex (int nib);
127
128static void remote_detach (char *args, int from_tty);
129static void remote_async_detach (char *args, int from_tty);
130
131static void remote_interrupt (int signo);
132
133static void remote_interrupt_twice (int signo);
134
135static void interrupt_query (void);
136
137static void set_thread (int, int);
138
139static int remote_thread_alive (ptid_t);
140
141static void get_offsets (void);
142
143static long read_frame (char *buf, long sizeof_buf);
144
145static int remote_insert_breakpoint (CORE_ADDR, char *);
146
147static int remote_remove_breakpoint (CORE_ADDR, char *);
148
149static int hexnumlen (ULONGEST num);
150
151static void init_remote_ops (void);
152
153static void init_extended_remote_ops (void);
154
155static void init_remote_cisco_ops (void);
156
157static struct target_ops remote_cisco_ops;
158
159static void remote_stop (void);
160
161static int ishex (int ch, int *val);
162
163static int stubhex (int ch);
164
165static int remote_query (int /*char */ , char *, char *, int *);
166
167static int hexnumstr (char *, ULONGEST);
168
169static int hexnumnstr (char *, ULONGEST, int);
170
171static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173static void print_packet (char *);
174
175static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177static void compare_sections_command (char *, int);
178
179static void packet_command (char *, int);
180
181static int stub_unpack_int (char *buff, int fieldlength);
182
183static ptid_t remote_current_thread (ptid_t oldptid);
184
185static void remote_find_new_threads (void);
186
187static void record_currthread (int currthread);
188
189static int fromhex (int a);
190
191static int hex2bin (const char *hex, char *bin, int count);
192
193static int bin2hex (const char *bin, char *hex, int count);
194
195static int putpkt_binary (char *buf, int cnt);
196
197static void check_binary_download (CORE_ADDR addr);
198
199struct packet_config;
200
201static void show_packet_config_cmd (struct packet_config *config);
202
203static void update_packet_config (struct packet_config *config);
204
205void _initialize_remote (void);
206
207/* Description of the remote protocol. Strictly speaking, when the
208 target is open()ed, remote.c should create a per-target description
209 of the remote protocol using that target's architecture.
210 Unfortunatly, the target stack doesn't include local state. For
211 the moment keep the information in the target's architecture
212 object. Sigh.. */
213
214struct packet_reg
215{
216 long offset; /* Offset into G packet. */
217 long regnum; /* GDB's internal register number. */
218 LONGEST pnum; /* Remote protocol register number. */
219 int in_g_packet; /* Always part of G packet. */
220 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
221 /* char *name; == REGISTER_NAME (regnum); at present. */
222};
223
224struct remote_state
225{
226 /* Description of the remote protocol registers. */
227 long sizeof_g_packet;
228
229 /* Description of the remote protocol registers indexed by REGNUM
230 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
231 struct packet_reg *regs;
232
233 /* This is the size (in chars) of the first response to the ``g''
234 packet. It is used as a heuristic when determining the maximum
235 size of memory-read and memory-write packets. A target will
236 typically only reserve a buffer large enough to hold the ``g''
237 packet. The size does not include packet overhead (headers and
238 trailers). */
239 long actual_register_packet_size;
240
241 /* This is the maximum size (in chars) of a non read/write packet.
242 It is also used as a cap on the size of read/write packets. */
243 long remote_packet_size;
244};
245
246
247/* Handle for retreving the remote protocol data from gdbarch. */
248static struct gdbarch_data *remote_gdbarch_data_handle;
249
250static struct remote_state *
251get_remote_state (void)
252{
253 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
254}
255
256static void *
257init_remote_state (struct gdbarch *gdbarch)
258{
259 int regnum;
260 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
261
262 if (DEPRECATED_REGISTER_BYTES != 0)
263 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
264 else
265 rs->sizeof_g_packet = 0;
266
267 /* Assume a 1:1 regnum<->pnum table. */
268 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
269 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
270 {
271 struct packet_reg *r = &rs->regs[regnum];
272 r->pnum = regnum;
273 r->regnum = regnum;
274 r->offset = REGISTER_BYTE (regnum);
275 r->in_g_packet = (regnum < NUM_REGS);
276 /* ...name = REGISTER_NAME (regnum); */
277
278 /* Compute packet size by accumulating the size of all registers. */
279 if (DEPRECATED_REGISTER_BYTES == 0)
280 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
281 }
282
283 /* Default maximum number of characters in a packet body. Many
284 remote stubs have a hardwired buffer size of 400 bytes
285 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
286 as the maximum packet-size to ensure that the packet and an extra
287 NUL character can always fit in the buffer. This stops GDB
288 trashing stubs that try to squeeze an extra NUL into what is
289 already a full buffer (As of 1999-12-04 that was most stubs. */
290 rs->remote_packet_size = 400 - 1;
291
292 /* Should rs->sizeof_g_packet needs more space than the
293 default, adjust the size accordingly. Remember that each byte is
294 encoded as two characters. 32 is the overhead for the packet
295 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
296 (``$NN:G...#NN'') is a better guess, the below has been padded a
297 little. */
298 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
299 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
300
301 /* This one is filled in when a ``g'' packet is received. */
302 rs->actual_register_packet_size = 0;
303
304 return rs;
305}
306
307static void
308free_remote_state (struct gdbarch *gdbarch, void *pointer)
309{
310 struct remote_state *data = pointer;
311 xfree (data->regs);
312 xfree (data);
313}
314
315static struct packet_reg *
316packet_reg_from_regnum (struct remote_state *rs, long regnum)
317{
318 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
319 return NULL;
320 else
321 {
322 struct packet_reg *r = &rs->regs[regnum];
323 gdb_assert (r->regnum == regnum);
324 return r;
325 }
326}
327
328static struct packet_reg *
329packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
330{
331 int i;
332 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
333 {
334 struct packet_reg *r = &rs->regs[i];
335 if (r->pnum == pnum)
336 return r;
337 }
338 return NULL;
339}
340
341/* FIXME: graces/2002-08-08: These variables should eventually be
342 bound to an instance of the target object (as in gdbarch-tdep()),
343 when such a thing exists. */
344
345/* This is set to the data address of the access causing the target
346 to stop for a watchpoint. */
347static CORE_ADDR remote_watch_data_address;
348
349/* This is non-zero if taregt stopped for a watchpoint. */
350static int remote_stopped_by_watchpoint_p;
351
352
353static struct target_ops remote_ops;
354
355static struct target_ops extended_remote_ops;
356
357/* Temporary target ops. Just like the remote_ops and
358 extended_remote_ops, but with asynchronous support. */
359static struct target_ops remote_async_ops;
360
361static struct target_ops extended_async_remote_ops;
362
363/* FIXME: cagney/1999-09-23: Even though getpkt was called with
364 ``forever'' still use the normal timeout mechanism. This is
365 currently used by the ASYNC code to guarentee that target reads
366 during the initial connect always time-out. Once getpkt has been
367 modified to return a timeout indication and, in turn
368 remote_wait()/wait_for_inferior() have gained a timeout parameter
369 this can go away. */
370static int wait_forever_enabled_p = 1;
371
372
373/* This variable chooses whether to send a ^C or a break when the user
374 requests program interruption. Although ^C is usually what remote
375 systems expect, and that is the default here, sometimes a break is
376 preferable instead. */
377
378static int remote_break;
379
380/* Descriptor for I/O to remote machine. Initialize it to NULL so that
381 remote_open knows that we don't have a file open when the program
382 starts. */
383static struct serial *remote_desc = NULL;
384
385/* This is set by the target (thru the 'S' message)
386 to denote that the target is in kernel mode. */
387static int cisco_kernel_mode = 0;
388
389/* This variable sets the number of bits in an address that are to be
390 sent in a memory ("M" or "m") packet. Normally, after stripping
391 leading zeros, the entire address would be sent. This variable
392 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
393 initial implementation of remote.c restricted the address sent in
394 memory packets to ``host::sizeof long'' bytes - (typically 32
395 bits). Consequently, for 64 bit targets, the upper 32 bits of an
396 address was never sent. Since fixing this bug may cause a break in
397 some remote targets this variable is principly provided to
398 facilitate backward compatibility. */
399
400static int remote_address_size;
401
402/* Tempoary to track who currently owns the terminal. See
403 target_async_terminal_* for more details. */
404
405static int remote_async_terminal_ours_p;
406
407\f
408/* User configurable variables for the number of characters in a
409 memory read/write packet. MIN ((rs->remote_packet_size),
410 rs->sizeof_g_packet) is the default. Some targets need smaller
411 values (fifo overruns, et.al.) and some users need larger values
412 (speed up transfers). The variables ``preferred_*'' (the user
413 request), ``current_*'' (what was actually set) and ``forced_*''
414 (Positive - a soft limit, negative - a hard limit). */
415
416struct memory_packet_config
417{
418 char *name;
419 long size;
420 int fixed_p;
421};
422
423/* Compute the current size of a read/write packet. Since this makes
424 use of ``actual_register_packet_size'' the computation is dynamic. */
425
426static long
427get_memory_packet_size (struct memory_packet_config *config)
428{
429 struct remote_state *rs = get_remote_state ();
430 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
431 law?) that some hosts don't cope very well with large alloca()
432 calls. Eventually the alloca() code will be replaced by calls to
433 xmalloc() and make_cleanups() allowing this restriction to either
434 be lifted or removed. */
435#ifndef MAX_REMOTE_PACKET_SIZE
436#define MAX_REMOTE_PACKET_SIZE 16384
437#endif
438 /* NOTE: 16 is just chosen at random. */
439#ifndef MIN_REMOTE_PACKET_SIZE
440#define MIN_REMOTE_PACKET_SIZE 16
441#endif
442 long what_they_get;
443 if (config->fixed_p)
444 {
445 if (config->size <= 0)
446 what_they_get = MAX_REMOTE_PACKET_SIZE;
447 else
448 what_they_get = config->size;
449 }
450 else
451 {
452 what_they_get = (rs->remote_packet_size);
453 /* Limit the packet to the size specified by the user. */
454 if (config->size > 0
455 && what_they_get > config->size)
456 what_they_get = config->size;
457 /* Limit it to the size of the targets ``g'' response. */
458 if ((rs->actual_register_packet_size) > 0
459 && what_they_get > (rs->actual_register_packet_size))
460 what_they_get = (rs->actual_register_packet_size);
461 }
462 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
463 what_they_get = MAX_REMOTE_PACKET_SIZE;
464 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
465 what_they_get = MIN_REMOTE_PACKET_SIZE;
466 return what_they_get;
467}
468
469/* Update the size of a read/write packet. If they user wants
470 something really big then do a sanity check. */
471
472static void
473set_memory_packet_size (char *args, struct memory_packet_config *config)
474{
475 int fixed_p = config->fixed_p;
476 long size = config->size;
477 if (args == NULL)
478 error ("Argument required (integer, `fixed' or `limited').");
479 else if (strcmp (args, "hard") == 0
480 || strcmp (args, "fixed") == 0)
481 fixed_p = 1;
482 else if (strcmp (args, "soft") == 0
483 || strcmp (args, "limit") == 0)
484 fixed_p = 0;
485 else
486 {
487 char *end;
488 size = strtoul (args, &end, 0);
489 if (args == end)
490 error ("Invalid %s (bad syntax).", config->name);
491#if 0
492 /* Instead of explicitly capping the size of a packet to
493 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
494 instead allowed to set the size to something arbitrarily
495 large. */
496 if (size > MAX_REMOTE_PACKET_SIZE)
497 error ("Invalid %s (too large).", config->name);
498#endif
499 }
500 /* Extra checks? */
501 if (fixed_p && !config->fixed_p)
502 {
503 if (! query ("The target may not be able to correctly handle a %s\n"
504 "of %ld bytes. Change the packet size? ",
505 config->name, size))
506 error ("Packet size not changed.");
507 }
508 /* Update the config. */
509 config->fixed_p = fixed_p;
510 config->size = size;
511}
512
513static void
514show_memory_packet_size (struct memory_packet_config *config)
515{
516 printf_filtered ("The %s is %ld. ", config->name, config->size);
517 if (config->fixed_p)
518 printf_filtered ("Packets are fixed at %ld bytes.\n",
519 get_memory_packet_size (config));
520 else
521 printf_filtered ("Packets are limited to %ld bytes.\n",
522 get_memory_packet_size (config));
523}
524
525static struct memory_packet_config memory_write_packet_config =
526{
527 "memory-write-packet-size",
528};
529
530static void
531set_memory_write_packet_size (char *args, int from_tty)
532{
533 set_memory_packet_size (args, &memory_write_packet_config);
534}
535
536static void
537show_memory_write_packet_size (char *args, int from_tty)
538{
539 show_memory_packet_size (&memory_write_packet_config);
540}
541
542static long
543get_memory_write_packet_size (void)
544{
545 return get_memory_packet_size (&memory_write_packet_config);
546}
547
548static struct memory_packet_config memory_read_packet_config =
549{
550 "memory-read-packet-size",
551};
552
553static void
554set_memory_read_packet_size (char *args, int from_tty)
555{
556 set_memory_packet_size (args, &memory_read_packet_config);
557}
558
559static void
560show_memory_read_packet_size (char *args, int from_tty)
561{
562 show_memory_packet_size (&memory_read_packet_config);
563}
564
565static long
566get_memory_read_packet_size (void)
567{
568 struct remote_state *rs = get_remote_state ();
569 long size = get_memory_packet_size (&memory_read_packet_config);
570 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
571 extra buffer size argument before the memory read size can be
572 increased beyond (rs->remote_packet_size). */
573 if (size > (rs->remote_packet_size))
574 size = (rs->remote_packet_size);
575 return size;
576}
577
578\f
579/* Generic configuration support for packets the stub optionally
580 supports. Allows the user to specify the use of the packet as well
581 as allowing GDB to auto-detect support in the remote stub. */
582
583enum packet_support
584 {
585 PACKET_SUPPORT_UNKNOWN = 0,
586 PACKET_ENABLE,
587 PACKET_DISABLE
588 };
589
590struct packet_config
591 {
592 char *name;
593 char *title;
594 enum auto_boolean detect;
595 enum packet_support support;
596 };
597
598/* Analyze a packet's return value and update the packet config
599 accordingly. */
600
601enum packet_result
602{
603 PACKET_ERROR,
604 PACKET_OK,
605 PACKET_UNKNOWN
606};
607
608static void
609update_packet_config (struct packet_config *config)
610{
611 switch (config->detect)
612 {
613 case AUTO_BOOLEAN_TRUE:
614 config->support = PACKET_ENABLE;
615 break;
616 case AUTO_BOOLEAN_FALSE:
617 config->support = PACKET_DISABLE;
618 break;
619 case AUTO_BOOLEAN_AUTO:
620 config->support = PACKET_SUPPORT_UNKNOWN;
621 break;
622 }
623}
624
625static void
626show_packet_config_cmd (struct packet_config *config)
627{
628 char *support = "internal-error";
629 switch (config->support)
630 {
631 case PACKET_ENABLE:
632 support = "enabled";
633 break;
634 case PACKET_DISABLE:
635 support = "disabled";
636 break;
637 case PACKET_SUPPORT_UNKNOWN:
638 support = "unknown";
639 break;
640 }
641 switch (config->detect)
642 {
643 case AUTO_BOOLEAN_AUTO:
644 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
645 config->name, config->title, support);
646 break;
647 case AUTO_BOOLEAN_TRUE:
648 case AUTO_BOOLEAN_FALSE:
649 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
650 config->name, config->title, support);
651 break;
652 }
653}
654
655static void
656add_packet_config_cmd (struct packet_config *config,
657 char *name,
658 char *title,
659 cmd_sfunc_ftype *set_func,
660 cmd_sfunc_ftype *show_func,
661 struct cmd_list_element **set_remote_list,
662 struct cmd_list_element **show_remote_list,
663 int legacy)
664{
665 struct cmd_list_element *set_cmd;
666 struct cmd_list_element *show_cmd;
667 char *set_doc;
668 char *show_doc;
669 char *cmd_name;
670 config->name = name;
671 config->title = title;
672 config->detect = AUTO_BOOLEAN_AUTO;
673 config->support = PACKET_SUPPORT_UNKNOWN;
674 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
675 name, title);
676 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
677 name, title);
678 /* set/show TITLE-packet {auto,on,off} */
679 xasprintf (&cmd_name, "%s-packet", title);
680 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
681 &config->detect, set_doc, show_doc,
682 set_func, show_func,
683 set_remote_list, show_remote_list);
684 /* set/show remote NAME-packet {auto,on,off} -- legacy */
685 if (legacy)
686 {
687 char *legacy_name;
688 xasprintf (&legacy_name, "%s-packet", name);
689 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
690 set_remote_list);
691 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
692 show_remote_list);
693 }
694}
695
696static enum packet_result
697packet_ok (const char *buf, struct packet_config *config)
698{
699 if (buf[0] != '\0')
700 {
701 /* The stub recognized the packet request. Check that the
702 operation succeeded. */
703 switch (config->support)
704 {
705 case PACKET_SUPPORT_UNKNOWN:
706 if (remote_debug)
707 fprintf_unfiltered (gdb_stdlog,
708 "Packet %s (%s) is supported\n",
709 config->name, config->title);
710 config->support = PACKET_ENABLE;
711 break;
712 case PACKET_DISABLE:
713 internal_error (__FILE__, __LINE__,
714 "packet_ok: attempt to use a disabled packet");
715 break;
716 case PACKET_ENABLE:
717 break;
718 }
719 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
720 /* "OK" - definitly OK. */
721 return PACKET_OK;
722 if (buf[0] == 'E'
723 && isxdigit (buf[1]) && isxdigit (buf[2])
724 && buf[3] == '\0')
725 /* "Enn" - definitly an error. */
726 return PACKET_ERROR;
727 /* The packet may or may not be OK. Just assume it is */
728 return PACKET_OK;
729 }
730 else
731 {
732 /* The stub does not support the packet. */
733 switch (config->support)
734 {
735 case PACKET_ENABLE:
736 if (config->detect == AUTO_BOOLEAN_AUTO)
737 /* If the stub previously indicated that the packet was
738 supported then there is a protocol error.. */
739 error ("Protocol error: %s (%s) conflicting enabled responses.",
740 config->name, config->title);
741 else
742 /* The user set it wrong. */
743 error ("Enabled packet %s (%s) not recognized by stub",
744 config->name, config->title);
745 break;
746 case PACKET_SUPPORT_UNKNOWN:
747 if (remote_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "Packet %s (%s) is NOT supported\n",
750 config->name, config->title);
751 config->support = PACKET_DISABLE;
752 break;
753 case PACKET_DISABLE:
754 break;
755 }
756 return PACKET_UNKNOWN;
757 }
758}
759
760/* Should we try the 'qSymbol' (target symbol lookup service) request? */
761static struct packet_config remote_protocol_qSymbol;
762
763static void
764set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
765 struct cmd_list_element *c)
766{
767 update_packet_config (&remote_protocol_qSymbol);
768}
769
770static void
771show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773{
774 show_packet_config_cmd (&remote_protocol_qSymbol);
775}
776
777/* Should we try the 'e' (step over range) request? */
778static struct packet_config remote_protocol_e;
779
780static void
781set_remote_protocol_e_packet_cmd (char *args, int from_tty,
782 struct cmd_list_element *c)
783{
784 update_packet_config (&remote_protocol_e);
785}
786
787static void
788show_remote_protocol_e_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790{
791 show_packet_config_cmd (&remote_protocol_e);
792}
793
794
795/* Should we try the 'E' (step over range / w signal #) request? */
796static struct packet_config remote_protocol_E;
797
798static void
799set_remote_protocol_E_packet_cmd (char *args, int from_tty,
800 struct cmd_list_element *c)
801{
802 update_packet_config (&remote_protocol_E);
803}
804
805static void
806show_remote_protocol_E_packet_cmd (char *args, int from_tty,
807 struct cmd_list_element *c)
808{
809 show_packet_config_cmd (&remote_protocol_E);
810}
811
812
813/* Should we try the 'P' (set register) request? */
814
815static struct packet_config remote_protocol_P;
816
817static void
818set_remote_protocol_P_packet_cmd (char *args, int from_tty,
819 struct cmd_list_element *c)
820{
821 update_packet_config (&remote_protocol_P);
822}
823
824static void
825show_remote_protocol_P_packet_cmd (char *args, int from_tty,
826 struct cmd_list_element *c)
827{
828 show_packet_config_cmd (&remote_protocol_P);
829}
830
831/* Should we try one of the 'Z' requests? */
832
833enum Z_packet_type
834{
835 Z_PACKET_SOFTWARE_BP,
836 Z_PACKET_HARDWARE_BP,
837 Z_PACKET_WRITE_WP,
838 Z_PACKET_READ_WP,
839 Z_PACKET_ACCESS_WP,
840 NR_Z_PACKET_TYPES
841};
842
843static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
844
845/* FIXME: Instead of having all these boiler plate functions, the
846 command callback should include a context argument. */
847
848static void
849set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
850 struct cmd_list_element *c)
851{
852 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
853}
854
855static void
856show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
857 struct cmd_list_element *c)
858{
859 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
860}
861
862static void
863set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865{
866 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
867}
868
869static void
870show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
871 struct cmd_list_element *c)
872{
873 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
874}
875
876static void
877set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
878 struct cmd_list_element *c)
879{
880 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
881}
882
883static void
884show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
885 struct cmd_list_element *c)
886{
887 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
888}
889
890static void
891set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
892 struct cmd_list_element *c)
893{
894 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
895}
896
897static void
898show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
899 struct cmd_list_element *c)
900{
901 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
902}
903
904static void
905set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
906 struct cmd_list_element *c)
907{
908 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
909}
910
911static void
912show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914{
915 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
916}
917
918/* For compatibility with older distributions. Provide a ``set remote
919 Z-packet ...'' command that updates all the Z packet types. */
920
921static enum auto_boolean remote_Z_packet_detect;
922
923static void
924set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
925 struct cmd_list_element *c)
926{
927 int i;
928 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
929 {
930 remote_protocol_Z[i].detect = remote_Z_packet_detect;
931 update_packet_config (&remote_protocol_Z[i]);
932 }
933}
934
935static void
936show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
937 struct cmd_list_element *c)
938{
939 int i;
940 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
941 {
942 show_packet_config_cmd (&remote_protocol_Z[i]);
943 }
944}
945
946/* Should we try the 'X' (remote binary download) packet?
947
948 This variable (available to the user via "set remote X-packet")
949 dictates whether downloads are sent in binary (via the 'X' packet).
950 We assume that the stub can, and attempt to do it. This will be
951 cleared if the stub does not understand it. This switch is still
952 needed, though in cases when the packet is supported in the stub,
953 but the connection does not allow it (i.e., 7-bit serial connection
954 only). */
955
956static struct packet_config remote_protocol_binary_download;
957
958/* Should we try the 'ThreadInfo' query packet?
959
960 This variable (NOT available to the user: auto-detect only!)
961 determines whether GDB will use the new, simpler "ThreadInfo"
962 query or the older, more complex syntax for thread queries.
963 This is an auto-detect variable (set to true at each connect,
964 and set to false when the target fails to recognize it). */
965
966static int use_threadinfo_query;
967static int use_threadextra_query;
968
969static void
970set_remote_protocol_binary_download_cmd (char *args,
971 int from_tty,
972 struct cmd_list_element *c)
973{
974 update_packet_config (&remote_protocol_binary_download);
975}
976
977static void
978show_remote_protocol_binary_download_cmd (char *args, int from_tty,
979 struct cmd_list_element *c)
980{
981 show_packet_config_cmd (&remote_protocol_binary_download);
982}
983
984
985/* Tokens for use by the asynchronous signal handlers for SIGINT */
986static void *sigint_remote_twice_token;
987static void *sigint_remote_token;
988
989/* These are pointers to hook functions that may be set in order to
990 modify resume/wait behavior for a particular architecture. */
991
992void (*target_resume_hook) (void);
993void (*target_wait_loop_hook) (void);
994\f
995
996
997/* These are the threads which we last sent to the remote system.
998 -1 for all or -2 for not sent yet. */
999static int general_thread;
1000static int continue_thread;
1001
1002/* Call this function as a result of
1003 1) A halt indication (T packet) containing a thread id
1004 2) A direct query of currthread
1005 3) Successful execution of set thread
1006 */
1007
1008static void
1009record_currthread (int currthread)
1010{
1011 general_thread = currthread;
1012
1013 /* If this is a new thread, add it to GDB's thread list.
1014 If we leave it up to WFI to do this, bad things will happen. */
1015 if (!in_thread_list (pid_to_ptid (currthread)))
1016 {
1017 add_thread (pid_to_ptid (currthread));
1018 ui_out_text (uiout, "[New ");
1019 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1020 ui_out_text (uiout, "]\n");
1021 }
1022}
1023
1024#define MAGIC_NULL_PID 42000
1025
1026static void
1027set_thread (int th, int gen)
1028{
1029 struct remote_state *rs = get_remote_state ();
1030 char *buf = alloca (rs->remote_packet_size);
1031 int state = gen ? general_thread : continue_thread;
1032
1033 if (state == th)
1034 return;
1035
1036 buf[0] = 'H';
1037 buf[1] = gen ? 'g' : 'c';
1038 if (th == MAGIC_NULL_PID)
1039 {
1040 buf[2] = '0';
1041 buf[3] = '\0';
1042 }
1043 else if (th < 0)
1044 sprintf (&buf[2], "-%x", -th);
1045 else
1046 sprintf (&buf[2], "%x", th);
1047 putpkt (buf);
1048 getpkt (buf, (rs->remote_packet_size), 0);
1049 if (gen)
1050 general_thread = th;
1051 else
1052 continue_thread = th;
1053}
1054\f
1055/* Return nonzero if the thread TH is still alive on the remote system. */
1056
1057static int
1058remote_thread_alive (ptid_t ptid)
1059{
1060 int tid = PIDGET (ptid);
1061 char buf[16];
1062
1063 if (tid < 0)
1064 sprintf (buf, "T-%08x", -tid);
1065 else
1066 sprintf (buf, "T%08x", tid);
1067 putpkt (buf);
1068 getpkt (buf, sizeof (buf), 0);
1069 return (buf[0] == 'O' && buf[1] == 'K');
1070}
1071
1072/* About these extended threadlist and threadinfo packets. They are
1073 variable length packets but, the fields within them are often fixed
1074 length. They are redundent enough to send over UDP as is the
1075 remote protocol in general. There is a matching unit test module
1076 in libstub. */
1077
1078#define OPAQUETHREADBYTES 8
1079
1080/* a 64 bit opaque identifier */
1081typedef unsigned char threadref[OPAQUETHREADBYTES];
1082
1083/* WARNING: This threadref data structure comes from the remote O.S., libstub
1084 protocol encoding, and remote.c. it is not particularly changable */
1085
1086/* Right now, the internal structure is int. We want it to be bigger.
1087 Plan to fix this.
1088 */
1089
1090typedef int gdb_threadref; /* internal GDB thread reference */
1091
1092/* gdb_ext_thread_info is an internal GDB data structure which is
1093 equivalint to the reply of the remote threadinfo packet */
1094
1095struct gdb_ext_thread_info
1096 {
1097 threadref threadid; /* External form of thread reference */
1098 int active; /* Has state interesting to GDB? , regs, stack */
1099 char display[256]; /* Brief state display, name, blocked/syspended */
1100 char shortname[32]; /* To be used to name threads */
1101 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1102 };
1103
1104/* The volume of remote transfers can be limited by submitting
1105 a mask containing bits specifying the desired information.
1106 Use a union of these values as the 'selection' parameter to
1107 get_thread_info. FIXME: Make these TAG names more thread specific.
1108 */
1109
1110#define TAG_THREADID 1
1111#define TAG_EXISTS 2
1112#define TAG_DISPLAY 4
1113#define TAG_THREADNAME 8
1114#define TAG_MOREDISPLAY 16
1115
1116#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1117
1118char *unpack_varlen_hex (char *buff, ULONGEST *result);
1119
1120static char *unpack_nibble (char *buf, int *val);
1121
1122static char *pack_nibble (char *buf, int nibble);
1123
1124static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1125
1126static char *unpack_byte (char *buf, int *value);
1127
1128static char *pack_int (char *buf, int value);
1129
1130static char *unpack_int (char *buf, int *value);
1131
1132static char *unpack_string (char *src, char *dest, int length);
1133
1134static char *pack_threadid (char *pkt, threadref * id);
1135
1136static char *unpack_threadid (char *inbuf, threadref * id);
1137
1138void int_to_threadref (threadref * id, int value);
1139
1140static int threadref_to_int (threadref * ref);
1141
1142static void copy_threadref (threadref * dest, threadref * src);
1143
1144static int threadmatch (threadref * dest, threadref * src);
1145
1146static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1147
1148static int remote_unpack_thread_info_response (char *pkt,
1149 threadref * expectedref,
1150 struct gdb_ext_thread_info
1151 *info);
1152
1153
1154static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1155 struct gdb_ext_thread_info *info);
1156
1157static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1158 int selection,
1159 struct gdb_ext_thread_info *info);
1160
1161static char *pack_threadlist_request (char *pkt, int startflag,
1162 int threadcount,
1163 threadref * nextthread);
1164
1165static int parse_threadlist_response (char *pkt,
1166 int result_limit,
1167 threadref * original_echo,
1168 threadref * resultlist, int *doneflag);
1169
1170static int remote_get_threadlist (int startflag,
1171 threadref * nextthread,
1172 int result_limit,
1173 int *done,
1174 int *result_count, threadref * threadlist);
1175
1176typedef int (*rmt_thread_action) (threadref * ref, void *context);
1177
1178static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1179 void *context, int looplimit);
1180
1181static int remote_newthread_step (threadref * ref, void *context);
1182
1183/* encode 64 bits in 16 chars of hex */
1184
1185static const char hexchars[] = "0123456789abcdef";
1186
1187static int
1188ishex (int ch, int *val)
1189{
1190 if ((ch >= 'a') && (ch <= 'f'))
1191 {
1192 *val = ch - 'a' + 10;
1193 return 1;
1194 }
1195 if ((ch >= 'A') && (ch <= 'F'))
1196 {
1197 *val = ch - 'A' + 10;
1198 return 1;
1199 }
1200 if ((ch >= '0') && (ch <= '9'))
1201 {
1202 *val = ch - '0';
1203 return 1;
1204 }
1205 return 0;
1206}
1207
1208static int
1209stubhex (int ch)
1210{
1211 if (ch >= 'a' && ch <= 'f')
1212 return ch - 'a' + 10;
1213 if (ch >= '0' && ch <= '9')
1214 return ch - '0';
1215 if (ch >= 'A' && ch <= 'F')
1216 return ch - 'A' + 10;
1217 return -1;
1218}
1219
1220static int
1221stub_unpack_int (char *buff, int fieldlength)
1222{
1223 int nibble;
1224 int retval = 0;
1225
1226 while (fieldlength)
1227 {
1228 nibble = stubhex (*buff++);
1229 retval |= nibble;
1230 fieldlength--;
1231 if (fieldlength)
1232 retval = retval << 4;
1233 }
1234 return retval;
1235}
1236
1237char *
1238unpack_varlen_hex (char *buff, /* packet to parse */
1239 ULONGEST *result)
1240{
1241 int nibble;
1242 int retval = 0;
1243
1244 while (ishex (*buff, &nibble))
1245 {
1246 buff++;
1247 retval = retval << 4;
1248 retval |= nibble & 0x0f;
1249 }
1250 *result = retval;
1251 return buff;
1252}
1253
1254static char *
1255unpack_nibble (char *buf, int *val)
1256{
1257 ishex (*buf++, val);
1258 return buf;
1259}
1260
1261static char *
1262pack_nibble (char *buf, int nibble)
1263{
1264 *buf++ = hexchars[(nibble & 0x0f)];
1265 return buf;
1266}
1267
1268static char *
1269pack_hex_byte (char *pkt, int byte)
1270{
1271 *pkt++ = hexchars[(byte >> 4) & 0xf];
1272 *pkt++ = hexchars[(byte & 0xf)];
1273 return pkt;
1274}
1275
1276static char *
1277unpack_byte (char *buf, int *value)
1278{
1279 *value = stub_unpack_int (buf, 2);
1280 return buf + 2;
1281}
1282
1283static char *
1284pack_int (char *buf, int value)
1285{
1286 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1287 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1288 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1289 buf = pack_hex_byte (buf, (value & 0xff));
1290 return buf;
1291}
1292
1293static char *
1294unpack_int (char *buf, int *value)
1295{
1296 *value = stub_unpack_int (buf, 8);
1297 return buf + 8;
1298}
1299
1300#if 0 /* currently unused, uncomment when needed */
1301static char *pack_string (char *pkt, char *string);
1302
1303static char *
1304pack_string (char *pkt, char *string)
1305{
1306 char ch;
1307 int len;
1308
1309 len = strlen (string);
1310 if (len > 200)
1311 len = 200; /* Bigger than most GDB packets, junk??? */
1312 pkt = pack_hex_byte (pkt, len);
1313 while (len-- > 0)
1314 {
1315 ch = *string++;
1316 if ((ch == '\0') || (ch == '#'))
1317 ch = '*'; /* Protect encapsulation */
1318 *pkt++ = ch;
1319 }
1320 return pkt;
1321}
1322#endif /* 0 (unused) */
1323
1324static char *
1325unpack_string (char *src, char *dest, int length)
1326{
1327 while (length--)
1328 *dest++ = *src++;
1329 *dest = '\0';
1330 return src;
1331}
1332
1333static char *
1334pack_threadid (char *pkt, threadref *id)
1335{
1336 char *limit;
1337 unsigned char *altid;
1338
1339 altid = (unsigned char *) id;
1340 limit = pkt + BUF_THREAD_ID_SIZE;
1341 while (pkt < limit)
1342 pkt = pack_hex_byte (pkt, *altid++);
1343 return pkt;
1344}
1345
1346
1347static char *
1348unpack_threadid (char *inbuf, threadref *id)
1349{
1350 char *altref;
1351 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1352 int x, y;
1353
1354 altref = (char *) id;
1355
1356 while (inbuf < limit)
1357 {
1358 x = stubhex (*inbuf++);
1359 y = stubhex (*inbuf++);
1360 *altref++ = (x << 4) | y;
1361 }
1362 return inbuf;
1363}
1364
1365/* Externally, threadrefs are 64 bits but internally, they are still
1366 ints. This is due to a mismatch of specifications. We would like
1367 to use 64bit thread references internally. This is an adapter
1368 function. */
1369
1370void
1371int_to_threadref (threadref *id, int value)
1372{
1373 unsigned char *scan;
1374
1375 scan = (unsigned char *) id;
1376 {
1377 int i = 4;
1378 while (i--)
1379 *scan++ = 0;
1380 }
1381 *scan++ = (value >> 24) & 0xff;
1382 *scan++ = (value >> 16) & 0xff;
1383 *scan++ = (value >> 8) & 0xff;
1384 *scan++ = (value & 0xff);
1385}
1386
1387static int
1388threadref_to_int (threadref *ref)
1389{
1390 int i, value = 0;
1391 unsigned char *scan;
1392
1393 scan = (char *) ref;
1394 scan += 4;
1395 i = 4;
1396 while (i-- > 0)
1397 value = (value << 8) | ((*scan++) & 0xff);
1398 return value;
1399}
1400
1401static void
1402copy_threadref (threadref *dest, threadref *src)
1403{
1404 int i;
1405 unsigned char *csrc, *cdest;
1406
1407 csrc = (unsigned char *) src;
1408 cdest = (unsigned char *) dest;
1409 i = 8;
1410 while (i--)
1411 *cdest++ = *csrc++;
1412}
1413
1414static int
1415threadmatch (threadref *dest, threadref *src)
1416{
1417 /* things are broken right now, so just assume we got a match */
1418#if 0
1419 unsigned char *srcp, *destp;
1420 int i, result;
1421 srcp = (char *) src;
1422 destp = (char *) dest;
1423
1424 result = 1;
1425 while (i-- > 0)
1426 result &= (*srcp++ == *destp++) ? 1 : 0;
1427 return result;
1428#endif
1429 return 1;
1430}
1431
1432/*
1433 threadid:1, # always request threadid
1434 context_exists:2,
1435 display:4,
1436 unique_name:8,
1437 more_display:16
1438 */
1439
1440/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1441
1442static char *
1443pack_threadinfo_request (char *pkt, int mode, threadref *id)
1444{
1445 *pkt++ = 'q'; /* Info Query */
1446 *pkt++ = 'P'; /* process or thread info */
1447 pkt = pack_int (pkt, mode); /* mode */
1448 pkt = pack_threadid (pkt, id); /* threadid */
1449 *pkt = '\0'; /* terminate */
1450 return pkt;
1451}
1452
1453/* These values tag the fields in a thread info response packet */
1454/* Tagging the fields allows us to request specific fields and to
1455 add more fields as time goes by */
1456
1457#define TAG_THREADID 1 /* Echo the thread identifier */
1458#define TAG_EXISTS 2 /* Is this process defined enough to
1459 fetch registers and its stack */
1460#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1461#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1462#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1463 the process */
1464
1465static int
1466remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1467 struct gdb_ext_thread_info *info)
1468{
1469 struct remote_state *rs = get_remote_state ();
1470 int mask, length;
1471 unsigned int tag;
1472 threadref ref;
1473 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1474 int retval = 1;
1475
1476 /* info->threadid = 0; FIXME: implement zero_threadref */
1477 info->active = 0;
1478 info->display[0] = '\0';
1479 info->shortname[0] = '\0';
1480 info->more_display[0] = '\0';
1481
1482 /* Assume the characters indicating the packet type have been stripped */
1483 pkt = unpack_int (pkt, &mask); /* arg mask */
1484 pkt = unpack_threadid (pkt, &ref);
1485
1486 if (mask == 0)
1487 warning ("Incomplete response to threadinfo request\n");
1488 if (!threadmatch (&ref, expectedref))
1489 { /* This is an answer to a different request */
1490 warning ("ERROR RMT Thread info mismatch\n");
1491 return 0;
1492 }
1493 copy_threadref (&info->threadid, &ref);
1494
1495 /* Loop on tagged fields , try to bail if somthing goes wrong */
1496
1497 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1498 {
1499 pkt = unpack_int (pkt, &tag); /* tag */
1500 pkt = unpack_byte (pkt, &length); /* length */
1501 if (!(tag & mask)) /* tags out of synch with mask */
1502 {
1503 warning ("ERROR RMT: threadinfo tag mismatch\n");
1504 retval = 0;
1505 break;
1506 }
1507 if (tag == TAG_THREADID)
1508 {
1509 if (length != 16)
1510 {
1511 warning ("ERROR RMT: length of threadid is not 16\n");
1512 retval = 0;
1513 break;
1514 }
1515 pkt = unpack_threadid (pkt, &ref);
1516 mask = mask & ~TAG_THREADID;
1517 continue;
1518 }
1519 if (tag == TAG_EXISTS)
1520 {
1521 info->active = stub_unpack_int (pkt, length);
1522 pkt += length;
1523 mask = mask & ~(TAG_EXISTS);
1524 if (length > 8)
1525 {
1526 warning ("ERROR RMT: 'exists' length too long\n");
1527 retval = 0;
1528 break;
1529 }
1530 continue;
1531 }
1532 if (tag == TAG_THREADNAME)
1533 {
1534 pkt = unpack_string (pkt, &info->shortname[0], length);
1535 mask = mask & ~TAG_THREADNAME;
1536 continue;
1537 }
1538 if (tag == TAG_DISPLAY)
1539 {
1540 pkt = unpack_string (pkt, &info->display[0], length);
1541 mask = mask & ~TAG_DISPLAY;
1542 continue;
1543 }
1544 if (tag == TAG_MOREDISPLAY)
1545 {
1546 pkt = unpack_string (pkt, &info->more_display[0], length);
1547 mask = mask & ~TAG_MOREDISPLAY;
1548 continue;
1549 }
1550 warning ("ERROR RMT: unknown thread info tag\n");
1551 break; /* Not a tag we know about */
1552 }
1553 return retval;
1554}
1555
1556static int
1557remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1558 struct gdb_ext_thread_info *info)
1559{
1560 struct remote_state *rs = get_remote_state ();
1561 int result;
1562 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1563
1564 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1565 putpkt (threadinfo_pkt);
1566 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1567 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1568 info);
1569 return result;
1570}
1571
1572/* Unfortunately, 61 bit thread-ids are bigger than the internal
1573 representation of a threadid. */
1574
1575static int
1576adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1577 struct gdb_ext_thread_info *info)
1578{
1579 threadref lclref;
1580
1581 int_to_threadref (&lclref, *ref);
1582 return remote_get_threadinfo (&lclref, selection, info);
1583}
1584
1585/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1586
1587static char *
1588pack_threadlist_request (char *pkt, int startflag, int threadcount,
1589 threadref *nextthread)
1590{
1591 *pkt++ = 'q'; /* info query packet */
1592 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1593 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1594 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1595 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1596 *pkt = '\0';
1597 return pkt;
1598}
1599
1600/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1601
1602static int
1603parse_threadlist_response (char *pkt, int result_limit,
1604 threadref *original_echo, threadref *resultlist,
1605 int *doneflag)
1606{
1607 struct remote_state *rs = get_remote_state ();
1608 char *limit;
1609 int count, resultcount, done;
1610
1611 resultcount = 0;
1612 /* Assume the 'q' and 'M chars have been stripped. */
1613 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1614 pkt = unpack_byte (pkt, &count); /* count field */
1615 pkt = unpack_nibble (pkt, &done);
1616 /* The first threadid is the argument threadid. */
1617 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1618 while ((count-- > 0) && (pkt < limit))
1619 {
1620 pkt = unpack_threadid (pkt, resultlist++);
1621 if (resultcount++ >= result_limit)
1622 break;
1623 }
1624 if (doneflag)
1625 *doneflag = done;
1626 return resultcount;
1627}
1628
1629static int
1630remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1631 int *done, int *result_count, threadref *threadlist)
1632{
1633 struct remote_state *rs = get_remote_state ();
1634 static threadref echo_nextthread;
1635 char *threadlist_packet = alloca (rs->remote_packet_size);
1636 char *t_response = alloca (rs->remote_packet_size);
1637 int result = 1;
1638
1639 /* Trancate result limit to be smaller than the packet size */
1640 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1641 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1642
1643 pack_threadlist_request (threadlist_packet,
1644 startflag, result_limit, nextthread);
1645 putpkt (threadlist_packet);
1646 getpkt (t_response, (rs->remote_packet_size), 0);
1647
1648 *result_count =
1649 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1650 threadlist, done);
1651
1652 if (!threadmatch (&echo_nextthread, nextthread))
1653 {
1654 /* FIXME: This is a good reason to drop the packet */
1655 /* Possably, there is a duplicate response */
1656 /* Possabilities :
1657 retransmit immediatly - race conditions
1658 retransmit after timeout - yes
1659 exit
1660 wait for packet, then exit
1661 */
1662 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1663 return 0; /* I choose simply exiting */
1664 }
1665 if (*result_count <= 0)
1666 {
1667 if (*done != 1)
1668 {
1669 warning ("RMT ERROR : failed to get remote thread list\n");
1670 result = 0;
1671 }
1672 return result; /* break; */
1673 }
1674 if (*result_count > result_limit)
1675 {
1676 *result_count = 0;
1677 warning ("RMT ERROR: threadlist response longer than requested\n");
1678 return 0;
1679 }
1680 return result;
1681}
1682
1683/* This is the interface between remote and threads, remotes upper interface */
1684
1685/* remote_find_new_threads retrieves the thread list and for each
1686 thread in the list, looks up the thread in GDB's internal list,
1687 ading the thread if it does not already exist. This involves
1688 getting partial thread lists from the remote target so, polling the
1689 quit_flag is required. */
1690
1691
1692/* About this many threadisds fit in a packet. */
1693
1694#define MAXTHREADLISTRESULTS 32
1695
1696static int
1697remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1698 int looplimit)
1699{
1700 int done, i, result_count;
1701 int startflag = 1;
1702 int result = 1;
1703 int loopcount = 0;
1704 static threadref nextthread;
1705 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1706
1707 done = 0;
1708 while (!done)
1709 {
1710 if (loopcount++ > looplimit)
1711 {
1712 result = 0;
1713 warning ("Remote fetch threadlist -infinite loop-\n");
1714 break;
1715 }
1716 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1717 &done, &result_count, resultthreadlist))
1718 {
1719 result = 0;
1720 break;
1721 }
1722 /* clear for later iterations */
1723 startflag = 0;
1724 /* Setup to resume next batch of thread references, set nextthread. */
1725 if (result_count >= 1)
1726 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1727 i = 0;
1728 while (result_count--)
1729 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1730 break;
1731 }
1732 return result;
1733}
1734
1735static int
1736remote_newthread_step (threadref *ref, void *context)
1737{
1738 ptid_t ptid;
1739
1740 ptid = pid_to_ptid (threadref_to_int (ref));
1741
1742 if (!in_thread_list (ptid))
1743 add_thread (ptid);
1744 return 1; /* continue iterator */
1745}
1746
1747#define CRAZY_MAX_THREADS 1000
1748
1749static ptid_t
1750remote_current_thread (ptid_t oldpid)
1751{
1752 struct remote_state *rs = get_remote_state ();
1753 char *buf = alloca (rs->remote_packet_size);
1754
1755 putpkt ("qC");
1756 getpkt (buf, (rs->remote_packet_size), 0);
1757 if (buf[0] == 'Q' && buf[1] == 'C')
1758 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1759 else
1760 return oldpid;
1761}
1762
1763/* Find new threads for info threads command.
1764 * Original version, using John Metzler's thread protocol.
1765 */
1766
1767static void
1768remote_find_new_threads (void)
1769{
1770 remote_threadlist_iterator (remote_newthread_step, 0,
1771 CRAZY_MAX_THREADS);
1772 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1773 inferior_ptid = remote_current_thread (inferior_ptid);
1774}
1775
1776/*
1777 * Find all threads for info threads command.
1778 * Uses new thread protocol contributed by Cisco.
1779 * Falls back and attempts to use the older method (above)
1780 * if the target doesn't respond to the new method.
1781 */
1782
1783static void
1784remote_threads_info (void)
1785{
1786 struct remote_state *rs = get_remote_state ();
1787 char *buf = alloca (rs->remote_packet_size);
1788 char *bufp;
1789 int tid;
1790
1791 if (remote_desc == 0) /* paranoia */
1792 error ("Command can only be used when connected to the remote target.");
1793
1794 if (use_threadinfo_query)
1795 {
1796 putpkt ("qfThreadInfo");
1797 bufp = buf;
1798 getpkt (bufp, (rs->remote_packet_size), 0);
1799 if (bufp[0] != '\0') /* q packet recognized */
1800 {
1801 while (*bufp++ == 'm') /* reply contains one or more TID */
1802 {
1803 do
1804 {
1805 tid = strtol (bufp, &bufp, 16);
1806 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1807 add_thread (pid_to_ptid (tid));
1808 }
1809 while (*bufp++ == ','); /* comma-separated list */
1810 putpkt ("qsThreadInfo");
1811 bufp = buf;
1812 getpkt (bufp, (rs->remote_packet_size), 0);
1813 }
1814 return; /* done */
1815 }
1816 }
1817
1818 /* Else fall back to old method based on jmetzler protocol. */
1819 use_threadinfo_query = 0;
1820 remote_find_new_threads ();
1821 return;
1822}
1823
1824/*
1825 * Collect a descriptive string about the given thread.
1826 * The target may say anything it wants to about the thread
1827 * (typically info about its blocked / runnable state, name, etc.).
1828 * This string will appear in the info threads display.
1829 *
1830 * Optional: targets are not required to implement this function.
1831 */
1832
1833static char *
1834remote_threads_extra_info (struct thread_info *tp)
1835{
1836 struct remote_state *rs = get_remote_state ();
1837 int result;
1838 int set;
1839 threadref id;
1840 struct gdb_ext_thread_info threadinfo;
1841 static char display_buf[100]; /* arbitrary... */
1842 char *bufp = alloca (rs->remote_packet_size);
1843 int n = 0; /* position in display_buf */
1844
1845 if (remote_desc == 0) /* paranoia */
1846 internal_error (__FILE__, __LINE__,
1847 "remote_threads_extra_info");
1848
1849 if (use_threadextra_query)
1850 {
1851 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1852 putpkt (bufp);
1853 getpkt (bufp, (rs->remote_packet_size), 0);
1854 if (bufp[0] != 0)
1855 {
1856 n = min (strlen (bufp) / 2, sizeof (display_buf));
1857 result = hex2bin (bufp, display_buf, n);
1858 display_buf [result] = '\0';
1859 return display_buf;
1860 }
1861 }
1862
1863 /* If the above query fails, fall back to the old method. */
1864 use_threadextra_query = 0;
1865 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1866 | TAG_MOREDISPLAY | TAG_DISPLAY;
1867 int_to_threadref (&id, PIDGET (tp->ptid));
1868 if (remote_get_threadinfo (&id, set, &threadinfo))
1869 if (threadinfo.active)
1870 {
1871 if (*threadinfo.shortname)
1872 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1873 if (*threadinfo.display)
1874 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1875 if (*threadinfo.more_display)
1876 n += sprintf(&display_buf[n], " Priority: %s",
1877 threadinfo.more_display);
1878
1879 if (n > 0)
1880 {
1881 /* for purely cosmetic reasons, clear up trailing commas */
1882 if (',' == display_buf[n-1])
1883 display_buf[n-1] = ' ';
1884 return display_buf;
1885 }
1886 }
1887 return NULL;
1888}
1889
1890\f
1891
1892/* Restart the remote side; this is an extended protocol operation. */
1893
1894static void
1895extended_remote_restart (void)
1896{
1897 struct remote_state *rs = get_remote_state ();
1898 char *buf = alloca (rs->remote_packet_size);
1899
1900 /* Send the restart command; for reasons I don't understand the
1901 remote side really expects a number after the "R". */
1902 buf[0] = 'R';
1903 sprintf (&buf[1], "%x", 0);
1904 putpkt (buf);
1905
1906 /* Now query for status so this looks just like we restarted
1907 gdbserver from scratch. */
1908 putpkt ("?");
1909 getpkt (buf, (rs->remote_packet_size), 0);
1910}
1911\f
1912/* Clean up connection to a remote debugger. */
1913
1914/* ARGSUSED */
1915static void
1916remote_close (int quitting)
1917{
1918 if (remote_desc)
1919 serial_close (remote_desc);
1920 remote_desc = NULL;
1921}
1922
1923/* Query the remote side for the text, data and bss offsets. */
1924
1925static void
1926get_offsets (void)
1927{
1928 struct remote_state *rs = get_remote_state ();
1929 char *buf = alloca (rs->remote_packet_size);
1930 char *ptr;
1931 int lose;
1932 CORE_ADDR text_addr, data_addr, bss_addr;
1933 struct section_offsets *offs;
1934
1935 putpkt ("qOffsets");
1936
1937 getpkt (buf, (rs->remote_packet_size), 0);
1938
1939 if (buf[0] == '\000')
1940 return; /* Return silently. Stub doesn't support
1941 this command. */
1942 if (buf[0] == 'E')
1943 {
1944 warning ("Remote failure reply: %s", buf);
1945 return;
1946 }
1947
1948 /* Pick up each field in turn. This used to be done with scanf, but
1949 scanf will make trouble if CORE_ADDR size doesn't match
1950 conversion directives correctly. The following code will work
1951 with any size of CORE_ADDR. */
1952 text_addr = data_addr = bss_addr = 0;
1953 ptr = buf;
1954 lose = 0;
1955
1956 if (strncmp (ptr, "Text=", 5) == 0)
1957 {
1958 ptr += 5;
1959 /* Don't use strtol, could lose on big values. */
1960 while (*ptr && *ptr != ';')
1961 text_addr = (text_addr << 4) + fromhex (*ptr++);
1962 }
1963 else
1964 lose = 1;
1965
1966 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1967 {
1968 ptr += 6;
1969 while (*ptr && *ptr != ';')
1970 data_addr = (data_addr << 4) + fromhex (*ptr++);
1971 }
1972 else
1973 lose = 1;
1974
1975 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1976 {
1977 ptr += 5;
1978 while (*ptr && *ptr != ';')
1979 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1980 }
1981 else
1982 lose = 1;
1983
1984 if (lose)
1985 error ("Malformed response to offset query, %s", buf);
1986
1987 if (symfile_objfile == NULL)
1988 return;
1989
1990 offs = ((struct section_offsets *)
1991 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1992 memcpy (offs, symfile_objfile->section_offsets,
1993 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1994
1995 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1996
1997 /* This is a temporary kludge to force data and bss to use the same offsets
1998 because that's what nlmconv does now. The real solution requires changes
1999 to the stub and remote.c that I don't have time to do right now. */
2000
2001 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2002 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2003
2004 objfile_relocate (symfile_objfile, offs);
2005}
2006
2007/*
2008 * Cisco version of section offsets:
2009 *
2010 * Instead of having GDB query the target for the section offsets,
2011 * Cisco lets the target volunteer the information! It's also in
2012 * a different format, so here are the functions that will decode
2013 * a section offset packet from a Cisco target.
2014 */
2015
2016/*
2017 * Function: remote_cisco_section_offsets
2018 *
2019 * Returns: zero for success, non-zero for failure
2020 */
2021
2022static int
2023remote_cisco_section_offsets (bfd_vma text_addr,
2024 bfd_vma data_addr,
2025 bfd_vma bss_addr,
2026 bfd_signed_vma *text_offs,
2027 bfd_signed_vma *data_offs,
2028 bfd_signed_vma *bss_offs)
2029{
2030 bfd_vma text_base, data_base, bss_base;
2031 struct minimal_symbol *start;
2032 asection *sect;
2033 bfd *abfd;
2034 int len;
2035
2036 if (symfile_objfile == NULL)
2037 return -1; /* no can do nothin' */
2038
2039 start = lookup_minimal_symbol ("_start", NULL, NULL);
2040 if (start == NULL)
2041 return -1; /* Can't find "_start" symbol */
2042
2043 data_base = bss_base = 0;
2044 text_base = SYMBOL_VALUE_ADDRESS (start);
2045
2046 abfd = symfile_objfile->obfd;
2047 for (sect = abfd->sections;
2048 sect != 0;
2049 sect = sect->next)
2050 {
2051 const char *p = bfd_get_section_name (abfd, sect);
2052 len = strlen (p);
2053 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2054 if (data_base == 0 ||
2055 data_base > bfd_get_section_vma (abfd, sect))
2056 data_base = bfd_get_section_vma (abfd, sect);
2057 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2058 if (bss_base == 0 ||
2059 bss_base > bfd_get_section_vma (abfd, sect))
2060 bss_base = bfd_get_section_vma (abfd, sect);
2061 }
2062 *text_offs = text_addr - text_base;
2063 *data_offs = data_addr - data_base;
2064 *bss_offs = bss_addr - bss_base;
2065 if (remote_debug)
2066 {
2067 char tmp[128];
2068
2069 sprintf (tmp, "VMA: text = 0x");
2070 sprintf_vma (tmp + strlen (tmp), text_addr);
2071 sprintf (tmp + strlen (tmp), " data = 0x");
2072 sprintf_vma (tmp + strlen (tmp), data_addr);
2073 sprintf (tmp + strlen (tmp), " bss = 0x");
2074 sprintf_vma (tmp + strlen (tmp), bss_addr);
2075 fprintf_filtered (gdb_stdlog, tmp);
2076 fprintf_filtered (gdb_stdlog,
2077 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2078 paddr_nz (*text_offs),
2079 paddr_nz (*data_offs),
2080 paddr_nz (*bss_offs));
2081 }
2082
2083 return 0;
2084}
2085
2086/*
2087 * Function: remote_cisco_objfile_relocate
2088 *
2089 * Relocate the symbol file for a remote target.
2090 */
2091
2092void
2093remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2094 bfd_signed_vma bss_off)
2095{
2096 struct section_offsets *offs;
2097
2098 if (text_off != 0 || data_off != 0 || bss_off != 0)
2099 {
2100 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2101 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2102 simple canonical representation for this stuff. */
2103
2104 offs = (struct section_offsets *)
2105 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2106 memcpy (offs, symfile_objfile->section_offsets,
2107 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2108
2109 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2110 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2111 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2112
2113 /* First call the standard objfile_relocate. */
2114 objfile_relocate (symfile_objfile, offs);
2115
2116 /* Now we need to fix up the section entries already attached to
2117 the exec target. These entries will control memory transfers
2118 from the exec file. */
2119
2120 exec_set_section_offsets (text_off, data_off, bss_off);
2121 }
2122}
2123
2124/* Stub for catch_errors. */
2125
2126static int
2127remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2128{
2129 start_remote (); /* Initialize gdb process mechanisms */
2130 /* NOTE: Return something >=0. A -ve value is reserved for
2131 catch_exceptions. */
2132 return 1;
2133}
2134
2135static int
2136remote_start_remote (struct ui_out *uiout, void *dummy)
2137{
2138 immediate_quit++; /* Allow user to interrupt it */
2139
2140 /* Ack any packet which the remote side has already sent. */
2141 serial_write (remote_desc, "+", 1);
2142
2143 /* Let the stub know that we want it to return the thread. */
2144 set_thread (-1, 0);
2145
2146 inferior_ptid = remote_current_thread (inferior_ptid);
2147
2148 get_offsets (); /* Get text, data & bss offsets */
2149
2150 putpkt ("?"); /* initiate a query from remote machine */
2151 immediate_quit--;
2152
2153 /* NOTE: See comment above in remote_start_remote_dummy(). This
2154 function returns something >=0. */
2155 return remote_start_remote_dummy (uiout, dummy);
2156}
2157
2158/* Open a connection to a remote debugger.
2159 NAME is the filename used for communication. */
2160
2161static void
2162remote_open (char *name, int from_tty)
2163{
2164 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2165}
2166
2167/* Just like remote_open, but with asynchronous support. */
2168static void
2169remote_async_open (char *name, int from_tty)
2170{
2171 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2172}
2173
2174/* Open a connection to a remote debugger using the extended
2175 remote gdb protocol. NAME is the filename used for communication. */
2176
2177static void
2178extended_remote_open (char *name, int from_tty)
2179{
2180 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2181 0 /* async_p */);
2182}
2183
2184/* Just like extended_remote_open, but with asynchronous support. */
2185static void
2186extended_remote_async_open (char *name, int from_tty)
2187{
2188 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2189 1 /*extended_p */, 1 /* async_p */);
2190}
2191
2192/* Generic code for opening a connection to a remote target. */
2193
2194static void
2195init_all_packet_configs (void)
2196{
2197 int i;
2198 update_packet_config (&remote_protocol_e);
2199 update_packet_config (&remote_protocol_E);
2200 update_packet_config (&remote_protocol_P);
2201 update_packet_config (&remote_protocol_qSymbol);
2202 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2203 update_packet_config (&remote_protocol_Z[i]);
2204 /* Force remote_write_bytes to check whether target supports binary
2205 downloading. */
2206 update_packet_config (&remote_protocol_binary_download);
2207}
2208
2209/* Symbol look-up. */
2210
2211static void
2212remote_check_symbols (struct objfile *objfile)
2213{
2214 struct remote_state *rs = get_remote_state ();
2215 char *msg, *reply, *tmp;
2216 struct minimal_symbol *sym;
2217 int end;
2218
2219 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2220 return;
2221
2222 msg = alloca (rs->remote_packet_size);
2223 reply = alloca (rs->remote_packet_size);
2224
2225 /* Invite target to request symbol lookups. */
2226
2227 putpkt ("qSymbol::");
2228 getpkt (reply, (rs->remote_packet_size), 0);
2229 packet_ok (reply, &remote_protocol_qSymbol);
2230
2231 while (strncmp (reply, "qSymbol:", 8) == 0)
2232 {
2233 tmp = &reply[8];
2234 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2235 msg[end] = '\0';
2236 sym = lookup_minimal_symbol (msg, NULL, NULL);
2237 if (sym == NULL)
2238 sprintf (msg, "qSymbol::%s", &reply[8]);
2239 else
2240 sprintf (msg, "qSymbol:%s:%s",
2241 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2242 &reply[8]);
2243 putpkt (msg);
2244 getpkt (reply, (rs->remote_packet_size), 0);
2245 }
2246}
2247
2248static struct serial *
2249remote_serial_open (char *name)
2250{
2251 static int udp_warning = 0;
2252
2253 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2254 of in ser-tcp.c, because it is the remote protocol assuming that the
2255 serial connection is reliable and not the serial connection promising
2256 to be. */
2257 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2258 {
2259 warning ("The remote protocol may be unreliable over UDP.");
2260 warning ("Some events may be lost, rendering further debugging "
2261 "impossible.");
2262 udp_warning = 1;
2263 }
2264
2265 return serial_open (name);
2266}
2267
2268static void
2269remote_open_1 (char *name, int from_tty, struct target_ops *target,
2270 int extended_p, int async_p)
2271{
2272 int ex;
2273 struct remote_state *rs = get_remote_state ();
2274 if (name == 0)
2275 error ("To open a remote debug connection, you need to specify what\n"
2276 "serial device is attached to the remote system\n"
2277 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2278
2279 /* See FIXME above */
2280 if (!async_p)
2281 wait_forever_enabled_p = 1;
2282
2283 target_preopen (from_tty);
2284
2285 unpush_target (target);
2286
2287 remote_desc = remote_serial_open (name);
2288 if (!remote_desc)
2289 perror_with_name (name);
2290
2291 if (baud_rate != -1)
2292 {
2293 if (serial_setbaudrate (remote_desc, baud_rate))
2294 {
2295 serial_close (remote_desc);
2296 perror_with_name (name);
2297 }
2298 }
2299
2300 serial_raw (remote_desc);
2301
2302 /* If there is something sitting in the buffer we might take it as a
2303 response to a command, which would be bad. */
2304 serial_flush_input (remote_desc);
2305
2306 if (from_tty)
2307 {
2308 puts_filtered ("Remote debugging using ");
2309 puts_filtered (name);
2310 puts_filtered ("\n");
2311 }
2312 push_target (target); /* Switch to using remote target now */
2313
2314 init_all_packet_configs ();
2315
2316 general_thread = -2;
2317 continue_thread = -2;
2318
2319 /* Probe for ability to use "ThreadInfo" query, as required. */
2320 use_threadinfo_query = 1;
2321 use_threadextra_query = 1;
2322
2323 /* Without this, some commands which require an active target (such
2324 as kill) won't work. This variable serves (at least) double duty
2325 as both the pid of the target process (if it has such), and as a
2326 flag indicating that a target is active. These functions should
2327 be split out into seperate variables, especially since GDB will
2328 someday have a notion of debugging several processes. */
2329
2330 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2331
2332 if (async_p)
2333 {
2334 /* With this target we start out by owning the terminal. */
2335 remote_async_terminal_ours_p = 1;
2336
2337 /* FIXME: cagney/1999-09-23: During the initial connection it is
2338 assumed that the target is already ready and able to respond to
2339 requests. Unfortunately remote_start_remote() eventually calls
2340 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2341 around this. Eventually a mechanism that allows
2342 wait_for_inferior() to expect/get timeouts will be
2343 implemented. */
2344 wait_forever_enabled_p = 0;
2345 }
2346
2347#ifdef SOLIB_CREATE_INFERIOR_HOOK
2348 /* First delete any symbols previously loaded from shared libraries. */
2349 no_shared_libraries (NULL, 0);
2350#endif
2351
2352 /* Start the remote connection. If error() or QUIT, discard this
2353 target (we'd otherwise be in an inconsistent state) and then
2354 propogate the error on up the exception chain. This ensures that
2355 the caller doesn't stumble along blindly assuming that the
2356 function succeeded. The CLI doesn't have this problem but other
2357 UI's, such as MI do.
2358
2359 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2360 this function should return an error indication letting the
2361 caller restore the previous state. Unfortunatly the command
2362 ``target remote'' is directly wired to this function making that
2363 impossible. On a positive note, the CLI side of this problem has
2364 been fixed - the function set_cmd_context() makes it possible for
2365 all the ``target ....'' commands to share a common callback
2366 function. See cli-dump.c. */
2367 ex = catch_exceptions (uiout,
2368 remote_start_remote, NULL,
2369 "Couldn't establish connection to remote"
2370 " target\n",
2371 RETURN_MASK_ALL);
2372 if (ex < 0)
2373 {
2374 pop_target ();
2375 if (async_p)
2376 wait_forever_enabled_p = 1;
2377 throw_exception (ex);
2378 }
2379
2380 if (async_p)
2381 wait_forever_enabled_p = 1;
2382
2383 if (extended_p)
2384 {
2385 /* Tell the remote that we are using the extended protocol. */
2386 char *buf = alloca (rs->remote_packet_size);
2387 putpkt ("!");
2388 getpkt (buf, (rs->remote_packet_size), 0);
2389 }
2390#ifdef SOLIB_CREATE_INFERIOR_HOOK
2391 /* FIXME: need a master target_open vector from which all
2392 remote_opens can be called, so that stuff like this can
2393 go there. Failing that, the following code must be copied
2394 to the open function for any remote target that wants to
2395 support svr4 shared libraries. */
2396
2397 /* Set up to detect and load shared libraries. */
2398 if (exec_bfd) /* No use without an exec file. */
2399 {
2400 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2401 remote_check_symbols (symfile_objfile);
2402 }
2403#endif
2404}
2405
2406/* This takes a program previously attached to and detaches it. After
2407 this is done, GDB can be used to debug some other program. We
2408 better not have left any breakpoints in the target program or it'll
2409 die when it hits one. */
2410
2411static void
2412remote_detach (char *args, int from_tty)
2413{
2414 struct remote_state *rs = get_remote_state ();
2415 char *buf = alloca (rs->remote_packet_size);
2416
2417 if (args)
2418 error ("Argument given to \"detach\" when remotely debugging.");
2419
2420 /* Tell the remote target to detach. */
2421 strcpy (buf, "D");
2422 remote_send (buf, (rs->remote_packet_size));
2423
2424 target_mourn_inferior ();
2425 if (from_tty)
2426 puts_filtered ("Ending remote debugging.\n");
2427
2428}
2429
2430/* Same as remote_detach, but with async support. */
2431static void
2432remote_async_detach (char *args, int from_tty)
2433{
2434 struct remote_state *rs = get_remote_state ();
2435 char *buf = alloca (rs->remote_packet_size);
2436
2437 if (args)
2438 error ("Argument given to \"detach\" when remotely debugging.");
2439
2440 /* Tell the remote target to detach. */
2441 strcpy (buf, "D");
2442 remote_send (buf, (rs->remote_packet_size));
2443
2444 /* Unregister the file descriptor from the event loop. */
2445 if (target_is_async_p ())
2446 serial_async (remote_desc, NULL, 0);
2447
2448 target_mourn_inferior ();
2449 if (from_tty)
2450 puts_filtered ("Ending remote debugging.\n");
2451}
2452
2453/* Convert hex digit A to a number. */
2454
2455static int
2456fromhex (int a)
2457{
2458 if (a >= '0' && a <= '9')
2459 return a - '0';
2460 else if (a >= 'a' && a <= 'f')
2461 return a - 'a' + 10;
2462 else if (a >= 'A' && a <= 'F')
2463 return a - 'A' + 10;
2464 else
2465 error ("Reply contains invalid hex digit %d", a);
2466}
2467
2468static int
2469hex2bin (const char *hex, char *bin, int count)
2470{
2471 int i;
2472
2473 for (i = 0; i < count; i++)
2474 {
2475 if (hex[0] == 0 || hex[1] == 0)
2476 {
2477 /* Hex string is short, or of uneven length.
2478 Return the count that has been converted so far. */
2479 return i;
2480 }
2481 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2482 hex += 2;
2483 }
2484 return i;
2485}
2486
2487/* Convert number NIB to a hex digit. */
2488
2489static int
2490tohex (int nib)
2491{
2492 if (nib < 10)
2493 return '0' + nib;
2494 else
2495 return 'a' + nib - 10;
2496}
2497
2498static int
2499bin2hex (const char *bin, char *hex, int count)
2500{
2501 int i;
2502 /* May use a length, or a nul-terminated string as input. */
2503 if (count == 0)
2504 count = strlen (bin);
2505
2506 for (i = 0; i < count; i++)
2507 {
2508 *hex++ = tohex ((*bin >> 4) & 0xf);
2509 *hex++ = tohex (*bin++ & 0xf);
2510 }
2511 *hex = 0;
2512 return i;
2513}
2514\f
2515/* Tell the remote machine to resume. */
2516
2517static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2518
2519static int last_sent_step;
2520
2521static void
2522remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2523{
2524 struct remote_state *rs = get_remote_state ();
2525 char *buf = alloca (rs->remote_packet_size);
2526 int pid = PIDGET (ptid);
2527 char *p;
2528
2529 if (pid == -1)
2530 set_thread (0, 0); /* run any thread */
2531 else
2532 set_thread (pid, 0); /* run this thread */
2533
2534 last_sent_signal = siggnal;
2535 last_sent_step = step;
2536
2537 /* A hook for when we need to do something at the last moment before
2538 resumption. */
2539 if (target_resume_hook)
2540 (*target_resume_hook) ();
2541
2542
2543 /* The s/S/c/C packets do not return status. So if the target does
2544 not support the S or C packets, the debug agent returns an empty
2545 string which is detected in remote_wait(). This protocol defect
2546 is fixed in the e/E packets. */
2547
2548 if (step && step_range_end)
2549 {
2550 /* If the target does not support the 'E' packet, we try the 'S'
2551 packet. Ideally we would fall back to the 'e' packet if that
2552 too is not supported. But that would require another copy of
2553 the code to issue the 'e' packet (and fall back to 's' if not
2554 supported) in remote_wait(). */
2555
2556 if (siggnal != TARGET_SIGNAL_0)
2557 {
2558 if (remote_protocol_E.support != PACKET_DISABLE)
2559 {
2560 p = buf;
2561 *p++ = 'E';
2562 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2563 *p++ = tohex (((int) siggnal) & 0xf);
2564 *p++ = ',';
2565 p += hexnumstr (p, (ULONGEST) step_range_start);
2566 *p++ = ',';
2567 p += hexnumstr (p, (ULONGEST) step_range_end);
2568 *p++ = 0;
2569
2570 putpkt (buf);
2571 getpkt (buf, (rs->remote_packet_size), 0);
2572
2573 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2574 return;
2575 }
2576 }
2577 else
2578 {
2579 if (remote_protocol_e.support != PACKET_DISABLE)
2580 {
2581 p = buf;
2582 *p++ = 'e';
2583 p += hexnumstr (p, (ULONGEST) step_range_start);
2584 *p++ = ',';
2585 p += hexnumstr (p, (ULONGEST) step_range_end);
2586 *p++ = 0;
2587
2588 putpkt (buf);
2589 getpkt (buf, (rs->remote_packet_size), 0);
2590
2591 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2592 return;
2593 }
2594 }
2595 }
2596
2597 if (siggnal != TARGET_SIGNAL_0)
2598 {
2599 buf[0] = step ? 'S' : 'C';
2600 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2601 buf[2] = tohex (((int) siggnal) & 0xf);
2602 buf[3] = '\0';
2603 }
2604 else
2605 strcpy (buf, step ? "s" : "c");
2606
2607 putpkt (buf);
2608}
2609
2610/* Same as remote_resume, but with async support. */
2611static void
2612remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2613{
2614 struct remote_state *rs = get_remote_state ();
2615 char *buf = alloca (rs->remote_packet_size);
2616 int pid = PIDGET (ptid);
2617 char *p;
2618
2619 if (pid == -1)
2620 set_thread (0, 0); /* run any thread */
2621 else
2622 set_thread (pid, 0); /* run this thread */
2623
2624 last_sent_signal = siggnal;
2625 last_sent_step = step;
2626
2627 /* A hook for when we need to do something at the last moment before
2628 resumption. */
2629 if (target_resume_hook)
2630 (*target_resume_hook) ();
2631
2632 /* The s/S/c/C packets do not return status. So if the target does
2633 not support the S or C packets, the debug agent returns an empty
2634 string which is detected in remote_wait(). This protocol defect
2635 is fixed in the e/E packets. */
2636
2637 if (step && step_range_end)
2638 {
2639 /* If the target does not support the 'E' packet, we try the 'S'
2640 packet. Ideally we would fall back to the 'e' packet if that
2641 too is not supported. But that would require another copy of
2642 the code to issue the 'e' packet (and fall back to 's' if not
2643 supported) in remote_wait(). */
2644
2645 if (siggnal != TARGET_SIGNAL_0)
2646 {
2647 if (remote_protocol_E.support != PACKET_DISABLE)
2648 {
2649 p = buf;
2650 *p++ = 'E';
2651 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2652 *p++ = tohex (((int) siggnal) & 0xf);
2653 *p++ = ',';
2654 p += hexnumstr (p, (ULONGEST) step_range_start);
2655 *p++ = ',';
2656 p += hexnumstr (p, (ULONGEST) step_range_end);
2657 *p++ = 0;
2658
2659 putpkt (buf);
2660 getpkt (buf, (rs->remote_packet_size), 0);
2661
2662 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2663 goto register_event_loop;
2664 }
2665 }
2666 else
2667 {
2668 if (remote_protocol_e.support != PACKET_DISABLE)
2669 {
2670 p = buf;
2671 *p++ = 'e';
2672 p += hexnumstr (p, (ULONGEST) step_range_start);
2673 *p++ = ',';
2674 p += hexnumstr (p, (ULONGEST) step_range_end);
2675 *p++ = 0;
2676
2677 putpkt (buf);
2678 getpkt (buf, (rs->remote_packet_size), 0);
2679
2680 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2681 goto register_event_loop;
2682 }
2683 }
2684 }
2685
2686 if (siggnal != TARGET_SIGNAL_0)
2687 {
2688 buf[0] = step ? 'S' : 'C';
2689 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2690 buf[2] = tohex ((int) siggnal & 0xf);
2691 buf[3] = '\0';
2692 }
2693 else
2694 strcpy (buf, step ? "s" : "c");
2695
2696 putpkt (buf);
2697
2698register_event_loop:
2699 /* We are about to start executing the inferior, let's register it
2700 with the event loop. NOTE: this is the one place where all the
2701 execution commands end up. We could alternatively do this in each
2702 of the execution commands in infcmd.c.*/
2703 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2704 into infcmd.c in order to allow inferior function calls to work
2705 NOT asynchronously. */
2706 if (event_loop_p && target_can_async_p ())
2707 target_async (inferior_event_handler, 0);
2708 /* Tell the world that the target is now executing. */
2709 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2710 this? Instead, should the client of target just assume (for
2711 async targets) that the target is going to start executing? Is
2712 this information already found in the continuation block? */
2713 if (target_is_async_p ())
2714 target_executing = 1;
2715}
2716\f
2717
2718/* Set up the signal handler for SIGINT, while the target is
2719 executing, ovewriting the 'regular' SIGINT signal handler. */
2720static void
2721initialize_sigint_signal_handler (void)
2722{
2723 sigint_remote_token =
2724 create_async_signal_handler (async_remote_interrupt, NULL);
2725 signal (SIGINT, handle_remote_sigint);
2726}
2727
2728/* Signal handler for SIGINT, while the target is executing. */
2729static void
2730handle_remote_sigint (int sig)
2731{
2732 signal (sig, handle_remote_sigint_twice);
2733 sigint_remote_twice_token =
2734 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2735 mark_async_signal_handler_wrapper (sigint_remote_token);
2736}
2737
2738/* Signal handler for SIGINT, installed after SIGINT has already been
2739 sent once. It will take effect the second time that the user sends
2740 a ^C. */
2741static void
2742handle_remote_sigint_twice (int sig)
2743{
2744 signal (sig, handle_sigint);
2745 sigint_remote_twice_token =
2746 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2747 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2748}
2749
2750/* Perform the real interruption of the target execution, in response
2751 to a ^C. */
2752static void
2753async_remote_interrupt (gdb_client_data arg)
2754{
2755 if (remote_debug)
2756 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2757
2758 target_stop ();
2759}
2760
2761/* Perform interrupt, if the first attempt did not succeed. Just give
2762 up on the target alltogether. */
2763void
2764async_remote_interrupt_twice (gdb_client_data arg)
2765{
2766 if (remote_debug)
2767 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2768 /* Do something only if the target was not killed by the previous
2769 cntl-C. */
2770 if (target_executing)
2771 {
2772 interrupt_query ();
2773 signal (SIGINT, handle_remote_sigint);
2774 }
2775}
2776
2777/* Reinstall the usual SIGINT handlers, after the target has
2778 stopped. */
2779static void
2780cleanup_sigint_signal_handler (void *dummy)
2781{
2782 signal (SIGINT, handle_sigint);
2783 if (sigint_remote_twice_token)
2784 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2785 if (sigint_remote_token)
2786 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2787}
2788
2789/* Send ^C to target to halt it. Target will respond, and send us a
2790 packet. */
2791static void (*ofunc) (int);
2792
2793/* The command line interface's stop routine. This function is installed
2794 as a signal handler for SIGINT. The first time a user requests a
2795 stop, we call remote_stop to send a break or ^C. If there is no
2796 response from the target (it didn't stop when the user requested it),
2797 we ask the user if he'd like to detach from the target. */
2798static void
2799remote_interrupt (int signo)
2800{
2801 /* If this doesn't work, try more severe steps. */
2802 signal (signo, remote_interrupt_twice);
2803
2804 if (remote_debug)
2805 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2806
2807 target_stop ();
2808}
2809
2810/* The user typed ^C twice. */
2811
2812static void
2813remote_interrupt_twice (int signo)
2814{
2815 signal (signo, ofunc);
2816 interrupt_query ();
2817 signal (signo, remote_interrupt);
2818}
2819
2820/* This is the generic stop called via the target vector. When a target
2821 interrupt is requested, either by the command line or the GUI, we
2822 will eventually end up here. */
2823static void
2824remote_stop (void)
2825{
2826 /* Send a break or a ^C, depending on user preference. */
2827 if (remote_debug)
2828 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2829
2830 if (remote_break)
2831 serial_send_break (remote_desc);
2832 else
2833 serial_write (remote_desc, "\003", 1);
2834}
2835
2836/* Ask the user what to do when an interrupt is received. */
2837
2838static void
2839interrupt_query (void)
2840{
2841 target_terminal_ours ();
2842
2843 if (query ("Interrupted while waiting for the program.\n\
2844Give up (and stop debugging it)? "))
2845 {
2846 target_mourn_inferior ();
2847 throw_exception (RETURN_QUIT);
2848 }
2849
2850 target_terminal_inferior ();
2851}
2852
2853/* Enable/disable target terminal ownership. Most targets can use
2854 terminal groups to control terminal ownership. Remote targets are
2855 different in that explicit transfer of ownership to/from GDB/target
2856 is required. */
2857
2858static void
2859remote_async_terminal_inferior (void)
2860{
2861 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2862 sync_execution here. This function should only be called when
2863 GDB is resuming the inferior in the forground. A background
2864 resume (``run&'') should leave GDB in control of the terminal and
2865 consequently should not call this code. */
2866 if (!sync_execution)
2867 return;
2868 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2869 calls target_terminal_*() idenpotent. The event-loop GDB talking
2870 to an asynchronous target with a synchronous command calls this
2871 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2872 stops trying to transfer the terminal to the target when it
2873 shouldn't this guard can go away. */
2874 if (!remote_async_terminal_ours_p)
2875 return;
2876 delete_file_handler (input_fd);
2877 remote_async_terminal_ours_p = 0;
2878 initialize_sigint_signal_handler ();
2879 /* NOTE: At this point we could also register our selves as the
2880 recipient of all input. Any characters typed could then be
2881 passed on down to the target. */
2882}
2883
2884static void
2885remote_async_terminal_ours (void)
2886{
2887 /* See FIXME in remote_async_terminal_inferior. */
2888 if (!sync_execution)
2889 return;
2890 /* See FIXME in remote_async_terminal_inferior. */
2891 if (remote_async_terminal_ours_p)
2892 return;
2893 cleanup_sigint_signal_handler (NULL);
2894 add_file_handler (input_fd, stdin_event_handler, 0);
2895 remote_async_terminal_ours_p = 1;
2896}
2897
2898/* If nonzero, ignore the next kill. */
2899
2900int kill_kludge;
2901
2902void
2903remote_console_output (char *msg)
2904{
2905 char *p;
2906
2907 for (p = msg; p[0] && p[1]; p += 2)
2908 {
2909 char tb[2];
2910 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2911 tb[0] = c;
2912 tb[1] = 0;
2913 fputs_unfiltered (tb, gdb_stdtarg);
2914 }
2915 gdb_flush (gdb_stdtarg);
2916}
2917
2918/* Wait until the remote machine stops, then return,
2919 storing status in STATUS just as `wait' would.
2920 Returns "pid", which in the case of a multi-threaded
2921 remote OS, is the thread-id. */
2922
2923static ptid_t
2924remote_wait (ptid_t ptid, struct target_waitstatus *status)
2925{
2926 struct remote_state *rs = get_remote_state ();
2927 unsigned char *buf = alloca (rs->remote_packet_size);
2928 ULONGEST thread_num = -1;
2929 ULONGEST addr;
2930
2931 status->kind = TARGET_WAITKIND_EXITED;
2932 status->value.integer = 0;
2933
2934 while (1)
2935 {
2936 unsigned char *p;
2937
2938 ofunc = signal (SIGINT, remote_interrupt);
2939 getpkt (buf, (rs->remote_packet_size), 1);
2940 signal (SIGINT, ofunc);
2941
2942 /* This is a hook for when we need to do something (perhaps the
2943 collection of trace data) every time the target stops. */
2944 if (target_wait_loop_hook)
2945 (*target_wait_loop_hook) ();
2946
2947 remote_stopped_by_watchpoint_p = 0;
2948
2949 switch (buf[0])
2950 {
2951 case 'E': /* Error of some sort */
2952 warning ("Remote failure reply: %s", buf);
2953 continue;
2954 case 'F': /* File-I/O request */
2955 remote_fileio_request (buf);
2956 continue;
2957 case 'T': /* Status with PC, SP, FP, ... */
2958 {
2959 int i;
2960 char regs[MAX_REGISTER_SIZE];
2961
2962 /* Expedited reply, containing Signal, {regno, reg} repeat */
2963 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2964 ss = signal number
2965 n... = register number
2966 r... = register contents
2967 */
2968 p = &buf[3]; /* after Txx */
2969
2970 while (*p)
2971 {
2972 unsigned char *p1;
2973 char *p_temp;
2974 int fieldsize;
2975 LONGEST pnum = 0;
2976
2977 /* If the packet contains a register number save it in pnum
2978 and set p1 to point to the character following it.
2979 Otherwise p1 points to p. */
2980
2981 /* If this packet is an awatch packet, don't parse the 'a'
2982 as a register number. */
2983
2984 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2985 {
2986 /* Read the ``P'' register number. */
2987 pnum = strtol (p, &p_temp, 16);
2988 p1 = (unsigned char *) p_temp;
2989 }
2990 else
2991 p1 = p;
2992
2993 if (p1 == p) /* No register number present here */
2994 {
2995 p1 = (unsigned char *) strchr (p, ':');
2996 if (p1 == NULL)
2997 warning ("Malformed packet(a) (missing colon): %s\n\
2998Packet: '%s'\n",
2999 p, buf);
3000 if (strncmp (p, "thread", p1 - p) == 0)
3001 {
3002 p_temp = unpack_varlen_hex (++p1, &thread_num);
3003 record_currthread (thread_num);
3004 p = (unsigned char *) p_temp;
3005 }
3006 else if ((strncmp (p, "watch", p1 - p) == 0)
3007 || (strncmp (p, "rwatch", p1 - p) == 0)
3008 || (strncmp (p, "awatch", p1 - p) == 0))
3009 {
3010 remote_stopped_by_watchpoint_p = 1;
3011 p = unpack_varlen_hex (++p1, &addr);
3012 remote_watch_data_address = (CORE_ADDR)addr;
3013 }
3014 else
3015 {
3016 /* Silently skip unknown optional info. */
3017 p_temp = strchr (p1 + 1, ';');
3018 if (p_temp)
3019 p = (unsigned char *) p_temp;
3020 }
3021 }
3022 else
3023 {
3024 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3025 p = p1;
3026
3027 if (*p++ != ':')
3028 warning ("Malformed packet(b) (missing colon): %s\n\
3029Packet: '%s'\n",
3030 p, buf);
3031
3032 if (reg == NULL)
3033 warning ("Remote sent bad register number %s: %s\n\
3034Packet: '%s'\n",
3035 phex_nz (pnum, 0), p, buf);
3036
3037 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3038 p += 2 * fieldsize;
3039 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3040 warning ("Remote reply is too short: %s", buf);
3041 supply_register (reg->regnum, regs);
3042 }
3043
3044 if (*p++ != ';')
3045 {
3046 warning ("Remote register badly formatted: %s", buf);
3047 warning (" here: %s", p);
3048 }
3049 }
3050 }
3051 /* fall through */
3052 case 'S': /* Old style status, just signal only */
3053 status->kind = TARGET_WAITKIND_STOPPED;
3054 status->value.sig = (enum target_signal)
3055 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3056
3057 if (buf[3] == 'p')
3058 {
3059 /* Export Cisco kernel mode as a convenience variable
3060 (so that it can be used in the GDB prompt if desired). */
3061
3062 if (cisco_kernel_mode == 1)
3063 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3064 value_from_string ("PDEBUG-"));
3065 cisco_kernel_mode = 0;
3066 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3067 record_currthread (thread_num);
3068 }
3069 else if (buf[3] == 'k')
3070 {
3071 /* Export Cisco kernel mode as a convenience variable
3072 (so that it can be used in the GDB prompt if desired). */
3073
3074 if (cisco_kernel_mode == 1)
3075 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3076 value_from_string ("KDEBUG-"));
3077 cisco_kernel_mode = 1;
3078 }
3079 goto got_status;
3080 case 'N': /* Cisco special: status and offsets */
3081 {
3082 bfd_vma text_addr, data_addr, bss_addr;
3083 bfd_signed_vma text_off, data_off, bss_off;
3084 unsigned char *p1;
3085
3086 status->kind = TARGET_WAITKIND_STOPPED;
3087 status->value.sig = (enum target_signal)
3088 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3089
3090 if (symfile_objfile == NULL)
3091 {
3092 warning ("Relocation packet received with no symbol file. \
3093Packet Dropped");
3094 goto got_status;
3095 }
3096
3097 /* Relocate object file. Buffer format is NAATT;DD;BB
3098 * where AA is the signal number, TT is the new text
3099 * address, DD * is the new data address, and BB is the
3100 * new bss address. */
3101
3102 p = &buf[3];
3103 text_addr = strtoul (p, (char **) &p1, 16);
3104 if (p1 == p || *p1 != ';')
3105 warning ("Malformed relocation packet: Packet '%s'", buf);
3106 p = p1 + 1;
3107 data_addr = strtoul (p, (char **) &p1, 16);
3108 if (p1 == p || *p1 != ';')
3109 warning ("Malformed relocation packet: Packet '%s'", buf);
3110 p = p1 + 1;
3111 bss_addr = strtoul (p, (char **) &p1, 16);
3112 if (p1 == p)
3113 warning ("Malformed relocation packet: Packet '%s'", buf);
3114
3115 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3116 &text_off, &data_off, &bss_off)
3117 == 0)
3118 if (text_off != 0 || data_off != 0 || bss_off != 0)
3119 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3120
3121 goto got_status;
3122 }
3123 case 'W': /* Target exited */
3124 {
3125 /* The remote process exited. */
3126 status->kind = TARGET_WAITKIND_EXITED;
3127 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3128 goto got_status;
3129 }
3130 case 'X':
3131 status->kind = TARGET_WAITKIND_SIGNALLED;
3132 status->value.sig = (enum target_signal)
3133 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3134 kill_kludge = 1;
3135
3136 goto got_status;
3137 case 'O': /* Console output */
3138 remote_console_output (buf + 1);
3139 continue;
3140 case '\0':
3141 if (last_sent_signal != TARGET_SIGNAL_0)
3142 {
3143 /* Zero length reply means that we tried 'S' or 'C' and
3144 the remote system doesn't support it. */
3145 target_terminal_ours_for_output ();
3146 printf_filtered
3147 ("Can't send signals to this remote system. %s not sent.\n",
3148 target_signal_to_name (last_sent_signal));
3149 last_sent_signal = TARGET_SIGNAL_0;
3150 target_terminal_inferior ();
3151
3152 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3153 putpkt ((char *) buf);
3154 continue;
3155 }
3156 /* else fallthrough */
3157 default:
3158 warning ("Invalid remote reply: %s", buf);
3159 continue;
3160 }
3161 }
3162got_status:
3163 if (thread_num != -1)
3164 {
3165 return pid_to_ptid (thread_num);
3166 }
3167 return inferior_ptid;
3168}
3169
3170/* Async version of remote_wait. */
3171static ptid_t
3172remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3173{
3174 struct remote_state *rs = get_remote_state ();
3175 unsigned char *buf = alloca (rs->remote_packet_size);
3176 ULONGEST thread_num = -1;
3177 ULONGEST addr;
3178
3179 status->kind = TARGET_WAITKIND_EXITED;
3180 status->value.integer = 0;
3181
3182 remote_stopped_by_watchpoint_p = 0;
3183
3184 while (1)
3185 {
3186 unsigned char *p;
3187
3188 if (!target_is_async_p ())
3189 ofunc = signal (SIGINT, remote_interrupt);
3190 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3191 _never_ wait for ever -> test on target_is_async_p().
3192 However, before we do that we need to ensure that the caller
3193 knows how to take the target into/out of async mode. */
3194 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3195 if (!target_is_async_p ())
3196 signal (SIGINT, ofunc);
3197
3198 /* This is a hook for when we need to do something (perhaps the
3199 collection of trace data) every time the target stops. */
3200 if (target_wait_loop_hook)
3201 (*target_wait_loop_hook) ();
3202
3203 switch (buf[0])
3204 {
3205 case 'E': /* Error of some sort */
3206 warning ("Remote failure reply: %s", buf);
3207 continue;
3208 case 'F': /* File-I/O request */
3209 remote_fileio_request (buf);
3210 continue;
3211 case 'T': /* Status with PC, SP, FP, ... */
3212 {
3213 int i;
3214 char regs[MAX_REGISTER_SIZE];
3215
3216 /* Expedited reply, containing Signal, {regno, reg} repeat */
3217 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3218 ss = signal number
3219 n... = register number
3220 r... = register contents
3221 */
3222 p = &buf[3]; /* after Txx */
3223
3224 while (*p)
3225 {
3226 unsigned char *p1;
3227 char *p_temp;
3228 int fieldsize;
3229 long pnum = 0;
3230
3231 /* If the packet contains a register number, save it in pnum
3232 and set p1 to point to the character following it.
3233 Otherwise p1 points to p. */
3234
3235 /* If this packet is an awatch packet, don't parse the 'a'
3236 as a register number. */
3237
3238 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3239 {
3240 /* Read the register number. */
3241 pnum = strtol (p, &p_temp, 16);
3242 p1 = (unsigned char *) p_temp;
3243 }
3244 else
3245 p1 = p;
3246
3247 if (p1 == p) /* No register number present here */
3248 {
3249 p1 = (unsigned char *) strchr (p, ':');
3250 if (p1 == NULL)
3251 warning ("Malformed packet(a) (missing colon): %s\n\
3252Packet: '%s'\n",
3253 p, buf);
3254 if (strncmp (p, "thread", p1 - p) == 0)
3255 {
3256 p_temp = unpack_varlen_hex (++p1, &thread_num);
3257 record_currthread (thread_num);
3258 p = (unsigned char *) p_temp;
3259 }
3260 else if ((strncmp (p, "watch", p1 - p) == 0)
3261 || (strncmp (p, "rwatch", p1 - p) == 0)
3262 || (strncmp (p, "awatch", p1 - p) == 0))
3263 {
3264 remote_stopped_by_watchpoint_p = 1;
3265 p = unpack_varlen_hex (++p1, &addr);
3266 remote_watch_data_address = (CORE_ADDR)addr;
3267 }
3268 else
3269 {
3270 /* Silently skip unknown optional info. */
3271 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3272 if (p_temp)
3273 p = p_temp;
3274 }
3275 }
3276
3277 else
3278 {
3279 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3280 p = p1;
3281 if (*p++ != ':')
3282 warning ("Malformed packet(b) (missing colon): %s\n\
3283Packet: '%s'\n",
3284 p, buf);
3285
3286 if (reg == NULL)
3287 warning ("Remote sent bad register number %ld: %s\n\
3288Packet: '%s'\n",
3289 pnum, p, buf);
3290
3291 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3292 p += 2 * fieldsize;
3293 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3294 warning ("Remote reply is too short: %s", buf);
3295 supply_register (reg->regnum, regs);
3296 }
3297
3298 if (*p++ != ';')
3299 {
3300 warning ("Remote register badly formatted: %s", buf);
3301 warning (" here: %s", p);
3302 }
3303 }
3304 }
3305 /* fall through */
3306 case 'S': /* Old style status, just signal only */
3307 status->kind = TARGET_WAITKIND_STOPPED;
3308 status->value.sig = (enum target_signal)
3309 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3310
3311 if (buf[3] == 'p')
3312 {
3313 /* Export Cisco kernel mode as a convenience variable
3314 (so that it can be used in the GDB prompt if desired). */
3315
3316 if (cisco_kernel_mode == 1)
3317 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3318 value_from_string ("PDEBUG-"));
3319 cisco_kernel_mode = 0;
3320 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3321 record_currthread (thread_num);
3322 }
3323 else if (buf[3] == 'k')
3324 {
3325 /* Export Cisco kernel mode as a convenience variable
3326 (so that it can be used in the GDB prompt if desired). */
3327
3328 if (cisco_kernel_mode == 1)
3329 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3330 value_from_string ("KDEBUG-"));
3331 cisco_kernel_mode = 1;
3332 }
3333 goto got_status;
3334 case 'N': /* Cisco special: status and offsets */
3335 {
3336 bfd_vma text_addr, data_addr, bss_addr;
3337 bfd_signed_vma text_off, data_off, bss_off;
3338 unsigned char *p1;
3339
3340 status->kind = TARGET_WAITKIND_STOPPED;
3341 status->value.sig = (enum target_signal)
3342 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3343
3344 if (symfile_objfile == NULL)
3345 {
3346 warning ("Relocation packet recieved with no symbol file. \
3347Packet Dropped");
3348 goto got_status;
3349 }
3350
3351 /* Relocate object file. Buffer format is NAATT;DD;BB
3352 * where AA is the signal number, TT is the new text
3353 * address, DD * is the new data address, and BB is the
3354 * new bss address. */
3355
3356 p = &buf[3];
3357 text_addr = strtoul (p, (char **) &p1, 16);
3358 if (p1 == p || *p1 != ';')
3359 warning ("Malformed relocation packet: Packet '%s'", buf);
3360 p = p1 + 1;
3361 data_addr = strtoul (p, (char **) &p1, 16);
3362 if (p1 == p || *p1 != ';')
3363 warning ("Malformed relocation packet: Packet '%s'", buf);
3364 p = p1 + 1;
3365 bss_addr = strtoul (p, (char **) &p1, 16);
3366 if (p1 == p)
3367 warning ("Malformed relocation packet: Packet '%s'", buf);
3368
3369 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3370 &text_off, &data_off, &bss_off)
3371 == 0)
3372 if (text_off != 0 || data_off != 0 || bss_off != 0)
3373 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3374
3375 goto got_status;
3376 }
3377 case 'W': /* Target exited */
3378 {
3379 /* The remote process exited. */
3380 status->kind = TARGET_WAITKIND_EXITED;
3381 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3382 goto got_status;
3383 }
3384 case 'X':
3385 status->kind = TARGET_WAITKIND_SIGNALLED;
3386 status->value.sig = (enum target_signal)
3387 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3388 kill_kludge = 1;
3389
3390 goto got_status;
3391 case 'O': /* Console output */
3392 remote_console_output (buf + 1);
3393 /* Return immediately to the event loop. The event loop will
3394 still be waiting on the inferior afterwards. */
3395 status->kind = TARGET_WAITKIND_IGNORE;
3396 goto got_status;
3397 case '\0':
3398 if (last_sent_signal != TARGET_SIGNAL_0)
3399 {
3400 /* Zero length reply means that we tried 'S' or 'C' and
3401 the remote system doesn't support it. */
3402 target_terminal_ours_for_output ();
3403 printf_filtered
3404 ("Can't send signals to this remote system. %s not sent.\n",
3405 target_signal_to_name (last_sent_signal));
3406 last_sent_signal = TARGET_SIGNAL_0;
3407 target_terminal_inferior ();
3408
3409 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3410 putpkt ((char *) buf);
3411 continue;
3412 }
3413 /* else fallthrough */
3414 default:
3415 warning ("Invalid remote reply: %s", buf);
3416 continue;
3417 }
3418 }
3419got_status:
3420 if (thread_num != -1)
3421 {
3422 return pid_to_ptid (thread_num);
3423 }
3424 return inferior_ptid;
3425}
3426
3427/* Number of bytes of registers this stub implements. */
3428
3429static int register_bytes_found;
3430
3431/* Read the remote registers into the block REGS. */
3432/* Currently we just read all the registers, so we don't use regnum. */
3433
3434/* ARGSUSED */
3435static void
3436remote_fetch_registers (int regnum)
3437{
3438 struct remote_state *rs = get_remote_state ();
3439 char *buf = alloca (rs->remote_packet_size);
3440 int i;
3441 char *p;
3442 char *regs = alloca (rs->sizeof_g_packet);
3443
3444 set_thread (PIDGET (inferior_ptid), 1);
3445
3446 if (regnum >= 0)
3447 {
3448 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3449 gdb_assert (reg != NULL);
3450 if (!reg->in_g_packet)
3451 internal_error (__FILE__, __LINE__,
3452 "Attempt to fetch a non G-packet register when this "
3453 "remote.c does not support the p-packet.");
3454 }
3455
3456 sprintf (buf, "g");
3457 remote_send (buf, (rs->remote_packet_size));
3458
3459 /* Save the size of the packet sent to us by the target. Its used
3460 as a heuristic when determining the max size of packets that the
3461 target can safely receive. */
3462 if ((rs->actual_register_packet_size) == 0)
3463 (rs->actual_register_packet_size) = strlen (buf);
3464
3465 /* Unimplemented registers read as all bits zero. */
3466 memset (regs, 0, rs->sizeof_g_packet);
3467
3468 /* We can get out of synch in various cases. If the first character
3469 in the buffer is not a hex character, assume that has happened
3470 and try to fetch another packet to read. */
3471 while ((buf[0] < '0' || buf[0] > '9')
3472 && (buf[0] < 'a' || buf[0] > 'f')
3473 && buf[0] != 'x') /* New: unavailable register value */
3474 {
3475 if (remote_debug)
3476 fprintf_unfiltered (gdb_stdlog,
3477 "Bad register packet; fetching a new packet\n");
3478 getpkt (buf, (rs->remote_packet_size), 0);
3479 }
3480
3481 /* Reply describes registers byte by byte, each byte encoded as two
3482 hex characters. Suck them all up, then supply them to the
3483 register cacheing/storage mechanism. */
3484
3485 p = buf;
3486 for (i = 0; i < rs->sizeof_g_packet; i++)
3487 {
3488 if (p[0] == 0)
3489 break;
3490 if (p[1] == 0)
3491 {
3492 warning ("Remote reply is of odd length: %s", buf);
3493 /* Don't change register_bytes_found in this case, and don't
3494 print a second warning. */
3495 goto supply_them;
3496 }
3497 if (p[0] == 'x' && p[1] == 'x')
3498 regs[i] = 0; /* 'x' */
3499 else
3500 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3501 p += 2;
3502 }
3503
3504 if (i != register_bytes_found)
3505 {
3506 register_bytes_found = i;
3507 if (REGISTER_BYTES_OK_P ()
3508 && !REGISTER_BYTES_OK (i))
3509 warning ("Remote reply is too short: %s", buf);
3510 }
3511
3512 supply_them:
3513 {
3514 int i;
3515 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3516 {
3517 struct packet_reg *r = &rs->regs[i];
3518 if (r->in_g_packet)
3519 {
3520 supply_register (r->regnum, regs + r->offset);
3521 if (buf[r->offset * 2] == 'x')
3522 set_register_cached (i, -1);
3523 }
3524 }
3525 }
3526}
3527
3528/* Prepare to store registers. Since we may send them all (using a
3529 'G' request), we have to read out the ones we don't want to change
3530 first. */
3531
3532static void
3533remote_prepare_to_store (void)
3534{
3535 struct remote_state *rs = get_remote_state ();
3536 int i;
3537 char buf[MAX_REGISTER_SIZE];
3538
3539 /* Make sure the entire registers array is valid. */
3540 switch (remote_protocol_P.support)
3541 {
3542 case PACKET_DISABLE:
3543 case PACKET_SUPPORT_UNKNOWN:
3544 /* Make sure all the necessary registers are cached. */
3545 for (i = 0; i < NUM_REGS; i++)
3546 if (rs->regs[i].in_g_packet)
3547 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3548 break;
3549 case PACKET_ENABLE:
3550 break;
3551 }
3552}
3553
3554/* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3555 packet was not recognized. */
3556
3557static int
3558store_register_using_P (int regnum)
3559{
3560 struct remote_state *rs = get_remote_state ();
3561 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3562 /* Try storing a single register. */
3563 char *buf = alloca (rs->remote_packet_size);
3564 char regp[MAX_REGISTER_SIZE];
3565 char *p;
3566 int i;
3567
3568 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3569 p = buf + strlen (buf);
3570 regcache_collect (reg->regnum, regp);
3571 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3572 remote_send (buf, rs->remote_packet_size);
3573
3574 return buf[0] != '\0';
3575}
3576
3577
3578/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3579 of the register cache buffer. FIXME: ignores errors. */
3580
3581static void
3582remote_store_registers (int regnum)
3583{
3584 struct remote_state *rs = get_remote_state ();
3585 char *buf;
3586 char *regs;
3587 int i;
3588 char *p;
3589
3590 set_thread (PIDGET (inferior_ptid), 1);
3591
3592 if (regnum >= 0)
3593 {
3594 switch (remote_protocol_P.support)
3595 {
3596 case PACKET_DISABLE:
3597 break;
3598 case PACKET_ENABLE:
3599 if (store_register_using_P (regnum))
3600 return;
3601 else
3602 error ("Protocol error: P packet not recognized by stub");
3603 case PACKET_SUPPORT_UNKNOWN:
3604 if (store_register_using_P (regnum))
3605 {
3606 /* The stub recognized the 'P' packet. Remember this. */
3607 remote_protocol_P.support = PACKET_ENABLE;
3608 return;
3609 }
3610 else
3611 {
3612 /* The stub does not support the 'P' packet. Use 'G'
3613 instead, and don't try using 'P' in the future (it
3614 will just waste our time). */
3615 remote_protocol_P.support = PACKET_DISABLE;
3616 break;
3617 }
3618 }
3619 }
3620
3621 /* Extract all the registers in the regcache copying them into a
3622 local buffer. */
3623 {
3624 int i;
3625 regs = alloca (rs->sizeof_g_packet);
3626 memset (regs, rs->sizeof_g_packet, 0);
3627 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3628 {
3629 struct packet_reg *r = &rs->regs[i];
3630 if (r->in_g_packet)
3631 regcache_collect (r->regnum, regs + r->offset);
3632 }
3633 }
3634
3635 /* Command describes registers byte by byte,
3636 each byte encoded as two hex characters. */
3637 buf = alloca (rs->remote_packet_size);
3638 p = buf;
3639 *p++ = 'G';
3640 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3641 bin2hex (regs, p, register_bytes_found);
3642 remote_send (buf, (rs->remote_packet_size));
3643}
3644\f
3645
3646/* Return the number of hex digits in num. */
3647
3648static int
3649hexnumlen (ULONGEST num)
3650{
3651 int i;
3652
3653 for (i = 0; num != 0; i++)
3654 num >>= 4;
3655
3656 return max (i, 1);
3657}
3658
3659/* Set BUF to the minimum number of hex digits representing NUM. */
3660
3661static int
3662hexnumstr (char *buf, ULONGEST num)
3663{
3664 int len = hexnumlen (num);
3665 return hexnumnstr (buf, num, len);
3666}
3667
3668
3669/* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3670
3671static int
3672hexnumnstr (char *buf, ULONGEST num, int width)
3673{
3674 int i;
3675
3676 buf[width] = '\0';
3677
3678 for (i = width - 1; i >= 0; i--)
3679 {
3680 buf[i] = "0123456789abcdef"[(num & 0xf)];
3681 num >>= 4;
3682 }
3683
3684 return width;
3685}
3686
3687/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3688
3689static CORE_ADDR
3690remote_address_masked (CORE_ADDR addr)
3691{
3692 if (remote_address_size > 0
3693 && remote_address_size < (sizeof (ULONGEST) * 8))
3694 {
3695 /* Only create a mask when that mask can safely be constructed
3696 in a ULONGEST variable. */
3697 ULONGEST mask = 1;
3698 mask = (mask << remote_address_size) - 1;
3699 addr &= mask;
3700 }
3701 return addr;
3702}
3703
3704/* Determine whether the remote target supports binary downloading.
3705 This is accomplished by sending a no-op memory write of zero length
3706 to the target at the specified address. It does not suffice to send
3707 the whole packet, since many stubs strip the eighth bit and subsequently
3708 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3709
3710 NOTE: This can still lose if the serial line is not eight-bit
3711 clean. In cases like this, the user should clear "remote
3712 X-packet". */
3713
3714static void
3715check_binary_download (CORE_ADDR addr)
3716{
3717 struct remote_state *rs = get_remote_state ();
3718 switch (remote_protocol_binary_download.support)
3719 {
3720 case PACKET_DISABLE:
3721 break;
3722 case PACKET_ENABLE:
3723 break;
3724 case PACKET_SUPPORT_UNKNOWN:
3725 {
3726 char *buf = alloca (rs->remote_packet_size);
3727 char *p;
3728
3729 p = buf;
3730 *p++ = 'X';
3731 p += hexnumstr (p, (ULONGEST) addr);
3732 *p++ = ',';
3733 p += hexnumstr (p, (ULONGEST) 0);
3734 *p++ = ':';
3735 *p = '\0';
3736
3737 putpkt_binary (buf, (int) (p - buf));
3738 getpkt (buf, (rs->remote_packet_size), 0);
3739
3740 if (buf[0] == '\0')
3741 {
3742 if (remote_debug)
3743 fprintf_unfiltered (gdb_stdlog,
3744 "binary downloading NOT suppported by target\n");
3745 remote_protocol_binary_download.support = PACKET_DISABLE;
3746 }
3747 else
3748 {
3749 if (remote_debug)
3750 fprintf_unfiltered (gdb_stdlog,
3751 "binary downloading suppported by target\n");
3752 remote_protocol_binary_download.support = PACKET_ENABLE;
3753 }
3754 break;
3755 }
3756 }
3757}
3758
3759/* Write memory data directly to the remote machine.
3760 This does not inform the data cache; the data cache uses this.
3761 MEMADDR is the address in the remote memory space.
3762 MYADDR is the address of the buffer in our space.
3763 LEN is the number of bytes.
3764
3765 Returns number of bytes transferred, or 0 (setting errno) for
3766 error. Only transfer a single packet. */
3767
3768int
3769remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3770{
3771 unsigned char *buf;
3772 int max_buf_size; /* Max size of packet output buffer */
3773 unsigned char *p;
3774 unsigned char *plen;
3775 long sizeof_buf;
3776 int plenlen;
3777 int todo;
3778 int nr_bytes;
3779
3780 /* Verify that the target can support a binary download */
3781 check_binary_download (memaddr);
3782
3783 /* Determine the max packet size. */
3784 max_buf_size = get_memory_write_packet_size ();
3785 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3786 buf = alloca (sizeof_buf);
3787
3788 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3789 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3790
3791 /* construct "M"<memaddr>","<len>":" */
3792 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3793 p = buf;
3794
3795 /* Append [XM]. Compute a best guess of the number of bytes
3796 actually transfered. */
3797 switch (remote_protocol_binary_download.support)
3798 {
3799 case PACKET_ENABLE:
3800 *p++ = 'X';
3801 /* Best guess at number of bytes that will fit. */
3802 todo = min (len, max_buf_size);
3803 break;
3804 case PACKET_DISABLE:
3805 *p++ = 'M';
3806 /* num bytes that will fit */
3807 todo = min (len, max_buf_size / 2);
3808 break;
3809 case PACKET_SUPPORT_UNKNOWN:
3810 internal_error (__FILE__, __LINE__,
3811 "remote_write_bytes: bad internal state");
3812 default:
3813 internal_error (__FILE__, __LINE__, "bad switch");
3814 }
3815
3816 /* Append <memaddr> */
3817 memaddr = remote_address_masked (memaddr);
3818 p += hexnumstr (p, (ULONGEST) memaddr);
3819 *p++ = ',';
3820
3821 /* Append <len>. Retain the location/size of <len>. It may
3822 need to be adjusted once the packet body has been created. */
3823 plen = p;
3824 plenlen = hexnumstr (p, (ULONGEST) todo);
3825 p += plenlen;
3826 *p++ = ':';
3827 *p = '\0';
3828
3829 /* Append the packet body. */
3830 switch (remote_protocol_binary_download.support)
3831 {
3832 case PACKET_ENABLE:
3833 /* Binary mode. Send target system values byte by byte, in
3834 increasing byte addresses. Only escape certain critical
3835 characters. */
3836 for (nr_bytes = 0;
3837 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3838 nr_bytes++)
3839 {
3840 switch (myaddr[nr_bytes] & 0xff)
3841 {
3842 case '$':
3843 case '#':
3844 case 0x7d:
3845 /* These must be escaped */
3846 *p++ = 0x7d;
3847 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3848 break;
3849 default:
3850 *p++ = myaddr[nr_bytes] & 0xff;
3851 break;
3852 }
3853 }
3854 if (nr_bytes < todo)
3855 {
3856 /* Escape chars have filled up the buffer prematurely,
3857 and we have actually sent fewer bytes than planned.
3858 Fix-up the length field of the packet. Use the same
3859 number of characters as before. */
3860
3861 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3862 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3863 }
3864 break;
3865 case PACKET_DISABLE:
3866 /* Normal mode: Send target system values byte by byte, in
3867 increasing byte addresses. Each byte is encoded as a two hex
3868 value. */
3869 nr_bytes = bin2hex (myaddr, p, todo);
3870 p += 2 * nr_bytes;
3871 break;
3872 case PACKET_SUPPORT_UNKNOWN:
3873 internal_error (__FILE__, __LINE__,
3874 "remote_write_bytes: bad internal state");
3875 default:
3876 internal_error (__FILE__, __LINE__, "bad switch");
3877 }
3878
3879 putpkt_binary (buf, (int) (p - buf));
3880 getpkt (buf, sizeof_buf, 0);
3881
3882 if (buf[0] == 'E')
3883 {
3884 /* There is no correspondance between what the remote protocol
3885 uses for errors and errno codes. We would like a cleaner way
3886 of representing errors (big enough to include errno codes,
3887 bfd_error codes, and others). But for now just return EIO. */
3888 errno = EIO;
3889 return 0;
3890 }
3891
3892 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3893 bytes than we'd planned. */
3894 return nr_bytes;
3895}
3896
3897/* Read memory data directly from the remote machine.
3898 This does not use the data cache; the data cache uses this.
3899 MEMADDR is the address in the remote memory space.
3900 MYADDR is the address of the buffer in our space.
3901 LEN is the number of bytes.
3902
3903 Returns number of bytes transferred, or 0 for error. */
3904
3905/* NOTE: cagney/1999-10-18: This function (and its siblings in other
3906 remote targets) shouldn't attempt to read the entire buffer.
3907 Instead it should read a single packet worth of data and then
3908 return the byte size of that packet to the caller. The caller (its
3909 caller and its callers caller ;-) already contains code for
3910 handling partial reads. */
3911
3912int
3913remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3914{
3915 char *buf;
3916 int max_buf_size; /* Max size of packet output buffer */
3917 long sizeof_buf;
3918 int origlen;
3919
3920 /* Create a buffer big enough for this packet. */
3921 max_buf_size = get_memory_read_packet_size ();
3922 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3923 buf = alloca (sizeof_buf);
3924
3925 origlen = len;
3926 while (len > 0)
3927 {
3928 char *p;
3929 int todo;
3930 int i;
3931
3932 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3933
3934 /* construct "m"<memaddr>","<len>" */
3935 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3936 memaddr = remote_address_masked (memaddr);
3937 p = buf;
3938 *p++ = 'm';
3939 p += hexnumstr (p, (ULONGEST) memaddr);
3940 *p++ = ',';
3941 p += hexnumstr (p, (ULONGEST) todo);
3942 *p = '\0';
3943
3944 putpkt (buf);
3945 getpkt (buf, sizeof_buf, 0);
3946
3947 if (buf[0] == 'E'
3948 && isxdigit (buf[1]) && isxdigit (buf[2])
3949 && buf[3] == '\0')
3950 {
3951 /* There is no correspondance between what the remote protocol uses
3952 for errors and errno codes. We would like a cleaner way of
3953 representing errors (big enough to include errno codes, bfd_error
3954 codes, and others). But for now just return EIO. */
3955 errno = EIO;
3956 return 0;
3957 }
3958
3959 /* Reply describes memory byte by byte,
3960 each byte encoded as two hex characters. */
3961
3962 p = buf;
3963 if ((i = hex2bin (p, myaddr, todo)) < todo)
3964 {
3965 /* Reply is short. This means that we were able to read
3966 only part of what we wanted to. */
3967 return i + (origlen - len);
3968 }
3969 myaddr += todo;
3970 memaddr += todo;
3971 len -= todo;
3972 }
3973 return origlen;
3974}
3975\f
3976/* Read or write LEN bytes from inferior memory at MEMADDR,
3977 transferring to or from debugger address BUFFER. Write to inferior if
3978 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3979 for error. TARGET is unused. */
3980
3981/* ARGSUSED */
3982static int
3983remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3984 int should_write, struct mem_attrib *attrib,
3985 struct target_ops *target)
3986{
3987 CORE_ADDR targ_addr;
3988 int targ_len;
3989 int res;
3990
3991 /* Should this be the selected frame? */
3992 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3993 mem_addr, mem_len,
3994 &targ_addr, &targ_len);
3995 if (targ_len <= 0)
3996 return 0;
3997
3998 if (should_write)
3999 res = remote_write_bytes (targ_addr, buffer, targ_len);
4000 else
4001 res = remote_read_bytes (targ_addr, buffer, targ_len);
4002
4003 return res;
4004}
4005
4006
4007#if 0
4008/* Enable after 4.12. */
4009
4010void
4011remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
4012 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
4013 CORE_ADDR *addr_found, char *data_found)
4014{
4015 if (increment == -4 && len == 4)
4016 {
4017 long mask_long, data_long;
4018 long data_found_long;
4019 CORE_ADDR addr_we_found;
4020 char *buf = alloca (rs->remote_packet_size);
4021 long returned_long[2];
4022 char *p;
4023
4024 mask_long = extract_unsigned_integer (mask, len);
4025 data_long = extract_unsigned_integer (data, len);
4026 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4027 putpkt (buf);
4028 getpkt (buf, (rs->remote_packet_size), 0);
4029 if (buf[0] == '\0')
4030 {
4031 /* The stub doesn't support the 't' request. We might want to
4032 remember this fact, but on the other hand the stub could be
4033 switched on us. Maybe we should remember it only until
4034 the next "target remote". */
4035 generic_search (len, data, mask, startaddr, increment, lorange,
4036 hirange, addr_found, data_found);
4037 return;
4038 }
4039
4040 if (buf[0] == 'E')
4041 /* There is no correspondance between what the remote protocol uses
4042 for errors and errno codes. We would like a cleaner way of
4043 representing errors (big enough to include errno codes, bfd_error
4044 codes, and others). But for now just use EIO. */
4045 memory_error (EIO, startaddr);
4046 p = buf;
4047 addr_we_found = 0;
4048 while (*p != '\0' && *p != ',')
4049 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4050 if (*p == '\0')
4051 error ("Protocol error: short return for search");
4052
4053 data_found_long = 0;
4054 while (*p != '\0' && *p != ',')
4055 data_found_long = (data_found_long << 4) + fromhex (*p++);
4056 /* Ignore anything after this comma, for future extensions. */
4057
4058 if (addr_we_found < lorange || addr_we_found >= hirange)
4059 {
4060 *addr_found = 0;
4061 return;
4062 }
4063
4064 *addr_found = addr_we_found;
4065 *data_found = store_unsigned_integer (data_we_found, len);
4066 return;
4067 }
4068 generic_search (len, data, mask, startaddr, increment, lorange,
4069 hirange, addr_found, data_found);
4070}
4071#endif /* 0 */
4072\f
4073static void
4074remote_files_info (struct target_ops *ignore)
4075{
4076 puts_filtered ("Debugging a target over a serial line.\n");
4077}
4078\f
4079/* Stuff for dealing with the packets which are part of this protocol.
4080 See comment at top of file for details. */
4081
4082/* Read a single character from the remote end, masking it down to 7 bits. */
4083
4084static int
4085readchar (int timeout)
4086{
4087 int ch;
4088
4089 ch = serial_readchar (remote_desc, timeout);
4090
4091 if (ch >= 0)
4092 return (ch & 0x7f);
4093
4094 switch ((enum serial_rc) ch)
4095 {
4096 case SERIAL_EOF:
4097 target_mourn_inferior ();
4098 error ("Remote connection closed");
4099 /* no return */
4100 case SERIAL_ERROR:
4101 perror_with_name ("Remote communication error");
4102 /* no return */
4103 case SERIAL_TIMEOUT:
4104 break;
4105 }
4106 return ch;
4107}
4108
4109/* Send the command in BUF to the remote machine, and read the reply
4110 into BUF. Report an error if we get an error reply. */
4111
4112static void
4113remote_send (char *buf,
4114 long sizeof_buf)
4115{
4116 putpkt (buf);
4117 getpkt (buf, sizeof_buf, 0);
4118
4119 if (buf[0] == 'E')
4120 error ("Remote failure reply: %s", buf);
4121}
4122
4123/* Display a null-terminated packet on stdout, for debugging, using C
4124 string notation. */
4125
4126static void
4127print_packet (char *buf)
4128{
4129 puts_filtered ("\"");
4130 fputstr_filtered (buf, '"', gdb_stdout);
4131 puts_filtered ("\"");
4132}
4133
4134int
4135putpkt (char *buf)
4136{
4137 return putpkt_binary (buf, strlen (buf));
4138}
4139
4140/* Send a packet to the remote machine, with error checking. The data
4141 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4142 to account for the $, # and checksum, and for a possible /0 if we are
4143 debugging (remote_debug) and want to print the sent packet as a string */
4144
4145static int
4146putpkt_binary (char *buf, int cnt)
4147{
4148 struct remote_state *rs = get_remote_state ();
4149 int i;
4150 unsigned char csum = 0;
4151 char *buf2 = alloca (cnt + 6);
4152 long sizeof_junkbuf = (rs->remote_packet_size);
4153 char *junkbuf = alloca (sizeof_junkbuf);
4154
4155 int ch;
4156 int tcount = 0;
4157 char *p;
4158
4159 /* Copy the packet into buffer BUF2, encapsulating it
4160 and giving it a checksum. */
4161
4162 p = buf2;
4163 *p++ = '$';
4164
4165 for (i = 0; i < cnt; i++)
4166 {
4167 csum += buf[i];
4168 *p++ = buf[i];
4169 }
4170 *p++ = '#';
4171 *p++ = tohex ((csum >> 4) & 0xf);
4172 *p++ = tohex (csum & 0xf);
4173
4174 /* Send it over and over until we get a positive ack. */
4175
4176 while (1)
4177 {
4178 int started_error_output = 0;
4179
4180 if (remote_debug)
4181 {
4182 *p = '\0';
4183 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4184 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4185 fprintf_unfiltered (gdb_stdlog, "...");
4186 gdb_flush (gdb_stdlog);
4187 }
4188 if (serial_write (remote_desc, buf2, p - buf2))
4189 perror_with_name ("putpkt: write failed");
4190
4191 /* read until either a timeout occurs (-2) or '+' is read */
4192 while (1)
4193 {
4194 ch = readchar (remote_timeout);
4195
4196 if (remote_debug)
4197 {
4198 switch (ch)
4199 {
4200 case '+':
4201 case '-':
4202 case SERIAL_TIMEOUT:
4203 case '$':
4204 if (started_error_output)
4205 {
4206 putchar_unfiltered ('\n');
4207 started_error_output = 0;
4208 }
4209 }
4210 }
4211
4212 switch (ch)
4213 {
4214 case '+':
4215 if (remote_debug)
4216 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4217 return 1;
4218 case '-':
4219 if (remote_debug)
4220 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4221 case SERIAL_TIMEOUT:
4222 tcount++;
4223 if (tcount > 3)
4224 return 0;
4225 break; /* Retransmit buffer */
4226 case '$':
4227 {
4228 if (remote_debug)
4229 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4230 /* It's probably an old response, and we're out of sync.
4231 Just gobble up the packet and ignore it. */
4232 read_frame (junkbuf, sizeof_junkbuf);
4233 continue; /* Now, go look for + */
4234 }
4235 default:
4236 if (remote_debug)
4237 {
4238 if (!started_error_output)
4239 {
4240 started_error_output = 1;
4241 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4242 }
4243 fputc_unfiltered (ch & 0177, gdb_stdlog);
4244 }
4245 continue;
4246 }
4247 break; /* Here to retransmit */
4248 }
4249
4250#if 0
4251 /* This is wrong. If doing a long backtrace, the user should be
4252 able to get out next time we call QUIT, without anything as
4253 violent as interrupt_query. If we want to provide a way out of
4254 here without getting to the next QUIT, it should be based on
4255 hitting ^C twice as in remote_wait. */
4256 if (quit_flag)
4257 {
4258 quit_flag = 0;
4259 interrupt_query ();
4260 }
4261#endif
4262 }
4263}
4264
4265static int remote_cisco_mode;
4266
4267/* Come here after finding the start of the frame. Collect the rest
4268 into BUF, verifying the checksum, length, and handling run-length
4269 compression. No more than sizeof_buf-1 characters are read so that
4270 the buffer can be NUL terminated.
4271
4272 Returns -1 on error, number of characters in buffer (ignoring the
4273 trailing NULL) on success. (could be extended to return one of the
4274 SERIAL status indications). */
4275
4276static long
4277read_frame (char *buf,
4278 long sizeof_buf)
4279{
4280 unsigned char csum;
4281 long bc;
4282 int c;
4283
4284 csum = 0;
4285 bc = 0;
4286
4287 while (1)
4288 {
4289 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4290 c = readchar (remote_timeout);
4291 switch (c)
4292 {
4293 case SERIAL_TIMEOUT:
4294 if (remote_debug)
4295 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4296 return -1;
4297 case '$':
4298 if (remote_debug)
4299 fputs_filtered ("Saw new packet start in middle of old one\n",
4300 gdb_stdlog);
4301 return -1; /* Start a new packet, count retries */
4302 case '#':
4303 {
4304 unsigned char pktcsum;
4305 int check_0 = 0;
4306 int check_1 = 0;
4307
4308 buf[bc] = '\0';
4309
4310 check_0 = readchar (remote_timeout);
4311 if (check_0 >= 0)
4312 check_1 = readchar (remote_timeout);
4313
4314 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4315 {
4316 if (remote_debug)
4317 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4318 return -1;
4319 }
4320 else if (check_0 < 0 || check_1 < 0)
4321 {
4322 if (remote_debug)
4323 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4324 return -1;
4325 }
4326
4327 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4328 if (csum == pktcsum)
4329 return bc;
4330
4331 if (remote_debug)
4332 {
4333 fprintf_filtered (gdb_stdlog,
4334 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4335 pktcsum, csum);
4336 fputs_filtered (buf, gdb_stdlog);
4337 fputs_filtered ("\n", gdb_stdlog);
4338 }
4339 /* Number of characters in buffer ignoring trailing
4340 NUL. */
4341 return -1;
4342 }
4343 case '*': /* Run length encoding */
4344 {
4345 int repeat;
4346 csum += c;
4347
4348 if (remote_cisco_mode == 0)
4349 {
4350 c = readchar (remote_timeout);
4351 csum += c;
4352 repeat = c - ' ' + 3; /* Compute repeat count */
4353 }
4354 else
4355 {
4356 /* Cisco's run-length encoding variant uses two
4357 hex chars to represent the repeat count. */
4358
4359 c = readchar (remote_timeout);
4360 csum += c;
4361 repeat = fromhex (c) << 4;
4362 c = readchar (remote_timeout);
4363 csum += c;
4364 repeat += fromhex (c);
4365 }
4366
4367 /* The character before ``*'' is repeated. */
4368
4369 if (repeat > 0 && repeat <= 255
4370 && bc > 0
4371 && bc + repeat - 1 < sizeof_buf - 1)
4372 {
4373 memset (&buf[bc], buf[bc - 1], repeat);
4374 bc += repeat;
4375 continue;
4376 }
4377
4378 buf[bc] = '\0';
4379 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4380 puts_filtered (buf);
4381 puts_filtered ("\n");
4382 return -1;
4383 }
4384 default:
4385 if (bc < sizeof_buf - 1)
4386 {
4387 buf[bc++] = c;
4388 csum += c;
4389 continue;
4390 }
4391
4392 buf[bc] = '\0';
4393 puts_filtered ("Remote packet too long: ");
4394 puts_filtered (buf);
4395 puts_filtered ("\n");
4396
4397 return -1;
4398 }
4399 }
4400}
4401
4402/* Read a packet from the remote machine, with error checking, and
4403 store it in BUF. If FOREVER, wait forever rather than timing out;
4404 this is used (in synchronous mode) to wait for a target that is is
4405 executing user code to stop. */
4406/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4407 don't have to change all the calls to getpkt to deal with the
4408 return value, because at the moment I don't know what the right
4409 thing to do it for those. */
4410void
4411getpkt (char *buf,
4412 long sizeof_buf,
4413 int forever)
4414{
4415 int timed_out;
4416
4417 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4418}
4419
4420
4421/* Read a packet from the remote machine, with error checking, and
4422 store it in BUF. If FOREVER, wait forever rather than timing out;
4423 this is used (in synchronous mode) to wait for a target that is is
4424 executing user code to stop. If FOREVER == 0, this function is
4425 allowed to time out gracefully and return an indication of this to
4426 the caller. */
4427static int
4428getpkt_sane (char *buf,
4429 long sizeof_buf,
4430 int forever)
4431{
4432 int c;
4433 int tries;
4434 int timeout;
4435 int val;
4436
4437 strcpy (buf, "timeout");
4438
4439 if (forever)
4440 {
4441 timeout = watchdog > 0 ? watchdog : -1;
4442 }
4443
4444 else
4445 timeout = remote_timeout;
4446
4447#define MAX_TRIES 3
4448
4449 for (tries = 1; tries <= MAX_TRIES; tries++)
4450 {
4451 /* This can loop forever if the remote side sends us characters
4452 continuously, but if it pauses, we'll get a zero from readchar
4453 because of timeout. Then we'll count that as a retry. */
4454
4455 /* Note that we will only wait forever prior to the start of a packet.
4456 After that, we expect characters to arrive at a brisk pace. They
4457 should show up within remote_timeout intervals. */
4458
4459 do
4460 {
4461 c = readchar (timeout);
4462
4463 if (c == SERIAL_TIMEOUT)
4464 {
4465 if (forever) /* Watchdog went off? Kill the target. */
4466 {
4467 QUIT;
4468 target_mourn_inferior ();
4469 error ("Watchdog has expired. Target detached.\n");
4470 }
4471 if (remote_debug)
4472 fputs_filtered ("Timed out.\n", gdb_stdlog);
4473 goto retry;
4474 }
4475 }
4476 while (c != '$');
4477
4478 /* We've found the start of a packet, now collect the data. */
4479
4480 val = read_frame (buf, sizeof_buf);
4481
4482 if (val >= 0)
4483 {
4484 if (remote_debug)
4485 {
4486 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4487 fputstr_unfiltered (buf, 0, gdb_stdlog);
4488 fprintf_unfiltered (gdb_stdlog, "\n");
4489 }
4490 serial_write (remote_desc, "+", 1);
4491 return 0;
4492 }
4493
4494 /* Try the whole thing again. */
4495 retry:
4496 serial_write (remote_desc, "-", 1);
4497 }
4498
4499 /* We have tried hard enough, and just can't receive the packet. Give up. */
4500
4501 printf_unfiltered ("Ignoring packet error, continuing...\n");
4502 serial_write (remote_desc, "+", 1);
4503 return 1;
4504}
4505\f
4506static void
4507remote_kill (void)
4508{
4509 /* For some mysterious reason, wait_for_inferior calls kill instead of
4510 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4511 if (kill_kludge)
4512 {
4513 kill_kludge = 0;
4514 target_mourn_inferior ();
4515 return;
4516 }
4517
4518 /* Use catch_errors so the user can quit from gdb even when we aren't on
4519 speaking terms with the remote system. */
4520 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4521
4522 /* Don't wait for it to die. I'm not really sure it matters whether
4523 we do or not. For the existing stubs, kill is a noop. */
4524 target_mourn_inferior ();
4525}
4526
4527/* Async version of remote_kill. */
4528static void
4529remote_async_kill (void)
4530{
4531 /* Unregister the file descriptor from the event loop. */
4532 if (target_is_async_p ())
4533 serial_async (remote_desc, NULL, 0);
4534
4535 /* For some mysterious reason, wait_for_inferior calls kill instead of
4536 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4537 if (kill_kludge)
4538 {
4539 kill_kludge = 0;
4540 target_mourn_inferior ();
4541 return;
4542 }
4543
4544 /* Use catch_errors so the user can quit from gdb even when we aren't on
4545 speaking terms with the remote system. */
4546 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4547
4548 /* Don't wait for it to die. I'm not really sure it matters whether
4549 we do or not. For the existing stubs, kill is a noop. */
4550 target_mourn_inferior ();
4551}
4552
4553static void
4554remote_mourn (void)
4555{
4556 remote_mourn_1 (&remote_ops);
4557}
4558
4559static void
4560remote_async_mourn (void)
4561{
4562 remote_mourn_1 (&remote_async_ops);
4563}
4564
4565static void
4566extended_remote_mourn (void)
4567{
4568 /* We do _not_ want to mourn the target like this; this will
4569 remove the extended remote target from the target stack,
4570 and the next time the user says "run" it'll fail.
4571
4572 FIXME: What is the right thing to do here? */
4573#if 0
4574 remote_mourn_1 (&extended_remote_ops);
4575#endif
4576}
4577
4578/* Worker function for remote_mourn. */
4579static void
4580remote_mourn_1 (struct target_ops *target)
4581{
4582 unpush_target (target);
4583 generic_mourn_inferior ();
4584}
4585
4586/* In the extended protocol we want to be able to do things like
4587 "run" and have them basically work as expected. So we need
4588 a special create_inferior function.
4589
4590 FIXME: One day add support for changing the exec file
4591 we're debugging, arguments and an environment. */
4592
4593static void
4594extended_remote_create_inferior (char *exec_file, char *args, char **env)
4595{
4596 /* Rip out the breakpoints; we'll reinsert them after restarting
4597 the remote server. */
4598 remove_breakpoints ();
4599
4600 /* Now restart the remote server. */
4601 extended_remote_restart ();
4602
4603 /* Now put the breakpoints back in. This way we're safe if the
4604 restart function works via a unix fork on the remote side. */
4605 insert_breakpoints ();
4606
4607 /* Clean up from the last time we were running. */
4608 clear_proceed_status ();
4609
4610 /* Let the remote process run. */
4611 proceed (-1, TARGET_SIGNAL_0, 0);
4612}
4613
4614/* Async version of extended_remote_create_inferior. */
4615static void
4616extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4617{
4618 /* Rip out the breakpoints; we'll reinsert them after restarting
4619 the remote server. */
4620 remove_breakpoints ();
4621
4622 /* If running asynchronously, register the target file descriptor
4623 with the event loop. */
4624 if (event_loop_p && target_can_async_p ())
4625 target_async (inferior_event_handler, 0);
4626
4627 /* Now restart the remote server. */
4628 extended_remote_restart ();
4629
4630 /* Now put the breakpoints back in. This way we're safe if the
4631 restart function works via a unix fork on the remote side. */
4632 insert_breakpoints ();
4633
4634 /* Clean up from the last time we were running. */
4635 clear_proceed_status ();
4636
4637 /* Let the remote process run. */
4638 proceed (-1, TARGET_SIGNAL_0, 0);
4639}
4640\f
4641
4642/* On some machines, e.g. 68k, we may use a different breakpoint
4643 instruction than other targets; in those use
4644 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4645 Also, bi-endian targets may define
4646 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4647 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4648 just call the standard routines that are in mem-break.c. */
4649
4650/* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4651 target should use an identical BREAKPOINT_FROM_PC. As for native,
4652 the ARCH-OS-tdep.c code can override the default. */
4653
4654#if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4655#define DEPRECATED_REMOTE_BREAKPOINT
4656#endif
4657
4658#ifdef DEPRECATED_REMOTE_BREAKPOINT
4659
4660/* If the target isn't bi-endian, just pretend it is. */
4661#if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4662#define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4663#define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4664#endif
4665
4666static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4667static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4668
4669#endif /* DEPRECATED_REMOTE_BREAKPOINT */
4670
4671/* Insert a breakpoint on targets that don't have any better
4672 breakpoint support. We read the contents of the target location
4673 and stash it, then overwrite it with a breakpoint instruction.
4674 ADDR is the target location in the target machine. CONTENTS_CACHE
4675 is a pointer to memory allocated for saving the target contents.
4676 It is guaranteed by the caller to be long enough to save the number
4677 of bytes returned by BREAKPOINT_FROM_PC. */
4678
4679static int
4680remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4681{
4682 struct remote_state *rs = get_remote_state ();
4683#ifdef DEPRECATED_REMOTE_BREAKPOINT
4684 int val;
4685#endif
4686 int bp_size;
4687
4688 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4689 If it succeeds, then set the support to PACKET_ENABLE. If it
4690 fails, and the user has explicitly requested the Z support then
4691 report an error, otherwise, mark it disabled and go on. */
4692
4693 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4694 {
4695 char *buf = alloca (rs->remote_packet_size);
4696 char *p = buf;
4697
4698 addr = remote_address_masked (addr);
4699 *(p++) = 'Z';
4700 *(p++) = '0';
4701 *(p++) = ',';
4702 p += hexnumstr (p, (ULONGEST) addr);
4703 BREAKPOINT_FROM_PC (&addr, &bp_size);
4704 sprintf (p, ",%d", bp_size);
4705
4706 putpkt (buf);
4707 getpkt (buf, (rs->remote_packet_size), 0);
4708
4709 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4710 {
4711 case PACKET_ERROR:
4712 return -1;
4713 case PACKET_OK:
4714 return 0;
4715 case PACKET_UNKNOWN:
4716 break;
4717 }
4718 }
4719
4720#ifdef DEPRECATED_REMOTE_BREAKPOINT
4721 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4722
4723 if (val == 0)
4724 {
4725 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4726 val = target_write_memory (addr, (char *) big_break_insn,
4727 sizeof big_break_insn);
4728 else
4729 val = target_write_memory (addr, (char *) little_break_insn,
4730 sizeof little_break_insn);
4731 }
4732
4733 return val;
4734#else
4735 return memory_insert_breakpoint (addr, contents_cache);
4736#endif /* DEPRECATED_REMOTE_BREAKPOINT */
4737}
4738
4739static int
4740remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4741{
4742 struct remote_state *rs = get_remote_state ();
4743 int bp_size;
4744
4745 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4746 {
4747 char *buf = alloca (rs->remote_packet_size);
4748 char *p = buf;
4749
4750 *(p++) = 'z';
4751 *(p++) = '0';
4752 *(p++) = ',';
4753
4754 addr = remote_address_masked (addr);
4755 p += hexnumstr (p, (ULONGEST) addr);
4756 BREAKPOINT_FROM_PC (&addr, &bp_size);
4757 sprintf (p, ",%d", bp_size);
4758
4759 putpkt (buf);
4760 getpkt (buf, (rs->remote_packet_size), 0);
4761
4762 return (buf[0] == 'E');
4763 }
4764
4765#ifdef DEPRECATED_REMOTE_BREAKPOINT
4766 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4767#else
4768 return memory_remove_breakpoint (addr, contents_cache);
4769#endif /* DEPRECATED_REMOTE_BREAKPOINT */
4770}
4771
4772static int
4773watchpoint_to_Z_packet (int type)
4774{
4775 switch (type)
4776 {
4777 case hw_write:
4778 return 2;
4779 break;
4780 case hw_read:
4781 return 3;
4782 break;
4783 case hw_access:
4784 return 4;
4785 break;
4786 default:
4787 internal_error (__FILE__, __LINE__,
4788 "hw_bp_to_z: bad watchpoint type %d", type);
4789 }
4790}
4791
4792static int
4793remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4794{
4795 struct remote_state *rs = get_remote_state ();
4796 char *buf = alloca (rs->remote_packet_size);
4797 char *p;
4798 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4799
4800 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4801 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4802 remote_protocol_Z[packet].name,
4803 remote_protocol_Z[packet].title);
4804
4805 sprintf (buf, "Z%x,", packet);
4806 p = strchr (buf, '\0');
4807 addr = remote_address_masked (addr);
4808 p += hexnumstr (p, (ULONGEST) addr);
4809 sprintf (p, ",%x", len);
4810
4811 putpkt (buf);
4812 getpkt (buf, (rs->remote_packet_size), 0);
4813
4814 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4815 {
4816 case PACKET_ERROR:
4817 case PACKET_UNKNOWN:
4818 return -1;
4819 case PACKET_OK:
4820 return 0;
4821 }
4822 internal_error (__FILE__, __LINE__,
4823 "remote_insert_watchpoint: reached end of function");
4824}
4825
4826
4827static int
4828remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4829{
4830 struct remote_state *rs = get_remote_state ();
4831 char *buf = alloca (rs->remote_packet_size);
4832 char *p;
4833 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4834
4835 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4836 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4837 remote_protocol_Z[packet].name,
4838 remote_protocol_Z[packet].title);
4839
4840 sprintf (buf, "z%x,", packet);
4841 p = strchr (buf, '\0');
4842 addr = remote_address_masked (addr);
4843 p += hexnumstr (p, (ULONGEST) addr);
4844 sprintf (p, ",%x", len);
4845 putpkt (buf);
4846 getpkt (buf, (rs->remote_packet_size), 0);
4847
4848 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4849 {
4850 case PACKET_ERROR:
4851 case PACKET_UNKNOWN:
4852 return -1;
4853 case PACKET_OK:
4854 return 0;
4855 }
4856 internal_error (__FILE__, __LINE__,
4857 "remote_remove_watchpoint: reached end of function");
4858}
4859
4860
4861int remote_hw_watchpoint_limit = -1;
4862int remote_hw_breakpoint_limit = -1;
4863
4864static int
4865remote_check_watch_resources (int type, int cnt, int ot)
4866{
4867 if (type == bp_hardware_breakpoint)
4868 {
4869 if (remote_hw_breakpoint_limit == 0)
4870 return 0;
4871 else if (remote_hw_breakpoint_limit < 0)
4872 return 1;
4873 else if (cnt <= remote_hw_breakpoint_limit)
4874 return 1;
4875 }
4876 else
4877 {
4878 if (remote_hw_watchpoint_limit == 0)
4879 return 0;
4880 else if (remote_hw_watchpoint_limit < 0)
4881 return 1;
4882 else if (ot)
4883 return -1;
4884 else if (cnt <= remote_hw_watchpoint_limit)
4885 return 1;
4886 }
4887 return -1;
4888}
4889
4890static int
4891remote_stopped_by_watchpoint (void)
4892{
4893 return remote_stopped_by_watchpoint_p;
4894}
4895
4896static CORE_ADDR
4897remote_stopped_data_address (void)
4898{
4899 if (remote_stopped_by_watchpoint ())
4900 return remote_watch_data_address;
4901 return (CORE_ADDR)0;
4902}
4903
4904
4905static int
4906remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4907{
4908 int len = 0;
4909 struct remote_state *rs = get_remote_state ();
4910 char *buf = alloca (rs->remote_packet_size);
4911 char *p = buf;
4912
4913 /* The length field should be set to the size of a breakpoint
4914 instruction. */
4915
4916 BREAKPOINT_FROM_PC (&addr, &len);
4917
4918 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4919 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4920 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4921 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4922
4923 *(p++) = 'Z';
4924 *(p++) = '1';
4925 *(p++) = ',';
4926
4927 addr = remote_address_masked (addr);
4928 p += hexnumstr (p, (ULONGEST) addr);
4929 sprintf (p, ",%x", len);
4930
4931 putpkt (buf);
4932 getpkt (buf, (rs->remote_packet_size), 0);
4933
4934 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4935 {
4936 case PACKET_ERROR:
4937 case PACKET_UNKNOWN:
4938 return -1;
4939 case PACKET_OK:
4940 return 0;
4941 }
4942 internal_error (__FILE__, __LINE__,
4943 "remote_insert_hw_breakpoint: reached end of function");
4944}
4945
4946
4947static int
4948remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4949{
4950 int len;
4951 struct remote_state *rs = get_remote_state ();
4952 char *buf = alloca (rs->remote_packet_size);
4953 char *p = buf;
4954
4955 /* The length field should be set to the size of a breakpoint
4956 instruction. */
4957
4958 BREAKPOINT_FROM_PC (&addr, &len);
4959
4960 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4961 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4962 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4963 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4964
4965 *(p++) = 'z';
4966 *(p++) = '1';
4967 *(p++) = ',';
4968
4969 addr = remote_address_masked (addr);
4970 p += hexnumstr (p, (ULONGEST) addr);
4971 sprintf (p, ",%x", len);
4972
4973 putpkt(buf);
4974 getpkt (buf, (rs->remote_packet_size), 0);
4975
4976 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4977 {
4978 case PACKET_ERROR:
4979 case PACKET_UNKNOWN:
4980 return -1;
4981 case PACKET_OK:
4982 return 0;
4983 }
4984 internal_error (__FILE__, __LINE__,
4985 "remote_remove_hw_breakpoint: reached end of function");
4986}
4987
4988/* Some targets are only capable of doing downloads, and afterwards
4989 they switch to the remote serial protocol. This function provides
4990 a clean way to get from the download target to the remote target.
4991 It's basically just a wrapper so that we don't have to expose any
4992 of the internal workings of remote.c.
4993
4994 Prior to calling this routine, you should shutdown the current
4995 target code, else you will get the "A program is being debugged
4996 already..." message. Usually a call to pop_target() suffices. */
4997
4998void
4999push_remote_target (char *name, int from_tty)
5000{
5001 printf_filtered ("Switching to remote protocol\n");
5002 remote_open (name, from_tty);
5003}
5004
5005/* Table used by the crc32 function to calcuate the checksum. */
5006
5007static unsigned long crc32_table[256] =
5008{0, 0};
5009
5010static unsigned long
5011crc32 (unsigned char *buf, int len, unsigned int crc)
5012{
5013 if (!crc32_table[1])
5014 {
5015 /* Initialize the CRC table and the decoding table. */
5016 int i, j;
5017 unsigned int c;
5018
5019 for (i = 0; i < 256; i++)
5020 {
5021 for (c = i << 24, j = 8; j > 0; --j)
5022 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5023 crc32_table[i] = c;
5024 }
5025 }
5026
5027 while (len--)
5028 {
5029 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5030 buf++;
5031 }
5032 return crc;
5033}
5034
5035/* compare-sections command
5036
5037 With no arguments, compares each loadable section in the exec bfd
5038 with the same memory range on the target, and reports mismatches.
5039 Useful for verifying the image on the target against the exec file.
5040 Depends on the target understanding the new "qCRC:" request. */
5041
5042/* FIXME: cagney/1999-10-26: This command should be broken down into a
5043 target method (target verify memory) and generic version of the
5044 actual command. This will allow other high-level code (especially
5045 generic_load()) to make use of this target functionality. */
5046
5047static void
5048compare_sections_command (char *args, int from_tty)
5049{
5050 struct remote_state *rs = get_remote_state ();
5051 asection *s;
5052 unsigned long host_crc, target_crc;
5053 extern bfd *exec_bfd;
5054 struct cleanup *old_chain;
5055 char *tmp;
5056 char *sectdata;
5057 const char *sectname;
5058 char *buf = alloca (rs->remote_packet_size);
5059 bfd_size_type size;
5060 bfd_vma lma;
5061 int matched = 0;
5062 int mismatched = 0;
5063
5064 if (!exec_bfd)
5065 error ("command cannot be used without an exec file");
5066 if (!current_target.to_shortname ||
5067 strcmp (current_target.to_shortname, "remote") != 0)
5068 error ("command can only be used with remote target");
5069
5070 for (s = exec_bfd->sections; s; s = s->next)
5071 {
5072 if (!(s->flags & SEC_LOAD))
5073 continue; /* skip non-loadable section */
5074
5075 size = bfd_get_section_size_before_reloc (s);
5076 if (size == 0)
5077 continue; /* skip zero-length section */
5078
5079 sectname = bfd_get_section_name (exec_bfd, s);
5080 if (args && strcmp (args, sectname) != 0)
5081 continue; /* not the section selected by user */
5082
5083 matched = 1; /* do this section */
5084 lma = s->lma;
5085 /* FIXME: assumes lma can fit into long */
5086 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5087 putpkt (buf);
5088
5089 /* be clever; compute the host_crc before waiting for target reply */
5090 sectdata = xmalloc (size);
5091 old_chain = make_cleanup (xfree, sectdata);
5092 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5093 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5094
5095 getpkt (buf, (rs->remote_packet_size), 0);
5096 if (buf[0] == 'E')
5097 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5098 sectname, paddr (lma), paddr (lma + size));
5099 if (buf[0] != 'C')
5100 error ("remote target does not support this operation");
5101
5102 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5103 target_crc = target_crc * 16 + fromhex (*tmp);
5104
5105 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5106 sectname, paddr (lma), paddr (lma + size));
5107 if (host_crc == target_crc)
5108 printf_filtered ("matched.\n");
5109 else
5110 {
5111 printf_filtered ("MIS-MATCHED!\n");
5112 mismatched++;
5113 }
5114
5115 do_cleanups (old_chain);
5116 }
5117 if (mismatched > 0)
5118 warning ("One or more sections of the remote executable does not match\n\
5119the loaded file\n");
5120 if (args && !matched)
5121 printf_filtered ("No loaded section named '%s'.\n", args);
5122}
5123
5124static int
5125remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5126{
5127 struct remote_state *rs = get_remote_state ();
5128 int i;
5129 char *buf2 = alloca (rs->remote_packet_size);
5130 char *p2 = &buf2[0];
5131
5132 if (!bufsiz)
5133 error ("null pointer to remote bufer size specified");
5134
5135 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5136 the caller know and return what the minimum size is */
5137 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5138 if (*bufsiz < (rs->remote_packet_size))
5139 {
5140 *bufsiz = (rs->remote_packet_size);
5141 return -1;
5142 }
5143
5144 /* except for querying the minimum buffer size, target must be open */
5145 if (!remote_desc)
5146 error ("remote query is only available after target open");
5147
5148 /* we only take uppercase letters as query types, at least for now */
5149 if ((query_type < 'A') || (query_type > 'Z'))
5150 error ("invalid remote query type");
5151
5152 if (!buf)
5153 error ("null remote query specified");
5154
5155 if (!outbuf)
5156 error ("remote query requires a buffer to receive data");
5157
5158 outbuf[0] = '\0';
5159
5160 *p2++ = 'q';
5161 *p2++ = query_type;
5162
5163 /* we used one buffer char for the remote protocol q command and another
5164 for the query type. As the remote protocol encapsulation uses 4 chars
5165 plus one extra in case we are debugging (remote_debug),
5166 we have PBUFZIZ - 7 left to pack the query string */
5167 i = 0;
5168 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5169 {
5170 /* bad caller may have sent forbidden characters */
5171 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5172 error ("illegal characters in query string");
5173
5174 *p2++ = buf[i];
5175 i++;
5176 }
5177 *p2 = buf[i];
5178
5179 if (buf[i])
5180 error ("query larger than available buffer");
5181
5182 i = putpkt (buf2);
5183 if (i < 0)
5184 return i;
5185
5186 getpkt (outbuf, *bufsiz, 0);
5187
5188 return 0;
5189}
5190
5191static void
5192remote_rcmd (char *command,
5193 struct ui_file *outbuf)
5194{
5195 struct remote_state *rs = get_remote_state ();
5196 int i;
5197 char *buf = alloca (rs->remote_packet_size);
5198 char *p = buf;
5199
5200 if (!remote_desc)
5201 error ("remote rcmd is only available after target open");
5202
5203 /* Send a NULL command across as an empty command */
5204 if (command == NULL)
5205 command = "";
5206
5207 /* The query prefix */
5208 strcpy (buf, "qRcmd,");
5209 p = strchr (buf, '\0');
5210
5211 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5212 error ("\"monitor\" command ``%s'' is too long\n", command);
5213
5214 /* Encode the actual command */
5215 bin2hex (command, p, 0);
5216
5217 if (putpkt (buf) < 0)
5218 error ("Communication problem with target\n");
5219
5220 /* get/display the response */
5221 while (1)
5222 {
5223 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5224 buf[0] = '\0';
5225 getpkt (buf, (rs->remote_packet_size), 0);
5226 if (buf[0] == '\0')
5227 error ("Target does not support this command\n");
5228 if (buf[0] == 'O' && buf[1] != 'K')
5229 {
5230 remote_console_output (buf + 1); /* 'O' message from stub */
5231 continue;
5232 }
5233 if (strcmp (buf, "OK") == 0)
5234 break;
5235 if (strlen (buf) == 3 && buf[0] == 'E'
5236 && isdigit (buf[1]) && isdigit (buf[2]))
5237 {
5238 error ("Protocol error with Rcmd");
5239 }
5240 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5241 {
5242 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5243 fputc_unfiltered (c, outbuf);
5244 }
5245 break;
5246 }
5247}
5248
5249static void
5250packet_command (char *args, int from_tty)
5251{
5252 struct remote_state *rs = get_remote_state ();
5253 char *buf = alloca (rs->remote_packet_size);
5254
5255 if (!remote_desc)
5256 error ("command can only be used with remote target");
5257
5258 if (!args)
5259 error ("remote-packet command requires packet text as argument");
5260
5261 puts_filtered ("sending: ");
5262 print_packet (args);
5263 puts_filtered ("\n");
5264 putpkt (args);
5265
5266 getpkt (buf, (rs->remote_packet_size), 0);
5267 puts_filtered ("received: ");
5268 print_packet (buf);
5269 puts_filtered ("\n");
5270}
5271
5272#if 0
5273/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5274
5275static void display_thread_info (struct gdb_ext_thread_info *info);
5276
5277static void threadset_test_cmd (char *cmd, int tty);
5278
5279static void threadalive_test (char *cmd, int tty);
5280
5281static void threadlist_test_cmd (char *cmd, int tty);
5282
5283int get_and_display_threadinfo (threadref * ref);
5284
5285static void threadinfo_test_cmd (char *cmd, int tty);
5286
5287static int thread_display_step (threadref * ref, void *context);
5288
5289static void threadlist_update_test_cmd (char *cmd, int tty);
5290
5291static void init_remote_threadtests (void);
5292
5293#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5294
5295static void
5296threadset_test_cmd (char *cmd, int tty)
5297{
5298 int sample_thread = SAMPLE_THREAD;
5299
5300 printf_filtered ("Remote threadset test\n");
5301 set_thread (sample_thread, 1);
5302}
5303
5304
5305static void
5306threadalive_test (char *cmd, int tty)
5307{
5308 int sample_thread = SAMPLE_THREAD;
5309
5310 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5311 printf_filtered ("PASS: Thread alive test\n");
5312 else
5313 printf_filtered ("FAIL: Thread alive test\n");
5314}
5315
5316void output_threadid (char *title, threadref * ref);
5317
5318void
5319output_threadid (char *title, threadref *ref)
5320{
5321 char hexid[20];
5322
5323 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5324 hexid[16] = 0;
5325 printf_filtered ("%s %s\n", title, (&hexid[0]));
5326}
5327
5328static void
5329threadlist_test_cmd (char *cmd, int tty)
5330{
5331 int startflag = 1;
5332 threadref nextthread;
5333 int done, result_count;
5334 threadref threadlist[3];
5335
5336 printf_filtered ("Remote Threadlist test\n");
5337 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5338 &result_count, &threadlist[0]))
5339 printf_filtered ("FAIL: threadlist test\n");
5340 else
5341 {
5342 threadref *scan = threadlist;
5343 threadref *limit = scan + result_count;
5344
5345 while (scan < limit)
5346 output_threadid (" thread ", scan++);
5347 }
5348}
5349
5350void
5351display_thread_info (struct gdb_ext_thread_info *info)
5352{
5353 output_threadid ("Threadid: ", &info->threadid);
5354 printf_filtered ("Name: %s\n ", info->shortname);
5355 printf_filtered ("State: %s\n", info->display);
5356 printf_filtered ("other: %s\n\n", info->more_display);
5357}
5358
5359int
5360get_and_display_threadinfo (threadref *ref)
5361{
5362 int result;
5363 int set;
5364 struct gdb_ext_thread_info threadinfo;
5365
5366 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5367 | TAG_MOREDISPLAY | TAG_DISPLAY;
5368 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5369 display_thread_info (&threadinfo);
5370 return result;
5371}
5372
5373static void
5374threadinfo_test_cmd (char *cmd, int tty)
5375{
5376 int athread = SAMPLE_THREAD;
5377 threadref thread;
5378 int set;
5379
5380 int_to_threadref (&thread, athread);
5381 printf_filtered ("Remote Threadinfo test\n");
5382 if (!get_and_display_threadinfo (&thread))
5383 printf_filtered ("FAIL cannot get thread info\n");
5384}
5385
5386static int
5387thread_display_step (threadref *ref, void *context)
5388{
5389 /* output_threadid(" threadstep ",ref); *//* simple test */
5390 return get_and_display_threadinfo (ref);
5391}
5392
5393static void
5394threadlist_update_test_cmd (char *cmd, int tty)
5395{
5396 printf_filtered ("Remote Threadlist update test\n");
5397 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5398}
5399
5400static void
5401init_remote_threadtests (void)
5402{
5403 add_com ("tlist", class_obscure, threadlist_test_cmd,
5404 "Fetch and print the remote list of thread identifiers, one pkt only");
5405 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5406 "Fetch and display info about one thread");
5407 add_com ("tset", class_obscure, threadset_test_cmd,
5408 "Test setting to a different thread");
5409 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5410 "Iterate through updating all remote thread info");
5411 add_com ("talive", class_obscure, threadalive_test,
5412 " Remote thread alive test ");
5413}
5414
5415#endif /* 0 */
5416
5417/* Convert a thread ID to a string. Returns the string in a static
5418 buffer. */
5419
5420static char *
5421remote_pid_to_str (ptid_t ptid)
5422{
5423 static char buf[30];
5424
5425 sprintf (buf, "Thread %d", PIDGET (ptid));
5426 return buf;
5427}
5428
5429static void
5430init_remote_ops (void)
5431{
5432 remote_ops.to_shortname = "remote";
5433 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5434 remote_ops.to_doc =
5435 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5436Specify the serial device it is connected to\n\
5437(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5438 remote_ops.to_open = remote_open;
5439 remote_ops.to_close = remote_close;
5440 remote_ops.to_detach = remote_detach;
5441 remote_ops.to_resume = remote_resume;
5442 remote_ops.to_wait = remote_wait;
5443 remote_ops.to_fetch_registers = remote_fetch_registers;
5444 remote_ops.to_store_registers = remote_store_registers;
5445 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5446 remote_ops.to_xfer_memory = remote_xfer_memory;
5447 remote_ops.to_files_info = remote_files_info;
5448 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5449 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5450 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5451 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5452 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5453 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5454 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5455 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5456 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5457 remote_ops.to_kill = remote_kill;
5458 remote_ops.to_load = generic_load;
5459 remote_ops.to_mourn_inferior = remote_mourn;
5460 remote_ops.to_thread_alive = remote_thread_alive;
5461 remote_ops.to_find_new_threads = remote_threads_info;
5462 remote_ops.to_pid_to_str = remote_pid_to_str;
5463 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5464 remote_ops.to_stop = remote_stop;
5465 remote_ops.to_query = remote_query;
5466 remote_ops.to_rcmd = remote_rcmd;
5467 remote_ops.to_stratum = process_stratum;
5468 remote_ops.to_has_all_memory = 1;
5469 remote_ops.to_has_memory = 1;
5470 remote_ops.to_has_stack = 1;
5471 remote_ops.to_has_registers = 1;
5472 remote_ops.to_has_execution = 1;
5473 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5474 remote_ops.to_magic = OPS_MAGIC;
5475}
5476
5477/* Set up the extended remote vector by making a copy of the standard
5478 remote vector and adding to it. */
5479
5480static void
5481init_extended_remote_ops (void)
5482{
5483 extended_remote_ops = remote_ops;
5484
5485 extended_remote_ops.to_shortname = "extended-remote";
5486 extended_remote_ops.to_longname =
5487 "Extended remote serial target in gdb-specific protocol";
5488 extended_remote_ops.to_doc =
5489 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5490Specify the serial device it is connected to (e.g. /dev/ttya).",
5491 extended_remote_ops.to_open = extended_remote_open;
5492 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5493 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5494}
5495
5496/*
5497 * Command: info remote-process
5498 *
5499 * This implements Cisco's version of the "info proc" command.
5500 *
5501 * This query allows the target stub to return an arbitrary string
5502 * (or strings) giving arbitrary information about the target process.
5503 * This is optional; the target stub isn't required to implement it.
5504 *
5505 * Syntax: qfProcessInfo request first string
5506 * qsProcessInfo request subsequent string
5507 * reply: 'O'<hex-encoded-string>
5508 * 'l' last reply (empty)
5509 */
5510
5511static void
5512remote_info_process (char *args, int from_tty)
5513{
5514 struct remote_state *rs = get_remote_state ();
5515 char *buf = alloca (rs->remote_packet_size);
5516
5517 if (remote_desc == 0)
5518 error ("Command can only be used when connected to the remote target.");
5519
5520 putpkt ("qfProcessInfo");
5521 getpkt (buf, (rs->remote_packet_size), 0);
5522 if (buf[0] == 0)
5523 return; /* Silently: target does not support this feature. */
5524
5525 if (buf[0] == 'E')
5526 error ("info proc: target error.");
5527
5528 while (buf[0] == 'O') /* Capitol-O packet */
5529 {
5530 remote_console_output (&buf[1]);
5531 putpkt ("qsProcessInfo");
5532 getpkt (buf, (rs->remote_packet_size), 0);
5533 }
5534}
5535
5536/*
5537 * Target Cisco
5538 */
5539
5540static void
5541remote_cisco_open (char *name, int from_tty)
5542{
5543 int ex;
5544 if (name == 0)
5545 error ("To open a remote debug connection, you need to specify what \n"
5546 "device is attached to the remote system (e.g. host:port).");
5547
5548 /* See FIXME above */
5549 wait_forever_enabled_p = 1;
5550
5551 target_preopen (from_tty);
5552
5553 unpush_target (&remote_cisco_ops);
5554
5555 remote_desc = remote_serial_open (name);
5556 if (!remote_desc)
5557 perror_with_name (name);
5558
5559 /*
5560 * If a baud rate was specified on the gdb command line it will
5561 * be greater than the initial value of -1. If it is, use it otherwise
5562 * default to 9600
5563 */
5564
5565 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5566 if (serial_setbaudrate (remote_desc, baud_rate))
5567 {
5568 serial_close (remote_desc);
5569 perror_with_name (name);
5570 }
5571
5572 serial_raw (remote_desc);
5573
5574 /* If there is something sitting in the buffer we might take it as a
5575 response to a command, which would be bad. */
5576 serial_flush_input (remote_desc);
5577
5578 if (from_tty)
5579 {
5580 puts_filtered ("Remote debugging using ");
5581 puts_filtered (name);
5582 puts_filtered ("\n");
5583 }
5584
5585 remote_cisco_mode = 1;
5586
5587 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5588
5589 init_all_packet_configs ();
5590
5591 general_thread = -2;
5592 continue_thread = -2;
5593
5594 /* Probe for ability to use "ThreadInfo" query, as required. */
5595 use_threadinfo_query = 1;
5596 use_threadextra_query = 1;
5597
5598 /* Without this, some commands which require an active target (such
5599 as kill) won't work. This variable serves (at least) double duty
5600 as both the pid of the target process (if it has such), and as a
5601 flag indicating that a target is active. These functions should
5602 be split out into seperate variables, especially since GDB will
5603 someday have a notion of debugging several processes. */
5604 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5605
5606 /* Start the remote connection; if error, discard this target. See
5607 the comments in remote_open_1() for further details such as the
5608 need to re-throw the exception. */
5609 ex = catch_exceptions (uiout,
5610 remote_start_remote_dummy, NULL,
5611 "Couldn't establish connection to remote"
5612 " target\n",
5613 RETURN_MASK_ALL);
5614 if (ex < 0)
5615 {
5616 pop_target ();
5617 throw_exception (ex);
5618 }
5619}
5620
5621static void
5622remote_cisco_close (int quitting)
5623{
5624 remote_cisco_mode = 0;
5625 remote_close (quitting);
5626}
5627
5628static void
5629remote_cisco_mourn (void)
5630{
5631 remote_mourn_1 (&remote_cisco_ops);
5632}
5633
5634enum
5635{
5636 READ_MORE,
5637 FATAL_ERROR,
5638 ENTER_DEBUG,
5639 DISCONNECT_TELNET
5640}
5641minitelnet_return;
5642
5643/* Shared between readsocket() and readtty(). The size is arbitrary,
5644 however all targets are known to support a 400 character packet. */
5645static char tty_input[400];
5646
5647static int escape_count;
5648static int echo_check;
5649extern int quit_flag;
5650
5651static int
5652readsocket (void)
5653{
5654 int data;
5655
5656 /* Loop until the socket doesn't have any more data */
5657
5658 while ((data = readchar (0)) >= 0)
5659 {
5660 /* Check for the escape sequence */
5661 if (data == '|')
5662 {
5663 /* If this is the fourth escape, get out */
5664 if (++escape_count == 4)
5665 {
5666 return ENTER_DEBUG;
5667 }
5668 else
5669 { /* This is a '|', but not the fourth in a row.
5670 Continue without echoing it. If it isn't actually
5671 one of four in a row, it'll be echoed later. */
5672 continue;
5673 }
5674 }
5675 else
5676 /* Not a '|' */
5677 {
5678 /* Ensure any pending '|'s are flushed. */
5679
5680 for (; escape_count > 0; escape_count--)
5681 putchar ('|');
5682 }
5683
5684 if (data == '\r') /* If this is a return character, */
5685 continue; /* - just supress it. */
5686
5687 if (echo_check != -1) /* Check for echo of user input. */
5688 {
5689 if (tty_input[echo_check] == data)
5690 {
5691 gdb_assert (echo_check <= sizeof (tty_input));
5692 echo_check++; /* Character matched user input: */
5693 continue; /* Continue without echoing it. */
5694 }
5695 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5696 { /* End of the line (and of echo checking). */
5697 echo_check = -1; /* No more echo supression */
5698 continue; /* Continue without echoing. */
5699 }
5700 else
5701 { /* Failed check for echo of user input.
5702 We now have some suppressed output to flush! */
5703 int j;
5704
5705 for (j = 0; j < echo_check; j++)
5706 putchar (tty_input[j]);
5707 echo_check = -1;
5708 }
5709 }
5710 putchar (data); /* Default case: output the char. */
5711 }
5712
5713 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5714 return READ_MORE; /* Try to read some more */
5715 else
5716 return FATAL_ERROR; /* Trouble, bail out */
5717}
5718
5719static int
5720readtty (void)
5721{
5722 int tty_bytecount;
5723
5724 /* First, read a buffer full from the terminal */
5725 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5726 if (tty_bytecount == -1)
5727 {
5728 perror ("readtty: read failed");
5729 return FATAL_ERROR;
5730 }
5731
5732 /* Remove a quoted newline. */
5733 if (tty_input[tty_bytecount - 1] == '\n' &&
5734 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5735 {
5736 tty_input[--tty_bytecount] = 0; /* remove newline */
5737 tty_input[--tty_bytecount] = 0; /* remove backslash */
5738 }
5739
5740 /* Turn trailing newlines into returns */
5741 if (tty_input[tty_bytecount - 1] == '\n')
5742 tty_input[tty_bytecount - 1] = '\r';
5743
5744 /* If the line consists of a ~, enter debugging mode. */
5745 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5746 return ENTER_DEBUG;
5747
5748 /* Make this a zero terminated string and write it out */
5749 tty_input[tty_bytecount] = 0;
5750 if (serial_write (remote_desc, tty_input, tty_bytecount))
5751 {
5752 perror_with_name ("readtty: write failed");
5753 return FATAL_ERROR;
5754 }
5755
5756 return READ_MORE;
5757}
5758
5759static int
5760minitelnet (void)
5761{
5762 fd_set input; /* file descriptors for select */
5763 int tablesize; /* max number of FDs for select */
5764 int status;
5765 int quit_count = 0;
5766
5767 escape_count = 0;
5768 echo_check = -1;
5769
5770 tablesize = 8 * sizeof (input);
5771
5772 for (;;)
5773 {
5774 /* Check for anything from our socket - doesn't block. Note that
5775 this must be done *before* the select as there may be
5776 buffered I/O waiting to be processed. */
5777
5778 if ((status = readsocket ()) == FATAL_ERROR)
5779 {
5780 error ("Debugging terminated by communications error");
5781 }
5782 else if (status != READ_MORE)
5783 {
5784 return (status);
5785 }
5786
5787 fflush (stdout); /* Flush output before blocking */
5788
5789 /* Now block on more socket input or TTY input */
5790
5791 FD_ZERO (&input);
5792 FD_SET (fileno (stdin), &input);
5793 FD_SET (deprecated_serial_fd (remote_desc), &input);
5794
5795 status = select (tablesize, &input, 0, 0, 0);
5796 if ((status == -1) && (errno != EINTR))
5797 {
5798 error ("Communications error on select %d", errno);
5799 }
5800
5801 /* Handle Control-C typed */
5802
5803 if (quit_flag)
5804 {
5805 if ((++quit_count) == 2)
5806 {
5807 if (query ("Interrupt GDB? "))
5808 {
5809 printf_filtered ("Interrupted by user.\n");
5810 throw_exception (RETURN_QUIT);
5811 }
5812 quit_count = 0;
5813 }
5814 quit_flag = 0;
5815
5816 if (remote_break)
5817 serial_send_break (remote_desc);
5818 else
5819 serial_write (remote_desc, "\003", 1);
5820
5821 continue;
5822 }
5823
5824 /* Handle console input */
5825
5826 if (FD_ISSET (fileno (stdin), &input))
5827 {
5828 quit_count = 0;
5829 echo_check = 0;
5830 status = readtty ();
5831 if (status == READ_MORE)
5832 continue;
5833
5834 return status; /* telnet session ended */
5835 }
5836 }
5837}
5838
5839static ptid_t
5840remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5841{
5842 if (minitelnet () != ENTER_DEBUG)
5843 {
5844 error ("Debugging session terminated by protocol error");
5845 }
5846 putpkt ("?");
5847 return remote_wait (ptid, status);
5848}
5849
5850static void
5851init_remote_cisco_ops (void)
5852{
5853 remote_cisco_ops.to_shortname = "cisco";
5854 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5855 remote_cisco_ops.to_doc =
5856 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5857Specify the serial device it is connected to (e.g. host:2020).";
5858 remote_cisco_ops.to_open = remote_cisco_open;
5859 remote_cisco_ops.to_close = remote_cisco_close;
5860 remote_cisco_ops.to_detach = remote_detach;
5861 remote_cisco_ops.to_resume = remote_resume;
5862 remote_cisco_ops.to_wait = remote_cisco_wait;
5863 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5864 remote_cisco_ops.to_store_registers = remote_store_registers;
5865 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5866 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5867 remote_cisco_ops.to_files_info = remote_files_info;
5868 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5869 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5870 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5871 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5872 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5873 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5874 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5875 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5876 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5877 remote_cisco_ops.to_kill = remote_kill;
5878 remote_cisco_ops.to_load = generic_load;
5879 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5880 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5881 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5882 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5883 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5884 remote_cisco_ops.to_stratum = process_stratum;
5885 remote_cisco_ops.to_has_all_memory = 1;
5886 remote_cisco_ops.to_has_memory = 1;
5887 remote_cisco_ops.to_has_stack = 1;
5888 remote_cisco_ops.to_has_registers = 1;
5889 remote_cisco_ops.to_has_execution = 1;
5890 remote_cisco_ops.to_magic = OPS_MAGIC;
5891}
5892
5893static int
5894remote_can_async_p (void)
5895{
5896 /* We're async whenever the serial device is. */
5897 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5898}
5899
5900static int
5901remote_is_async_p (void)
5902{
5903 /* We're async whenever the serial device is. */
5904 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5905}
5906
5907/* Pass the SERIAL event on and up to the client. One day this code
5908 will be able to delay notifying the client of an event until the
5909 point where an entire packet has been received. */
5910
5911static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5912static void *async_client_context;
5913static serial_event_ftype remote_async_serial_handler;
5914
5915static void
5916remote_async_serial_handler (struct serial *scb, void *context)
5917{
5918 /* Don't propogate error information up to the client. Instead let
5919 the client find out about the error by querying the target. */
5920 async_client_callback (INF_REG_EVENT, async_client_context);
5921}
5922
5923static void
5924remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5925{
5926 if (current_target.to_async_mask_value == 0)
5927 internal_error (__FILE__, __LINE__,
5928 "Calling remote_async when async is masked");
5929
5930 if (callback != NULL)
5931 {
5932 serial_async (remote_desc, remote_async_serial_handler, NULL);
5933 async_client_callback = callback;
5934 async_client_context = context;
5935 }
5936 else
5937 serial_async (remote_desc, NULL, NULL);
5938}
5939
5940/* Target async and target extended-async.
5941
5942 This are temporary targets, until it is all tested. Eventually
5943 async support will be incorporated int the usual 'remote'
5944 target. */
5945
5946static void
5947init_remote_async_ops (void)
5948{
5949 remote_async_ops.to_shortname = "async";
5950 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5951 remote_async_ops.to_doc =
5952 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5953Specify the serial device it is connected to (e.g. /dev/ttya).";
5954 remote_async_ops.to_open = remote_async_open;
5955 remote_async_ops.to_close = remote_close;
5956 remote_async_ops.to_detach = remote_async_detach;
5957 remote_async_ops.to_resume = remote_async_resume;
5958 remote_async_ops.to_wait = remote_async_wait;
5959 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5960 remote_async_ops.to_store_registers = remote_store_registers;
5961 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5962 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5963 remote_async_ops.to_files_info = remote_files_info;
5964 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5965 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5966 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5967 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5968 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5969 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5970 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5971 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5972 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5973 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5974 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5975 remote_async_ops.to_kill = remote_async_kill;
5976 remote_async_ops.to_load = generic_load;
5977 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5978 remote_async_ops.to_thread_alive = remote_thread_alive;
5979 remote_async_ops.to_find_new_threads = remote_threads_info;
5980 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5981 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5982 remote_async_ops.to_stop = remote_stop;
5983 remote_async_ops.to_query = remote_query;
5984 remote_async_ops.to_rcmd = remote_rcmd;
5985 remote_async_ops.to_stratum = process_stratum;
5986 remote_async_ops.to_has_all_memory = 1;
5987 remote_async_ops.to_has_memory = 1;
5988 remote_async_ops.to_has_stack = 1;
5989 remote_async_ops.to_has_registers = 1;
5990 remote_async_ops.to_has_execution = 1;
5991 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5992 remote_async_ops.to_can_async_p = remote_can_async_p;
5993 remote_async_ops.to_is_async_p = remote_is_async_p;
5994 remote_async_ops.to_async = remote_async;
5995 remote_async_ops.to_async_mask_value = 1;
5996 remote_async_ops.to_magic = OPS_MAGIC;
5997}
5998
5999/* Set up the async extended remote vector by making a copy of the standard
6000 remote vector and adding to it. */
6001
6002static void
6003init_extended_async_remote_ops (void)
6004{
6005 extended_async_remote_ops = remote_async_ops;
6006
6007 extended_async_remote_ops.to_shortname = "extended-async";
6008 extended_async_remote_ops.to_longname =
6009 "Extended remote serial target in async gdb-specific protocol";
6010 extended_async_remote_ops.to_doc =
6011 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6012Specify the serial device it is connected to (e.g. /dev/ttya).",
6013 extended_async_remote_ops.to_open = extended_remote_async_open;
6014 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6015 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6016}
6017
6018static void
6019set_remote_cmd (char *args, int from_tty)
6020{
6021}
6022
6023static void
6024show_remote_cmd (char *args, int from_tty)
6025{
6026 /* FIXME: cagney/2002-06-15: This function should iterate over
6027 remote_show_cmdlist for a list of sub commands to show. */
6028 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6029 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6030 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6031 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6032 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6033 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6034}
6035
6036static void
6037build_remote_gdbarch_data (void)
6038{
6039 remote_address_size = TARGET_ADDR_BIT;
6040}
6041
6042/* Saved pointer to previous owner of the new_objfile event. */
6043static void (*remote_new_objfile_chain) (struct objfile *);
6044
6045/* Function to be called whenever a new objfile (shlib) is detected. */
6046static void
6047remote_new_objfile (struct objfile *objfile)
6048{
6049 if (remote_desc != 0) /* Have a remote connection */
6050 {
6051 remote_check_symbols (objfile);
6052 }
6053 /* Call predecessor on chain, if any. */
6054 if (remote_new_objfile_chain != 0 &&
6055 remote_desc == 0)
6056 remote_new_objfile_chain (objfile);
6057}
6058
6059void
6060_initialize_remote (void)
6061{
6062 static struct cmd_list_element *remote_set_cmdlist;
6063 static struct cmd_list_element *remote_show_cmdlist;
6064 struct cmd_list_element *tmpcmd;
6065
6066 /* architecture specific data */
6067 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6068 free_remote_state);
6069
6070 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6071 that the remote protocol has been initialized. */
6072 register_gdbarch_swap (&remote_address_size,
6073 sizeof (&remote_address_size), NULL);
6074 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6075
6076 init_remote_ops ();
6077 add_target (&remote_ops);
6078
6079 init_extended_remote_ops ();
6080 add_target (&extended_remote_ops);
6081
6082 init_remote_async_ops ();
6083 add_target (&remote_async_ops);
6084
6085 init_extended_async_remote_ops ();
6086 add_target (&extended_async_remote_ops);
6087
6088 init_remote_cisco_ops ();
6089 add_target (&remote_cisco_ops);
6090
6091 /* Hook into new objfile notification. */
6092 remote_new_objfile_chain = target_new_objfile_hook;
6093 target_new_objfile_hook = remote_new_objfile;
6094
6095#if 0
6096 init_remote_threadtests ();
6097#endif
6098
6099 /* set/show remote ... */
6100
6101 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6102Remote protocol specific variables\n\
6103Configure various remote-protocol specific variables such as\n\
6104the packets being used",
6105 &remote_set_cmdlist, "set remote ",
6106 0/*allow-unknown*/, &setlist);
6107 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6108Remote protocol specific variables\n\
6109Configure various remote-protocol specific variables such as\n\
6110the packets being used",
6111 &remote_show_cmdlist, "show remote ",
6112 0/*allow-unknown*/, &showlist);
6113
6114 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6115 "Compare section data on target to the exec file.\n\
6116Argument is a single section name (default: all loaded sections).",
6117 &cmdlist);
6118
6119 add_cmd ("packet", class_maintenance, packet_command,
6120 "Send an arbitrary packet to a remote target.\n\
6121 maintenance packet TEXT\n\
6122If GDB is talking to an inferior via the GDB serial protocol, then\n\
6123this command sends the string TEXT to the inferior, and displays the\n\
6124response packet. GDB supplies the initial `$' character, and the\n\
6125terminating `#' character and checksum.",
6126 &maintenancelist);
6127
6128 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6129 "Set whether to send break if interrupted.\n",
6130 "Show whether to send break if interrupted.\n",
6131 NULL, NULL,
6132 &setlist, &showlist);
6133
6134 /* Install commands for configuring memory read/write packets. */
6135
6136 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6137 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6138 &setlist);
6139 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6140 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6141 &showlist);
6142 add_cmd ("memory-write-packet-size", no_class,
6143 set_memory_write_packet_size,
6144 "Set the maximum number of bytes per memory-write packet.\n"
6145 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6146 "default packet size. The actual limit is further reduced\n"
6147 "dependent on the target. Specify ``fixed'' to disable the\n"
6148 "further restriction and ``limit'' to enable that restriction\n",
6149 &remote_set_cmdlist);
6150 add_cmd ("memory-read-packet-size", no_class,
6151 set_memory_read_packet_size,
6152 "Set the maximum number of bytes per memory-read packet.\n"
6153 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6154 "default packet size. The actual limit is further reduced\n"
6155 "dependent on the target. Specify ``fixed'' to disable the\n"
6156 "further restriction and ``limit'' to enable that restriction\n",
6157 &remote_set_cmdlist);
6158 add_cmd ("memory-write-packet-size", no_class,
6159 show_memory_write_packet_size,
6160 "Show the maximum number of bytes per memory-write packet.\n",
6161 &remote_show_cmdlist);
6162 add_cmd ("memory-read-packet-size", no_class,
6163 show_memory_read_packet_size,
6164 "Show the maximum number of bytes per memory-read packet.\n",
6165 &remote_show_cmdlist);
6166
6167 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6168 var_zinteger, &remote_hw_watchpoint_limit, "\
6169Set the maximum number of target hardware watchpoints.\n\
6170Specify a negative limit for unlimited.", "\
6171Show the maximum number of target hardware watchpoints.\n",
6172 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6173 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6174 var_zinteger, &remote_hw_breakpoint_limit, "\
6175Set the maximum number of target hardware breakpoints.\n\
6176Specify a negative limit for unlimited.", "\
6177Show the maximum number of target hardware breakpoints.\n",
6178 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6179
6180 add_show_from_set
6181 (add_set_cmd ("remoteaddresssize", class_obscure,
6182 var_integer, (char *) &remote_address_size,
6183 "Set the maximum size of the address (in bits) \
6184in a memory packet.\n",
6185 &setlist),
6186 &showlist);
6187
6188 add_packet_config_cmd (&remote_protocol_binary_download,
6189 "X", "binary-download",
6190 set_remote_protocol_binary_download_cmd,
6191 show_remote_protocol_binary_download_cmd,
6192 &remote_set_cmdlist, &remote_show_cmdlist,
6193 1);
6194#if 0
6195 /* XXXX - should ``set remotebinarydownload'' be retained for
6196 compatibility. */
6197 add_show_from_set
6198 (add_set_cmd ("remotebinarydownload", no_class,
6199 var_boolean, (char *) &remote_binary_download,
6200 "Set binary downloads.\n", &setlist),
6201 &showlist);
6202#endif
6203
6204 add_info ("remote-process", remote_info_process,
6205 "Query the remote system for process info.");
6206
6207 add_packet_config_cmd (&remote_protocol_qSymbol,
6208 "qSymbol", "symbol-lookup",
6209 set_remote_protocol_qSymbol_packet_cmd,
6210 show_remote_protocol_qSymbol_packet_cmd,
6211 &remote_set_cmdlist, &remote_show_cmdlist,
6212 0);
6213
6214 add_packet_config_cmd (&remote_protocol_e,
6215 "e", "step-over-range",
6216 set_remote_protocol_e_packet_cmd,
6217 show_remote_protocol_e_packet_cmd,
6218 &remote_set_cmdlist, &remote_show_cmdlist,
6219 0);
6220 /* Disable by default. The ``e'' packet has nasty interactions with
6221 the threading code - it relies on global state. */
6222 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6223 update_packet_config (&remote_protocol_e);
6224
6225 add_packet_config_cmd (&remote_protocol_E,
6226 "E", "step-over-range-w-signal",
6227 set_remote_protocol_E_packet_cmd,
6228 show_remote_protocol_E_packet_cmd,
6229 &remote_set_cmdlist, &remote_show_cmdlist,
6230 0);
6231 /* Disable by default. The ``e'' packet has nasty interactions with
6232 the threading code - it relies on global state. */
6233 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6234 update_packet_config (&remote_protocol_E);
6235
6236 add_packet_config_cmd (&remote_protocol_P,
6237 "P", "set-register",
6238 set_remote_protocol_P_packet_cmd,
6239 show_remote_protocol_P_packet_cmd,
6240 &remote_set_cmdlist, &remote_show_cmdlist,
6241 1);
6242
6243 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6244 "Z0", "software-breakpoint",
6245 set_remote_protocol_Z_software_bp_packet_cmd,
6246 show_remote_protocol_Z_software_bp_packet_cmd,
6247 &remote_set_cmdlist, &remote_show_cmdlist,
6248 0);
6249
6250 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6251 "Z1", "hardware-breakpoint",
6252 set_remote_protocol_Z_hardware_bp_packet_cmd,
6253 show_remote_protocol_Z_hardware_bp_packet_cmd,
6254 &remote_set_cmdlist, &remote_show_cmdlist,
6255 0);
6256
6257 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6258 "Z2", "write-watchpoint",
6259 set_remote_protocol_Z_write_wp_packet_cmd,
6260 show_remote_protocol_Z_write_wp_packet_cmd,
6261 &remote_set_cmdlist, &remote_show_cmdlist,
6262 0);
6263
6264 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6265 "Z3", "read-watchpoint",
6266 set_remote_protocol_Z_read_wp_packet_cmd,
6267 show_remote_protocol_Z_read_wp_packet_cmd,
6268 &remote_set_cmdlist, &remote_show_cmdlist,
6269 0);
6270
6271 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6272 "Z4", "access-watchpoint",
6273 set_remote_protocol_Z_access_wp_packet_cmd,
6274 show_remote_protocol_Z_access_wp_packet_cmd,
6275 &remote_set_cmdlist, &remote_show_cmdlist,
6276 0);
6277
6278 /* Keep the old ``set remote Z-packet ...'' working. */
6279 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6280 &remote_Z_packet_detect, "\
6281Set use of remote protocol `Z' packets",
6282 "Show use of remote protocol `Z' packets ",
6283 set_remote_protocol_Z_packet_cmd,
6284 show_remote_protocol_Z_packet_cmd,
6285 &remote_set_cmdlist, &remote_show_cmdlist);
6286
6287 /* Eventually initialize fileio. See fileio.c */
6288 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6289}
This page took 0.178205 seconds and 4 git commands to generate.