minor reformatting for target.c:read_whatever_is_readable
[deliverable/binutils-gdb.git] / gdb / remote.c
... / ...
CommitLineData
1/* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22/* See the GDB User Guide for details of the GDB remote protocol. */
23
24#include "defs.h"
25#include "gdb_string.h"
26#include <ctype.h>
27#include <fcntl.h>
28#include "inferior.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "exceptions.h"
32#include "target.h"
33/*#include "terminal.h" */
34#include "gdbcmd.h"
35#include "objfiles.h"
36#include "gdb-stabs.h"
37#include "gdbthread.h"
38#include "remote.h"
39#include "regcache.h"
40#include "value.h"
41#include "gdb_assert.h"
42#include "observer.h"
43#include "solib.h"
44#include "cli/cli-decode.h"
45#include "cli/cli-setshow.h"
46#include "target-descriptions.h"
47
48#include <ctype.h>
49#include <sys/time.h>
50
51#include "event-loop.h"
52#include "event-top.h"
53#include "inf-loop.h"
54
55#include <signal.h>
56#include "serial.h"
57
58#include "gdbcore.h" /* for exec_bfd */
59
60#include "remote-fileio.h"
61#include "gdb/fileio.h"
62#include "gdb_stat.h"
63#include "xml-support.h"
64
65#include "memory-map.h"
66
67#include "tracepoint.h"
68#include "ax.h"
69#include "ax-gdb.h"
70
71/* Temp hacks for tracepoint encoding migration. */
72static char *target_buf;
73static long target_buf_size;
74/*static*/ void
75encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78/* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88enum { REMOTE_ALIGN_WRITES = 16 };
89
90/* Prototypes for local functions. */
91static void cleanup_sigint_signal_handler (void *dummy);
92static void initialize_sigint_signal_handler (void);
93static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97static void handle_remote_sigint (int);
98static void handle_remote_sigint_twice (int);
99static void async_remote_interrupt (gdb_client_data);
100void async_remote_interrupt_twice (gdb_client_data);
101
102static void remote_files_info (struct target_ops *ignore);
103
104static void remote_prepare_to_store (struct regcache *regcache);
105
106static void remote_open (char *name, int from_tty);
107
108static void extended_remote_open (char *name, int from_tty);
109
110static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112static void remote_close (int quitting);
113
114static void remote_mourn (struct target_ops *ops);
115
116static void extended_remote_restart (void);
117
118static void extended_remote_mourn (struct target_ops *);
119
120static void remote_mourn_1 (struct target_ops *);
121
122static void remote_send (char **buf, long *sizeof_buf_p);
123
124static int readchar (int timeout);
125
126static void remote_kill (struct target_ops *ops);
127
128static int tohex (int nib);
129
130static int remote_can_async_p (void);
131
132static int remote_is_async_p (void);
133
134static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137static int remote_async_mask (int new_mask);
138
139static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141static void remote_interrupt (int signo);
142
143static void remote_interrupt_twice (int signo);
144
145static void interrupt_query (void);
146
147static void set_general_thread (struct ptid ptid);
148static void set_continue_thread (struct ptid ptid);
149
150static void get_offsets (void);
151
152static void skip_frame (void);
153
154static long read_frame (char **buf_p, long *sizeof_buf);
155
156static int hexnumlen (ULONGEST num);
157
158static void init_remote_ops (void);
159
160static void init_extended_remote_ops (void);
161
162static void remote_stop (ptid_t);
163
164static int ishex (int ch, int *val);
165
166static int stubhex (int ch);
167
168static int hexnumstr (char *, ULONGEST);
169
170static int hexnumnstr (char *, ULONGEST, int);
171
172static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174static void print_packet (char *);
175
176static void compare_sections_command (char *, int);
177
178static void packet_command (char *, int);
179
180static int stub_unpack_int (char *buff, int fieldlength);
181
182static ptid_t remote_current_thread (ptid_t oldptid);
183
184static void remote_find_new_threads (void);
185
186static void record_currthread (ptid_t currthread);
187
188static int fromhex (int a);
189
190extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194static int putpkt_binary (char *buf, int cnt);
195
196static void check_binary_download (CORE_ADDR addr);
197
198struct packet_config;
199
200static void show_packet_config_cmd (struct packet_config *config);
201
202static void update_packet_config (struct packet_config *config);
203
204static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213static ptid_t read_ptid (char *buf, char **obuf);
214
215static void remote_set_permissions (void);
216
217struct remote_state;
218static int remote_get_trace_status (struct trace_status *ts);
219
220static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224static void remote_query_supported (void);
225
226static void remote_check_symbols (struct objfile *objfile);
227
228void _initialize_remote (void);
229
230struct stop_reply;
231static struct stop_reply *stop_reply_xmalloc (void);
232static void stop_reply_xfree (struct stop_reply *);
233static void do_stop_reply_xfree (void *arg);
234static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235static void push_stop_reply (struct stop_reply *);
236static void remote_get_pending_stop_replies (void);
237static void discard_pending_stop_replies (int pid);
238static int peek_stop_reply (ptid_t ptid);
239
240static void remote_async_inferior_event_handler (gdb_client_data);
241static void remote_async_get_pending_events_handler (gdb_client_data);
242
243static void remote_terminal_ours (void);
244
245static int remote_read_description_p (struct target_ops *target);
246
247static void remote_console_output (char *msg);
248
249/* The non-stop remote protocol provisions for one pending stop reply.
250 This is where we keep it until it is acknowledged. */
251
252static struct stop_reply *pending_stop_reply = NULL;
253
254/* For "remote". */
255
256static struct cmd_list_element *remote_cmdlist;
257
258/* For "set remote" and "show remote". */
259
260static struct cmd_list_element *remote_set_cmdlist;
261static struct cmd_list_element *remote_show_cmdlist;
262
263/* Description of the remote protocol state for the currently
264 connected target. This is per-target state, and independent of the
265 selected architecture. */
266
267struct remote_state
268{
269 /* A buffer to use for incoming packets, and its current size. The
270 buffer is grown dynamically for larger incoming packets.
271 Outgoing packets may also be constructed in this buffer.
272 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274 packets. */
275 char *buf;
276 long buf_size;
277
278 /* If we negotiated packet size explicitly (and thus can bypass
279 heuristics for the largest packet size that will not overflow
280 a buffer in the stub), this will be set to that packet size.
281 Otherwise zero, meaning to use the guessed size. */
282 long explicit_packet_size;
283
284 /* remote_wait is normally called when the target is running and
285 waits for a stop reply packet. But sometimes we need to call it
286 when the target is already stopped. We can send a "?" packet
287 and have remote_wait read the response. Or, if we already have
288 the response, we can stash it in BUF and tell remote_wait to
289 skip calling getpkt. This flag is set when BUF contains a
290 stop reply packet and the target is not waiting. */
291 int cached_wait_status;
292
293 /* True, if in no ack mode. That is, neither GDB nor the stub will
294 expect acks from each other. The connection is assumed to be
295 reliable. */
296 int noack_mode;
297
298 /* True if we're connected in extended remote mode. */
299 int extended;
300
301 /* True if the stub reported support for multi-process
302 extensions. */
303 int multi_process_aware;
304
305 /* True if we resumed the target and we're waiting for the target to
306 stop. In the mean time, we can't start another command/query.
307 The remote server wouldn't be ready to process it, so we'd
308 timeout waiting for a reply that would never come and eventually
309 we'd close the connection. This can happen in asynchronous mode
310 because we allow GDB commands while the target is running. */
311 int waiting_for_stop_reply;
312
313 /* True if the stub reports support for non-stop mode. */
314 int non_stop_aware;
315
316 /* True if the stub reports support for vCont;t. */
317 int support_vCont_t;
318
319 /* True if the stub reports support for conditional tracepoints. */
320 int cond_tracepoints;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333 responded to that. */
334 int ctrlc_pending_p;
335};
336
337/* Private data that we'll store in (struct thread_info)->private. */
338struct private_thread_info
339{
340 char *extra;
341 int core;
342};
343
344static void
345free_private_thread_info (struct private_thread_info *info)
346{
347 xfree (info->extra);
348 xfree (info);
349}
350
351/* Returns true if the multi-process extensions are in effect. */
352static int
353remote_multi_process_p (struct remote_state *rs)
354{
355 return rs->extended && rs->multi_process_aware;
356}
357
358/* This data could be associated with a target, but we do not always
359 have access to the current target when we need it, so for now it is
360 static. This will be fine for as long as only one target is in use
361 at a time. */
362static struct remote_state remote_state;
363
364static struct remote_state *
365get_remote_state_raw (void)
366{
367 return &remote_state;
368}
369
370/* Description of the remote protocol for a given architecture. */
371
372struct packet_reg
373{
374 long offset; /* Offset into G packet. */
375 long regnum; /* GDB's internal register number. */
376 LONGEST pnum; /* Remote protocol register number. */
377 int in_g_packet; /* Always part of G packet. */
378 /* long size in bytes; == register_size (target_gdbarch, regnum);
379 at present. */
380 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381 at present. */
382};
383
384struct remote_arch_state
385{
386 /* Description of the remote protocol registers. */
387 long sizeof_g_packet;
388
389 /* Description of the remote protocol registers indexed by REGNUM
390 (making an array gdbarch_num_regs in size). */
391 struct packet_reg *regs;
392
393 /* This is the size (in chars) of the first response to the ``g''
394 packet. It is used as a heuristic when determining the maximum
395 size of memory-read and memory-write packets. A target will
396 typically only reserve a buffer large enough to hold the ``g''
397 packet. The size does not include packet overhead (headers and
398 trailers). */
399 long actual_register_packet_size;
400
401 /* This is the maximum size (in chars) of a non read/write packet.
402 It is also used as a cap on the size of read/write packets. */
403 long remote_packet_size;
404};
405
406long sizeof_pkt = 2000;
407
408/* Utility: generate error from an incoming stub packet. */
409static void
410trace_error (char *buf)
411{
412 if (*buf++ != 'E')
413 return; /* not an error msg */
414 switch (*buf)
415 {
416 case '1': /* malformed packet error */
417 if (*++buf == '0') /* general case: */
418 error (_("remote.c: error in outgoing packet."));
419 else
420 error (_("remote.c: error in outgoing packet at field #%ld."),
421 strtol (buf, NULL, 16));
422 case '2':
423 error (_("trace API error 0x%s."), ++buf);
424 default:
425 error (_("Target returns error code '%s'."), buf);
426 }
427}
428
429/* Utility: wait for reply from stub, while accepting "O" packets. */
430static char *
431remote_get_noisy_reply (char **buf_p,
432 long *sizeof_buf)
433{
434 do /* Loop on reply from remote stub. */
435 {
436 char *buf;
437
438 QUIT; /* Allow user to bail out with ^C. */
439 getpkt (buf_p, sizeof_buf, 0);
440 buf = *buf_p;
441 if (buf[0] == 'E')
442 trace_error (buf);
443 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 {
445 ULONGEST ul;
446 CORE_ADDR from, to, org_to;
447 char *p, *pp;
448 int adjusted_size = 0;
449 volatile struct gdb_exception ex;
450
451 p = buf + strlen ("qRelocInsn:");
452 pp = unpack_varlen_hex (p, &ul);
453 if (*pp != ';')
454 error (_("invalid qRelocInsn packet: %s"), buf);
455 from = ul;
456
457 p = pp + 1;
458 unpack_varlen_hex (p, &ul);
459 to = ul;
460
461 org_to = to;
462
463 TRY_CATCH (ex, RETURN_MASK_ALL)
464 {
465 gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 }
467 if (ex.reason >= 0)
468 {
469 adjusted_size = to - org_to;
470
471 sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 putpkt (buf);
473 }
474 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 {
476 /* Propagate memory errors silently back to the target.
477 The stub may have limited the range of addresses we
478 can write to, for example. */
479 putpkt ("E01");
480 }
481 else
482 {
483 /* Something unexpectedly bad happened. Be verbose so
484 we can tell what, and propagate the error back to the
485 stub, so it doesn't get stuck waiting for a
486 response. */
487 exception_fprintf (gdb_stderr, ex,
488 _("warning: relocating instruction: "));
489 putpkt ("E01");
490 }
491 }
492 else if (buf[0] == 'O' && buf[1] != 'K')
493 remote_console_output (buf + 1); /* 'O' message from stub */
494 else
495 return buf; /* Here's the actual reply. */
496 }
497 while (1);
498}
499
500/* Handle for retreving the remote protocol data from gdbarch. */
501static struct gdbarch_data *remote_gdbarch_data_handle;
502
503static struct remote_arch_state *
504get_remote_arch_state (void)
505{
506 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507}
508
509/* Fetch the global remote target state. */
510
511static struct remote_state *
512get_remote_state (void)
513{
514 /* Make sure that the remote architecture state has been
515 initialized, because doing so might reallocate rs->buf. Any
516 function which calls getpkt also needs to be mindful of changes
517 to rs->buf, but this call limits the number of places which run
518 into trouble. */
519 get_remote_arch_state ();
520
521 return get_remote_state_raw ();
522}
523
524static int
525compare_pnums (const void *lhs_, const void *rhs_)
526{
527 const struct packet_reg * const *lhs = lhs_;
528 const struct packet_reg * const *rhs = rhs_;
529
530 if ((*lhs)->pnum < (*rhs)->pnum)
531 return -1;
532 else if ((*lhs)->pnum == (*rhs)->pnum)
533 return 0;
534 else
535 return 1;
536}
537
538static void *
539init_remote_state (struct gdbarch *gdbarch)
540{
541 int regnum, num_remote_regs, offset;
542 struct remote_state *rs = get_remote_state_raw ();
543 struct remote_arch_state *rsa;
544 struct packet_reg **remote_regs;
545
546 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
547
548 /* Use the architecture to build a regnum<->pnum table, which will be
549 1:1 unless a feature set specifies otherwise. */
550 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
551 gdbarch_num_regs (gdbarch),
552 struct packet_reg);
553 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554 {
555 struct packet_reg *r = &rsa->regs[regnum];
556
557 if (register_size (gdbarch, regnum) == 0)
558 /* Do not try to fetch zero-sized (placeholder) registers. */
559 r->pnum = -1;
560 else
561 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562
563 r->regnum = regnum;
564 }
565
566 /* Define the g/G packet format as the contents of each register
567 with a remote protocol number, in order of ascending protocol
568 number. */
569
570 remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 * sizeof (struct packet_reg *));
572 for (num_remote_regs = 0, regnum = 0;
573 regnum < gdbarch_num_regs (gdbarch);
574 regnum++)
575 if (rsa->regs[regnum].pnum != -1)
576 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
577
578 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 compare_pnums);
580
581 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582 {
583 remote_regs[regnum]->in_g_packet = 1;
584 remote_regs[regnum]->offset = offset;
585 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586 }
587
588 /* Record the maximum possible size of the g packet - it may turn out
589 to be smaller. */
590 rsa->sizeof_g_packet = offset;
591
592 /* Default maximum number of characters in a packet body. Many
593 remote stubs have a hardwired buffer size of 400 bytes
594 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
595 as the maximum packet-size to ensure that the packet and an extra
596 NUL character can always fit in the buffer. This stops GDB
597 trashing stubs that try to squeeze an extra NUL into what is
598 already a full buffer (As of 1999-12-04 that was most stubs). */
599 rsa->remote_packet_size = 400 - 1;
600
601 /* This one is filled in when a ``g'' packet is received. */
602 rsa->actual_register_packet_size = 0;
603
604 /* Should rsa->sizeof_g_packet needs more space than the
605 default, adjust the size accordingly. Remember that each byte is
606 encoded as two characters. 32 is the overhead for the packet
607 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
608 (``$NN:G...#NN'') is a better guess, the below has been padded a
609 little. */
610 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
611 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
612
613 /* Make sure that the packet buffer is plenty big enough for
614 this architecture. */
615 if (rs->buf_size < rsa->remote_packet_size)
616 {
617 rs->buf_size = 2 * rsa->remote_packet_size;
618 rs->buf = xrealloc (rs->buf, rs->buf_size);
619 }
620
621 return rsa;
622}
623
624/* Return the current allowed size of a remote packet. This is
625 inferred from the current architecture, and should be used to
626 limit the length of outgoing packets. */
627static long
628get_remote_packet_size (void)
629{
630 struct remote_state *rs = get_remote_state ();
631 struct remote_arch_state *rsa = get_remote_arch_state ();
632
633 if (rs->explicit_packet_size)
634 return rs->explicit_packet_size;
635
636 return rsa->remote_packet_size;
637}
638
639static struct packet_reg *
640packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
641{
642 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
643 return NULL;
644 else
645 {
646 struct packet_reg *r = &rsa->regs[regnum];
647
648 gdb_assert (r->regnum == regnum);
649 return r;
650 }
651}
652
653static struct packet_reg *
654packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
655{
656 int i;
657
658 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
659 {
660 struct packet_reg *r = &rsa->regs[i];
661
662 if (r->pnum == pnum)
663 return r;
664 }
665 return NULL;
666}
667
668/* FIXME: graces/2002-08-08: These variables should eventually be
669 bound to an instance of the target object (as in gdbarch-tdep()),
670 when such a thing exists. */
671
672/* This is set to the data address of the access causing the target
673 to stop for a watchpoint. */
674static CORE_ADDR remote_watch_data_address;
675
676/* This is non-zero if target stopped for a watchpoint. */
677static int remote_stopped_by_watchpoint_p;
678
679static struct target_ops remote_ops;
680
681static struct target_ops extended_remote_ops;
682
683static int remote_async_mask_value = 1;
684
685/* FIXME: cagney/1999-09-23: Even though getpkt was called with
686 ``forever'' still use the normal timeout mechanism. This is
687 currently used by the ASYNC code to guarentee that target reads
688 during the initial connect always time-out. Once getpkt has been
689 modified to return a timeout indication and, in turn
690 remote_wait()/wait_for_inferior() have gained a timeout parameter
691 this can go away. */
692static int wait_forever_enabled_p = 1;
693
694/* Allow the user to specify what sequence to send to the remote
695 when he requests a program interruption: Although ^C is usually
696 what remote systems expect (this is the default, here), it is
697 sometimes preferable to send a break. On other systems such
698 as the Linux kernel, a break followed by g, which is Magic SysRq g
699 is required in order to interrupt the execution. */
700const char interrupt_sequence_control_c[] = "Ctrl-C";
701const char interrupt_sequence_break[] = "BREAK";
702const char interrupt_sequence_break_g[] = "BREAK-g";
703static const char *interrupt_sequence_modes[] =
704 {
705 interrupt_sequence_control_c,
706 interrupt_sequence_break,
707 interrupt_sequence_break_g,
708 NULL
709 };
710static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
711
712static void
713show_interrupt_sequence (struct ui_file *file, int from_tty,
714 struct cmd_list_element *c,
715 const char *value)
716{
717 if (interrupt_sequence_mode == interrupt_sequence_control_c)
718 fprintf_filtered (file,
719 _("Send the ASCII ETX character (Ctrl-c) "
720 "to the remote target to interrupt the "
721 "execution of the program.\n"));
722 else if (interrupt_sequence_mode == interrupt_sequence_break)
723 fprintf_filtered (file,
724 _("send a break signal to the remote target "
725 "to interrupt the execution of the program.\n"));
726 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
727 fprintf_filtered (file,
728 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
729 "the remote target to interrupt the execution "
730 "of Linux kernel.\n"));
731 else
732 internal_error (__FILE__, __LINE__,
733 _("Invalid value for interrupt_sequence_mode: %s."),
734 interrupt_sequence_mode);
735}
736
737/* This boolean variable specifies whether interrupt_sequence is sent
738 to the remote target when gdb connects to it.
739 This is mostly needed when you debug the Linux kernel: The Linux kernel
740 expects BREAK g which is Magic SysRq g for connecting gdb. */
741static int interrupt_on_connect = 0;
742
743/* This variable is used to implement the "set/show remotebreak" commands.
744 Since these commands are now deprecated in favor of "set/show remote
745 interrupt-sequence", it no longer has any effect on the code. */
746static int remote_break;
747
748static void
749set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
750{
751 if (remote_break)
752 interrupt_sequence_mode = interrupt_sequence_break;
753 else
754 interrupt_sequence_mode = interrupt_sequence_control_c;
755}
756
757static void
758show_remotebreak (struct ui_file *file, int from_tty,
759 struct cmd_list_element *c,
760 const char *value)
761{
762}
763
764/* Descriptor for I/O to remote machine. Initialize it to NULL so that
765 remote_open knows that we don't have a file open when the program
766 starts. */
767static struct serial *remote_desc = NULL;
768
769/* This variable sets the number of bits in an address that are to be
770 sent in a memory ("M" or "m") packet. Normally, after stripping
771 leading zeros, the entire address would be sent. This variable
772 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
773 initial implementation of remote.c restricted the address sent in
774 memory packets to ``host::sizeof long'' bytes - (typically 32
775 bits). Consequently, for 64 bit targets, the upper 32 bits of an
776 address was never sent. Since fixing this bug may cause a break in
777 some remote targets this variable is principly provided to
778 facilitate backward compatibility. */
779
780static int remote_address_size;
781
782/* Temporary to track who currently owns the terminal. See
783 remote_terminal_* for more details. */
784
785static int remote_async_terminal_ours_p;
786
787/* The executable file to use for "run" on the remote side. */
788
789static char *remote_exec_file = "";
790
791\f
792/* User configurable variables for the number of characters in a
793 memory read/write packet. MIN (rsa->remote_packet_size,
794 rsa->sizeof_g_packet) is the default. Some targets need smaller
795 values (fifo overruns, et.al.) and some users need larger values
796 (speed up transfers). The variables ``preferred_*'' (the user
797 request), ``current_*'' (what was actually set) and ``forced_*''
798 (Positive - a soft limit, negative - a hard limit). */
799
800struct memory_packet_config
801{
802 char *name;
803 long size;
804 int fixed_p;
805};
806
807/* Compute the current size of a read/write packet. Since this makes
808 use of ``actual_register_packet_size'' the computation is dynamic. */
809
810static long
811get_memory_packet_size (struct memory_packet_config *config)
812{
813 struct remote_state *rs = get_remote_state ();
814 struct remote_arch_state *rsa = get_remote_arch_state ();
815
816 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
817 law?) that some hosts don't cope very well with large alloca()
818 calls. Eventually the alloca() code will be replaced by calls to
819 xmalloc() and make_cleanups() allowing this restriction to either
820 be lifted or removed. */
821#ifndef MAX_REMOTE_PACKET_SIZE
822#define MAX_REMOTE_PACKET_SIZE 16384
823#endif
824 /* NOTE: 20 ensures we can write at least one byte. */
825#ifndef MIN_REMOTE_PACKET_SIZE
826#define MIN_REMOTE_PACKET_SIZE 20
827#endif
828 long what_they_get;
829 if (config->fixed_p)
830 {
831 if (config->size <= 0)
832 what_they_get = MAX_REMOTE_PACKET_SIZE;
833 else
834 what_they_get = config->size;
835 }
836 else
837 {
838 what_they_get = get_remote_packet_size ();
839 /* Limit the packet to the size specified by the user. */
840 if (config->size > 0
841 && what_they_get > config->size)
842 what_they_get = config->size;
843
844 /* Limit it to the size of the targets ``g'' response unless we have
845 permission from the stub to use a larger packet size. */
846 if (rs->explicit_packet_size == 0
847 && rsa->actual_register_packet_size > 0
848 && what_they_get > rsa->actual_register_packet_size)
849 what_they_get = rsa->actual_register_packet_size;
850 }
851 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
852 what_they_get = MAX_REMOTE_PACKET_SIZE;
853 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
854 what_they_get = MIN_REMOTE_PACKET_SIZE;
855
856 /* Make sure there is room in the global buffer for this packet
857 (including its trailing NUL byte). */
858 if (rs->buf_size < what_they_get + 1)
859 {
860 rs->buf_size = 2 * what_they_get;
861 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
862 }
863
864 return what_they_get;
865}
866
867/* Update the size of a read/write packet. If they user wants
868 something really big then do a sanity check. */
869
870static void
871set_memory_packet_size (char *args, struct memory_packet_config *config)
872{
873 int fixed_p = config->fixed_p;
874 long size = config->size;
875
876 if (args == NULL)
877 error (_("Argument required (integer, `fixed' or `limited')."));
878 else if (strcmp (args, "hard") == 0
879 || strcmp (args, "fixed") == 0)
880 fixed_p = 1;
881 else if (strcmp (args, "soft") == 0
882 || strcmp (args, "limit") == 0)
883 fixed_p = 0;
884 else
885 {
886 char *end;
887
888 size = strtoul (args, &end, 0);
889 if (args == end)
890 error (_("Invalid %s (bad syntax)."), config->name);
891#if 0
892 /* Instead of explicitly capping the size of a packet to
893 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
894 instead allowed to set the size to something arbitrarily
895 large. */
896 if (size > MAX_REMOTE_PACKET_SIZE)
897 error (_("Invalid %s (too large)."), config->name);
898#endif
899 }
900 /* Extra checks? */
901 if (fixed_p && !config->fixed_p)
902 {
903 if (! query (_("The target may not be able to correctly handle a %s\n"
904 "of %ld bytes. Change the packet size? "),
905 config->name, size))
906 error (_("Packet size not changed."));
907 }
908 /* Update the config. */
909 config->fixed_p = fixed_p;
910 config->size = size;
911}
912
913static void
914show_memory_packet_size (struct memory_packet_config *config)
915{
916 printf_filtered (_("The %s is %ld. "), config->name, config->size);
917 if (config->fixed_p)
918 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
919 get_memory_packet_size (config));
920 else
921 printf_filtered (_("Packets are limited to %ld bytes.\n"),
922 get_memory_packet_size (config));
923}
924
925static struct memory_packet_config memory_write_packet_config =
926{
927 "memory-write-packet-size",
928};
929
930static void
931set_memory_write_packet_size (char *args, int from_tty)
932{
933 set_memory_packet_size (args, &memory_write_packet_config);
934}
935
936static void
937show_memory_write_packet_size (char *args, int from_tty)
938{
939 show_memory_packet_size (&memory_write_packet_config);
940}
941
942static long
943get_memory_write_packet_size (void)
944{
945 return get_memory_packet_size (&memory_write_packet_config);
946}
947
948static struct memory_packet_config memory_read_packet_config =
949{
950 "memory-read-packet-size",
951};
952
953static void
954set_memory_read_packet_size (char *args, int from_tty)
955{
956 set_memory_packet_size (args, &memory_read_packet_config);
957}
958
959static void
960show_memory_read_packet_size (char *args, int from_tty)
961{
962 show_memory_packet_size (&memory_read_packet_config);
963}
964
965static long
966get_memory_read_packet_size (void)
967{
968 long size = get_memory_packet_size (&memory_read_packet_config);
969
970 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
971 extra buffer size argument before the memory read size can be
972 increased beyond this. */
973 if (size > get_remote_packet_size ())
974 size = get_remote_packet_size ();
975 return size;
976}
977
978\f
979/* Generic configuration support for packets the stub optionally
980 supports. Allows the user to specify the use of the packet as well
981 as allowing GDB to auto-detect support in the remote stub. */
982
983enum packet_support
984 {
985 PACKET_SUPPORT_UNKNOWN = 0,
986 PACKET_ENABLE,
987 PACKET_DISABLE
988 };
989
990struct packet_config
991 {
992 const char *name;
993 const char *title;
994 enum auto_boolean detect;
995 enum packet_support support;
996 };
997
998/* Analyze a packet's return value and update the packet config
999 accordingly. */
1000
1001enum packet_result
1002{
1003 PACKET_ERROR,
1004 PACKET_OK,
1005 PACKET_UNKNOWN
1006};
1007
1008static void
1009update_packet_config (struct packet_config *config)
1010{
1011 switch (config->detect)
1012 {
1013 case AUTO_BOOLEAN_TRUE:
1014 config->support = PACKET_ENABLE;
1015 break;
1016 case AUTO_BOOLEAN_FALSE:
1017 config->support = PACKET_DISABLE;
1018 break;
1019 case AUTO_BOOLEAN_AUTO:
1020 config->support = PACKET_SUPPORT_UNKNOWN;
1021 break;
1022 }
1023}
1024
1025static void
1026show_packet_config_cmd (struct packet_config *config)
1027{
1028 char *support = "internal-error";
1029
1030 switch (config->support)
1031 {
1032 case PACKET_ENABLE:
1033 support = "enabled";
1034 break;
1035 case PACKET_DISABLE:
1036 support = "disabled";
1037 break;
1038 case PACKET_SUPPORT_UNKNOWN:
1039 support = "unknown";
1040 break;
1041 }
1042 switch (config->detect)
1043 {
1044 case AUTO_BOOLEAN_AUTO:
1045 printf_filtered (_("Support for the `%s' packet "
1046 "is auto-detected, currently %s.\n"),
1047 config->name, support);
1048 break;
1049 case AUTO_BOOLEAN_TRUE:
1050 case AUTO_BOOLEAN_FALSE:
1051 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1052 config->name, support);
1053 break;
1054 }
1055}
1056
1057static void
1058add_packet_config_cmd (struct packet_config *config, const char *name,
1059 const char *title, int legacy)
1060{
1061 char *set_doc;
1062 char *show_doc;
1063 char *cmd_name;
1064
1065 config->name = name;
1066 config->title = title;
1067 config->detect = AUTO_BOOLEAN_AUTO;
1068 config->support = PACKET_SUPPORT_UNKNOWN;
1069 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1070 name, title);
1071 show_doc = xstrprintf ("Show current use of remote "
1072 "protocol `%s' (%s) packet",
1073 name, title);
1074 /* set/show TITLE-packet {auto,on,off} */
1075 cmd_name = xstrprintf ("%s-packet", title);
1076 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1077 &config->detect, set_doc,
1078 show_doc, NULL, /* help_doc */
1079 set_remote_protocol_packet_cmd,
1080 show_remote_protocol_packet_cmd,
1081 &remote_set_cmdlist, &remote_show_cmdlist);
1082 /* The command code copies the documentation strings. */
1083 xfree (set_doc);
1084 xfree (show_doc);
1085 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1086 if (legacy)
1087 {
1088 char *legacy_name;
1089
1090 legacy_name = xstrprintf ("%s-packet", name);
1091 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1092 &remote_set_cmdlist);
1093 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1094 &remote_show_cmdlist);
1095 }
1096}
1097
1098static enum packet_result
1099packet_check_result (const char *buf)
1100{
1101 if (buf[0] != '\0')
1102 {
1103 /* The stub recognized the packet request. Check that the
1104 operation succeeded. */
1105 if (buf[0] == 'E'
1106 && isxdigit (buf[1]) && isxdigit (buf[2])
1107 && buf[3] == '\0')
1108 /* "Enn" - definitly an error. */
1109 return PACKET_ERROR;
1110
1111 /* Always treat "E." as an error. This will be used for
1112 more verbose error messages, such as E.memtypes. */
1113 if (buf[0] == 'E' && buf[1] == '.')
1114 return PACKET_ERROR;
1115
1116 /* The packet may or may not be OK. Just assume it is. */
1117 return PACKET_OK;
1118 }
1119 else
1120 /* The stub does not support the packet. */
1121 return PACKET_UNKNOWN;
1122}
1123
1124static enum packet_result
1125packet_ok (const char *buf, struct packet_config *config)
1126{
1127 enum packet_result result;
1128
1129 result = packet_check_result (buf);
1130 switch (result)
1131 {
1132 case PACKET_OK:
1133 case PACKET_ERROR:
1134 /* The stub recognized the packet request. */
1135 switch (config->support)
1136 {
1137 case PACKET_SUPPORT_UNKNOWN:
1138 if (remote_debug)
1139 fprintf_unfiltered (gdb_stdlog,
1140 "Packet %s (%s) is supported\n",
1141 config->name, config->title);
1142 config->support = PACKET_ENABLE;
1143 break;
1144 case PACKET_DISABLE:
1145 internal_error (__FILE__, __LINE__,
1146 _("packet_ok: attempt to use a disabled packet"));
1147 break;
1148 case PACKET_ENABLE:
1149 break;
1150 }
1151 break;
1152 case PACKET_UNKNOWN:
1153 /* The stub does not support the packet. */
1154 switch (config->support)
1155 {
1156 case PACKET_ENABLE:
1157 if (config->detect == AUTO_BOOLEAN_AUTO)
1158 /* If the stub previously indicated that the packet was
1159 supported then there is a protocol error.. */
1160 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1161 config->name, config->title);
1162 else
1163 /* The user set it wrong. */
1164 error (_("Enabled packet %s (%s) not recognized by stub"),
1165 config->name, config->title);
1166 break;
1167 case PACKET_SUPPORT_UNKNOWN:
1168 if (remote_debug)
1169 fprintf_unfiltered (gdb_stdlog,
1170 "Packet %s (%s) is NOT supported\n",
1171 config->name, config->title);
1172 config->support = PACKET_DISABLE;
1173 break;
1174 case PACKET_DISABLE:
1175 break;
1176 }
1177 break;
1178 }
1179
1180 return result;
1181}
1182
1183enum {
1184 PACKET_vCont = 0,
1185 PACKET_X,
1186 PACKET_qSymbol,
1187 PACKET_P,
1188 PACKET_p,
1189 PACKET_Z0,
1190 PACKET_Z1,
1191 PACKET_Z2,
1192 PACKET_Z3,
1193 PACKET_Z4,
1194 PACKET_vFile_open,
1195 PACKET_vFile_pread,
1196 PACKET_vFile_pwrite,
1197 PACKET_vFile_close,
1198 PACKET_vFile_unlink,
1199 PACKET_qXfer_auxv,
1200 PACKET_qXfer_features,
1201 PACKET_qXfer_libraries,
1202 PACKET_qXfer_memory_map,
1203 PACKET_qXfer_spu_read,
1204 PACKET_qXfer_spu_write,
1205 PACKET_qXfer_osdata,
1206 PACKET_qXfer_threads,
1207 PACKET_qXfer_statictrace_read,
1208 PACKET_qXfer_traceframe_info,
1209 PACKET_qGetTIBAddr,
1210 PACKET_qGetTLSAddr,
1211 PACKET_qSupported,
1212 PACKET_QPassSignals,
1213 PACKET_qSearch_memory,
1214 PACKET_vAttach,
1215 PACKET_vRun,
1216 PACKET_QStartNoAckMode,
1217 PACKET_vKill,
1218 PACKET_qXfer_siginfo_read,
1219 PACKET_qXfer_siginfo_write,
1220 PACKET_qAttached,
1221 PACKET_ConditionalTracepoints,
1222 PACKET_FastTracepoints,
1223 PACKET_StaticTracepoints,
1224 PACKET_bc,
1225 PACKET_bs,
1226 PACKET_TracepointSource,
1227 PACKET_QAllow,
1228 PACKET_MAX
1229};
1230
1231static struct packet_config remote_protocol_packets[PACKET_MAX];
1232
1233static void
1234set_remote_protocol_packet_cmd (char *args, int from_tty,
1235 struct cmd_list_element *c)
1236{
1237 struct packet_config *packet;
1238
1239 for (packet = remote_protocol_packets;
1240 packet < &remote_protocol_packets[PACKET_MAX];
1241 packet++)
1242 {
1243 if (&packet->detect == c->var)
1244 {
1245 update_packet_config (packet);
1246 return;
1247 }
1248 }
1249 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1250 c->name);
1251}
1252
1253static void
1254show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1255 struct cmd_list_element *c,
1256 const char *value)
1257{
1258 struct packet_config *packet;
1259
1260 for (packet = remote_protocol_packets;
1261 packet < &remote_protocol_packets[PACKET_MAX];
1262 packet++)
1263 {
1264 if (&packet->detect == c->var)
1265 {
1266 show_packet_config_cmd (packet);
1267 return;
1268 }
1269 }
1270 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1271 c->name);
1272}
1273
1274/* Should we try one of the 'Z' requests? */
1275
1276enum Z_packet_type
1277{
1278 Z_PACKET_SOFTWARE_BP,
1279 Z_PACKET_HARDWARE_BP,
1280 Z_PACKET_WRITE_WP,
1281 Z_PACKET_READ_WP,
1282 Z_PACKET_ACCESS_WP,
1283 NR_Z_PACKET_TYPES
1284};
1285
1286/* For compatibility with older distributions. Provide a ``set remote
1287 Z-packet ...'' command that updates all the Z packet types. */
1288
1289static enum auto_boolean remote_Z_packet_detect;
1290
1291static void
1292set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1293 struct cmd_list_element *c)
1294{
1295 int i;
1296
1297 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1298 {
1299 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1300 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1301 }
1302}
1303
1304static void
1305show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1306 struct cmd_list_element *c,
1307 const char *value)
1308{
1309 int i;
1310
1311 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1312 {
1313 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1314 }
1315}
1316
1317/* Should we try the 'ThreadInfo' query packet?
1318
1319 This variable (NOT available to the user: auto-detect only!)
1320 determines whether GDB will use the new, simpler "ThreadInfo"
1321 query or the older, more complex syntax for thread queries.
1322 This is an auto-detect variable (set to true at each connect,
1323 and set to false when the target fails to recognize it). */
1324
1325static int use_threadinfo_query;
1326static int use_threadextra_query;
1327
1328/* Tokens for use by the asynchronous signal handlers for SIGINT. */
1329static struct async_signal_handler *sigint_remote_twice_token;
1330static struct async_signal_handler *sigint_remote_token;
1331
1332\f
1333/* Asynchronous signal handle registered as event loop source for
1334 when we have pending events ready to be passed to the core. */
1335
1336static struct async_event_handler *remote_async_inferior_event_token;
1337
1338/* Asynchronous signal handle registered as event loop source for when
1339 the remote sent us a %Stop notification. The registered callback
1340 will do a vStopped sequence to pull the rest of the events out of
1341 the remote side into our event queue. */
1342
1343static struct async_event_handler *remote_async_get_pending_events_token;
1344\f
1345
1346static ptid_t magic_null_ptid;
1347static ptid_t not_sent_ptid;
1348static ptid_t any_thread_ptid;
1349
1350/* These are the threads which we last sent to the remote system. The
1351 TID member will be -1 for all or -2 for not sent yet. */
1352
1353static ptid_t general_thread;
1354static ptid_t continue_thread;
1355
1356/* This the traceframe which we last selected on the remote system.
1357 It will be -1 if no traceframe is selected. */
1358static int remote_traceframe_number = -1;
1359
1360/* Find out if the stub attached to PID (and hence GDB should offer to
1361 detach instead of killing it when bailing out). */
1362
1363static int
1364remote_query_attached (int pid)
1365{
1366 struct remote_state *rs = get_remote_state ();
1367
1368 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1369 return 0;
1370
1371 if (remote_multi_process_p (rs))
1372 sprintf (rs->buf, "qAttached:%x", pid);
1373 else
1374 sprintf (rs->buf, "qAttached");
1375
1376 putpkt (rs->buf);
1377 getpkt (&rs->buf, &rs->buf_size, 0);
1378
1379 switch (packet_ok (rs->buf,
1380 &remote_protocol_packets[PACKET_qAttached]))
1381 {
1382 case PACKET_OK:
1383 if (strcmp (rs->buf, "1") == 0)
1384 return 1;
1385 break;
1386 case PACKET_ERROR:
1387 warning (_("Remote failure reply: %s"), rs->buf);
1388 break;
1389 case PACKET_UNKNOWN:
1390 break;
1391 }
1392
1393 return 0;
1394}
1395
1396/* Add PID to GDB's inferior table. Since we can be connected to a
1397 remote system before before knowing about any inferior, mark the
1398 target with execution when we find the first inferior. If ATTACHED
1399 is 1, then we had just attached to this inferior. If it is 0, then
1400 we just created this inferior. If it is -1, then try querying the
1401 remote stub to find out if it had attached to the inferior or
1402 not. */
1403
1404static struct inferior *
1405remote_add_inferior (int pid, int attached)
1406{
1407 struct inferior *inf;
1408
1409 /* Check whether this process we're learning about is to be
1410 considered attached, or if is to be considered to have been
1411 spawned by the stub. */
1412 if (attached == -1)
1413 attached = remote_query_attached (pid);
1414
1415 if (gdbarch_has_global_solist (target_gdbarch))
1416 {
1417 /* If the target shares code across all inferiors, then every
1418 attach adds a new inferior. */
1419 inf = add_inferior (pid);
1420
1421 /* ... and every inferior is bound to the same program space.
1422 However, each inferior may still have its own address
1423 space. */
1424 inf->aspace = maybe_new_address_space ();
1425 inf->pspace = current_program_space;
1426 }
1427 else
1428 {
1429 /* In the traditional debugging scenario, there's a 1-1 match
1430 between program/address spaces. We simply bind the inferior
1431 to the program space's address space. */
1432 inf = current_inferior ();
1433 inferior_appeared (inf, pid);
1434 }
1435
1436 inf->attach_flag = attached;
1437
1438 return inf;
1439}
1440
1441/* Add thread PTID to GDB's thread list. Tag it as executing/running
1442 according to RUNNING. */
1443
1444static void
1445remote_add_thread (ptid_t ptid, int running)
1446{
1447 add_thread (ptid);
1448
1449 set_executing (ptid, running);
1450 set_running (ptid, running);
1451}
1452
1453/* Come here when we learn about a thread id from the remote target.
1454 It may be the first time we hear about such thread, so take the
1455 opportunity to add it to GDB's thread list. In case this is the
1456 first time we're noticing its corresponding inferior, add it to
1457 GDB's inferior list as well. */
1458
1459static void
1460remote_notice_new_inferior (ptid_t currthread, int running)
1461{
1462 /* If this is a new thread, add it to GDB's thread list.
1463 If we leave it up to WFI to do this, bad things will happen. */
1464
1465 if (in_thread_list (currthread) && is_exited (currthread))
1466 {
1467 /* We're seeing an event on a thread id we knew had exited.
1468 This has to be a new thread reusing the old id. Add it. */
1469 remote_add_thread (currthread, running);
1470 return;
1471 }
1472
1473 if (!in_thread_list (currthread))
1474 {
1475 struct inferior *inf = NULL;
1476 int pid = ptid_get_pid (currthread);
1477
1478 if (ptid_is_pid (inferior_ptid)
1479 && pid == ptid_get_pid (inferior_ptid))
1480 {
1481 /* inferior_ptid has no thread member yet. This can happen
1482 with the vAttach -> remote_wait,"TAAthread:" path if the
1483 stub doesn't support qC. This is the first stop reported
1484 after an attach, so this is the main thread. Update the
1485 ptid in the thread list. */
1486 if (in_thread_list (pid_to_ptid (pid)))
1487 thread_change_ptid (inferior_ptid, currthread);
1488 else
1489 {
1490 remote_add_thread (currthread, running);
1491 inferior_ptid = currthread;
1492 }
1493 return;
1494 }
1495
1496 if (ptid_equal (magic_null_ptid, inferior_ptid))
1497 {
1498 /* inferior_ptid is not set yet. This can happen with the
1499 vRun -> remote_wait,"TAAthread:" path if the stub
1500 doesn't support qC. This is the first stop reported
1501 after an attach, so this is the main thread. Update the
1502 ptid in the thread list. */
1503 thread_change_ptid (inferior_ptid, currthread);
1504 return;
1505 }
1506
1507 /* When connecting to a target remote, or to a target
1508 extended-remote which already was debugging an inferior, we
1509 may not know about it yet. Add it before adding its child
1510 thread, so notifications are emitted in a sensible order. */
1511 if (!in_inferior_list (ptid_get_pid (currthread)))
1512 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1513
1514 /* This is really a new thread. Add it. */
1515 remote_add_thread (currthread, running);
1516
1517 /* If we found a new inferior, let the common code do whatever
1518 it needs to with it (e.g., read shared libraries, insert
1519 breakpoints). */
1520 if (inf != NULL)
1521 notice_new_inferior (currthread, running, 0);
1522 }
1523}
1524
1525/* Return the private thread data, creating it if necessary. */
1526
1527struct private_thread_info *
1528demand_private_info (ptid_t ptid)
1529{
1530 struct thread_info *info = find_thread_ptid (ptid);
1531
1532 gdb_assert (info);
1533
1534 if (!info->private)
1535 {
1536 info->private = xmalloc (sizeof (*(info->private)));
1537 info->private_dtor = free_private_thread_info;
1538 info->private->core = -1;
1539 info->private->extra = 0;
1540 }
1541
1542 return info->private;
1543}
1544
1545/* Call this function as a result of
1546 1) A halt indication (T packet) containing a thread id
1547 2) A direct query of currthread
1548 3) Successful execution of set thread */
1549
1550static void
1551record_currthread (ptid_t currthread)
1552{
1553 general_thread = currthread;
1554}
1555
1556static char *last_pass_packet;
1557
1558/* If 'QPassSignals' is supported, tell the remote stub what signals
1559 it can simply pass through to the inferior without reporting. */
1560
1561static void
1562remote_pass_signals (void)
1563{
1564 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1565 {
1566 char *pass_packet, *p;
1567 int numsigs = (int) TARGET_SIGNAL_LAST;
1568 int count = 0, i;
1569
1570 gdb_assert (numsigs < 256);
1571 for (i = 0; i < numsigs; i++)
1572 {
1573 if (signal_stop_state (i) == 0
1574 && signal_print_state (i) == 0
1575 && signal_pass_state (i) == 1)
1576 count++;
1577 }
1578 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1579 strcpy (pass_packet, "QPassSignals:");
1580 p = pass_packet + strlen (pass_packet);
1581 for (i = 0; i < numsigs; i++)
1582 {
1583 if (signal_stop_state (i) == 0
1584 && signal_print_state (i) == 0
1585 && signal_pass_state (i) == 1)
1586 {
1587 if (i >= 16)
1588 *p++ = tohex (i >> 4);
1589 *p++ = tohex (i & 15);
1590 if (count)
1591 *p++ = ';';
1592 else
1593 break;
1594 count--;
1595 }
1596 }
1597 *p = 0;
1598 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1599 {
1600 struct remote_state *rs = get_remote_state ();
1601 char *buf = rs->buf;
1602
1603 putpkt (pass_packet);
1604 getpkt (&rs->buf, &rs->buf_size, 0);
1605 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1606 if (last_pass_packet)
1607 xfree (last_pass_packet);
1608 last_pass_packet = pass_packet;
1609 }
1610 else
1611 xfree (pass_packet);
1612 }
1613}
1614
1615static void
1616remote_notice_signals (ptid_t ptid)
1617{
1618 /* Update the remote on signals to silently pass, if they've
1619 changed. */
1620 remote_pass_signals ();
1621}
1622
1623/* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1624 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1625 thread. If GEN is set, set the general thread, if not, then set
1626 the step/continue thread. */
1627static void
1628set_thread (struct ptid ptid, int gen)
1629{
1630 struct remote_state *rs = get_remote_state ();
1631 ptid_t state = gen ? general_thread : continue_thread;
1632 char *buf = rs->buf;
1633 char *endbuf = rs->buf + get_remote_packet_size ();
1634
1635 if (ptid_equal (state, ptid))
1636 return;
1637
1638 *buf++ = 'H';
1639 *buf++ = gen ? 'g' : 'c';
1640 if (ptid_equal (ptid, magic_null_ptid))
1641 xsnprintf (buf, endbuf - buf, "0");
1642 else if (ptid_equal (ptid, any_thread_ptid))
1643 xsnprintf (buf, endbuf - buf, "0");
1644 else if (ptid_equal (ptid, minus_one_ptid))
1645 xsnprintf (buf, endbuf - buf, "-1");
1646 else
1647 write_ptid (buf, endbuf, ptid);
1648 putpkt (rs->buf);
1649 getpkt (&rs->buf, &rs->buf_size, 0);
1650 if (gen)
1651 general_thread = ptid;
1652 else
1653 continue_thread = ptid;
1654}
1655
1656static void
1657set_general_thread (struct ptid ptid)
1658{
1659 set_thread (ptid, 1);
1660}
1661
1662static void
1663set_continue_thread (struct ptid ptid)
1664{
1665 set_thread (ptid, 0);
1666}
1667
1668/* Change the remote current process. Which thread within the process
1669 ends up selected isn't important, as long as it is the same process
1670 as what INFERIOR_PTID points to.
1671
1672 This comes from that fact that there is no explicit notion of
1673 "selected process" in the protocol. The selected process for
1674 general operations is the process the selected general thread
1675 belongs to. */
1676
1677static void
1678set_general_process (void)
1679{
1680 struct remote_state *rs = get_remote_state ();
1681
1682 /* If the remote can't handle multiple processes, don't bother. */
1683 if (!remote_multi_process_p (rs))
1684 return;
1685
1686 /* We only need to change the remote current thread if it's pointing
1687 at some other process. */
1688 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1689 set_general_thread (inferior_ptid);
1690}
1691
1692\f
1693/* Return nonzero if the thread PTID is still alive on the remote
1694 system. */
1695
1696static int
1697remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1698{
1699 struct remote_state *rs = get_remote_state ();
1700 char *p, *endp;
1701
1702 if (ptid_equal (ptid, magic_null_ptid))
1703 /* The main thread is always alive. */
1704 return 1;
1705
1706 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1707 /* The main thread is always alive. This can happen after a
1708 vAttach, if the remote side doesn't support
1709 multi-threading. */
1710 return 1;
1711
1712 p = rs->buf;
1713 endp = rs->buf + get_remote_packet_size ();
1714
1715 *p++ = 'T';
1716 write_ptid (p, endp, ptid);
1717
1718 putpkt (rs->buf);
1719 getpkt (&rs->buf, &rs->buf_size, 0);
1720 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1721}
1722
1723/* About these extended threadlist and threadinfo packets. They are
1724 variable length packets but, the fields within them are often fixed
1725 length. They are redundent enough to send over UDP as is the
1726 remote protocol in general. There is a matching unit test module
1727 in libstub. */
1728
1729#define OPAQUETHREADBYTES 8
1730
1731/* a 64 bit opaque identifier */
1732typedef unsigned char threadref[OPAQUETHREADBYTES];
1733
1734/* WARNING: This threadref data structure comes from the remote O.S.,
1735 libstub protocol encoding, and remote.c. It is not particularly
1736 changable. */
1737
1738/* Right now, the internal structure is int. We want it to be bigger.
1739 Plan to fix this. */
1740
1741typedef int gdb_threadref; /* Internal GDB thread reference. */
1742
1743/* gdb_ext_thread_info is an internal GDB data structure which is
1744 equivalent to the reply of the remote threadinfo packet. */
1745
1746struct gdb_ext_thread_info
1747 {
1748 threadref threadid; /* External form of thread reference. */
1749 int active; /* Has state interesting to GDB?
1750 regs, stack. */
1751 char display[256]; /* Brief state display, name,
1752 blocked/suspended. */
1753 char shortname[32]; /* To be used to name threads. */
1754 char more_display[256]; /* Long info, statistics, queue depth,
1755 whatever. */
1756 };
1757
1758/* The volume of remote transfers can be limited by submitting
1759 a mask containing bits specifying the desired information.
1760 Use a union of these values as the 'selection' parameter to
1761 get_thread_info. FIXME: Make these TAG names more thread specific. */
1762
1763#define TAG_THREADID 1
1764#define TAG_EXISTS 2
1765#define TAG_DISPLAY 4
1766#define TAG_THREADNAME 8
1767#define TAG_MOREDISPLAY 16
1768
1769#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1770
1771char *unpack_varlen_hex (char *buff, ULONGEST *result);
1772
1773static char *unpack_nibble (char *buf, int *val);
1774
1775static char *pack_nibble (char *buf, int nibble);
1776
1777static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1778
1779static char *unpack_byte (char *buf, int *value);
1780
1781static char *pack_int (char *buf, int value);
1782
1783static char *unpack_int (char *buf, int *value);
1784
1785static char *unpack_string (char *src, char *dest, int length);
1786
1787static char *pack_threadid (char *pkt, threadref *id);
1788
1789static char *unpack_threadid (char *inbuf, threadref *id);
1790
1791void int_to_threadref (threadref *id, int value);
1792
1793static int threadref_to_int (threadref *ref);
1794
1795static void copy_threadref (threadref *dest, threadref *src);
1796
1797static int threadmatch (threadref *dest, threadref *src);
1798
1799static char *pack_threadinfo_request (char *pkt, int mode,
1800 threadref *id);
1801
1802static int remote_unpack_thread_info_response (char *pkt,
1803 threadref *expectedref,
1804 struct gdb_ext_thread_info
1805 *info);
1806
1807
1808static int remote_get_threadinfo (threadref *threadid,
1809 int fieldset, /*TAG mask */
1810 struct gdb_ext_thread_info *info);
1811
1812static char *pack_threadlist_request (char *pkt, int startflag,
1813 int threadcount,
1814 threadref *nextthread);
1815
1816static int parse_threadlist_response (char *pkt,
1817 int result_limit,
1818 threadref *original_echo,
1819 threadref *resultlist,
1820 int *doneflag);
1821
1822static int remote_get_threadlist (int startflag,
1823 threadref *nextthread,
1824 int result_limit,
1825 int *done,
1826 int *result_count,
1827 threadref *threadlist);
1828
1829typedef int (*rmt_thread_action) (threadref *ref, void *context);
1830
1831static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1832 void *context, int looplimit);
1833
1834static int remote_newthread_step (threadref *ref, void *context);
1835
1836
1837/* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1838 buffer we're allowed to write to. Returns
1839 BUF+CHARACTERS_WRITTEN. */
1840
1841static char *
1842write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1843{
1844 int pid, tid;
1845 struct remote_state *rs = get_remote_state ();
1846
1847 if (remote_multi_process_p (rs))
1848 {
1849 pid = ptid_get_pid (ptid);
1850 if (pid < 0)
1851 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1852 else
1853 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1854 }
1855 tid = ptid_get_tid (ptid);
1856 if (tid < 0)
1857 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1858 else
1859 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1860
1861 return buf;
1862}
1863
1864/* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1865 passed the last parsed char. Returns null_ptid on error. */
1866
1867static ptid_t
1868read_ptid (char *buf, char **obuf)
1869{
1870 char *p = buf;
1871 char *pp;
1872 ULONGEST pid = 0, tid = 0;
1873
1874 if (*p == 'p')
1875 {
1876 /* Multi-process ptid. */
1877 pp = unpack_varlen_hex (p + 1, &pid);
1878 if (*pp != '.')
1879 error (_("invalid remote ptid: %s\n"), p);
1880
1881 p = pp;
1882 pp = unpack_varlen_hex (p + 1, &tid);
1883 if (obuf)
1884 *obuf = pp;
1885 return ptid_build (pid, 0, tid);
1886 }
1887
1888 /* No multi-process. Just a tid. */
1889 pp = unpack_varlen_hex (p, &tid);
1890
1891 /* Since the stub is not sending a process id, then default to
1892 what's in inferior_ptid, unless it's null at this point. If so,
1893 then since there's no way to know the pid of the reported
1894 threads, use the magic number. */
1895 if (ptid_equal (inferior_ptid, null_ptid))
1896 pid = ptid_get_pid (magic_null_ptid);
1897 else
1898 pid = ptid_get_pid (inferior_ptid);
1899
1900 if (obuf)
1901 *obuf = pp;
1902 return ptid_build (pid, 0, tid);
1903}
1904
1905/* Encode 64 bits in 16 chars of hex. */
1906
1907static const char hexchars[] = "0123456789abcdef";
1908
1909static int
1910ishex (int ch, int *val)
1911{
1912 if ((ch >= 'a') && (ch <= 'f'))
1913 {
1914 *val = ch - 'a' + 10;
1915 return 1;
1916 }
1917 if ((ch >= 'A') && (ch <= 'F'))
1918 {
1919 *val = ch - 'A' + 10;
1920 return 1;
1921 }
1922 if ((ch >= '0') && (ch <= '9'))
1923 {
1924 *val = ch - '0';
1925 return 1;
1926 }
1927 return 0;
1928}
1929
1930static int
1931stubhex (int ch)
1932{
1933 if (ch >= 'a' && ch <= 'f')
1934 return ch - 'a' + 10;
1935 if (ch >= '0' && ch <= '9')
1936 return ch - '0';
1937 if (ch >= 'A' && ch <= 'F')
1938 return ch - 'A' + 10;
1939 return -1;
1940}
1941
1942static int
1943stub_unpack_int (char *buff, int fieldlength)
1944{
1945 int nibble;
1946 int retval = 0;
1947
1948 while (fieldlength)
1949 {
1950 nibble = stubhex (*buff++);
1951 retval |= nibble;
1952 fieldlength--;
1953 if (fieldlength)
1954 retval = retval << 4;
1955 }
1956 return retval;
1957}
1958
1959char *
1960unpack_varlen_hex (char *buff, /* packet to parse */
1961 ULONGEST *result)
1962{
1963 int nibble;
1964 ULONGEST retval = 0;
1965
1966 while (ishex (*buff, &nibble))
1967 {
1968 buff++;
1969 retval = retval << 4;
1970 retval |= nibble & 0x0f;
1971 }
1972 *result = retval;
1973 return buff;
1974}
1975
1976static char *
1977unpack_nibble (char *buf, int *val)
1978{
1979 *val = fromhex (*buf++);
1980 return buf;
1981}
1982
1983static char *
1984pack_nibble (char *buf, int nibble)
1985{
1986 *buf++ = hexchars[(nibble & 0x0f)];
1987 return buf;
1988}
1989
1990static char *
1991pack_hex_byte (char *pkt, int byte)
1992{
1993 *pkt++ = hexchars[(byte >> 4) & 0xf];
1994 *pkt++ = hexchars[(byte & 0xf)];
1995 return pkt;
1996}
1997
1998static char *
1999unpack_byte (char *buf, int *value)
2000{
2001 *value = stub_unpack_int (buf, 2);
2002 return buf + 2;
2003}
2004
2005static char *
2006pack_int (char *buf, int value)
2007{
2008 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2009 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2010 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2011 buf = pack_hex_byte (buf, (value & 0xff));
2012 return buf;
2013}
2014
2015static char *
2016unpack_int (char *buf, int *value)
2017{
2018 *value = stub_unpack_int (buf, 8);
2019 return buf + 8;
2020}
2021
2022#if 0 /* Currently unused, uncomment when needed. */
2023static char *pack_string (char *pkt, char *string);
2024
2025static char *
2026pack_string (char *pkt, char *string)
2027{
2028 char ch;
2029 int len;
2030
2031 len = strlen (string);
2032 if (len > 200)
2033 len = 200; /* Bigger than most GDB packets, junk??? */
2034 pkt = pack_hex_byte (pkt, len);
2035 while (len-- > 0)
2036 {
2037 ch = *string++;
2038 if ((ch == '\0') || (ch == '#'))
2039 ch = '*'; /* Protect encapsulation. */
2040 *pkt++ = ch;
2041 }
2042 return pkt;
2043}
2044#endif /* 0 (unused) */
2045
2046static char *
2047unpack_string (char *src, char *dest, int length)
2048{
2049 while (length--)
2050 *dest++ = *src++;
2051 *dest = '\0';
2052 return src;
2053}
2054
2055static char *
2056pack_threadid (char *pkt, threadref *id)
2057{
2058 char *limit;
2059 unsigned char *altid;
2060
2061 altid = (unsigned char *) id;
2062 limit = pkt + BUF_THREAD_ID_SIZE;
2063 while (pkt < limit)
2064 pkt = pack_hex_byte (pkt, *altid++);
2065 return pkt;
2066}
2067
2068
2069static char *
2070unpack_threadid (char *inbuf, threadref *id)
2071{
2072 char *altref;
2073 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2074 int x, y;
2075
2076 altref = (char *) id;
2077
2078 while (inbuf < limit)
2079 {
2080 x = stubhex (*inbuf++);
2081 y = stubhex (*inbuf++);
2082 *altref++ = (x << 4) | y;
2083 }
2084 return inbuf;
2085}
2086
2087/* Externally, threadrefs are 64 bits but internally, they are still
2088 ints. This is due to a mismatch of specifications. We would like
2089 to use 64bit thread references internally. This is an adapter
2090 function. */
2091
2092void
2093int_to_threadref (threadref *id, int value)
2094{
2095 unsigned char *scan;
2096
2097 scan = (unsigned char *) id;
2098 {
2099 int i = 4;
2100 while (i--)
2101 *scan++ = 0;
2102 }
2103 *scan++ = (value >> 24) & 0xff;
2104 *scan++ = (value >> 16) & 0xff;
2105 *scan++ = (value >> 8) & 0xff;
2106 *scan++ = (value & 0xff);
2107}
2108
2109static int
2110threadref_to_int (threadref *ref)
2111{
2112 int i, value = 0;
2113 unsigned char *scan;
2114
2115 scan = *ref;
2116 scan += 4;
2117 i = 4;
2118 while (i-- > 0)
2119 value = (value << 8) | ((*scan++) & 0xff);
2120 return value;
2121}
2122
2123static void
2124copy_threadref (threadref *dest, threadref *src)
2125{
2126 int i;
2127 unsigned char *csrc, *cdest;
2128
2129 csrc = (unsigned char *) src;
2130 cdest = (unsigned char *) dest;
2131 i = 8;
2132 while (i--)
2133 *cdest++ = *csrc++;
2134}
2135
2136static int
2137threadmatch (threadref *dest, threadref *src)
2138{
2139 /* Things are broken right now, so just assume we got a match. */
2140#if 0
2141 unsigned char *srcp, *destp;
2142 int i, result;
2143 srcp = (char *) src;
2144 destp = (char *) dest;
2145
2146 result = 1;
2147 while (i-- > 0)
2148 result &= (*srcp++ == *destp++) ? 1 : 0;
2149 return result;
2150#endif
2151 return 1;
2152}
2153
2154/*
2155 threadid:1, # always request threadid
2156 context_exists:2,
2157 display:4,
2158 unique_name:8,
2159 more_display:16
2160 */
2161
2162/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2163
2164static char *
2165pack_threadinfo_request (char *pkt, int mode, threadref *id)
2166{
2167 *pkt++ = 'q'; /* Info Query */
2168 *pkt++ = 'P'; /* process or thread info */
2169 pkt = pack_int (pkt, mode); /* mode */
2170 pkt = pack_threadid (pkt, id); /* threadid */
2171 *pkt = '\0'; /* terminate */
2172 return pkt;
2173}
2174
2175/* These values tag the fields in a thread info response packet. */
2176/* Tagging the fields allows us to request specific fields and to
2177 add more fields as time goes by. */
2178
2179#define TAG_THREADID 1 /* Echo the thread identifier. */
2180#define TAG_EXISTS 2 /* Is this process defined enough to
2181 fetch registers and its stack? */
2182#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2183#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2184#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2185 the process. */
2186
2187static int
2188remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2189 struct gdb_ext_thread_info *info)
2190{
2191 struct remote_state *rs = get_remote_state ();
2192 int mask, length;
2193 int tag;
2194 threadref ref;
2195 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2196 int retval = 1;
2197
2198 /* info->threadid = 0; FIXME: implement zero_threadref. */
2199 info->active = 0;
2200 info->display[0] = '\0';
2201 info->shortname[0] = '\0';
2202 info->more_display[0] = '\0';
2203
2204 /* Assume the characters indicating the packet type have been
2205 stripped. */
2206 pkt = unpack_int (pkt, &mask); /* arg mask */
2207 pkt = unpack_threadid (pkt, &ref);
2208
2209 if (mask == 0)
2210 warning (_("Incomplete response to threadinfo request."));
2211 if (!threadmatch (&ref, expectedref))
2212 { /* This is an answer to a different request. */
2213 warning (_("ERROR RMT Thread info mismatch."));
2214 return 0;
2215 }
2216 copy_threadref (&info->threadid, &ref);
2217
2218 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2219
2220 /* Packets are terminated with nulls. */
2221 while ((pkt < limit) && mask && *pkt)
2222 {
2223 pkt = unpack_int (pkt, &tag); /* tag */
2224 pkt = unpack_byte (pkt, &length); /* length */
2225 if (!(tag & mask)) /* Tags out of synch with mask. */
2226 {
2227 warning (_("ERROR RMT: threadinfo tag mismatch."));
2228 retval = 0;
2229 break;
2230 }
2231 if (tag == TAG_THREADID)
2232 {
2233 if (length != 16)
2234 {
2235 warning (_("ERROR RMT: length of threadid is not 16."));
2236 retval = 0;
2237 break;
2238 }
2239 pkt = unpack_threadid (pkt, &ref);
2240 mask = mask & ~TAG_THREADID;
2241 continue;
2242 }
2243 if (tag == TAG_EXISTS)
2244 {
2245 info->active = stub_unpack_int (pkt, length);
2246 pkt += length;
2247 mask = mask & ~(TAG_EXISTS);
2248 if (length > 8)
2249 {
2250 warning (_("ERROR RMT: 'exists' length too long."));
2251 retval = 0;
2252 break;
2253 }
2254 continue;
2255 }
2256 if (tag == TAG_THREADNAME)
2257 {
2258 pkt = unpack_string (pkt, &info->shortname[0], length);
2259 mask = mask & ~TAG_THREADNAME;
2260 continue;
2261 }
2262 if (tag == TAG_DISPLAY)
2263 {
2264 pkt = unpack_string (pkt, &info->display[0], length);
2265 mask = mask & ~TAG_DISPLAY;
2266 continue;
2267 }
2268 if (tag == TAG_MOREDISPLAY)
2269 {
2270 pkt = unpack_string (pkt, &info->more_display[0], length);
2271 mask = mask & ~TAG_MOREDISPLAY;
2272 continue;
2273 }
2274 warning (_("ERROR RMT: unknown thread info tag."));
2275 break; /* Not a tag we know about. */
2276 }
2277 return retval;
2278}
2279
2280static int
2281remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2282 struct gdb_ext_thread_info *info)
2283{
2284 struct remote_state *rs = get_remote_state ();
2285 int result;
2286
2287 pack_threadinfo_request (rs->buf, fieldset, threadid);
2288 putpkt (rs->buf);
2289 getpkt (&rs->buf, &rs->buf_size, 0);
2290
2291 if (rs->buf[0] == '\0')
2292 return 0;
2293
2294 result = remote_unpack_thread_info_response (rs->buf + 2,
2295 threadid, info);
2296 return result;
2297}
2298
2299/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2300
2301static char *
2302pack_threadlist_request (char *pkt, int startflag, int threadcount,
2303 threadref *nextthread)
2304{
2305 *pkt++ = 'q'; /* info query packet */
2306 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2307 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2308 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2309 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2310 *pkt = '\0';
2311 return pkt;
2312}
2313
2314/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2315
2316static int
2317parse_threadlist_response (char *pkt, int result_limit,
2318 threadref *original_echo, threadref *resultlist,
2319 int *doneflag)
2320{
2321 struct remote_state *rs = get_remote_state ();
2322 char *limit;
2323 int count, resultcount, done;
2324
2325 resultcount = 0;
2326 /* Assume the 'q' and 'M chars have been stripped. */
2327 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2328 /* done parse past here */
2329 pkt = unpack_byte (pkt, &count); /* count field */
2330 pkt = unpack_nibble (pkt, &done);
2331 /* The first threadid is the argument threadid. */
2332 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2333 while ((count-- > 0) && (pkt < limit))
2334 {
2335 pkt = unpack_threadid (pkt, resultlist++);
2336 if (resultcount++ >= result_limit)
2337 break;
2338 }
2339 if (doneflag)
2340 *doneflag = done;
2341 return resultcount;
2342}
2343
2344static int
2345remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2346 int *done, int *result_count, threadref *threadlist)
2347{
2348 struct remote_state *rs = get_remote_state ();
2349 static threadref echo_nextthread;
2350 int result = 1;
2351
2352 /* Trancate result limit to be smaller than the packet size. */
2353 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2354 >= get_remote_packet_size ())
2355 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2356
2357 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2358 putpkt (rs->buf);
2359 getpkt (&rs->buf, &rs->buf_size, 0);
2360
2361 if (*rs->buf == '\0')
2362 return 0;
2363 else
2364 *result_count =
2365 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2366 threadlist, done);
2367
2368 if (!threadmatch (&echo_nextthread, nextthread))
2369 {
2370 /* FIXME: This is a good reason to drop the packet. */
2371 /* Possably, there is a duplicate response. */
2372 /* Possabilities :
2373 retransmit immediatly - race conditions
2374 retransmit after timeout - yes
2375 exit
2376 wait for packet, then exit
2377 */
2378 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2379 return 0; /* I choose simply exiting. */
2380 }
2381 if (*result_count <= 0)
2382 {
2383 if (*done != 1)
2384 {
2385 warning (_("RMT ERROR : failed to get remote thread list."));
2386 result = 0;
2387 }
2388 return result; /* break; */
2389 }
2390 if (*result_count > result_limit)
2391 {
2392 *result_count = 0;
2393 warning (_("RMT ERROR: threadlist response longer than requested."));
2394 return 0;
2395 }
2396 return result;
2397}
2398
2399/* This is the interface between remote and threads, remotes upper
2400 interface. */
2401
2402/* remote_find_new_threads retrieves the thread list and for each
2403 thread in the list, looks up the thread in GDB's internal list,
2404 adding the thread if it does not already exist. This involves
2405 getting partial thread lists from the remote target so, polling the
2406 quit_flag is required. */
2407
2408
2409/* About this many threadisds fit in a packet. */
2410
2411#define MAXTHREADLISTRESULTS 32
2412
2413static int
2414remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2415 int looplimit)
2416{
2417 int done, i, result_count;
2418 int startflag = 1;
2419 int result = 1;
2420 int loopcount = 0;
2421 static threadref nextthread;
2422 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2423
2424 done = 0;
2425 while (!done)
2426 {
2427 if (loopcount++ > looplimit)
2428 {
2429 result = 0;
2430 warning (_("Remote fetch threadlist -infinite loop-."));
2431 break;
2432 }
2433 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2434 &done, &result_count, resultthreadlist))
2435 {
2436 result = 0;
2437 break;
2438 }
2439 /* Clear for later iterations. */
2440 startflag = 0;
2441 /* Setup to resume next batch of thread references, set nextthread. */
2442 if (result_count >= 1)
2443 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2444 i = 0;
2445 while (result_count--)
2446 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2447 break;
2448 }
2449 return result;
2450}
2451
2452static int
2453remote_newthread_step (threadref *ref, void *context)
2454{
2455 int pid = ptid_get_pid (inferior_ptid);
2456 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2457
2458 if (!in_thread_list (ptid))
2459 add_thread (ptid);
2460 return 1; /* continue iterator */
2461}
2462
2463#define CRAZY_MAX_THREADS 1000
2464
2465static ptid_t
2466remote_current_thread (ptid_t oldpid)
2467{
2468 struct remote_state *rs = get_remote_state ();
2469
2470 putpkt ("qC");
2471 getpkt (&rs->buf, &rs->buf_size, 0);
2472 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2473 return read_ptid (&rs->buf[2], NULL);
2474 else
2475 return oldpid;
2476}
2477
2478/* Find new threads for info threads command.
2479 * Original version, using John Metzler's thread protocol.
2480 */
2481
2482static void
2483remote_find_new_threads (void)
2484{
2485 remote_threadlist_iterator (remote_newthread_step, 0,
2486 CRAZY_MAX_THREADS);
2487}
2488
2489#if defined(HAVE_LIBEXPAT)
2490
2491typedef struct thread_item
2492{
2493 ptid_t ptid;
2494 char *extra;
2495 int core;
2496} thread_item_t;
2497DEF_VEC_O(thread_item_t);
2498
2499struct threads_parsing_context
2500{
2501 VEC (thread_item_t) *items;
2502};
2503
2504static void
2505start_thread (struct gdb_xml_parser *parser,
2506 const struct gdb_xml_element *element,
2507 void *user_data, VEC(gdb_xml_value_s) *attributes)
2508{
2509 struct threads_parsing_context *data = user_data;
2510
2511 struct thread_item item;
2512 char *id;
2513 struct gdb_xml_value *attr;
2514
2515 id = xml_find_attribute (attributes, "id")->value;
2516 item.ptid = read_ptid (id, NULL);
2517
2518 attr = xml_find_attribute (attributes, "core");
2519 if (attr != NULL)
2520 item.core = *(ULONGEST *) attr->value;
2521 else
2522 item.core = -1;
2523
2524 item.extra = 0;
2525
2526 VEC_safe_push (thread_item_t, data->items, &item);
2527}
2528
2529static void
2530end_thread (struct gdb_xml_parser *parser,
2531 const struct gdb_xml_element *element,
2532 void *user_data, const char *body_text)
2533{
2534 struct threads_parsing_context *data = user_data;
2535
2536 if (body_text && *body_text)
2537 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2538}
2539
2540const struct gdb_xml_attribute thread_attributes[] = {
2541 { "id", GDB_XML_AF_NONE, NULL, NULL },
2542 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2543 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2544};
2545
2546const struct gdb_xml_element thread_children[] = {
2547 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2548};
2549
2550const struct gdb_xml_element threads_children[] = {
2551 { "thread", thread_attributes, thread_children,
2552 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2553 start_thread, end_thread },
2554 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2555};
2556
2557const struct gdb_xml_element threads_elements[] = {
2558 { "threads", NULL, threads_children,
2559 GDB_XML_EF_NONE, NULL, NULL },
2560 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2561};
2562
2563/* Discard the contents of the constructed thread info context. */
2564
2565static void
2566clear_threads_parsing_context (void *p)
2567{
2568 struct threads_parsing_context *context = p;
2569 int i;
2570 struct thread_item *item;
2571
2572 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2573 xfree (item->extra);
2574
2575 VEC_free (thread_item_t, context->items);
2576}
2577
2578#endif
2579
2580/*
2581 * Find all threads for info threads command.
2582 * Uses new thread protocol contributed by Cisco.
2583 * Falls back and attempts to use the older method (above)
2584 * if the target doesn't respond to the new method.
2585 */
2586
2587static void
2588remote_threads_info (struct target_ops *ops)
2589{
2590 struct remote_state *rs = get_remote_state ();
2591 char *bufp;
2592 ptid_t new_thread;
2593
2594 if (remote_desc == 0) /* paranoia */
2595 error (_("Command can only be used when connected to the remote target."));
2596
2597#if defined(HAVE_LIBEXPAT)
2598 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2599 {
2600 char *xml = target_read_stralloc (&current_target,
2601 TARGET_OBJECT_THREADS, NULL);
2602
2603 struct cleanup *back_to = make_cleanup (xfree, xml);
2604
2605 if (xml && *xml)
2606 {
2607 struct threads_parsing_context context;
2608
2609 context.items = NULL;
2610 make_cleanup (clear_threads_parsing_context, &context);
2611
2612 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2613 threads_elements, xml, &context) == 0)
2614 {
2615 int i;
2616 struct thread_item *item;
2617
2618 for (i = 0;
2619 VEC_iterate (thread_item_t, context.items, i, item);
2620 ++i)
2621 {
2622 if (!ptid_equal (item->ptid, null_ptid))
2623 {
2624 struct private_thread_info *info;
2625 /* In non-stop mode, we assume new found threads
2626 are running until proven otherwise with a
2627 stop reply. In all-stop, we can only get
2628 here if all threads are stopped. */
2629 int running = non_stop ? 1 : 0;
2630
2631 remote_notice_new_inferior (item->ptid, running);
2632
2633 info = demand_private_info (item->ptid);
2634 info->core = item->core;
2635 info->extra = item->extra;
2636 item->extra = NULL;
2637 }
2638 }
2639 }
2640 }
2641
2642 do_cleanups (back_to);
2643 return;
2644 }
2645#endif
2646
2647 if (use_threadinfo_query)
2648 {
2649 putpkt ("qfThreadInfo");
2650 getpkt (&rs->buf, &rs->buf_size, 0);
2651 bufp = rs->buf;
2652 if (bufp[0] != '\0') /* q packet recognized */
2653 {
2654 while (*bufp++ == 'm') /* reply contains one or more TID */
2655 {
2656 do
2657 {
2658 new_thread = read_ptid (bufp, &bufp);
2659 if (!ptid_equal (new_thread, null_ptid))
2660 {
2661 /* In non-stop mode, we assume new found threads
2662 are running until proven otherwise with a
2663 stop reply. In all-stop, we can only get
2664 here if all threads are stopped. */
2665 int running = non_stop ? 1 : 0;
2666
2667 remote_notice_new_inferior (new_thread, running);
2668 }
2669 }
2670 while (*bufp++ == ','); /* comma-separated list */
2671 putpkt ("qsThreadInfo");
2672 getpkt (&rs->buf, &rs->buf_size, 0);
2673 bufp = rs->buf;
2674 }
2675 return; /* done */
2676 }
2677 }
2678
2679 /* Only qfThreadInfo is supported in non-stop mode. */
2680 if (non_stop)
2681 return;
2682
2683 /* Else fall back to old method based on jmetzler protocol. */
2684 use_threadinfo_query = 0;
2685 remote_find_new_threads ();
2686 return;
2687}
2688
2689/*
2690 * Collect a descriptive string about the given thread.
2691 * The target may say anything it wants to about the thread
2692 * (typically info about its blocked / runnable state, name, etc.).
2693 * This string will appear in the info threads display.
2694 *
2695 * Optional: targets are not required to implement this function.
2696 */
2697
2698static char *
2699remote_threads_extra_info (struct thread_info *tp)
2700{
2701 struct remote_state *rs = get_remote_state ();
2702 int result;
2703 int set;
2704 threadref id;
2705 struct gdb_ext_thread_info threadinfo;
2706 static char display_buf[100]; /* arbitrary... */
2707 int n = 0; /* position in display_buf */
2708
2709 if (remote_desc == 0) /* paranoia */
2710 internal_error (__FILE__, __LINE__,
2711 _("remote_threads_extra_info"));
2712
2713 if (ptid_equal (tp->ptid, magic_null_ptid)
2714 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2715 /* This is the main thread which was added by GDB. The remote
2716 server doesn't know about it. */
2717 return NULL;
2718
2719 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2720 {
2721 struct thread_info *info = find_thread_ptid (tp->ptid);
2722
2723 if (info && info->private)
2724 return info->private->extra;
2725 else
2726 return NULL;
2727 }
2728
2729 if (use_threadextra_query)
2730 {
2731 char *b = rs->buf;
2732 char *endb = rs->buf + get_remote_packet_size ();
2733
2734 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2735 b += strlen (b);
2736 write_ptid (b, endb, tp->ptid);
2737
2738 putpkt (rs->buf);
2739 getpkt (&rs->buf, &rs->buf_size, 0);
2740 if (rs->buf[0] != 0)
2741 {
2742 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2743 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2744 display_buf [result] = '\0';
2745 return display_buf;
2746 }
2747 }
2748
2749 /* If the above query fails, fall back to the old method. */
2750 use_threadextra_query = 0;
2751 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2752 | TAG_MOREDISPLAY | TAG_DISPLAY;
2753 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2754 if (remote_get_threadinfo (&id, set, &threadinfo))
2755 if (threadinfo.active)
2756 {
2757 if (*threadinfo.shortname)
2758 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2759 " Name: %s,", threadinfo.shortname);
2760 if (*threadinfo.display)
2761 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2762 " State: %s,", threadinfo.display);
2763 if (*threadinfo.more_display)
2764 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2765 " Priority: %s", threadinfo.more_display);
2766
2767 if (n > 0)
2768 {
2769 /* For purely cosmetic reasons, clear up trailing commas. */
2770 if (',' == display_buf[n-1])
2771 display_buf[n-1] = ' ';
2772 return display_buf;
2773 }
2774 }
2775 return NULL;
2776}
2777\f
2778
2779static int
2780remote_static_tracepoint_marker_at (CORE_ADDR addr,
2781 struct static_tracepoint_marker *marker)
2782{
2783 struct remote_state *rs = get_remote_state ();
2784 char *p = rs->buf;
2785
2786 sprintf (p, "qTSTMat:");
2787 p += strlen (p);
2788 p += hexnumstr (p, addr);
2789 putpkt (rs->buf);
2790 getpkt (&rs->buf, &rs->buf_size, 0);
2791 p = rs->buf;
2792
2793 if (*p == 'E')
2794 error (_("Remote failure reply: %s"), p);
2795
2796 if (*p++ == 'm')
2797 {
2798 parse_static_tracepoint_marker_definition (p, &p, marker);
2799 return 1;
2800 }
2801
2802 return 0;
2803}
2804
2805static void
2806free_current_marker (void *arg)
2807{
2808 struct static_tracepoint_marker **marker_p = arg;
2809
2810 if (*marker_p != NULL)
2811 {
2812 release_static_tracepoint_marker (*marker_p);
2813 xfree (*marker_p);
2814 }
2815 else
2816 *marker_p = NULL;
2817}
2818
2819static VEC(static_tracepoint_marker_p) *
2820remote_static_tracepoint_markers_by_strid (const char *strid)
2821{
2822 struct remote_state *rs = get_remote_state ();
2823 VEC(static_tracepoint_marker_p) *markers = NULL;
2824 struct static_tracepoint_marker *marker = NULL;
2825 struct cleanup *old_chain;
2826 char *p;
2827
2828 /* Ask for a first packet of static tracepoint marker
2829 definition. */
2830 putpkt ("qTfSTM");
2831 getpkt (&rs->buf, &rs->buf_size, 0);
2832 p = rs->buf;
2833 if (*p == 'E')
2834 error (_("Remote failure reply: %s"), p);
2835
2836 old_chain = make_cleanup (free_current_marker, &marker);
2837
2838 while (*p++ == 'm')
2839 {
2840 if (marker == NULL)
2841 marker = XCNEW (struct static_tracepoint_marker);
2842
2843 do
2844 {
2845 parse_static_tracepoint_marker_definition (p, &p, marker);
2846
2847 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2848 {
2849 VEC_safe_push (static_tracepoint_marker_p,
2850 markers, marker);
2851 marker = NULL;
2852 }
2853 else
2854 {
2855 release_static_tracepoint_marker (marker);
2856 memset (marker, 0, sizeof (*marker));
2857 }
2858 }
2859 while (*p++ == ','); /* comma-separated list */
2860 /* Ask for another packet of static tracepoint definition. */
2861 putpkt ("qTsSTM");
2862 getpkt (&rs->buf, &rs->buf_size, 0);
2863 p = rs->buf;
2864 }
2865
2866 do_cleanups (old_chain);
2867 return markers;
2868}
2869
2870\f
2871/* Implement the to_get_ada_task_ptid function for the remote targets. */
2872
2873static ptid_t
2874remote_get_ada_task_ptid (long lwp, long thread)
2875{
2876 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2877}
2878\f
2879
2880/* Restart the remote side; this is an extended protocol operation. */
2881
2882static void
2883extended_remote_restart (void)
2884{
2885 struct remote_state *rs = get_remote_state ();
2886
2887 /* Send the restart command; for reasons I don't understand the
2888 remote side really expects a number after the "R". */
2889 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2890 putpkt (rs->buf);
2891
2892 remote_fileio_reset ();
2893}
2894\f
2895/* Clean up connection to a remote debugger. */
2896
2897static void
2898remote_close (int quitting)
2899{
2900 if (remote_desc == NULL)
2901 return; /* already closed */
2902
2903 /* Make sure we leave stdin registered in the event loop, and we
2904 don't leave the async SIGINT signal handler installed. */
2905 remote_terminal_ours ();
2906
2907 serial_close (remote_desc);
2908 remote_desc = NULL;
2909
2910 /* We don't have a connection to the remote stub anymore. Get rid
2911 of all the inferiors and their threads we were controlling.
2912 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2913 will be unable to find the thread corresponding to (pid, 0, 0). */
2914 inferior_ptid = null_ptid;
2915 discard_all_inferiors ();
2916
2917 /* We're no longer interested in any of these events. */
2918 discard_pending_stop_replies (-1);
2919
2920 if (remote_async_inferior_event_token)
2921 delete_async_event_handler (&remote_async_inferior_event_token);
2922 if (remote_async_get_pending_events_token)
2923 delete_async_event_handler (&remote_async_get_pending_events_token);
2924}
2925
2926/* Query the remote side for the text, data and bss offsets. */
2927
2928static void
2929get_offsets (void)
2930{
2931 struct remote_state *rs = get_remote_state ();
2932 char *buf;
2933 char *ptr;
2934 int lose, num_segments = 0, do_sections, do_segments;
2935 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2936 struct section_offsets *offs;
2937 struct symfile_segment_data *data;
2938
2939 if (symfile_objfile == NULL)
2940 return;
2941
2942 putpkt ("qOffsets");
2943 getpkt (&rs->buf, &rs->buf_size, 0);
2944 buf = rs->buf;
2945
2946 if (buf[0] == '\000')
2947 return; /* Return silently. Stub doesn't support
2948 this command. */
2949 if (buf[0] == 'E')
2950 {
2951 warning (_("Remote failure reply: %s"), buf);
2952 return;
2953 }
2954
2955 /* Pick up each field in turn. This used to be done with scanf, but
2956 scanf will make trouble if CORE_ADDR size doesn't match
2957 conversion directives correctly. The following code will work
2958 with any size of CORE_ADDR. */
2959 text_addr = data_addr = bss_addr = 0;
2960 ptr = buf;
2961 lose = 0;
2962
2963 if (strncmp (ptr, "Text=", 5) == 0)
2964 {
2965 ptr += 5;
2966 /* Don't use strtol, could lose on big values. */
2967 while (*ptr && *ptr != ';')
2968 text_addr = (text_addr << 4) + fromhex (*ptr++);
2969
2970 if (strncmp (ptr, ";Data=", 6) == 0)
2971 {
2972 ptr += 6;
2973 while (*ptr && *ptr != ';')
2974 data_addr = (data_addr << 4) + fromhex (*ptr++);
2975 }
2976 else
2977 lose = 1;
2978
2979 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2980 {
2981 ptr += 5;
2982 while (*ptr && *ptr != ';')
2983 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2984
2985 if (bss_addr != data_addr)
2986 warning (_("Target reported unsupported offsets: %s"), buf);
2987 }
2988 else
2989 lose = 1;
2990 }
2991 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2992 {
2993 ptr += 8;
2994 /* Don't use strtol, could lose on big values. */
2995 while (*ptr && *ptr != ';')
2996 text_addr = (text_addr << 4) + fromhex (*ptr++);
2997 num_segments = 1;
2998
2999 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3000 {
3001 ptr += 9;
3002 while (*ptr && *ptr != ';')
3003 data_addr = (data_addr << 4) + fromhex (*ptr++);
3004 num_segments++;
3005 }
3006 }
3007 else
3008 lose = 1;
3009
3010 if (lose)
3011 error (_("Malformed response to offset query, %s"), buf);
3012 else if (*ptr != '\0')
3013 warning (_("Target reported unsupported offsets: %s"), buf);
3014
3015 offs = ((struct section_offsets *)
3016 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3017 memcpy (offs, symfile_objfile->section_offsets,
3018 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3019
3020 data = get_symfile_segment_data (symfile_objfile->obfd);
3021 do_segments = (data != NULL);
3022 do_sections = num_segments == 0;
3023
3024 if (num_segments > 0)
3025 {
3026 segments[0] = text_addr;
3027 segments[1] = data_addr;
3028 }
3029 /* If we have two segments, we can still try to relocate everything
3030 by assuming that the .text and .data offsets apply to the whole
3031 text and data segments. Convert the offsets given in the packet
3032 to base addresses for symfile_map_offsets_to_segments. */
3033 else if (data && data->num_segments == 2)
3034 {
3035 segments[0] = data->segment_bases[0] + text_addr;
3036 segments[1] = data->segment_bases[1] + data_addr;
3037 num_segments = 2;
3038 }
3039 /* If the object file has only one segment, assume that it is text
3040 rather than data; main programs with no writable data are rare,
3041 but programs with no code are useless. Of course the code might
3042 have ended up in the data segment... to detect that we would need
3043 the permissions here. */
3044 else if (data && data->num_segments == 1)
3045 {
3046 segments[0] = data->segment_bases[0] + text_addr;
3047 num_segments = 1;
3048 }
3049 /* There's no way to relocate by segment. */
3050 else
3051 do_segments = 0;
3052
3053 if (do_segments)
3054 {
3055 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3056 offs, num_segments, segments);
3057
3058 if (ret == 0 && !do_sections)
3059 error (_("Can not handle qOffsets TextSeg "
3060 "response with this symbol file"));
3061
3062 if (ret > 0)
3063 do_sections = 0;
3064 }
3065
3066 if (data)
3067 free_symfile_segment_data (data);
3068
3069 if (do_sections)
3070 {
3071 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3072
3073 /* This is a temporary kludge to force data and bss to use the
3074 same offsets because that's what nlmconv does now. The real
3075 solution requires changes to the stub and remote.c that I
3076 don't have time to do right now. */
3077
3078 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3079 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3080 }
3081
3082 objfile_relocate (symfile_objfile, offs);
3083}
3084
3085/* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3086 threads we know are stopped already. This is used during the
3087 initial remote connection in non-stop mode --- threads that are
3088 reported as already being stopped are left stopped. */
3089
3090static int
3091set_stop_requested_callback (struct thread_info *thread, void *data)
3092{
3093 /* If we have a stop reply for this thread, it must be stopped. */
3094 if (peek_stop_reply (thread->ptid))
3095 set_stop_requested (thread->ptid, 1);
3096
3097 return 0;
3098}
3099
3100/* Stub for catch_exception. */
3101
3102struct start_remote_args
3103{
3104 int from_tty;
3105
3106 /* The current target. */
3107 struct target_ops *target;
3108
3109 /* Non-zero if this is an extended-remote target. */
3110 int extended_p;
3111};
3112
3113/* Send interrupt_sequence to remote target. */
3114static void
3115send_interrupt_sequence ()
3116{
3117 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3118 serial_write (remote_desc, "\x03", 1);
3119 else if (interrupt_sequence_mode == interrupt_sequence_break)
3120 serial_send_break (remote_desc);
3121 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3122 {
3123 serial_send_break (remote_desc);
3124 serial_write (remote_desc, "g", 1);
3125 }
3126 else
3127 internal_error (__FILE__, __LINE__,
3128 _("Invalid value for interrupt_sequence_mode: %s."),
3129 interrupt_sequence_mode);
3130}
3131
3132static void
3133remote_start_remote (struct ui_out *uiout, void *opaque)
3134{
3135 struct start_remote_args *args = opaque;
3136 struct remote_state *rs = get_remote_state ();
3137 struct packet_config *noack_config;
3138 char *wait_status = NULL;
3139
3140 immediate_quit++; /* Allow user to interrupt it. */
3141
3142 /* Ack any packet which the remote side has already sent. */
3143 serial_write (remote_desc, "+", 1);
3144
3145 if (interrupt_on_connect)
3146 send_interrupt_sequence ();
3147
3148 /* The first packet we send to the target is the optional "supported
3149 packets" request. If the target can answer this, it will tell us
3150 which later probes to skip. */
3151 remote_query_supported ();
3152
3153 /* If the stub wants to get a QAllow, compose one and send it. */
3154 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3155 remote_set_permissions ();
3156
3157 /* Next, we possibly activate noack mode.
3158
3159 If the QStartNoAckMode packet configuration is set to AUTO,
3160 enable noack mode if the stub reported a wish for it with
3161 qSupported.
3162
3163 If set to TRUE, then enable noack mode even if the stub didn't
3164 report it in qSupported. If the stub doesn't reply OK, the
3165 session ends with an error.
3166
3167 If FALSE, then don't activate noack mode, regardless of what the
3168 stub claimed should be the default with qSupported. */
3169
3170 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3171
3172 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3173 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3174 && noack_config->support == PACKET_ENABLE))
3175 {
3176 putpkt ("QStartNoAckMode");
3177 getpkt (&rs->buf, &rs->buf_size, 0);
3178 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3179 rs->noack_mode = 1;
3180 }
3181
3182 if (args->extended_p)
3183 {
3184 /* Tell the remote that we are using the extended protocol. */
3185 putpkt ("!");
3186 getpkt (&rs->buf, &rs->buf_size, 0);
3187 }
3188
3189 /* Next, if the target can specify a description, read it. We do
3190 this before anything involving memory or registers. */
3191 target_find_description ();
3192
3193 /* Next, now that we know something about the target, update the
3194 address spaces in the program spaces. */
3195 update_address_spaces ();
3196
3197 /* On OSs where the list of libraries is global to all
3198 processes, we fetch them early. */
3199 if (gdbarch_has_global_solist (target_gdbarch))
3200 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3201
3202 if (non_stop)
3203 {
3204 if (!rs->non_stop_aware)
3205 error (_("Non-stop mode requested, but remote "
3206 "does not support non-stop"));
3207
3208 putpkt ("QNonStop:1");
3209 getpkt (&rs->buf, &rs->buf_size, 0);
3210
3211 if (strcmp (rs->buf, "OK") != 0)
3212 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3213
3214 /* Find about threads and processes the stub is already
3215 controlling. We default to adding them in the running state.
3216 The '?' query below will then tell us about which threads are
3217 stopped. */
3218 remote_threads_info (args->target);
3219 }
3220 else if (rs->non_stop_aware)
3221 {
3222 /* Don't assume that the stub can operate in all-stop mode.
3223 Request it explicitely. */
3224 putpkt ("QNonStop:0");
3225 getpkt (&rs->buf, &rs->buf_size, 0);
3226
3227 if (strcmp (rs->buf, "OK") != 0)
3228 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3229 }
3230
3231 /* Check whether the target is running now. */
3232 putpkt ("?");
3233 getpkt (&rs->buf, &rs->buf_size, 0);
3234
3235 if (!non_stop)
3236 {
3237 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3238 {
3239 if (!args->extended_p)
3240 error (_("The target is not running (try extended-remote?)"));
3241
3242 /* We're connected, but not running. Drop out before we
3243 call start_remote. */
3244 return;
3245 }
3246 else
3247 {
3248 /* Save the reply for later. */
3249 wait_status = alloca (strlen (rs->buf) + 1);
3250 strcpy (wait_status, rs->buf);
3251 }
3252
3253 /* Let the stub know that we want it to return the thread. */
3254 set_continue_thread (minus_one_ptid);
3255
3256 /* Without this, some commands which require an active target
3257 (such as kill) won't work. This variable serves (at least)
3258 double duty as both the pid of the target process (if it has
3259 such), and as a flag indicating that a target is active.
3260 These functions should be split out into seperate variables,
3261 especially since GDB will someday have a notion of debugging
3262 several processes. */
3263 inferior_ptid = magic_null_ptid;
3264
3265 /* Now, if we have thread information, update inferior_ptid. */
3266 inferior_ptid = remote_current_thread (inferior_ptid);
3267
3268 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3269
3270 /* Always add the main thread. */
3271 add_thread_silent (inferior_ptid);
3272
3273 get_offsets (); /* Get text, data & bss offsets. */
3274
3275 /* If we could not find a description using qXfer, and we know
3276 how to do it some other way, try again. This is not
3277 supported for non-stop; it could be, but it is tricky if
3278 there are no stopped threads when we connect. */
3279 if (remote_read_description_p (args->target)
3280 && gdbarch_target_desc (target_gdbarch) == NULL)
3281 {
3282 target_clear_description ();
3283 target_find_description ();
3284 }
3285
3286 /* Use the previously fetched status. */
3287 gdb_assert (wait_status != NULL);
3288 strcpy (rs->buf, wait_status);
3289 rs->cached_wait_status = 1;
3290
3291 immediate_quit--;
3292 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3293 }
3294 else
3295 {
3296 /* Clear WFI global state. Do this before finding about new
3297 threads and inferiors, and setting the current inferior.
3298 Otherwise we would clear the proceed status of the current
3299 inferior when we want its stop_soon state to be preserved
3300 (see notice_new_inferior). */
3301 init_wait_for_inferior ();
3302
3303 /* In non-stop, we will either get an "OK", meaning that there
3304 are no stopped threads at this time; or, a regular stop
3305 reply. In the latter case, there may be more than one thread
3306 stopped --- we pull them all out using the vStopped
3307 mechanism. */
3308 if (strcmp (rs->buf, "OK") != 0)
3309 {
3310 struct stop_reply *stop_reply;
3311 struct cleanup *old_chain;
3312
3313 stop_reply = stop_reply_xmalloc ();
3314 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3315
3316 remote_parse_stop_reply (rs->buf, stop_reply);
3317 discard_cleanups (old_chain);
3318
3319 /* get_pending_stop_replies acks this one, and gets the rest
3320 out. */
3321 pending_stop_reply = stop_reply;
3322 remote_get_pending_stop_replies ();
3323
3324 /* Make sure that threads that were stopped remain
3325 stopped. */
3326 iterate_over_threads (set_stop_requested_callback, NULL);
3327 }
3328
3329 if (target_can_async_p ())
3330 target_async (inferior_event_handler, 0);
3331
3332 if (thread_count () == 0)
3333 {
3334 if (!args->extended_p)
3335 error (_("The target is not running (try extended-remote?)"));
3336
3337 /* We're connected, but not running. Drop out before we
3338 call start_remote. */
3339 return;
3340 }
3341
3342 /* Let the stub know that we want it to return the thread. */
3343
3344 /* Force the stub to choose a thread. */
3345 set_general_thread (null_ptid);
3346
3347 /* Query it. */
3348 inferior_ptid = remote_current_thread (minus_one_ptid);
3349 if (ptid_equal (inferior_ptid, minus_one_ptid))
3350 error (_("remote didn't report the current thread in non-stop mode"));
3351
3352 get_offsets (); /* Get text, data & bss offsets. */
3353
3354 /* In non-stop mode, any cached wait status will be stored in
3355 the stop reply queue. */
3356 gdb_assert (wait_status == NULL);
3357
3358 /* Update the remote on signals to silently pass, or more
3359 importantly, which to not ignore, in case a previous session
3360 had set some different set of signals to be ignored. */
3361 remote_pass_signals ();
3362 }
3363
3364 /* If we connected to a live target, do some additional setup. */
3365 if (target_has_execution)
3366 {
3367 if (exec_bfd) /* No use without an exec file. */
3368 remote_check_symbols (symfile_objfile);
3369 }
3370
3371 /* Possibly the target has been engaged in a trace run started
3372 previously; find out where things are at. */
3373 if (remote_get_trace_status (current_trace_status ()) != -1)
3374 {
3375 struct uploaded_tp *uploaded_tps = NULL;
3376 struct uploaded_tsv *uploaded_tsvs = NULL;
3377
3378 if (current_trace_status ()->running)
3379 printf_filtered (_("Trace is already running on the target.\n"));
3380
3381 /* Get trace state variables first, they may be checked when
3382 parsing uploaded commands. */
3383
3384 remote_upload_trace_state_variables (&uploaded_tsvs);
3385
3386 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3387
3388 remote_upload_tracepoints (&uploaded_tps);
3389
3390 merge_uploaded_tracepoints (&uploaded_tps);
3391 }
3392
3393 /* If breakpoints are global, insert them now. */
3394 if (gdbarch_has_global_breakpoints (target_gdbarch)
3395 && breakpoints_always_inserted_mode ())
3396 insert_breakpoints ();
3397}
3398
3399/* Open a connection to a remote debugger.
3400 NAME is the filename used for communication. */
3401
3402static void
3403remote_open (char *name, int from_tty)
3404{
3405 remote_open_1 (name, from_tty, &remote_ops, 0);
3406}
3407
3408/* Open a connection to a remote debugger using the extended
3409 remote gdb protocol. NAME is the filename used for communication. */
3410
3411static void
3412extended_remote_open (char *name, int from_tty)
3413{
3414 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3415}
3416
3417/* Generic code for opening a connection to a remote target. */
3418
3419static void
3420init_all_packet_configs (void)
3421{
3422 int i;
3423
3424 for (i = 0; i < PACKET_MAX; i++)
3425 update_packet_config (&remote_protocol_packets[i]);
3426}
3427
3428/* Symbol look-up. */
3429
3430static void
3431remote_check_symbols (struct objfile *objfile)
3432{
3433 struct remote_state *rs = get_remote_state ();
3434 char *msg, *reply, *tmp;
3435 struct minimal_symbol *sym;
3436 int end;
3437
3438 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3439 return;
3440
3441 /* Make sure the remote is pointing at the right process. */
3442 set_general_process ();
3443
3444 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3445 because we need both at the same time. */
3446 msg = alloca (get_remote_packet_size ());
3447
3448 /* Invite target to request symbol lookups. */
3449
3450 putpkt ("qSymbol::");
3451 getpkt (&rs->buf, &rs->buf_size, 0);
3452 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3453 reply = rs->buf;
3454
3455 while (strncmp (reply, "qSymbol:", 8) == 0)
3456 {
3457 tmp = &reply[8];
3458 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3459 msg[end] = '\0';
3460 sym = lookup_minimal_symbol (msg, NULL, NULL);
3461 if (sym == NULL)
3462 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3463 else
3464 {
3465 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3466 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3467
3468 /* If this is a function address, return the start of code
3469 instead of any data function descriptor. */
3470 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3471 sym_addr,
3472 &current_target);
3473
3474 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3475 phex_nz (sym_addr, addr_size), &reply[8]);
3476 }
3477
3478 putpkt (msg);
3479 getpkt (&rs->buf, &rs->buf_size, 0);
3480 reply = rs->buf;
3481 }
3482}
3483
3484static struct serial *
3485remote_serial_open (char *name)
3486{
3487 static int udp_warning = 0;
3488
3489 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3490 of in ser-tcp.c, because it is the remote protocol assuming that the
3491 serial connection is reliable and not the serial connection promising
3492 to be. */
3493 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3494 {
3495 warning (_("The remote protocol may be unreliable over UDP.\n"
3496 "Some events may be lost, rendering further debugging "
3497 "impossible."));
3498 udp_warning = 1;
3499 }
3500
3501 return serial_open (name);
3502}
3503
3504/* Inform the target of our permission settings. The permission flags
3505 work without this, but if the target knows the settings, it can do
3506 a couple things. First, it can add its own check, to catch cases
3507 that somehow manage to get by the permissions checks in target
3508 methods. Second, if the target is wired to disallow particular
3509 settings (for instance, a system in the field that is not set up to
3510 be able to stop at a breakpoint), it can object to any unavailable
3511 permissions. */
3512
3513void
3514remote_set_permissions (void)
3515{
3516 struct remote_state *rs = get_remote_state ();
3517
3518 sprintf (rs->buf, "QAllow:"
3519 "WriteReg:%x;WriteMem:%x;"
3520 "InsertBreak:%x;InsertTrace:%x;"
3521 "InsertFastTrace:%x;Stop:%x",
3522 may_write_registers, may_write_memory,
3523 may_insert_breakpoints, may_insert_tracepoints,
3524 may_insert_fast_tracepoints, may_stop);
3525 putpkt (rs->buf);
3526 getpkt (&rs->buf, &rs->buf_size, 0);
3527
3528 /* If the target didn't like the packet, warn the user. Do not try
3529 to undo the user's settings, that would just be maddening. */
3530 if (strcmp (rs->buf, "OK") != 0)
3531 warning ("Remote refused setting permissions with: %s", rs->buf);
3532}
3533
3534/* This type describes each known response to the qSupported
3535 packet. */
3536struct protocol_feature
3537{
3538 /* The name of this protocol feature. */
3539 const char *name;
3540
3541 /* The default for this protocol feature. */
3542 enum packet_support default_support;
3543
3544 /* The function to call when this feature is reported, or after
3545 qSupported processing if the feature is not supported.
3546 The first argument points to this structure. The second
3547 argument indicates whether the packet requested support be
3548 enabled, disabled, or probed (or the default, if this function
3549 is being called at the end of processing and this feature was
3550 not reported). The third argument may be NULL; if not NULL, it
3551 is a NUL-terminated string taken from the packet following
3552 this feature's name and an equals sign. */
3553 void (*func) (const struct protocol_feature *, enum packet_support,
3554 const char *);
3555
3556 /* The corresponding packet for this feature. Only used if
3557 FUNC is remote_supported_packet. */
3558 int packet;
3559};
3560
3561static void
3562remote_supported_packet (const struct protocol_feature *feature,
3563 enum packet_support support,
3564 const char *argument)
3565{
3566 if (argument)
3567 {
3568 warning (_("Remote qSupported response supplied an unexpected value for"
3569 " \"%s\"."), feature->name);
3570 return;
3571 }
3572
3573 if (remote_protocol_packets[feature->packet].support
3574 == PACKET_SUPPORT_UNKNOWN)
3575 remote_protocol_packets[feature->packet].support = support;
3576}
3577
3578static void
3579remote_packet_size (const struct protocol_feature *feature,
3580 enum packet_support support, const char *value)
3581{
3582 struct remote_state *rs = get_remote_state ();
3583
3584 int packet_size;
3585 char *value_end;
3586
3587 if (support != PACKET_ENABLE)
3588 return;
3589
3590 if (value == NULL || *value == '\0')
3591 {
3592 warning (_("Remote target reported \"%s\" without a size."),
3593 feature->name);
3594 return;
3595 }
3596
3597 errno = 0;
3598 packet_size = strtol (value, &value_end, 16);
3599 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3600 {
3601 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3602 feature->name, value);
3603 return;
3604 }
3605
3606 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3607 {
3608 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3609 packet_size, MAX_REMOTE_PACKET_SIZE);
3610 packet_size = MAX_REMOTE_PACKET_SIZE;
3611 }
3612
3613 /* Record the new maximum packet size. */
3614 rs->explicit_packet_size = packet_size;
3615}
3616
3617static void
3618remote_multi_process_feature (const struct protocol_feature *feature,
3619 enum packet_support support, const char *value)
3620{
3621 struct remote_state *rs = get_remote_state ();
3622
3623 rs->multi_process_aware = (support == PACKET_ENABLE);
3624}
3625
3626static void
3627remote_non_stop_feature (const struct protocol_feature *feature,
3628 enum packet_support support, const char *value)
3629{
3630 struct remote_state *rs = get_remote_state ();
3631
3632 rs->non_stop_aware = (support == PACKET_ENABLE);
3633}
3634
3635static void
3636remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3637 enum packet_support support,
3638 const char *value)
3639{
3640 struct remote_state *rs = get_remote_state ();
3641
3642 rs->cond_tracepoints = (support == PACKET_ENABLE);
3643}
3644
3645static void
3646remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3647 enum packet_support support,
3648 const char *value)
3649{
3650 struct remote_state *rs = get_remote_state ();
3651
3652 rs->fast_tracepoints = (support == PACKET_ENABLE);
3653}
3654
3655static void
3656remote_static_tracepoint_feature (const struct protocol_feature *feature,
3657 enum packet_support support,
3658 const char *value)
3659{
3660 struct remote_state *rs = get_remote_state ();
3661
3662 rs->static_tracepoints = (support == PACKET_ENABLE);
3663}
3664
3665static void
3666remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3667 enum packet_support support,
3668 const char *value)
3669{
3670 struct remote_state *rs = get_remote_state ();
3671
3672 rs->disconnected_tracing = (support == PACKET_ENABLE);
3673}
3674
3675static struct protocol_feature remote_protocol_features[] = {
3676 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3677 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3678 PACKET_qXfer_auxv },
3679 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3680 PACKET_qXfer_features },
3681 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3682 PACKET_qXfer_libraries },
3683 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3684 PACKET_qXfer_memory_map },
3685 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3686 PACKET_qXfer_spu_read },
3687 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3688 PACKET_qXfer_spu_write },
3689 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3690 PACKET_qXfer_osdata },
3691 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3692 PACKET_qXfer_threads },
3693 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3694 PACKET_qXfer_traceframe_info },
3695 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3696 PACKET_QPassSignals },
3697 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3698 PACKET_QStartNoAckMode },
3699 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3700 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3701 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3702 PACKET_qXfer_siginfo_read },
3703 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3704 PACKET_qXfer_siginfo_write },
3705 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3706 PACKET_ConditionalTracepoints },
3707 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3708 PACKET_FastTracepoints },
3709 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3710 PACKET_StaticTracepoints },
3711 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3712 -1 },
3713 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3714 PACKET_bc },
3715 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3716 PACKET_bs },
3717 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3718 PACKET_TracepointSource },
3719 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3720 PACKET_QAllow },
3721};
3722
3723static char *remote_support_xml;
3724
3725/* Register string appended to "xmlRegisters=" in qSupported query. */
3726
3727void
3728register_remote_support_xml (const char *xml)
3729{
3730#if defined(HAVE_LIBEXPAT)
3731 if (remote_support_xml == NULL)
3732 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3733 else
3734 {
3735 char *copy = xstrdup (remote_support_xml + 13);
3736 char *p = strtok (copy, ",");
3737
3738 do
3739 {
3740 if (strcmp (p, xml) == 0)
3741 {
3742 /* already there */
3743 xfree (copy);
3744 return;
3745 }
3746 }
3747 while ((p = strtok (NULL, ",")) != NULL);
3748 xfree (copy);
3749
3750 remote_support_xml = reconcat (remote_support_xml,
3751 remote_support_xml, ",", xml,
3752 (char *) NULL);
3753 }
3754#endif
3755}
3756
3757static char *
3758remote_query_supported_append (char *msg, const char *append)
3759{
3760 if (msg)
3761 return reconcat (msg, msg, ";", append, (char *) NULL);
3762 else
3763 return xstrdup (append);
3764}
3765
3766static void
3767remote_query_supported (void)
3768{
3769 struct remote_state *rs = get_remote_state ();
3770 char *next;
3771 int i;
3772 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3773
3774 /* The packet support flags are handled differently for this packet
3775 than for most others. We treat an error, a disabled packet, and
3776 an empty response identically: any features which must be reported
3777 to be used will be automatically disabled. An empty buffer
3778 accomplishes this, since that is also the representation for a list
3779 containing no features. */
3780
3781 rs->buf[0] = 0;
3782 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3783 {
3784 char *q = NULL;
3785 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3786
3787 if (rs->extended)
3788 q = remote_query_supported_append (q, "multiprocess+");
3789
3790 if (remote_support_xml)
3791 q = remote_query_supported_append (q, remote_support_xml);
3792
3793 q = remote_query_supported_append (q, "qRelocInsn+");
3794
3795 q = reconcat (q, "qSupported:", q, (char *) NULL);
3796 putpkt (q);
3797
3798 do_cleanups (old_chain);
3799
3800 getpkt (&rs->buf, &rs->buf_size, 0);
3801
3802 /* If an error occured, warn, but do not return - just reset the
3803 buffer to empty and go on to disable features. */
3804 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3805 == PACKET_ERROR)
3806 {
3807 warning (_("Remote failure reply: %s"), rs->buf);
3808 rs->buf[0] = 0;
3809 }
3810 }
3811
3812 memset (seen, 0, sizeof (seen));
3813
3814 next = rs->buf;
3815 while (*next)
3816 {
3817 enum packet_support is_supported;
3818 char *p, *end, *name_end, *value;
3819
3820 /* First separate out this item from the rest of the packet. If
3821 there's another item after this, we overwrite the separator
3822 (terminated strings are much easier to work with). */
3823 p = next;
3824 end = strchr (p, ';');
3825 if (end == NULL)
3826 {
3827 end = p + strlen (p);
3828 next = end;
3829 }
3830 else
3831 {
3832 *end = '\0';
3833 next = end + 1;
3834
3835 if (end == p)
3836 {
3837 warning (_("empty item in \"qSupported\" response"));
3838 continue;
3839 }
3840 }
3841
3842 name_end = strchr (p, '=');
3843 if (name_end)
3844 {
3845 /* This is a name=value entry. */
3846 is_supported = PACKET_ENABLE;
3847 value = name_end + 1;
3848 *name_end = '\0';
3849 }
3850 else
3851 {
3852 value = NULL;
3853 switch (end[-1])
3854 {
3855 case '+':
3856 is_supported = PACKET_ENABLE;
3857 break;
3858
3859 case '-':
3860 is_supported = PACKET_DISABLE;
3861 break;
3862
3863 case '?':
3864 is_supported = PACKET_SUPPORT_UNKNOWN;
3865 break;
3866
3867 default:
3868 warning (_("unrecognized item \"%s\" "
3869 "in \"qSupported\" response"), p);
3870 continue;
3871 }
3872 end[-1] = '\0';
3873 }
3874
3875 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3876 if (strcmp (remote_protocol_features[i].name, p) == 0)
3877 {
3878 const struct protocol_feature *feature;
3879
3880 seen[i] = 1;
3881 feature = &remote_protocol_features[i];
3882 feature->func (feature, is_supported, value);
3883 break;
3884 }
3885 }
3886
3887 /* If we increased the packet size, make sure to increase the global
3888 buffer size also. We delay this until after parsing the entire
3889 qSupported packet, because this is the same buffer we were
3890 parsing. */
3891 if (rs->buf_size < rs->explicit_packet_size)
3892 {
3893 rs->buf_size = rs->explicit_packet_size;
3894 rs->buf = xrealloc (rs->buf, rs->buf_size);
3895 }
3896
3897 /* Handle the defaults for unmentioned features. */
3898 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3899 if (!seen[i])
3900 {
3901 const struct protocol_feature *feature;
3902
3903 feature = &remote_protocol_features[i];
3904 feature->func (feature, feature->default_support, NULL);
3905 }
3906}
3907
3908
3909static void
3910remote_open_1 (char *name, int from_tty,
3911 struct target_ops *target, int extended_p)
3912{
3913 struct remote_state *rs = get_remote_state ();
3914
3915 if (name == 0)
3916 error (_("To open a remote debug connection, you need to specify what\n"
3917 "serial device is attached to the remote system\n"
3918 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3919
3920 /* See FIXME above. */
3921 if (!target_async_permitted)
3922 wait_forever_enabled_p = 1;
3923
3924 /* If we're connected to a running target, target_preopen will kill it.
3925 But if we're connected to a target system with no running process,
3926 then we will still be connected when it returns. Ask this question
3927 first, before target_preopen has a chance to kill anything. */
3928 if (remote_desc != NULL && !have_inferiors ())
3929 {
3930 if (!from_tty
3931 || query (_("Already connected to a remote target. Disconnect? ")))
3932 pop_target ();
3933 else
3934 error (_("Still connected."));
3935 }
3936
3937 target_preopen (from_tty);
3938
3939 unpush_target (target);
3940
3941 /* This time without a query. If we were connected to an
3942 extended-remote target and target_preopen killed the running
3943 process, we may still be connected. If we are starting "target
3944 remote" now, the extended-remote target will not have been
3945 removed by unpush_target. */
3946 if (remote_desc != NULL && !have_inferiors ())
3947 pop_target ();
3948
3949 /* Make sure we send the passed signals list the next time we resume. */
3950 xfree (last_pass_packet);
3951 last_pass_packet = NULL;
3952
3953 remote_fileio_reset ();
3954 reopen_exec_file ();
3955 reread_symbols ();
3956
3957 remote_desc = remote_serial_open (name);
3958 if (!remote_desc)
3959 perror_with_name (name);
3960
3961 if (baud_rate != -1)
3962 {
3963 if (serial_setbaudrate (remote_desc, baud_rate))
3964 {
3965 /* The requested speed could not be set. Error out to
3966 top level after closing remote_desc. Take care to
3967 set remote_desc to NULL to avoid closing remote_desc
3968 more than once. */
3969 serial_close (remote_desc);
3970 remote_desc = NULL;
3971 perror_with_name (name);
3972 }
3973 }
3974
3975 serial_raw (remote_desc);
3976
3977 /* If there is something sitting in the buffer we might take it as a
3978 response to a command, which would be bad. */
3979 serial_flush_input (remote_desc);
3980
3981 if (from_tty)
3982 {
3983 puts_filtered ("Remote debugging using ");
3984 puts_filtered (name);
3985 puts_filtered ("\n");
3986 }
3987 push_target (target); /* Switch to using remote target now. */
3988
3989 /* Register extra event sources in the event loop. */
3990 remote_async_inferior_event_token
3991 = create_async_event_handler (remote_async_inferior_event_handler,
3992 NULL);
3993 remote_async_get_pending_events_token
3994 = create_async_event_handler (remote_async_get_pending_events_handler,
3995 NULL);
3996
3997 /* Reset the target state; these things will be queried either by
3998 remote_query_supported or as they are needed. */
3999 init_all_packet_configs ();
4000 rs->cached_wait_status = 0;
4001 rs->explicit_packet_size = 0;
4002 rs->noack_mode = 0;
4003 rs->multi_process_aware = 0;
4004 rs->extended = extended_p;
4005 rs->non_stop_aware = 0;
4006 rs->waiting_for_stop_reply = 0;
4007 rs->ctrlc_pending_p = 0;
4008
4009 general_thread = not_sent_ptid;
4010 continue_thread = not_sent_ptid;
4011 remote_traceframe_number = -1;
4012
4013 /* Probe for ability to use "ThreadInfo" query, as required. */
4014 use_threadinfo_query = 1;
4015 use_threadextra_query = 1;
4016
4017 if (target_async_permitted)
4018 {
4019 /* With this target we start out by owning the terminal. */
4020 remote_async_terminal_ours_p = 1;
4021
4022 /* FIXME: cagney/1999-09-23: During the initial connection it is
4023 assumed that the target is already ready and able to respond to
4024 requests. Unfortunately remote_start_remote() eventually calls
4025 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4026 around this. Eventually a mechanism that allows
4027 wait_for_inferior() to expect/get timeouts will be
4028 implemented. */
4029 wait_forever_enabled_p = 0;
4030 }
4031
4032 /* First delete any symbols previously loaded from shared libraries. */
4033 no_shared_libraries (NULL, 0);
4034
4035 /* Start afresh. */
4036 init_thread_list ();
4037
4038 /* Start the remote connection. If error() or QUIT, discard this
4039 target (we'd otherwise be in an inconsistent state) and then
4040 propogate the error on up the exception chain. This ensures that
4041 the caller doesn't stumble along blindly assuming that the
4042 function succeeded. The CLI doesn't have this problem but other
4043 UI's, such as MI do.
4044
4045 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4046 this function should return an error indication letting the
4047 caller restore the previous state. Unfortunately the command
4048 ``target remote'' is directly wired to this function making that
4049 impossible. On a positive note, the CLI side of this problem has
4050 been fixed - the function set_cmd_context() makes it possible for
4051 all the ``target ....'' commands to share a common callback
4052 function. See cli-dump.c. */
4053 {
4054 struct gdb_exception ex;
4055 struct start_remote_args args;
4056
4057 args.from_tty = from_tty;
4058 args.target = target;
4059 args.extended_p = extended_p;
4060
4061 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
4062 if (ex.reason < 0)
4063 {
4064 /* Pop the partially set up target - unless something else did
4065 already before throwing the exception. */
4066 if (remote_desc != NULL)
4067 pop_target ();
4068 if (target_async_permitted)
4069 wait_forever_enabled_p = 1;
4070 throw_exception (ex);
4071 }
4072 }
4073
4074 if (target_async_permitted)
4075 wait_forever_enabled_p = 1;
4076}
4077
4078/* This takes a program previously attached to and detaches it. After
4079 this is done, GDB can be used to debug some other program. We
4080 better not have left any breakpoints in the target program or it'll
4081 die when it hits one. */
4082
4083static void
4084remote_detach_1 (char *args, int from_tty, int extended)
4085{
4086 int pid = ptid_get_pid (inferior_ptid);
4087 struct remote_state *rs = get_remote_state ();
4088
4089 if (args)
4090 error (_("Argument given to \"detach\" when remotely debugging."));
4091
4092 if (!target_has_execution)
4093 error (_("No process to detach from."));
4094
4095 /* Tell the remote target to detach. */
4096 if (remote_multi_process_p (rs))
4097 sprintf (rs->buf, "D;%x", pid);
4098 else
4099 strcpy (rs->buf, "D");
4100
4101 putpkt (rs->buf);
4102 getpkt (&rs->buf, &rs->buf_size, 0);
4103
4104 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4105 ;
4106 else if (rs->buf[0] == '\0')
4107 error (_("Remote doesn't know how to detach"));
4108 else
4109 error (_("Can't detach process."));
4110
4111 if (from_tty)
4112 {
4113 if (remote_multi_process_p (rs))
4114 printf_filtered (_("Detached from remote %s.\n"),
4115 target_pid_to_str (pid_to_ptid (pid)));
4116 else
4117 {
4118 if (extended)
4119 puts_filtered (_("Detached from remote process.\n"));
4120 else
4121 puts_filtered (_("Ending remote debugging.\n"));
4122 }
4123 }
4124
4125 discard_pending_stop_replies (pid);
4126 target_mourn_inferior ();
4127}
4128
4129static void
4130remote_detach (struct target_ops *ops, char *args, int from_tty)
4131{
4132 remote_detach_1 (args, from_tty, 0);
4133}
4134
4135static void
4136extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4137{
4138 remote_detach_1 (args, from_tty, 1);
4139}
4140
4141/* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4142
4143static void
4144remote_disconnect (struct target_ops *target, char *args, int from_tty)
4145{
4146 if (args)
4147 error (_("Argument given to \"disconnect\" when remotely debugging."));
4148
4149 /* Make sure we unpush even the extended remote targets; mourn
4150 won't do it. So call remote_mourn_1 directly instead of
4151 target_mourn_inferior. */
4152 remote_mourn_1 (target);
4153
4154 if (from_tty)
4155 puts_filtered ("Ending remote debugging.\n");
4156}
4157
4158/* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4159 be chatty about it. */
4160
4161static void
4162extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4163{
4164 struct remote_state *rs = get_remote_state ();
4165 int pid;
4166 char *wait_status = NULL;
4167
4168 pid = parse_pid_to_attach (args);
4169
4170 /* Remote PID can be freely equal to getpid, do not check it here the same
4171 way as in other targets. */
4172
4173 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4174 error (_("This target does not support attaching to a process"));
4175
4176 sprintf (rs->buf, "vAttach;%x", pid);
4177 putpkt (rs->buf);
4178 getpkt (&rs->buf, &rs->buf_size, 0);
4179
4180 if (packet_ok (rs->buf,
4181 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4182 {
4183 if (from_tty)
4184 printf_unfiltered (_("Attached to %s\n"),
4185 target_pid_to_str (pid_to_ptid (pid)));
4186
4187 if (!non_stop)
4188 {
4189 /* Save the reply for later. */
4190 wait_status = alloca (strlen (rs->buf) + 1);
4191 strcpy (wait_status, rs->buf);
4192 }
4193 else if (strcmp (rs->buf, "OK") != 0)
4194 error (_("Attaching to %s failed with: %s"),
4195 target_pid_to_str (pid_to_ptid (pid)),
4196 rs->buf);
4197 }
4198 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4199 error (_("This target does not support attaching to a process"));
4200 else
4201 error (_("Attaching to %s failed"),
4202 target_pid_to_str (pid_to_ptid (pid)));
4203
4204 set_current_inferior (remote_add_inferior (pid, 1));
4205
4206 inferior_ptid = pid_to_ptid (pid);
4207
4208 if (non_stop)
4209 {
4210 struct thread_info *thread;
4211
4212 /* Get list of threads. */
4213 remote_threads_info (target);
4214
4215 thread = first_thread_of_process (pid);
4216 if (thread)
4217 inferior_ptid = thread->ptid;
4218 else
4219 inferior_ptid = pid_to_ptid (pid);
4220
4221 /* Invalidate our notion of the remote current thread. */
4222 record_currthread (minus_one_ptid);
4223 }
4224 else
4225 {
4226 /* Now, if we have thread information, update inferior_ptid. */
4227 inferior_ptid = remote_current_thread (inferior_ptid);
4228
4229 /* Add the main thread to the thread list. */
4230 add_thread_silent (inferior_ptid);
4231 }
4232
4233 /* Next, if the target can specify a description, read it. We do
4234 this before anything involving memory or registers. */
4235 target_find_description ();
4236
4237 if (!non_stop)
4238 {
4239 /* Use the previously fetched status. */
4240 gdb_assert (wait_status != NULL);
4241
4242 if (target_can_async_p ())
4243 {
4244 struct stop_reply *stop_reply;
4245 struct cleanup *old_chain;
4246
4247 stop_reply = stop_reply_xmalloc ();
4248 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4249 remote_parse_stop_reply (wait_status, stop_reply);
4250 discard_cleanups (old_chain);
4251 push_stop_reply (stop_reply);
4252
4253 target_async (inferior_event_handler, 0);
4254 }
4255 else
4256 {
4257 gdb_assert (wait_status != NULL);
4258 strcpy (rs->buf, wait_status);
4259 rs->cached_wait_status = 1;
4260 }
4261 }
4262 else
4263 gdb_assert (wait_status == NULL);
4264}
4265
4266static void
4267extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4268{
4269 extended_remote_attach_1 (ops, args, from_tty);
4270}
4271
4272/* Convert hex digit A to a number. */
4273
4274static int
4275fromhex (int a)
4276{
4277 if (a >= '0' && a <= '9')
4278 return a - '0';
4279 else if (a >= 'a' && a <= 'f')
4280 return a - 'a' + 10;
4281 else if (a >= 'A' && a <= 'F')
4282 return a - 'A' + 10;
4283 else
4284 error (_("Reply contains invalid hex digit %d"), a);
4285}
4286
4287int
4288hex2bin (const char *hex, gdb_byte *bin, int count)
4289{
4290 int i;
4291
4292 for (i = 0; i < count; i++)
4293 {
4294 if (hex[0] == 0 || hex[1] == 0)
4295 {
4296 /* Hex string is short, or of uneven length.
4297 Return the count that has been converted so far. */
4298 return i;
4299 }
4300 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4301 hex += 2;
4302 }
4303 return i;
4304}
4305
4306/* Convert number NIB to a hex digit. */
4307
4308static int
4309tohex (int nib)
4310{
4311 if (nib < 10)
4312 return '0' + nib;
4313 else
4314 return 'a' + nib - 10;
4315}
4316
4317int
4318bin2hex (const gdb_byte *bin, char *hex, int count)
4319{
4320 int i;
4321
4322 /* May use a length, or a nul-terminated string as input. */
4323 if (count == 0)
4324 count = strlen ((char *) bin);
4325
4326 for (i = 0; i < count; i++)
4327 {
4328 *hex++ = tohex ((*bin >> 4) & 0xf);
4329 *hex++ = tohex (*bin++ & 0xf);
4330 }
4331 *hex = 0;
4332 return i;
4333}
4334\f
4335/* Check for the availability of vCont. This function should also check
4336 the response. */
4337
4338static void
4339remote_vcont_probe (struct remote_state *rs)
4340{
4341 char *buf;
4342
4343 strcpy (rs->buf, "vCont?");
4344 putpkt (rs->buf);
4345 getpkt (&rs->buf, &rs->buf_size, 0);
4346 buf = rs->buf;
4347
4348 /* Make sure that the features we assume are supported. */
4349 if (strncmp (buf, "vCont", 5) == 0)
4350 {
4351 char *p = &buf[5];
4352 int support_s, support_S, support_c, support_C;
4353
4354 support_s = 0;
4355 support_S = 0;
4356 support_c = 0;
4357 support_C = 0;
4358 rs->support_vCont_t = 0;
4359 while (p && *p == ';')
4360 {
4361 p++;
4362 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4363 support_s = 1;
4364 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4365 support_S = 1;
4366 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4367 support_c = 1;
4368 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4369 support_C = 1;
4370 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4371 rs->support_vCont_t = 1;
4372
4373 p = strchr (p, ';');
4374 }
4375
4376 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4377 BUF will make packet_ok disable the packet. */
4378 if (!support_s || !support_S || !support_c || !support_C)
4379 buf[0] = 0;
4380 }
4381
4382 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4383}
4384
4385/* Helper function for building "vCont" resumptions. Write a
4386 resumption to P. ENDP points to one-passed-the-end of the buffer
4387 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4388 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4389 resumed thread should be single-stepped and/or signalled. If PTID
4390 equals minus_one_ptid, then all threads are resumed; if PTID
4391 represents a process, then all threads of the process are resumed;
4392 the thread to be stepped and/or signalled is given in the global
4393 INFERIOR_PTID. */
4394
4395static char *
4396append_resumption (char *p, char *endp,
4397 ptid_t ptid, int step, enum target_signal siggnal)
4398{
4399 struct remote_state *rs = get_remote_state ();
4400
4401 if (step && siggnal != TARGET_SIGNAL_0)
4402 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4403 else if (step)
4404 p += xsnprintf (p, endp - p, ";s");
4405 else if (siggnal != TARGET_SIGNAL_0)
4406 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4407 else
4408 p += xsnprintf (p, endp - p, ";c");
4409
4410 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4411 {
4412 ptid_t nptid;
4413
4414 /* All (-1) threads of process. */
4415 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4416
4417 p += xsnprintf (p, endp - p, ":");
4418 p = write_ptid (p, endp, nptid);
4419 }
4420 else if (!ptid_equal (ptid, minus_one_ptid))
4421 {
4422 p += xsnprintf (p, endp - p, ":");
4423 p = write_ptid (p, endp, ptid);
4424 }
4425
4426 return p;
4427}
4428
4429/* Resume the remote inferior by using a "vCont" packet. The thread
4430 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4431 resumed thread should be single-stepped and/or signalled. If PTID
4432 equals minus_one_ptid, then all threads are resumed; the thread to
4433 be stepped and/or signalled is given in the global INFERIOR_PTID.
4434 This function returns non-zero iff it resumes the inferior.
4435
4436 This function issues a strict subset of all possible vCont commands at the
4437 moment. */
4438
4439static int
4440remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4441{
4442 struct remote_state *rs = get_remote_state ();
4443 char *p;
4444 char *endp;
4445
4446 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4447 remote_vcont_probe (rs);
4448
4449 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4450 return 0;
4451
4452 p = rs->buf;
4453 endp = rs->buf + get_remote_packet_size ();
4454
4455 /* If we could generate a wider range of packets, we'd have to worry
4456 about overflowing BUF. Should there be a generic
4457 "multi-part-packet" packet? */
4458
4459 p += xsnprintf (p, endp - p, "vCont");
4460
4461 if (ptid_equal (ptid, magic_null_ptid))
4462 {
4463 /* MAGIC_NULL_PTID means that we don't have any active threads,
4464 so we don't have any TID numbers the inferior will
4465 understand. Make sure to only send forms that do not specify
4466 a TID. */
4467 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4468 }
4469 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4470 {
4471 /* Resume all threads (of all processes, or of a single
4472 process), with preference for INFERIOR_PTID. This assumes
4473 inferior_ptid belongs to the set of all threads we are about
4474 to resume. */
4475 if (step || siggnal != TARGET_SIGNAL_0)
4476 {
4477 /* Step inferior_ptid, with or without signal. */
4478 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4479 }
4480
4481 /* And continue others without a signal. */
4482 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4483 }
4484 else
4485 {
4486 /* Scheduler locking; resume only PTID. */
4487 append_resumption (p, endp, ptid, step, siggnal);
4488 }
4489
4490 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4491 putpkt (rs->buf);
4492
4493 if (non_stop)
4494 {
4495 /* In non-stop, the stub replies to vCont with "OK". The stop
4496 reply will be reported asynchronously by means of a `%Stop'
4497 notification. */
4498 getpkt (&rs->buf, &rs->buf_size, 0);
4499 if (strcmp (rs->buf, "OK") != 0)
4500 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4501 }
4502
4503 return 1;
4504}
4505
4506/* Tell the remote machine to resume. */
4507
4508static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4509
4510static int last_sent_step;
4511
4512static void
4513remote_resume (struct target_ops *ops,
4514 ptid_t ptid, int step, enum target_signal siggnal)
4515{
4516 struct remote_state *rs = get_remote_state ();
4517 char *buf;
4518
4519 last_sent_signal = siggnal;
4520 last_sent_step = step;
4521
4522 /* Update the inferior on signals to silently pass, if they've changed. */
4523 remote_pass_signals ();
4524
4525 /* The vCont packet doesn't need to specify threads via Hc. */
4526 /* No reverse support (yet) for vCont. */
4527 if (execution_direction != EXEC_REVERSE)
4528 if (remote_vcont_resume (ptid, step, siggnal))
4529 goto done;
4530
4531 /* All other supported resume packets do use Hc, so set the continue
4532 thread. */
4533 if (ptid_equal (ptid, minus_one_ptid))
4534 set_continue_thread (any_thread_ptid);
4535 else
4536 set_continue_thread (ptid);
4537
4538 buf = rs->buf;
4539 if (execution_direction == EXEC_REVERSE)
4540 {
4541 /* We don't pass signals to the target in reverse exec mode. */
4542 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4543 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4544 siggnal);
4545
4546 if (step
4547 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4548 error (_("Remote reverse-step not supported."));
4549 if (!step
4550 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4551 error (_("Remote reverse-continue not supported."));
4552
4553 strcpy (buf, step ? "bs" : "bc");
4554 }
4555 else if (siggnal != TARGET_SIGNAL_0)
4556 {
4557 buf[0] = step ? 'S' : 'C';
4558 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4559 buf[2] = tohex (((int) siggnal) & 0xf);
4560 buf[3] = '\0';
4561 }
4562 else
4563 strcpy (buf, step ? "s" : "c");
4564
4565 putpkt (buf);
4566
4567 done:
4568 /* We are about to start executing the inferior, let's register it
4569 with the event loop. NOTE: this is the one place where all the
4570 execution commands end up. We could alternatively do this in each
4571 of the execution commands in infcmd.c. */
4572 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4573 into infcmd.c in order to allow inferior function calls to work
4574 NOT asynchronously. */
4575 if (target_can_async_p ())
4576 target_async (inferior_event_handler, 0);
4577
4578 /* We've just told the target to resume. The remote server will
4579 wait for the inferior to stop, and then send a stop reply. In
4580 the mean time, we can't start another command/query ourselves
4581 because the stub wouldn't be ready to process it. This applies
4582 only to the base all-stop protocol, however. In non-stop (which
4583 only supports vCont), the stub replies with an "OK", and is
4584 immediate able to process further serial input. */
4585 if (!non_stop)
4586 rs->waiting_for_stop_reply = 1;
4587}
4588\f
4589
4590/* Set up the signal handler for SIGINT, while the target is
4591 executing, ovewriting the 'regular' SIGINT signal handler. */
4592static void
4593initialize_sigint_signal_handler (void)
4594{
4595 signal (SIGINT, handle_remote_sigint);
4596}
4597
4598/* Signal handler for SIGINT, while the target is executing. */
4599static void
4600handle_remote_sigint (int sig)
4601{
4602 signal (sig, handle_remote_sigint_twice);
4603 mark_async_signal_handler_wrapper (sigint_remote_token);
4604}
4605
4606/* Signal handler for SIGINT, installed after SIGINT has already been
4607 sent once. It will take effect the second time that the user sends
4608 a ^C. */
4609static void
4610handle_remote_sigint_twice (int sig)
4611{
4612 signal (sig, handle_remote_sigint);
4613 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4614}
4615
4616/* Perform the real interruption of the target execution, in response
4617 to a ^C. */
4618static void
4619async_remote_interrupt (gdb_client_data arg)
4620{
4621 if (remote_debug)
4622 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4623
4624 target_stop (inferior_ptid);
4625}
4626
4627/* Perform interrupt, if the first attempt did not succeed. Just give
4628 up on the target alltogether. */
4629void
4630async_remote_interrupt_twice (gdb_client_data arg)
4631{
4632 if (remote_debug)
4633 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4634
4635 interrupt_query ();
4636}
4637
4638/* Reinstall the usual SIGINT handlers, after the target has
4639 stopped. */
4640static void
4641cleanup_sigint_signal_handler (void *dummy)
4642{
4643 signal (SIGINT, handle_sigint);
4644}
4645
4646/* Send ^C to target to halt it. Target will respond, and send us a
4647 packet. */
4648static void (*ofunc) (int);
4649
4650/* The command line interface's stop routine. This function is installed
4651 as a signal handler for SIGINT. The first time a user requests a
4652 stop, we call remote_stop to send a break or ^C. If there is no
4653 response from the target (it didn't stop when the user requested it),
4654 we ask the user if he'd like to detach from the target. */
4655static void
4656remote_interrupt (int signo)
4657{
4658 /* If this doesn't work, try more severe steps. */
4659 signal (signo, remote_interrupt_twice);
4660
4661 gdb_call_async_signal_handler (sigint_remote_token, 1);
4662}
4663
4664/* The user typed ^C twice. */
4665
4666static void
4667remote_interrupt_twice (int signo)
4668{
4669 signal (signo, ofunc);
4670 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4671 signal (signo, remote_interrupt);
4672}
4673
4674/* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4675 thread, all threads of a remote process, or all threads of all
4676 processes. */
4677
4678static void
4679remote_stop_ns (ptid_t ptid)
4680{
4681 struct remote_state *rs = get_remote_state ();
4682 char *p = rs->buf;
4683 char *endp = rs->buf + get_remote_packet_size ();
4684
4685 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4686 remote_vcont_probe (rs);
4687
4688 if (!rs->support_vCont_t)
4689 error (_("Remote server does not support stopping threads"));
4690
4691 if (ptid_equal (ptid, minus_one_ptid)
4692 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4693 p += xsnprintf (p, endp - p, "vCont;t");
4694 else
4695 {
4696 ptid_t nptid;
4697
4698 p += xsnprintf (p, endp - p, "vCont;t:");
4699
4700 if (ptid_is_pid (ptid))
4701 /* All (-1) threads of process. */
4702 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4703 else
4704 {
4705 /* Small optimization: if we already have a stop reply for
4706 this thread, no use in telling the stub we want this
4707 stopped. */
4708 if (peek_stop_reply (ptid))
4709 return;
4710
4711 nptid = ptid;
4712 }
4713
4714 write_ptid (p, endp, nptid);
4715 }
4716
4717 /* In non-stop, we get an immediate OK reply. The stop reply will
4718 come in asynchronously by notification. */
4719 putpkt (rs->buf);
4720 getpkt (&rs->buf, &rs->buf_size, 0);
4721 if (strcmp (rs->buf, "OK") != 0)
4722 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4723}
4724
4725/* All-stop version of target_stop. Sends a break or a ^C to stop the
4726 remote target. It is undefined which thread of which process
4727 reports the stop. */
4728
4729static void
4730remote_stop_as (ptid_t ptid)
4731{
4732 struct remote_state *rs = get_remote_state ();
4733
4734 rs->ctrlc_pending_p = 1;
4735
4736 /* If the inferior is stopped already, but the core didn't know
4737 about it yet, just ignore the request. The cached wait status
4738 will be collected in remote_wait. */
4739 if (rs->cached_wait_status)
4740 return;
4741
4742 /* Send interrupt_sequence to remote target. */
4743 send_interrupt_sequence ();
4744}
4745
4746/* This is the generic stop called via the target vector. When a target
4747 interrupt is requested, either by the command line or the GUI, we
4748 will eventually end up here. */
4749
4750static void
4751remote_stop (ptid_t ptid)
4752{
4753 if (remote_debug)
4754 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4755
4756 if (non_stop)
4757 remote_stop_ns (ptid);
4758 else
4759 remote_stop_as (ptid);
4760}
4761
4762/* Ask the user what to do when an interrupt is received. */
4763
4764static void
4765interrupt_query (void)
4766{
4767 target_terminal_ours ();
4768
4769 if (target_can_async_p ())
4770 {
4771 signal (SIGINT, handle_sigint);
4772 deprecated_throw_reason (RETURN_QUIT);
4773 }
4774 else
4775 {
4776 if (query (_("Interrupted while waiting for the program.\n\
4777Give up (and stop debugging it)? ")))
4778 {
4779 pop_target ();
4780 deprecated_throw_reason (RETURN_QUIT);
4781 }
4782 }
4783
4784 target_terminal_inferior ();
4785}
4786
4787/* Enable/disable target terminal ownership. Most targets can use
4788 terminal groups to control terminal ownership. Remote targets are
4789 different in that explicit transfer of ownership to/from GDB/target
4790 is required. */
4791
4792static void
4793remote_terminal_inferior (void)
4794{
4795 if (!target_async_permitted)
4796 /* Nothing to do. */
4797 return;
4798
4799 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4800 idempotent. The event-loop GDB talking to an asynchronous target
4801 with a synchronous command calls this function from both
4802 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4803 transfer the terminal to the target when it shouldn't this guard
4804 can go away. */
4805 if (!remote_async_terminal_ours_p)
4806 return;
4807 delete_file_handler (input_fd);
4808 remote_async_terminal_ours_p = 0;
4809 initialize_sigint_signal_handler ();
4810 /* NOTE: At this point we could also register our selves as the
4811 recipient of all input. Any characters typed could then be
4812 passed on down to the target. */
4813}
4814
4815static void
4816remote_terminal_ours (void)
4817{
4818 if (!target_async_permitted)
4819 /* Nothing to do. */
4820 return;
4821
4822 /* See FIXME in remote_terminal_inferior. */
4823 if (remote_async_terminal_ours_p)
4824 return;
4825 cleanup_sigint_signal_handler (NULL);
4826 add_file_handler (input_fd, stdin_event_handler, 0);
4827 remote_async_terminal_ours_p = 1;
4828}
4829
4830static void
4831remote_console_output (char *msg)
4832{
4833 char *p;
4834
4835 for (p = msg; p[0] && p[1]; p += 2)
4836 {
4837 char tb[2];
4838 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4839
4840 tb[0] = c;
4841 tb[1] = 0;
4842 fputs_unfiltered (tb, gdb_stdtarg);
4843 }
4844 gdb_flush (gdb_stdtarg);
4845 }
4846
4847typedef struct cached_reg
4848{
4849 int num;
4850 gdb_byte data[MAX_REGISTER_SIZE];
4851} cached_reg_t;
4852
4853DEF_VEC_O(cached_reg_t);
4854
4855struct stop_reply
4856{
4857 struct stop_reply *next;
4858
4859 ptid_t ptid;
4860
4861 struct target_waitstatus ws;
4862
4863 VEC(cached_reg_t) *regcache;
4864
4865 int stopped_by_watchpoint_p;
4866 CORE_ADDR watch_data_address;
4867
4868 int solibs_changed;
4869 int replay_event;
4870
4871 int core;
4872};
4873
4874/* The list of already fetched and acknowledged stop events. */
4875static struct stop_reply *stop_reply_queue;
4876
4877static struct stop_reply *
4878stop_reply_xmalloc (void)
4879{
4880 struct stop_reply *r = XMALLOC (struct stop_reply);
4881
4882 r->next = NULL;
4883 return r;
4884}
4885
4886static void
4887stop_reply_xfree (struct stop_reply *r)
4888{
4889 if (r != NULL)
4890 {
4891 VEC_free (cached_reg_t, r->regcache);
4892 xfree (r);
4893 }
4894}
4895
4896/* Discard all pending stop replies of inferior PID. If PID is -1,
4897 discard everything. */
4898
4899static void
4900discard_pending_stop_replies (int pid)
4901{
4902 struct stop_reply *prev = NULL, *reply, *next;
4903
4904 /* Discard the in-flight notification. */
4905 if (pending_stop_reply != NULL
4906 && (pid == -1
4907 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4908 {
4909 stop_reply_xfree (pending_stop_reply);
4910 pending_stop_reply = NULL;
4911 }
4912
4913 /* Discard the stop replies we have already pulled with
4914 vStopped. */
4915 for (reply = stop_reply_queue; reply; reply = next)
4916 {
4917 next = reply->next;
4918 if (pid == -1
4919 || ptid_get_pid (reply->ptid) == pid)
4920 {
4921 if (reply == stop_reply_queue)
4922 stop_reply_queue = reply->next;
4923 else
4924 prev->next = reply->next;
4925
4926 stop_reply_xfree (reply);
4927 }
4928 else
4929 prev = reply;
4930 }
4931}
4932
4933/* Cleanup wrapper. */
4934
4935static void
4936do_stop_reply_xfree (void *arg)
4937{
4938 struct stop_reply *r = arg;
4939
4940 stop_reply_xfree (r);
4941}
4942
4943/* Look for a queued stop reply belonging to PTID. If one is found,
4944 remove it from the queue, and return it. Returns NULL if none is
4945 found. If there are still queued events left to process, tell the
4946 event loop to get back to target_wait soon. */
4947
4948static struct stop_reply *
4949queued_stop_reply (ptid_t ptid)
4950{
4951 struct stop_reply *it;
4952 struct stop_reply **it_link;
4953
4954 it = stop_reply_queue;
4955 it_link = &stop_reply_queue;
4956 while (it)
4957 {
4958 if (ptid_match (it->ptid, ptid))
4959 {
4960 *it_link = it->next;
4961 it->next = NULL;
4962 break;
4963 }
4964
4965 it_link = &it->next;
4966 it = *it_link;
4967 }
4968
4969 if (stop_reply_queue)
4970 /* There's still at least an event left. */
4971 mark_async_event_handler (remote_async_inferior_event_token);
4972
4973 return it;
4974}
4975
4976/* Push a fully parsed stop reply in the stop reply queue. Since we
4977 know that we now have at least one queued event left to pass to the
4978 core side, tell the event loop to get back to target_wait soon. */
4979
4980static void
4981push_stop_reply (struct stop_reply *new_event)
4982{
4983 struct stop_reply *event;
4984
4985 if (stop_reply_queue)
4986 {
4987 for (event = stop_reply_queue;
4988 event && event->next;
4989 event = event->next)
4990 ;
4991
4992 event->next = new_event;
4993 }
4994 else
4995 stop_reply_queue = new_event;
4996
4997 mark_async_event_handler (remote_async_inferior_event_token);
4998}
4999
5000/* Returns true if we have a stop reply for PTID. */
5001
5002static int
5003peek_stop_reply (ptid_t ptid)
5004{
5005 struct stop_reply *it;
5006
5007 for (it = stop_reply_queue; it; it = it->next)
5008 if (ptid_equal (ptid, it->ptid))
5009 {
5010 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5011 return 1;
5012 }
5013
5014 return 0;
5015}
5016
5017/* Parse the stop reply in BUF. Either the function succeeds, and the
5018 result is stored in EVENT, or throws an error. */
5019
5020static void
5021remote_parse_stop_reply (char *buf, struct stop_reply *event)
5022{
5023 struct remote_arch_state *rsa = get_remote_arch_state ();
5024 ULONGEST addr;
5025 char *p;
5026
5027 event->ptid = null_ptid;
5028 event->ws.kind = TARGET_WAITKIND_IGNORE;
5029 event->ws.value.integer = 0;
5030 event->solibs_changed = 0;
5031 event->replay_event = 0;
5032 event->stopped_by_watchpoint_p = 0;
5033 event->regcache = NULL;
5034 event->core = -1;
5035
5036 switch (buf[0])
5037 {
5038 case 'T': /* Status with PC, SP, FP, ... */
5039 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5040 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5041 ss = signal number
5042 n... = register number
5043 r... = register contents
5044 */
5045
5046 p = &buf[3]; /* after Txx */
5047 while (*p)
5048 {
5049 char *p1;
5050 char *p_temp;
5051 int fieldsize;
5052 LONGEST pnum = 0;
5053
5054 /* If the packet contains a register number, save it in
5055 pnum and set p1 to point to the character following it.
5056 Otherwise p1 points to p. */
5057
5058 /* If this packet is an awatch packet, don't parse the 'a'
5059 as a register number. */
5060
5061 if (strncmp (p, "awatch", strlen("awatch")) != 0
5062 && strncmp (p, "core", strlen ("core") != 0))
5063 {
5064 /* Read the ``P'' register number. */
5065 pnum = strtol (p, &p_temp, 16);
5066 p1 = p_temp;
5067 }
5068 else
5069 p1 = p;
5070
5071 if (p1 == p) /* No register number present here. */
5072 {
5073 p1 = strchr (p, ':');
5074 if (p1 == NULL)
5075 error (_("Malformed packet(a) (missing colon): %s\n\
5076Packet: '%s'\n"),
5077 p, buf);
5078 if (strncmp (p, "thread", p1 - p) == 0)
5079 event->ptid = read_ptid (++p1, &p);
5080 else if ((strncmp (p, "watch", p1 - p) == 0)
5081 || (strncmp (p, "rwatch", p1 - p) == 0)
5082 || (strncmp (p, "awatch", p1 - p) == 0))
5083 {
5084 event->stopped_by_watchpoint_p = 1;
5085 p = unpack_varlen_hex (++p1, &addr);
5086 event->watch_data_address = (CORE_ADDR) addr;
5087 }
5088 else if (strncmp (p, "library", p1 - p) == 0)
5089 {
5090 p1++;
5091 p_temp = p1;
5092 while (*p_temp && *p_temp != ';')
5093 p_temp++;
5094
5095 event->solibs_changed = 1;
5096 p = p_temp;
5097 }
5098 else if (strncmp (p, "replaylog", p1 - p) == 0)
5099 {
5100 /* NO_HISTORY event.
5101 p1 will indicate "begin" or "end", but
5102 it makes no difference for now, so ignore it. */
5103 event->replay_event = 1;
5104 p_temp = strchr (p1 + 1, ';');
5105 if (p_temp)
5106 p = p_temp;
5107 }
5108 else if (strncmp (p, "core", p1 - p) == 0)
5109 {
5110 ULONGEST c;
5111
5112 p = unpack_varlen_hex (++p1, &c);
5113 event->core = c;
5114 }
5115 else
5116 {
5117 /* Silently skip unknown optional info. */
5118 p_temp = strchr (p1 + 1, ';');
5119 if (p_temp)
5120 p = p_temp;
5121 }
5122 }
5123 else
5124 {
5125 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5126 cached_reg_t cached_reg;
5127
5128 p = p1;
5129
5130 if (*p != ':')
5131 error (_("Malformed packet(b) (missing colon): %s\n\
5132Packet: '%s'\n"),
5133 p, buf);
5134 ++p;
5135
5136 if (reg == NULL)
5137 error (_("Remote sent bad register number %s: %s\n\
5138Packet: '%s'\n"),
5139 hex_string (pnum), p, buf);
5140
5141 cached_reg.num = reg->regnum;
5142
5143 fieldsize = hex2bin (p, cached_reg.data,
5144 register_size (target_gdbarch,
5145 reg->regnum));
5146 p += 2 * fieldsize;
5147 if (fieldsize < register_size (target_gdbarch,
5148 reg->regnum))
5149 warning (_("Remote reply is too short: %s"), buf);
5150
5151 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5152 }
5153
5154 if (*p != ';')
5155 error (_("Remote register badly formatted: %s\nhere: %s"),
5156 buf, p);
5157 ++p;
5158 }
5159 /* fall through */
5160 case 'S': /* Old style status, just signal only. */
5161 if (event->solibs_changed)
5162 event->ws.kind = TARGET_WAITKIND_LOADED;
5163 else if (event->replay_event)
5164 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5165 else
5166 {
5167 event->ws.kind = TARGET_WAITKIND_STOPPED;
5168 event->ws.value.sig = (enum target_signal)
5169 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5170 }
5171 break;
5172 case 'W': /* Target exited. */
5173 case 'X':
5174 {
5175 char *p;
5176 int pid;
5177 ULONGEST value;
5178
5179 /* GDB used to accept only 2 hex chars here. Stubs should
5180 only send more if they detect GDB supports multi-process
5181 support. */
5182 p = unpack_varlen_hex (&buf[1], &value);
5183
5184 if (buf[0] == 'W')
5185 {
5186 /* The remote process exited. */
5187 event->ws.kind = TARGET_WAITKIND_EXITED;
5188 event->ws.value.integer = value;
5189 }
5190 else
5191 {
5192 /* The remote process exited with a signal. */
5193 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5194 event->ws.value.sig = (enum target_signal) value;
5195 }
5196
5197 /* If no process is specified, assume inferior_ptid. */
5198 pid = ptid_get_pid (inferior_ptid);
5199 if (*p == '\0')
5200 ;
5201 else if (*p == ';')
5202 {
5203 p++;
5204
5205 if (p == '\0')
5206 ;
5207 else if (strncmp (p,
5208 "process:", sizeof ("process:") - 1) == 0)
5209 {
5210 ULONGEST upid;
5211
5212 p += sizeof ("process:") - 1;
5213 unpack_varlen_hex (p, &upid);
5214 pid = upid;
5215 }
5216 else
5217 error (_("unknown stop reply packet: %s"), buf);
5218 }
5219 else
5220 error (_("unknown stop reply packet: %s"), buf);
5221 event->ptid = pid_to_ptid (pid);
5222 }
5223 break;
5224 }
5225
5226 if (non_stop && ptid_equal (event->ptid, null_ptid))
5227 error (_("No process or thread specified in stop reply: %s"), buf);
5228}
5229
5230/* When the stub wants to tell GDB about a new stop reply, it sends a
5231 stop notification (%Stop). Those can come it at any time, hence,
5232 we have to make sure that any pending putpkt/getpkt sequence we're
5233 making is finished, before querying the stub for more events with
5234 vStopped. E.g., if we started a vStopped sequence immediatelly
5235 upon receiving the %Stop notification, something like this could
5236 happen:
5237
5238 1.1) --> Hg 1
5239 1.2) <-- OK
5240 1.3) --> g
5241 1.4) <-- %Stop
5242 1.5) --> vStopped
5243 1.6) <-- (registers reply to step #1.3)
5244
5245 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5246 query.
5247
5248 To solve this, whenever we parse a %Stop notification sucessfully,
5249 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5250 doing whatever we were doing:
5251
5252 2.1) --> Hg 1
5253 2.2) <-- OK
5254 2.3) --> g
5255 2.4) <-- %Stop
5256 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5257 2.5) <-- (registers reply to step #2.3)
5258
5259 Eventualy after step #2.5, we return to the event loop, which
5260 notices there's an event on the
5261 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5262 associated callback --- the function below. At this point, we're
5263 always safe to start a vStopped sequence. :
5264
5265 2.6) --> vStopped
5266 2.7) <-- T05 thread:2
5267 2.8) --> vStopped
5268 2.9) --> OK
5269*/
5270
5271static void
5272remote_get_pending_stop_replies (void)
5273{
5274 struct remote_state *rs = get_remote_state ();
5275
5276 if (pending_stop_reply)
5277 {
5278 /* acknowledge */
5279 putpkt ("vStopped");
5280
5281 /* Now we can rely on it. */
5282 push_stop_reply (pending_stop_reply);
5283 pending_stop_reply = NULL;
5284
5285 while (1)
5286 {
5287 getpkt (&rs->buf, &rs->buf_size, 0);
5288 if (strcmp (rs->buf, "OK") == 0)
5289 break;
5290 else
5291 {
5292 struct cleanup *old_chain;
5293 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5294
5295 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5296 remote_parse_stop_reply (rs->buf, stop_reply);
5297
5298 /* acknowledge */
5299 putpkt ("vStopped");
5300
5301 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5302 {
5303 /* Now we can rely on it. */
5304 discard_cleanups (old_chain);
5305 push_stop_reply (stop_reply);
5306 }
5307 else
5308 /* We got an unknown stop reply. */
5309 do_cleanups (old_chain);
5310 }
5311 }
5312 }
5313}
5314
5315
5316/* Called when it is decided that STOP_REPLY holds the info of the
5317 event that is to be returned to the core. This function always
5318 destroys STOP_REPLY. */
5319
5320static ptid_t
5321process_stop_reply (struct stop_reply *stop_reply,
5322 struct target_waitstatus *status)
5323{
5324 ptid_t ptid;
5325
5326 *status = stop_reply->ws;
5327 ptid = stop_reply->ptid;
5328
5329 /* If no thread/process was reported by the stub, assume the current
5330 inferior. */
5331 if (ptid_equal (ptid, null_ptid))
5332 ptid = inferior_ptid;
5333
5334 if (status->kind != TARGET_WAITKIND_EXITED
5335 && status->kind != TARGET_WAITKIND_SIGNALLED)
5336 {
5337 /* Expedited registers. */
5338 if (stop_reply->regcache)
5339 {
5340 struct regcache *regcache
5341 = get_thread_arch_regcache (ptid, target_gdbarch);
5342 cached_reg_t *reg;
5343 int ix;
5344
5345 for (ix = 0;
5346 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5347 ix++)
5348 regcache_raw_supply (regcache, reg->num, reg->data);
5349 VEC_free (cached_reg_t, stop_reply->regcache);
5350 }
5351
5352 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5353 remote_watch_data_address = stop_reply->watch_data_address;
5354
5355 remote_notice_new_inferior (ptid, 0);
5356 demand_private_info (ptid)->core = stop_reply->core;
5357 }
5358
5359 stop_reply_xfree (stop_reply);
5360 return ptid;
5361}
5362
5363/* The non-stop mode version of target_wait. */
5364
5365static ptid_t
5366remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5367{
5368 struct remote_state *rs = get_remote_state ();
5369 struct stop_reply *stop_reply;
5370 int ret;
5371
5372 /* If in non-stop mode, get out of getpkt even if a
5373 notification is received. */
5374
5375 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5376 0 /* forever */);
5377 while (1)
5378 {
5379 if (ret != -1)
5380 switch (rs->buf[0])
5381 {
5382 case 'E': /* Error of some sort. */
5383 /* We're out of sync with the target now. Did it continue
5384 or not? We can't tell which thread it was in non-stop,
5385 so just ignore this. */
5386 warning (_("Remote failure reply: %s"), rs->buf);
5387 break;
5388 case 'O': /* Console output. */
5389 remote_console_output (rs->buf + 1);
5390 break;
5391 default:
5392 warning (_("Invalid remote reply: %s"), rs->buf);
5393 break;
5394 }
5395
5396 /* Acknowledge a pending stop reply that may have arrived in the
5397 mean time. */
5398 if (pending_stop_reply != NULL)
5399 remote_get_pending_stop_replies ();
5400
5401 /* If indeed we noticed a stop reply, we're done. */
5402 stop_reply = queued_stop_reply (ptid);
5403 if (stop_reply != NULL)
5404 return process_stop_reply (stop_reply, status);
5405
5406 /* Still no event. If we're just polling for an event, then
5407 return to the event loop. */
5408 if (options & TARGET_WNOHANG)
5409 {
5410 status->kind = TARGET_WAITKIND_IGNORE;
5411 return minus_one_ptid;
5412 }
5413
5414 /* Otherwise do a blocking wait. */
5415 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5416 1 /* forever */);
5417 }
5418}
5419
5420/* Wait until the remote machine stops, then return, storing status in
5421 STATUS just as `wait' would. */
5422
5423static ptid_t
5424remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5425{
5426 struct remote_state *rs = get_remote_state ();
5427 ptid_t event_ptid = null_ptid;
5428 char *buf;
5429 struct stop_reply *stop_reply;
5430
5431 again:
5432
5433 status->kind = TARGET_WAITKIND_IGNORE;
5434 status->value.integer = 0;
5435
5436 stop_reply = queued_stop_reply (ptid);
5437 if (stop_reply != NULL)
5438 return process_stop_reply (stop_reply, status);
5439
5440 if (rs->cached_wait_status)
5441 /* Use the cached wait status, but only once. */
5442 rs->cached_wait_status = 0;
5443 else
5444 {
5445 int ret;
5446
5447 if (!target_is_async_p ())
5448 {
5449 ofunc = signal (SIGINT, remote_interrupt);
5450 /* If the user hit C-c before this packet, or between packets,
5451 pretend that it was hit right here. */
5452 if (quit_flag)
5453 {
5454 quit_flag = 0;
5455 remote_interrupt (SIGINT);
5456 }
5457 }
5458
5459 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5460 _never_ wait for ever -> test on target_is_async_p().
5461 However, before we do that we need to ensure that the caller
5462 knows how to take the target into/out of async mode. */
5463 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5464 if (!target_is_async_p ())
5465 signal (SIGINT, ofunc);
5466 }
5467
5468 buf = rs->buf;
5469
5470 remote_stopped_by_watchpoint_p = 0;
5471
5472 /* We got something. */
5473 rs->waiting_for_stop_reply = 0;
5474
5475 /* Assume that the target has acknowledged Ctrl-C unless we receive
5476 an 'F' or 'O' packet. */
5477 if (buf[0] != 'F' && buf[0] != 'O')
5478 rs->ctrlc_pending_p = 0;
5479
5480 switch (buf[0])
5481 {
5482 case 'E': /* Error of some sort. */
5483 /* We're out of sync with the target now. Did it continue or
5484 not? Not is more likely, so report a stop. */
5485 warning (_("Remote failure reply: %s"), buf);
5486 status->kind = TARGET_WAITKIND_STOPPED;
5487 status->value.sig = TARGET_SIGNAL_0;
5488 break;
5489 case 'F': /* File-I/O request. */
5490 remote_fileio_request (buf, rs->ctrlc_pending_p);
5491 rs->ctrlc_pending_p = 0;
5492 break;
5493 case 'T': case 'S': case 'X': case 'W':
5494 {
5495 struct stop_reply *stop_reply;
5496 struct cleanup *old_chain;
5497
5498 stop_reply = stop_reply_xmalloc ();
5499 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5500 remote_parse_stop_reply (buf, stop_reply);
5501 discard_cleanups (old_chain);
5502 event_ptid = process_stop_reply (stop_reply, status);
5503 break;
5504 }
5505 case 'O': /* Console output. */
5506 remote_console_output (buf + 1);
5507
5508 /* The target didn't really stop; keep waiting. */
5509 rs->waiting_for_stop_reply = 1;
5510
5511 break;
5512 case '\0':
5513 if (last_sent_signal != TARGET_SIGNAL_0)
5514 {
5515 /* Zero length reply means that we tried 'S' or 'C' and the
5516 remote system doesn't support it. */
5517 target_terminal_ours_for_output ();
5518 printf_filtered
5519 ("Can't send signals to this remote system. %s not sent.\n",
5520 target_signal_to_name (last_sent_signal));
5521 last_sent_signal = TARGET_SIGNAL_0;
5522 target_terminal_inferior ();
5523
5524 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5525 putpkt ((char *) buf);
5526
5527 /* We just told the target to resume, so a stop reply is in
5528 order. */
5529 rs->waiting_for_stop_reply = 1;
5530 break;
5531 }
5532 /* else fallthrough */
5533 default:
5534 warning (_("Invalid remote reply: %s"), buf);
5535 /* Keep waiting. */
5536 rs->waiting_for_stop_reply = 1;
5537 break;
5538 }
5539
5540 if (status->kind == TARGET_WAITKIND_IGNORE)
5541 {
5542 /* Nothing interesting happened. If we're doing a non-blocking
5543 poll, we're done. Otherwise, go back to waiting. */
5544 if (options & TARGET_WNOHANG)
5545 return minus_one_ptid;
5546 else
5547 goto again;
5548 }
5549 else if (status->kind != TARGET_WAITKIND_EXITED
5550 && status->kind != TARGET_WAITKIND_SIGNALLED)
5551 {
5552 if (!ptid_equal (event_ptid, null_ptid))
5553 record_currthread (event_ptid);
5554 else
5555 event_ptid = inferior_ptid;
5556 }
5557 else
5558 /* A process exit. Invalidate our notion of current thread. */
5559 record_currthread (minus_one_ptid);
5560
5561 return event_ptid;
5562}
5563
5564/* Wait until the remote machine stops, then return, storing status in
5565 STATUS just as `wait' would. */
5566
5567static ptid_t
5568remote_wait (struct target_ops *ops,
5569 ptid_t ptid, struct target_waitstatus *status, int options)
5570{
5571 ptid_t event_ptid;
5572
5573 if (non_stop)
5574 event_ptid = remote_wait_ns (ptid, status, options);
5575 else
5576 event_ptid = remote_wait_as (ptid, status, options);
5577
5578 if (target_can_async_p ())
5579 {
5580 /* If there are are events left in the queue tell the event loop
5581 to return here. */
5582 if (stop_reply_queue)
5583 mark_async_event_handler (remote_async_inferior_event_token);
5584 }
5585
5586 return event_ptid;
5587}
5588
5589/* Fetch a single register using a 'p' packet. */
5590
5591static int
5592fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5593{
5594 struct remote_state *rs = get_remote_state ();
5595 char *buf, *p;
5596 char regp[MAX_REGISTER_SIZE];
5597 int i;
5598
5599 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5600 return 0;
5601
5602 if (reg->pnum == -1)
5603 return 0;
5604
5605 p = rs->buf;
5606 *p++ = 'p';
5607 p += hexnumstr (p, reg->pnum);
5608 *p++ = '\0';
5609 putpkt (rs->buf);
5610 getpkt (&rs->buf, &rs->buf_size, 0);
5611
5612 buf = rs->buf;
5613
5614 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5615 {
5616 case PACKET_OK:
5617 break;
5618 case PACKET_UNKNOWN:
5619 return 0;
5620 case PACKET_ERROR:
5621 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5622 gdbarch_register_name (get_regcache_arch (regcache),
5623 reg->regnum),
5624 buf);
5625 }
5626
5627 /* If this register is unfetchable, tell the regcache. */
5628 if (buf[0] == 'x')
5629 {
5630 regcache_raw_supply (regcache, reg->regnum, NULL);
5631 return 1;
5632 }
5633
5634 /* Otherwise, parse and supply the value. */
5635 p = buf;
5636 i = 0;
5637 while (p[0] != 0)
5638 {
5639 if (p[1] == 0)
5640 error (_("fetch_register_using_p: early buf termination"));
5641
5642 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5643 p += 2;
5644 }
5645 regcache_raw_supply (regcache, reg->regnum, regp);
5646 return 1;
5647}
5648
5649/* Fetch the registers included in the target's 'g' packet. */
5650
5651static int
5652send_g_packet (void)
5653{
5654 struct remote_state *rs = get_remote_state ();
5655 int buf_len;
5656
5657 sprintf (rs->buf, "g");
5658 remote_send (&rs->buf, &rs->buf_size);
5659
5660 /* We can get out of synch in various cases. If the first character
5661 in the buffer is not a hex character, assume that has happened
5662 and try to fetch another packet to read. */
5663 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5664 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5665 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5666 && rs->buf[0] != 'x') /* New: unavailable register value. */
5667 {
5668 if (remote_debug)
5669 fprintf_unfiltered (gdb_stdlog,
5670 "Bad register packet; fetching a new packet\n");
5671 getpkt (&rs->buf, &rs->buf_size, 0);
5672 }
5673
5674 buf_len = strlen (rs->buf);
5675
5676 /* Sanity check the received packet. */
5677 if (buf_len % 2 != 0)
5678 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5679
5680 return buf_len / 2;
5681}
5682
5683static void
5684process_g_packet (struct regcache *regcache)
5685{
5686 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5687 struct remote_state *rs = get_remote_state ();
5688 struct remote_arch_state *rsa = get_remote_arch_state ();
5689 int i, buf_len;
5690 char *p;
5691 char *regs;
5692
5693 buf_len = strlen (rs->buf);
5694
5695 /* Further sanity checks, with knowledge of the architecture. */
5696 if (buf_len > 2 * rsa->sizeof_g_packet)
5697 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5698
5699 /* Save the size of the packet sent to us by the target. It is used
5700 as a heuristic when determining the max size of packets that the
5701 target can safely receive. */
5702 if (rsa->actual_register_packet_size == 0)
5703 rsa->actual_register_packet_size = buf_len;
5704
5705 /* If this is smaller than we guessed the 'g' packet would be,
5706 update our records. A 'g' reply that doesn't include a register's
5707 value implies either that the register is not available, or that
5708 the 'p' packet must be used. */
5709 if (buf_len < 2 * rsa->sizeof_g_packet)
5710 {
5711 rsa->sizeof_g_packet = buf_len / 2;
5712
5713 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5714 {
5715 if (rsa->regs[i].pnum == -1)
5716 continue;
5717
5718 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5719 rsa->regs[i].in_g_packet = 0;
5720 else
5721 rsa->regs[i].in_g_packet = 1;
5722 }
5723 }
5724
5725 regs = alloca (rsa->sizeof_g_packet);
5726
5727 /* Unimplemented registers read as all bits zero. */
5728 memset (regs, 0, rsa->sizeof_g_packet);
5729
5730 /* Reply describes registers byte by byte, each byte encoded as two
5731 hex characters. Suck them all up, then supply them to the
5732 register cacheing/storage mechanism. */
5733
5734 p = rs->buf;
5735 for (i = 0; i < rsa->sizeof_g_packet; i++)
5736 {
5737 if (p[0] == 0 || p[1] == 0)
5738 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5739 internal_error (__FILE__, __LINE__,
5740 _("unexpected end of 'g' packet reply"));
5741
5742 if (p[0] == 'x' && p[1] == 'x')
5743 regs[i] = 0; /* 'x' */
5744 else
5745 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5746 p += 2;
5747 }
5748
5749 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5750 {
5751 struct packet_reg *r = &rsa->regs[i];
5752
5753 if (r->in_g_packet)
5754 {
5755 if (r->offset * 2 >= strlen (rs->buf))
5756 /* This shouldn't happen - we adjusted in_g_packet above. */
5757 internal_error (__FILE__, __LINE__,
5758 _("unexpected end of 'g' packet reply"));
5759 else if (rs->buf[r->offset * 2] == 'x')
5760 {
5761 gdb_assert (r->offset * 2 < strlen (rs->buf));
5762 /* The register isn't available, mark it as such (at
5763 the same time setting the value to zero). */
5764 regcache_raw_supply (regcache, r->regnum, NULL);
5765 }
5766 else
5767 regcache_raw_supply (regcache, r->regnum,
5768 regs + r->offset);
5769 }
5770 }
5771}
5772
5773static void
5774fetch_registers_using_g (struct regcache *regcache)
5775{
5776 send_g_packet ();
5777 process_g_packet (regcache);
5778}
5779
5780/* Make the remote selected traceframe match GDB's selected
5781 traceframe. */
5782
5783static void
5784set_remote_traceframe (void)
5785{
5786 int newnum;
5787
5788 if (remote_traceframe_number == get_traceframe_number ())
5789 return;
5790
5791 /* Avoid recursion, remote_trace_find calls us again. */
5792 remote_traceframe_number = get_traceframe_number ();
5793
5794 newnum = target_trace_find (tfind_number,
5795 get_traceframe_number (), 0, 0, NULL);
5796
5797 /* Should not happen. If it does, all bets are off. */
5798 if (newnum != get_traceframe_number ())
5799 warning (_("could not set remote traceframe"));
5800}
5801
5802static void
5803remote_fetch_registers (struct target_ops *ops,
5804 struct regcache *regcache, int regnum)
5805{
5806 struct remote_arch_state *rsa = get_remote_arch_state ();
5807 int i;
5808
5809 set_remote_traceframe ();
5810 set_general_thread (inferior_ptid);
5811
5812 if (regnum >= 0)
5813 {
5814 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5815
5816 gdb_assert (reg != NULL);
5817
5818 /* If this register might be in the 'g' packet, try that first -
5819 we are likely to read more than one register. If this is the
5820 first 'g' packet, we might be overly optimistic about its
5821 contents, so fall back to 'p'. */
5822 if (reg->in_g_packet)
5823 {
5824 fetch_registers_using_g (regcache);
5825 if (reg->in_g_packet)
5826 return;
5827 }
5828
5829 if (fetch_register_using_p (regcache, reg))
5830 return;
5831
5832 /* This register is not available. */
5833 regcache_raw_supply (regcache, reg->regnum, NULL);
5834
5835 return;
5836 }
5837
5838 fetch_registers_using_g (regcache);
5839
5840 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5841 if (!rsa->regs[i].in_g_packet)
5842 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5843 {
5844 /* This register is not available. */
5845 regcache_raw_supply (regcache, i, NULL);
5846 }
5847}
5848
5849/* Prepare to store registers. Since we may send them all (using a
5850 'G' request), we have to read out the ones we don't want to change
5851 first. */
5852
5853static void
5854remote_prepare_to_store (struct regcache *regcache)
5855{
5856 struct remote_arch_state *rsa = get_remote_arch_state ();
5857 int i;
5858 gdb_byte buf[MAX_REGISTER_SIZE];
5859
5860 /* Make sure the entire registers array is valid. */
5861 switch (remote_protocol_packets[PACKET_P].support)
5862 {
5863 case PACKET_DISABLE:
5864 case PACKET_SUPPORT_UNKNOWN:
5865 /* Make sure all the necessary registers are cached. */
5866 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5867 if (rsa->regs[i].in_g_packet)
5868 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5869 break;
5870 case PACKET_ENABLE:
5871 break;
5872 }
5873}
5874
5875/* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5876 packet was not recognized. */
5877
5878static int
5879store_register_using_P (const struct regcache *regcache,
5880 struct packet_reg *reg)
5881{
5882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5883 struct remote_state *rs = get_remote_state ();
5884 /* Try storing a single register. */
5885 char *buf = rs->buf;
5886 gdb_byte regp[MAX_REGISTER_SIZE];
5887 char *p;
5888
5889 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5890 return 0;
5891
5892 if (reg->pnum == -1)
5893 return 0;
5894
5895 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5896 p = buf + strlen (buf);
5897 regcache_raw_collect (regcache, reg->regnum, regp);
5898 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5899 putpkt (rs->buf);
5900 getpkt (&rs->buf, &rs->buf_size, 0);
5901
5902 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5903 {
5904 case PACKET_OK:
5905 return 1;
5906 case PACKET_ERROR:
5907 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5908 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5909 case PACKET_UNKNOWN:
5910 return 0;
5911 default:
5912 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5913 }
5914}
5915
5916/* Store register REGNUM, or all registers if REGNUM == -1, from the
5917 contents of the register cache buffer. FIXME: ignores errors. */
5918
5919static void
5920store_registers_using_G (const struct regcache *regcache)
5921{
5922 struct remote_state *rs = get_remote_state ();
5923 struct remote_arch_state *rsa = get_remote_arch_state ();
5924 gdb_byte *regs;
5925 char *p;
5926
5927 /* Extract all the registers in the regcache copying them into a
5928 local buffer. */
5929 {
5930 int i;
5931
5932 regs = alloca (rsa->sizeof_g_packet);
5933 memset (regs, 0, rsa->sizeof_g_packet);
5934 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5935 {
5936 struct packet_reg *r = &rsa->regs[i];
5937
5938 if (r->in_g_packet)
5939 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5940 }
5941 }
5942
5943 /* Command describes registers byte by byte,
5944 each byte encoded as two hex characters. */
5945 p = rs->buf;
5946 *p++ = 'G';
5947 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5948 updated. */
5949 bin2hex (regs, p, rsa->sizeof_g_packet);
5950 putpkt (rs->buf);
5951 getpkt (&rs->buf, &rs->buf_size, 0);
5952 if (packet_check_result (rs->buf) == PACKET_ERROR)
5953 error (_("Could not write registers; remote failure reply '%s'"),
5954 rs->buf);
5955}
5956
5957/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5958 of the register cache buffer. FIXME: ignores errors. */
5959
5960static void
5961remote_store_registers (struct target_ops *ops,
5962 struct regcache *regcache, int regnum)
5963{
5964 struct remote_arch_state *rsa = get_remote_arch_state ();
5965 int i;
5966
5967 set_remote_traceframe ();
5968 set_general_thread (inferior_ptid);
5969
5970 if (regnum >= 0)
5971 {
5972 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5973
5974 gdb_assert (reg != NULL);
5975
5976 /* Always prefer to store registers using the 'P' packet if
5977 possible; we often change only a small number of registers.
5978 Sometimes we change a larger number; we'd need help from a
5979 higher layer to know to use 'G'. */
5980 if (store_register_using_P (regcache, reg))
5981 return;
5982
5983 /* For now, don't complain if we have no way to write the
5984 register. GDB loses track of unavailable registers too
5985 easily. Some day, this may be an error. We don't have
5986 any way to read the register, either... */
5987 if (!reg->in_g_packet)
5988 return;
5989
5990 store_registers_using_G (regcache);
5991 return;
5992 }
5993
5994 store_registers_using_G (regcache);
5995
5996 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5997 if (!rsa->regs[i].in_g_packet)
5998 if (!store_register_using_P (regcache, &rsa->regs[i]))
5999 /* See above for why we do not issue an error here. */
6000 continue;
6001}
6002\f
6003
6004/* Return the number of hex digits in num. */
6005
6006static int
6007hexnumlen (ULONGEST num)
6008{
6009 int i;
6010
6011 for (i = 0; num != 0; i++)
6012 num >>= 4;
6013
6014 return max (i, 1);
6015}
6016
6017/* Set BUF to the minimum number of hex digits representing NUM. */
6018
6019static int
6020hexnumstr (char *buf, ULONGEST num)
6021{
6022 int len = hexnumlen (num);
6023
6024 return hexnumnstr (buf, num, len);
6025}
6026
6027
6028/* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6029
6030static int
6031hexnumnstr (char *buf, ULONGEST num, int width)
6032{
6033 int i;
6034
6035 buf[width] = '\0';
6036
6037 for (i = width - 1; i >= 0; i--)
6038 {
6039 buf[i] = "0123456789abcdef"[(num & 0xf)];
6040 num >>= 4;
6041 }
6042
6043 return width;
6044}
6045
6046/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6047
6048static CORE_ADDR
6049remote_address_masked (CORE_ADDR addr)
6050{
6051 int address_size = remote_address_size;
6052
6053 /* If "remoteaddresssize" was not set, default to target address size. */
6054 if (!address_size)
6055 address_size = gdbarch_addr_bit (target_gdbarch);
6056
6057 if (address_size > 0
6058 && address_size < (sizeof (ULONGEST) * 8))
6059 {
6060 /* Only create a mask when that mask can safely be constructed
6061 in a ULONGEST variable. */
6062 ULONGEST mask = 1;
6063
6064 mask = (mask << address_size) - 1;
6065 addr &= mask;
6066 }
6067 return addr;
6068}
6069
6070/* Convert BUFFER, binary data at least LEN bytes long, into escaped
6071 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6072 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6073 (which may be more than *OUT_LEN due to escape characters). The
6074 total number of bytes in the output buffer will be at most
6075 OUT_MAXLEN. */
6076
6077static int
6078remote_escape_output (const gdb_byte *buffer, int len,
6079 gdb_byte *out_buf, int *out_len,
6080 int out_maxlen)
6081{
6082 int input_index, output_index;
6083
6084 output_index = 0;
6085 for (input_index = 0; input_index < len; input_index++)
6086 {
6087 gdb_byte b = buffer[input_index];
6088
6089 if (b == '$' || b == '#' || b == '}')
6090 {
6091 /* These must be escaped. */
6092 if (output_index + 2 > out_maxlen)
6093 break;
6094 out_buf[output_index++] = '}';
6095 out_buf[output_index++] = b ^ 0x20;
6096 }
6097 else
6098 {
6099 if (output_index + 1 > out_maxlen)
6100 break;
6101 out_buf[output_index++] = b;
6102 }
6103 }
6104
6105 *out_len = input_index;
6106 return output_index;
6107}
6108
6109/* Convert BUFFER, escaped data LEN bytes long, into binary data
6110 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6111 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6112
6113 This function reverses remote_escape_output. It allows more
6114 escaped characters than that function does, in particular because
6115 '*' must be escaped to avoid the run-length encoding processing
6116 in reading packets. */
6117
6118static int
6119remote_unescape_input (const gdb_byte *buffer, int len,
6120 gdb_byte *out_buf, int out_maxlen)
6121{
6122 int input_index, output_index;
6123 int escaped;
6124
6125 output_index = 0;
6126 escaped = 0;
6127 for (input_index = 0; input_index < len; input_index++)
6128 {
6129 gdb_byte b = buffer[input_index];
6130
6131 if (output_index + 1 > out_maxlen)
6132 {
6133 warning (_("Received too much data from remote target;"
6134 " ignoring overflow."));
6135 return output_index;
6136 }
6137
6138 if (escaped)
6139 {
6140 out_buf[output_index++] = b ^ 0x20;
6141 escaped = 0;
6142 }
6143 else if (b == '}')
6144 escaped = 1;
6145 else
6146 out_buf[output_index++] = b;
6147 }
6148
6149 if (escaped)
6150 error (_("Unmatched escape character in target response."));
6151
6152 return output_index;
6153}
6154
6155/* Determine whether the remote target supports binary downloading.
6156 This is accomplished by sending a no-op memory write of zero length
6157 to the target at the specified address. It does not suffice to send
6158 the whole packet, since many stubs strip the eighth bit and
6159 subsequently compute a wrong checksum, which causes real havoc with
6160 remote_write_bytes.
6161
6162 NOTE: This can still lose if the serial line is not eight-bit
6163 clean. In cases like this, the user should clear "remote
6164 X-packet". */
6165
6166static void
6167check_binary_download (CORE_ADDR addr)
6168{
6169 struct remote_state *rs = get_remote_state ();
6170
6171 switch (remote_protocol_packets[PACKET_X].support)
6172 {
6173 case PACKET_DISABLE:
6174 break;
6175 case PACKET_ENABLE:
6176 break;
6177 case PACKET_SUPPORT_UNKNOWN:
6178 {
6179 char *p;
6180
6181 p = rs->buf;
6182 *p++ = 'X';
6183 p += hexnumstr (p, (ULONGEST) addr);
6184 *p++ = ',';
6185 p += hexnumstr (p, (ULONGEST) 0);
6186 *p++ = ':';
6187 *p = '\0';
6188
6189 putpkt_binary (rs->buf, (int) (p - rs->buf));
6190 getpkt (&rs->buf, &rs->buf_size, 0);
6191
6192 if (rs->buf[0] == '\0')
6193 {
6194 if (remote_debug)
6195 fprintf_unfiltered (gdb_stdlog,
6196 "binary downloading NOT "
6197 "supported by target\n");
6198 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6199 }
6200 else
6201 {
6202 if (remote_debug)
6203 fprintf_unfiltered (gdb_stdlog,
6204 "binary downloading suppported by target\n");
6205 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6206 }
6207 break;
6208 }
6209 }
6210}
6211
6212/* Write memory data directly to the remote machine.
6213 This does not inform the data cache; the data cache uses this.
6214 HEADER is the starting part of the packet.
6215 MEMADDR is the address in the remote memory space.
6216 MYADDR is the address of the buffer in our space.
6217 LEN is the number of bytes.
6218 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6219 should send data as binary ('X'), or hex-encoded ('M').
6220
6221 The function creates packet of the form
6222 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6223
6224 where encoding of <DATA> is termined by PACKET_FORMAT.
6225
6226 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6227 are omitted.
6228
6229 Returns the number of bytes transferred, or 0 (setting errno) for
6230 error. Only transfer a single packet. */
6231
6232static int
6233remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6234 const gdb_byte *myaddr, int len,
6235 char packet_format, int use_length)
6236{
6237 struct remote_state *rs = get_remote_state ();
6238 char *p;
6239 char *plen = NULL;
6240 int plenlen = 0;
6241 int todo;
6242 int nr_bytes;
6243 int payload_size;
6244 int payload_length;
6245 int header_length;
6246
6247 if (packet_format != 'X' && packet_format != 'M')
6248 internal_error (__FILE__, __LINE__,
6249 _("remote_write_bytes_aux: bad packet format"));
6250
6251 if (len <= 0)
6252 return 0;
6253
6254 payload_size = get_memory_write_packet_size ();
6255
6256 /* The packet buffer will be large enough for the payload;
6257 get_memory_packet_size ensures this. */
6258 rs->buf[0] = '\0';
6259
6260 /* Compute the size of the actual payload by subtracting out the
6261 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6262
6263 payload_size -= strlen ("$,:#NN");
6264 if (!use_length)
6265 /* The comma won't be used. */
6266 payload_size += 1;
6267 header_length = strlen (header);
6268 payload_size -= header_length;
6269 payload_size -= hexnumlen (memaddr);
6270
6271 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6272
6273 strcat (rs->buf, header);
6274 p = rs->buf + strlen (header);
6275
6276 /* Compute a best guess of the number of bytes actually transfered. */
6277 if (packet_format == 'X')
6278 {
6279 /* Best guess at number of bytes that will fit. */
6280 todo = min (len, payload_size);
6281 if (use_length)
6282 payload_size -= hexnumlen (todo);
6283 todo = min (todo, payload_size);
6284 }
6285 else
6286 {
6287 /* Num bytes that will fit. */
6288 todo = min (len, payload_size / 2);
6289 if (use_length)
6290 payload_size -= hexnumlen (todo);
6291 todo = min (todo, payload_size / 2);
6292 }
6293
6294 if (todo <= 0)
6295 internal_error (__FILE__, __LINE__,
6296 _("minumum packet size too small to write data"));
6297
6298 /* If we already need another packet, then try to align the end
6299 of this packet to a useful boundary. */
6300 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6301 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6302
6303 /* Append "<memaddr>". */
6304 memaddr = remote_address_masked (memaddr);
6305 p += hexnumstr (p, (ULONGEST) memaddr);
6306
6307 if (use_length)
6308 {
6309 /* Append ",". */
6310 *p++ = ',';
6311
6312 /* Append <len>. Retain the location/size of <len>. It may need to
6313 be adjusted once the packet body has been created. */
6314 plen = p;
6315 plenlen = hexnumstr (p, (ULONGEST) todo);
6316 p += plenlen;
6317 }
6318
6319 /* Append ":". */
6320 *p++ = ':';
6321 *p = '\0';
6322
6323 /* Append the packet body. */
6324 if (packet_format == 'X')
6325 {
6326 /* Binary mode. Send target system values byte by byte, in
6327 increasing byte addresses. Only escape certain critical
6328 characters. */
6329 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6330 payload_size);
6331
6332 /* If not all TODO bytes fit, then we'll need another packet. Make
6333 a second try to keep the end of the packet aligned. Don't do
6334 this if the packet is tiny. */
6335 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6336 {
6337 int new_nr_bytes;
6338
6339 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6340 - memaddr);
6341 if (new_nr_bytes != nr_bytes)
6342 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6343 p, &nr_bytes,
6344 payload_size);
6345 }
6346
6347 p += payload_length;
6348 if (use_length && nr_bytes < todo)
6349 {
6350 /* Escape chars have filled up the buffer prematurely,
6351 and we have actually sent fewer bytes than planned.
6352 Fix-up the length field of the packet. Use the same
6353 number of characters as before. */
6354 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6355 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6356 }
6357 }
6358 else
6359 {
6360 /* Normal mode: Send target system values byte by byte, in
6361 increasing byte addresses. Each byte is encoded as a two hex
6362 value. */
6363 nr_bytes = bin2hex (myaddr, p, todo);
6364 p += 2 * nr_bytes;
6365 }
6366
6367 putpkt_binary (rs->buf, (int) (p - rs->buf));
6368 getpkt (&rs->buf, &rs->buf_size, 0);
6369
6370 if (rs->buf[0] == 'E')
6371 {
6372 /* There is no correspondance between what the remote protocol
6373 uses for errors and errno codes. We would like a cleaner way
6374 of representing errors (big enough to include errno codes,
6375 bfd_error codes, and others). But for now just return EIO. */
6376 errno = EIO;
6377 return 0;
6378 }
6379
6380 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6381 fewer bytes than we'd planned. */
6382 return nr_bytes;
6383}
6384
6385/* Write memory data directly to the remote machine.
6386 This does not inform the data cache; the data cache uses this.
6387 MEMADDR is the address in the remote memory space.
6388 MYADDR is the address of the buffer in our space.
6389 LEN is the number of bytes.
6390
6391 Returns number of bytes transferred, or 0 (setting errno) for
6392 error. Only transfer a single packet. */
6393
6394static int
6395remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6396{
6397 char *packet_format = 0;
6398
6399 /* Check whether the target supports binary download. */
6400 check_binary_download (memaddr);
6401
6402 switch (remote_protocol_packets[PACKET_X].support)
6403 {
6404 case PACKET_ENABLE:
6405 packet_format = "X";
6406 break;
6407 case PACKET_DISABLE:
6408 packet_format = "M";
6409 break;
6410 case PACKET_SUPPORT_UNKNOWN:
6411 internal_error (__FILE__, __LINE__,
6412 _("remote_write_bytes: bad internal state"));
6413 default:
6414 internal_error (__FILE__, __LINE__, _("bad switch"));
6415 }
6416
6417 return remote_write_bytes_aux (packet_format,
6418 memaddr, myaddr, len, packet_format[0], 1);
6419}
6420
6421/* Read memory data directly from the remote machine.
6422 This does not use the data cache; the data cache uses this.
6423 MEMADDR is the address in the remote memory space.
6424 MYADDR is the address of the buffer in our space.
6425 LEN is the number of bytes.
6426
6427 Returns number of bytes transferred, or 0 for error. */
6428
6429static int
6430remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6431{
6432 struct remote_state *rs = get_remote_state ();
6433 int max_buf_size; /* Max size of packet output buffer. */
6434 char *p;
6435 int todo;
6436 int i;
6437
6438 if (len <= 0)
6439 return 0;
6440
6441 max_buf_size = get_memory_read_packet_size ();
6442 /* The packet buffer will be large enough for the payload;
6443 get_memory_packet_size ensures this. */
6444
6445 /* Number if bytes that will fit. */
6446 todo = min (len, max_buf_size / 2);
6447
6448 /* Construct "m"<memaddr>","<len>". */
6449 memaddr = remote_address_masked (memaddr);
6450 p = rs->buf;
6451 *p++ = 'm';
6452 p += hexnumstr (p, (ULONGEST) memaddr);
6453 *p++ = ',';
6454 p += hexnumstr (p, (ULONGEST) todo);
6455 *p = '\0';
6456 putpkt (rs->buf);
6457 getpkt (&rs->buf, &rs->buf_size, 0);
6458 if (rs->buf[0] == 'E'
6459 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6460 && rs->buf[3] == '\0')
6461 {
6462 /* There is no correspondance between what the remote protocol
6463 uses for errors and errno codes. We would like a cleaner way
6464 of representing errors (big enough to include errno codes,
6465 bfd_error codes, and others). But for now just return
6466 EIO. */
6467 errno = EIO;
6468 return 0;
6469 }
6470 /* Reply describes memory byte by byte, each byte encoded as two hex
6471 characters. */
6472 p = rs->buf;
6473 i = hex2bin (p, myaddr, todo);
6474 /* Return what we have. Let higher layers handle partial reads. */
6475 return i;
6476}
6477\f
6478
6479/* Remote notification handler. */
6480
6481static void
6482handle_notification (char *buf, size_t length)
6483{
6484 if (strncmp (buf, "Stop:", 5) == 0)
6485 {
6486 if (pending_stop_reply)
6487 {
6488 /* We've already parsed the in-flight stop-reply, but the
6489 stub for some reason thought we didn't, possibly due to
6490 timeout on its side. Just ignore it. */
6491 if (remote_debug)
6492 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6493 }
6494 else
6495 {
6496 struct cleanup *old_chain;
6497 struct stop_reply *reply = stop_reply_xmalloc ();
6498
6499 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6500
6501 remote_parse_stop_reply (buf + 5, reply);
6502
6503 discard_cleanups (old_chain);
6504
6505 /* Be careful to only set it after parsing, since an error
6506 may be thrown then. */
6507 pending_stop_reply = reply;
6508
6509 /* Notify the event loop there's a stop reply to acknowledge
6510 and that there may be more events to fetch. */
6511 mark_async_event_handler (remote_async_get_pending_events_token);
6512
6513 if (remote_debug)
6514 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6515 }
6516 }
6517 else
6518 /* We ignore notifications we don't recognize, for compatibility
6519 with newer stubs. */
6520 ;
6521}
6522
6523\f
6524/* Read or write LEN bytes from inferior memory at MEMADDR,
6525 transferring to or from debugger address BUFFER. Write to inferior
6526 if SHOULD_WRITE is nonzero. Returns length of data written or
6527 read; 0 for error. TARGET is unused. */
6528
6529static int
6530remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6531 int should_write, struct mem_attrib *attrib,
6532 struct target_ops *target)
6533{
6534 int res;
6535
6536 set_remote_traceframe ();
6537 set_general_thread (inferior_ptid);
6538
6539 if (should_write)
6540 res = remote_write_bytes (mem_addr, buffer, mem_len);
6541 else
6542 res = remote_read_bytes (mem_addr, buffer, mem_len);
6543
6544 return res;
6545}
6546
6547/* Sends a packet with content determined by the printf format string
6548 FORMAT and the remaining arguments, then gets the reply. Returns
6549 whether the packet was a success, a failure, or unknown. */
6550
6551static enum packet_result
6552remote_send_printf (const char *format, ...)
6553{
6554 struct remote_state *rs = get_remote_state ();
6555 int max_size = get_remote_packet_size ();
6556 va_list ap;
6557
6558 va_start (ap, format);
6559
6560 rs->buf[0] = '\0';
6561 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6562 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6563
6564 if (putpkt (rs->buf) < 0)
6565 error (_("Communication problem with target."));
6566
6567 rs->buf[0] = '\0';
6568 getpkt (&rs->buf, &rs->buf_size, 0);
6569
6570 return packet_check_result (rs->buf);
6571}
6572
6573static void
6574restore_remote_timeout (void *p)
6575{
6576 int value = *(int *)p;
6577
6578 remote_timeout = value;
6579}
6580
6581/* Flash writing can take quite some time. We'll set
6582 effectively infinite timeout for flash operations.
6583 In future, we'll need to decide on a better approach. */
6584static const int remote_flash_timeout = 1000;
6585
6586static void
6587remote_flash_erase (struct target_ops *ops,
6588 ULONGEST address, LONGEST length)
6589{
6590 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6591 int saved_remote_timeout = remote_timeout;
6592 enum packet_result ret;
6593 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6594 &saved_remote_timeout);
6595
6596 remote_timeout = remote_flash_timeout;
6597
6598 ret = remote_send_printf ("vFlashErase:%s,%s",
6599 phex (address, addr_size),
6600 phex (length, 4));
6601 switch (ret)
6602 {
6603 case PACKET_UNKNOWN:
6604 error (_("Remote target does not support flash erase"));
6605 case PACKET_ERROR:
6606 error (_("Error erasing flash with vFlashErase packet"));
6607 default:
6608 break;
6609 }
6610
6611 do_cleanups (back_to);
6612}
6613
6614static LONGEST
6615remote_flash_write (struct target_ops *ops,
6616 ULONGEST address, LONGEST length,
6617 const gdb_byte *data)
6618{
6619 int saved_remote_timeout = remote_timeout;
6620 int ret;
6621 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6622 &saved_remote_timeout);
6623
6624 remote_timeout = remote_flash_timeout;
6625 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6626 do_cleanups (back_to);
6627
6628 return ret;
6629}
6630
6631static void
6632remote_flash_done (struct target_ops *ops)
6633{
6634 int saved_remote_timeout = remote_timeout;
6635 int ret;
6636 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6637 &saved_remote_timeout);
6638
6639 remote_timeout = remote_flash_timeout;
6640 ret = remote_send_printf ("vFlashDone");
6641 do_cleanups (back_to);
6642
6643 switch (ret)
6644 {
6645 case PACKET_UNKNOWN:
6646 error (_("Remote target does not support vFlashDone"));
6647 case PACKET_ERROR:
6648 error (_("Error finishing flash operation"));
6649 default:
6650 break;
6651 }
6652}
6653
6654static void
6655remote_files_info (struct target_ops *ignore)
6656{
6657 puts_filtered ("Debugging a target over a serial line.\n");
6658}
6659\f
6660/* Stuff for dealing with the packets which are part of this protocol.
6661 See comment at top of file for details. */
6662
6663/* Read a single character from the remote end. */
6664
6665static int
6666readchar (int timeout)
6667{
6668 int ch;
6669
6670 ch = serial_readchar (remote_desc, timeout);
6671
6672 if (ch >= 0)
6673 return ch;
6674
6675 switch ((enum serial_rc) ch)
6676 {
6677 case SERIAL_EOF:
6678 pop_target ();
6679 error (_("Remote connection closed"));
6680 /* no return */
6681 case SERIAL_ERROR:
6682 pop_target ();
6683 perror_with_name (_("Remote communication error. "
6684 "Target disconnected."));
6685 /* no return */
6686 case SERIAL_TIMEOUT:
6687 break;
6688 }
6689 return ch;
6690}
6691
6692/* Send the command in *BUF to the remote machine, and read the reply
6693 into *BUF. Report an error if we get an error reply. Resize
6694 *BUF using xrealloc if necessary to hold the result, and update
6695 *SIZEOF_BUF. */
6696
6697static void
6698remote_send (char **buf,
6699 long *sizeof_buf)
6700{
6701 putpkt (*buf);
6702 getpkt (buf, sizeof_buf, 0);
6703
6704 if ((*buf)[0] == 'E')
6705 error (_("Remote failure reply: %s"), *buf);
6706}
6707
6708/* Return a pointer to an xmalloc'ed string representing an escaped
6709 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6710 etc. The caller is responsible for releasing the returned
6711 memory. */
6712
6713static char *
6714escape_buffer (const char *buf, int n)
6715{
6716 struct cleanup *old_chain;
6717 struct ui_file *stb;
6718 char *str;
6719
6720 stb = mem_fileopen ();
6721 old_chain = make_cleanup_ui_file_delete (stb);
6722
6723 fputstrn_unfiltered (buf, n, 0, stb);
6724 str = ui_file_xstrdup (stb, NULL);
6725 do_cleanups (old_chain);
6726 return str;
6727}
6728
6729/* Display a null-terminated packet on stdout, for debugging, using C
6730 string notation. */
6731
6732static void
6733print_packet (char *buf)
6734{
6735 puts_filtered ("\"");
6736 fputstr_filtered (buf, '"', gdb_stdout);
6737 puts_filtered ("\"");
6738}
6739
6740int
6741putpkt (char *buf)
6742{
6743 return putpkt_binary (buf, strlen (buf));
6744}
6745
6746/* Send a packet to the remote machine, with error checking. The data
6747 of the packet is in BUF. The string in BUF can be at most
6748 get_remote_packet_size () - 5 to account for the $, # and checksum,
6749 and for a possible /0 if we are debugging (remote_debug) and want
6750 to print the sent packet as a string. */
6751
6752static int
6753putpkt_binary (char *buf, int cnt)
6754{
6755 struct remote_state *rs = get_remote_state ();
6756 int i;
6757 unsigned char csum = 0;
6758 char *buf2 = alloca (cnt + 6);
6759
6760 int ch;
6761 int tcount = 0;
6762 char *p;
6763
6764 /* Catch cases like trying to read memory or listing threads while
6765 we're waiting for a stop reply. The remote server wouldn't be
6766 ready to handle this request, so we'd hang and timeout. We don't
6767 have to worry about this in synchronous mode, because in that
6768 case it's not possible to issue a command while the target is
6769 running. This is not a problem in non-stop mode, because in that
6770 case, the stub is always ready to process serial input. */
6771 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6772 error (_("Cannot execute this command while the target is running."));
6773
6774 /* We're sending out a new packet. Make sure we don't look at a
6775 stale cached response. */
6776 rs->cached_wait_status = 0;
6777
6778 /* Copy the packet into buffer BUF2, encapsulating it
6779 and giving it a checksum. */
6780
6781 p = buf2;
6782 *p++ = '$';
6783
6784 for (i = 0; i < cnt; i++)
6785 {
6786 csum += buf[i];
6787 *p++ = buf[i];
6788 }
6789 *p++ = '#';
6790 *p++ = tohex ((csum >> 4) & 0xf);
6791 *p++ = tohex (csum & 0xf);
6792
6793 /* Send it over and over until we get a positive ack. */
6794
6795 while (1)
6796 {
6797 int started_error_output = 0;
6798
6799 if (remote_debug)
6800 {
6801 struct cleanup *old_chain;
6802 char *str;
6803
6804 *p = '\0';
6805 str = escape_buffer (buf2, p - buf2);
6806 old_chain = make_cleanup (xfree, str);
6807 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6808 gdb_flush (gdb_stdlog);
6809 do_cleanups (old_chain);
6810 }
6811 if (serial_write (remote_desc, buf2, p - buf2))
6812 perror_with_name (_("putpkt: write failed"));
6813
6814 /* If this is a no acks version of the remote protocol, send the
6815 packet and move on. */
6816 if (rs->noack_mode)
6817 break;
6818
6819 /* Read until either a timeout occurs (-2) or '+' is read.
6820 Handle any notification that arrives in the mean time. */
6821 while (1)
6822 {
6823 ch = readchar (remote_timeout);
6824
6825 if (remote_debug)
6826 {
6827 switch (ch)
6828 {
6829 case '+':
6830 case '-':
6831 case SERIAL_TIMEOUT:
6832 case '$':
6833 case '%':
6834 if (started_error_output)
6835 {
6836 putchar_unfiltered ('\n');
6837 started_error_output = 0;
6838 }
6839 }
6840 }
6841
6842 switch (ch)
6843 {
6844 case '+':
6845 if (remote_debug)
6846 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6847 return 1;
6848 case '-':
6849 if (remote_debug)
6850 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6851 /* FALLTHROUGH */
6852 case SERIAL_TIMEOUT:
6853 tcount++;
6854 if (tcount > 3)
6855 return 0;
6856 break; /* Retransmit buffer. */
6857 case '$':
6858 {
6859 if (remote_debug)
6860 fprintf_unfiltered (gdb_stdlog,
6861 "Packet instead of Ack, ignoring it\n");
6862 /* It's probably an old response sent because an ACK
6863 was lost. Gobble up the packet and ack it so it
6864 doesn't get retransmitted when we resend this
6865 packet. */
6866 skip_frame ();
6867 serial_write (remote_desc, "+", 1);
6868 continue; /* Now, go look for +. */
6869 }
6870
6871 case '%':
6872 {
6873 int val;
6874
6875 /* If we got a notification, handle it, and go back to looking
6876 for an ack. */
6877 /* We've found the start of a notification. Now
6878 collect the data. */
6879 val = read_frame (&rs->buf, &rs->buf_size);
6880 if (val >= 0)
6881 {
6882 if (remote_debug)
6883 {
6884 struct cleanup *old_chain;
6885 char *str;
6886
6887 str = escape_buffer (rs->buf, val);
6888 old_chain = make_cleanup (xfree, str);
6889 fprintf_unfiltered (gdb_stdlog,
6890 " Notification received: %s\n",
6891 str);
6892 do_cleanups (old_chain);
6893 }
6894 handle_notification (rs->buf, val);
6895 /* We're in sync now, rewait for the ack. */
6896 tcount = 0;
6897 }
6898 else
6899 {
6900 if (remote_debug)
6901 {
6902 if (!started_error_output)
6903 {
6904 started_error_output = 1;
6905 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6906 }
6907 fputc_unfiltered (ch & 0177, gdb_stdlog);
6908 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6909 }
6910 }
6911 continue;
6912 }
6913 /* fall-through */
6914 default:
6915 if (remote_debug)
6916 {
6917 if (!started_error_output)
6918 {
6919 started_error_output = 1;
6920 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6921 }
6922 fputc_unfiltered (ch & 0177, gdb_stdlog);
6923 }
6924 continue;
6925 }
6926 break; /* Here to retransmit. */
6927 }
6928
6929#if 0
6930 /* This is wrong. If doing a long backtrace, the user should be
6931 able to get out next time we call QUIT, without anything as
6932 violent as interrupt_query. If we want to provide a way out of
6933 here without getting to the next QUIT, it should be based on
6934 hitting ^C twice as in remote_wait. */
6935 if (quit_flag)
6936 {
6937 quit_flag = 0;
6938 interrupt_query ();
6939 }
6940#endif
6941 }
6942 return 0;
6943}
6944
6945/* Come here after finding the start of a frame when we expected an
6946 ack. Do our best to discard the rest of this packet. */
6947
6948static void
6949skip_frame (void)
6950{
6951 int c;
6952
6953 while (1)
6954 {
6955 c = readchar (remote_timeout);
6956 switch (c)
6957 {
6958 case SERIAL_TIMEOUT:
6959 /* Nothing we can do. */
6960 return;
6961 case '#':
6962 /* Discard the two bytes of checksum and stop. */
6963 c = readchar (remote_timeout);
6964 if (c >= 0)
6965 c = readchar (remote_timeout);
6966
6967 return;
6968 case '*': /* Run length encoding. */
6969 /* Discard the repeat count. */
6970 c = readchar (remote_timeout);
6971 if (c < 0)
6972 return;
6973 break;
6974 default:
6975 /* A regular character. */
6976 break;
6977 }
6978 }
6979}
6980
6981/* Come here after finding the start of the frame. Collect the rest
6982 into *BUF, verifying the checksum, length, and handling run-length
6983 compression. NUL terminate the buffer. If there is not enough room,
6984 expand *BUF using xrealloc.
6985
6986 Returns -1 on error, number of characters in buffer (ignoring the
6987 trailing NULL) on success. (could be extended to return one of the
6988 SERIAL status indications). */
6989
6990static long
6991read_frame (char **buf_p,
6992 long *sizeof_buf)
6993{
6994 unsigned char csum;
6995 long bc;
6996 int c;
6997 char *buf = *buf_p;
6998 struct remote_state *rs = get_remote_state ();
6999
7000 csum = 0;
7001 bc = 0;
7002
7003 while (1)
7004 {
7005 c = readchar (remote_timeout);
7006 switch (c)
7007 {
7008 case SERIAL_TIMEOUT:
7009 if (remote_debug)
7010 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7011 return -1;
7012 case '$':
7013 if (remote_debug)
7014 fputs_filtered ("Saw new packet start in middle of old one\n",
7015 gdb_stdlog);
7016 return -1; /* Start a new packet, count retries. */
7017 case '#':
7018 {
7019 unsigned char pktcsum;
7020 int check_0 = 0;
7021 int check_1 = 0;
7022
7023 buf[bc] = '\0';
7024
7025 check_0 = readchar (remote_timeout);
7026 if (check_0 >= 0)
7027 check_1 = readchar (remote_timeout);
7028
7029 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7030 {
7031 if (remote_debug)
7032 fputs_filtered ("Timeout in checksum, retrying\n",
7033 gdb_stdlog);
7034 return -1;
7035 }
7036 else if (check_0 < 0 || check_1 < 0)
7037 {
7038 if (remote_debug)
7039 fputs_filtered ("Communication error in checksum\n",
7040 gdb_stdlog);
7041 return -1;
7042 }
7043
7044 /* Don't recompute the checksum; with no ack packets we
7045 don't have any way to indicate a packet retransmission
7046 is necessary. */
7047 if (rs->noack_mode)
7048 return bc;
7049
7050 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7051 if (csum == pktcsum)
7052 return bc;
7053
7054 if (remote_debug)
7055 {
7056 struct cleanup *old_chain;
7057 char *str;
7058
7059 str = escape_buffer (buf, bc);
7060 old_chain = make_cleanup (xfree, str);
7061 fprintf_unfiltered (gdb_stdlog,
7062 "Bad checksum, sentsum=0x%x, "
7063 "csum=0x%x, buf=%s\n",
7064 pktcsum, csum, str);
7065 do_cleanups (old_chain);
7066 }
7067 /* Number of characters in buffer ignoring trailing
7068 NULL. */
7069 return -1;
7070 }
7071 case '*': /* Run length encoding. */
7072 {
7073 int repeat;
7074
7075 csum += c;
7076 c = readchar (remote_timeout);
7077 csum += c;
7078 repeat = c - ' ' + 3; /* Compute repeat count. */
7079
7080 /* The character before ``*'' is repeated. */
7081
7082 if (repeat > 0 && repeat <= 255 && bc > 0)
7083 {
7084 if (bc + repeat - 1 >= *sizeof_buf - 1)
7085 {
7086 /* Make some more room in the buffer. */
7087 *sizeof_buf += repeat;
7088 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7089 buf = *buf_p;
7090 }
7091
7092 memset (&buf[bc], buf[bc - 1], repeat);
7093 bc += repeat;
7094 continue;
7095 }
7096
7097 buf[bc] = '\0';
7098 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7099 return -1;
7100 }
7101 default:
7102 if (bc >= *sizeof_buf - 1)
7103 {
7104 /* Make some more room in the buffer. */
7105 *sizeof_buf *= 2;
7106 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7107 buf = *buf_p;
7108 }
7109
7110 buf[bc++] = c;
7111 csum += c;
7112 continue;
7113 }
7114 }
7115}
7116
7117/* Read a packet from the remote machine, with error checking, and
7118 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7119 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7120 rather than timing out; this is used (in synchronous mode) to wait
7121 for a target that is is executing user code to stop. */
7122/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7123 don't have to change all the calls to getpkt to deal with the
7124 return value, because at the moment I don't know what the right
7125 thing to do it for those. */
7126void
7127getpkt (char **buf,
7128 long *sizeof_buf,
7129 int forever)
7130{
7131 int timed_out;
7132
7133 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7134}
7135
7136
7137/* Read a packet from the remote machine, with error checking, and
7138 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7139 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7140 rather than timing out; this is used (in synchronous mode) to wait
7141 for a target that is is executing user code to stop. If FOREVER ==
7142 0, this function is allowed to time out gracefully and return an
7143 indication of this to the caller. Otherwise return the number of
7144 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7145 enough reason to return to the caller. */
7146
7147static int
7148getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7149 int expecting_notif)
7150{
7151 struct remote_state *rs = get_remote_state ();
7152 int c;
7153 int tries;
7154 int timeout;
7155 int val = -1;
7156
7157 /* We're reading a new response. Make sure we don't look at a
7158 previously cached response. */
7159 rs->cached_wait_status = 0;
7160
7161 strcpy (*buf, "timeout");
7162
7163 if (forever)
7164 timeout = watchdog > 0 ? watchdog : -1;
7165 else if (expecting_notif)
7166 timeout = 0; /* There should already be a char in the buffer. If
7167 not, bail out. */
7168 else
7169 timeout = remote_timeout;
7170
7171#define MAX_TRIES 3
7172
7173 /* Process any number of notifications, and then return when
7174 we get a packet. */
7175 for (;;)
7176 {
7177 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7178 times. */
7179 for (tries = 1; tries <= MAX_TRIES; tries++)
7180 {
7181 /* This can loop forever if the remote side sends us
7182 characters continuously, but if it pauses, we'll get
7183 SERIAL_TIMEOUT from readchar because of timeout. Then
7184 we'll count that as a retry.
7185
7186 Note that even when forever is set, we will only wait
7187 forever prior to the start of a packet. After that, we
7188 expect characters to arrive at a brisk pace. They should
7189 show up within remote_timeout intervals. */
7190 do
7191 c = readchar (timeout);
7192 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7193
7194 if (c == SERIAL_TIMEOUT)
7195 {
7196 if (expecting_notif)
7197 return -1; /* Don't complain, it's normal to not get
7198 anything in this case. */
7199
7200 if (forever) /* Watchdog went off? Kill the target. */
7201 {
7202 QUIT;
7203 pop_target ();
7204 error (_("Watchdog timeout has expired. Target detached."));
7205 }
7206 if (remote_debug)
7207 fputs_filtered ("Timed out.\n", gdb_stdlog);
7208 }
7209 else
7210 {
7211 /* We've found the start of a packet or notification.
7212 Now collect the data. */
7213 val = read_frame (buf, sizeof_buf);
7214 if (val >= 0)
7215 break;
7216 }
7217
7218 serial_write (remote_desc, "-", 1);
7219 }
7220
7221 if (tries > MAX_TRIES)
7222 {
7223 /* We have tried hard enough, and just can't receive the
7224 packet/notification. Give up. */
7225 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7226
7227 /* Skip the ack char if we're in no-ack mode. */
7228 if (!rs->noack_mode)
7229 serial_write (remote_desc, "+", 1);
7230 return -1;
7231 }
7232
7233 /* If we got an ordinary packet, return that to our caller. */
7234 if (c == '$')
7235 {
7236 if (remote_debug)
7237 {
7238 struct cleanup *old_chain;
7239 char *str;
7240
7241 str = escape_buffer (*buf, val);
7242 old_chain = make_cleanup (xfree, str);
7243 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7244 do_cleanups (old_chain);
7245 }
7246
7247 /* Skip the ack char if we're in no-ack mode. */
7248 if (!rs->noack_mode)
7249 serial_write (remote_desc, "+", 1);
7250 return val;
7251 }
7252
7253 /* If we got a notification, handle it, and go back to looking
7254 for a packet. */
7255 else
7256 {
7257 gdb_assert (c == '%');
7258
7259 if (remote_debug)
7260 {
7261 struct cleanup *old_chain;
7262 char *str;
7263
7264 str = escape_buffer (*buf, val);
7265 old_chain = make_cleanup (xfree, str);
7266 fprintf_unfiltered (gdb_stdlog,
7267 " Notification received: %s\n",
7268 str);
7269 do_cleanups (old_chain);
7270 }
7271
7272 handle_notification (*buf, val);
7273
7274 /* Notifications require no acknowledgement. */
7275
7276 if (expecting_notif)
7277 return -1;
7278 }
7279 }
7280}
7281
7282static int
7283getpkt_sane (char **buf, long *sizeof_buf, int forever)
7284{
7285 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7286}
7287
7288static int
7289getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7290{
7291 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7292}
7293
7294\f
7295static void
7296remote_kill (struct target_ops *ops)
7297{
7298 /* Use catch_errors so the user can quit from gdb even when we
7299 aren't on speaking terms with the remote system. */
7300 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7301
7302 /* Don't wait for it to die. I'm not really sure it matters whether
7303 we do or not. For the existing stubs, kill is a noop. */
7304 target_mourn_inferior ();
7305}
7306
7307static int
7308remote_vkill (int pid, struct remote_state *rs)
7309{
7310 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7311 return -1;
7312
7313 /* Tell the remote target to detach. */
7314 sprintf (rs->buf, "vKill;%x", pid);
7315 putpkt (rs->buf);
7316 getpkt (&rs->buf, &rs->buf_size, 0);
7317
7318 if (packet_ok (rs->buf,
7319 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7320 return 0;
7321 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7322 return -1;
7323 else
7324 return 1;
7325}
7326
7327static void
7328extended_remote_kill (struct target_ops *ops)
7329{
7330 int res;
7331 int pid = ptid_get_pid (inferior_ptid);
7332 struct remote_state *rs = get_remote_state ();
7333
7334 res = remote_vkill (pid, rs);
7335 if (res == -1 && !remote_multi_process_p (rs))
7336 {
7337 /* Don't try 'k' on a multi-process aware stub -- it has no way
7338 to specify the pid. */
7339
7340 putpkt ("k");
7341#if 0
7342 getpkt (&rs->buf, &rs->buf_size, 0);
7343 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7344 res = 1;
7345#else
7346 /* Don't wait for it to die. I'm not really sure it matters whether
7347 we do or not. For the existing stubs, kill is a noop. */
7348 res = 0;
7349#endif
7350 }
7351
7352 if (res != 0)
7353 error (_("Can't kill process"));
7354
7355 target_mourn_inferior ();
7356}
7357
7358static void
7359remote_mourn (struct target_ops *ops)
7360{
7361 remote_mourn_1 (ops);
7362}
7363
7364/* Worker function for remote_mourn. */
7365static void
7366remote_mourn_1 (struct target_ops *target)
7367{
7368 unpush_target (target);
7369
7370 /* remote_close takes care of doing most of the clean up. */
7371 generic_mourn_inferior ();
7372}
7373
7374static void
7375extended_remote_mourn_1 (struct target_ops *target)
7376{
7377 struct remote_state *rs = get_remote_state ();
7378
7379 /* In case we got here due to an error, but we're going to stay
7380 connected. */
7381 rs->waiting_for_stop_reply = 0;
7382
7383 /* We're no longer interested in these events. */
7384 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7385
7386 /* If the current general thread belonged to the process we just
7387 detached from or has exited, the remote side current general
7388 thread becomes undefined. Considering a case like this:
7389
7390 - We just got here due to a detach.
7391 - The process that we're detaching from happens to immediately
7392 report a global breakpoint being hit in non-stop mode, in the
7393 same thread we had selected before.
7394 - GDB attaches to this process again.
7395 - This event happens to be the next event we handle.
7396
7397 GDB would consider that the current general thread didn't need to
7398 be set on the stub side (with Hg), since for all it knew,
7399 GENERAL_THREAD hadn't changed.
7400
7401 Notice that although in all-stop mode, the remote server always
7402 sets the current thread to the thread reporting the stop event,
7403 that doesn't happen in non-stop mode; in non-stop, the stub *must
7404 not* change the current thread when reporting a breakpoint hit,
7405 due to the decoupling of event reporting and event handling.
7406
7407 To keep things simple, we always invalidate our notion of the
7408 current thread. */
7409 record_currthread (minus_one_ptid);
7410
7411 /* Unlike "target remote", we do not want to unpush the target; then
7412 the next time the user says "run", we won't be connected. */
7413
7414 /* Call common code to mark the inferior as not running. */
7415 generic_mourn_inferior ();
7416
7417 if (!have_inferiors ())
7418 {
7419 if (!remote_multi_process_p (rs))
7420 {
7421 /* Check whether the target is running now - some remote stubs
7422 automatically restart after kill. */
7423 putpkt ("?");
7424 getpkt (&rs->buf, &rs->buf_size, 0);
7425
7426 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7427 {
7428 /* Assume that the target has been restarted. Set
7429 inferior_ptid so that bits of core GDB realizes
7430 there's something here, e.g., so that the user can
7431 say "kill" again. */
7432 inferior_ptid = magic_null_ptid;
7433 }
7434 }
7435 }
7436}
7437
7438static void
7439extended_remote_mourn (struct target_ops *ops)
7440{
7441 extended_remote_mourn_1 (ops);
7442}
7443
7444static int
7445extended_remote_run (char *args)
7446{
7447 struct remote_state *rs = get_remote_state ();
7448 int len;
7449
7450 /* If the user has disabled vRun support, or we have detected that
7451 support is not available, do not try it. */
7452 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7453 return -1;
7454
7455 strcpy (rs->buf, "vRun;");
7456 len = strlen (rs->buf);
7457
7458 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7459 error (_("Remote file name too long for run packet"));
7460 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7461
7462 gdb_assert (args != NULL);
7463 if (*args)
7464 {
7465 struct cleanup *back_to;
7466 int i;
7467 char **argv;
7468
7469 argv = gdb_buildargv (args);
7470 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7471 for (i = 0; argv[i] != NULL; i++)
7472 {
7473 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7474 error (_("Argument list too long for run packet"));
7475 rs->buf[len++] = ';';
7476 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7477 }
7478 do_cleanups (back_to);
7479 }
7480
7481 rs->buf[len++] = '\0';
7482
7483 putpkt (rs->buf);
7484 getpkt (&rs->buf, &rs->buf_size, 0);
7485
7486 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7487 {
7488 /* We have a wait response; we don't need it, though. All is well. */
7489 return 0;
7490 }
7491 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7492 /* It wasn't disabled before, but it is now. */
7493 return -1;
7494 else
7495 {
7496 if (remote_exec_file[0] == '\0')
7497 error (_("Running the default executable on the remote target failed; "
7498 "try \"set remote exec-file\"?"));
7499 else
7500 error (_("Running \"%s\" on the remote target failed"),
7501 remote_exec_file);
7502 }
7503}
7504
7505/* In the extended protocol we want to be able to do things like
7506 "run" and have them basically work as expected. So we need
7507 a special create_inferior function. We support changing the
7508 executable file and the command line arguments, but not the
7509 environment. */
7510
7511static void
7512extended_remote_create_inferior_1 (char *exec_file, char *args,
7513 char **env, int from_tty)
7514{
7515 /* If running asynchronously, register the target file descriptor
7516 with the event loop. */
7517 if (target_can_async_p ())
7518 target_async (inferior_event_handler, 0);
7519
7520 /* Now restart the remote server. */
7521 if (extended_remote_run (args) == -1)
7522 {
7523 /* vRun was not supported. Fail if we need it to do what the
7524 user requested. */
7525 if (remote_exec_file[0])
7526 error (_("Remote target does not support \"set remote exec-file\""));
7527 if (args[0])
7528 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7529
7530 /* Fall back to "R". */
7531 extended_remote_restart ();
7532 }
7533
7534 if (!have_inferiors ())
7535 {
7536 /* Clean up from the last time we ran, before we mark the target
7537 running again. This will mark breakpoints uninserted, and
7538 get_offsets may insert breakpoints. */
7539 init_thread_list ();
7540 init_wait_for_inferior ();
7541 }
7542
7543 /* Now mark the inferior as running before we do anything else. */
7544 inferior_ptid = magic_null_ptid;
7545
7546 /* Now, if we have thread information, update inferior_ptid. */
7547 inferior_ptid = remote_current_thread (inferior_ptid);
7548
7549 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7550 add_thread_silent (inferior_ptid);
7551
7552 /* Get updated offsets, if the stub uses qOffsets. */
7553 get_offsets ();
7554}
7555
7556static void
7557extended_remote_create_inferior (struct target_ops *ops,
7558 char *exec_file, char *args,
7559 char **env, int from_tty)
7560{
7561 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7562}
7563\f
7564
7565/* Insert a breakpoint. On targets that have software breakpoint
7566 support, we ask the remote target to do the work; on targets
7567 which don't, we insert a traditional memory breakpoint. */
7568
7569static int
7570remote_insert_breakpoint (struct gdbarch *gdbarch,
7571 struct bp_target_info *bp_tgt)
7572{
7573 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7574 If it succeeds, then set the support to PACKET_ENABLE. If it
7575 fails, and the user has explicitly requested the Z support then
7576 report an error, otherwise, mark it disabled and go on. */
7577
7578 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7579 {
7580 CORE_ADDR addr = bp_tgt->placed_address;
7581 struct remote_state *rs;
7582 char *p;
7583 int bpsize;
7584
7585 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7586
7587 rs = get_remote_state ();
7588 p = rs->buf;
7589
7590 *(p++) = 'Z';
7591 *(p++) = '0';
7592 *(p++) = ',';
7593 addr = (ULONGEST) remote_address_masked (addr);
7594 p += hexnumstr (p, addr);
7595 sprintf (p, ",%d", bpsize);
7596
7597 putpkt (rs->buf);
7598 getpkt (&rs->buf, &rs->buf_size, 0);
7599
7600 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7601 {
7602 case PACKET_ERROR:
7603 return -1;
7604 case PACKET_OK:
7605 bp_tgt->placed_address = addr;
7606 bp_tgt->placed_size = bpsize;
7607 return 0;
7608 case PACKET_UNKNOWN:
7609 break;
7610 }
7611 }
7612
7613 return memory_insert_breakpoint (gdbarch, bp_tgt);
7614}
7615
7616static int
7617remote_remove_breakpoint (struct gdbarch *gdbarch,
7618 struct bp_target_info *bp_tgt)
7619{
7620 CORE_ADDR addr = bp_tgt->placed_address;
7621 struct remote_state *rs = get_remote_state ();
7622
7623 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7624 {
7625 char *p = rs->buf;
7626
7627 *(p++) = 'z';
7628 *(p++) = '0';
7629 *(p++) = ',';
7630
7631 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7632 p += hexnumstr (p, addr);
7633 sprintf (p, ",%d", bp_tgt->placed_size);
7634
7635 putpkt (rs->buf);
7636 getpkt (&rs->buf, &rs->buf_size, 0);
7637
7638 return (rs->buf[0] == 'E');
7639 }
7640
7641 return memory_remove_breakpoint (gdbarch, bp_tgt);
7642}
7643
7644static int
7645watchpoint_to_Z_packet (int type)
7646{
7647 switch (type)
7648 {
7649 case hw_write:
7650 return Z_PACKET_WRITE_WP;
7651 break;
7652 case hw_read:
7653 return Z_PACKET_READ_WP;
7654 break;
7655 case hw_access:
7656 return Z_PACKET_ACCESS_WP;
7657 break;
7658 default:
7659 internal_error (__FILE__, __LINE__,
7660 _("hw_bp_to_z: bad watchpoint type %d"), type);
7661 }
7662}
7663
7664static int
7665remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7666 struct expression *cond)
7667{
7668 struct remote_state *rs = get_remote_state ();
7669 char *p;
7670 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7671
7672 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7673 return 1;
7674
7675 sprintf (rs->buf, "Z%x,", packet);
7676 p = strchr (rs->buf, '\0');
7677 addr = remote_address_masked (addr);
7678 p += hexnumstr (p, (ULONGEST) addr);
7679 sprintf (p, ",%x", len);
7680
7681 putpkt (rs->buf);
7682 getpkt (&rs->buf, &rs->buf_size, 0);
7683
7684 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7685 {
7686 case PACKET_ERROR:
7687 return -1;
7688 case PACKET_UNKNOWN:
7689 return 1;
7690 case PACKET_OK:
7691 return 0;
7692 }
7693 internal_error (__FILE__, __LINE__,
7694 _("remote_insert_watchpoint: reached end of function"));
7695}
7696
7697
7698static int
7699remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7700 struct expression *cond)
7701{
7702 struct remote_state *rs = get_remote_state ();
7703 char *p;
7704 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7705
7706 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7707 return -1;
7708
7709 sprintf (rs->buf, "z%x,", packet);
7710 p = strchr (rs->buf, '\0');
7711 addr = remote_address_masked (addr);
7712 p += hexnumstr (p, (ULONGEST) addr);
7713 sprintf (p, ",%x", len);
7714 putpkt (rs->buf);
7715 getpkt (&rs->buf, &rs->buf_size, 0);
7716
7717 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7718 {
7719 case PACKET_ERROR:
7720 case PACKET_UNKNOWN:
7721 return -1;
7722 case PACKET_OK:
7723 return 0;
7724 }
7725 internal_error (__FILE__, __LINE__,
7726 _("remote_remove_watchpoint: reached end of function"));
7727}
7728
7729
7730int remote_hw_watchpoint_limit = -1;
7731int remote_hw_breakpoint_limit = -1;
7732
7733static int
7734remote_check_watch_resources (int type, int cnt, int ot)
7735{
7736 if (type == bp_hardware_breakpoint)
7737 {
7738 if (remote_hw_breakpoint_limit == 0)
7739 return 0;
7740 else if (remote_hw_breakpoint_limit < 0)
7741 return 1;
7742 else if (cnt <= remote_hw_breakpoint_limit)
7743 return 1;
7744 }
7745 else
7746 {
7747 if (remote_hw_watchpoint_limit == 0)
7748 return 0;
7749 else if (remote_hw_watchpoint_limit < 0)
7750 return 1;
7751 else if (ot)
7752 return -1;
7753 else if (cnt <= remote_hw_watchpoint_limit)
7754 return 1;
7755 }
7756 return -1;
7757}
7758
7759static int
7760remote_stopped_by_watchpoint (void)
7761{
7762 return remote_stopped_by_watchpoint_p;
7763}
7764
7765static int
7766remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7767{
7768 int rc = 0;
7769
7770 if (remote_stopped_by_watchpoint ())
7771 {
7772 *addr_p = remote_watch_data_address;
7773 rc = 1;
7774 }
7775
7776 return rc;
7777}
7778
7779
7780static int
7781remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7782 struct bp_target_info *bp_tgt)
7783{
7784 CORE_ADDR addr;
7785 struct remote_state *rs;
7786 char *p;
7787
7788 /* The length field should be set to the size of a breakpoint
7789 instruction, even though we aren't inserting one ourselves. */
7790
7791 gdbarch_remote_breakpoint_from_pc
7792 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7793
7794 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7795 return -1;
7796
7797 rs = get_remote_state ();
7798 p = rs->buf;
7799
7800 *(p++) = 'Z';
7801 *(p++) = '1';
7802 *(p++) = ',';
7803
7804 addr = remote_address_masked (bp_tgt->placed_address);
7805 p += hexnumstr (p, (ULONGEST) addr);
7806 sprintf (p, ",%x", bp_tgt->placed_size);
7807
7808 putpkt (rs->buf);
7809 getpkt (&rs->buf, &rs->buf_size, 0);
7810
7811 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7812 {
7813 case PACKET_ERROR:
7814 case PACKET_UNKNOWN:
7815 return -1;
7816 case PACKET_OK:
7817 return 0;
7818 }
7819 internal_error (__FILE__, __LINE__,
7820 _("remote_insert_hw_breakpoint: reached end of function"));
7821}
7822
7823
7824static int
7825remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7826 struct bp_target_info *bp_tgt)
7827{
7828 CORE_ADDR addr;
7829 struct remote_state *rs = get_remote_state ();
7830 char *p = rs->buf;
7831
7832 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7833 return -1;
7834
7835 *(p++) = 'z';
7836 *(p++) = '1';
7837 *(p++) = ',';
7838
7839 addr = remote_address_masked (bp_tgt->placed_address);
7840 p += hexnumstr (p, (ULONGEST) addr);
7841 sprintf (p, ",%x", bp_tgt->placed_size);
7842
7843 putpkt (rs->buf);
7844 getpkt (&rs->buf, &rs->buf_size, 0);
7845
7846 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7847 {
7848 case PACKET_ERROR:
7849 case PACKET_UNKNOWN:
7850 return -1;
7851 case PACKET_OK:
7852 return 0;
7853 }
7854 internal_error (__FILE__, __LINE__,
7855 _("remote_remove_hw_breakpoint: reached end of function"));
7856}
7857
7858/* Table used by the crc32 function to calcuate the checksum. */
7859
7860static unsigned long crc32_table[256] =
7861{0, 0};
7862
7863static unsigned long
7864crc32 (const unsigned char *buf, int len, unsigned int crc)
7865{
7866 if (!crc32_table[1])
7867 {
7868 /* Initialize the CRC table and the decoding table. */
7869 int i, j;
7870 unsigned int c;
7871
7872 for (i = 0; i < 256; i++)
7873 {
7874 for (c = i << 24, j = 8; j > 0; --j)
7875 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7876 crc32_table[i] = c;
7877 }
7878 }
7879
7880 while (len--)
7881 {
7882 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7883 buf++;
7884 }
7885 return crc;
7886}
7887
7888/* Verify memory using the "qCRC:" request. */
7889
7890static int
7891remote_verify_memory (struct target_ops *ops,
7892 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7893{
7894 struct remote_state *rs = get_remote_state ();
7895 unsigned long host_crc, target_crc;
7896 char *tmp;
7897
7898 /* FIXME: assumes lma can fit into long. */
7899 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7900 (long) lma, (long) size);
7901 putpkt (rs->buf);
7902
7903 /* Be clever; compute the host_crc before waiting for target
7904 reply. */
7905 host_crc = crc32 (data, size, 0xffffffff);
7906
7907 getpkt (&rs->buf, &rs->buf_size, 0);
7908 if (rs->buf[0] == 'E')
7909 return -1;
7910
7911 if (rs->buf[0] != 'C')
7912 error (_("remote target does not support this operation"));
7913
7914 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7915 target_crc = target_crc * 16 + fromhex (*tmp);
7916
7917 return (host_crc == target_crc);
7918}
7919
7920/* compare-sections command
7921
7922 With no arguments, compares each loadable section in the exec bfd
7923 with the same memory range on the target, and reports mismatches.
7924 Useful for verifying the image on the target against the exec file. */
7925
7926static void
7927compare_sections_command (char *args, int from_tty)
7928{
7929 asection *s;
7930 struct cleanup *old_chain;
7931 char *sectdata;
7932 const char *sectname;
7933 bfd_size_type size;
7934 bfd_vma lma;
7935 int matched = 0;
7936 int mismatched = 0;
7937 int res;
7938
7939 if (!exec_bfd)
7940 error (_("command cannot be used without an exec file"));
7941
7942 for (s = exec_bfd->sections; s; s = s->next)
7943 {
7944 if (!(s->flags & SEC_LOAD))
7945 continue; /* Skip non-loadable section. */
7946
7947 size = bfd_get_section_size (s);
7948 if (size == 0)
7949 continue; /* Skip zero-length section. */
7950
7951 sectname = bfd_get_section_name (exec_bfd, s);
7952 if (args && strcmp (args, sectname) != 0)
7953 continue; /* Not the section selected by user. */
7954
7955 matched = 1; /* Do this section. */
7956 lma = s->lma;
7957
7958 sectdata = xmalloc (size);
7959 old_chain = make_cleanup (xfree, sectdata);
7960 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7961
7962 res = target_verify_memory (sectdata, lma, size);
7963
7964 if (res == -1)
7965 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7966 paddress (target_gdbarch, lma),
7967 paddress (target_gdbarch, lma + size));
7968
7969 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7970 paddress (target_gdbarch, lma),
7971 paddress (target_gdbarch, lma + size));
7972 if (res)
7973 printf_filtered ("matched.\n");
7974 else
7975 {
7976 printf_filtered ("MIS-MATCHED!\n");
7977 mismatched++;
7978 }
7979
7980 do_cleanups (old_chain);
7981 }
7982 if (mismatched > 0)
7983 warning (_("One or more sections of the remote executable does not match\n\
7984the loaded file\n"));
7985 if (args && !matched)
7986 printf_filtered (_("No loaded section named '%s'.\n"), args);
7987}
7988
7989/* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7990 into remote target. The number of bytes written to the remote
7991 target is returned, or -1 for error. */
7992
7993static LONGEST
7994remote_write_qxfer (struct target_ops *ops, const char *object_name,
7995 const char *annex, const gdb_byte *writebuf,
7996 ULONGEST offset, LONGEST len,
7997 struct packet_config *packet)
7998{
7999 int i, buf_len;
8000 ULONGEST n;
8001 struct remote_state *rs = get_remote_state ();
8002 int max_size = get_memory_write_packet_size ();
8003
8004 if (packet->support == PACKET_DISABLE)
8005 return -1;
8006
8007 /* Insert header. */
8008 i = snprintf (rs->buf, max_size,
8009 "qXfer:%s:write:%s:%s:",
8010 object_name, annex ? annex : "",
8011 phex_nz (offset, sizeof offset));
8012 max_size -= (i + 1);
8013
8014 /* Escape as much data as fits into rs->buf. */
8015 buf_len = remote_escape_output
8016 (writebuf, len, (rs->buf + i), &max_size, max_size);
8017
8018 if (putpkt_binary (rs->buf, i + buf_len) < 0
8019 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8020 || packet_ok (rs->buf, packet) != PACKET_OK)
8021 return -1;
8022
8023 unpack_varlen_hex (rs->buf, &n);
8024 return n;
8025}
8026
8027/* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8028 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8029 number of bytes read is returned, or 0 for EOF, or -1 for error.
8030 The number of bytes read may be less than LEN without indicating an
8031 EOF. PACKET is checked and updated to indicate whether the remote
8032 target supports this object. */
8033
8034static LONGEST
8035remote_read_qxfer (struct target_ops *ops, const char *object_name,
8036 const char *annex,
8037 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8038 struct packet_config *packet)
8039{
8040 static char *finished_object;
8041 static char *finished_annex;
8042 static ULONGEST finished_offset;
8043
8044 struct remote_state *rs = get_remote_state ();
8045 LONGEST i, n, packet_len;
8046
8047 if (packet->support == PACKET_DISABLE)
8048 return -1;
8049
8050 /* Check whether we've cached an end-of-object packet that matches
8051 this request. */
8052 if (finished_object)
8053 {
8054 if (strcmp (object_name, finished_object) == 0
8055 && strcmp (annex ? annex : "", finished_annex) == 0
8056 && offset == finished_offset)
8057 return 0;
8058
8059 /* Otherwise, we're now reading something different. Discard
8060 the cache. */
8061 xfree (finished_object);
8062 xfree (finished_annex);
8063 finished_object = NULL;
8064 finished_annex = NULL;
8065 }
8066
8067 /* Request only enough to fit in a single packet. The actual data
8068 may not, since we don't know how much of it will need to be escaped;
8069 the target is free to respond with slightly less data. We subtract
8070 five to account for the response type and the protocol frame. */
8071 n = min (get_remote_packet_size () - 5, len);
8072 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8073 object_name, annex ? annex : "",
8074 phex_nz (offset, sizeof offset),
8075 phex_nz (n, sizeof n));
8076 i = putpkt (rs->buf);
8077 if (i < 0)
8078 return -1;
8079
8080 rs->buf[0] = '\0';
8081 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8082 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8083 return -1;
8084
8085 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8086 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8087
8088 /* 'm' means there is (or at least might be) more data after this
8089 batch. That does not make sense unless there's at least one byte
8090 of data in this reply. */
8091 if (rs->buf[0] == 'm' && packet_len == 1)
8092 error (_("Remote qXfer reply contained no data."));
8093
8094 /* Got some data. */
8095 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8096
8097 /* 'l' is an EOF marker, possibly including a final block of data,
8098 or possibly empty. If we have the final block of a non-empty
8099 object, record this fact to bypass a subsequent partial read. */
8100 if (rs->buf[0] == 'l' && offset + i > 0)
8101 {
8102 finished_object = xstrdup (object_name);
8103 finished_annex = xstrdup (annex ? annex : "");
8104 finished_offset = offset + i;
8105 }
8106
8107 return i;
8108}
8109
8110static LONGEST
8111remote_xfer_partial (struct target_ops *ops, enum target_object object,
8112 const char *annex, gdb_byte *readbuf,
8113 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8114{
8115 struct remote_state *rs;
8116 int i;
8117 char *p2;
8118 char query_type;
8119
8120 set_remote_traceframe ();
8121 set_general_thread (inferior_ptid);
8122
8123 rs = get_remote_state ();
8124
8125 /* Handle memory using the standard memory routines. */
8126 if (object == TARGET_OBJECT_MEMORY)
8127 {
8128 int xfered;
8129
8130 errno = 0;
8131
8132 /* If the remote target is connected but not running, we should
8133 pass this request down to a lower stratum (e.g. the executable
8134 file). */
8135 if (!target_has_execution)
8136 return 0;
8137
8138 if (writebuf != NULL)
8139 xfered = remote_write_bytes (offset, writebuf, len);
8140 else
8141 xfered = remote_read_bytes (offset, readbuf, len);
8142
8143 if (xfered > 0)
8144 return xfered;
8145 else if (xfered == 0 && errno == 0)
8146 return 0;
8147 else
8148 return -1;
8149 }
8150
8151 /* Handle SPU memory using qxfer packets. */
8152 if (object == TARGET_OBJECT_SPU)
8153 {
8154 if (readbuf)
8155 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8156 &remote_protocol_packets
8157 [PACKET_qXfer_spu_read]);
8158 else
8159 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8160 &remote_protocol_packets
8161 [PACKET_qXfer_spu_write]);
8162 }
8163
8164 /* Handle extra signal info using qxfer packets. */
8165 if (object == TARGET_OBJECT_SIGNAL_INFO)
8166 {
8167 if (readbuf)
8168 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8169 &remote_protocol_packets
8170 [PACKET_qXfer_siginfo_read]);
8171 else
8172 return remote_write_qxfer (ops, "siginfo", annex,
8173 writebuf, offset, len,
8174 &remote_protocol_packets
8175 [PACKET_qXfer_siginfo_write]);
8176 }
8177
8178 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8179 {
8180 if (readbuf)
8181 return remote_read_qxfer (ops, "statictrace", annex,
8182 readbuf, offset, len,
8183 &remote_protocol_packets
8184 [PACKET_qXfer_statictrace_read]);
8185 else
8186 return -1;
8187 }
8188
8189 /* Only handle flash writes. */
8190 if (writebuf != NULL)
8191 {
8192 LONGEST xfered;
8193
8194 switch (object)
8195 {
8196 case TARGET_OBJECT_FLASH:
8197 xfered = remote_flash_write (ops, offset, len, writebuf);
8198
8199 if (xfered > 0)
8200 return xfered;
8201 else if (xfered == 0 && errno == 0)
8202 return 0;
8203 else
8204 return -1;
8205
8206 default:
8207 return -1;
8208 }
8209 }
8210
8211 /* Map pre-existing objects onto letters. DO NOT do this for new
8212 objects!!! Instead specify new query packets. */
8213 switch (object)
8214 {
8215 case TARGET_OBJECT_AVR:
8216 query_type = 'R';
8217 break;
8218
8219 case TARGET_OBJECT_AUXV:
8220 gdb_assert (annex == NULL);
8221 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8222 &remote_protocol_packets[PACKET_qXfer_auxv]);
8223
8224 case TARGET_OBJECT_AVAILABLE_FEATURES:
8225 return remote_read_qxfer
8226 (ops, "features", annex, readbuf, offset, len,
8227 &remote_protocol_packets[PACKET_qXfer_features]);
8228
8229 case TARGET_OBJECT_LIBRARIES:
8230 return remote_read_qxfer
8231 (ops, "libraries", annex, readbuf, offset, len,
8232 &remote_protocol_packets[PACKET_qXfer_libraries]);
8233
8234 case TARGET_OBJECT_MEMORY_MAP:
8235 gdb_assert (annex == NULL);
8236 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8237 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8238
8239 case TARGET_OBJECT_OSDATA:
8240 /* Should only get here if we're connected. */
8241 gdb_assert (remote_desc);
8242 return remote_read_qxfer
8243 (ops, "osdata", annex, readbuf, offset, len,
8244 &remote_protocol_packets[PACKET_qXfer_osdata]);
8245
8246 case TARGET_OBJECT_THREADS:
8247 gdb_assert (annex == NULL);
8248 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8249 &remote_protocol_packets[PACKET_qXfer_threads]);
8250
8251 case TARGET_OBJECT_TRACEFRAME_INFO:
8252 gdb_assert (annex == NULL);
8253 return remote_read_qxfer
8254 (ops, "traceframe-info", annex, readbuf, offset, len,
8255 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8256 default:
8257 return -1;
8258 }
8259
8260 /* Note: a zero OFFSET and LEN can be used to query the minimum
8261 buffer size. */
8262 if (offset == 0 && len == 0)
8263 return (get_remote_packet_size ());
8264 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8265 large enough let the caller deal with it. */
8266 if (len < get_remote_packet_size ())
8267 return -1;
8268 len = get_remote_packet_size ();
8269
8270 /* Except for querying the minimum buffer size, target must be open. */
8271 if (!remote_desc)
8272 error (_("remote query is only available after target open"));
8273
8274 gdb_assert (annex != NULL);
8275 gdb_assert (readbuf != NULL);
8276
8277 p2 = rs->buf;
8278 *p2++ = 'q';
8279 *p2++ = query_type;
8280
8281 /* We used one buffer char for the remote protocol q command and
8282 another for the query type. As the remote protocol encapsulation
8283 uses 4 chars plus one extra in case we are debugging
8284 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8285 string. */
8286 i = 0;
8287 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8288 {
8289 /* Bad caller may have sent forbidden characters. */
8290 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8291 *p2++ = annex[i];
8292 i++;
8293 }
8294 *p2 = '\0';
8295 gdb_assert (annex[i] == '\0');
8296
8297 i = putpkt (rs->buf);
8298 if (i < 0)
8299 return i;
8300
8301 getpkt (&rs->buf, &rs->buf_size, 0);
8302 strcpy ((char *) readbuf, rs->buf);
8303
8304 return strlen ((char *) readbuf);
8305}
8306
8307static int
8308remote_search_memory (struct target_ops* ops,
8309 CORE_ADDR start_addr, ULONGEST search_space_len,
8310 const gdb_byte *pattern, ULONGEST pattern_len,
8311 CORE_ADDR *found_addrp)
8312{
8313 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8314 struct remote_state *rs = get_remote_state ();
8315 int max_size = get_memory_write_packet_size ();
8316 struct packet_config *packet =
8317 &remote_protocol_packets[PACKET_qSearch_memory];
8318 /* Number of packet bytes used to encode the pattern;
8319 this could be more than PATTERN_LEN due to escape characters. */
8320 int escaped_pattern_len;
8321 /* Amount of pattern that was encodable in the packet. */
8322 int used_pattern_len;
8323 int i;
8324 int found;
8325 ULONGEST found_addr;
8326
8327 /* Don't go to the target if we don't have to.
8328 This is done before checking packet->support to avoid the possibility that
8329 a success for this edge case means the facility works in general. */
8330 if (pattern_len > search_space_len)
8331 return 0;
8332 if (pattern_len == 0)
8333 {
8334 *found_addrp = start_addr;
8335 return 1;
8336 }
8337
8338 /* If we already know the packet isn't supported, fall back to the simple
8339 way of searching memory. */
8340
8341 if (packet->support == PACKET_DISABLE)
8342 {
8343 /* Target doesn't provided special support, fall back and use the
8344 standard support (copy memory and do the search here). */
8345 return simple_search_memory (ops, start_addr, search_space_len,
8346 pattern, pattern_len, found_addrp);
8347 }
8348
8349 /* Insert header. */
8350 i = snprintf (rs->buf, max_size,
8351 "qSearch:memory:%s;%s;",
8352 phex_nz (start_addr, addr_size),
8353 phex_nz (search_space_len, sizeof (search_space_len)));
8354 max_size -= (i + 1);
8355
8356 /* Escape as much data as fits into rs->buf. */
8357 escaped_pattern_len =
8358 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8359 &used_pattern_len, max_size);
8360
8361 /* Bail if the pattern is too large. */
8362 if (used_pattern_len != pattern_len)
8363 error (_("Pattern is too large to transmit to remote target."));
8364
8365 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8366 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8367 || packet_ok (rs->buf, packet) != PACKET_OK)
8368 {
8369 /* The request may not have worked because the command is not
8370 supported. If so, fall back to the simple way. */
8371 if (packet->support == PACKET_DISABLE)
8372 {
8373 return simple_search_memory (ops, start_addr, search_space_len,
8374 pattern, pattern_len, found_addrp);
8375 }
8376 return -1;
8377 }
8378
8379 if (rs->buf[0] == '0')
8380 found = 0;
8381 else if (rs->buf[0] == '1')
8382 {
8383 found = 1;
8384 if (rs->buf[1] != ',')
8385 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8386 unpack_varlen_hex (rs->buf + 2, &found_addr);
8387 *found_addrp = found_addr;
8388 }
8389 else
8390 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8391
8392 return found;
8393}
8394
8395static void
8396remote_rcmd (char *command,
8397 struct ui_file *outbuf)
8398{
8399 struct remote_state *rs = get_remote_state ();
8400 char *p = rs->buf;
8401
8402 if (!remote_desc)
8403 error (_("remote rcmd is only available after target open"));
8404
8405 /* Send a NULL command across as an empty command. */
8406 if (command == NULL)
8407 command = "";
8408
8409 /* The query prefix. */
8410 strcpy (rs->buf, "qRcmd,");
8411 p = strchr (rs->buf, '\0');
8412
8413 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8414 > get_remote_packet_size ())
8415 error (_("\"monitor\" command ``%s'' is too long."), command);
8416
8417 /* Encode the actual command. */
8418 bin2hex ((gdb_byte *) command, p, 0);
8419
8420 if (putpkt (rs->buf) < 0)
8421 error (_("Communication problem with target."));
8422
8423 /* get/display the response */
8424 while (1)
8425 {
8426 char *buf;
8427
8428 /* XXX - see also remote_get_noisy_reply(). */
8429 rs->buf[0] = '\0';
8430 getpkt (&rs->buf, &rs->buf_size, 0);
8431 buf = rs->buf;
8432 if (buf[0] == '\0')
8433 error (_("Target does not support this command."));
8434 if (buf[0] == 'O' && buf[1] != 'K')
8435 {
8436 remote_console_output (buf + 1); /* 'O' message from stub. */
8437 continue;
8438 }
8439 if (strcmp (buf, "OK") == 0)
8440 break;
8441 if (strlen (buf) == 3 && buf[0] == 'E'
8442 && isdigit (buf[1]) && isdigit (buf[2]))
8443 {
8444 error (_("Protocol error with Rcmd"));
8445 }
8446 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8447 {
8448 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8449
8450 fputc_unfiltered (c, outbuf);
8451 }
8452 break;
8453 }
8454}
8455
8456static VEC(mem_region_s) *
8457remote_memory_map (struct target_ops *ops)
8458{
8459 VEC(mem_region_s) *result = NULL;
8460 char *text = target_read_stralloc (&current_target,
8461 TARGET_OBJECT_MEMORY_MAP, NULL);
8462
8463 if (text)
8464 {
8465 struct cleanup *back_to = make_cleanup (xfree, text);
8466
8467 result = parse_memory_map (text);
8468 do_cleanups (back_to);
8469 }
8470
8471 return result;
8472}
8473
8474static void
8475packet_command (char *args, int from_tty)
8476{
8477 struct remote_state *rs = get_remote_state ();
8478
8479 if (!remote_desc)
8480 error (_("command can only be used with remote target"));
8481
8482 if (!args)
8483 error (_("remote-packet command requires packet text as argument"));
8484
8485 puts_filtered ("sending: ");
8486 print_packet (args);
8487 puts_filtered ("\n");
8488 putpkt (args);
8489
8490 getpkt (&rs->buf, &rs->buf_size, 0);
8491 puts_filtered ("received: ");
8492 print_packet (rs->buf);
8493 puts_filtered ("\n");
8494}
8495
8496#if 0
8497/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8498
8499static void display_thread_info (struct gdb_ext_thread_info *info);
8500
8501static void threadset_test_cmd (char *cmd, int tty);
8502
8503static void threadalive_test (char *cmd, int tty);
8504
8505static void threadlist_test_cmd (char *cmd, int tty);
8506
8507int get_and_display_threadinfo (threadref *ref);
8508
8509static void threadinfo_test_cmd (char *cmd, int tty);
8510
8511static int thread_display_step (threadref *ref, void *context);
8512
8513static void threadlist_update_test_cmd (char *cmd, int tty);
8514
8515static void init_remote_threadtests (void);
8516
8517#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8518
8519static void
8520threadset_test_cmd (char *cmd, int tty)
8521{
8522 int sample_thread = SAMPLE_THREAD;
8523
8524 printf_filtered (_("Remote threadset test\n"));
8525 set_general_thread (sample_thread);
8526}
8527
8528
8529static void
8530threadalive_test (char *cmd, int tty)
8531{
8532 int sample_thread = SAMPLE_THREAD;
8533 int pid = ptid_get_pid (inferior_ptid);
8534 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8535
8536 if (remote_thread_alive (ptid))
8537 printf_filtered ("PASS: Thread alive test\n");
8538 else
8539 printf_filtered ("FAIL: Thread alive test\n");
8540}
8541
8542void output_threadid (char *title, threadref *ref);
8543
8544void
8545output_threadid (char *title, threadref *ref)
8546{
8547 char hexid[20];
8548
8549 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8550 hexid[16] = 0;
8551 printf_filtered ("%s %s\n", title, (&hexid[0]));
8552}
8553
8554static void
8555threadlist_test_cmd (char *cmd, int tty)
8556{
8557 int startflag = 1;
8558 threadref nextthread;
8559 int done, result_count;
8560 threadref threadlist[3];
8561
8562 printf_filtered ("Remote Threadlist test\n");
8563 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8564 &result_count, &threadlist[0]))
8565 printf_filtered ("FAIL: threadlist test\n");
8566 else
8567 {
8568 threadref *scan = threadlist;
8569 threadref *limit = scan + result_count;
8570
8571 while (scan < limit)
8572 output_threadid (" thread ", scan++);
8573 }
8574}
8575
8576void
8577display_thread_info (struct gdb_ext_thread_info *info)
8578{
8579 output_threadid ("Threadid: ", &info->threadid);
8580 printf_filtered ("Name: %s\n ", info->shortname);
8581 printf_filtered ("State: %s\n", info->display);
8582 printf_filtered ("other: %s\n\n", info->more_display);
8583}
8584
8585int
8586get_and_display_threadinfo (threadref *ref)
8587{
8588 int result;
8589 int set;
8590 struct gdb_ext_thread_info threadinfo;
8591
8592 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8593 | TAG_MOREDISPLAY | TAG_DISPLAY;
8594 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8595 display_thread_info (&threadinfo);
8596 return result;
8597}
8598
8599static void
8600threadinfo_test_cmd (char *cmd, int tty)
8601{
8602 int athread = SAMPLE_THREAD;
8603 threadref thread;
8604 int set;
8605
8606 int_to_threadref (&thread, athread);
8607 printf_filtered ("Remote Threadinfo test\n");
8608 if (!get_and_display_threadinfo (&thread))
8609 printf_filtered ("FAIL cannot get thread info\n");
8610}
8611
8612static int
8613thread_display_step (threadref *ref, void *context)
8614{
8615 /* output_threadid(" threadstep ",ref); *//* simple test */
8616 return get_and_display_threadinfo (ref);
8617}
8618
8619static void
8620threadlist_update_test_cmd (char *cmd, int tty)
8621{
8622 printf_filtered ("Remote Threadlist update test\n");
8623 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8624}
8625
8626static void
8627init_remote_threadtests (void)
8628{
8629 add_com ("tlist", class_obscure, threadlist_test_cmd,
8630 _("Fetch and print the remote list of "
8631 "thread identifiers, one pkt only"));
8632 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8633 _("Fetch and display info about one thread"));
8634 add_com ("tset", class_obscure, threadset_test_cmd,
8635 _("Test setting to a different thread"));
8636 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8637 _("Iterate through updating all remote thread info"));
8638 add_com ("talive", class_obscure, threadalive_test,
8639 _(" Remote thread alive test "));
8640}
8641
8642#endif /* 0 */
8643
8644/* Convert a thread ID to a string. Returns the string in a static
8645 buffer. */
8646
8647static char *
8648remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8649{
8650 static char buf[64];
8651 struct remote_state *rs = get_remote_state ();
8652
8653 if (ptid_is_pid (ptid))
8654 {
8655 /* Printing an inferior target id. */
8656
8657 /* When multi-process extensions are off, there's no way in the
8658 remote protocol to know the remote process id, if there's any
8659 at all. There's one exception --- when we're connected with
8660 target extended-remote, and we manually attached to a process
8661 with "attach PID". We don't record anywhere a flag that
8662 allows us to distinguish that case from the case of
8663 connecting with extended-remote and the stub already being
8664 attached to a process, and reporting yes to qAttached, hence
8665 no smart special casing here. */
8666 if (!remote_multi_process_p (rs))
8667 {
8668 xsnprintf (buf, sizeof buf, "Remote target");
8669 return buf;
8670 }
8671
8672 return normal_pid_to_str (ptid);
8673 }
8674 else
8675 {
8676 if (ptid_equal (magic_null_ptid, ptid))
8677 xsnprintf (buf, sizeof buf, "Thread <main>");
8678 else if (remote_multi_process_p (rs))
8679 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8680 ptid_get_pid (ptid), ptid_get_tid (ptid));
8681 else
8682 xsnprintf (buf, sizeof buf, "Thread %ld",
8683 ptid_get_tid (ptid));
8684 return buf;
8685 }
8686}
8687
8688/* Get the address of the thread local variable in OBJFILE which is
8689 stored at OFFSET within the thread local storage for thread PTID. */
8690
8691static CORE_ADDR
8692remote_get_thread_local_address (struct target_ops *ops,
8693 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8694{
8695 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8696 {
8697 struct remote_state *rs = get_remote_state ();
8698 char *p = rs->buf;
8699 char *endp = rs->buf + get_remote_packet_size ();
8700 enum packet_result result;
8701
8702 strcpy (p, "qGetTLSAddr:");
8703 p += strlen (p);
8704 p = write_ptid (p, endp, ptid);
8705 *p++ = ',';
8706 p += hexnumstr (p, offset);
8707 *p++ = ',';
8708 p += hexnumstr (p, lm);
8709 *p++ = '\0';
8710
8711 putpkt (rs->buf);
8712 getpkt (&rs->buf, &rs->buf_size, 0);
8713 result = packet_ok (rs->buf,
8714 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8715 if (result == PACKET_OK)
8716 {
8717 ULONGEST result;
8718
8719 unpack_varlen_hex (rs->buf, &result);
8720 return result;
8721 }
8722 else if (result == PACKET_UNKNOWN)
8723 throw_error (TLS_GENERIC_ERROR,
8724 _("Remote target doesn't support qGetTLSAddr packet"));
8725 else
8726 throw_error (TLS_GENERIC_ERROR,
8727 _("Remote target failed to process qGetTLSAddr request"));
8728 }
8729 else
8730 throw_error (TLS_GENERIC_ERROR,
8731 _("TLS not supported or disabled on this target"));
8732 /* Not reached. */
8733 return 0;
8734}
8735
8736/* Provide thread local base, i.e. Thread Information Block address.
8737 Returns 1 if ptid is found and thread_local_base is non zero. */
8738
8739int
8740remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8741{
8742 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8743 {
8744 struct remote_state *rs = get_remote_state ();
8745 char *p = rs->buf;
8746 char *endp = rs->buf + get_remote_packet_size ();
8747 enum packet_result result;
8748
8749 strcpy (p, "qGetTIBAddr:");
8750 p += strlen (p);
8751 p = write_ptid (p, endp, ptid);
8752 *p++ = '\0';
8753
8754 putpkt (rs->buf);
8755 getpkt (&rs->buf, &rs->buf_size, 0);
8756 result = packet_ok (rs->buf,
8757 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8758 if (result == PACKET_OK)
8759 {
8760 ULONGEST result;
8761
8762 unpack_varlen_hex (rs->buf, &result);
8763 if (addr)
8764 *addr = (CORE_ADDR) result;
8765 return 1;
8766 }
8767 else if (result == PACKET_UNKNOWN)
8768 error (_("Remote target doesn't support qGetTIBAddr packet"));
8769 else
8770 error (_("Remote target failed to process qGetTIBAddr request"));
8771 }
8772 else
8773 error (_("qGetTIBAddr not supported or disabled on this target"));
8774 /* Not reached. */
8775 return 0;
8776}
8777
8778/* Support for inferring a target description based on the current
8779 architecture and the size of a 'g' packet. While the 'g' packet
8780 can have any size (since optional registers can be left off the
8781 end), some sizes are easily recognizable given knowledge of the
8782 approximate architecture. */
8783
8784struct remote_g_packet_guess
8785{
8786 int bytes;
8787 const struct target_desc *tdesc;
8788};
8789typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8790DEF_VEC_O(remote_g_packet_guess_s);
8791
8792struct remote_g_packet_data
8793{
8794 VEC(remote_g_packet_guess_s) *guesses;
8795};
8796
8797static struct gdbarch_data *remote_g_packet_data_handle;
8798
8799static void *
8800remote_g_packet_data_init (struct obstack *obstack)
8801{
8802 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8803}
8804
8805void
8806register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8807 const struct target_desc *tdesc)
8808{
8809 struct remote_g_packet_data *data
8810 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8811 struct remote_g_packet_guess new_guess, *guess;
8812 int ix;
8813
8814 gdb_assert (tdesc != NULL);
8815
8816 for (ix = 0;
8817 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8818 ix++)
8819 if (guess->bytes == bytes)
8820 internal_error (__FILE__, __LINE__,
8821 _("Duplicate g packet description added for size %d"),
8822 bytes);
8823
8824 new_guess.bytes = bytes;
8825 new_guess.tdesc = tdesc;
8826 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8827}
8828
8829/* Return 1 if remote_read_description would do anything on this target
8830 and architecture, 0 otherwise. */
8831
8832static int
8833remote_read_description_p (struct target_ops *target)
8834{
8835 struct remote_g_packet_data *data
8836 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8837
8838 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8839 return 1;
8840
8841 return 0;
8842}
8843
8844static const struct target_desc *
8845remote_read_description (struct target_ops *target)
8846{
8847 struct remote_g_packet_data *data
8848 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8849
8850 /* Do not try this during initial connection, when we do not know
8851 whether there is a running but stopped thread. */
8852 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8853 return NULL;
8854
8855 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8856 {
8857 struct remote_g_packet_guess *guess;
8858 int ix;
8859 int bytes = send_g_packet ();
8860
8861 for (ix = 0;
8862 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8863 ix++)
8864 if (guess->bytes == bytes)
8865 return guess->tdesc;
8866
8867 /* We discard the g packet. A minor optimization would be to
8868 hold on to it, and fill the register cache once we have selected
8869 an architecture, but it's too tricky to do safely. */
8870 }
8871
8872 return NULL;
8873}
8874
8875/* Remote file transfer support. This is host-initiated I/O, not
8876 target-initiated; for target-initiated, see remote-fileio.c. */
8877
8878/* If *LEFT is at least the length of STRING, copy STRING to
8879 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8880 decrease *LEFT. Otherwise raise an error. */
8881
8882static void
8883remote_buffer_add_string (char **buffer, int *left, char *string)
8884{
8885 int len = strlen (string);
8886
8887 if (len > *left)
8888 error (_("Packet too long for target."));
8889
8890 memcpy (*buffer, string, len);
8891 *buffer += len;
8892 *left -= len;
8893
8894 /* NUL-terminate the buffer as a convenience, if there is
8895 room. */
8896 if (*left)
8897 **buffer = '\0';
8898}
8899
8900/* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8901 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8902 decrease *LEFT. Otherwise raise an error. */
8903
8904static void
8905remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8906 int len)
8907{
8908 if (2 * len > *left)
8909 error (_("Packet too long for target."));
8910
8911 bin2hex (bytes, *buffer, len);
8912 *buffer += 2 * len;
8913 *left -= 2 * len;
8914
8915 /* NUL-terminate the buffer as a convenience, if there is
8916 room. */
8917 if (*left)
8918 **buffer = '\0';
8919}
8920
8921/* If *LEFT is large enough, convert VALUE to hex and add it to
8922 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8923 decrease *LEFT. Otherwise raise an error. */
8924
8925static void
8926remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8927{
8928 int len = hexnumlen (value);
8929
8930 if (len > *left)
8931 error (_("Packet too long for target."));
8932
8933 hexnumstr (*buffer, value);
8934 *buffer += len;
8935 *left -= len;
8936
8937 /* NUL-terminate the buffer as a convenience, if there is
8938 room. */
8939 if (*left)
8940 **buffer = '\0';
8941}
8942
8943/* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8944 value, *REMOTE_ERRNO to the remote error number or zero if none
8945 was included, and *ATTACHMENT to point to the start of the annex
8946 if any. The length of the packet isn't needed here; there may
8947 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8948
8949 Return 0 if the packet could be parsed, -1 if it could not. If
8950 -1 is returned, the other variables may not be initialized. */
8951
8952static int
8953remote_hostio_parse_result (char *buffer, int *retcode,
8954 int *remote_errno, char **attachment)
8955{
8956 char *p, *p2;
8957
8958 *remote_errno = 0;
8959 *attachment = NULL;
8960
8961 if (buffer[0] != 'F')
8962 return -1;
8963
8964 errno = 0;
8965 *retcode = strtol (&buffer[1], &p, 16);
8966 if (errno != 0 || p == &buffer[1])
8967 return -1;
8968
8969 /* Check for ",errno". */
8970 if (*p == ',')
8971 {
8972 errno = 0;
8973 *remote_errno = strtol (p + 1, &p2, 16);
8974 if (errno != 0 || p + 1 == p2)
8975 return -1;
8976 p = p2;
8977 }
8978
8979 /* Check for ";attachment". If there is no attachment, the
8980 packet should end here. */
8981 if (*p == ';')
8982 {
8983 *attachment = p + 1;
8984 return 0;
8985 }
8986 else if (*p == '\0')
8987 return 0;
8988 else
8989 return -1;
8990}
8991
8992/* Send a prepared I/O packet to the target and read its response.
8993 The prepared packet is in the global RS->BUF before this function
8994 is called, and the answer is there when we return.
8995
8996 COMMAND_BYTES is the length of the request to send, which may include
8997 binary data. WHICH_PACKET is the packet configuration to check
8998 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8999 is set to the error number and -1 is returned. Otherwise the value
9000 returned by the function is returned.
9001
9002 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9003 attachment is expected; an error will be reported if there's a
9004 mismatch. If one is found, *ATTACHMENT will be set to point into
9005 the packet buffer and *ATTACHMENT_LEN will be set to the
9006 attachment's length. */
9007
9008static int
9009remote_hostio_send_command (int command_bytes, int which_packet,
9010 int *remote_errno, char **attachment,
9011 int *attachment_len)
9012{
9013 struct remote_state *rs = get_remote_state ();
9014 int ret, bytes_read;
9015 char *attachment_tmp;
9016
9017 if (!remote_desc
9018 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9019 {
9020 *remote_errno = FILEIO_ENOSYS;
9021 return -1;
9022 }
9023
9024 putpkt_binary (rs->buf, command_bytes);
9025 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9026
9027 /* If it timed out, something is wrong. Don't try to parse the
9028 buffer. */
9029 if (bytes_read < 0)
9030 {
9031 *remote_errno = FILEIO_EINVAL;
9032 return -1;
9033 }
9034
9035 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9036 {
9037 case PACKET_ERROR:
9038 *remote_errno = FILEIO_EINVAL;
9039 return -1;
9040 case PACKET_UNKNOWN:
9041 *remote_errno = FILEIO_ENOSYS;
9042 return -1;
9043 case PACKET_OK:
9044 break;
9045 }
9046
9047 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9048 &attachment_tmp))
9049 {
9050 *remote_errno = FILEIO_EINVAL;
9051 return -1;
9052 }
9053
9054 /* Make sure we saw an attachment if and only if we expected one. */
9055 if ((attachment_tmp == NULL && attachment != NULL)
9056 || (attachment_tmp != NULL && attachment == NULL))
9057 {
9058 *remote_errno = FILEIO_EINVAL;
9059 return -1;
9060 }
9061
9062 /* If an attachment was found, it must point into the packet buffer;
9063 work out how many bytes there were. */
9064 if (attachment_tmp != NULL)
9065 {
9066 *attachment = attachment_tmp;
9067 *attachment_len = bytes_read - (*attachment - rs->buf);
9068 }
9069
9070 return ret;
9071}
9072
9073/* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9074 remote file descriptor, or -1 if an error occurs (and set
9075 *REMOTE_ERRNO). */
9076
9077static int
9078remote_hostio_open (const char *filename, int flags, int mode,
9079 int *remote_errno)
9080{
9081 struct remote_state *rs = get_remote_state ();
9082 char *p = rs->buf;
9083 int left = get_remote_packet_size () - 1;
9084
9085 remote_buffer_add_string (&p, &left, "vFile:open:");
9086
9087 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9088 strlen (filename));
9089 remote_buffer_add_string (&p, &left, ",");
9090
9091 remote_buffer_add_int (&p, &left, flags);
9092 remote_buffer_add_string (&p, &left, ",");
9093
9094 remote_buffer_add_int (&p, &left, mode);
9095
9096 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9097 remote_errno, NULL, NULL);
9098}
9099
9100/* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9101 Return the number of bytes written, or -1 if an error occurs (and
9102 set *REMOTE_ERRNO). */
9103
9104static int
9105remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9106 ULONGEST offset, int *remote_errno)
9107{
9108 struct remote_state *rs = get_remote_state ();
9109 char *p = rs->buf;
9110 int left = get_remote_packet_size ();
9111 int out_len;
9112
9113 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9114
9115 remote_buffer_add_int (&p, &left, fd);
9116 remote_buffer_add_string (&p, &left, ",");
9117
9118 remote_buffer_add_int (&p, &left, offset);
9119 remote_buffer_add_string (&p, &left, ",");
9120
9121 p += remote_escape_output (write_buf, len, p, &out_len,
9122 get_remote_packet_size () - (p - rs->buf));
9123
9124 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9125 remote_errno, NULL, NULL);
9126}
9127
9128/* Read up to LEN bytes FD on the remote target into READ_BUF
9129 Return the number of bytes read, or -1 if an error occurs (and
9130 set *REMOTE_ERRNO). */
9131
9132static int
9133remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9134 ULONGEST offset, int *remote_errno)
9135{
9136 struct remote_state *rs = get_remote_state ();
9137 char *p = rs->buf;
9138 char *attachment;
9139 int left = get_remote_packet_size ();
9140 int ret, attachment_len;
9141 int read_len;
9142
9143 remote_buffer_add_string (&p, &left, "vFile:pread:");
9144
9145 remote_buffer_add_int (&p, &left, fd);
9146 remote_buffer_add_string (&p, &left, ",");
9147
9148 remote_buffer_add_int (&p, &left, len);
9149 remote_buffer_add_string (&p, &left, ",");
9150
9151 remote_buffer_add_int (&p, &left, offset);
9152
9153 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9154 remote_errno, &attachment,
9155 &attachment_len);
9156
9157 if (ret < 0)
9158 return ret;
9159
9160 read_len = remote_unescape_input (attachment, attachment_len,
9161 read_buf, len);
9162 if (read_len != ret)
9163 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9164
9165 return ret;
9166}
9167
9168/* Close FD on the remote target. Return 0, or -1 if an error occurs
9169 (and set *REMOTE_ERRNO). */
9170
9171static int
9172remote_hostio_close (int fd, int *remote_errno)
9173{
9174 struct remote_state *rs = get_remote_state ();
9175 char *p = rs->buf;
9176 int left = get_remote_packet_size () - 1;
9177
9178 remote_buffer_add_string (&p, &left, "vFile:close:");
9179
9180 remote_buffer_add_int (&p, &left, fd);
9181
9182 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9183 remote_errno, NULL, NULL);
9184}
9185
9186/* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9187 occurs (and set *REMOTE_ERRNO). */
9188
9189static int
9190remote_hostio_unlink (const char *filename, int *remote_errno)
9191{
9192 struct remote_state *rs = get_remote_state ();
9193 char *p = rs->buf;
9194 int left = get_remote_packet_size () - 1;
9195
9196 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9197
9198 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9199 strlen (filename));
9200
9201 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9202 remote_errno, NULL, NULL);
9203}
9204
9205static int
9206remote_fileio_errno_to_host (int errnum)
9207{
9208 switch (errnum)
9209 {
9210 case FILEIO_EPERM:
9211 return EPERM;
9212 case FILEIO_ENOENT:
9213 return ENOENT;
9214 case FILEIO_EINTR:
9215 return EINTR;
9216 case FILEIO_EIO:
9217 return EIO;
9218 case FILEIO_EBADF:
9219 return EBADF;
9220 case FILEIO_EACCES:
9221 return EACCES;
9222 case FILEIO_EFAULT:
9223 return EFAULT;
9224 case FILEIO_EBUSY:
9225 return EBUSY;
9226 case FILEIO_EEXIST:
9227 return EEXIST;
9228 case FILEIO_ENODEV:
9229 return ENODEV;
9230 case FILEIO_ENOTDIR:
9231 return ENOTDIR;
9232 case FILEIO_EISDIR:
9233 return EISDIR;
9234 case FILEIO_EINVAL:
9235 return EINVAL;
9236 case FILEIO_ENFILE:
9237 return ENFILE;
9238 case FILEIO_EMFILE:
9239 return EMFILE;
9240 case FILEIO_EFBIG:
9241 return EFBIG;
9242 case FILEIO_ENOSPC:
9243 return ENOSPC;
9244 case FILEIO_ESPIPE:
9245 return ESPIPE;
9246 case FILEIO_EROFS:
9247 return EROFS;
9248 case FILEIO_ENOSYS:
9249 return ENOSYS;
9250 case FILEIO_ENAMETOOLONG:
9251 return ENAMETOOLONG;
9252 }
9253 return -1;
9254}
9255
9256static char *
9257remote_hostio_error (int errnum)
9258{
9259 int host_error = remote_fileio_errno_to_host (errnum);
9260
9261 if (host_error == -1)
9262 error (_("Unknown remote I/O error %d"), errnum);
9263 else
9264 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9265}
9266
9267static void
9268remote_hostio_close_cleanup (void *opaque)
9269{
9270 int fd = *(int *) opaque;
9271 int remote_errno;
9272
9273 remote_hostio_close (fd, &remote_errno);
9274}
9275
9276
9277static void *
9278remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9279{
9280 const char *filename = bfd_get_filename (abfd);
9281 int fd, remote_errno;
9282 int *stream;
9283
9284 gdb_assert (remote_filename_p (filename));
9285
9286 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9287 if (fd == -1)
9288 {
9289 errno = remote_fileio_errno_to_host (remote_errno);
9290 bfd_set_error (bfd_error_system_call);
9291 return NULL;
9292 }
9293
9294 stream = xmalloc (sizeof (int));
9295 *stream = fd;
9296 return stream;
9297}
9298
9299static int
9300remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9301{
9302 int fd = *(int *)stream;
9303 int remote_errno;
9304
9305 xfree (stream);
9306
9307 /* Ignore errors on close; these may happen if the remote
9308 connection was already torn down. */
9309 remote_hostio_close (fd, &remote_errno);
9310
9311 return 1;
9312}
9313
9314static file_ptr
9315remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9316 file_ptr nbytes, file_ptr offset)
9317{
9318 int fd = *(int *)stream;
9319 int remote_errno;
9320 file_ptr pos, bytes;
9321
9322 pos = 0;
9323 while (nbytes > pos)
9324 {
9325 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9326 offset + pos, &remote_errno);
9327 if (bytes == 0)
9328 /* Success, but no bytes, means end-of-file. */
9329 break;
9330 if (bytes == -1)
9331 {
9332 errno = remote_fileio_errno_to_host (remote_errno);
9333 bfd_set_error (bfd_error_system_call);
9334 return -1;
9335 }
9336
9337 pos += bytes;
9338 }
9339
9340 return pos;
9341}
9342
9343static int
9344remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9345{
9346 /* FIXME: We should probably implement remote_hostio_stat. */
9347 sb->st_size = INT_MAX;
9348 return 0;
9349}
9350
9351int
9352remote_filename_p (const char *filename)
9353{
9354 return strncmp (filename, "remote:", 7) == 0;
9355}
9356
9357bfd *
9358remote_bfd_open (const char *remote_file, const char *target)
9359{
9360 return bfd_openr_iovec (remote_file, target,
9361 remote_bfd_iovec_open, NULL,
9362 remote_bfd_iovec_pread,
9363 remote_bfd_iovec_close,
9364 remote_bfd_iovec_stat);
9365}
9366
9367void
9368remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9369{
9370 struct cleanup *back_to, *close_cleanup;
9371 int retcode, fd, remote_errno, bytes, io_size;
9372 FILE *file;
9373 gdb_byte *buffer;
9374 int bytes_in_buffer;
9375 int saw_eof;
9376 ULONGEST offset;
9377
9378 if (!remote_desc)
9379 error (_("command can only be used with remote target"));
9380
9381 file = fopen (local_file, "rb");
9382 if (file == NULL)
9383 perror_with_name (local_file);
9384 back_to = make_cleanup_fclose (file);
9385
9386 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9387 | FILEIO_O_TRUNC),
9388 0700, &remote_errno);
9389 if (fd == -1)
9390 remote_hostio_error (remote_errno);
9391
9392 /* Send up to this many bytes at once. They won't all fit in the
9393 remote packet limit, so we'll transfer slightly fewer. */
9394 io_size = get_remote_packet_size ();
9395 buffer = xmalloc (io_size);
9396 make_cleanup (xfree, buffer);
9397
9398 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9399
9400 bytes_in_buffer = 0;
9401 saw_eof = 0;
9402 offset = 0;
9403 while (bytes_in_buffer || !saw_eof)
9404 {
9405 if (!saw_eof)
9406 {
9407 bytes = fread (buffer + bytes_in_buffer, 1,
9408 io_size - bytes_in_buffer,
9409 file);
9410 if (bytes == 0)
9411 {
9412 if (ferror (file))
9413 error (_("Error reading %s."), local_file);
9414 else
9415 {
9416 /* EOF. Unless there is something still in the
9417 buffer from the last iteration, we are done. */
9418 saw_eof = 1;
9419 if (bytes_in_buffer == 0)
9420 break;
9421 }
9422 }
9423 }
9424 else
9425 bytes = 0;
9426
9427 bytes += bytes_in_buffer;
9428 bytes_in_buffer = 0;
9429
9430 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9431 offset, &remote_errno);
9432
9433 if (retcode < 0)
9434 remote_hostio_error (remote_errno);
9435 else if (retcode == 0)
9436 error (_("Remote write of %d bytes returned 0!"), bytes);
9437 else if (retcode < bytes)
9438 {
9439 /* Short write. Save the rest of the read data for the next
9440 write. */
9441 bytes_in_buffer = bytes - retcode;
9442 memmove (buffer, buffer + retcode, bytes_in_buffer);
9443 }
9444
9445 offset += retcode;
9446 }
9447
9448 discard_cleanups (close_cleanup);
9449 if (remote_hostio_close (fd, &remote_errno))
9450 remote_hostio_error (remote_errno);
9451
9452 if (from_tty)
9453 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9454 do_cleanups (back_to);
9455}
9456
9457void
9458remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9459{
9460 struct cleanup *back_to, *close_cleanup;
9461 int fd, remote_errno, bytes, io_size;
9462 FILE *file;
9463 gdb_byte *buffer;
9464 ULONGEST offset;
9465
9466 if (!remote_desc)
9467 error (_("command can only be used with remote target"));
9468
9469 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9470 if (fd == -1)
9471 remote_hostio_error (remote_errno);
9472
9473 file = fopen (local_file, "wb");
9474 if (file == NULL)
9475 perror_with_name (local_file);
9476 back_to = make_cleanup_fclose (file);
9477
9478 /* Send up to this many bytes at once. They won't all fit in the
9479 remote packet limit, so we'll transfer slightly fewer. */
9480 io_size = get_remote_packet_size ();
9481 buffer = xmalloc (io_size);
9482 make_cleanup (xfree, buffer);
9483
9484 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9485
9486 offset = 0;
9487 while (1)
9488 {
9489 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9490 if (bytes == 0)
9491 /* Success, but no bytes, means end-of-file. */
9492 break;
9493 if (bytes == -1)
9494 remote_hostio_error (remote_errno);
9495
9496 offset += bytes;
9497
9498 bytes = fwrite (buffer, 1, bytes, file);
9499 if (bytes == 0)
9500 perror_with_name (local_file);
9501 }
9502
9503 discard_cleanups (close_cleanup);
9504 if (remote_hostio_close (fd, &remote_errno))
9505 remote_hostio_error (remote_errno);
9506
9507 if (from_tty)
9508 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9509 do_cleanups (back_to);
9510}
9511
9512void
9513remote_file_delete (const char *remote_file, int from_tty)
9514{
9515 int retcode, remote_errno;
9516
9517 if (!remote_desc)
9518 error (_("command can only be used with remote target"));
9519
9520 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9521 if (retcode == -1)
9522 remote_hostio_error (remote_errno);
9523
9524 if (from_tty)
9525 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9526}
9527
9528static void
9529remote_put_command (char *args, int from_tty)
9530{
9531 struct cleanup *back_to;
9532 char **argv;
9533
9534 if (args == NULL)
9535 error_no_arg (_("file to put"));
9536
9537 argv = gdb_buildargv (args);
9538 back_to = make_cleanup_freeargv (argv);
9539 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9540 error (_("Invalid parameters to remote put"));
9541
9542 remote_file_put (argv[0], argv[1], from_tty);
9543
9544 do_cleanups (back_to);
9545}
9546
9547static void
9548remote_get_command (char *args, int from_tty)
9549{
9550 struct cleanup *back_to;
9551 char **argv;
9552
9553 if (args == NULL)
9554 error_no_arg (_("file to get"));
9555
9556 argv = gdb_buildargv (args);
9557 back_to = make_cleanup_freeargv (argv);
9558 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9559 error (_("Invalid parameters to remote get"));
9560
9561 remote_file_get (argv[0], argv[1], from_tty);
9562
9563 do_cleanups (back_to);
9564}
9565
9566static void
9567remote_delete_command (char *args, int from_tty)
9568{
9569 struct cleanup *back_to;
9570 char **argv;
9571
9572 if (args == NULL)
9573 error_no_arg (_("file to delete"));
9574
9575 argv = gdb_buildargv (args);
9576 back_to = make_cleanup_freeargv (argv);
9577 if (argv[0] == NULL || argv[1] != NULL)
9578 error (_("Invalid parameters to remote delete"));
9579
9580 remote_file_delete (argv[0], from_tty);
9581
9582 do_cleanups (back_to);
9583}
9584
9585static void
9586remote_command (char *args, int from_tty)
9587{
9588 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9589}
9590
9591static int
9592remote_can_execute_reverse (void)
9593{
9594 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9595 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9596 return 1;
9597 else
9598 return 0;
9599}
9600
9601static int
9602remote_supports_non_stop (void)
9603{
9604 return 1;
9605}
9606
9607static int
9608remote_supports_multi_process (void)
9609{
9610 struct remote_state *rs = get_remote_state ();
9611
9612 return remote_multi_process_p (rs);
9613}
9614
9615int
9616remote_supports_cond_tracepoints (void)
9617{
9618 struct remote_state *rs = get_remote_state ();
9619
9620 return rs->cond_tracepoints;
9621}
9622
9623int
9624remote_supports_fast_tracepoints (void)
9625{
9626 struct remote_state *rs = get_remote_state ();
9627
9628 return rs->fast_tracepoints;
9629}
9630
9631static int
9632remote_supports_static_tracepoints (void)
9633{
9634 struct remote_state *rs = get_remote_state ();
9635
9636 return rs->static_tracepoints;
9637}
9638
9639static void
9640remote_trace_init (void)
9641{
9642 putpkt ("QTinit");
9643 remote_get_noisy_reply (&target_buf, &target_buf_size);
9644 if (strcmp (target_buf, "OK") != 0)
9645 error (_("Target does not support this command."));
9646}
9647
9648static void free_actions_list (char **actions_list);
9649static void free_actions_list_cleanup_wrapper (void *);
9650static void
9651free_actions_list_cleanup_wrapper (void *al)
9652{
9653 free_actions_list (al);
9654}
9655
9656static void
9657free_actions_list (char **actions_list)
9658{
9659 int ndx;
9660
9661 if (actions_list == 0)
9662 return;
9663
9664 for (ndx = 0; actions_list[ndx]; ndx++)
9665 xfree (actions_list[ndx]);
9666
9667 xfree (actions_list);
9668}
9669
9670/* Recursive routine to walk through command list including loops, and
9671 download packets for each command. */
9672
9673static void
9674remote_download_command_source (int num, ULONGEST addr,
9675 struct command_line *cmds)
9676{
9677 struct remote_state *rs = get_remote_state ();
9678 struct command_line *cmd;
9679
9680 for (cmd = cmds; cmd; cmd = cmd->next)
9681 {
9682 QUIT; /* Allow user to bail out with ^C. */
9683 strcpy (rs->buf, "QTDPsrc:");
9684 encode_source_string (num, addr, "cmd", cmd->line,
9685 rs->buf + strlen (rs->buf),
9686 rs->buf_size - strlen (rs->buf));
9687 putpkt (rs->buf);
9688 remote_get_noisy_reply (&target_buf, &target_buf_size);
9689 if (strcmp (target_buf, "OK"))
9690 warning (_("Target does not support source download."));
9691
9692 if (cmd->control_type == while_control
9693 || cmd->control_type == while_stepping_control)
9694 {
9695 remote_download_command_source (num, addr, *cmd->body_list);
9696
9697 QUIT; /* Allow user to bail out with ^C. */
9698 strcpy (rs->buf, "QTDPsrc:");
9699 encode_source_string (num, addr, "cmd", "end",
9700 rs->buf + strlen (rs->buf),
9701 rs->buf_size - strlen (rs->buf));
9702 putpkt (rs->buf);
9703 remote_get_noisy_reply (&target_buf, &target_buf_size);
9704 if (strcmp (target_buf, "OK"))
9705 warning (_("Target does not support source download."));
9706 }
9707 }
9708}
9709
9710static void
9711remote_download_tracepoint (struct breakpoint *t)
9712{
9713 struct bp_location *loc;
9714 CORE_ADDR tpaddr;
9715 char addrbuf[40];
9716 char buf[2048];
9717 char **tdp_actions;
9718 char **stepping_actions;
9719 int ndx;
9720 struct cleanup *old_chain = NULL;
9721 struct agent_expr *aexpr;
9722 struct cleanup *aexpr_chain = NULL;
9723 char *pkt;
9724
9725 /* Iterate over all the tracepoint locations. It's up to the target to
9726 notice multiple tracepoint packets with the same number but different
9727 addresses, and treat them as multiple locations. */
9728 for (loc = t->loc; loc; loc = loc->next)
9729 {
9730 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9731 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9732 tdp_actions);
9733 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9734 stepping_actions);
9735
9736 tpaddr = loc->address;
9737 sprintf_vma (addrbuf, tpaddr);
9738 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9739 addrbuf, /* address */
9740 (t->enable_state == bp_enabled ? 'E' : 'D'),
9741 t->step_count, t->pass_count);
9742 /* Fast tracepoints are mostly handled by the target, but we can
9743 tell the target how big of an instruction block should be moved
9744 around. */
9745 if (t->type == bp_fast_tracepoint)
9746 {
9747 /* Only test for support at download time; we may not know
9748 target capabilities at definition time. */
9749 if (remote_supports_fast_tracepoints ())
9750 {
9751 int isize;
9752
9753 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9754 tpaddr, &isize, NULL))
9755 sprintf (buf + strlen (buf), ":F%x", isize);
9756 else
9757 /* If it passed validation at definition but fails now,
9758 something is very wrong. */
9759 internal_error (__FILE__, __LINE__,
9760 _("Fast tracepoint not "
9761 "valid during download"));
9762 }
9763 else
9764 /* Fast tracepoints are functionally identical to regular
9765 tracepoints, so don't take lack of support as a reason to
9766 give up on the trace run. */
9767 warning (_("Target does not support fast tracepoints, "
9768 "downloading %d as regular tracepoint"), t->number);
9769 }
9770 else if (t->type == bp_static_tracepoint)
9771 {
9772 /* Only test for support at download time; we may not know
9773 target capabilities at definition time. */
9774 if (remote_supports_static_tracepoints ())
9775 {
9776 struct static_tracepoint_marker marker;
9777
9778 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9779 strcat (buf, ":S");
9780 else
9781 error (_("Static tracepoint not valid during download"));
9782 }
9783 else
9784 /* Fast tracepoints are functionally identical to regular
9785 tracepoints, so don't take lack of support as a reason
9786 to give up on the trace run. */
9787 error (_("Target does not support static tracepoints"));
9788 }
9789 /* If the tracepoint has a conditional, make it into an agent
9790 expression and append to the definition. */
9791 if (loc->cond)
9792 {
9793 /* Only test support at download time, we may not know target
9794 capabilities at definition time. */
9795 if (remote_supports_cond_tracepoints ())
9796 {
9797 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9798 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9799 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9800 pkt = buf + strlen (buf);
9801 for (ndx = 0; ndx < aexpr->len; ++ndx)
9802 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9803 *pkt = '\0';
9804 do_cleanups (aexpr_chain);
9805 }
9806 else
9807 warning (_("Target does not support conditional tracepoints, "
9808 "ignoring tp %d cond"), t->number);
9809 }
9810
9811 if (t->commands || *default_collect)
9812 strcat (buf, "-");
9813 putpkt (buf);
9814 remote_get_noisy_reply (&target_buf, &target_buf_size);
9815 if (strcmp (target_buf, "OK"))
9816 error (_("Target does not support tracepoints."));
9817
9818 /* do_single_steps (t); */
9819 if (tdp_actions)
9820 {
9821 for (ndx = 0; tdp_actions[ndx]; ndx++)
9822 {
9823 QUIT; /* Allow user to bail out with ^C. */
9824 sprintf (buf, "QTDP:-%x:%s:%s%c",
9825 t->number, addrbuf, /* address */
9826 tdp_actions[ndx],
9827 ((tdp_actions[ndx + 1] || stepping_actions)
9828 ? '-' : 0));
9829 putpkt (buf);
9830 remote_get_noisy_reply (&target_buf,
9831 &target_buf_size);
9832 if (strcmp (target_buf, "OK"))
9833 error (_("Error on target while setting tracepoints."));
9834 }
9835 }
9836 if (stepping_actions)
9837 {
9838 for (ndx = 0; stepping_actions[ndx]; ndx++)
9839 {
9840 QUIT; /* Allow user to bail out with ^C. */
9841 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9842 t->number, addrbuf, /* address */
9843 ((ndx == 0) ? "S" : ""),
9844 stepping_actions[ndx],
9845 (stepping_actions[ndx + 1] ? "-" : ""));
9846 putpkt (buf);
9847 remote_get_noisy_reply (&target_buf,
9848 &target_buf_size);
9849 if (strcmp (target_buf, "OK"))
9850 error (_("Error on target while setting tracepoints."));
9851 }
9852 }
9853
9854 if (remote_protocol_packets[PACKET_TracepointSource].support
9855 == PACKET_ENABLE)
9856 {
9857 if (t->addr_string)
9858 {
9859 strcpy (buf, "QTDPsrc:");
9860 encode_source_string (t->number, loc->address,
9861 "at", t->addr_string, buf + strlen (buf),
9862 2048 - strlen (buf));
9863
9864 putpkt (buf);
9865 remote_get_noisy_reply (&target_buf, &target_buf_size);
9866 if (strcmp (target_buf, "OK"))
9867 warning (_("Target does not support source download."));
9868 }
9869 if (t->cond_string)
9870 {
9871 strcpy (buf, "QTDPsrc:");
9872 encode_source_string (t->number, loc->address,
9873 "cond", t->cond_string, buf + strlen (buf),
9874 2048 - strlen (buf));
9875 putpkt (buf);
9876 remote_get_noisy_reply (&target_buf, &target_buf_size);
9877 if (strcmp (target_buf, "OK"))
9878 warning (_("Target does not support source download."));
9879 }
9880 remote_download_command_source (t->number, loc->address,
9881 breakpoint_commands (t));
9882 }
9883
9884 do_cleanups (old_chain);
9885 }
9886}
9887
9888static void
9889remote_download_trace_state_variable (struct trace_state_variable *tsv)
9890{
9891 struct remote_state *rs = get_remote_state ();
9892 char *p;
9893
9894 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9895 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9896 p = rs->buf + strlen (rs->buf);
9897 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9898 error (_("Trace state variable name too long for tsv definition packet"));
9899 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9900 *p++ = '\0';
9901 putpkt (rs->buf);
9902 remote_get_noisy_reply (&target_buf, &target_buf_size);
9903 if (*target_buf == '\0')
9904 error (_("Target does not support this command."));
9905 if (strcmp (target_buf, "OK") != 0)
9906 error (_("Error on target while downloading trace state variable."));
9907}
9908
9909static void
9910remote_trace_set_readonly_regions (void)
9911{
9912 asection *s;
9913 bfd_size_type size;
9914 bfd_vma vma;
9915 int anysecs = 0;
9916
9917 if (!exec_bfd)
9918 return; /* No information to give. */
9919
9920 strcpy (target_buf, "QTro");
9921 for (s = exec_bfd->sections; s; s = s->next)
9922 {
9923 char tmp1[40], tmp2[40];
9924
9925 if ((s->flags & SEC_LOAD) == 0 ||
9926 /* (s->flags & SEC_CODE) == 0 || */
9927 (s->flags & SEC_READONLY) == 0)
9928 continue;
9929
9930 anysecs = 1;
9931 vma = bfd_get_section_vma (,s);
9932 size = bfd_get_section_size (s);
9933 sprintf_vma (tmp1, vma);
9934 sprintf_vma (tmp2, vma + size);
9935 sprintf (target_buf + strlen (target_buf),
9936 ":%s,%s", tmp1, tmp2);
9937 }
9938 if (anysecs)
9939 {
9940 putpkt (target_buf);
9941 getpkt (&target_buf, &target_buf_size, 0);
9942 }
9943}
9944
9945static void
9946remote_trace_start (void)
9947{
9948 putpkt ("QTStart");
9949 remote_get_noisy_reply (&target_buf, &target_buf_size);
9950 if (*target_buf == '\0')
9951 error (_("Target does not support this command."));
9952 if (strcmp (target_buf, "OK") != 0)
9953 error (_("Bogus reply from target: %s"), target_buf);
9954}
9955
9956static int
9957remote_get_trace_status (struct trace_status *ts)
9958{
9959 char *p;
9960 /* FIXME we need to get register block size some other way. */
9961 extern int trace_regblock_size;
9962
9963 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9964
9965 putpkt ("qTStatus");
9966 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9967
9968 /* If the remote target doesn't do tracing, flag it. */
9969 if (*p == '\0')
9970 return -1;
9971
9972 /* We're working with a live target. */
9973 ts->from_file = 0;
9974
9975 /* Set some defaults. */
9976 ts->running_known = 0;
9977 ts->stop_reason = trace_stop_reason_unknown;
9978 ts->traceframe_count = -1;
9979 ts->buffer_free = 0;
9980
9981 if (*p++ != 'T')
9982 error (_("Bogus trace status reply from target: %s"), target_buf);
9983
9984 parse_trace_status (p, ts);
9985
9986 return ts->running;
9987}
9988
9989static void
9990remote_trace_stop (void)
9991{
9992 putpkt ("QTStop");
9993 remote_get_noisy_reply (&target_buf, &target_buf_size);
9994 if (*target_buf == '\0')
9995 error (_("Target does not support this command."));
9996 if (strcmp (target_buf, "OK") != 0)
9997 error (_("Bogus reply from target: %s"), target_buf);
9998}
9999
10000static int
10001remote_trace_find (enum trace_find_type type, int num,
10002 ULONGEST addr1, ULONGEST addr2,
10003 int *tpp)
10004{
10005 struct remote_state *rs = get_remote_state ();
10006 char *p, *reply;
10007 int target_frameno = -1, target_tracept = -1;
10008
10009 /* Lookups other than by absolute frame number depend on the current
10010 trace selected, so make sure it is correct on the remote end
10011 first. */
10012 if (type != tfind_number)
10013 set_remote_traceframe ();
10014
10015 p = rs->buf;
10016 strcpy (p, "QTFrame:");
10017 p = strchr (p, '\0');
10018 switch (type)
10019 {
10020 case tfind_number:
10021 sprintf (p, "%x", num);
10022 break;
10023 case tfind_pc:
10024 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10025 break;
10026 case tfind_tp:
10027 sprintf (p, "tdp:%x", num);
10028 break;
10029 case tfind_range:
10030 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10031 break;
10032 case tfind_outside:
10033 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10034 break;
10035 default:
10036 error (_("Unknown trace find type %d"), type);
10037 }
10038
10039 putpkt (rs->buf);
10040 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10041 if (*reply == '\0')
10042 error (_("Target does not support this command."));
10043
10044 while (reply && *reply)
10045 switch (*reply)
10046 {
10047 case 'F':
10048 p = ++reply;
10049 target_frameno = (int) strtol (p, &reply, 16);
10050 if (reply == p)
10051 error (_("Unable to parse trace frame number"));
10052 /* Don't update our remote traceframe number cache on failure
10053 to select a remote traceframe. */
10054 if (target_frameno == -1)
10055 return -1;
10056 break;
10057 case 'T':
10058 p = ++reply;
10059 target_tracept = (int) strtol (p, &reply, 16);
10060 if (reply == p)
10061 error (_("Unable to parse tracepoint number"));
10062 break;
10063 case 'O': /* "OK"? */
10064 if (reply[1] == 'K' && reply[2] == '\0')
10065 reply += 2;
10066 else
10067 error (_("Bogus reply from target: %s"), reply);
10068 break;
10069 default:
10070 error (_("Bogus reply from target: %s"), reply);
10071 }
10072 if (tpp)
10073 *tpp = target_tracept;
10074
10075 remote_traceframe_number = target_frameno;
10076 return target_frameno;
10077}
10078
10079static int
10080remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10081{
10082 struct remote_state *rs = get_remote_state ();
10083 char *reply;
10084 ULONGEST uval;
10085
10086 set_remote_traceframe ();
10087
10088 sprintf (rs->buf, "qTV:%x", tsvnum);
10089 putpkt (rs->buf);
10090 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10091 if (reply && *reply)
10092 {
10093 if (*reply == 'V')
10094 {
10095 unpack_varlen_hex (reply + 1, &uval);
10096 *val = (LONGEST) uval;
10097 return 1;
10098 }
10099 }
10100 return 0;
10101}
10102
10103static int
10104remote_save_trace_data (const char *filename)
10105{
10106 struct remote_state *rs = get_remote_state ();
10107 char *p, *reply;
10108
10109 p = rs->buf;
10110 strcpy (p, "QTSave:");
10111 p += strlen (p);
10112 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10113 error (_("Remote file name too long for trace save packet"));
10114 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10115 *p++ = '\0';
10116 putpkt (rs->buf);
10117 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10118 if (*reply != '\0')
10119 error (_("Target does not support this command."));
10120 if (strcmp (reply, "OK") != 0)
10121 error (_("Bogus reply from target: %s"), reply);
10122 return 0;
10123}
10124
10125/* This is basically a memory transfer, but needs to be its own packet
10126 because we don't know how the target actually organizes its trace
10127 memory, plus we want to be able to ask for as much as possible, but
10128 not be unhappy if we don't get as much as we ask for. */
10129
10130static LONGEST
10131remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10132{
10133 struct remote_state *rs = get_remote_state ();
10134 char *reply;
10135 char *p;
10136 int rslt;
10137
10138 p = rs->buf;
10139 strcpy (p, "qTBuffer:");
10140 p += strlen (p);
10141 p += hexnumstr (p, offset);
10142 *p++ = ',';
10143 p += hexnumstr (p, len);
10144 *p++ = '\0';
10145
10146 putpkt (rs->buf);
10147 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10148 if (reply && *reply)
10149 {
10150 /* 'l' by itself means we're at the end of the buffer and
10151 there is nothing more to get. */
10152 if (*reply == 'l')
10153 return 0;
10154
10155 /* Convert the reply into binary. Limit the number of bytes to
10156 convert according to our passed-in buffer size, rather than
10157 what was returned in the packet; if the target is
10158 unexpectedly generous and gives us a bigger reply than we
10159 asked for, we don't want to crash. */
10160 rslt = hex2bin (target_buf, buf, len);
10161 return rslt;
10162 }
10163
10164 /* Something went wrong, flag as an error. */
10165 return -1;
10166}
10167
10168static void
10169remote_set_disconnected_tracing (int val)
10170{
10171 struct remote_state *rs = get_remote_state ();
10172
10173 if (rs->disconnected_tracing)
10174 {
10175 char *reply;
10176
10177 sprintf (rs->buf, "QTDisconnected:%x", val);
10178 putpkt (rs->buf);
10179 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10180 if (*reply == '\0')
10181 error (_("Target does not support this command."));
10182 if (strcmp (reply, "OK") != 0)
10183 error (_("Bogus reply from target: %s"), reply);
10184 }
10185 else if (val)
10186 warning (_("Target does not support disconnected tracing."));
10187}
10188
10189static int
10190remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10191{
10192 struct thread_info *info = find_thread_ptid (ptid);
10193
10194 if (info && info->private)
10195 return info->private->core;
10196 return -1;
10197}
10198
10199static void
10200remote_set_circular_trace_buffer (int val)
10201{
10202 struct remote_state *rs = get_remote_state ();
10203 char *reply;
10204
10205 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10206 putpkt (rs->buf);
10207 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10208 if (*reply == '\0')
10209 error (_("Target does not support this command."));
10210 if (strcmp (reply, "OK") != 0)
10211 error (_("Bogus reply from target: %s"), reply);
10212}
10213
10214static struct traceframe_info *
10215remote_traceframe_info (void)
10216{
10217 char *text;
10218
10219 text = target_read_stralloc (&current_target,
10220 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10221 if (text != NULL)
10222 {
10223 struct traceframe_info *info;
10224 struct cleanup *back_to = make_cleanup (xfree, text);
10225
10226 info = parse_traceframe_info (text);
10227 do_cleanups (back_to);
10228 return info;
10229 }
10230
10231 return NULL;
10232}
10233
10234static void
10235init_remote_ops (void)
10236{
10237 remote_ops.to_shortname = "remote";
10238 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10239 remote_ops.to_doc =
10240 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10241Specify the serial device it is connected to\n\
10242(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10243 remote_ops.to_open = remote_open;
10244 remote_ops.to_close = remote_close;
10245 remote_ops.to_detach = remote_detach;
10246 remote_ops.to_disconnect = remote_disconnect;
10247 remote_ops.to_resume = remote_resume;
10248 remote_ops.to_wait = remote_wait;
10249 remote_ops.to_fetch_registers = remote_fetch_registers;
10250 remote_ops.to_store_registers = remote_store_registers;
10251 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10252 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10253 remote_ops.to_files_info = remote_files_info;
10254 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10255 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10256 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10257 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10258 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10259 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10260 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10261 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10262 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10263 remote_ops.to_kill = remote_kill;
10264 remote_ops.to_load = generic_load;
10265 remote_ops.to_mourn_inferior = remote_mourn;
10266 remote_ops.to_notice_signals = remote_notice_signals;
10267 remote_ops.to_thread_alive = remote_thread_alive;
10268 remote_ops.to_find_new_threads = remote_threads_info;
10269 remote_ops.to_pid_to_str = remote_pid_to_str;
10270 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10271 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10272 remote_ops.to_stop = remote_stop;
10273 remote_ops.to_xfer_partial = remote_xfer_partial;
10274 remote_ops.to_rcmd = remote_rcmd;
10275 remote_ops.to_log_command = serial_log_command;
10276 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10277 remote_ops.to_stratum = process_stratum;
10278 remote_ops.to_has_all_memory = default_child_has_all_memory;
10279 remote_ops.to_has_memory = default_child_has_memory;
10280 remote_ops.to_has_stack = default_child_has_stack;
10281 remote_ops.to_has_registers = default_child_has_registers;
10282 remote_ops.to_has_execution = default_child_has_execution;
10283 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10284 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10285 remote_ops.to_magic = OPS_MAGIC;
10286 remote_ops.to_memory_map = remote_memory_map;
10287 remote_ops.to_flash_erase = remote_flash_erase;
10288 remote_ops.to_flash_done = remote_flash_done;
10289 remote_ops.to_read_description = remote_read_description;
10290 remote_ops.to_search_memory = remote_search_memory;
10291 remote_ops.to_can_async_p = remote_can_async_p;
10292 remote_ops.to_is_async_p = remote_is_async_p;
10293 remote_ops.to_async = remote_async;
10294 remote_ops.to_async_mask = remote_async_mask;
10295 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10296 remote_ops.to_terminal_ours = remote_terminal_ours;
10297 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10298 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10299 remote_ops.to_trace_init = remote_trace_init;
10300 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10301 remote_ops.to_download_trace_state_variable
10302 = remote_download_trace_state_variable;
10303 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10304 remote_ops.to_trace_start = remote_trace_start;
10305 remote_ops.to_get_trace_status = remote_get_trace_status;
10306 remote_ops.to_trace_stop = remote_trace_stop;
10307 remote_ops.to_trace_find = remote_trace_find;
10308 remote_ops.to_get_trace_state_variable_value
10309 = remote_get_trace_state_variable_value;
10310 remote_ops.to_save_trace_data = remote_save_trace_data;
10311 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10312 remote_ops.to_upload_trace_state_variables
10313 = remote_upload_trace_state_variables;
10314 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10315 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10316 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10317 remote_ops.to_core_of_thread = remote_core_of_thread;
10318 remote_ops.to_verify_memory = remote_verify_memory;
10319 remote_ops.to_get_tib_address = remote_get_tib_address;
10320 remote_ops.to_set_permissions = remote_set_permissions;
10321 remote_ops.to_static_tracepoint_marker_at
10322 = remote_static_tracepoint_marker_at;
10323 remote_ops.to_static_tracepoint_markers_by_strid
10324 = remote_static_tracepoint_markers_by_strid;
10325 remote_ops.to_traceframe_info = remote_traceframe_info;
10326}
10327
10328/* Set up the extended remote vector by making a copy of the standard
10329 remote vector and adding to it. */
10330
10331static void
10332init_extended_remote_ops (void)
10333{
10334 extended_remote_ops = remote_ops;
10335
10336 extended_remote_ops.to_shortname = "extended-remote";
10337 extended_remote_ops.to_longname =
10338 "Extended remote serial target in gdb-specific protocol";
10339 extended_remote_ops.to_doc =
10340 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10341Specify the serial device it is connected to (e.g. /dev/ttya).";
10342 extended_remote_ops.to_open = extended_remote_open;
10343 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10344 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10345 extended_remote_ops.to_detach = extended_remote_detach;
10346 extended_remote_ops.to_attach = extended_remote_attach;
10347 extended_remote_ops.to_kill = extended_remote_kill;
10348}
10349
10350static int
10351remote_can_async_p (void)
10352{
10353 if (!target_async_permitted)
10354 /* We only enable async when the user specifically asks for it. */
10355 return 0;
10356
10357 /* We're async whenever the serial device is. */
10358 return remote_async_mask_value && serial_can_async_p (remote_desc);
10359}
10360
10361static int
10362remote_is_async_p (void)
10363{
10364 if (!target_async_permitted)
10365 /* We only enable async when the user specifically asks for it. */
10366 return 0;
10367
10368 /* We're async whenever the serial device is. */
10369 return remote_async_mask_value && serial_is_async_p (remote_desc);
10370}
10371
10372/* Pass the SERIAL event on and up to the client. One day this code
10373 will be able to delay notifying the client of an event until the
10374 point where an entire packet has been received. */
10375
10376static void (*async_client_callback) (enum inferior_event_type event_type,
10377 void *context);
10378static void *async_client_context;
10379static serial_event_ftype remote_async_serial_handler;
10380
10381static void
10382remote_async_serial_handler (struct serial *scb, void *context)
10383{
10384 /* Don't propogate error information up to the client. Instead let
10385 the client find out about the error by querying the target. */
10386 async_client_callback (INF_REG_EVENT, async_client_context);
10387}
10388
10389static void
10390remote_async_inferior_event_handler (gdb_client_data data)
10391{
10392 inferior_event_handler (INF_REG_EVENT, NULL);
10393}
10394
10395static void
10396remote_async_get_pending_events_handler (gdb_client_data data)
10397{
10398 remote_get_pending_stop_replies ();
10399}
10400
10401static void
10402remote_async (void (*callback) (enum inferior_event_type event_type,
10403 void *context), void *context)
10404{
10405 if (remote_async_mask_value == 0)
10406 internal_error (__FILE__, __LINE__,
10407 _("Calling remote_async when async is masked"));
10408
10409 if (callback != NULL)
10410 {
10411 serial_async (remote_desc, remote_async_serial_handler, NULL);
10412 async_client_callback = callback;
10413 async_client_context = context;
10414 }
10415 else
10416 serial_async (remote_desc, NULL, NULL);
10417}
10418
10419static int
10420remote_async_mask (int new_mask)
10421{
10422 int curr_mask = remote_async_mask_value;
10423
10424 remote_async_mask_value = new_mask;
10425 return curr_mask;
10426}
10427
10428static void
10429set_remote_cmd (char *args, int from_tty)
10430{
10431 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10432}
10433
10434static void
10435show_remote_cmd (char *args, int from_tty)
10436{
10437 /* We can't just use cmd_show_list here, because we want to skip
10438 the redundant "show remote Z-packet" and the legacy aliases. */
10439 struct cleanup *showlist_chain;
10440 struct cmd_list_element *list = remote_show_cmdlist;
10441
10442 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10443 for (; list != NULL; list = list->next)
10444 if (strcmp (list->name, "Z-packet") == 0)
10445 continue;
10446 else if (list->type == not_set_cmd)
10447 /* Alias commands are exactly like the original, except they
10448 don't have the normal type. */
10449 continue;
10450 else
10451 {
10452 struct cleanup *option_chain
10453 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10454
10455 ui_out_field_string (uiout, "name", list->name);
10456 ui_out_text (uiout, ": ");
10457 if (list->type == show_cmd)
10458 do_setshow_command ((char *) NULL, from_tty, list);
10459 else
10460 cmd_func (list, NULL, from_tty);
10461 /* Close the tuple. */
10462 do_cleanups (option_chain);
10463 }
10464
10465 /* Close the tuple. */
10466 do_cleanups (showlist_chain);
10467}
10468
10469
10470/* Function to be called whenever a new objfile (shlib) is detected. */
10471static void
10472remote_new_objfile (struct objfile *objfile)
10473{
10474 if (remote_desc != 0) /* Have a remote connection. */
10475 remote_check_symbols (objfile);
10476}
10477
10478/* Pull all the tracepoints defined on the target and create local
10479 data structures representing them. We don't want to create real
10480 tracepoints yet, we don't want to mess up the user's existing
10481 collection. */
10482
10483static int
10484remote_upload_tracepoints (struct uploaded_tp **utpp)
10485{
10486 struct remote_state *rs = get_remote_state ();
10487 char *p;
10488
10489 /* Ask for a first packet of tracepoint definition. */
10490 putpkt ("qTfP");
10491 getpkt (&rs->buf, &rs->buf_size, 0);
10492 p = rs->buf;
10493 while (*p && *p != 'l')
10494 {
10495 parse_tracepoint_definition (p, utpp);
10496 /* Ask for another packet of tracepoint definition. */
10497 putpkt ("qTsP");
10498 getpkt (&rs->buf, &rs->buf_size, 0);
10499 p = rs->buf;
10500 }
10501 return 0;
10502}
10503
10504static int
10505remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10506{
10507 struct remote_state *rs = get_remote_state ();
10508 char *p;
10509
10510 /* Ask for a first packet of variable definition. */
10511 putpkt ("qTfV");
10512 getpkt (&rs->buf, &rs->buf_size, 0);
10513 p = rs->buf;
10514 while (*p && *p != 'l')
10515 {
10516 parse_tsv_definition (p, utsvp);
10517 /* Ask for another packet of variable definition. */
10518 putpkt ("qTsV");
10519 getpkt (&rs->buf, &rs->buf_size, 0);
10520 p = rs->buf;
10521 }
10522 return 0;
10523}
10524
10525void
10526_initialize_remote (void)
10527{
10528 struct remote_state *rs;
10529 struct cmd_list_element *cmd;
10530 char *cmd_name;
10531
10532 /* architecture specific data */
10533 remote_gdbarch_data_handle =
10534 gdbarch_data_register_post_init (init_remote_state);
10535 remote_g_packet_data_handle =
10536 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10537
10538 /* Initialize the per-target state. At the moment there is only one
10539 of these, not one per target. Only one target is active at a
10540 time. The default buffer size is unimportant; it will be expanded
10541 whenever a larger buffer is needed. */
10542 rs = get_remote_state_raw ();
10543 rs->buf_size = 400;
10544 rs->buf = xmalloc (rs->buf_size);
10545
10546 init_remote_ops ();
10547 add_target (&remote_ops);
10548
10549 init_extended_remote_ops ();
10550 add_target (&extended_remote_ops);
10551
10552 /* Hook into new objfile notification. */
10553 observer_attach_new_objfile (remote_new_objfile);
10554
10555 /* Set up signal handlers. */
10556 sigint_remote_token =
10557 create_async_signal_handler (async_remote_interrupt, NULL);
10558 sigint_remote_twice_token =
10559 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10560
10561#if 0
10562 init_remote_threadtests ();
10563#endif
10564
10565 /* set/show remote ... */
10566
10567 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10568Remote protocol specific variables\n\
10569Configure various remote-protocol specific variables such as\n\
10570the packets being used"),
10571 &remote_set_cmdlist, "set remote ",
10572 0 /* allow-unknown */, &setlist);
10573 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10574Remote protocol specific variables\n\
10575Configure various remote-protocol specific variables such as\n\
10576the packets being used"),
10577 &remote_show_cmdlist, "show remote ",
10578 0 /* allow-unknown */, &showlist);
10579
10580 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10581Compare section data on target to the exec file.\n\
10582Argument is a single section name (default: all loaded sections)."),
10583 &cmdlist);
10584
10585 add_cmd ("packet", class_maintenance, packet_command, _("\
10586Send an arbitrary packet to a remote target.\n\
10587 maintenance packet TEXT\n\
10588If GDB is talking to an inferior via the GDB serial protocol, then\n\
10589this command sends the string TEXT to the inferior, and displays the\n\
10590response packet. GDB supplies the initial `$' character, and the\n\
10591terminating `#' character and checksum."),
10592 &maintenancelist);
10593
10594 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10595Set whether to send break if interrupted."), _("\
10596Show whether to send break if interrupted."), _("\
10597If set, a break, instead of a cntrl-c, is sent to the remote target."),
10598 set_remotebreak, show_remotebreak,
10599 &setlist, &showlist);
10600 cmd_name = "remotebreak";
10601 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10602 deprecate_cmd (cmd, "set remote interrupt-sequence");
10603 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10604 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10605 deprecate_cmd (cmd, "show remote interrupt-sequence");
10606
10607 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10608 interrupt_sequence_modes, &interrupt_sequence_mode,
10609 _("\
10610Set interrupt sequence to remote target."), _("\
10611Show interrupt sequence to remote target."), _("\
10612Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10613 NULL, show_interrupt_sequence,
10614 &remote_set_cmdlist,
10615 &remote_show_cmdlist);
10616
10617 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10618 &interrupt_on_connect, _("\
10619Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10620Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10621If set, interrupt sequence is sent to remote target."),
10622 NULL, NULL,
10623 &remote_set_cmdlist, &remote_show_cmdlist);
10624
10625 /* Install commands for configuring memory read/write packets. */
10626
10627 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10628Set the maximum number of bytes per memory write packet (deprecated)."),
10629 &setlist);
10630 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10631Show the maximum number of bytes per memory write packet (deprecated)."),
10632 &showlist);
10633 add_cmd ("memory-write-packet-size", no_class,
10634 set_memory_write_packet_size, _("\
10635Set the maximum number of bytes per memory-write packet.\n\
10636Specify the number of bytes in a packet or 0 (zero) for the\n\
10637default packet size. The actual limit is further reduced\n\
10638dependent on the target. Specify ``fixed'' to disable the\n\
10639further restriction and ``limit'' to enable that restriction."),
10640 &remote_set_cmdlist);
10641 add_cmd ("memory-read-packet-size", no_class,
10642 set_memory_read_packet_size, _("\
10643Set the maximum number of bytes per memory-read packet.\n\
10644Specify the number of bytes in a packet or 0 (zero) for the\n\
10645default packet size. The actual limit is further reduced\n\
10646dependent on the target. Specify ``fixed'' to disable the\n\
10647further restriction and ``limit'' to enable that restriction."),
10648 &remote_set_cmdlist);
10649 add_cmd ("memory-write-packet-size", no_class,
10650 show_memory_write_packet_size,
10651 _("Show the maximum number of bytes per memory-write packet."),
10652 &remote_show_cmdlist);
10653 add_cmd ("memory-read-packet-size", no_class,
10654 show_memory_read_packet_size,
10655 _("Show the maximum number of bytes per memory-read packet."),
10656 &remote_show_cmdlist);
10657
10658 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10659 &remote_hw_watchpoint_limit, _("\
10660Set the maximum number of target hardware watchpoints."), _("\
10661Show the maximum number of target hardware watchpoints."), _("\
10662Specify a negative limit for unlimited."),
10663 NULL, NULL, /* FIXME: i18n: The maximum
10664 number of target hardware
10665 watchpoints is %s. */
10666 &remote_set_cmdlist, &remote_show_cmdlist);
10667 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10668 &remote_hw_breakpoint_limit, _("\
10669Set the maximum number of target hardware breakpoints."), _("\
10670Show the maximum number of target hardware breakpoints."), _("\
10671Specify a negative limit for unlimited."),
10672 NULL, NULL, /* FIXME: i18n: The maximum
10673 number of target hardware
10674 breakpoints is %s. */
10675 &remote_set_cmdlist, &remote_show_cmdlist);
10676
10677 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10678 &remote_address_size, _("\
10679Set the maximum size of the address (in bits) in a memory packet."), _("\
10680Show the maximum size of the address (in bits) in a memory packet."), NULL,
10681 NULL,
10682 NULL, /* FIXME: i18n: */
10683 &setlist, &showlist);
10684
10685 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10686 "X", "binary-download", 1);
10687
10688 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10689 "vCont", "verbose-resume", 0);
10690
10691 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10692 "QPassSignals", "pass-signals", 0);
10693
10694 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10695 "qSymbol", "symbol-lookup", 0);
10696
10697 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10698 "P", "set-register", 1);
10699
10700 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10701 "p", "fetch-register", 1);
10702
10703 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10704 "Z0", "software-breakpoint", 0);
10705
10706 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10707 "Z1", "hardware-breakpoint", 0);
10708
10709 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10710 "Z2", "write-watchpoint", 0);
10711
10712 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10713 "Z3", "read-watchpoint", 0);
10714
10715 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10716 "Z4", "access-watchpoint", 0);
10717
10718 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10719 "qXfer:auxv:read", "read-aux-vector", 0);
10720
10721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10722 "qXfer:features:read", "target-features", 0);
10723
10724 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10725 "qXfer:libraries:read", "library-info", 0);
10726
10727 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10728 "qXfer:memory-map:read", "memory-map", 0);
10729
10730 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10731 "qXfer:spu:read", "read-spu-object", 0);
10732
10733 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10734 "qXfer:spu:write", "write-spu-object", 0);
10735
10736 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10737 "qXfer:osdata:read", "osdata", 0);
10738
10739 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10740 "qXfer:threads:read", "threads", 0);
10741
10742 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10743 "qXfer:siginfo:read", "read-siginfo-object", 0);
10744
10745 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10746 "qXfer:siginfo:write", "write-siginfo-object", 0);
10747
10748 add_packet_config_cmd
10749 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10750 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10751
10752 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10753 "qGetTLSAddr", "get-thread-local-storage-address",
10754 0);
10755
10756 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10757 "qGetTIBAddr", "get-thread-information-block-address",
10758 0);
10759
10760 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10761 "bc", "reverse-continue", 0);
10762
10763 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10764 "bs", "reverse-step", 0);
10765
10766 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10767 "qSupported", "supported-packets", 0);
10768
10769 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10770 "qSearch:memory", "search-memory", 0);
10771
10772 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10773 "vFile:open", "hostio-open", 0);
10774
10775 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10776 "vFile:pread", "hostio-pread", 0);
10777
10778 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10779 "vFile:pwrite", "hostio-pwrite", 0);
10780
10781 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10782 "vFile:close", "hostio-close", 0);
10783
10784 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10785 "vFile:unlink", "hostio-unlink", 0);
10786
10787 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10788 "vAttach", "attach", 0);
10789
10790 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10791 "vRun", "run", 0);
10792
10793 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10794 "QStartNoAckMode", "noack", 0);
10795
10796 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10797 "vKill", "kill", 0);
10798
10799 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10800 "qAttached", "query-attached", 0);
10801
10802 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10803 "ConditionalTracepoints",
10804 "conditional-tracepoints", 0);
10805 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10806 "FastTracepoints", "fast-tracepoints", 0);
10807
10808 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10809 "TracepointSource", "TracepointSource", 0);
10810
10811 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10812 "QAllow", "allow", 0);
10813
10814 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10815 "StaticTracepoints", "static-tracepoints", 0);
10816
10817 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10818 "qXfer:statictrace:read", "read-sdata-object", 0);
10819
10820 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10821 Z sub-packet has its own set and show commands, but users may
10822 have sets to this variable in their .gdbinit files (or in their
10823 documentation). */
10824 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10825 &remote_Z_packet_detect, _("\
10826Set use of remote protocol `Z' packets"), _("\
10827Show use of remote protocol `Z' packets "), _("\
10828When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10829packets."),
10830 set_remote_protocol_Z_packet_cmd,
10831 show_remote_protocol_Z_packet_cmd,
10832 /* FIXME: i18n: Use of remote protocol
10833 `Z' packets is %s. */
10834 &remote_set_cmdlist, &remote_show_cmdlist);
10835
10836 add_prefix_cmd ("remote", class_files, remote_command, _("\
10837Manipulate files on the remote system\n\
10838Transfer files to and from the remote target system."),
10839 &remote_cmdlist, "remote ",
10840 0 /* allow-unknown */, &cmdlist);
10841
10842 add_cmd ("put", class_files, remote_put_command,
10843 _("Copy a local file to the remote system."),
10844 &remote_cmdlist);
10845
10846 add_cmd ("get", class_files, remote_get_command,
10847 _("Copy a remote file to the local system."),
10848 &remote_cmdlist);
10849
10850 add_cmd ("delete", class_files, remote_delete_command,
10851 _("Delete a remote file."),
10852 &remote_cmdlist);
10853
10854 remote_exec_file = xstrdup ("");
10855 add_setshow_string_noescape_cmd ("exec-file", class_files,
10856 &remote_exec_file, _("\
10857Set the remote pathname for \"run\""), _("\
10858Show the remote pathname for \"run\""), NULL, NULL, NULL,
10859 &remote_set_cmdlist, &remote_show_cmdlist);
10860
10861 /* Eventually initialize fileio. See fileio.c */
10862 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10863
10864 /* Take advantage of the fact that the LWP field is not used, to tag
10865 special ptids with it set to != 0. */
10866 magic_null_ptid = ptid_build (42000, 1, -1);
10867 not_sent_ptid = ptid_build (42000, 1, -2);
10868 any_thread_ptid = ptid_build (42000, 1, 0);
10869
10870 target_buf_size = 2048;
10871 target_buf = xmalloc (target_buf_size);
10872}
10873
This page took 0.06627 seconds and 4 git commands to generate.