* config/i386/tm-i386.h (PUSH_ARGUMENTS, STORE_STRUCT_RETURN,
[deliverable/binutils-gdb.git] / gdb / remote.c
... / ...
CommitLineData
1/* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23/* See the GDB User Guide for details of the GDB remote protocol. */
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include <fcntl.h>
29#include "inferior.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "target.h"
33/*#include "terminal.h" */
34#include "gdbcmd.h"
35#include "objfiles.h"
36#include "gdb-stabs.h"
37#include "gdbthread.h"
38#include "remote.h"
39#include "regcache.h"
40#include "value.h"
41#include "gdb_assert.h"
42
43#include <ctype.h>
44#include <sys/time.h>
45#ifdef USG
46#include <sys/types.h>
47#endif
48
49#include "event-loop.h"
50#include "event-top.h"
51#include "inf-loop.h"
52
53#include <signal.h>
54#include "serial.h"
55
56#include "gdbcore.h" /* for exec_bfd */
57
58/* Prototypes for local functions */
59static void cleanup_sigint_signal_handler (void *dummy);
60static void initialize_sigint_signal_handler (void);
61static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63static void handle_remote_sigint (int);
64static void handle_remote_sigint_twice (int);
65static void async_remote_interrupt (gdb_client_data);
66void async_remote_interrupt_twice (gdb_client_data);
67
68static void build_remote_gdbarch_data (void);
69
70static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74static void remote_files_info (struct target_ops *ignore);
75
76static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81static void remote_prepare_to_store (void);
82
83static void remote_fetch_registers (int regno);
84
85static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91static void remote_open (char *name, int from_tty);
92static void remote_async_open (char *name, int from_tty);
93
94static void extended_remote_open (char *name, int from_tty);
95static void extended_remote_async_open (char *name, int from_tty);
96
97static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
98static void remote_async_open_1 (char *, int, struct target_ops *,
99 int extended_p);
100
101static void remote_close (int quitting);
102
103static void remote_store_registers (int regno);
104
105static void remote_mourn (void);
106static void remote_async_mourn (void);
107
108static void extended_remote_restart (void);
109
110static void extended_remote_mourn (void);
111
112static void extended_remote_create_inferior (char *, char *, char **);
113static void extended_remote_async_create_inferior (char *, char *, char **);
114
115static void remote_mourn_1 (struct target_ops *);
116
117static void remote_send (char *buf, long sizeof_buf);
118
119static int readchar (int timeout);
120
121static ptid_t remote_wait (ptid_t ptid,
122 struct target_waitstatus *status);
123static ptid_t remote_async_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125
126static void remote_kill (void);
127static void remote_async_kill (void);
128
129static int tohex (int nib);
130
131static void remote_detach (char *args, int from_tty);
132static void remote_async_detach (char *args, int from_tty);
133
134static void remote_interrupt (int signo);
135
136static void remote_interrupt_twice (int signo);
137
138static void interrupt_query (void);
139
140static void set_thread (int, int);
141
142static int remote_thread_alive (ptid_t);
143
144static void get_offsets (void);
145
146static long read_frame (char *buf, long sizeof_buf);
147
148static int remote_insert_breakpoint (CORE_ADDR, char *);
149
150static int remote_remove_breakpoint (CORE_ADDR, char *);
151
152static int hexnumlen (ULONGEST num);
153
154static void init_remote_ops (void);
155
156static void init_extended_remote_ops (void);
157
158static void init_remote_cisco_ops (void);
159
160static struct target_ops remote_cisco_ops;
161
162static void remote_stop (void);
163
164static int ishex (int ch, int *val);
165
166static int stubhex (int ch);
167
168static int remote_query (int /*char */ , char *, char *, int *);
169
170static int hexnumstr (char *, ULONGEST);
171
172static int hexnumnstr (char *, ULONGEST, int);
173
174static CORE_ADDR remote_address_masked (CORE_ADDR);
175
176static void print_packet (char *);
177
178static unsigned long crc32 (unsigned char *, int, unsigned int);
179
180static void compare_sections_command (char *, int);
181
182static void packet_command (char *, int);
183
184static int stub_unpack_int (char *buff, int fieldlength);
185
186static ptid_t remote_current_thread (ptid_t oldptid);
187
188static void remote_find_new_threads (void);
189
190static void record_currthread (int currthread);
191
192static int fromhex (int a);
193
194static int hex2bin (const char *hex, char *bin, int count);
195
196static int bin2hex (const char *bin, char *hex, int count);
197
198static int putpkt_binary (char *buf, int cnt);
199
200static void check_binary_download (CORE_ADDR addr);
201
202struct packet_config;
203
204static void show_packet_config_cmd (struct packet_config *config);
205
206static void update_packet_config (struct packet_config *config);
207
208/* Define the target subroutine names */
209
210void open_remote_target (char *, int, struct target_ops *, int);
211
212void _initialize_remote (void);
213
214/* Description of the remote protocol. Strictly speaking, when the
215 target is open()ed, remote.c should create a per-target description
216 of the remote protocol using that target's architecture.
217 Unfortunatly, the target stack doesn't include local state. For
218 the moment keep the information in the target's architecture
219 object. Sigh.. */
220
221struct packet_reg
222{
223 long offset; /* Offset into G packet. */
224 long regnum; /* GDB's internal register number. */
225 LONGEST pnum; /* Remote protocol register number. */
226 int in_g_packet; /* Always part of G packet. */
227 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
228 /* char *name; == REGISTER_NAME (regnum); at present. */
229};
230
231struct remote_state
232{
233 /* Description of the remote protocol registers. */
234 long sizeof_g_packet;
235
236 /* Description of the remote protocol registers indexed by REGNUM
237 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
238 struct packet_reg *regs;
239
240 /* This is the size (in chars) of the first response to the ``g''
241 packet. It is used as a heuristic when determining the maximum
242 size of memory-read and memory-write packets. A target will
243 typically only reserve a buffer large enough to hold the ``g''
244 packet. The size does not include packet overhead (headers and
245 trailers). */
246 long actual_register_packet_size;
247
248 /* This is the maximum size (in chars) of a non read/write packet.
249 It is also used as a cap on the size of read/write packets. */
250 long remote_packet_size;
251};
252
253/* Handle for retreving the remote protocol data from gdbarch. */
254static struct gdbarch_data *remote_gdbarch_data_handle;
255
256static struct remote_state *
257get_remote_state ()
258{
259 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
260}
261
262static void *
263init_remote_state (struct gdbarch *gdbarch)
264{
265 int regnum;
266 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
267
268 /* Start out by having the remote protocol mimic the existing
269 behavour - just copy in the description of the register cache. */
270 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
271
272 /* Assume a 1:1 regnum<->pnum table. */
273 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
274 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
275 {
276 struct packet_reg *r = &rs->regs[regnum];
277 r->pnum = regnum;
278 r->regnum = regnum;
279 r->offset = REGISTER_BYTE (regnum);
280 r->in_g_packet = (regnum < NUM_REGS);
281 /* ...size = REGISTER_RAW_SIZE (regnum); */
282 /* ...name = REGISTER_NAME (regnum); */
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307}
308
309static void
310free_remote_state (struct gdbarch *gdbarch, void *pointer)
311{
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315}
316
317static struct packet_reg *
318packet_reg_from_regnum (struct remote_state *rs, long regnum)
319{
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328}
329
330static struct packet_reg *
331packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332{
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341}
342
343/* */
344
345static struct target_ops remote_ops;
346
347static struct target_ops extended_remote_ops;
348
349/* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351static struct target_ops remote_async_ops;
352
353static struct target_ops extended_async_remote_ops;
354
355/* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362static int wait_forever_enabled_p = 1;
363
364
365/* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370static int remote_break;
371
372/* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375static struct serial *remote_desc = NULL;
376
377/* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379static int cisco_kernel_mode = 0;
380
381/* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392static int remote_address_size;
393
394/* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397static int remote_async_terminal_ours_p;
398
399\f
400/* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408struct memory_packet_config
409{
410 char *name;
411 long size;
412 int fixed_p;
413};
414
415/* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418static long
419get_memory_packet_size (struct memory_packet_config *config)
420{
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427#ifndef MAX_REMOTE_PACKET_SIZE
428#define MAX_REMOTE_PACKET_SIZE 16384
429#endif
430 /* NOTE: 16 is just chosen at random. */
431#ifndef MIN_REMOTE_PACKET_SIZE
432#define MIN_REMOTE_PACKET_SIZE 16
433#endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459}
460
461/* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464static void
465set_memory_packet_size (char *args, struct memory_packet_config *config)
466{
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483#if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490#endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503}
504
505static void
506show_memory_packet_size (struct memory_packet_config *config)
507{
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515}
516
517static struct memory_packet_config memory_write_packet_config =
518{
519 "memory-write-packet-size",
520};
521
522static void
523set_memory_write_packet_size (char *args, int from_tty)
524{
525 set_memory_packet_size (args, &memory_write_packet_config);
526}
527
528static void
529show_memory_write_packet_size (char *args, int from_tty)
530{
531 show_memory_packet_size (&memory_write_packet_config);
532}
533
534static long
535get_memory_write_packet_size (void)
536{
537 return get_memory_packet_size (&memory_write_packet_config);
538}
539
540static struct memory_packet_config memory_read_packet_config =
541{
542 "memory-read-packet-size",
543};
544
545static void
546set_memory_read_packet_size (char *args, int from_tty)
547{
548 set_memory_packet_size (args, &memory_read_packet_config);
549}
550
551static void
552show_memory_read_packet_size (char *args, int from_tty)
553{
554 show_memory_packet_size (&memory_read_packet_config);
555}
556
557static long
558get_memory_read_packet_size (void)
559{
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568}
569
570\f
571/* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582struct packet_config
583 {
584 char *name;
585 char *title;
586 enum auto_boolean detect;
587 enum packet_support support;
588 };
589
590/* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593enum packet_result
594{
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598};
599
600static void
601update_packet_config (struct packet_config *config)
602{
603 switch (config->detect)
604 {
605 case AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615}
616
617static void
618show_packet_config_cmd (struct packet_config *config)
619{
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case AUTO_BOOLEAN_TRUE:
640 case AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645}
646
647static void
648add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 void (*set_func) (char *args, int from_tty,
652 struct cmd_list_element *
653 c),
654 void (*show_func) (char *name,
655 int from_tty),
656 struct cmd_list_element **set_remote_list,
657 struct cmd_list_element **show_remote_list,
658 int legacy)
659{
660 struct cmd_list_element *set_cmd;
661 struct cmd_list_element *show_cmd;
662 char *set_doc;
663 char *show_doc;
664 char *cmd_name;
665 config->name = name;
666 config->title = title;
667 config->detect = AUTO_BOOLEAN_AUTO;
668 config->support = PACKET_SUPPORT_UNKNOWN;
669 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
670 name, title);
671 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
672 name, title);
673 /* set/show TITLE-packet {auto,on,off} */
674 xasprintf (&cmd_name, "%s-packet", title);
675 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
676 &config->detect, set_doc,
677 set_remote_list);
678 set_cmd_sfunc (set_cmd, set_func);
679 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
680 show_remote_list);
681 /* set/show remote NAME-packet {auto,on,off} -- legacy */
682 if (legacy)
683 {
684 char *legacy_name;
685 xasprintf (&legacy_name, "%s-packet", name);
686 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
687 set_remote_list);
688 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
689 show_remote_list);
690 }
691}
692
693static enum packet_result
694packet_ok (const char *buf, struct packet_config *config)
695{
696 if (buf[0] != '\0')
697 {
698 /* The stub recognized the packet request. Check that the
699 operation succeeded. */
700 switch (config->support)
701 {
702 case PACKET_SUPPORT_UNKNOWN:
703 if (remote_debug)
704 fprintf_unfiltered (gdb_stdlog,
705 "Packet %s (%s) is supported\n",
706 config->name, config->title);
707 config->support = PACKET_ENABLE;
708 break;
709 case PACKET_DISABLE:
710 internal_error (__FILE__, __LINE__,
711 "packet_ok: attempt to use a disabled packet");
712 break;
713 case PACKET_ENABLE:
714 break;
715 }
716 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
717 /* "OK" - definitly OK. */
718 return PACKET_OK;
719 if (buf[0] == 'E'
720 && isxdigit (buf[1]) && isxdigit (buf[2])
721 && buf[3] == '\0')
722 /* "Enn" - definitly an error. */
723 return PACKET_ERROR;
724 /* The packet may or may not be OK. Just assume it is */
725 return PACKET_OK;
726 }
727 else
728 {
729 /* The stub does not support the packet. */
730 switch (config->support)
731 {
732 case PACKET_ENABLE:
733 if (config->detect == AUTO_BOOLEAN_AUTO)
734 /* If the stub previously indicated that the packet was
735 supported then there is a protocol error.. */
736 error ("Protocol error: %s (%s) conflicting enabled responses.",
737 config->name, config->title);
738 else
739 /* The user set it wrong. */
740 error ("Enabled packet %s (%s) not recognized by stub",
741 config->name, config->title);
742 break;
743 case PACKET_SUPPORT_UNKNOWN:
744 if (remote_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "Packet %s (%s) is NOT supported\n",
747 config->name, config->title);
748 config->support = PACKET_DISABLE;
749 break;
750 case PACKET_DISABLE:
751 break;
752 }
753 return PACKET_UNKNOWN;
754 }
755}
756
757/* Should we try the 'qSymbol' (target symbol lookup service) request? */
758static struct packet_config remote_protocol_qSymbol;
759
760static void
761set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763{
764 update_packet_config (&remote_protocol_qSymbol);
765}
766
767static void
768show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty)
769{
770 show_packet_config_cmd (&remote_protocol_qSymbol);
771}
772
773/* Should we try the 'e' (step over range) request? */
774static struct packet_config remote_protocol_e;
775
776static void
777set_remote_protocol_e_packet_cmd (char *args, int from_tty,
778 struct cmd_list_element *c)
779{
780 update_packet_config (&remote_protocol_e);
781}
782
783static void
784show_remote_protocol_e_packet_cmd (char *args, int from_tty)
785{
786 show_packet_config_cmd (&remote_protocol_e);
787}
788
789
790/* Should we try the 'E' (step over range / w signal #) request? */
791static struct packet_config remote_protocol_E;
792
793static void
794set_remote_protocol_E_packet_cmd (char *args, int from_tty,
795 struct cmd_list_element *c)
796{
797 update_packet_config (&remote_protocol_E);
798}
799
800static void
801show_remote_protocol_E_packet_cmd (char *args, int from_tty)
802{
803 show_packet_config_cmd (&remote_protocol_E);
804}
805
806
807/* Should we try the 'P' (set register) request? */
808
809static struct packet_config remote_protocol_P;
810
811static void
812set_remote_protocol_P_packet_cmd (char *args, int from_tty,
813 struct cmd_list_element *c)
814{
815 update_packet_config (&remote_protocol_P);
816}
817
818static void
819show_remote_protocol_P_packet_cmd (char *args, int from_tty)
820{
821 show_packet_config_cmd (&remote_protocol_P);
822}
823
824/* Should we try one of the 'Z' requests? */
825
826enum Z_packet_type
827{
828 Z_PACKET_SOFTWARE_BP,
829 Z_PACKET_HARDWARE_BP,
830 Z_PACKET_WRITE_WP,
831 Z_PACKET_READ_WP,
832 Z_PACKET_ACCESS_WP,
833 NR_Z_PACKET_TYPES
834};
835
836static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
837
838/* FIXME: Instead of having all these boiler plate functions, the
839 command callback should include a context argument. */
840
841static void
842set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
843 struct cmd_list_element *c)
844{
845 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
846}
847
848static void
849show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
850{
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852}
853
854static void
855set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857{
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859}
860
861static void
862show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
863{
864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865}
866
867static void
868set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870{
871 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
872}
873
874static void
875show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
876{
877 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
878}
879
880static void
881set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
882 struct cmd_list_element *c)
883{
884 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
885}
886
887static void
888show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
889{
890 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
891}
892
893static void
894set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
895 struct cmd_list_element *c)
896{
897 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
898}
899
900static void
901show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
902{
903 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
904}
905
906/* For compatibility with older distributions. Provide a ``set remote
907 Z-packet ...'' command that updates all the Z packet types. */
908
909static enum auto_boolean remote_Z_packet_detect;
910
911static void
912set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914{
915 int i;
916 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
917 {
918 remote_protocol_Z[i].detect = remote_Z_packet_detect;
919 update_packet_config (&remote_protocol_Z[i]);
920 }
921}
922
923static void
924show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
925{
926 int i;
927 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
928 {
929 show_packet_config_cmd (&remote_protocol_Z[i]);
930 }
931}
932
933/* Should we try the 'X' (remote binary download) packet?
934
935 This variable (available to the user via "set remote X-packet")
936 dictates whether downloads are sent in binary (via the 'X' packet).
937 We assume that the stub can, and attempt to do it. This will be
938 cleared if the stub does not understand it. This switch is still
939 needed, though in cases when the packet is supported in the stub,
940 but the connection does not allow it (i.e., 7-bit serial connection
941 only). */
942
943static struct packet_config remote_protocol_binary_download;
944
945/* Should we try the 'ThreadInfo' query packet?
946
947 This variable (NOT available to the user: auto-detect only!)
948 determines whether GDB will use the new, simpler "ThreadInfo"
949 query or the older, more complex syntax for thread queries.
950 This is an auto-detect variable (set to true at each connect,
951 and set to false when the target fails to recognize it). */
952
953static int use_threadinfo_query;
954static int use_threadextra_query;
955
956static void
957set_remote_protocol_binary_download_cmd (char *args,
958 int from_tty,
959 struct cmd_list_element *c)
960{
961 update_packet_config (&remote_protocol_binary_download);
962}
963
964static void
965show_remote_protocol_binary_download_cmd (char *args,
966 int from_tty)
967{
968 show_packet_config_cmd (&remote_protocol_binary_download);
969}
970
971
972/* Tokens for use by the asynchronous signal handlers for SIGINT */
973static void *sigint_remote_twice_token;
974static void *sigint_remote_token;
975
976/* These are pointers to hook functions that may be set in order to
977 modify resume/wait behavior for a particular architecture. */
978
979void (*target_resume_hook) (void);
980void (*target_wait_loop_hook) (void);
981\f
982
983
984/* These are the threads which we last sent to the remote system.
985 -1 for all or -2 for not sent yet. */
986static int general_thread;
987static int continue_thread;
988
989/* Call this function as a result of
990 1) A halt indication (T packet) containing a thread id
991 2) A direct query of currthread
992 3) Successful execution of set thread
993 */
994
995static void
996record_currthread (int currthread)
997{
998 general_thread = currthread;
999
1000 /* If this is a new thread, add it to GDB's thread list.
1001 If we leave it up to WFI to do this, bad things will happen. */
1002 if (!in_thread_list (pid_to_ptid (currthread)))
1003 {
1004 add_thread (pid_to_ptid (currthread));
1005 ui_out_text (uiout, "[New ");
1006 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1007 ui_out_text (uiout, "]\n");
1008 }
1009}
1010
1011#define MAGIC_NULL_PID 42000
1012
1013static void
1014set_thread (int th, int gen)
1015{
1016 struct remote_state *rs = get_remote_state ();
1017 char *buf = alloca (rs->remote_packet_size);
1018 int state = gen ? general_thread : continue_thread;
1019
1020 if (state == th)
1021 return;
1022
1023 buf[0] = 'H';
1024 buf[1] = gen ? 'g' : 'c';
1025 if (th == MAGIC_NULL_PID)
1026 {
1027 buf[2] = '0';
1028 buf[3] = '\0';
1029 }
1030 else if (th < 0)
1031 sprintf (&buf[2], "-%x", -th);
1032 else
1033 sprintf (&buf[2], "%x", th);
1034 putpkt (buf);
1035 getpkt (buf, (rs->remote_packet_size), 0);
1036 if (gen)
1037 general_thread = th;
1038 else
1039 continue_thread = th;
1040}
1041\f
1042/* Return nonzero if the thread TH is still alive on the remote system. */
1043
1044static int
1045remote_thread_alive (ptid_t ptid)
1046{
1047 int tid = PIDGET (ptid);
1048 char buf[16];
1049
1050 if (tid < 0)
1051 sprintf (buf, "T-%08x", -tid);
1052 else
1053 sprintf (buf, "T%08x", tid);
1054 putpkt (buf);
1055 getpkt (buf, sizeof (buf), 0);
1056 return (buf[0] == 'O' && buf[1] == 'K');
1057}
1058
1059/* About these extended threadlist and threadinfo packets. They are
1060 variable length packets but, the fields within them are often fixed
1061 length. They are redundent enough to send over UDP as is the
1062 remote protocol in general. There is a matching unit test module
1063 in libstub. */
1064
1065#define OPAQUETHREADBYTES 8
1066
1067/* a 64 bit opaque identifier */
1068typedef unsigned char threadref[OPAQUETHREADBYTES];
1069
1070/* WARNING: This threadref data structure comes from the remote O.S., libstub
1071 protocol encoding, and remote.c. it is not particularly changable */
1072
1073/* Right now, the internal structure is int. We want it to be bigger.
1074 Plan to fix this.
1075 */
1076
1077typedef int gdb_threadref; /* internal GDB thread reference */
1078
1079/* gdb_ext_thread_info is an internal GDB data structure which is
1080 equivalint to the reply of the remote threadinfo packet */
1081
1082struct gdb_ext_thread_info
1083 {
1084 threadref threadid; /* External form of thread reference */
1085 int active; /* Has state interesting to GDB? , regs, stack */
1086 char display[256]; /* Brief state display, name, blocked/syspended */
1087 char shortname[32]; /* To be used to name threads */
1088 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1089 };
1090
1091/* The volume of remote transfers can be limited by submitting
1092 a mask containing bits specifying the desired information.
1093 Use a union of these values as the 'selection' parameter to
1094 get_thread_info. FIXME: Make these TAG names more thread specific.
1095 */
1096
1097#define TAG_THREADID 1
1098#define TAG_EXISTS 2
1099#define TAG_DISPLAY 4
1100#define TAG_THREADNAME 8
1101#define TAG_MOREDISPLAY 16
1102
1103#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1104
1105char *unpack_varlen_hex (char *buff, int *result);
1106
1107static char *unpack_nibble (char *buf, int *val);
1108
1109static char *pack_nibble (char *buf, int nibble);
1110
1111static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1112
1113static char *unpack_byte (char *buf, int *value);
1114
1115static char *pack_int (char *buf, int value);
1116
1117static char *unpack_int (char *buf, int *value);
1118
1119static char *unpack_string (char *src, char *dest, int length);
1120
1121static char *pack_threadid (char *pkt, threadref * id);
1122
1123static char *unpack_threadid (char *inbuf, threadref * id);
1124
1125void int_to_threadref (threadref * id, int value);
1126
1127static int threadref_to_int (threadref * ref);
1128
1129static void copy_threadref (threadref * dest, threadref * src);
1130
1131static int threadmatch (threadref * dest, threadref * src);
1132
1133static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1134
1135static int remote_unpack_thread_info_response (char *pkt,
1136 threadref * expectedref,
1137 struct gdb_ext_thread_info
1138 *info);
1139
1140
1141static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1142 struct gdb_ext_thread_info *info);
1143
1144static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1145 int selection,
1146 struct gdb_ext_thread_info *info);
1147
1148static char *pack_threadlist_request (char *pkt, int startflag,
1149 int threadcount,
1150 threadref * nextthread);
1151
1152static int parse_threadlist_response (char *pkt,
1153 int result_limit,
1154 threadref * original_echo,
1155 threadref * resultlist, int *doneflag);
1156
1157static int remote_get_threadlist (int startflag,
1158 threadref * nextthread,
1159 int result_limit,
1160 int *done,
1161 int *result_count, threadref * threadlist);
1162
1163typedef int (*rmt_thread_action) (threadref * ref, void *context);
1164
1165static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1166 void *context, int looplimit);
1167
1168static int remote_newthread_step (threadref * ref, void *context);
1169
1170/* encode 64 bits in 16 chars of hex */
1171
1172static const char hexchars[] = "0123456789abcdef";
1173
1174static int
1175ishex (int ch, int *val)
1176{
1177 if ((ch >= 'a') && (ch <= 'f'))
1178 {
1179 *val = ch - 'a' + 10;
1180 return 1;
1181 }
1182 if ((ch >= 'A') && (ch <= 'F'))
1183 {
1184 *val = ch - 'A' + 10;
1185 return 1;
1186 }
1187 if ((ch >= '0') && (ch <= '9'))
1188 {
1189 *val = ch - '0';
1190 return 1;
1191 }
1192 return 0;
1193}
1194
1195static int
1196stubhex (int ch)
1197{
1198 if (ch >= 'a' && ch <= 'f')
1199 return ch - 'a' + 10;
1200 if (ch >= '0' && ch <= '9')
1201 return ch - '0';
1202 if (ch >= 'A' && ch <= 'F')
1203 return ch - 'A' + 10;
1204 return -1;
1205}
1206
1207static int
1208stub_unpack_int (char *buff, int fieldlength)
1209{
1210 int nibble;
1211 int retval = 0;
1212
1213 while (fieldlength)
1214 {
1215 nibble = stubhex (*buff++);
1216 retval |= nibble;
1217 fieldlength--;
1218 if (fieldlength)
1219 retval = retval << 4;
1220 }
1221 return retval;
1222}
1223
1224char *
1225unpack_varlen_hex (char *buff, /* packet to parse */
1226 int *result)
1227{
1228 int nibble;
1229 int retval = 0;
1230
1231 while (ishex (*buff, &nibble))
1232 {
1233 buff++;
1234 retval = retval << 4;
1235 retval |= nibble & 0x0f;
1236 }
1237 *result = retval;
1238 return buff;
1239}
1240
1241static char *
1242unpack_nibble (char *buf, int *val)
1243{
1244 ishex (*buf++, val);
1245 return buf;
1246}
1247
1248static char *
1249pack_nibble (char *buf, int nibble)
1250{
1251 *buf++ = hexchars[(nibble & 0x0f)];
1252 return buf;
1253}
1254
1255static char *
1256pack_hex_byte (char *pkt, int byte)
1257{
1258 *pkt++ = hexchars[(byte >> 4) & 0xf];
1259 *pkt++ = hexchars[(byte & 0xf)];
1260 return pkt;
1261}
1262
1263static char *
1264unpack_byte (char *buf, int *value)
1265{
1266 *value = stub_unpack_int (buf, 2);
1267 return buf + 2;
1268}
1269
1270static char *
1271pack_int (char *buf, int value)
1272{
1273 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1274 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1275 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1276 buf = pack_hex_byte (buf, (value & 0xff));
1277 return buf;
1278}
1279
1280static char *
1281unpack_int (char *buf, int *value)
1282{
1283 *value = stub_unpack_int (buf, 8);
1284 return buf + 8;
1285}
1286
1287#if 0 /* currently unused, uncomment when needed */
1288static char *pack_string (char *pkt, char *string);
1289
1290static char *
1291pack_string (char *pkt, char *string)
1292{
1293 char ch;
1294 int len;
1295
1296 len = strlen (string);
1297 if (len > 200)
1298 len = 200; /* Bigger than most GDB packets, junk??? */
1299 pkt = pack_hex_byte (pkt, len);
1300 while (len-- > 0)
1301 {
1302 ch = *string++;
1303 if ((ch == '\0') || (ch == '#'))
1304 ch = '*'; /* Protect encapsulation */
1305 *pkt++ = ch;
1306 }
1307 return pkt;
1308}
1309#endif /* 0 (unused) */
1310
1311static char *
1312unpack_string (char *src, char *dest, int length)
1313{
1314 while (length--)
1315 *dest++ = *src++;
1316 *dest = '\0';
1317 return src;
1318}
1319
1320static char *
1321pack_threadid (char *pkt, threadref *id)
1322{
1323 char *limit;
1324 unsigned char *altid;
1325
1326 altid = (unsigned char *) id;
1327 limit = pkt + BUF_THREAD_ID_SIZE;
1328 while (pkt < limit)
1329 pkt = pack_hex_byte (pkt, *altid++);
1330 return pkt;
1331}
1332
1333
1334static char *
1335unpack_threadid (char *inbuf, threadref *id)
1336{
1337 char *altref;
1338 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1339 int x, y;
1340
1341 altref = (char *) id;
1342
1343 while (inbuf < limit)
1344 {
1345 x = stubhex (*inbuf++);
1346 y = stubhex (*inbuf++);
1347 *altref++ = (x << 4) | y;
1348 }
1349 return inbuf;
1350}
1351
1352/* Externally, threadrefs are 64 bits but internally, they are still
1353 ints. This is due to a mismatch of specifications. We would like
1354 to use 64bit thread references internally. This is an adapter
1355 function. */
1356
1357void
1358int_to_threadref (threadref *id, int value)
1359{
1360 unsigned char *scan;
1361
1362 scan = (unsigned char *) id;
1363 {
1364 int i = 4;
1365 while (i--)
1366 *scan++ = 0;
1367 }
1368 *scan++ = (value >> 24) & 0xff;
1369 *scan++ = (value >> 16) & 0xff;
1370 *scan++ = (value >> 8) & 0xff;
1371 *scan++ = (value & 0xff);
1372}
1373
1374static int
1375threadref_to_int (threadref *ref)
1376{
1377 int i, value = 0;
1378 unsigned char *scan;
1379
1380 scan = (char *) ref;
1381 scan += 4;
1382 i = 4;
1383 while (i-- > 0)
1384 value = (value << 8) | ((*scan++) & 0xff);
1385 return value;
1386}
1387
1388static void
1389copy_threadref (threadref *dest, threadref *src)
1390{
1391 int i;
1392 unsigned char *csrc, *cdest;
1393
1394 csrc = (unsigned char *) src;
1395 cdest = (unsigned char *) dest;
1396 i = 8;
1397 while (i--)
1398 *cdest++ = *csrc++;
1399}
1400
1401static int
1402threadmatch (threadref *dest, threadref *src)
1403{
1404 /* things are broken right now, so just assume we got a match */
1405#if 0
1406 unsigned char *srcp, *destp;
1407 int i, result;
1408 srcp = (char *) src;
1409 destp = (char *) dest;
1410
1411 result = 1;
1412 while (i-- > 0)
1413 result &= (*srcp++ == *destp++) ? 1 : 0;
1414 return result;
1415#endif
1416 return 1;
1417}
1418
1419/*
1420 threadid:1, # always request threadid
1421 context_exists:2,
1422 display:4,
1423 unique_name:8,
1424 more_display:16
1425 */
1426
1427/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1428
1429static char *
1430pack_threadinfo_request (char *pkt, int mode, threadref *id)
1431{
1432 *pkt++ = 'q'; /* Info Query */
1433 *pkt++ = 'P'; /* process or thread info */
1434 pkt = pack_int (pkt, mode); /* mode */
1435 pkt = pack_threadid (pkt, id); /* threadid */
1436 *pkt = '\0'; /* terminate */
1437 return pkt;
1438}
1439
1440/* These values tag the fields in a thread info response packet */
1441/* Tagging the fields allows us to request specific fields and to
1442 add more fields as time goes by */
1443
1444#define TAG_THREADID 1 /* Echo the thread identifier */
1445#define TAG_EXISTS 2 /* Is this process defined enough to
1446 fetch registers and its stack */
1447#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1448#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1449#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1450 the process */
1451
1452static int
1453remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1454 struct gdb_ext_thread_info *info)
1455{
1456 struct remote_state *rs = get_remote_state ();
1457 int mask, length;
1458 unsigned int tag;
1459 threadref ref;
1460 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1461 int retval = 1;
1462
1463 /* info->threadid = 0; FIXME: implement zero_threadref */
1464 info->active = 0;
1465 info->display[0] = '\0';
1466 info->shortname[0] = '\0';
1467 info->more_display[0] = '\0';
1468
1469 /* Assume the characters indicating the packet type have been stripped */
1470 pkt = unpack_int (pkt, &mask); /* arg mask */
1471 pkt = unpack_threadid (pkt, &ref);
1472
1473 if (mask == 0)
1474 warning ("Incomplete response to threadinfo request\n");
1475 if (!threadmatch (&ref, expectedref))
1476 { /* This is an answer to a different request */
1477 warning ("ERROR RMT Thread info mismatch\n");
1478 return 0;
1479 }
1480 copy_threadref (&info->threadid, &ref);
1481
1482 /* Loop on tagged fields , try to bail if somthing goes wrong */
1483
1484 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1485 {
1486 pkt = unpack_int (pkt, &tag); /* tag */
1487 pkt = unpack_byte (pkt, &length); /* length */
1488 if (!(tag & mask)) /* tags out of synch with mask */
1489 {
1490 warning ("ERROR RMT: threadinfo tag mismatch\n");
1491 retval = 0;
1492 break;
1493 }
1494 if (tag == TAG_THREADID)
1495 {
1496 if (length != 16)
1497 {
1498 warning ("ERROR RMT: length of threadid is not 16\n");
1499 retval = 0;
1500 break;
1501 }
1502 pkt = unpack_threadid (pkt, &ref);
1503 mask = mask & ~TAG_THREADID;
1504 continue;
1505 }
1506 if (tag == TAG_EXISTS)
1507 {
1508 info->active = stub_unpack_int (pkt, length);
1509 pkt += length;
1510 mask = mask & ~(TAG_EXISTS);
1511 if (length > 8)
1512 {
1513 warning ("ERROR RMT: 'exists' length too long\n");
1514 retval = 0;
1515 break;
1516 }
1517 continue;
1518 }
1519 if (tag == TAG_THREADNAME)
1520 {
1521 pkt = unpack_string (pkt, &info->shortname[0], length);
1522 mask = mask & ~TAG_THREADNAME;
1523 continue;
1524 }
1525 if (tag == TAG_DISPLAY)
1526 {
1527 pkt = unpack_string (pkt, &info->display[0], length);
1528 mask = mask & ~TAG_DISPLAY;
1529 continue;
1530 }
1531 if (tag == TAG_MOREDISPLAY)
1532 {
1533 pkt = unpack_string (pkt, &info->more_display[0], length);
1534 mask = mask & ~TAG_MOREDISPLAY;
1535 continue;
1536 }
1537 warning ("ERROR RMT: unknown thread info tag\n");
1538 break; /* Not a tag we know about */
1539 }
1540 return retval;
1541}
1542
1543static int
1544remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1545 struct gdb_ext_thread_info *info)
1546{
1547 struct remote_state *rs = get_remote_state ();
1548 int result;
1549 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1550
1551 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1552 putpkt (threadinfo_pkt);
1553 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1554 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1555 info);
1556 return result;
1557}
1558
1559/* Unfortunately, 61 bit thread-ids are bigger than the internal
1560 representation of a threadid. */
1561
1562static int
1563adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1564 struct gdb_ext_thread_info *info)
1565{
1566 threadref lclref;
1567
1568 int_to_threadref (&lclref, *ref);
1569 return remote_get_threadinfo (&lclref, selection, info);
1570}
1571
1572/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1573
1574static char *
1575pack_threadlist_request (char *pkt, int startflag, int threadcount,
1576 threadref *nextthread)
1577{
1578 *pkt++ = 'q'; /* info query packet */
1579 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1580 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1581 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1582 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1583 *pkt = '\0';
1584 return pkt;
1585}
1586
1587/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1588
1589static int
1590parse_threadlist_response (char *pkt, int result_limit,
1591 threadref *original_echo, threadref *resultlist,
1592 int *doneflag)
1593{
1594 struct remote_state *rs = get_remote_state ();
1595 char *limit;
1596 int count, resultcount, done;
1597
1598 resultcount = 0;
1599 /* Assume the 'q' and 'M chars have been stripped. */
1600 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1601 pkt = unpack_byte (pkt, &count); /* count field */
1602 pkt = unpack_nibble (pkt, &done);
1603 /* The first threadid is the argument threadid. */
1604 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1605 while ((count-- > 0) && (pkt < limit))
1606 {
1607 pkt = unpack_threadid (pkt, resultlist++);
1608 if (resultcount++ >= result_limit)
1609 break;
1610 }
1611 if (doneflag)
1612 *doneflag = done;
1613 return resultcount;
1614}
1615
1616static int
1617remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1618 int *done, int *result_count, threadref *threadlist)
1619{
1620 struct remote_state *rs = get_remote_state ();
1621 static threadref echo_nextthread;
1622 char *threadlist_packet = alloca (rs->remote_packet_size);
1623 char *t_response = alloca (rs->remote_packet_size);
1624 int result = 1;
1625
1626 /* Trancate result limit to be smaller than the packet size */
1627 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1628 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1629
1630 pack_threadlist_request (threadlist_packet,
1631 startflag, result_limit, nextthread);
1632 putpkt (threadlist_packet);
1633 getpkt (t_response, (rs->remote_packet_size), 0);
1634
1635 *result_count =
1636 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1637 threadlist, done);
1638
1639 if (!threadmatch (&echo_nextthread, nextthread))
1640 {
1641 /* FIXME: This is a good reason to drop the packet */
1642 /* Possably, there is a duplicate response */
1643 /* Possabilities :
1644 retransmit immediatly - race conditions
1645 retransmit after timeout - yes
1646 exit
1647 wait for packet, then exit
1648 */
1649 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1650 return 0; /* I choose simply exiting */
1651 }
1652 if (*result_count <= 0)
1653 {
1654 if (*done != 1)
1655 {
1656 warning ("RMT ERROR : failed to get remote thread list\n");
1657 result = 0;
1658 }
1659 return result; /* break; */
1660 }
1661 if (*result_count > result_limit)
1662 {
1663 *result_count = 0;
1664 warning ("RMT ERROR: threadlist response longer than requested\n");
1665 return 0;
1666 }
1667 return result;
1668}
1669
1670/* This is the interface between remote and threads, remotes upper interface */
1671
1672/* remote_find_new_threads retrieves the thread list and for each
1673 thread in the list, looks up the thread in GDB's internal list,
1674 ading the thread if it does not already exist. This involves
1675 getting partial thread lists from the remote target so, polling the
1676 quit_flag is required. */
1677
1678
1679/* About this many threadisds fit in a packet. */
1680
1681#define MAXTHREADLISTRESULTS 32
1682
1683static int
1684remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1685 int looplimit)
1686{
1687 int done, i, result_count;
1688 int startflag = 1;
1689 int result = 1;
1690 int loopcount = 0;
1691 static threadref nextthread;
1692 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1693
1694 done = 0;
1695 while (!done)
1696 {
1697 if (loopcount++ > looplimit)
1698 {
1699 result = 0;
1700 warning ("Remote fetch threadlist -infinite loop-\n");
1701 break;
1702 }
1703 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1704 &done, &result_count, resultthreadlist))
1705 {
1706 result = 0;
1707 break;
1708 }
1709 /* clear for later iterations */
1710 startflag = 0;
1711 /* Setup to resume next batch of thread references, set nextthread. */
1712 if (result_count >= 1)
1713 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1714 i = 0;
1715 while (result_count--)
1716 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1717 break;
1718 }
1719 return result;
1720}
1721
1722static int
1723remote_newthread_step (threadref *ref, void *context)
1724{
1725 ptid_t ptid;
1726
1727 ptid = pid_to_ptid (threadref_to_int (ref));
1728
1729 if (!in_thread_list (ptid))
1730 add_thread (ptid);
1731 return 1; /* continue iterator */
1732}
1733
1734#define CRAZY_MAX_THREADS 1000
1735
1736static ptid_t
1737remote_current_thread (ptid_t oldpid)
1738{
1739 struct remote_state *rs = get_remote_state ();
1740 char *buf = alloca (rs->remote_packet_size);
1741
1742 putpkt ("qC");
1743 getpkt (buf, (rs->remote_packet_size), 0);
1744 if (buf[0] == 'Q' && buf[1] == 'C')
1745 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1746 else
1747 return oldpid;
1748}
1749
1750/* Find new threads for info threads command.
1751 * Original version, using John Metzler's thread protocol.
1752 */
1753
1754static void
1755remote_find_new_threads (void)
1756{
1757 remote_threadlist_iterator (remote_newthread_step, 0,
1758 CRAZY_MAX_THREADS);
1759 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1760 inferior_ptid = remote_current_thread (inferior_ptid);
1761}
1762
1763/*
1764 * Find all threads for info threads command.
1765 * Uses new thread protocol contributed by Cisco.
1766 * Falls back and attempts to use the older method (above)
1767 * if the target doesn't respond to the new method.
1768 */
1769
1770static void
1771remote_threads_info (void)
1772{
1773 struct remote_state *rs = get_remote_state ();
1774 char *buf = alloca (rs->remote_packet_size);
1775 char *bufp;
1776 int tid;
1777
1778 if (remote_desc == 0) /* paranoia */
1779 error ("Command can only be used when connected to the remote target.");
1780
1781 if (use_threadinfo_query)
1782 {
1783 putpkt ("qfThreadInfo");
1784 bufp = buf;
1785 getpkt (bufp, (rs->remote_packet_size), 0);
1786 if (bufp[0] != '\0') /* q packet recognized */
1787 {
1788 while (*bufp++ == 'm') /* reply contains one or more TID */
1789 {
1790 do
1791 {
1792 tid = strtol (bufp, &bufp, 16);
1793 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1794 add_thread (pid_to_ptid (tid));
1795 }
1796 while (*bufp++ == ','); /* comma-separated list */
1797 putpkt ("qsThreadInfo");
1798 bufp = buf;
1799 getpkt (bufp, (rs->remote_packet_size), 0);
1800 }
1801 return; /* done */
1802 }
1803 }
1804
1805 /* Else fall back to old method based on jmetzler protocol. */
1806 use_threadinfo_query = 0;
1807 remote_find_new_threads ();
1808 return;
1809}
1810
1811/*
1812 * Collect a descriptive string about the given thread.
1813 * The target may say anything it wants to about the thread
1814 * (typically info about its blocked / runnable state, name, etc.).
1815 * This string will appear in the info threads display.
1816 *
1817 * Optional: targets are not required to implement this function.
1818 */
1819
1820static char *
1821remote_threads_extra_info (struct thread_info *tp)
1822{
1823 struct remote_state *rs = get_remote_state ();
1824 int result;
1825 int set;
1826 threadref id;
1827 struct gdb_ext_thread_info threadinfo;
1828 static char display_buf[100]; /* arbitrary... */
1829 char *bufp = alloca (rs->remote_packet_size);
1830 int n = 0; /* position in display_buf */
1831
1832 if (remote_desc == 0) /* paranoia */
1833 internal_error (__FILE__, __LINE__,
1834 "remote_threads_extra_info");
1835
1836 if (use_threadextra_query)
1837 {
1838 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1839 putpkt (bufp);
1840 getpkt (bufp, (rs->remote_packet_size), 0);
1841 if (bufp[0] != 0)
1842 {
1843 n = min (strlen (bufp) / 2, sizeof (display_buf));
1844 result = hex2bin (bufp, display_buf, n);
1845 display_buf [result] = '\0';
1846 return display_buf;
1847 }
1848 }
1849
1850 /* If the above query fails, fall back to the old method. */
1851 use_threadextra_query = 0;
1852 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1853 | TAG_MOREDISPLAY | TAG_DISPLAY;
1854 int_to_threadref (&id, PIDGET (tp->ptid));
1855 if (remote_get_threadinfo (&id, set, &threadinfo))
1856 if (threadinfo.active)
1857 {
1858 if (*threadinfo.shortname)
1859 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1860 if (*threadinfo.display)
1861 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1862 if (*threadinfo.more_display)
1863 n += sprintf(&display_buf[n], " Priority: %s",
1864 threadinfo.more_display);
1865
1866 if (n > 0)
1867 {
1868 /* for purely cosmetic reasons, clear up trailing commas */
1869 if (',' == display_buf[n-1])
1870 display_buf[n-1] = ' ';
1871 return display_buf;
1872 }
1873 }
1874 return NULL;
1875}
1876
1877\f
1878
1879/* Restart the remote side; this is an extended protocol operation. */
1880
1881static void
1882extended_remote_restart (void)
1883{
1884 struct remote_state *rs = get_remote_state ();
1885 char *buf = alloca (rs->remote_packet_size);
1886
1887 /* Send the restart command; for reasons I don't understand the
1888 remote side really expects a number after the "R". */
1889 buf[0] = 'R';
1890 sprintf (&buf[1], "%x", 0);
1891 putpkt (buf);
1892
1893 /* Now query for status so this looks just like we restarted
1894 gdbserver from scratch. */
1895 putpkt ("?");
1896 getpkt (buf, (rs->remote_packet_size), 0);
1897}
1898\f
1899/* Clean up connection to a remote debugger. */
1900
1901/* ARGSUSED */
1902static void
1903remote_close (int quitting)
1904{
1905 if (remote_desc)
1906 serial_close (remote_desc);
1907 remote_desc = NULL;
1908}
1909
1910/* Query the remote side for the text, data and bss offsets. */
1911
1912static void
1913get_offsets (void)
1914{
1915 struct remote_state *rs = get_remote_state ();
1916 char *buf = alloca (rs->remote_packet_size);
1917 char *ptr;
1918 int lose;
1919 CORE_ADDR text_addr, data_addr, bss_addr;
1920 struct section_offsets *offs;
1921
1922 putpkt ("qOffsets");
1923
1924 getpkt (buf, (rs->remote_packet_size), 0);
1925
1926 if (buf[0] == '\000')
1927 return; /* Return silently. Stub doesn't support
1928 this command. */
1929 if (buf[0] == 'E')
1930 {
1931 warning ("Remote failure reply: %s", buf);
1932 return;
1933 }
1934
1935 /* Pick up each field in turn. This used to be done with scanf, but
1936 scanf will make trouble if CORE_ADDR size doesn't match
1937 conversion directives correctly. The following code will work
1938 with any size of CORE_ADDR. */
1939 text_addr = data_addr = bss_addr = 0;
1940 ptr = buf;
1941 lose = 0;
1942
1943 if (strncmp (ptr, "Text=", 5) == 0)
1944 {
1945 ptr += 5;
1946 /* Don't use strtol, could lose on big values. */
1947 while (*ptr && *ptr != ';')
1948 text_addr = (text_addr << 4) + fromhex (*ptr++);
1949 }
1950 else
1951 lose = 1;
1952
1953 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1954 {
1955 ptr += 6;
1956 while (*ptr && *ptr != ';')
1957 data_addr = (data_addr << 4) + fromhex (*ptr++);
1958 }
1959 else
1960 lose = 1;
1961
1962 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1963 {
1964 ptr += 5;
1965 while (*ptr && *ptr != ';')
1966 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1967 }
1968 else
1969 lose = 1;
1970
1971 if (lose)
1972 error ("Malformed response to offset query, %s", buf);
1973
1974 if (symfile_objfile == NULL)
1975 return;
1976
1977 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1978 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1979
1980 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1981
1982 /* This is a temporary kludge to force data and bss to use the same offsets
1983 because that's what nlmconv does now. The real solution requires changes
1984 to the stub and remote.c that I don't have time to do right now. */
1985
1986 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1987 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1988
1989 objfile_relocate (symfile_objfile, offs);
1990}
1991
1992/*
1993 * Cisco version of section offsets:
1994 *
1995 * Instead of having GDB query the target for the section offsets,
1996 * Cisco lets the target volunteer the information! It's also in
1997 * a different format, so here are the functions that will decode
1998 * a section offset packet from a Cisco target.
1999 */
2000
2001/*
2002 * Function: remote_cisco_section_offsets
2003 *
2004 * Returns: zero for success, non-zero for failure
2005 */
2006
2007static int
2008remote_cisco_section_offsets (bfd_vma text_addr,
2009 bfd_vma data_addr,
2010 bfd_vma bss_addr,
2011 bfd_signed_vma *text_offs,
2012 bfd_signed_vma *data_offs,
2013 bfd_signed_vma *bss_offs)
2014{
2015 bfd_vma text_base, data_base, bss_base;
2016 struct minimal_symbol *start;
2017 asection *sect;
2018 bfd *abfd;
2019 int len;
2020
2021 if (symfile_objfile == NULL)
2022 return -1; /* no can do nothin' */
2023
2024 start = lookup_minimal_symbol ("_start", NULL, NULL);
2025 if (start == NULL)
2026 return -1; /* Can't find "_start" symbol */
2027
2028 data_base = bss_base = 0;
2029 text_base = SYMBOL_VALUE_ADDRESS (start);
2030
2031 abfd = symfile_objfile->obfd;
2032 for (sect = abfd->sections;
2033 sect != 0;
2034 sect = sect->next)
2035 {
2036 const char *p = bfd_get_section_name (abfd, sect);
2037 len = strlen (p);
2038 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2039 if (data_base == 0 ||
2040 data_base > bfd_get_section_vma (abfd, sect))
2041 data_base = bfd_get_section_vma (abfd, sect);
2042 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2043 if (bss_base == 0 ||
2044 bss_base > bfd_get_section_vma (abfd, sect))
2045 bss_base = bfd_get_section_vma (abfd, sect);
2046 }
2047 *text_offs = text_addr - text_base;
2048 *data_offs = data_addr - data_base;
2049 *bss_offs = bss_addr - bss_base;
2050 if (remote_debug)
2051 {
2052 char tmp[128];
2053
2054 sprintf (tmp, "VMA: text = 0x");
2055 sprintf_vma (tmp + strlen (tmp), text_addr);
2056 sprintf (tmp + strlen (tmp), " data = 0x");
2057 sprintf_vma (tmp + strlen (tmp), data_addr);
2058 sprintf (tmp + strlen (tmp), " bss = 0x");
2059 sprintf_vma (tmp + strlen (tmp), bss_addr);
2060 fprintf_filtered (gdb_stdlog, tmp);
2061 fprintf_filtered (gdb_stdlog,
2062 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2063 paddr_nz (*text_offs),
2064 paddr_nz (*data_offs),
2065 paddr_nz (*bss_offs));
2066 }
2067
2068 return 0;
2069}
2070
2071/*
2072 * Function: remote_cisco_objfile_relocate
2073 *
2074 * Relocate the symbol file for a remote target.
2075 */
2076
2077void
2078remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2079 bfd_signed_vma bss_off)
2080{
2081 struct section_offsets *offs;
2082
2083 if (text_off != 0 || data_off != 0 || bss_off != 0)
2084 {
2085 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2086 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2087 simple canonical representation for this stuff. */
2088
2089 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2090 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2091
2092 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2093 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2094 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2095
2096 /* First call the standard objfile_relocate. */
2097 objfile_relocate (symfile_objfile, offs);
2098
2099 /* Now we need to fix up the section entries already attached to
2100 the exec target. These entries will control memory transfers
2101 from the exec file. */
2102
2103 exec_set_section_offsets (text_off, data_off, bss_off);
2104 }
2105}
2106
2107/* Stub for catch_errors. */
2108
2109static int
2110remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2111{
2112 start_remote (); /* Initialize gdb process mechanisms */
2113 /* NOTE: Return something >=0. A -ve value is reserved for
2114 catch_exceptions. */
2115 return 1;
2116}
2117
2118static int
2119remote_start_remote (struct ui_out *uiout, void *dummy)
2120{
2121 immediate_quit++; /* Allow user to interrupt it */
2122
2123 /* Ack any packet which the remote side has already sent. */
2124 serial_write (remote_desc, "+", 1);
2125
2126 /* Let the stub know that we want it to return the thread. */
2127 set_thread (-1, 0);
2128
2129 inferior_ptid = remote_current_thread (inferior_ptid);
2130
2131 get_offsets (); /* Get text, data & bss offsets */
2132
2133 putpkt ("?"); /* initiate a query from remote machine */
2134 immediate_quit--;
2135
2136 /* NOTE: See comment above in remote_start_remote_dummy(). This
2137 function returns something >=0. */
2138 return remote_start_remote_dummy (uiout, dummy);
2139}
2140
2141/* Open a connection to a remote debugger.
2142 NAME is the filename used for communication. */
2143
2144static void
2145remote_open (char *name, int from_tty)
2146{
2147 remote_open_1 (name, from_tty, &remote_ops, 0);
2148}
2149
2150/* Just like remote_open, but with asynchronous support. */
2151static void
2152remote_async_open (char *name, int from_tty)
2153{
2154 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2155}
2156
2157/* Open a connection to a remote debugger using the extended
2158 remote gdb protocol. NAME is the filename used for communication. */
2159
2160static void
2161extended_remote_open (char *name, int from_tty)
2162{
2163 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2164}
2165
2166/* Just like extended_remote_open, but with asynchronous support. */
2167static void
2168extended_remote_async_open (char *name, int from_tty)
2169{
2170 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2171}
2172
2173/* Generic code for opening a connection to a remote target. */
2174
2175static void
2176init_all_packet_configs (void)
2177{
2178 int i;
2179 update_packet_config (&remote_protocol_e);
2180 update_packet_config (&remote_protocol_E);
2181 update_packet_config (&remote_protocol_P);
2182 update_packet_config (&remote_protocol_qSymbol);
2183 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2184 update_packet_config (&remote_protocol_Z[i]);
2185 /* Force remote_write_bytes to check whether target supports binary
2186 downloading. */
2187 update_packet_config (&remote_protocol_binary_download);
2188}
2189
2190/* Symbol look-up. */
2191
2192static void
2193remote_check_symbols (struct objfile *objfile)
2194{
2195 struct remote_state *rs = get_remote_state ();
2196 char *msg, *reply, *tmp;
2197 struct minimal_symbol *sym;
2198 int end;
2199
2200 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2201 return;
2202
2203 msg = alloca (rs->remote_packet_size);
2204 reply = alloca (rs->remote_packet_size);
2205
2206 /* Invite target to request symbol lookups. */
2207
2208 putpkt ("qSymbol::");
2209 getpkt (reply, (rs->remote_packet_size), 0);
2210 packet_ok (reply, &remote_protocol_qSymbol);
2211
2212 while (strncmp (reply, "qSymbol:", 8) == 0)
2213 {
2214 tmp = &reply[8];
2215 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2216 msg[end] = '\0';
2217 sym = lookup_minimal_symbol (msg, NULL, NULL);
2218 if (sym == NULL)
2219 sprintf (msg, "qSymbol::%s", &reply[8]);
2220 else
2221 sprintf (msg, "qSymbol:%s:%s",
2222 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2223 &reply[8]);
2224 putpkt (msg);
2225 getpkt (reply, (rs->remote_packet_size), 0);
2226 }
2227}
2228
2229static struct serial *
2230remote_serial_open (char *name)
2231{
2232 static int udp_warning = 0;
2233
2234 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2235 of in ser-tcp.c, because it is the remote protocol assuming that the
2236 serial connection is reliable and not the serial connection promising
2237 to be. */
2238 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2239 {
2240 warning ("The remote protocol may be unreliable over UDP.");
2241 warning ("Some events may be lost, rendering further debugging "
2242 "impossible.");
2243 udp_warning = 1;
2244 }
2245
2246 return serial_open (name);
2247}
2248
2249static void
2250remote_open_1 (char *name, int from_tty, struct target_ops *target,
2251 int extended_p)
2252{
2253 int ex;
2254 struct remote_state *rs = get_remote_state ();
2255 if (name == 0)
2256 error ("To open a remote debug connection, you need to specify what\n"
2257 "serial device is attached to the remote system\n"
2258 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2259
2260 /* See FIXME above */
2261 wait_forever_enabled_p = 1;
2262
2263 target_preopen (from_tty);
2264
2265 unpush_target (target);
2266
2267 remote_desc = remote_serial_open (name);
2268 if (!remote_desc)
2269 perror_with_name (name);
2270
2271 if (baud_rate != -1)
2272 {
2273 if (serial_setbaudrate (remote_desc, baud_rate))
2274 {
2275 serial_close (remote_desc);
2276 perror_with_name (name);
2277 }
2278 }
2279
2280 serial_raw (remote_desc);
2281
2282 /* If there is something sitting in the buffer we might take it as a
2283 response to a command, which would be bad. */
2284 serial_flush_input (remote_desc);
2285
2286 if (from_tty)
2287 {
2288 puts_filtered ("Remote debugging using ");
2289 puts_filtered (name);
2290 puts_filtered ("\n");
2291 }
2292 push_target (target); /* Switch to using remote target now */
2293
2294 init_all_packet_configs ();
2295
2296 general_thread = -2;
2297 continue_thread = -2;
2298
2299 /* Probe for ability to use "ThreadInfo" query, as required. */
2300 use_threadinfo_query = 1;
2301 use_threadextra_query = 1;
2302
2303 /* Without this, some commands which require an active target (such
2304 as kill) won't work. This variable serves (at least) double duty
2305 as both the pid of the target process (if it has such), and as a
2306 flag indicating that a target is active. These functions should
2307 be split out into seperate variables, especially since GDB will
2308 someday have a notion of debugging several processes. */
2309
2310 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2311#ifdef SOLIB_CREATE_INFERIOR_HOOK
2312 /* First delete any symbols previously loaded from shared libraries. */
2313 no_shared_libraries (NULL, 0);
2314#endif
2315
2316 /* Start the remote connection. If error() or QUIT, discard this
2317 target (we'd otherwise be in an inconsistent state) and then
2318 propogate the error on up the exception chain. This ensures that
2319 the caller doesn't stumble along blindly assuming that the
2320 function succeeded. The CLI doesn't have this problem but other
2321 UI's, such as MI do.
2322
2323 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2324 this function should return an error indication letting the
2325 caller restore the previous state. Unfortunatly the command
2326 ``target remote'' is directly wired to this function making that
2327 impossible. On a positive note, the CLI side of this problem has
2328 been fixed - the function set_cmd_context() makes it possible for
2329 all the ``target ....'' commands to share a common callback
2330 function. See cli-dump.c. */
2331 ex = catch_exceptions (uiout,
2332 remote_start_remote, NULL,
2333 "Couldn't establish connection to remote"
2334 " target\n",
2335 RETURN_MASK_ALL);
2336 if (ex < 0)
2337 {
2338 pop_target ();
2339 throw_exception (ex);
2340 }
2341
2342 if (extended_p)
2343 {
2344 /* Tell the remote that we are using the extended protocol. */
2345 char *buf = alloca (rs->remote_packet_size);
2346 putpkt ("!");
2347 getpkt (buf, (rs->remote_packet_size), 0);
2348 }
2349#ifdef SOLIB_CREATE_INFERIOR_HOOK
2350 /* FIXME: need a master target_open vector from which all
2351 remote_opens can be called, so that stuff like this can
2352 go there. Failing that, the following code must be copied
2353 to the open function for any remote target that wants to
2354 support svr4 shared libraries. */
2355
2356 /* Set up to detect and load shared libraries. */
2357 if (exec_bfd) /* No use without an exec file. */
2358 {
2359 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2360 remote_check_symbols (symfile_objfile);
2361 }
2362#endif
2363}
2364
2365/* Just like remote_open but with asynchronous support. */
2366static void
2367remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2368 int extended_p)
2369{
2370 int ex;
2371 struct remote_state *rs = get_remote_state ();
2372 if (name == 0)
2373 error ("To open a remote debug connection, you need to specify what\n"
2374 "serial device is attached to the remote system\n"
2375 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2376
2377 target_preopen (from_tty);
2378
2379 unpush_target (target);
2380
2381 remote_desc = remote_serial_open (name);
2382 if (!remote_desc)
2383 perror_with_name (name);
2384
2385 if (baud_rate != -1)
2386 {
2387 if (serial_setbaudrate (remote_desc, baud_rate))
2388 {
2389 serial_close (remote_desc);
2390 perror_with_name (name);
2391 }
2392 }
2393
2394 serial_raw (remote_desc);
2395
2396 /* If there is something sitting in the buffer we might take it as a
2397 response to a command, which would be bad. */
2398 serial_flush_input (remote_desc);
2399
2400 if (from_tty)
2401 {
2402 puts_filtered ("Remote debugging using ");
2403 puts_filtered (name);
2404 puts_filtered ("\n");
2405 }
2406
2407 push_target (target); /* Switch to using remote target now */
2408
2409 init_all_packet_configs ();
2410
2411 general_thread = -2;
2412 continue_thread = -2;
2413
2414 /* Probe for ability to use "ThreadInfo" query, as required. */
2415 use_threadinfo_query = 1;
2416 use_threadextra_query = 1;
2417
2418 /* Without this, some commands which require an active target (such
2419 as kill) won't work. This variable serves (at least) double duty
2420 as both the pid of the target process (if it has such), and as a
2421 flag indicating that a target is active. These functions should
2422 be split out into seperate variables, especially since GDB will
2423 someday have a notion of debugging several processes. */
2424 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2425
2426 /* With this target we start out by owning the terminal. */
2427 remote_async_terminal_ours_p = 1;
2428
2429 /* FIXME: cagney/1999-09-23: During the initial connection it is
2430 assumed that the target is already ready and able to respond to
2431 requests. Unfortunately remote_start_remote() eventually calls
2432 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2433 around this. Eventually a mechanism that allows
2434 wait_for_inferior() to expect/get timeouts will be
2435 implemented. */
2436 wait_forever_enabled_p = 0;
2437
2438#ifdef SOLIB_CREATE_INFERIOR_HOOK
2439 /* First delete any symbols previously loaded from shared libraries. */
2440 no_shared_libraries (NULL, 0);
2441#endif
2442
2443 /* Start the remote connection; if error, discard this target. See
2444 the comments in remote_open_1() for further details such as the
2445 need to re-throw the exception. */
2446 ex = catch_exceptions (uiout,
2447 remote_start_remote, NULL,
2448 "Couldn't establish connection to remote"
2449 " target\n",
2450 RETURN_MASK_ALL);
2451 if (ex < 0)
2452 {
2453 pop_target ();
2454 wait_forever_enabled_p = 1;
2455 throw_exception (ex);
2456 }
2457
2458 wait_forever_enabled_p = 1;
2459
2460 if (extended_p)
2461 {
2462 /* Tell the remote that we are using the extended protocol. */
2463 char *buf = alloca (rs->remote_packet_size);
2464 putpkt ("!");
2465 getpkt (buf, (rs->remote_packet_size), 0);
2466 }
2467#ifdef SOLIB_CREATE_INFERIOR_HOOK
2468 /* FIXME: need a master target_open vector from which all
2469 remote_opens can be called, so that stuff like this can
2470 go there. Failing that, the following code must be copied
2471 to the open function for any remote target that wants to
2472 support svr4 shared libraries. */
2473
2474 /* Set up to detect and load shared libraries. */
2475 if (exec_bfd) /* No use without an exec file. */
2476 {
2477 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2478 remote_check_symbols (symfile_objfile);
2479 }
2480#endif
2481}
2482
2483/* This takes a program previously attached to and detaches it. After
2484 this is done, GDB can be used to debug some other program. We
2485 better not have left any breakpoints in the target program or it'll
2486 die when it hits one. */
2487
2488static void
2489remote_detach (char *args, int from_tty)
2490{
2491 struct remote_state *rs = get_remote_state ();
2492 char *buf = alloca (rs->remote_packet_size);
2493
2494 if (args)
2495 error ("Argument given to \"detach\" when remotely debugging.");
2496
2497 /* Tell the remote target to detach. */
2498 strcpy (buf, "D");
2499 remote_send (buf, (rs->remote_packet_size));
2500
2501 target_mourn_inferior ();
2502 if (from_tty)
2503 puts_filtered ("Ending remote debugging.\n");
2504
2505}
2506
2507/* Same as remote_detach, but with async support. */
2508static void
2509remote_async_detach (char *args, int from_tty)
2510{
2511 struct remote_state *rs = get_remote_state ();
2512 char *buf = alloca (rs->remote_packet_size);
2513
2514 if (args)
2515 error ("Argument given to \"detach\" when remotely debugging.");
2516
2517 /* Tell the remote target to detach. */
2518 strcpy (buf, "D");
2519 remote_send (buf, (rs->remote_packet_size));
2520
2521 /* Unregister the file descriptor from the event loop. */
2522 if (target_is_async_p ())
2523 serial_async (remote_desc, NULL, 0);
2524
2525 target_mourn_inferior ();
2526 if (from_tty)
2527 puts_filtered ("Ending remote debugging.\n");
2528}
2529
2530/* Convert hex digit A to a number. */
2531
2532static int
2533fromhex (int a)
2534{
2535 if (a >= '0' && a <= '9')
2536 return a - '0';
2537 else if (a >= 'a' && a <= 'f')
2538 return a - 'a' + 10;
2539 else if (a >= 'A' && a <= 'F')
2540 return a - 'A' + 10;
2541 else
2542 error ("Reply contains invalid hex digit %d", a);
2543}
2544
2545static int
2546hex2bin (const char *hex, char *bin, int count)
2547{
2548 int i;
2549
2550 for (i = 0; i < count; i++)
2551 {
2552 if (hex[0] == 0 || hex[1] == 0)
2553 {
2554 /* Hex string is short, or of uneven length.
2555 Return the count that has been converted so far. */
2556 return i;
2557 }
2558 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2559 hex += 2;
2560 }
2561 return i;
2562}
2563
2564/* Convert number NIB to a hex digit. */
2565
2566static int
2567tohex (int nib)
2568{
2569 if (nib < 10)
2570 return '0' + nib;
2571 else
2572 return 'a' + nib - 10;
2573}
2574
2575static int
2576bin2hex (const char *bin, char *hex, int count)
2577{
2578 int i;
2579 /* May use a length, or a nul-terminated string as input. */
2580 if (count == 0)
2581 count = strlen (bin);
2582
2583 for (i = 0; i < count; i++)
2584 {
2585 *hex++ = tohex ((*bin >> 4) & 0xf);
2586 *hex++ = tohex (*bin++ & 0xf);
2587 }
2588 *hex = 0;
2589 return i;
2590}
2591\f
2592/* Tell the remote machine to resume. */
2593
2594static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2595
2596static int last_sent_step;
2597
2598static void
2599remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2600{
2601 struct remote_state *rs = get_remote_state ();
2602 char *buf = alloca (rs->remote_packet_size);
2603 int pid = PIDGET (ptid);
2604 char *p;
2605
2606 if (pid == -1)
2607 set_thread (0, 0); /* run any thread */
2608 else
2609 set_thread (pid, 0); /* run this thread */
2610
2611 last_sent_signal = siggnal;
2612 last_sent_step = step;
2613
2614 /* A hook for when we need to do something at the last moment before
2615 resumption. */
2616 if (target_resume_hook)
2617 (*target_resume_hook) ();
2618
2619
2620 /* The s/S/c/C packets do not return status. So if the target does
2621 not support the S or C packets, the debug agent returns an empty
2622 string which is detected in remote_wait(). This protocol defect
2623 is fixed in the e/E packets. */
2624
2625 if (step && step_range_end)
2626 {
2627 /* If the target does not support the 'E' packet, we try the 'S'
2628 packet. Ideally we would fall back to the 'e' packet if that
2629 too is not supported. But that would require another copy of
2630 the code to issue the 'e' packet (and fall back to 's' if not
2631 supported) in remote_wait(). */
2632
2633 if (siggnal != TARGET_SIGNAL_0)
2634 {
2635 if (remote_protocol_E.support != PACKET_DISABLE)
2636 {
2637 p = buf;
2638 *p++ = 'E';
2639 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2640 *p++ = tohex (((int) siggnal) & 0xf);
2641 *p++ = ',';
2642 p += hexnumstr (p, (ULONGEST) step_range_start);
2643 *p++ = ',';
2644 p += hexnumstr (p, (ULONGEST) step_range_end);
2645 *p++ = 0;
2646
2647 putpkt (buf);
2648 getpkt (buf, (rs->remote_packet_size), 0);
2649
2650 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2651 return;
2652 }
2653 }
2654 else
2655 {
2656 if (remote_protocol_e.support != PACKET_DISABLE)
2657 {
2658 p = buf;
2659 *p++ = 'e';
2660 p += hexnumstr (p, (ULONGEST) step_range_start);
2661 *p++ = ',';
2662 p += hexnumstr (p, (ULONGEST) step_range_end);
2663 *p++ = 0;
2664
2665 putpkt (buf);
2666 getpkt (buf, (rs->remote_packet_size), 0);
2667
2668 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2669 return;
2670 }
2671 }
2672 }
2673
2674 if (siggnal != TARGET_SIGNAL_0)
2675 {
2676 buf[0] = step ? 'S' : 'C';
2677 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2678 buf[2] = tohex (((int) siggnal) & 0xf);
2679 buf[3] = '\0';
2680 }
2681 else
2682 strcpy (buf, step ? "s" : "c");
2683
2684 putpkt (buf);
2685}
2686
2687/* Same as remote_resume, but with async support. */
2688static void
2689remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2690{
2691 struct remote_state *rs = get_remote_state ();
2692 char *buf = alloca (rs->remote_packet_size);
2693 int pid = PIDGET (ptid);
2694 char *p;
2695
2696 if (pid == -1)
2697 set_thread (0, 0); /* run any thread */
2698 else
2699 set_thread (pid, 0); /* run this thread */
2700
2701 last_sent_signal = siggnal;
2702 last_sent_step = step;
2703
2704 /* A hook for when we need to do something at the last moment before
2705 resumption. */
2706 if (target_resume_hook)
2707 (*target_resume_hook) ();
2708
2709 /* The s/S/c/C packets do not return status. So if the target does
2710 not support the S or C packets, the debug agent returns an empty
2711 string which is detected in remote_wait(). This protocol defect
2712 is fixed in the e/E packets. */
2713
2714 if (step && step_range_end)
2715 {
2716 /* If the target does not support the 'E' packet, we try the 'S'
2717 packet. Ideally we would fall back to the 'e' packet if that
2718 too is not supported. But that would require another copy of
2719 the code to issue the 'e' packet (and fall back to 's' if not
2720 supported) in remote_wait(). */
2721
2722 if (siggnal != TARGET_SIGNAL_0)
2723 {
2724 if (remote_protocol_E.support != PACKET_DISABLE)
2725 {
2726 p = buf;
2727 *p++ = 'E';
2728 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2729 *p++ = tohex (((int) siggnal) & 0xf);
2730 *p++ = ',';
2731 p += hexnumstr (p, (ULONGEST) step_range_start);
2732 *p++ = ',';
2733 p += hexnumstr (p, (ULONGEST) step_range_end);
2734 *p++ = 0;
2735
2736 putpkt (buf);
2737 getpkt (buf, (rs->remote_packet_size), 0);
2738
2739 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2740 goto register_event_loop;
2741 }
2742 }
2743 else
2744 {
2745 if (remote_protocol_e.support != PACKET_DISABLE)
2746 {
2747 p = buf;
2748 *p++ = 'e';
2749 p += hexnumstr (p, (ULONGEST) step_range_start);
2750 *p++ = ',';
2751 p += hexnumstr (p, (ULONGEST) step_range_end);
2752 *p++ = 0;
2753
2754 putpkt (buf);
2755 getpkt (buf, (rs->remote_packet_size), 0);
2756
2757 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2758 goto register_event_loop;
2759 }
2760 }
2761 }
2762
2763 if (siggnal != TARGET_SIGNAL_0)
2764 {
2765 buf[0] = step ? 'S' : 'C';
2766 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2767 buf[2] = tohex ((int) siggnal & 0xf);
2768 buf[3] = '\0';
2769 }
2770 else
2771 strcpy (buf, step ? "s" : "c");
2772
2773 putpkt (buf);
2774
2775register_event_loop:
2776 /* We are about to start executing the inferior, let's register it
2777 with the event loop. NOTE: this is the one place where all the
2778 execution commands end up. We could alternatively do this in each
2779 of the execution commands in infcmd.c.*/
2780 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2781 into infcmd.c in order to allow inferior function calls to work
2782 NOT asynchronously. */
2783 if (event_loop_p && target_can_async_p ())
2784 target_async (inferior_event_handler, 0);
2785 /* Tell the world that the target is now executing. */
2786 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2787 this? Instead, should the client of target just assume (for
2788 async targets) that the target is going to start executing? Is
2789 this information already found in the continuation block? */
2790 if (target_is_async_p ())
2791 target_executing = 1;
2792}
2793\f
2794
2795/* Set up the signal handler for SIGINT, while the target is
2796 executing, ovewriting the 'regular' SIGINT signal handler. */
2797static void
2798initialize_sigint_signal_handler (void)
2799{
2800 sigint_remote_token =
2801 create_async_signal_handler (async_remote_interrupt, NULL);
2802 signal (SIGINT, handle_remote_sigint);
2803}
2804
2805/* Signal handler for SIGINT, while the target is executing. */
2806static void
2807handle_remote_sigint (int sig)
2808{
2809 signal (sig, handle_remote_sigint_twice);
2810 sigint_remote_twice_token =
2811 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2812 mark_async_signal_handler_wrapper (sigint_remote_token);
2813}
2814
2815/* Signal handler for SIGINT, installed after SIGINT has already been
2816 sent once. It will take effect the second time that the user sends
2817 a ^C. */
2818static void
2819handle_remote_sigint_twice (int sig)
2820{
2821 signal (sig, handle_sigint);
2822 sigint_remote_twice_token =
2823 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2824 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2825}
2826
2827/* Perform the real interruption of the target execution, in response
2828 to a ^C. */
2829static void
2830async_remote_interrupt (gdb_client_data arg)
2831{
2832 if (remote_debug)
2833 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2834
2835 target_stop ();
2836}
2837
2838/* Perform interrupt, if the first attempt did not succeed. Just give
2839 up on the target alltogether. */
2840void
2841async_remote_interrupt_twice (gdb_client_data arg)
2842{
2843 if (remote_debug)
2844 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2845 /* Do something only if the target was not killed by the previous
2846 cntl-C. */
2847 if (target_executing)
2848 {
2849 interrupt_query ();
2850 signal (SIGINT, handle_remote_sigint);
2851 }
2852}
2853
2854/* Reinstall the usual SIGINT handlers, after the target has
2855 stopped. */
2856static void
2857cleanup_sigint_signal_handler (void *dummy)
2858{
2859 signal (SIGINT, handle_sigint);
2860 if (sigint_remote_twice_token)
2861 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2862 if (sigint_remote_token)
2863 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2864}
2865
2866/* Send ^C to target to halt it. Target will respond, and send us a
2867 packet. */
2868static void (*ofunc) (int);
2869
2870/* The command line interface's stop routine. This function is installed
2871 as a signal handler for SIGINT. The first time a user requests a
2872 stop, we call remote_stop to send a break or ^C. If there is no
2873 response from the target (it didn't stop when the user requested it),
2874 we ask the user if he'd like to detach from the target. */
2875static void
2876remote_interrupt (int signo)
2877{
2878 /* If this doesn't work, try more severe steps. */
2879 signal (signo, remote_interrupt_twice);
2880
2881 if (remote_debug)
2882 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2883
2884 target_stop ();
2885}
2886
2887/* The user typed ^C twice. */
2888
2889static void
2890remote_interrupt_twice (int signo)
2891{
2892 signal (signo, ofunc);
2893 interrupt_query ();
2894 signal (signo, remote_interrupt);
2895}
2896
2897/* This is the generic stop called via the target vector. When a target
2898 interrupt is requested, either by the command line or the GUI, we
2899 will eventually end up here. */
2900static void
2901remote_stop (void)
2902{
2903 /* Send a break or a ^C, depending on user preference. */
2904 if (remote_debug)
2905 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2906
2907 if (remote_break)
2908 serial_send_break (remote_desc);
2909 else
2910 serial_write (remote_desc, "\003", 1);
2911}
2912
2913/* Ask the user what to do when an interrupt is received. */
2914
2915static void
2916interrupt_query (void)
2917{
2918 target_terminal_ours ();
2919
2920 if (query ("Interrupted while waiting for the program.\n\
2921Give up (and stop debugging it)? "))
2922 {
2923 target_mourn_inferior ();
2924 throw_exception (RETURN_QUIT);
2925 }
2926
2927 target_terminal_inferior ();
2928}
2929
2930/* Enable/disable target terminal ownership. Most targets can use
2931 terminal groups to control terminal ownership. Remote targets are
2932 different in that explicit transfer of ownership to/from GDB/target
2933 is required. */
2934
2935static void
2936remote_async_terminal_inferior (void)
2937{
2938 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2939 sync_execution here. This function should only be called when
2940 GDB is resuming the inferior in the forground. A background
2941 resume (``run&'') should leave GDB in control of the terminal and
2942 consequently should not call this code. */
2943 if (!sync_execution)
2944 return;
2945 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2946 calls target_terminal_*() idenpotent. The event-loop GDB talking
2947 to an asynchronous target with a synchronous command calls this
2948 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2949 stops trying to transfer the terminal to the target when it
2950 shouldn't this guard can go away. */
2951 if (!remote_async_terminal_ours_p)
2952 return;
2953 delete_file_handler (input_fd);
2954 remote_async_terminal_ours_p = 0;
2955 initialize_sigint_signal_handler ();
2956 /* NOTE: At this point we could also register our selves as the
2957 recipient of all input. Any characters typed could then be
2958 passed on down to the target. */
2959}
2960
2961static void
2962remote_async_terminal_ours (void)
2963{
2964 /* See FIXME in remote_async_terminal_inferior. */
2965 if (!sync_execution)
2966 return;
2967 /* See FIXME in remote_async_terminal_inferior. */
2968 if (remote_async_terminal_ours_p)
2969 return;
2970 cleanup_sigint_signal_handler (NULL);
2971 add_file_handler (input_fd, stdin_event_handler, 0);
2972 remote_async_terminal_ours_p = 1;
2973}
2974
2975/* If nonzero, ignore the next kill. */
2976
2977int kill_kludge;
2978
2979void
2980remote_console_output (char *msg)
2981{
2982 char *p;
2983
2984 for (p = msg; p[0] && p[1]; p += 2)
2985 {
2986 char tb[2];
2987 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2988 tb[0] = c;
2989 tb[1] = 0;
2990 fputs_unfiltered (tb, gdb_stdtarg);
2991 }
2992 gdb_flush (gdb_stdtarg);
2993}
2994
2995/* Wait until the remote machine stops, then return,
2996 storing status in STATUS just as `wait' would.
2997 Returns "pid", which in the case of a multi-threaded
2998 remote OS, is the thread-id. */
2999
3000static ptid_t
3001remote_wait (ptid_t ptid, struct target_waitstatus *status)
3002{
3003 struct remote_state *rs = get_remote_state ();
3004 unsigned char *buf = alloca (rs->remote_packet_size);
3005 int thread_num = -1;
3006
3007 status->kind = TARGET_WAITKIND_EXITED;
3008 status->value.integer = 0;
3009
3010 while (1)
3011 {
3012 unsigned char *p;
3013
3014 ofunc = signal (SIGINT, remote_interrupt);
3015 getpkt (buf, (rs->remote_packet_size), 1);
3016 signal (SIGINT, ofunc);
3017
3018 /* This is a hook for when we need to do something (perhaps the
3019 collection of trace data) every time the target stops. */
3020 if (target_wait_loop_hook)
3021 (*target_wait_loop_hook) ();
3022
3023 switch (buf[0])
3024 {
3025 case 'E': /* Error of some sort */
3026 warning ("Remote failure reply: %s", buf);
3027 continue;
3028 case 'T': /* Status with PC, SP, FP, ... */
3029 {
3030 int i;
3031 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3032
3033 /* Expedited reply, containing Signal, {regno, reg} repeat */
3034 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3035 ss = signal number
3036 n... = register number
3037 r... = register contents
3038 */
3039 p = &buf[3]; /* after Txx */
3040
3041 while (*p)
3042 {
3043 unsigned char *p1;
3044 char *p_temp;
3045 int fieldsize;
3046
3047 /* Read the ``P'' register number. */
3048 LONGEST pnum = strtol ((const char *) p, &p_temp, 16);
3049 p1 = (unsigned char *) p_temp;
3050
3051 if (p1 == p) /* No register number present here */
3052 {
3053 p1 = (unsigned char *) strchr ((const char *) p, ':');
3054 if (p1 == NULL)
3055 warning ("Malformed packet(a) (missing colon): %s\n\
3056Packet: '%s'\n",
3057 p, buf);
3058 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3059 {
3060 p_temp = unpack_varlen_hex (++p1, &thread_num);
3061 record_currthread (thread_num);
3062 p = (unsigned char *) p_temp;
3063 }
3064 }
3065 else
3066 {
3067 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3068 p = p1;
3069
3070 if (*p++ != ':')
3071 warning ("Malformed packet(b) (missing colon): %s\n\
3072Packet: '%s'\n",
3073 p, buf);
3074
3075 if (reg == NULL)
3076 warning ("Remote sent bad register number %s: %s\n\
3077Packet: '%s'\n",
3078 phex_nz (pnum, 0), p, buf);
3079
3080 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3081 p += 2 * fieldsize;
3082 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3083 warning ("Remote reply is too short: %s", buf);
3084 supply_register (reg->regnum, regs);
3085 }
3086
3087 if (*p++ != ';')
3088 {
3089 warning ("Remote register badly formatted: %s", buf);
3090 warning (" here: %s", p);
3091 }
3092 }
3093 }
3094 /* fall through */
3095 case 'S': /* Old style status, just signal only */
3096 status->kind = TARGET_WAITKIND_STOPPED;
3097 status->value.sig = (enum target_signal)
3098 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3099
3100 if (buf[3] == 'p')
3101 {
3102 /* Export Cisco kernel mode as a convenience variable
3103 (so that it can be used in the GDB prompt if desired). */
3104
3105 if (cisco_kernel_mode == 1)
3106 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3107 value_from_string ("PDEBUG-"));
3108 cisco_kernel_mode = 0;
3109 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3110 record_currthread (thread_num);
3111 }
3112 else if (buf[3] == 'k')
3113 {
3114 /* Export Cisco kernel mode as a convenience variable
3115 (so that it can be used in the GDB prompt if desired). */
3116
3117 if (cisco_kernel_mode == 1)
3118 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3119 value_from_string ("KDEBUG-"));
3120 cisco_kernel_mode = 1;
3121 }
3122 goto got_status;
3123 case 'N': /* Cisco special: status and offsets */
3124 {
3125 bfd_vma text_addr, data_addr, bss_addr;
3126 bfd_signed_vma text_off, data_off, bss_off;
3127 unsigned char *p1;
3128
3129 status->kind = TARGET_WAITKIND_STOPPED;
3130 status->value.sig = (enum target_signal)
3131 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3132
3133 if (symfile_objfile == NULL)
3134 {
3135 warning ("Relocation packet received with no symbol file. \
3136Packet Dropped");
3137 goto got_status;
3138 }
3139
3140 /* Relocate object file. Buffer format is NAATT;DD;BB
3141 * where AA is the signal number, TT is the new text
3142 * address, DD * is the new data address, and BB is the
3143 * new bss address. */
3144
3145 p = &buf[3];
3146 text_addr = strtoul (p, (char **) &p1, 16);
3147 if (p1 == p || *p1 != ';')
3148 warning ("Malformed relocation packet: Packet '%s'", buf);
3149 p = p1 + 1;
3150 data_addr = strtoul (p, (char **) &p1, 16);
3151 if (p1 == p || *p1 != ';')
3152 warning ("Malformed relocation packet: Packet '%s'", buf);
3153 p = p1 + 1;
3154 bss_addr = strtoul (p, (char **) &p1, 16);
3155 if (p1 == p)
3156 warning ("Malformed relocation packet: Packet '%s'", buf);
3157
3158 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3159 &text_off, &data_off, &bss_off)
3160 == 0)
3161 if (text_off != 0 || data_off != 0 || bss_off != 0)
3162 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3163
3164 goto got_status;
3165 }
3166 case 'W': /* Target exited */
3167 {
3168 /* The remote process exited. */
3169 status->kind = TARGET_WAITKIND_EXITED;
3170 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3171 goto got_status;
3172 }
3173 case 'X':
3174 status->kind = TARGET_WAITKIND_SIGNALLED;
3175 status->value.sig = (enum target_signal)
3176 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3177 kill_kludge = 1;
3178
3179 goto got_status;
3180 case 'O': /* Console output */
3181 remote_console_output (buf + 1);
3182 continue;
3183 case '\0':
3184 if (last_sent_signal != TARGET_SIGNAL_0)
3185 {
3186 /* Zero length reply means that we tried 'S' or 'C' and
3187 the remote system doesn't support it. */
3188 target_terminal_ours_for_output ();
3189 printf_filtered
3190 ("Can't send signals to this remote system. %s not sent.\n",
3191 target_signal_to_name (last_sent_signal));
3192 last_sent_signal = TARGET_SIGNAL_0;
3193 target_terminal_inferior ();
3194
3195 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3196 putpkt ((char *) buf);
3197 continue;
3198 }
3199 /* else fallthrough */
3200 default:
3201 warning ("Invalid remote reply: %s", buf);
3202 continue;
3203 }
3204 }
3205got_status:
3206 if (thread_num != -1)
3207 {
3208 return pid_to_ptid (thread_num);
3209 }
3210 return inferior_ptid;
3211}
3212
3213/* Async version of remote_wait. */
3214static ptid_t
3215remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3216{
3217 struct remote_state *rs = get_remote_state ();
3218 unsigned char *buf = alloca (rs->remote_packet_size);
3219 int thread_num = -1;
3220
3221 status->kind = TARGET_WAITKIND_EXITED;
3222 status->value.integer = 0;
3223
3224 while (1)
3225 {
3226 unsigned char *p;
3227
3228 if (!target_is_async_p ())
3229 ofunc = signal (SIGINT, remote_interrupt);
3230 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3231 _never_ wait for ever -> test on target_is_async_p().
3232 However, before we do that we need to ensure that the caller
3233 knows how to take the target into/out of async mode. */
3234 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3235 if (!target_is_async_p ())
3236 signal (SIGINT, ofunc);
3237
3238 /* This is a hook for when we need to do something (perhaps the
3239 collection of trace data) every time the target stops. */
3240 if (target_wait_loop_hook)
3241 (*target_wait_loop_hook) ();
3242
3243 switch (buf[0])
3244 {
3245 case 'E': /* Error of some sort */
3246 warning ("Remote failure reply: %s", buf);
3247 continue;
3248 case 'T': /* Status with PC, SP, FP, ... */
3249 {
3250 int i;
3251 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3252
3253 /* Expedited reply, containing Signal, {regno, reg} repeat */
3254 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3255 ss = signal number
3256 n... = register number
3257 r... = register contents
3258 */
3259 p = &buf[3]; /* after Txx */
3260
3261 while (*p)
3262 {
3263 unsigned char *p1;
3264 char *p_temp;
3265 int fieldsize;
3266
3267 /* Read the register number */
3268 long pnum = strtol ((const char *) p, &p_temp, 16);
3269 p1 = (unsigned char *) p_temp;
3270
3271 if (p1 == p) /* No register number present here */
3272 {
3273 p1 = (unsigned char *) strchr ((const char *) p, ':');
3274 if (p1 == NULL)
3275 warning ("Malformed packet(a) (missing colon): %s\n\
3276Packet: '%s'\n",
3277 p, buf);
3278 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3279 {
3280 p_temp = unpack_varlen_hex (++p1, &thread_num);
3281 record_currthread (thread_num);
3282 p = (unsigned char *) p_temp;
3283 }
3284 }
3285 else
3286 {
3287 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3288 p = p1;
3289 if (*p++ != ':')
3290 warning ("Malformed packet(b) (missing colon): %s\n\
3291Packet: '%s'\n",
3292 p, buf);
3293
3294 if (reg == NULL)
3295 warning ("Remote sent bad register number %ld: %s\n\
3296Packet: '%s'\n",
3297 pnum, p, buf);
3298
3299 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3300 p += 2 * fieldsize;
3301 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3302 warning ("Remote reply is too short: %s", buf);
3303 supply_register (reg->regnum, regs);
3304 }
3305
3306 if (*p++ != ';')
3307 {
3308 warning ("Remote register badly formatted: %s", buf);
3309 warning (" here: %s", p);
3310 }
3311 }
3312 }
3313 /* fall through */
3314 case 'S': /* Old style status, just signal only */
3315 status->kind = TARGET_WAITKIND_STOPPED;
3316 status->value.sig = (enum target_signal)
3317 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3318
3319 if (buf[3] == 'p')
3320 {
3321 /* Export Cisco kernel mode as a convenience variable
3322 (so that it can be used in the GDB prompt if desired). */
3323
3324 if (cisco_kernel_mode == 1)
3325 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3326 value_from_string ("PDEBUG-"));
3327 cisco_kernel_mode = 0;
3328 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3329 record_currthread (thread_num);
3330 }
3331 else if (buf[3] == 'k')
3332 {
3333 /* Export Cisco kernel mode as a convenience variable
3334 (so that it can be used in the GDB prompt if desired). */
3335
3336 if (cisco_kernel_mode == 1)
3337 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3338 value_from_string ("KDEBUG-"));
3339 cisco_kernel_mode = 1;
3340 }
3341 goto got_status;
3342 case 'N': /* Cisco special: status and offsets */
3343 {
3344 bfd_vma text_addr, data_addr, bss_addr;
3345 bfd_signed_vma text_off, data_off, bss_off;
3346 unsigned char *p1;
3347
3348 status->kind = TARGET_WAITKIND_STOPPED;
3349 status->value.sig = (enum target_signal)
3350 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3351
3352 if (symfile_objfile == NULL)
3353 {
3354 warning ("Relocation packet recieved with no symbol file. \
3355Packet Dropped");
3356 goto got_status;
3357 }
3358
3359 /* Relocate object file. Buffer format is NAATT;DD;BB
3360 * where AA is the signal number, TT is the new text
3361 * address, DD * is the new data address, and BB is the
3362 * new bss address. */
3363
3364 p = &buf[3];
3365 text_addr = strtoul (p, (char **) &p1, 16);
3366 if (p1 == p || *p1 != ';')
3367 warning ("Malformed relocation packet: Packet '%s'", buf);
3368 p = p1 + 1;
3369 data_addr = strtoul (p, (char **) &p1, 16);
3370 if (p1 == p || *p1 != ';')
3371 warning ("Malformed relocation packet: Packet '%s'", buf);
3372 p = p1 + 1;
3373 bss_addr = strtoul (p, (char **) &p1, 16);
3374 if (p1 == p)
3375 warning ("Malformed relocation packet: Packet '%s'", buf);
3376
3377 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3378 &text_off, &data_off, &bss_off)
3379 == 0)
3380 if (text_off != 0 || data_off != 0 || bss_off != 0)
3381 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3382
3383 goto got_status;
3384 }
3385 case 'W': /* Target exited */
3386 {
3387 /* The remote process exited. */
3388 status->kind = TARGET_WAITKIND_EXITED;
3389 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3390 goto got_status;
3391 }
3392 case 'X':
3393 status->kind = TARGET_WAITKIND_SIGNALLED;
3394 status->value.sig = (enum target_signal)
3395 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3396 kill_kludge = 1;
3397
3398 goto got_status;
3399 case 'O': /* Console output */
3400 remote_console_output (buf + 1);
3401 /* Return immediately to the event loop. The event loop will
3402 still be waiting on the inferior afterwards. */
3403 status->kind = TARGET_WAITKIND_IGNORE;
3404 goto got_status;
3405 case '\0':
3406 if (last_sent_signal != TARGET_SIGNAL_0)
3407 {
3408 /* Zero length reply means that we tried 'S' or 'C' and
3409 the remote system doesn't support it. */
3410 target_terminal_ours_for_output ();
3411 printf_filtered
3412 ("Can't send signals to this remote system. %s not sent.\n",
3413 target_signal_to_name (last_sent_signal));
3414 last_sent_signal = TARGET_SIGNAL_0;
3415 target_terminal_inferior ();
3416
3417 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3418 putpkt ((char *) buf);
3419 continue;
3420 }
3421 /* else fallthrough */
3422 default:
3423 warning ("Invalid remote reply: %s", buf);
3424 continue;
3425 }
3426 }
3427got_status:
3428 if (thread_num != -1)
3429 {
3430 return pid_to_ptid (thread_num);
3431 }
3432 return inferior_ptid;
3433}
3434
3435/* Number of bytes of registers this stub implements. */
3436
3437static int register_bytes_found;
3438
3439/* Read the remote registers into the block REGS. */
3440/* Currently we just read all the registers, so we don't use regnum. */
3441
3442/* ARGSUSED */
3443static void
3444remote_fetch_registers (int regnum)
3445{
3446 struct remote_state *rs = get_remote_state ();
3447 char *buf = alloca (rs->remote_packet_size);
3448 int i;
3449 char *p;
3450 char *regs = alloca (rs->sizeof_g_packet);
3451
3452 set_thread (PIDGET (inferior_ptid), 1);
3453
3454 if (regnum >= 0)
3455 {
3456 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3457 gdb_assert (reg != NULL);
3458 if (!reg->in_g_packet)
3459 internal_error (__FILE__, __LINE__,
3460 "Attempt to fetch a non G-packet register when this "
3461 "remote.c does not support the p-packet.");
3462 }
3463
3464 sprintf (buf, "g");
3465 remote_send (buf, (rs->remote_packet_size));
3466
3467 /* Save the size of the packet sent to us by the target. Its used
3468 as a heuristic when determining the max size of packets that the
3469 target can safely receive. */
3470 if ((rs->actual_register_packet_size) == 0)
3471 (rs->actual_register_packet_size) = strlen (buf);
3472
3473 /* Unimplemented registers read as all bits zero. */
3474 memset (regs, 0, rs->sizeof_g_packet);
3475
3476 /* We can get out of synch in various cases. If the first character
3477 in the buffer is not a hex character, assume that has happened
3478 and try to fetch another packet to read. */
3479 while ((buf[0] < '0' || buf[0] > '9')
3480 && (buf[0] < 'a' || buf[0] > 'f')
3481 && buf[0] != 'x') /* New: unavailable register value */
3482 {
3483 if (remote_debug)
3484 fprintf_unfiltered (gdb_stdlog,
3485 "Bad register packet; fetching a new packet\n");
3486 getpkt (buf, (rs->remote_packet_size), 0);
3487 }
3488
3489 /* Reply describes registers byte by byte, each byte encoded as two
3490 hex characters. Suck them all up, then supply them to the
3491 register cacheing/storage mechanism. */
3492
3493 p = buf;
3494 for (i = 0; i < rs->sizeof_g_packet; i++)
3495 {
3496 if (p[0] == 0)
3497 break;
3498 if (p[1] == 0)
3499 {
3500 warning ("Remote reply is of odd length: %s", buf);
3501 /* Don't change register_bytes_found in this case, and don't
3502 print a second warning. */
3503 goto supply_them;
3504 }
3505 if (p[0] == 'x' && p[1] == 'x')
3506 regs[i] = 0; /* 'x' */
3507 else
3508 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3509 p += 2;
3510 }
3511
3512 if (i != register_bytes_found)
3513 {
3514 register_bytes_found = i;
3515 if (REGISTER_BYTES_OK_P ()
3516 && !REGISTER_BYTES_OK (i))
3517 warning ("Remote reply is too short: %s", buf);
3518 }
3519
3520 supply_them:
3521 {
3522 int i;
3523 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3524 {
3525 struct packet_reg *r = &rs->regs[i];
3526 if (r->in_g_packet)
3527 {
3528 supply_register (r->regnum, regs + r->offset);
3529 if (buf[r->offset * 2] == 'x')
3530 set_register_cached (i, -1);
3531 }
3532 }
3533 }
3534}
3535
3536/* Prepare to store registers. Since we may send them all (using a
3537 'G' request), we have to read out the ones we don't want to change
3538 first. */
3539
3540static void
3541remote_prepare_to_store (void)
3542{
3543 /* Make sure the entire registers array is valid. */
3544 switch (remote_protocol_P.support)
3545 {
3546 case PACKET_DISABLE:
3547 case PACKET_SUPPORT_UNKNOWN:
3548 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3549 forcing the register cache to read its and not the target
3550 registers. */
3551 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3552 break;
3553 case PACKET_ENABLE:
3554 break;
3555 }
3556}
3557
3558/* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3559 packet was not recognized. */
3560
3561static int
3562store_register_using_P (int regnum)
3563{
3564 struct remote_state *rs = get_remote_state ();
3565 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3566 /* Try storing a single register. */
3567 char *buf = alloca (rs->remote_packet_size);
3568 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3569 char *p;
3570 int i;
3571
3572 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3573 p = buf + strlen (buf);
3574 regcache_collect (reg->regnum, regp);
3575 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3576 remote_send (buf, rs->remote_packet_size);
3577
3578 return buf[0] != '\0';
3579}
3580
3581
3582/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3583 of the register cache buffer. FIXME: ignores errors. */
3584
3585static void
3586remote_store_registers (int regnum)
3587{
3588 struct remote_state *rs = get_remote_state ();
3589 char *buf;
3590 char *regs;
3591 int i;
3592 char *p;
3593
3594 set_thread (PIDGET (inferior_ptid), 1);
3595
3596 if (regnum >= 0)
3597 {
3598 switch (remote_protocol_P.support)
3599 {
3600 case PACKET_DISABLE:
3601 break;
3602 case PACKET_ENABLE:
3603 if (store_register_using_P (regnum))
3604 return;
3605 else
3606 error ("Protocol error: P packet not recognized by stub");
3607 case PACKET_SUPPORT_UNKNOWN:
3608 if (store_register_using_P (regnum))
3609 {
3610 /* The stub recognized the 'P' packet. Remember this. */
3611 remote_protocol_P.support = PACKET_ENABLE;
3612 return;
3613 }
3614 else
3615 {
3616 /* The stub does not support the 'P' packet. Use 'G'
3617 instead, and don't try using 'P' in the future (it
3618 will just waste our time). */
3619 remote_protocol_P.support = PACKET_DISABLE;
3620 break;
3621 }
3622 }
3623 }
3624
3625 /* Extract all the registers in the regcache copying them into a
3626 local buffer. */
3627 {
3628 int i;
3629 regs = alloca (rs->sizeof_g_packet);
3630 memset (regs, rs->sizeof_g_packet, 0);
3631 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3632 {
3633 struct packet_reg *r = &rs->regs[i];
3634 if (r->in_g_packet)
3635 regcache_collect (r->regnum, regs + r->offset);
3636 }
3637 }
3638
3639 /* Command describes registers byte by byte,
3640 each byte encoded as two hex characters. */
3641 buf = alloca (rs->remote_packet_size);
3642 p = buf;
3643 *p++ = 'G';
3644 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3645 bin2hex (regs, p, register_bytes_found);
3646 remote_send (buf, (rs->remote_packet_size));
3647}
3648\f
3649
3650/* Return the number of hex digits in num. */
3651
3652static int
3653hexnumlen (ULONGEST num)
3654{
3655 int i;
3656
3657 for (i = 0; num != 0; i++)
3658 num >>= 4;
3659
3660 return max (i, 1);
3661}
3662
3663/* Set BUF to the minimum number of hex digits representing NUM. */
3664
3665static int
3666hexnumstr (char *buf, ULONGEST num)
3667{
3668 int len = hexnumlen (num);
3669 return hexnumnstr (buf, num, len);
3670}
3671
3672
3673/* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3674
3675static int
3676hexnumnstr (char *buf, ULONGEST num, int width)
3677{
3678 int i;
3679
3680 buf[width] = '\0';
3681
3682 for (i = width - 1; i >= 0; i--)
3683 {
3684 buf[i] = "0123456789abcdef"[(num & 0xf)];
3685 num >>= 4;
3686 }
3687
3688 return width;
3689}
3690
3691/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3692
3693static CORE_ADDR
3694remote_address_masked (CORE_ADDR addr)
3695{
3696 if (remote_address_size > 0
3697 && remote_address_size < (sizeof (ULONGEST) * 8))
3698 {
3699 /* Only create a mask when that mask can safely be constructed
3700 in a ULONGEST variable. */
3701 ULONGEST mask = 1;
3702 mask = (mask << remote_address_size) - 1;
3703 addr &= mask;
3704 }
3705 return addr;
3706}
3707
3708/* Determine whether the remote target supports binary downloading.
3709 This is accomplished by sending a no-op memory write of zero length
3710 to the target at the specified address. It does not suffice to send
3711 the whole packet, since many stubs strip the eighth bit and subsequently
3712 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3713
3714 NOTE: This can still lose if the serial line is not eight-bit
3715 clean. In cases like this, the user should clear "remote
3716 X-packet". */
3717
3718static void
3719check_binary_download (CORE_ADDR addr)
3720{
3721 struct remote_state *rs = get_remote_state ();
3722 switch (remote_protocol_binary_download.support)
3723 {
3724 case PACKET_DISABLE:
3725 break;
3726 case PACKET_ENABLE:
3727 break;
3728 case PACKET_SUPPORT_UNKNOWN:
3729 {
3730 char *buf = alloca (rs->remote_packet_size);
3731 char *p;
3732
3733 p = buf;
3734 *p++ = 'X';
3735 p += hexnumstr (p, (ULONGEST) addr);
3736 *p++ = ',';
3737 p += hexnumstr (p, (ULONGEST) 0);
3738 *p++ = ':';
3739 *p = '\0';
3740
3741 putpkt_binary (buf, (int) (p - buf));
3742 getpkt (buf, (rs->remote_packet_size), 0);
3743
3744 if (buf[0] == '\0')
3745 {
3746 if (remote_debug)
3747 fprintf_unfiltered (gdb_stdlog,
3748 "binary downloading NOT suppported by target\n");
3749 remote_protocol_binary_download.support = PACKET_DISABLE;
3750 }
3751 else
3752 {
3753 if (remote_debug)
3754 fprintf_unfiltered (gdb_stdlog,
3755 "binary downloading suppported by target\n");
3756 remote_protocol_binary_download.support = PACKET_ENABLE;
3757 }
3758 break;
3759 }
3760 }
3761}
3762
3763/* Write memory data directly to the remote machine.
3764 This does not inform the data cache; the data cache uses this.
3765 MEMADDR is the address in the remote memory space.
3766 MYADDR is the address of the buffer in our space.
3767 LEN is the number of bytes.
3768
3769 Returns number of bytes transferred, or 0 (setting errno) for
3770 error. Only transfer a single packet. */
3771
3772static int
3773remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3774{
3775 unsigned char *buf;
3776 int max_buf_size; /* Max size of packet output buffer */
3777 unsigned char *p;
3778 unsigned char *plen;
3779 long sizeof_buf;
3780 int plenlen;
3781 int todo;
3782 int nr_bytes;
3783
3784 /* Verify that the target can support a binary download */
3785 check_binary_download (memaddr);
3786
3787 /* Determine the max packet size. */
3788 max_buf_size = get_memory_write_packet_size ();
3789 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3790 buf = alloca (sizeof_buf);
3791
3792 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3793 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3794
3795 /* construct "M"<memaddr>","<len>":" */
3796 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3797 p = buf;
3798
3799 /* Append [XM]. Compute a best guess of the number of bytes
3800 actually transfered. */
3801 switch (remote_protocol_binary_download.support)
3802 {
3803 case PACKET_ENABLE:
3804 *p++ = 'X';
3805 /* Best guess at number of bytes that will fit. */
3806 todo = min (len, max_buf_size);
3807 break;
3808 case PACKET_DISABLE:
3809 *p++ = 'M';
3810 /* num bytes that will fit */
3811 todo = min (len, max_buf_size / 2);
3812 break;
3813 case PACKET_SUPPORT_UNKNOWN:
3814 internal_error (__FILE__, __LINE__,
3815 "remote_write_bytes: bad internal state");
3816 default:
3817 internal_error (__FILE__, __LINE__, "bad switch");
3818 }
3819
3820 /* Append <memaddr> */
3821 memaddr = remote_address_masked (memaddr);
3822 p += hexnumstr (p, (ULONGEST) memaddr);
3823 *p++ = ',';
3824
3825 /* Append <len>. Retain the location/size of <len>. It may
3826 need to be adjusted once the packet body has been created. */
3827 plen = p;
3828 plenlen = hexnumstr (p, (ULONGEST) todo);
3829 p += plenlen;
3830 *p++ = ':';
3831 *p = '\0';
3832
3833 /* Append the packet body. */
3834 switch (remote_protocol_binary_download.support)
3835 {
3836 case PACKET_ENABLE:
3837 /* Binary mode. Send target system values byte by byte, in
3838 increasing byte addresses. Only escape certain critical
3839 characters. */
3840 for (nr_bytes = 0;
3841 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3842 nr_bytes++)
3843 {
3844 switch (myaddr[nr_bytes] & 0xff)
3845 {
3846 case '$':
3847 case '#':
3848 case 0x7d:
3849 /* These must be escaped */
3850 *p++ = 0x7d;
3851 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3852 break;
3853 default:
3854 *p++ = myaddr[nr_bytes] & 0xff;
3855 break;
3856 }
3857 }
3858 if (nr_bytes < todo)
3859 {
3860 /* Escape chars have filled up the buffer prematurely,
3861 and we have actually sent fewer bytes than planned.
3862 Fix-up the length field of the packet. Use the same
3863 number of characters as before. */
3864
3865 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3866 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3867 }
3868 break;
3869 case PACKET_DISABLE:
3870 /* Normal mode: Send target system values byte by byte, in
3871 increasing byte addresses. Each byte is encoded as a two hex
3872 value. */
3873 nr_bytes = bin2hex (myaddr, p, todo);
3874 p += 2 * nr_bytes;
3875 break;
3876 case PACKET_SUPPORT_UNKNOWN:
3877 internal_error (__FILE__, __LINE__,
3878 "remote_write_bytes: bad internal state");
3879 default:
3880 internal_error (__FILE__, __LINE__, "bad switch");
3881 }
3882
3883 putpkt_binary (buf, (int) (p - buf));
3884 getpkt (buf, sizeof_buf, 0);
3885
3886 if (buf[0] == 'E')
3887 {
3888 /* There is no correspondance between what the remote protocol
3889 uses for errors and errno codes. We would like a cleaner way
3890 of representing errors (big enough to include errno codes,
3891 bfd_error codes, and others). But for now just return EIO. */
3892 errno = EIO;
3893 return 0;
3894 }
3895
3896 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3897 bytes than we'd planned. */
3898 return nr_bytes;
3899}
3900
3901/* Read memory data directly from the remote machine.
3902 This does not use the data cache; the data cache uses this.
3903 MEMADDR is the address in the remote memory space.
3904 MYADDR is the address of the buffer in our space.
3905 LEN is the number of bytes.
3906
3907 Returns number of bytes transferred, or 0 for error. */
3908
3909/* NOTE: cagney/1999-10-18: This function (and its siblings in other
3910 remote targets) shouldn't attempt to read the entire buffer.
3911 Instead it should read a single packet worth of data and then
3912 return the byte size of that packet to the caller. The caller (its
3913 caller and its callers caller ;-) already contains code for
3914 handling partial reads. */
3915
3916static int
3917remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3918{
3919 char *buf;
3920 int max_buf_size; /* Max size of packet output buffer */
3921 long sizeof_buf;
3922 int origlen;
3923
3924 /* Create a buffer big enough for this packet. */
3925 max_buf_size = get_memory_read_packet_size ();
3926 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3927 buf = alloca (sizeof_buf);
3928
3929 origlen = len;
3930 while (len > 0)
3931 {
3932 char *p;
3933 int todo;
3934 int i;
3935
3936 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3937
3938 /* construct "m"<memaddr>","<len>" */
3939 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3940 memaddr = remote_address_masked (memaddr);
3941 p = buf;
3942 *p++ = 'm';
3943 p += hexnumstr (p, (ULONGEST) memaddr);
3944 *p++ = ',';
3945 p += hexnumstr (p, (ULONGEST) todo);
3946 *p = '\0';
3947
3948 putpkt (buf);
3949 getpkt (buf, sizeof_buf, 0);
3950
3951 if (buf[0] == 'E')
3952 {
3953 /* There is no correspondance between what the remote protocol uses
3954 for errors and errno codes. We would like a cleaner way of
3955 representing errors (big enough to include errno codes, bfd_error
3956 codes, and others). But for now just return EIO. */
3957 errno = EIO;
3958 return 0;
3959 }
3960
3961 /* Reply describes memory byte by byte,
3962 each byte encoded as two hex characters. */
3963
3964 p = buf;
3965 if ((i = hex2bin (p, myaddr, todo)) < todo)
3966 {
3967 /* Reply is short. This means that we were able to read
3968 only part of what we wanted to. */
3969 return i + (origlen - len);
3970 }
3971 myaddr += todo;
3972 memaddr += todo;
3973 len -= todo;
3974 }
3975 return origlen;
3976}
3977\f
3978/* Read or write LEN bytes from inferior memory at MEMADDR,
3979 transferring to or from debugger address BUFFER. Write to inferior if
3980 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3981 for error. TARGET is unused. */
3982
3983/* ARGSUSED */
3984static int
3985remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3986 int should_write, struct mem_attrib *attrib,
3987 struct target_ops *target)
3988{
3989 CORE_ADDR targ_addr;
3990 int targ_len;
3991 int res;
3992
3993 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3994 if (targ_len <= 0)
3995 return 0;
3996
3997 if (should_write)
3998 res = remote_write_bytes (targ_addr, buffer, targ_len);
3999 else
4000 res = remote_read_bytes (targ_addr, buffer, targ_len);
4001
4002 return res;
4003}
4004
4005
4006#if 0
4007/* Enable after 4.12. */
4008
4009void
4010remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
4011 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
4012 CORE_ADDR *addr_found, char *data_found)
4013{
4014 if (increment == -4 && len == 4)
4015 {
4016 long mask_long, data_long;
4017 long data_found_long;
4018 CORE_ADDR addr_we_found;
4019 char *buf = alloca (rs->remote_packet_size);
4020 long returned_long[2];
4021 char *p;
4022
4023 mask_long = extract_unsigned_integer (mask, len);
4024 data_long = extract_unsigned_integer (data, len);
4025 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4026 putpkt (buf);
4027 getpkt (buf, (rs->remote_packet_size), 0);
4028 if (buf[0] == '\0')
4029 {
4030 /* The stub doesn't support the 't' request. We might want to
4031 remember this fact, but on the other hand the stub could be
4032 switched on us. Maybe we should remember it only until
4033 the next "target remote". */
4034 generic_search (len, data, mask, startaddr, increment, lorange,
4035 hirange, addr_found, data_found);
4036 return;
4037 }
4038
4039 if (buf[0] == 'E')
4040 /* There is no correspondance between what the remote protocol uses
4041 for errors and errno codes. We would like a cleaner way of
4042 representing errors (big enough to include errno codes, bfd_error
4043 codes, and others). But for now just use EIO. */
4044 memory_error (EIO, startaddr);
4045 p = buf;
4046 addr_we_found = 0;
4047 while (*p != '\0' && *p != ',')
4048 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4049 if (*p == '\0')
4050 error ("Protocol error: short return for search");
4051
4052 data_found_long = 0;
4053 while (*p != '\0' && *p != ',')
4054 data_found_long = (data_found_long << 4) + fromhex (*p++);
4055 /* Ignore anything after this comma, for future extensions. */
4056
4057 if (addr_we_found < lorange || addr_we_found >= hirange)
4058 {
4059 *addr_found = 0;
4060 return;
4061 }
4062
4063 *addr_found = addr_we_found;
4064 *data_found = store_unsigned_integer (data_we_found, len);
4065 return;
4066 }
4067 generic_search (len, data, mask, startaddr, increment, lorange,
4068 hirange, addr_found, data_found);
4069}
4070#endif /* 0 */
4071\f
4072static void
4073remote_files_info (struct target_ops *ignore)
4074{
4075 puts_filtered ("Debugging a target over a serial line.\n");
4076}
4077\f
4078/* Stuff for dealing with the packets which are part of this protocol.
4079 See comment at top of file for details. */
4080
4081/* Read a single character from the remote end, masking it down to 7 bits. */
4082
4083static int
4084readchar (int timeout)
4085{
4086 int ch;
4087
4088 ch = serial_readchar (remote_desc, timeout);
4089
4090 if (ch >= 0)
4091 return (ch & 0x7f);
4092
4093 switch ((enum serial_rc) ch)
4094 {
4095 case SERIAL_EOF:
4096 target_mourn_inferior ();
4097 error ("Remote connection closed");
4098 /* no return */
4099 case SERIAL_ERROR:
4100 perror_with_name ("Remote communication error");
4101 /* no return */
4102 case SERIAL_TIMEOUT:
4103 break;
4104 }
4105 return ch;
4106}
4107
4108/* Send the command in BUF to the remote machine, and read the reply
4109 into BUF. Report an error if we get an error reply. */
4110
4111static void
4112remote_send (char *buf,
4113 long sizeof_buf)
4114{
4115 putpkt (buf);
4116 getpkt (buf, sizeof_buf, 0);
4117
4118 if (buf[0] == 'E')
4119 error ("Remote failure reply: %s", buf);
4120}
4121
4122/* Display a null-terminated packet on stdout, for debugging, using C
4123 string notation. */
4124
4125static void
4126print_packet (char *buf)
4127{
4128 puts_filtered ("\"");
4129 fputstr_filtered (buf, '"', gdb_stdout);
4130 puts_filtered ("\"");
4131}
4132
4133int
4134putpkt (char *buf)
4135{
4136 return putpkt_binary (buf, strlen (buf));
4137}
4138
4139/* Send a packet to the remote machine, with error checking. The data
4140 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4141 to account for the $, # and checksum, and for a possible /0 if we are
4142 debugging (remote_debug) and want to print the sent packet as a string */
4143
4144static int
4145putpkt_binary (char *buf, int cnt)
4146{
4147 struct remote_state *rs = get_remote_state ();
4148 int i;
4149 unsigned char csum = 0;
4150 char *buf2 = alloca (cnt + 6);
4151 long sizeof_junkbuf = (rs->remote_packet_size);
4152 char *junkbuf = alloca (sizeof_junkbuf);
4153
4154 int ch;
4155 int tcount = 0;
4156 char *p;
4157
4158 /* Copy the packet into buffer BUF2, encapsulating it
4159 and giving it a checksum. */
4160
4161 p = buf2;
4162 *p++ = '$';
4163
4164 for (i = 0; i < cnt; i++)
4165 {
4166 csum += buf[i];
4167 *p++ = buf[i];
4168 }
4169 *p++ = '#';
4170 *p++ = tohex ((csum >> 4) & 0xf);
4171 *p++ = tohex (csum & 0xf);
4172
4173 /* Send it over and over until we get a positive ack. */
4174
4175 while (1)
4176 {
4177 int started_error_output = 0;
4178
4179 if (remote_debug)
4180 {
4181 *p = '\0';
4182 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4183 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4184 fprintf_unfiltered (gdb_stdlog, "...");
4185 gdb_flush (gdb_stdlog);
4186 }
4187 if (serial_write (remote_desc, buf2, p - buf2))
4188 perror_with_name ("putpkt: write failed");
4189
4190 /* read until either a timeout occurs (-2) or '+' is read */
4191 while (1)
4192 {
4193 ch = readchar (remote_timeout);
4194
4195 if (remote_debug)
4196 {
4197 switch (ch)
4198 {
4199 case '+':
4200 case '-':
4201 case SERIAL_TIMEOUT:
4202 case '$':
4203 if (started_error_output)
4204 {
4205 putchar_unfiltered ('\n');
4206 started_error_output = 0;
4207 }
4208 }
4209 }
4210
4211 switch (ch)
4212 {
4213 case '+':
4214 if (remote_debug)
4215 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4216 return 1;
4217 case '-':
4218 if (remote_debug)
4219 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4220 case SERIAL_TIMEOUT:
4221 tcount++;
4222 if (tcount > 3)
4223 return 0;
4224 break; /* Retransmit buffer */
4225 case '$':
4226 {
4227 if (remote_debug)
4228 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4229 /* It's probably an old response, and we're out of sync.
4230 Just gobble up the packet and ignore it. */
4231 read_frame (junkbuf, sizeof_junkbuf);
4232 continue; /* Now, go look for + */
4233 }
4234 default:
4235 if (remote_debug)
4236 {
4237 if (!started_error_output)
4238 {
4239 started_error_output = 1;
4240 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4241 }
4242 fputc_unfiltered (ch & 0177, gdb_stdlog);
4243 }
4244 continue;
4245 }
4246 break; /* Here to retransmit */
4247 }
4248
4249#if 0
4250 /* This is wrong. If doing a long backtrace, the user should be
4251 able to get out next time we call QUIT, without anything as
4252 violent as interrupt_query. If we want to provide a way out of
4253 here without getting to the next QUIT, it should be based on
4254 hitting ^C twice as in remote_wait. */
4255 if (quit_flag)
4256 {
4257 quit_flag = 0;
4258 interrupt_query ();
4259 }
4260#endif
4261 }
4262}
4263
4264static int remote_cisco_mode;
4265
4266/* Come here after finding the start of the frame. Collect the rest
4267 into BUF, verifying the checksum, length, and handling run-length
4268 compression. No more than sizeof_buf-1 characters are read so that
4269 the buffer can be NUL terminated.
4270
4271 Returns -1 on error, number of characters in buffer (ignoring the
4272 trailing NULL) on success. (could be extended to return one of the
4273 SERIAL status indications). */
4274
4275static long
4276read_frame (char *buf,
4277 long sizeof_buf)
4278{
4279 unsigned char csum;
4280 long bc;
4281 int c;
4282
4283 csum = 0;
4284 bc = 0;
4285
4286 while (1)
4287 {
4288 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4289 c = readchar (remote_timeout);
4290 switch (c)
4291 {
4292 case SERIAL_TIMEOUT:
4293 if (remote_debug)
4294 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4295 return -1;
4296 case '$':
4297 if (remote_debug)
4298 fputs_filtered ("Saw new packet start in middle of old one\n",
4299 gdb_stdlog);
4300 return -1; /* Start a new packet, count retries */
4301 case '#':
4302 {
4303 unsigned char pktcsum;
4304 int check_0 = 0;
4305 int check_1 = 0;
4306
4307 buf[bc] = '\0';
4308
4309 check_0 = readchar (remote_timeout);
4310 if (check_0 >= 0)
4311 check_1 = readchar (remote_timeout);
4312
4313 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4314 {
4315 if (remote_debug)
4316 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4317 return -1;
4318 }
4319 else if (check_0 < 0 || check_1 < 0)
4320 {
4321 if (remote_debug)
4322 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4323 return -1;
4324 }
4325
4326 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4327 if (csum == pktcsum)
4328 return bc;
4329
4330 if (remote_debug)
4331 {
4332 fprintf_filtered (gdb_stdlog,
4333 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4334 pktcsum, csum);
4335 fputs_filtered (buf, gdb_stdlog);
4336 fputs_filtered ("\n", gdb_stdlog);
4337 }
4338 /* Number of characters in buffer ignoring trailing
4339 NUL. */
4340 return -1;
4341 }
4342 case '*': /* Run length encoding */
4343 {
4344 int repeat;
4345 csum += c;
4346
4347 if (remote_cisco_mode == 0)
4348 {
4349 c = readchar (remote_timeout);
4350 csum += c;
4351 repeat = c - ' ' + 3; /* Compute repeat count */
4352 }
4353 else
4354 {
4355 /* Cisco's run-length encoding variant uses two
4356 hex chars to represent the repeat count. */
4357
4358 c = readchar (remote_timeout);
4359 csum += c;
4360 repeat = fromhex (c) << 4;
4361 c = readchar (remote_timeout);
4362 csum += c;
4363 repeat += fromhex (c);
4364 }
4365
4366 /* The character before ``*'' is repeated. */
4367
4368 if (repeat > 0 && repeat <= 255
4369 && bc > 0
4370 && bc + repeat - 1 < sizeof_buf - 1)
4371 {
4372 memset (&buf[bc], buf[bc - 1], repeat);
4373 bc += repeat;
4374 continue;
4375 }
4376
4377 buf[bc] = '\0';
4378 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4379 puts_filtered (buf);
4380 puts_filtered ("\n");
4381 return -1;
4382 }
4383 default:
4384 if (bc < sizeof_buf - 1)
4385 {
4386 buf[bc++] = c;
4387 csum += c;
4388 continue;
4389 }
4390
4391 buf[bc] = '\0';
4392 puts_filtered ("Remote packet too long: ");
4393 puts_filtered (buf);
4394 puts_filtered ("\n");
4395
4396 return -1;
4397 }
4398 }
4399}
4400
4401/* Read a packet from the remote machine, with error checking, and
4402 store it in BUF. If FOREVER, wait forever rather than timing out;
4403 this is used (in synchronous mode) to wait for a target that is is
4404 executing user code to stop. */
4405/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4406 don't have to change all the calls to getpkt to deal with the
4407 return value, because at the moment I don't know what the right
4408 thing to do it for those. */
4409void
4410getpkt (char *buf,
4411 long sizeof_buf,
4412 int forever)
4413{
4414 int timed_out;
4415
4416 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4417}
4418
4419
4420/* Read a packet from the remote machine, with error checking, and
4421 store it in BUF. If FOREVER, wait forever rather than timing out;
4422 this is used (in synchronous mode) to wait for a target that is is
4423 executing user code to stop. If FOREVER == 0, this function is
4424 allowed to time out gracefully and return an indication of this to
4425 the caller. */
4426static int
4427getpkt_sane (char *buf,
4428 long sizeof_buf,
4429 int forever)
4430{
4431 int c;
4432 int tries;
4433 int timeout;
4434 int val;
4435
4436 strcpy (buf, "timeout");
4437
4438 if (forever)
4439 {
4440 timeout = watchdog > 0 ? watchdog : -1;
4441 }
4442
4443 else
4444 timeout = remote_timeout;
4445
4446#define MAX_TRIES 3
4447
4448 for (tries = 1; tries <= MAX_TRIES; tries++)
4449 {
4450 /* This can loop forever if the remote side sends us characters
4451 continuously, but if it pauses, we'll get a zero from readchar
4452 because of timeout. Then we'll count that as a retry. */
4453
4454 /* Note that we will only wait forever prior to the start of a packet.
4455 After that, we expect characters to arrive at a brisk pace. They
4456 should show up within remote_timeout intervals. */
4457
4458 do
4459 {
4460 c = readchar (timeout);
4461
4462 if (c == SERIAL_TIMEOUT)
4463 {
4464 if (forever) /* Watchdog went off? Kill the target. */
4465 {
4466 QUIT;
4467 target_mourn_inferior ();
4468 error ("Watchdog has expired. Target detached.\n");
4469 }
4470 if (remote_debug)
4471 fputs_filtered ("Timed out.\n", gdb_stdlog);
4472 goto retry;
4473 }
4474 }
4475 while (c != '$');
4476
4477 /* We've found the start of a packet, now collect the data. */
4478
4479 val = read_frame (buf, sizeof_buf);
4480
4481 if (val >= 0)
4482 {
4483 if (remote_debug)
4484 {
4485 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4486 fputstr_unfiltered (buf, 0, gdb_stdlog);
4487 fprintf_unfiltered (gdb_stdlog, "\n");
4488 }
4489 serial_write (remote_desc, "+", 1);
4490 return 0;
4491 }
4492
4493 /* Try the whole thing again. */
4494 retry:
4495 serial_write (remote_desc, "-", 1);
4496 }
4497
4498 /* We have tried hard enough, and just can't receive the packet. Give up. */
4499
4500 printf_unfiltered ("Ignoring packet error, continuing...\n");
4501 serial_write (remote_desc, "+", 1);
4502 return 1;
4503}
4504\f
4505static void
4506remote_kill (void)
4507{
4508 /* For some mysterious reason, wait_for_inferior calls kill instead of
4509 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4510 if (kill_kludge)
4511 {
4512 kill_kludge = 0;
4513 target_mourn_inferior ();
4514 return;
4515 }
4516
4517 /* Use catch_errors so the user can quit from gdb even when we aren't on
4518 speaking terms with the remote system. */
4519 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4520
4521 /* Don't wait for it to die. I'm not really sure it matters whether
4522 we do or not. For the existing stubs, kill is a noop. */
4523 target_mourn_inferior ();
4524}
4525
4526/* Async version of remote_kill. */
4527static void
4528remote_async_kill (void)
4529{
4530 /* Unregister the file descriptor from the event loop. */
4531 if (target_is_async_p ())
4532 serial_async (remote_desc, NULL, 0);
4533
4534 /* For some mysterious reason, wait_for_inferior calls kill instead of
4535 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4536 if (kill_kludge)
4537 {
4538 kill_kludge = 0;
4539 target_mourn_inferior ();
4540 return;
4541 }
4542
4543 /* Use catch_errors so the user can quit from gdb even when we aren't on
4544 speaking terms with the remote system. */
4545 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4546
4547 /* Don't wait for it to die. I'm not really sure it matters whether
4548 we do or not. For the existing stubs, kill is a noop. */
4549 target_mourn_inferior ();
4550}
4551
4552static void
4553remote_mourn (void)
4554{
4555 remote_mourn_1 (&remote_ops);
4556}
4557
4558static void
4559remote_async_mourn (void)
4560{
4561 remote_mourn_1 (&remote_async_ops);
4562}
4563
4564static void
4565extended_remote_mourn (void)
4566{
4567 /* We do _not_ want to mourn the target like this; this will
4568 remove the extended remote target from the target stack,
4569 and the next time the user says "run" it'll fail.
4570
4571 FIXME: What is the right thing to do here? */
4572#if 0
4573 remote_mourn_1 (&extended_remote_ops);
4574#endif
4575}
4576
4577/* Worker function for remote_mourn. */
4578static void
4579remote_mourn_1 (struct target_ops *target)
4580{
4581 unpush_target (target);
4582 generic_mourn_inferior ();
4583}
4584
4585/* In the extended protocol we want to be able to do things like
4586 "run" and have them basically work as expected. So we need
4587 a special create_inferior function.
4588
4589 FIXME: One day add support for changing the exec file
4590 we're debugging, arguments and an environment. */
4591
4592static void
4593extended_remote_create_inferior (char *exec_file, char *args, char **env)
4594{
4595 /* Rip out the breakpoints; we'll reinsert them after restarting
4596 the remote server. */
4597 remove_breakpoints ();
4598
4599 /* Now restart the remote server. */
4600 extended_remote_restart ();
4601
4602 /* Now put the breakpoints back in. This way we're safe if the
4603 restart function works via a unix fork on the remote side. */
4604 insert_breakpoints ();
4605
4606 /* Clean up from the last time we were running. */
4607 clear_proceed_status ();
4608
4609 /* Let the remote process run. */
4610 proceed (-1, TARGET_SIGNAL_0, 0);
4611}
4612
4613/* Async version of extended_remote_create_inferior. */
4614static void
4615extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4616{
4617 /* Rip out the breakpoints; we'll reinsert them after restarting
4618 the remote server. */
4619 remove_breakpoints ();
4620
4621 /* If running asynchronously, register the target file descriptor
4622 with the event loop. */
4623 if (event_loop_p && target_can_async_p ())
4624 target_async (inferior_event_handler, 0);
4625
4626 /* Now restart the remote server. */
4627 extended_remote_restart ();
4628
4629 /* Now put the breakpoints back in. This way we're safe if the
4630 restart function works via a unix fork on the remote side. */
4631 insert_breakpoints ();
4632
4633 /* Clean up from the last time we were running. */
4634 clear_proceed_status ();
4635
4636 /* Let the remote process run. */
4637 proceed (-1, TARGET_SIGNAL_0, 0);
4638}
4639\f
4640
4641/* On some machines, e.g. 68k, we may use a different breakpoint instruction
4642 than other targets; in those use REMOTE_BREAKPOINT instead of just
4643 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4644 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4645 the standard routines that are in mem-break.c. */
4646
4647/* FIXME, these ought to be done in a more dynamic fashion. For instance,
4648 the choice of breakpoint instruction affects target program design and
4649 vice versa, and by making it user-tweakable, the special code here
4650 goes away and we need fewer special GDB configurations. */
4651
4652#if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4653#define REMOTE_BREAKPOINT
4654#endif
4655
4656#ifdef REMOTE_BREAKPOINT
4657
4658/* If the target isn't bi-endian, just pretend it is. */
4659#if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4660#define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4661#define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4662#endif
4663
4664static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4665static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4666
4667#endif /* REMOTE_BREAKPOINT */
4668
4669/* Insert a breakpoint on targets that don't have any better breakpoint
4670 support. We read the contents of the target location and stash it,
4671 then overwrite it with a breakpoint instruction. ADDR is the target
4672 location in the target machine. CONTENTS_CACHE is a pointer to
4673 memory allocated for saving the target contents. It is guaranteed
4674 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4675 is accomplished via BREAKPOINT_MAX). */
4676
4677static int
4678remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4679{
4680 struct remote_state *rs = get_remote_state ();
4681#ifdef REMOTE_BREAKPOINT
4682 int val;
4683#endif
4684 int bp_size;
4685
4686 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4687 If it succeeds, then set the support to PACKET_ENABLE. If it
4688 fails, and the user has explicitly requested the Z support then
4689 report an error, otherwise, mark it disabled and go on. */
4690
4691 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4692 {
4693 char *buf = alloca (rs->remote_packet_size);
4694 char *p = buf;
4695
4696 addr = remote_address_masked (addr);
4697 *(p++) = 'Z';
4698 *(p++) = '0';
4699 *(p++) = ',';
4700 p += hexnumstr (p, (ULONGEST) addr);
4701 BREAKPOINT_FROM_PC (&addr, &bp_size);
4702 sprintf (p, ",%d", bp_size);
4703
4704 putpkt (buf);
4705 getpkt (buf, (rs->remote_packet_size), 0);
4706
4707 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4708 {
4709 case PACKET_ERROR:
4710 return -1;
4711 case PACKET_OK:
4712 return 0;
4713 case PACKET_UNKNOWN:
4714 break;
4715 }
4716 }
4717
4718#ifdef REMOTE_BREAKPOINT
4719 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4720
4721 if (val == 0)
4722 {
4723 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4724 val = target_write_memory (addr, (char *) big_break_insn,
4725 sizeof big_break_insn);
4726 else
4727 val = target_write_memory (addr, (char *) little_break_insn,
4728 sizeof little_break_insn);
4729 }
4730
4731 return val;
4732#else
4733 return memory_insert_breakpoint (addr, contents_cache);
4734#endif /* REMOTE_BREAKPOINT */
4735}
4736
4737static int
4738remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4739{
4740 struct remote_state *rs = get_remote_state ();
4741 int bp_size;
4742
4743 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4744 {
4745 char *buf = alloca (rs->remote_packet_size);
4746 char *p = buf;
4747
4748 *(p++) = 'z';
4749 *(p++) = '0';
4750 *(p++) = ',';
4751
4752 addr = remote_address_masked (addr);
4753 p += hexnumstr (p, (ULONGEST) addr);
4754 BREAKPOINT_FROM_PC (&addr, &bp_size);
4755 sprintf (p, ",%d", bp_size);
4756
4757 putpkt (buf);
4758 getpkt (buf, (rs->remote_packet_size), 0);
4759
4760 return (buf[0] == 'E');
4761 }
4762
4763#ifdef REMOTE_BREAKPOINT
4764 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4765#else
4766 return memory_remove_breakpoint (addr, contents_cache);
4767#endif /* REMOTE_BREAKPOINT */
4768}
4769
4770static int
4771watchpoint_to_Z_packet (int type)
4772{
4773 switch (type)
4774 {
4775 case hw_write:
4776 return 2;
4777 break;
4778 case hw_read:
4779 return 3;
4780 break;
4781 case hw_access:
4782 return 4;
4783 break;
4784 default:
4785 internal_error (__FILE__, __LINE__,
4786 "hw_bp_to_z: bad watchpoint type %d", type);
4787 }
4788}
4789
4790/* FIXME: This function should be static and a member of the remote
4791 target vector. */
4792
4793int
4794remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4795{
4796 struct remote_state *rs = get_remote_state ();
4797 char *buf = alloca (rs->remote_packet_size);
4798 char *p;
4799 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4800
4801 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4802 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4803 remote_protocol_Z[packet].name,
4804 remote_protocol_Z[packet].title);
4805
4806 sprintf (buf, "Z%x,", packet);
4807 p = strchr (buf, '\0');
4808 addr = remote_address_masked (addr);
4809 p += hexnumstr (p, (ULONGEST) addr);
4810 sprintf (p, ",%x", len);
4811
4812 putpkt (buf);
4813 getpkt (buf, (rs->remote_packet_size), 0);
4814
4815 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4816 {
4817 case PACKET_ERROR:
4818 case PACKET_UNKNOWN:
4819 return -1;
4820 case PACKET_OK:
4821 return 0;
4822 }
4823 internal_error (__FILE__, __LINE__,
4824 "remote_insert_watchpoint: reached end of function");
4825}
4826
4827/* FIXME: This function should be static and a member of the remote
4828 target vector. */
4829
4830int
4831remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4832{
4833 struct remote_state *rs = get_remote_state ();
4834 char *buf = alloca (rs->remote_packet_size);
4835 char *p;
4836 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4837
4838 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4839 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4840 remote_protocol_Z[packet].name,
4841 remote_protocol_Z[packet].title);
4842
4843 sprintf (buf, "z%x,", packet);
4844 p = strchr (buf, '\0');
4845 addr = remote_address_masked (addr);
4846 p += hexnumstr (p, (ULONGEST) addr);
4847 sprintf (p, ",%x", len);
4848 putpkt (buf);
4849 getpkt (buf, (rs->remote_packet_size), 0);
4850
4851 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4852 {
4853 case PACKET_ERROR:
4854 case PACKET_UNKNOWN:
4855 return -1;
4856 case PACKET_OK:
4857 return 0;
4858 }
4859 internal_error (__FILE__, __LINE__,
4860 "remote_remove_watchpoint: reached end of function");
4861}
4862
4863/* FIXME: This function should be static and a member of the remote
4864 target vector. */
4865
4866int
4867remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4868{
4869 struct remote_state *rs = get_remote_state ();
4870 char *buf = alloca (rs->remote_packet_size);
4871 char *p = buf;
4872
4873 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4874 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4875 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4876 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4877
4878 *(p++) = 'Z';
4879 *(p++) = '1';
4880 *(p++) = ',';
4881
4882 addr = remote_address_masked (addr);
4883 p += hexnumstr (p, (ULONGEST) addr);
4884 sprintf (p, ",%x", len);
4885
4886 putpkt (buf);
4887 getpkt (buf, (rs->remote_packet_size), 0);
4888
4889 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4890 {
4891 case PACKET_ERROR:
4892 case PACKET_UNKNOWN:
4893 return -1;
4894 case PACKET_OK:
4895 return 0;
4896 }
4897 internal_error (__FILE__, __LINE__,
4898 "remote_remove_watchpoint: reached end of function");
4899}
4900
4901/* FIXME: This function should be static and a member of the remote
4902 target vector. */
4903
4904int
4905remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4906{
4907 struct remote_state *rs = get_remote_state ();
4908 char *buf = alloca (rs->remote_packet_size);
4909 char *p = buf;
4910
4911 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4912 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4913 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4914 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4915
4916 *(p++) = 'z';
4917 *(p++) = '1';
4918 *(p++) = ',';
4919
4920 addr = remote_address_masked (addr);
4921 p += hexnumstr (p, (ULONGEST) addr);
4922 sprintf (p, ",%x", len);
4923
4924 putpkt(buf);
4925 getpkt (buf, (rs->remote_packet_size), 0);
4926
4927 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4928 {
4929 case PACKET_ERROR:
4930 case PACKET_UNKNOWN:
4931 return -1;
4932 case PACKET_OK:
4933 return 0;
4934 }
4935 internal_error (__FILE__, __LINE__,
4936 "remote_remove_watchpoint: reached end of function");
4937}
4938
4939/* Some targets are only capable of doing downloads, and afterwards
4940 they switch to the remote serial protocol. This function provides
4941 a clean way to get from the download target to the remote target.
4942 It's basically just a wrapper so that we don't have to expose any
4943 of the internal workings of remote.c.
4944
4945 Prior to calling this routine, you should shutdown the current
4946 target code, else you will get the "A program is being debugged
4947 already..." message. Usually a call to pop_target() suffices. */
4948
4949void
4950push_remote_target (char *name, int from_tty)
4951{
4952 printf_filtered ("Switching to remote protocol\n");
4953 remote_open (name, from_tty);
4954}
4955
4956/* Other targets want to use the entire remote serial module but with
4957 certain remote_ops overridden. */
4958
4959void
4960open_remote_target (char *name, int from_tty, struct target_ops *target,
4961 int extended_p)
4962{
4963 printf_filtered ("Selecting the %sremote protocol\n",
4964 (extended_p ? "extended-" : ""));
4965 remote_open_1 (name, from_tty, target, extended_p);
4966}
4967
4968/* Table used by the crc32 function to calcuate the checksum. */
4969
4970static unsigned long crc32_table[256] =
4971{0, 0};
4972
4973static unsigned long
4974crc32 (unsigned char *buf, int len, unsigned int crc)
4975{
4976 if (!crc32_table[1])
4977 {
4978 /* Initialize the CRC table and the decoding table. */
4979 int i, j;
4980 unsigned int c;
4981
4982 for (i = 0; i < 256; i++)
4983 {
4984 for (c = i << 24, j = 8; j > 0; --j)
4985 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4986 crc32_table[i] = c;
4987 }
4988 }
4989
4990 while (len--)
4991 {
4992 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4993 buf++;
4994 }
4995 return crc;
4996}
4997
4998/* compare-sections command
4999
5000 With no arguments, compares each loadable section in the exec bfd
5001 with the same memory range on the target, and reports mismatches.
5002 Useful for verifying the image on the target against the exec file.
5003 Depends on the target understanding the new "qCRC:" request. */
5004
5005/* FIXME: cagney/1999-10-26: This command should be broken down into a
5006 target method (target verify memory) and generic version of the
5007 actual command. This will allow other high-level code (especially
5008 generic_load()) to make use of this target functionality. */
5009
5010static void
5011compare_sections_command (char *args, int from_tty)
5012{
5013 struct remote_state *rs = get_remote_state ();
5014 asection *s;
5015 unsigned long host_crc, target_crc;
5016 extern bfd *exec_bfd;
5017 struct cleanup *old_chain;
5018 char *tmp;
5019 char *sectdata;
5020 const char *sectname;
5021 char *buf = alloca (rs->remote_packet_size);
5022 bfd_size_type size;
5023 bfd_vma lma;
5024 int matched = 0;
5025 int mismatched = 0;
5026
5027 if (!exec_bfd)
5028 error ("command cannot be used without an exec file");
5029 if (!current_target.to_shortname ||
5030 strcmp (current_target.to_shortname, "remote") != 0)
5031 error ("command can only be used with remote target");
5032
5033 for (s = exec_bfd->sections; s; s = s->next)
5034 {
5035 if (!(s->flags & SEC_LOAD))
5036 continue; /* skip non-loadable section */
5037
5038 size = bfd_get_section_size_before_reloc (s);
5039 if (size == 0)
5040 continue; /* skip zero-length section */
5041
5042 sectname = bfd_get_section_name (exec_bfd, s);
5043 if (args && strcmp (args, sectname) != 0)
5044 continue; /* not the section selected by user */
5045
5046 matched = 1; /* do this section */
5047 lma = s->lma;
5048 /* FIXME: assumes lma can fit into long */
5049 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5050 putpkt (buf);
5051
5052 /* be clever; compute the host_crc before waiting for target reply */
5053 sectdata = xmalloc (size);
5054 old_chain = make_cleanup (xfree, sectdata);
5055 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5056 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5057
5058 getpkt (buf, (rs->remote_packet_size), 0);
5059 if (buf[0] == 'E')
5060 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5061 sectname, paddr (lma), paddr (lma + size));
5062 if (buf[0] != 'C')
5063 error ("remote target does not support this operation");
5064
5065 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5066 target_crc = target_crc * 16 + fromhex (*tmp);
5067
5068 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5069 sectname, paddr (lma), paddr (lma + size));
5070 if (host_crc == target_crc)
5071 printf_filtered ("matched.\n");
5072 else
5073 {
5074 printf_filtered ("MIS-MATCHED!\n");
5075 mismatched++;
5076 }
5077
5078 do_cleanups (old_chain);
5079 }
5080 if (mismatched > 0)
5081 warning ("One or more sections of the remote executable does not match\n\
5082the loaded file\n");
5083 if (args && !matched)
5084 printf_filtered ("No loaded section named '%s'.\n", args);
5085}
5086
5087static int
5088remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5089{
5090 struct remote_state *rs = get_remote_state ();
5091 int i;
5092 char *buf2 = alloca (rs->remote_packet_size);
5093 char *p2 = &buf2[0];
5094
5095 if (!bufsiz)
5096 error ("null pointer to remote bufer size specified");
5097
5098 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5099 the caller know and return what the minimum size is */
5100 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5101 if (*bufsiz < (rs->remote_packet_size))
5102 {
5103 *bufsiz = (rs->remote_packet_size);
5104 return -1;
5105 }
5106
5107 /* except for querying the minimum buffer size, target must be open */
5108 if (!remote_desc)
5109 error ("remote query is only available after target open");
5110
5111 /* we only take uppercase letters as query types, at least for now */
5112 if ((query_type < 'A') || (query_type > 'Z'))
5113 error ("invalid remote query type");
5114
5115 if (!buf)
5116 error ("null remote query specified");
5117
5118 if (!outbuf)
5119 error ("remote query requires a buffer to receive data");
5120
5121 outbuf[0] = '\0';
5122
5123 *p2++ = 'q';
5124 *p2++ = query_type;
5125
5126 /* we used one buffer char for the remote protocol q command and another
5127 for the query type. As the remote protocol encapsulation uses 4 chars
5128 plus one extra in case we are debugging (remote_debug),
5129 we have PBUFZIZ - 7 left to pack the query string */
5130 i = 0;
5131 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5132 {
5133 /* bad caller may have sent forbidden characters */
5134 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5135 error ("illegal characters in query string");
5136
5137 *p2++ = buf[i];
5138 i++;
5139 }
5140 *p2 = buf[i];
5141
5142 if (buf[i])
5143 error ("query larger than available buffer");
5144
5145 i = putpkt (buf2);
5146 if (i < 0)
5147 return i;
5148
5149 getpkt (outbuf, *bufsiz, 0);
5150
5151 return 0;
5152}
5153
5154static void
5155remote_rcmd (char *command,
5156 struct ui_file *outbuf)
5157{
5158 struct remote_state *rs = get_remote_state ();
5159 int i;
5160 char *buf = alloca (rs->remote_packet_size);
5161 char *p = buf;
5162
5163 if (!remote_desc)
5164 error ("remote rcmd is only available after target open");
5165
5166 /* Send a NULL command across as an empty command */
5167 if (command == NULL)
5168 command = "";
5169
5170 /* The query prefix */
5171 strcpy (buf, "qRcmd,");
5172 p = strchr (buf, '\0');
5173
5174 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5175 error ("\"monitor\" command ``%s'' is too long\n", command);
5176
5177 /* Encode the actual command */
5178 bin2hex (command, p, 0);
5179
5180 if (putpkt (buf) < 0)
5181 error ("Communication problem with target\n");
5182
5183 /* get/display the response */
5184 while (1)
5185 {
5186 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5187 buf[0] = '\0';
5188 getpkt (buf, (rs->remote_packet_size), 0);
5189 if (buf[0] == '\0')
5190 error ("Target does not support this command\n");
5191 if (buf[0] == 'O' && buf[1] != 'K')
5192 {
5193 remote_console_output (buf + 1); /* 'O' message from stub */
5194 continue;
5195 }
5196 if (strcmp (buf, "OK") == 0)
5197 break;
5198 if (strlen (buf) == 3 && buf[0] == 'E'
5199 && isdigit (buf[1]) && isdigit (buf[2]))
5200 {
5201 error ("Protocol error with Rcmd");
5202 }
5203 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5204 {
5205 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5206 fputc_unfiltered (c, outbuf);
5207 }
5208 break;
5209 }
5210}
5211
5212static void
5213packet_command (char *args, int from_tty)
5214{
5215 struct remote_state *rs = get_remote_state ();
5216 char *buf = alloca (rs->remote_packet_size);
5217
5218 if (!remote_desc)
5219 error ("command can only be used with remote target");
5220
5221 if (!args)
5222 error ("remote-packet command requires packet text as argument");
5223
5224 puts_filtered ("sending: ");
5225 print_packet (args);
5226 puts_filtered ("\n");
5227 putpkt (args);
5228
5229 getpkt (buf, (rs->remote_packet_size), 0);
5230 puts_filtered ("received: ");
5231 print_packet (buf);
5232 puts_filtered ("\n");
5233}
5234
5235#if 0
5236/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5237
5238static void display_thread_info (struct gdb_ext_thread_info *info);
5239
5240static void threadset_test_cmd (char *cmd, int tty);
5241
5242static void threadalive_test (char *cmd, int tty);
5243
5244static void threadlist_test_cmd (char *cmd, int tty);
5245
5246int get_and_display_threadinfo (threadref * ref);
5247
5248static void threadinfo_test_cmd (char *cmd, int tty);
5249
5250static int thread_display_step (threadref * ref, void *context);
5251
5252static void threadlist_update_test_cmd (char *cmd, int tty);
5253
5254static void init_remote_threadtests (void);
5255
5256#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5257
5258static void
5259threadset_test_cmd (char *cmd, int tty)
5260{
5261 int sample_thread = SAMPLE_THREAD;
5262
5263 printf_filtered ("Remote threadset test\n");
5264 set_thread (sample_thread, 1);
5265}
5266
5267
5268static void
5269threadalive_test (char *cmd, int tty)
5270{
5271 int sample_thread = SAMPLE_THREAD;
5272
5273 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5274 printf_filtered ("PASS: Thread alive test\n");
5275 else
5276 printf_filtered ("FAIL: Thread alive test\n");
5277}
5278
5279void output_threadid (char *title, threadref * ref);
5280
5281void
5282output_threadid (char *title, threadref *ref)
5283{
5284 char hexid[20];
5285
5286 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5287 hexid[16] = 0;
5288 printf_filtered ("%s %s\n", title, (&hexid[0]));
5289}
5290
5291static void
5292threadlist_test_cmd (char *cmd, int tty)
5293{
5294 int startflag = 1;
5295 threadref nextthread;
5296 int done, result_count;
5297 threadref threadlist[3];
5298
5299 printf_filtered ("Remote Threadlist test\n");
5300 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5301 &result_count, &threadlist[0]))
5302 printf_filtered ("FAIL: threadlist test\n");
5303 else
5304 {
5305 threadref *scan = threadlist;
5306 threadref *limit = scan + result_count;
5307
5308 while (scan < limit)
5309 output_threadid (" thread ", scan++);
5310 }
5311}
5312
5313void
5314display_thread_info (struct gdb_ext_thread_info *info)
5315{
5316 output_threadid ("Threadid: ", &info->threadid);
5317 printf_filtered ("Name: %s\n ", info->shortname);
5318 printf_filtered ("State: %s\n", info->display);
5319 printf_filtered ("other: %s\n\n", info->more_display);
5320}
5321
5322int
5323get_and_display_threadinfo (threadref *ref)
5324{
5325 int result;
5326 int set;
5327 struct gdb_ext_thread_info threadinfo;
5328
5329 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5330 | TAG_MOREDISPLAY | TAG_DISPLAY;
5331 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5332 display_thread_info (&threadinfo);
5333 return result;
5334}
5335
5336static void
5337threadinfo_test_cmd (char *cmd, int tty)
5338{
5339 int athread = SAMPLE_THREAD;
5340 threadref thread;
5341 int set;
5342
5343 int_to_threadref (&thread, athread);
5344 printf_filtered ("Remote Threadinfo test\n");
5345 if (!get_and_display_threadinfo (&thread))
5346 printf_filtered ("FAIL cannot get thread info\n");
5347}
5348
5349static int
5350thread_display_step (threadref *ref, void *context)
5351{
5352 /* output_threadid(" threadstep ",ref); *//* simple test */
5353 return get_and_display_threadinfo (ref);
5354}
5355
5356static void
5357threadlist_update_test_cmd (char *cmd, int tty)
5358{
5359 printf_filtered ("Remote Threadlist update test\n");
5360 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5361}
5362
5363static void
5364init_remote_threadtests (void)
5365{
5366 add_com ("tlist", class_obscure, threadlist_test_cmd,
5367 "Fetch and print the remote list of thread identifiers, one pkt only");
5368 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5369 "Fetch and display info about one thread");
5370 add_com ("tset", class_obscure, threadset_test_cmd,
5371 "Test setting to a different thread");
5372 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5373 "Iterate through updating all remote thread info");
5374 add_com ("talive", class_obscure, threadalive_test,
5375 " Remote thread alive test ");
5376}
5377
5378#endif /* 0 */
5379
5380/* Convert a thread ID to a string. Returns the string in a static
5381 buffer. */
5382
5383static char *
5384remote_pid_to_str (ptid_t ptid)
5385{
5386 static char buf[30];
5387
5388 sprintf (buf, "Thread %d", PIDGET (ptid));
5389 return buf;
5390}
5391
5392static void
5393init_remote_ops (void)
5394{
5395 remote_ops.to_shortname = "remote";
5396 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5397 remote_ops.to_doc =
5398 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5399Specify the serial device it is connected to\n\
5400(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5401 remote_ops.to_open = remote_open;
5402 remote_ops.to_close = remote_close;
5403 remote_ops.to_detach = remote_detach;
5404 remote_ops.to_resume = remote_resume;
5405 remote_ops.to_wait = remote_wait;
5406 remote_ops.to_fetch_registers = remote_fetch_registers;
5407 remote_ops.to_store_registers = remote_store_registers;
5408 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5409 remote_ops.to_xfer_memory = remote_xfer_memory;
5410 remote_ops.to_files_info = remote_files_info;
5411 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5412 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5413 remote_ops.to_kill = remote_kill;
5414 remote_ops.to_load = generic_load;
5415 remote_ops.to_mourn_inferior = remote_mourn;
5416 remote_ops.to_thread_alive = remote_thread_alive;
5417 remote_ops.to_find_new_threads = remote_threads_info;
5418 remote_ops.to_pid_to_str = remote_pid_to_str;
5419 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5420 remote_ops.to_stop = remote_stop;
5421 remote_ops.to_query = remote_query;
5422 remote_ops.to_rcmd = remote_rcmd;
5423 remote_ops.to_stratum = process_stratum;
5424 remote_ops.to_has_all_memory = 1;
5425 remote_ops.to_has_memory = 1;
5426 remote_ops.to_has_stack = 1;
5427 remote_ops.to_has_registers = 1;
5428 remote_ops.to_has_execution = 1;
5429 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5430 remote_ops.to_magic = OPS_MAGIC;
5431}
5432
5433/* Set up the extended remote vector by making a copy of the standard
5434 remote vector and adding to it. */
5435
5436static void
5437init_extended_remote_ops (void)
5438{
5439 extended_remote_ops = remote_ops;
5440
5441 extended_remote_ops.to_shortname = "extended-remote";
5442 extended_remote_ops.to_longname =
5443 "Extended remote serial target in gdb-specific protocol";
5444 extended_remote_ops.to_doc =
5445 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5446Specify the serial device it is connected to (e.g. /dev/ttya).",
5447 extended_remote_ops.to_open = extended_remote_open;
5448 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5449 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5450}
5451
5452/*
5453 * Command: info remote-process
5454 *
5455 * This implements Cisco's version of the "info proc" command.
5456 *
5457 * This query allows the target stub to return an arbitrary string
5458 * (or strings) giving arbitrary information about the target process.
5459 * This is optional; the target stub isn't required to implement it.
5460 *
5461 * Syntax: qfProcessInfo request first string
5462 * qsProcessInfo request subsequent string
5463 * reply: 'O'<hex-encoded-string>
5464 * 'l' last reply (empty)
5465 */
5466
5467static void
5468remote_info_process (char *args, int from_tty)
5469{
5470 struct remote_state *rs = get_remote_state ();
5471 char *buf = alloca (rs->remote_packet_size);
5472
5473 if (remote_desc == 0)
5474 error ("Command can only be used when connected to the remote target.");
5475
5476 putpkt ("qfProcessInfo");
5477 getpkt (buf, (rs->remote_packet_size), 0);
5478 if (buf[0] == 0)
5479 return; /* Silently: target does not support this feature. */
5480
5481 if (buf[0] == 'E')
5482 error ("info proc: target error.");
5483
5484 while (buf[0] == 'O') /* Capitol-O packet */
5485 {
5486 remote_console_output (&buf[1]);
5487 putpkt ("qsProcessInfo");
5488 getpkt (buf, (rs->remote_packet_size), 0);
5489 }
5490}
5491
5492/*
5493 * Target Cisco
5494 */
5495
5496static void
5497remote_cisco_open (char *name, int from_tty)
5498{
5499 int ex;
5500 if (name == 0)
5501 error ("To open a remote debug connection, you need to specify what \n"
5502 "device is attached to the remote system (e.g. host:port).");
5503
5504 /* See FIXME above */
5505 wait_forever_enabled_p = 1;
5506
5507 target_preopen (from_tty);
5508
5509 unpush_target (&remote_cisco_ops);
5510
5511 remote_desc = remote_serial_open (name);
5512 if (!remote_desc)
5513 perror_with_name (name);
5514
5515 /*
5516 * If a baud rate was specified on the gdb command line it will
5517 * be greater than the initial value of -1. If it is, use it otherwise
5518 * default to 9600
5519 */
5520
5521 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5522 if (serial_setbaudrate (remote_desc, baud_rate))
5523 {
5524 serial_close (remote_desc);
5525 perror_with_name (name);
5526 }
5527
5528 serial_raw (remote_desc);
5529
5530 /* If there is something sitting in the buffer we might take it as a
5531 response to a command, which would be bad. */
5532 serial_flush_input (remote_desc);
5533
5534 if (from_tty)
5535 {
5536 puts_filtered ("Remote debugging using ");
5537 puts_filtered (name);
5538 puts_filtered ("\n");
5539 }
5540
5541 remote_cisco_mode = 1;
5542
5543 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5544
5545 init_all_packet_configs ();
5546
5547 general_thread = -2;
5548 continue_thread = -2;
5549
5550 /* Probe for ability to use "ThreadInfo" query, as required. */
5551 use_threadinfo_query = 1;
5552 use_threadextra_query = 1;
5553
5554 /* Without this, some commands which require an active target (such
5555 as kill) won't work. This variable serves (at least) double duty
5556 as both the pid of the target process (if it has such), and as a
5557 flag indicating that a target is active. These functions should
5558 be split out into seperate variables, especially since GDB will
5559 someday have a notion of debugging several processes. */
5560 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5561
5562 /* Start the remote connection; if error, discard this target. See
5563 the comments in remote_open_1() for further details such as the
5564 need to re-throw the exception. */
5565 ex = catch_exceptions (uiout,
5566 remote_start_remote_dummy, NULL,
5567 "Couldn't establish connection to remote"
5568 " target\n",
5569 RETURN_MASK_ALL);
5570 if (ex < 0)
5571 {
5572 pop_target ();
5573 throw_exception (ex);
5574 }
5575}
5576
5577static void
5578remote_cisco_close (int quitting)
5579{
5580 remote_cisco_mode = 0;
5581 remote_close (quitting);
5582}
5583
5584static void
5585remote_cisco_mourn (void)
5586{
5587 remote_mourn_1 (&remote_cisco_ops);
5588}
5589
5590enum
5591{
5592 READ_MORE,
5593 FATAL_ERROR,
5594 ENTER_DEBUG,
5595 DISCONNECT_TELNET
5596}
5597minitelnet_return;
5598
5599/* Shared between readsocket() and readtty(). The size is arbitrary,
5600 however all targets are known to support a 400 character packet. */
5601static char tty_input[400];
5602
5603static int escape_count;
5604static int echo_check;
5605extern int quit_flag;
5606
5607static int
5608readsocket (void)
5609{
5610 int data;
5611
5612 /* Loop until the socket doesn't have any more data */
5613
5614 while ((data = readchar (0)) >= 0)
5615 {
5616 /* Check for the escape sequence */
5617 if (data == '|')
5618 {
5619 /* If this is the fourth escape, get out */
5620 if (++escape_count == 4)
5621 {
5622 return ENTER_DEBUG;
5623 }
5624 else
5625 { /* This is a '|', but not the fourth in a row.
5626 Continue without echoing it. If it isn't actually
5627 one of four in a row, it'll be echoed later. */
5628 continue;
5629 }
5630 }
5631 else
5632 /* Not a '|' */
5633 {
5634 /* Ensure any pending '|'s are flushed. */
5635
5636 for (; escape_count > 0; escape_count--)
5637 putchar ('|');
5638 }
5639
5640 if (data == '\r') /* If this is a return character, */
5641 continue; /* - just supress it. */
5642
5643 if (echo_check != -1) /* Check for echo of user input. */
5644 {
5645 if (tty_input[echo_check] == data)
5646 {
5647 gdb_assert (echo_check <= sizeof (tty_input));
5648 echo_check++; /* Character matched user input: */
5649 continue; /* Continue without echoing it. */
5650 }
5651 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5652 { /* End of the line (and of echo checking). */
5653 echo_check = -1; /* No more echo supression */
5654 continue; /* Continue without echoing. */
5655 }
5656 else
5657 { /* Failed check for echo of user input.
5658 We now have some suppressed output to flush! */
5659 int j;
5660
5661 for (j = 0; j < echo_check; j++)
5662 putchar (tty_input[j]);
5663 echo_check = -1;
5664 }
5665 }
5666 putchar (data); /* Default case: output the char. */
5667 }
5668
5669 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5670 return READ_MORE; /* Try to read some more */
5671 else
5672 return FATAL_ERROR; /* Trouble, bail out */
5673}
5674
5675static int
5676readtty (void)
5677{
5678 int tty_bytecount;
5679
5680 /* First, read a buffer full from the terminal */
5681 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5682 if (tty_bytecount == -1)
5683 {
5684 perror ("readtty: read failed");
5685 return FATAL_ERROR;
5686 }
5687
5688 /* Remove a quoted newline. */
5689 if (tty_input[tty_bytecount - 1] == '\n' &&
5690 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5691 {
5692 tty_input[--tty_bytecount] = 0; /* remove newline */
5693 tty_input[--tty_bytecount] = 0; /* remove backslash */
5694 }
5695
5696 /* Turn trailing newlines into returns */
5697 if (tty_input[tty_bytecount - 1] == '\n')
5698 tty_input[tty_bytecount - 1] = '\r';
5699
5700 /* If the line consists of a ~, enter debugging mode. */
5701 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5702 return ENTER_DEBUG;
5703
5704 /* Make this a zero terminated string and write it out */
5705 tty_input[tty_bytecount] = 0;
5706 if (serial_write (remote_desc, tty_input, tty_bytecount))
5707 {
5708 perror_with_name ("readtty: write failed");
5709 return FATAL_ERROR;
5710 }
5711
5712 return READ_MORE;
5713}
5714
5715static int
5716minitelnet (void)
5717{
5718 fd_set input; /* file descriptors for select */
5719 int tablesize; /* max number of FDs for select */
5720 int status;
5721 int quit_count = 0;
5722
5723 extern int escape_count; /* global shared by readsocket */
5724 extern int echo_check; /* ditto */
5725
5726 escape_count = 0;
5727 echo_check = -1;
5728
5729 tablesize = 8 * sizeof (input);
5730
5731 for (;;)
5732 {
5733 /* Check for anything from our socket - doesn't block. Note that
5734 this must be done *before* the select as there may be
5735 buffered I/O waiting to be processed. */
5736
5737 if ((status = readsocket ()) == FATAL_ERROR)
5738 {
5739 error ("Debugging terminated by communications error");
5740 }
5741 else if (status != READ_MORE)
5742 {
5743 return (status);
5744 }
5745
5746 fflush (stdout); /* Flush output before blocking */
5747
5748 /* Now block on more socket input or TTY input */
5749
5750 FD_ZERO (&input);
5751 FD_SET (fileno (stdin), &input);
5752 FD_SET (deprecated_serial_fd (remote_desc), &input);
5753
5754 status = select (tablesize, &input, 0, 0, 0);
5755 if ((status == -1) && (errno != EINTR))
5756 {
5757 error ("Communications error on select %d", errno);
5758 }
5759
5760 /* Handle Control-C typed */
5761
5762 if (quit_flag)
5763 {
5764 if ((++quit_count) == 2)
5765 {
5766 if (query ("Interrupt GDB? "))
5767 {
5768 printf_filtered ("Interrupted by user.\n");
5769 throw_exception (RETURN_QUIT);
5770 }
5771 quit_count = 0;
5772 }
5773 quit_flag = 0;
5774
5775 if (remote_break)
5776 serial_send_break (remote_desc);
5777 else
5778 serial_write (remote_desc, "\003", 1);
5779
5780 continue;
5781 }
5782
5783 /* Handle console input */
5784
5785 if (FD_ISSET (fileno (stdin), &input))
5786 {
5787 quit_count = 0;
5788 echo_check = 0;
5789 status = readtty ();
5790 if (status == READ_MORE)
5791 continue;
5792
5793 return status; /* telnet session ended */
5794 }
5795 }
5796}
5797
5798static ptid_t
5799remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5800{
5801 if (minitelnet () != ENTER_DEBUG)
5802 {
5803 error ("Debugging session terminated by protocol error");
5804 }
5805 putpkt ("?");
5806 return remote_wait (ptid, status);
5807}
5808
5809static void
5810init_remote_cisco_ops (void)
5811{
5812 remote_cisco_ops.to_shortname = "cisco";
5813 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5814 remote_cisco_ops.to_doc =
5815 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5816Specify the serial device it is connected to (e.g. host:2020).";
5817 remote_cisco_ops.to_open = remote_cisco_open;
5818 remote_cisco_ops.to_close = remote_cisco_close;
5819 remote_cisco_ops.to_detach = remote_detach;
5820 remote_cisco_ops.to_resume = remote_resume;
5821 remote_cisco_ops.to_wait = remote_cisco_wait;
5822 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5823 remote_cisco_ops.to_store_registers = remote_store_registers;
5824 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5825 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5826 remote_cisco_ops.to_files_info = remote_files_info;
5827 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5828 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5829 remote_cisco_ops.to_kill = remote_kill;
5830 remote_cisco_ops.to_load = generic_load;
5831 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5832 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5833 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5834 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5835 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5836 remote_cisco_ops.to_stratum = process_stratum;
5837 remote_cisco_ops.to_has_all_memory = 1;
5838 remote_cisco_ops.to_has_memory = 1;
5839 remote_cisco_ops.to_has_stack = 1;
5840 remote_cisco_ops.to_has_registers = 1;
5841 remote_cisco_ops.to_has_execution = 1;
5842 remote_cisco_ops.to_magic = OPS_MAGIC;
5843}
5844
5845static int
5846remote_can_async_p (void)
5847{
5848 /* We're async whenever the serial device is. */
5849 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5850}
5851
5852static int
5853remote_is_async_p (void)
5854{
5855 /* We're async whenever the serial device is. */
5856 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5857}
5858
5859/* Pass the SERIAL event on and up to the client. One day this code
5860 will be able to delay notifying the client of an event until the
5861 point where an entire packet has been received. */
5862
5863static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5864static void *async_client_context;
5865static serial_event_ftype remote_async_serial_handler;
5866
5867static void
5868remote_async_serial_handler (struct serial *scb, void *context)
5869{
5870 /* Don't propogate error information up to the client. Instead let
5871 the client find out about the error by querying the target. */
5872 async_client_callback (INF_REG_EVENT, async_client_context);
5873}
5874
5875static void
5876remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5877{
5878 if (current_target.to_async_mask_value == 0)
5879 internal_error (__FILE__, __LINE__,
5880 "Calling remote_async when async is masked");
5881
5882 if (callback != NULL)
5883 {
5884 serial_async (remote_desc, remote_async_serial_handler, NULL);
5885 async_client_callback = callback;
5886 async_client_context = context;
5887 }
5888 else
5889 serial_async (remote_desc, NULL, NULL);
5890}
5891
5892/* Target async and target extended-async.
5893
5894 This are temporary targets, until it is all tested. Eventually
5895 async support will be incorporated int the usual 'remote'
5896 target. */
5897
5898static void
5899init_remote_async_ops (void)
5900{
5901 remote_async_ops.to_shortname = "async";
5902 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5903 remote_async_ops.to_doc =
5904 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5905Specify the serial device it is connected to (e.g. /dev/ttya).";
5906 remote_async_ops.to_open = remote_async_open;
5907 remote_async_ops.to_close = remote_close;
5908 remote_async_ops.to_detach = remote_async_detach;
5909 remote_async_ops.to_resume = remote_async_resume;
5910 remote_async_ops.to_wait = remote_async_wait;
5911 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5912 remote_async_ops.to_store_registers = remote_store_registers;
5913 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5914 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5915 remote_async_ops.to_files_info = remote_files_info;
5916 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5917 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5918 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5919 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5920 remote_async_ops.to_kill = remote_async_kill;
5921 remote_async_ops.to_load = generic_load;
5922 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5923 remote_async_ops.to_thread_alive = remote_thread_alive;
5924 remote_async_ops.to_find_new_threads = remote_threads_info;
5925 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5926 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5927 remote_async_ops.to_stop = remote_stop;
5928 remote_async_ops.to_query = remote_query;
5929 remote_async_ops.to_rcmd = remote_rcmd;
5930 remote_async_ops.to_stratum = process_stratum;
5931 remote_async_ops.to_has_all_memory = 1;
5932 remote_async_ops.to_has_memory = 1;
5933 remote_async_ops.to_has_stack = 1;
5934 remote_async_ops.to_has_registers = 1;
5935 remote_async_ops.to_has_execution = 1;
5936 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5937 remote_async_ops.to_can_async_p = remote_can_async_p;
5938 remote_async_ops.to_is_async_p = remote_is_async_p;
5939 remote_async_ops.to_async = remote_async;
5940 remote_async_ops.to_async_mask_value = 1;
5941 remote_async_ops.to_magic = OPS_MAGIC;
5942}
5943
5944/* Set up the async extended remote vector by making a copy of the standard
5945 remote vector and adding to it. */
5946
5947static void
5948init_extended_async_remote_ops (void)
5949{
5950 extended_async_remote_ops = remote_async_ops;
5951
5952 extended_async_remote_ops.to_shortname = "extended-async";
5953 extended_async_remote_ops.to_longname =
5954 "Extended remote serial target in async gdb-specific protocol";
5955 extended_async_remote_ops.to_doc =
5956 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5957Specify the serial device it is connected to (e.g. /dev/ttya).",
5958 extended_async_remote_ops.to_open = extended_remote_async_open;
5959 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5960 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5961}
5962
5963static void
5964set_remote_cmd (char *args, int from_tty)
5965{
5966}
5967
5968static void
5969show_remote_cmd (char *args, int from_tty)
5970{
5971
5972 show_remote_protocol_Z_packet_cmd (args, from_tty);
5973 show_remote_protocol_e_packet_cmd (args, from_tty);
5974 show_remote_protocol_E_packet_cmd (args, from_tty);
5975 show_remote_protocol_P_packet_cmd (args, from_tty);
5976 show_remote_protocol_qSymbol_packet_cmd (args, from_tty);
5977 show_remote_protocol_binary_download_cmd (args, from_tty);
5978}
5979
5980static void
5981build_remote_gdbarch_data (void)
5982{
5983 remote_address_size = TARGET_ADDR_BIT;
5984}
5985
5986/* Saved pointer to previous owner of the new_objfile event. */
5987static void (*remote_new_objfile_chain) (struct objfile *);
5988
5989/* Function to be called whenever a new objfile (shlib) is detected. */
5990static void
5991remote_new_objfile (struct objfile *objfile)
5992{
5993 if (remote_desc != 0) /* Have a remote connection */
5994 {
5995 remote_check_symbols (objfile);
5996 }
5997 /* Call predecessor on chain, if any. */
5998 if (remote_new_objfile_chain != 0 &&
5999 remote_desc == 0)
6000 remote_new_objfile_chain (objfile);
6001}
6002
6003void
6004_initialize_remote (void)
6005{
6006 static struct cmd_list_element *remote_set_cmdlist;
6007 static struct cmd_list_element *remote_show_cmdlist;
6008 struct cmd_list_element *tmpcmd;
6009
6010 /* architecture specific data */
6011 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6012 free_remote_state);
6013
6014 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6015 that the remote protocol has been initialized. */
6016 register_gdbarch_swap (&remote_address_size,
6017 sizeof (&remote_address_size), NULL);
6018 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6019
6020 init_remote_ops ();
6021 add_target (&remote_ops);
6022
6023 init_extended_remote_ops ();
6024 add_target (&extended_remote_ops);
6025
6026 init_remote_async_ops ();
6027 add_target (&remote_async_ops);
6028
6029 init_extended_async_remote_ops ();
6030 add_target (&extended_async_remote_ops);
6031
6032 init_remote_cisco_ops ();
6033 add_target (&remote_cisco_ops);
6034
6035 /* Hook into new objfile notification. */
6036 remote_new_objfile_chain = target_new_objfile_hook;
6037 target_new_objfile_hook = remote_new_objfile;
6038
6039#if 0
6040 init_remote_threadtests ();
6041#endif
6042
6043 /* set/show remote ... */
6044
6045 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6046Remote protocol specific variables\n\
6047Configure various remote-protocol specific variables such as\n\
6048the packets being used",
6049 &remote_set_cmdlist, "set remote ",
6050 0/*allow-unknown*/, &setlist);
6051 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6052Remote protocol specific variables\n\
6053Configure various remote-protocol specific variables such as\n\
6054the packets being used",
6055 &remote_show_cmdlist, "show remote ",
6056 0/*allow-unknown*/, &showlist);
6057
6058 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6059 "Compare section data on target to the exec file.\n\
6060Argument is a single section name (default: all loaded sections).",
6061 &cmdlist);
6062
6063 add_cmd ("packet", class_maintenance, packet_command,
6064 "Send an arbitrary packet to a remote target.\n\
6065 maintenance packet TEXT\n\
6066If GDB is talking to an inferior via the GDB serial protocol, then\n\
6067this command sends the string TEXT to the inferior, and displays the\n\
6068response packet. GDB supplies the initial `$' character, and the\n\
6069terminating `#' character and checksum.",
6070 &maintenancelist);
6071
6072 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6073 "Set whether to send break if interrupted.\n",
6074 "Show whether to send break if interrupted.\n",
6075 NULL, NULL,
6076 &setlist, &showlist);
6077
6078 /* Install commands for configuring memory read/write packets. */
6079
6080 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6081 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6082 &setlist);
6083 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6084 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6085 &showlist);
6086 add_cmd ("memory-write-packet-size", no_class,
6087 set_memory_write_packet_size,
6088 "Set the maximum number of bytes per memory-write packet.\n"
6089 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6090 "default packet size. The actual limit is further reduced\n"
6091 "dependent on the target. Specify ``fixed'' to disable the\n"
6092 "further restriction and ``limit'' to enable that restriction\n",
6093 &remote_set_cmdlist);
6094 add_cmd ("memory-read-packet-size", no_class,
6095 set_memory_read_packet_size,
6096 "Set the maximum number of bytes per memory-read packet.\n"
6097 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6098 "default packet size. The actual limit is further reduced\n"
6099 "dependent on the target. Specify ``fixed'' to disable the\n"
6100 "further restriction and ``limit'' to enable that restriction\n",
6101 &remote_set_cmdlist);
6102 add_cmd ("memory-write-packet-size", no_class,
6103 show_memory_write_packet_size,
6104 "Show the maximum number of bytes per memory-write packet.\n",
6105 &remote_show_cmdlist);
6106 add_cmd ("memory-read-packet-size", no_class,
6107 show_memory_read_packet_size,
6108 "Show the maximum number of bytes per memory-read packet.\n",
6109 &remote_show_cmdlist);
6110
6111 add_show_from_set
6112 (add_set_cmd ("remoteaddresssize", class_obscure,
6113 var_integer, (char *) &remote_address_size,
6114 "Set the maximum size of the address (in bits) \
6115in a memory packet.\n",
6116 &setlist),
6117 &showlist);
6118
6119 add_packet_config_cmd (&remote_protocol_binary_download,
6120 "X", "binary-download",
6121 set_remote_protocol_binary_download_cmd,
6122 show_remote_protocol_binary_download_cmd,
6123 &remote_set_cmdlist, &remote_show_cmdlist,
6124 1);
6125#if 0
6126 /* XXXX - should ``set remotebinarydownload'' be retained for
6127 compatibility. */
6128 add_show_from_set
6129 (add_set_cmd ("remotebinarydownload", no_class,
6130 var_boolean, (char *) &remote_binary_download,
6131 "Set binary downloads.\n", &setlist),
6132 &showlist);
6133#endif
6134
6135 add_info ("remote-process", remote_info_process,
6136 "Query the remote system for process info.");
6137
6138 add_packet_config_cmd (&remote_protocol_qSymbol,
6139 "qSymbol", "symbol-lookup",
6140 set_remote_protocol_qSymbol_packet_cmd,
6141 show_remote_protocol_qSymbol_packet_cmd,
6142 &remote_set_cmdlist, &remote_show_cmdlist,
6143 0);
6144
6145 add_packet_config_cmd (&remote_protocol_e,
6146 "e", "step-over-range",
6147 set_remote_protocol_e_packet_cmd,
6148 show_remote_protocol_e_packet_cmd,
6149 &remote_set_cmdlist, &remote_show_cmdlist,
6150 0);
6151 /* Disable by default. The ``e'' packet has nasty interactions with
6152 the threading code - it relies on global state. */
6153 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6154 update_packet_config (&remote_protocol_e);
6155
6156 add_packet_config_cmd (&remote_protocol_E,
6157 "E", "step-over-range-w-signal",
6158 set_remote_protocol_E_packet_cmd,
6159 show_remote_protocol_E_packet_cmd,
6160 &remote_set_cmdlist, &remote_show_cmdlist,
6161 0);
6162 /* Disable by default. The ``e'' packet has nasty interactions with
6163 the threading code - it relies on global state. */
6164 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6165 update_packet_config (&remote_protocol_E);
6166
6167 add_packet_config_cmd (&remote_protocol_P,
6168 "P", "set-register",
6169 set_remote_protocol_P_packet_cmd,
6170 show_remote_protocol_P_packet_cmd,
6171 &remote_set_cmdlist, &remote_show_cmdlist,
6172 1);
6173
6174 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6175 "Z0", "software-breakpoint",
6176 set_remote_protocol_Z_software_bp_packet_cmd,
6177 show_remote_protocol_Z_software_bp_packet_cmd,
6178 &remote_set_cmdlist, &remote_show_cmdlist,
6179 0);
6180
6181 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6182 "Z1", "hardware-breakpoint",
6183 set_remote_protocol_Z_hardware_bp_packet_cmd,
6184 show_remote_protocol_Z_hardware_bp_packet_cmd,
6185 &remote_set_cmdlist, &remote_show_cmdlist,
6186 0);
6187
6188 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6189 "Z2", "write-watchpoint",
6190 set_remote_protocol_Z_write_wp_packet_cmd,
6191 show_remote_protocol_Z_write_wp_packet_cmd,
6192 &remote_set_cmdlist, &remote_show_cmdlist,
6193 0);
6194
6195 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6196 "Z3", "read-watchpoint",
6197 set_remote_protocol_Z_read_wp_packet_cmd,
6198 show_remote_protocol_Z_read_wp_packet_cmd,
6199 &remote_set_cmdlist, &remote_show_cmdlist,
6200 0);
6201
6202 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6203 "Z4", "access-watchpoint",
6204 set_remote_protocol_Z_access_wp_packet_cmd,
6205 show_remote_protocol_Z_access_wp_packet_cmd,
6206 &remote_set_cmdlist, &remote_show_cmdlist,
6207 0);
6208
6209 /* Keep the old ``set remote Z-packet ...'' working. */
6210 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
6211 &remote_Z_packet_detect,
6212 "\
6213Set use of remote protocol `Z' packets", &remote_set_cmdlist);
6214 set_cmd_sfunc (tmpcmd, set_remote_protocol_Z_packet_cmd);
6215 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
6216 "Show use of remote protocol `Z' packets ",
6217 &remote_show_cmdlist);
6218}
This page took 0.048417 seconds and 4 git commands to generate.