Add enum for mips breakpoint kinds
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
23#include "infrun.h"
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
28#include "objfiles.h"
29#include "arch-utils.h"
30#include "regcache.h"
31#include "regset.h"
32#include "doublest.h"
33#include "value.h"
34#include "parser-defs.h"
35#include "osabi.h"
36#include "infcall.h"
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
39#include "reggroups.h"
40#include "dwarf2-frame.h"
41#include "target-descriptions.h"
42#include "user-regs.h"
43#include "record-full.h"
44#include "auxv.h"
45
46#include "coff/internal.h" /* for libcoff.h */
47#include "libcoff.h" /* for xcoff_data */
48#include "coff/xcoff.h"
49#include "libxcoff.h"
50
51#include "elf-bfd.h"
52#include "elf/ppc.h"
53#include "elf/ppc64.h"
54
55#include "solib-svr4.h"
56#include "ppc-tdep.h"
57#include "ppc-ravenscar-thread.h"
58
59#include "dis-asm.h"
60
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
65#include "ax.h"
66#include "ax-gdb.h"
67#include <algorithm>
68
69#include "features/rs6000/powerpc-32.c"
70#include "features/rs6000/powerpc-altivec32.c"
71#include "features/rs6000/powerpc-vsx32.c"
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
74#include "features/rs6000/powerpc-405.c"
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
81#include "features/rs6000/powerpc-altivec64.c"
82#include "features/rs6000/powerpc-vsx64.c"
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99/* Determine if regnum is a POWER7 VSX register. */
100#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104/* Determine if regnum is a POWER7 Extended FP register. */
105#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109/* The list of available "set powerpc ..." and "show powerpc ..."
110 commands. */
111static struct cmd_list_element *setpowerpccmdlist = NULL;
112static struct cmd_list_element *showpowerpccmdlist = NULL;
113
114static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
115
116/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
117static const char *const powerpc_vector_strings[] =
118{
119 "auto",
120 "generic",
121 "altivec",
122 "spe",
123 NULL
124};
125
126/* A variable that can be configured by the user. */
127static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
128static const char *powerpc_vector_abi_string = "auto";
129
130/* To be used by skip_prologue. */
131
132struct rs6000_framedata
133 {
134 int offset; /* total size of frame --- the distance
135 by which we decrement sp to allocate
136 the frame */
137 int saved_gpr; /* smallest # of saved gpr */
138 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
139 int saved_fpr; /* smallest # of saved fpr */
140 int saved_vr; /* smallest # of saved vr */
141 int saved_ev; /* smallest # of saved ev */
142 int alloca_reg; /* alloca register number (frame ptr) */
143 char frameless; /* true if frameless functions. */
144 char nosavedpc; /* true if pc not saved. */
145 char used_bl; /* true if link register clobbered */
146 int gpr_offset; /* offset of saved gprs from prev sp */
147 int fpr_offset; /* offset of saved fprs from prev sp */
148 int vr_offset; /* offset of saved vrs from prev sp */
149 int ev_offset; /* offset of saved evs from prev sp */
150 int lr_offset; /* offset of saved lr */
151 int lr_register; /* register of saved lr, if trustworthy */
152 int cr_offset; /* offset of saved cr */
153 int vrsave_offset; /* offset of saved vrsave register */
154 };
155
156
157/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
158int
159vsx_register_p (struct gdbarch *gdbarch, int regno)
160{
161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
162 if (tdep->ppc_vsr0_regnum < 0)
163 return 0;
164 else
165 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
166 <= tdep->ppc_vsr0_upper_regnum + 31);
167}
168
169/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
170int
171altivec_register_p (struct gdbarch *gdbarch, int regno)
172{
173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
174 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
175 return 0;
176 else
177 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
178}
179
180
181/* Return true if REGNO is an SPE register, false otherwise. */
182int
183spe_register_p (struct gdbarch *gdbarch, int regno)
184{
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 /* Is it a reference to EV0 -- EV31, and do we have those? */
188 if (IS_SPE_PSEUDOREG (tdep, regno))
189 return 1;
190
191 /* Is it a reference to one of the raw upper GPR halves? */
192 if (tdep->ppc_ev0_upper_regnum >= 0
193 && tdep->ppc_ev0_upper_regnum <= regno
194 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
195 return 1;
196
197 /* Is it a reference to the 64-bit accumulator, and do we have that? */
198 if (tdep->ppc_acc_regnum >= 0
199 && tdep->ppc_acc_regnum == regno)
200 return 1;
201
202 /* Is it a reference to the SPE floating-point status and control register,
203 and do we have that? */
204 if (tdep->ppc_spefscr_regnum >= 0
205 && tdep->ppc_spefscr_regnum == regno)
206 return 1;
207
208 return 0;
209}
210
211
212/* Return non-zero if the architecture described by GDBARCH has
213 floating-point registers (f0 --- f31 and fpscr). */
214int
215ppc_floating_point_unit_p (struct gdbarch *gdbarch)
216{
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218
219 return (tdep->ppc_fp0_regnum >= 0
220 && tdep->ppc_fpscr_regnum >= 0);
221}
222
223/* Return non-zero if the architecture described by GDBARCH has
224 VSX registers (vsr0 --- vsr63). */
225static int
226ppc_vsx_support_p (struct gdbarch *gdbarch)
227{
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229
230 return tdep->ppc_vsr0_regnum >= 0;
231}
232
233/* Return non-zero if the architecture described by GDBARCH has
234 Altivec registers (vr0 --- vr31, vrsave and vscr). */
235int
236ppc_altivec_support_p (struct gdbarch *gdbarch)
237{
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239
240 return (tdep->ppc_vr0_regnum >= 0
241 && tdep->ppc_vrsave_regnum >= 0);
242}
243
244/* Check that TABLE[GDB_REGNO] is not already initialized, and then
245 set it to SIM_REGNO.
246
247 This is a helper function for init_sim_regno_table, constructing
248 the table mapping GDB register numbers to sim register numbers; we
249 initialize every element in that table to -1 before we start
250 filling it in. */
251static void
252set_sim_regno (int *table, int gdb_regno, int sim_regno)
253{
254 /* Make sure we don't try to assign any given GDB register a sim
255 register number more than once. */
256 gdb_assert (table[gdb_regno] == -1);
257 table[gdb_regno] = sim_regno;
258}
259
260
261/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
262 numbers to simulator register numbers, based on the values placed
263 in the ARCH->tdep->ppc_foo_regnum members. */
264static void
265init_sim_regno_table (struct gdbarch *arch)
266{
267 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
268 int total_regs = gdbarch_num_regs (arch);
269 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
270 int i;
271 static const char *const segment_regs[] = {
272 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
273 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
274 };
275
276 /* Presume that all registers not explicitly mentioned below are
277 unavailable from the sim. */
278 for (i = 0; i < total_regs; i++)
279 sim_regno[i] = -1;
280
281 /* General-purpose registers. */
282 for (i = 0; i < ppc_num_gprs; i++)
283 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
284
285 /* Floating-point registers. */
286 if (tdep->ppc_fp0_regnum >= 0)
287 for (i = 0; i < ppc_num_fprs; i++)
288 set_sim_regno (sim_regno,
289 tdep->ppc_fp0_regnum + i,
290 sim_ppc_f0_regnum + i);
291 if (tdep->ppc_fpscr_regnum >= 0)
292 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
293
294 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
295 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
296 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
297
298 /* Segment registers. */
299 for (i = 0; i < ppc_num_srs; i++)
300 {
301 int gdb_regno;
302
303 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
304 if (gdb_regno >= 0)
305 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
306 }
307
308 /* Altivec registers. */
309 if (tdep->ppc_vr0_regnum >= 0)
310 {
311 for (i = 0; i < ppc_num_vrs; i++)
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + i,
314 sim_ppc_vr0_regnum + i);
315
316 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
317 we can treat this more like the other cases. */
318 set_sim_regno (sim_regno,
319 tdep->ppc_vr0_regnum + ppc_num_vrs,
320 sim_ppc_vscr_regnum);
321 }
322 /* vsave is a special-purpose register, so the code below handles it. */
323
324 /* SPE APU (E500) registers. */
325 if (tdep->ppc_ev0_upper_regnum >= 0)
326 for (i = 0; i < ppc_num_gprs; i++)
327 set_sim_regno (sim_regno,
328 tdep->ppc_ev0_upper_regnum + i,
329 sim_ppc_rh0_regnum + i);
330 if (tdep->ppc_acc_regnum >= 0)
331 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
332 /* spefscr is a special-purpose register, so the code below handles it. */
333
334#ifdef WITH_PPC_SIM
335 /* Now handle all special-purpose registers. Verify that they
336 haven't mistakenly been assigned numbers by any of the above
337 code. */
338 for (i = 0; i < sim_ppc_num_sprs; i++)
339 {
340 const char *spr_name = sim_spr_register_name (i);
341 int gdb_regno = -1;
342
343 if (spr_name != NULL)
344 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
345
346 if (gdb_regno != -1)
347 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
348 }
349#endif
350
351 /* Drop the initialized array into place. */
352 tdep->sim_regno = sim_regno;
353}
354
355
356/* Given a GDB register number REG, return the corresponding SIM
357 register number. */
358static int
359rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
360{
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362 int sim_regno;
363
364 if (tdep->sim_regno == NULL)
365 init_sim_regno_table (gdbarch);
366
367 gdb_assert (0 <= reg
368 && reg <= gdbarch_num_regs (gdbarch)
369 + gdbarch_num_pseudo_regs (gdbarch));
370 sim_regno = tdep->sim_regno[reg];
371
372 if (sim_regno >= 0)
373 return sim_regno;
374 else
375 return LEGACY_SIM_REGNO_IGNORE;
376}
377
378\f
379
380/* Register set support functions. */
381
382/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
383 Write the register to REGCACHE. */
384
385void
386ppc_supply_reg (struct regcache *regcache, int regnum,
387 const gdb_byte *regs, size_t offset, int regsize)
388{
389 if (regnum != -1 && offset != -1)
390 {
391 if (regsize > 4)
392 {
393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
394 int gdb_regsize = register_size (gdbarch, regnum);
395 if (gdb_regsize < regsize
396 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
397 offset += regsize - gdb_regsize;
398 }
399 regcache_raw_supply (regcache, regnum, regs + offset);
400 }
401}
402
403/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
404 in a field REGSIZE wide. Zero pad as necessary. */
405
406void
407ppc_collect_reg (const struct regcache *regcache, int regnum,
408 gdb_byte *regs, size_t offset, int regsize)
409{
410 if (regnum != -1 && offset != -1)
411 {
412 if (regsize > 4)
413 {
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 int gdb_regsize = register_size (gdbarch, regnum);
416 if (gdb_regsize < regsize)
417 {
418 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
419 {
420 memset (regs + offset, 0, regsize - gdb_regsize);
421 offset += regsize - gdb_regsize;
422 }
423 else
424 memset (regs + offset + regsize - gdb_regsize, 0,
425 regsize - gdb_regsize);
426 }
427 }
428 regcache_raw_collect (regcache, regnum, regs + offset);
429 }
430}
431
432static int
433ppc_greg_offset (struct gdbarch *gdbarch,
434 struct gdbarch_tdep *tdep,
435 const struct ppc_reg_offsets *offsets,
436 int regnum,
437 int *regsize)
438{
439 *regsize = offsets->gpr_size;
440 if (regnum >= tdep->ppc_gp0_regnum
441 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
442 return (offsets->r0_offset
443 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
444
445 if (regnum == gdbarch_pc_regnum (gdbarch))
446 return offsets->pc_offset;
447
448 if (regnum == tdep->ppc_ps_regnum)
449 return offsets->ps_offset;
450
451 if (regnum == tdep->ppc_lr_regnum)
452 return offsets->lr_offset;
453
454 if (regnum == tdep->ppc_ctr_regnum)
455 return offsets->ctr_offset;
456
457 *regsize = offsets->xr_size;
458 if (regnum == tdep->ppc_cr_regnum)
459 return offsets->cr_offset;
460
461 if (regnum == tdep->ppc_xer_regnum)
462 return offsets->xer_offset;
463
464 if (regnum == tdep->ppc_mq_regnum)
465 return offsets->mq_offset;
466
467 return -1;
468}
469
470static int
471ppc_fpreg_offset (struct gdbarch_tdep *tdep,
472 const struct ppc_reg_offsets *offsets,
473 int regnum)
474{
475 if (regnum >= tdep->ppc_fp0_regnum
476 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
477 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
478
479 if (regnum == tdep->ppc_fpscr_regnum)
480 return offsets->fpscr_offset;
481
482 return -1;
483}
484
485static int
486ppc_vrreg_offset (struct gdbarch_tdep *tdep,
487 const struct ppc_reg_offsets *offsets,
488 int regnum)
489{
490 if (regnum >= tdep->ppc_vr0_regnum
491 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
492 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
493
494 if (regnum == tdep->ppc_vrsave_regnum - 1)
495 return offsets->vscr_offset;
496
497 if (regnum == tdep->ppc_vrsave_regnum)
498 return offsets->vrsave_offset;
499
500 return -1;
501}
502
503/* Supply register REGNUM in the general-purpose register set REGSET
504 from the buffer specified by GREGS and LEN to register cache
505 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
506
507void
508ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
510{
511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 const struct ppc_reg_offsets *offsets
514 = (const struct ppc_reg_offsets *) regset->regmap;
515 size_t offset;
516 int regsize;
517
518 if (regnum == -1)
519 {
520 int i;
521 int gpr_size = offsets->gpr_size;
522
523 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
524 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
525 i++, offset += gpr_size)
526 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
527 gpr_size);
528
529 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
530 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
532 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
534 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
535 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
536 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
537 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
538 (const gdb_byte *) gregs, offsets->cr_offset,
539 offsets->xr_size);
540 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
541 (const gdb_byte *) gregs, offsets->xer_offset,
542 offsets->xr_size);
543 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
544 (const gdb_byte *) gregs, offsets->mq_offset,
545 offsets->xr_size);
546 return;
547 }
548
549 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
550 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
551}
552
553/* Supply register REGNUM in the floating-point register set REGSET
554 from the buffer specified by FPREGS and LEN to register cache
555 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
556
557void
558ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
559 int regnum, const void *fpregs, size_t len)
560{
561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
562 struct gdbarch_tdep *tdep;
563 const struct ppc_reg_offsets *offsets;
564 size_t offset;
565
566 if (!ppc_floating_point_unit_p (gdbarch))
567 return;
568
569 tdep = gdbarch_tdep (gdbarch);
570 offsets = (const struct ppc_reg_offsets *) regset->regmap;
571 if (regnum == -1)
572 {
573 int i;
574
575 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
576 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
577 i++, offset += 8)
578 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
579
580 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
581 (const gdb_byte *) fpregs, offsets->fpscr_offset,
582 offsets->fpscr_size);
583 return;
584 }
585
586 offset = ppc_fpreg_offset (tdep, offsets, regnum);
587 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
588 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
589}
590
591/* Supply register REGNUM in the VSX register set REGSET
592 from the buffer specified by VSXREGS and LEN to register cache
593 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
594
595void
596ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
597 int regnum, const void *vsxregs, size_t len)
598{
599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
600 struct gdbarch_tdep *tdep;
601
602 if (!ppc_vsx_support_p (gdbarch))
603 return;
604
605 tdep = gdbarch_tdep (gdbarch);
606
607 if (regnum == -1)
608 {
609 int i;
610
611 for (i = tdep->ppc_vsr0_upper_regnum;
612 i < tdep->ppc_vsr0_upper_regnum + 32;
613 i++)
614 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
615
616 return;
617 }
618 else
619 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
620}
621
622/* Supply register REGNUM in the Altivec register set REGSET
623 from the buffer specified by VRREGS and LEN to register cache
624 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
625
626void
627ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
628 int regnum, const void *vrregs, size_t len)
629{
630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
631 struct gdbarch_tdep *tdep;
632 const struct ppc_reg_offsets *offsets;
633 size_t offset;
634
635 if (!ppc_altivec_support_p (gdbarch))
636 return;
637
638 tdep = gdbarch_tdep (gdbarch);
639 offsets = (const struct ppc_reg_offsets *) regset->regmap;
640 if (regnum == -1)
641 {
642 int i;
643
644 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
645 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
646 i++, offset += 16)
647 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
648
649 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
650 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
651
652 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
653 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
654 return;
655 }
656
657 offset = ppc_vrreg_offset (tdep, offsets, regnum);
658 if (regnum != tdep->ppc_vrsave_regnum
659 && regnum != tdep->ppc_vrsave_regnum - 1)
660 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
661 else
662 ppc_supply_reg (regcache, regnum,
663 (const gdb_byte *) vrregs, offset, 4);
664}
665
666/* Collect register REGNUM in the general-purpose register set
667 REGSET from register cache REGCACHE into the buffer specified by
668 GREGS and LEN. If REGNUM is -1, do this for all registers in
669 REGSET. */
670
671void
672ppc_collect_gregset (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *gregs, size_t len)
675{
676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
678 const struct ppc_reg_offsets *offsets
679 = (const struct ppc_reg_offsets *) regset->regmap;
680 size_t offset;
681 int regsize;
682
683 if (regnum == -1)
684 {
685 int i;
686 int gpr_size = offsets->gpr_size;
687
688 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
689 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
690 i++, offset += gpr_size)
691 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
692
693 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
694 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
695 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
696 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
697 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
698 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
699 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
700 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
701 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
702 (gdb_byte *) gregs, offsets->cr_offset,
703 offsets->xr_size);
704 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
705 (gdb_byte *) gregs, offsets->xer_offset,
706 offsets->xr_size);
707 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
708 (gdb_byte *) gregs, offsets->mq_offset,
709 offsets->xr_size);
710 return;
711 }
712
713 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
714 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
715}
716
717/* Collect register REGNUM in the floating-point register set
718 REGSET from register cache REGCACHE into the buffer specified by
719 FPREGS and LEN. If REGNUM is -1, do this for all registers in
720 REGSET. */
721
722void
723ppc_collect_fpregset (const struct regset *regset,
724 const struct regcache *regcache,
725 int regnum, void *fpregs, size_t len)
726{
727 struct gdbarch *gdbarch = get_regcache_arch (regcache);
728 struct gdbarch_tdep *tdep;
729 const struct ppc_reg_offsets *offsets;
730 size_t offset;
731
732 if (!ppc_floating_point_unit_p (gdbarch))
733 return;
734
735 tdep = gdbarch_tdep (gdbarch);
736 offsets = (const struct ppc_reg_offsets *) regset->regmap;
737 if (regnum == -1)
738 {
739 int i;
740
741 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
742 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
743 i++, offset += 8)
744 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
745
746 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
747 (gdb_byte *) fpregs, offsets->fpscr_offset,
748 offsets->fpscr_size);
749 return;
750 }
751
752 offset = ppc_fpreg_offset (tdep, offsets, regnum);
753 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
754 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
755}
756
757/* Collect register REGNUM in the VSX register set
758 REGSET from register cache REGCACHE into the buffer specified by
759 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
760 REGSET. */
761
762void
763ppc_collect_vsxregset (const struct regset *regset,
764 const struct regcache *regcache,
765 int regnum, void *vsxregs, size_t len)
766{
767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
768 struct gdbarch_tdep *tdep;
769
770 if (!ppc_vsx_support_p (gdbarch))
771 return;
772
773 tdep = gdbarch_tdep (gdbarch);
774
775 if (regnum == -1)
776 {
777 int i;
778
779 for (i = tdep->ppc_vsr0_upper_regnum;
780 i < tdep->ppc_vsr0_upper_regnum + 32;
781 i++)
782 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
783
784 return;
785 }
786 else
787 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
788}
789
790
791/* Collect register REGNUM in the Altivec register set
792 REGSET from register cache REGCACHE into the buffer specified by
793 VRREGS and LEN. If REGNUM is -1, do this for all registers in
794 REGSET. */
795
796void
797ppc_collect_vrregset (const struct regset *regset,
798 const struct regcache *regcache,
799 int regnum, void *vrregs, size_t len)
800{
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep;
803 const struct ppc_reg_offsets *offsets;
804 size_t offset;
805
806 if (!ppc_altivec_support_p (gdbarch))
807 return;
808
809 tdep = gdbarch_tdep (gdbarch);
810 offsets = (const struct ppc_reg_offsets *) regset->regmap;
811 if (regnum == -1)
812 {
813 int i;
814
815 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
816 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
817 i++, offset += 16)
818 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
819
820 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
821 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
822
823 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
824 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
825 return;
826 }
827
828 offset = ppc_vrreg_offset (tdep, offsets, regnum);
829 if (regnum != tdep->ppc_vrsave_regnum
830 && regnum != tdep->ppc_vrsave_regnum - 1)
831 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
832 else
833 ppc_collect_reg (regcache, regnum,
834 (gdb_byte *) vrregs, offset, 4);
835}
836\f
837
838static int
839insn_changes_sp_or_jumps (unsigned long insn)
840{
841 int opcode = (insn >> 26) & 0x03f;
842 int sd = (insn >> 21) & 0x01f;
843 int a = (insn >> 16) & 0x01f;
844 int subcode = (insn >> 1) & 0x3ff;
845
846 /* Changes the stack pointer. */
847
848 /* NOTE: There are many ways to change the value of a given register.
849 The ways below are those used when the register is R1, the SP,
850 in a funtion's epilogue. */
851
852 if (opcode == 31 && subcode == 444 && a == 1)
853 return 1; /* mr R1,Rn */
854 if (opcode == 14 && sd == 1)
855 return 1; /* addi R1,Rn,simm */
856 if (opcode == 58 && sd == 1)
857 return 1; /* ld R1,ds(Rn) */
858
859 /* Transfers control. */
860
861 if (opcode == 18)
862 return 1; /* b */
863 if (opcode == 16)
864 return 1; /* bc */
865 if (opcode == 19 && subcode == 16)
866 return 1; /* bclr */
867 if (opcode == 19 && subcode == 528)
868 return 1; /* bcctr */
869
870 return 0;
871}
872
873/* Return true if we are in the function's epilogue, i.e. after the
874 instruction that destroyed the function's stack frame.
875
876 1) scan forward from the point of execution:
877 a) If you find an instruction that modifies the stack pointer
878 or transfers control (except a return), execution is not in
879 an epilogue, return.
880 b) Stop scanning if you find a return instruction or reach the
881 end of the function or reach the hard limit for the size of
882 an epilogue.
883 2) scan backward from the point of execution:
884 a) If you find an instruction that modifies the stack pointer,
885 execution *is* in an epilogue, return.
886 b) Stop scanning if you reach an instruction that transfers
887 control or the beginning of the function or reach the hard
888 limit for the size of an epilogue. */
889
890static int
891rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
892 struct gdbarch *gdbarch, CORE_ADDR pc)
893{
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 bfd_byte insn_buf[PPC_INSN_SIZE];
897 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
898 unsigned long insn;
899
900 /* Find the search limits based on function boundaries and hard limit. */
901
902 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
903 return 0;
904
905 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_start < func_start) epilogue_start = func_start;
907
908 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_end > func_end) epilogue_end = func_end;
910
911 /* Scan forward until next 'blr'. */
912
913 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
914 {
915 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
916 return 0;
917 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
918 if (insn == 0x4e800020)
919 break;
920 /* Assume a bctr is a tail call unless it points strictly within
921 this function. */
922 if (insn == 0x4e800420)
923 {
924 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
925 tdep->ppc_ctr_regnum);
926 if (ctr > func_start && ctr < func_end)
927 return 0;
928 else
929 break;
930 }
931 if (insn_changes_sp_or_jumps (insn))
932 return 0;
933 }
934
935 /* Scan backward until adjustment to stack pointer (R1). */
936
937 for (scan_pc = pc - PPC_INSN_SIZE;
938 scan_pc >= epilogue_start;
939 scan_pc -= PPC_INSN_SIZE)
940 {
941 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
942 return 0;
943 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
944 if (insn_changes_sp_or_jumps (insn))
945 return 1;
946 }
947
948 return 0;
949}
950
951/* Implement the stack_frame_destroyed_p gdbarch method. */
952
953static int
954rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
955{
956 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
957 gdbarch, pc);
958}
959
960/* Get the ith function argument for the current function. */
961static CORE_ADDR
962rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
963 struct type *type)
964{
965 return get_frame_register_unsigned (frame, 3 + argi);
966}
967
968/* Sequence of bytes for breakpoint instruction. */
969
970static const unsigned char *
971rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
972 int *bp_size)
973{
974 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
975 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
976 *bp_size = 4;
977 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
978 return big_breakpoint;
979 else
980 return little_breakpoint;
981}
982
983/* Instruction masks for displaced stepping. */
984#define BRANCH_MASK 0xfc000000
985#define BP_MASK 0xFC0007FE
986#define B_INSN 0x48000000
987#define BC_INSN 0x40000000
988#define BXL_INSN 0x4c000000
989#define BP_INSN 0x7C000008
990
991/* Instruction masks used during single-stepping of atomic
992 sequences. */
993#define LWARX_MASK 0xfc0007fe
994#define LWARX_INSTRUCTION 0x7c000028
995#define LDARX_INSTRUCTION 0x7c0000A8
996#define STWCX_MASK 0xfc0007ff
997#define STWCX_INSTRUCTION 0x7c00012d
998#define STDCX_INSTRUCTION 0x7c0001ad
999
1000/* We can't displaced step atomic sequences. Otherwise this is just
1001 like simple_displaced_step_copy_insn. */
1002
1003static struct displaced_step_closure *
1004ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1005 CORE_ADDR from, CORE_ADDR to,
1006 struct regcache *regs)
1007{
1008 size_t len = gdbarch_max_insn_length (gdbarch);
1009 gdb_byte *buf = (gdb_byte *) xmalloc (len);
1010 struct cleanup *old_chain = make_cleanup (xfree, buf);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012 int insn;
1013
1014 read_memory (from, buf, len);
1015
1016 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1017
1018 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1019 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1020 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1021 {
1022 if (debug_displaced)
1023 {
1024 fprintf_unfiltered (gdb_stdlog,
1025 "displaced: can't displaced step "
1026 "atomic sequence at %s\n",
1027 paddress (gdbarch, from));
1028 }
1029 do_cleanups (old_chain);
1030 return NULL;
1031 }
1032
1033 write_memory (to, buf, len);
1034
1035 if (debug_displaced)
1036 {
1037 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1038 paddress (gdbarch, from), paddress (gdbarch, to));
1039 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1040 }
1041
1042 discard_cleanups (old_chain);
1043 return (struct displaced_step_closure *) buf;
1044}
1045
1046/* Fix up the state of registers and memory after having single-stepped
1047 a displaced instruction. */
1048static void
1049ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1050 struct displaced_step_closure *closure,
1051 CORE_ADDR from, CORE_ADDR to,
1052 struct regcache *regs)
1053{
1054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1055 /* Our closure is a copy of the instruction. */
1056 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
1057 PPC_INSN_SIZE, byte_order);
1058 ULONGEST opcode = 0;
1059 /* Offset for non PC-relative instructions. */
1060 LONGEST offset = PPC_INSN_SIZE;
1061
1062 opcode = insn & BRANCH_MASK;
1063
1064 if (debug_displaced)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "displaced: (ppc) fixup (%s, %s)\n",
1067 paddress (gdbarch, from), paddress (gdbarch, to));
1068
1069
1070 /* Handle PC-relative branch instructions. */
1071 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1072 {
1073 ULONGEST current_pc;
1074
1075 /* Read the current PC value after the instruction has been executed
1076 in a displaced location. Calculate the offset to be applied to the
1077 original PC value before the displaced stepping. */
1078 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1079 &current_pc);
1080 offset = current_pc - to;
1081
1082 if (opcode != BXL_INSN)
1083 {
1084 /* Check for AA bit indicating whether this is an absolute
1085 addressing or PC-relative (1: absolute, 0: relative). */
1086 if (!(insn & 0x2))
1087 {
1088 /* PC-relative addressing is being used in the branch. */
1089 if (debug_displaced)
1090 fprintf_unfiltered
1091 (gdb_stdlog,
1092 "displaced: (ppc) branch instruction: %s\n"
1093 "displaced: (ppc) adjusted PC from %s to %s\n",
1094 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1095 paddress (gdbarch, from + offset));
1096
1097 regcache_cooked_write_unsigned (regs,
1098 gdbarch_pc_regnum (gdbarch),
1099 from + offset);
1100 }
1101 }
1102 else
1103 {
1104 /* If we're here, it means we have a branch to LR or CTR. If the
1105 branch was taken, the offset is probably greater than 4 (the next
1106 instruction), so it's safe to assume that an offset of 4 means we
1107 did not take the branch. */
1108 if (offset == PPC_INSN_SIZE)
1109 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1110 from + PPC_INSN_SIZE);
1111 }
1112
1113 /* Check for LK bit indicating whether we should set the link
1114 register to point to the next instruction
1115 (1: Set, 0: Don't set). */
1116 if (insn & 0x1)
1117 {
1118 /* Link register needs to be set to the next instruction's PC. */
1119 regcache_cooked_write_unsigned (regs,
1120 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1121 from + PPC_INSN_SIZE);
1122 if (debug_displaced)
1123 fprintf_unfiltered (gdb_stdlog,
1124 "displaced: (ppc) adjusted LR to %s\n",
1125 paddress (gdbarch, from + PPC_INSN_SIZE));
1126
1127 }
1128 }
1129 /* Check for breakpoints in the inferior. If we've found one, place the PC
1130 right at the breakpoint instruction. */
1131 else if ((insn & BP_MASK) == BP_INSN)
1132 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1133 else
1134 /* Handle any other instructions that do not fit in the categories above. */
1135 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1136 from + offset);
1137}
1138
1139/* Always use hardware single-stepping to execute the
1140 displaced instruction. */
1141static int
1142ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1143 struct displaced_step_closure *closure)
1144{
1145 return 1;
1146}
1147
1148/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1149 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1150 is found, attempt to step through it. A breakpoint is placed at the end of
1151 the sequence. */
1152
1153int
1154ppc_deal_with_atomic_sequence (struct frame_info *frame)
1155{
1156 struct gdbarch *gdbarch = get_frame_arch (frame);
1157 struct address_space *aspace = get_frame_address_space (frame);
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 CORE_ADDR pc = get_frame_pc (frame);
1160 CORE_ADDR breaks[2] = {-1, -1};
1161 CORE_ADDR loc = pc;
1162 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1163 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1164 int insn_count;
1165 int index;
1166 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1167 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1168 int bc_insn_count = 0; /* Conditional branch instruction count. */
1169
1170 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1171 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1172 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1173 return 0;
1174
1175 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1176 instructions. */
1177 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1178 {
1179 loc += PPC_INSN_SIZE;
1180 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1181
1182 /* Assume that there is at most one conditional branch in the atomic
1183 sequence. If a conditional branch is found, put a breakpoint in
1184 its destination address. */
1185 if ((insn & BRANCH_MASK) == BC_INSN)
1186 {
1187 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1188 int absolute = insn & 2;
1189
1190 if (bc_insn_count >= 1)
1191 return 0; /* More than one conditional branch found, fallback
1192 to the standard single-step code. */
1193
1194 if (absolute)
1195 breaks[1] = immediate;
1196 else
1197 breaks[1] = loc + immediate;
1198
1199 bc_insn_count++;
1200 last_breakpoint++;
1201 }
1202
1203 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1204 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1205 break;
1206 }
1207
1208 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1209 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1210 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1211 return 0;
1212
1213 closing_insn = loc;
1214 loc += PPC_INSN_SIZE;
1215 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1216
1217 /* Insert a breakpoint right after the end of the atomic sequence. */
1218 breaks[0] = loc;
1219
1220 /* Check for duplicated breakpoints. Check also for a breakpoint
1221 placed (branch instruction's destination) anywhere in sequence. */
1222 if (last_breakpoint
1223 && (breaks[1] == breaks[0]
1224 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1225 last_breakpoint = 0;
1226
1227 /* Effectively inserts the breakpoints. */
1228 for (index = 0; index <= last_breakpoint; index++)
1229 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1230
1231 return 1;
1232}
1233
1234
1235#define SIGNED_SHORT(x) \
1236 ((sizeof (short) == 2) \
1237 ? ((int)(short)(x)) \
1238 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1239
1240#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1241
1242/* Limit the number of skipped non-prologue instructions, as the examining
1243 of the prologue is expensive. */
1244static int max_skip_non_prologue_insns = 10;
1245
1246/* Return nonzero if the given instruction OP can be part of the prologue
1247 of a function and saves a parameter on the stack. FRAMEP should be
1248 set if one of the previous instructions in the function has set the
1249 Frame Pointer. */
1250
1251static int
1252store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1253{
1254 /* Move parameters from argument registers to temporary register. */
1255 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1256 {
1257 /* Rx must be scratch register r0. */
1258 const int rx_regno = (op >> 16) & 31;
1259 /* Ry: Only r3 - r10 are used for parameter passing. */
1260 const int ry_regno = GET_SRC_REG (op);
1261
1262 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1263 {
1264 *r0_contains_arg = 1;
1265 return 1;
1266 }
1267 else
1268 return 0;
1269 }
1270
1271 /* Save a General Purpose Register on stack. */
1272
1273 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1274 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1275 {
1276 /* Rx: Only r3 - r10 are used for parameter passing. */
1277 const int rx_regno = GET_SRC_REG (op);
1278
1279 return (rx_regno >= 3 && rx_regno <= 10);
1280 }
1281
1282 /* Save a General Purpose Register on stack via the Frame Pointer. */
1283
1284 if (framep &&
1285 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1286 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1287 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1288 {
1289 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1290 However, the compiler sometimes uses r0 to hold an argument. */
1291 const int rx_regno = GET_SRC_REG (op);
1292
1293 return ((rx_regno >= 3 && rx_regno <= 10)
1294 || (rx_regno == 0 && *r0_contains_arg));
1295 }
1296
1297 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1298 {
1299 /* Only f2 - f8 are used for parameter passing. */
1300 const int src_regno = GET_SRC_REG (op);
1301
1302 return (src_regno >= 2 && src_regno <= 8);
1303 }
1304
1305 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1306 {
1307 /* Only f2 - f8 are used for parameter passing. */
1308 const int src_regno = GET_SRC_REG (op);
1309
1310 return (src_regno >= 2 && src_regno <= 8);
1311 }
1312
1313 /* Not an insn that saves a parameter on stack. */
1314 return 0;
1315}
1316
1317/* Assuming that INSN is a "bl" instruction located at PC, return
1318 nonzero if the destination of the branch is a "blrl" instruction.
1319
1320 This sequence is sometimes found in certain function prologues.
1321 It allows the function to load the LR register with a value that
1322 they can use to access PIC data using PC-relative offsets. */
1323
1324static int
1325bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1326{
1327 CORE_ADDR dest;
1328 int immediate;
1329 int absolute;
1330 int dest_insn;
1331
1332 absolute = (int) ((insn >> 1) & 1);
1333 immediate = ((insn & ~3) << 6) >> 6;
1334 if (absolute)
1335 dest = immediate;
1336 else
1337 dest = pc + immediate;
1338
1339 dest_insn = read_memory_integer (dest, 4, byte_order);
1340 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1341 return 1;
1342
1343 return 0;
1344}
1345
1346/* Masks for decoding a branch-and-link (bl) instruction.
1347
1348 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1349 The former is anded with the opcode in question; if the result of
1350 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1351 question is a ``bl'' instruction.
1352
1353 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1354 the branch displacement. */
1355
1356#define BL_MASK 0xfc000001
1357#define BL_INSTRUCTION 0x48000001
1358#define BL_DISPLACEMENT_MASK 0x03fffffc
1359
1360static unsigned long
1361rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1362{
1363 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1364 gdb_byte buf[4];
1365 unsigned long op;
1366
1367 /* Fetch the instruction and convert it to an integer. */
1368 if (target_read_memory (pc, buf, 4))
1369 return 0;
1370 op = extract_unsigned_integer (buf, 4, byte_order);
1371
1372 return op;
1373}
1374
1375/* GCC generates several well-known sequences of instructions at the begining
1376 of each function prologue when compiling with -fstack-check. If one of
1377 such sequences starts at START_PC, then return the address of the
1378 instruction immediately past this sequence. Otherwise, return START_PC. */
1379
1380static CORE_ADDR
1381rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1382{
1383 CORE_ADDR pc = start_pc;
1384 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1385
1386 /* First possible sequence: A small number of probes.
1387 stw 0, -<some immediate>(1)
1388 [repeat this instruction any (small) number of times]. */
1389
1390 if ((op & 0xffff0000) == 0x90010000)
1391 {
1392 while ((op & 0xffff0000) == 0x90010000)
1393 {
1394 pc = pc + 4;
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1396 }
1397 return pc;
1398 }
1399
1400 /* Second sequence: A probing loop.
1401 addi 12,1,-<some immediate>
1402 lis 0,-<some immediate>
1403 [possibly ori 0,0,<some immediate>]
1404 add 0,12,0
1405 cmpw 0,12,0
1406 beq 0,<disp>
1407 addi 12,12,-<some immediate>
1408 stw 0,0(12)
1409 b <disp>
1410 [possibly one last probe: stw 0,<some immediate>(12)]. */
1411
1412 while (1)
1413 {
1414 /* addi 12,1,-<some immediate> */
1415 if ((op & 0xffff0000) != 0x39810000)
1416 break;
1417
1418 /* lis 0,-<some immediate> */
1419 pc = pc + 4;
1420 op = rs6000_fetch_instruction (gdbarch, pc);
1421 if ((op & 0xffff0000) != 0x3c000000)
1422 break;
1423
1424 pc = pc + 4;
1425 op = rs6000_fetch_instruction (gdbarch, pc);
1426 /* [possibly ori 0,0,<some immediate>] */
1427 if ((op & 0xffff0000) == 0x60000000)
1428 {
1429 pc = pc + 4;
1430 op = rs6000_fetch_instruction (gdbarch, pc);
1431 }
1432 /* add 0,12,0 */
1433 if (op != 0x7c0c0214)
1434 break;
1435
1436 /* cmpw 0,12,0 */
1437 pc = pc + 4;
1438 op = rs6000_fetch_instruction (gdbarch, pc);
1439 if (op != 0x7c0c0000)
1440 break;
1441
1442 /* beq 0,<disp> */
1443 pc = pc + 4;
1444 op = rs6000_fetch_instruction (gdbarch, pc);
1445 if ((op & 0xff9f0001) != 0x41820000)
1446 break;
1447
1448 /* addi 12,12,-<some immediate> */
1449 pc = pc + 4;
1450 op = rs6000_fetch_instruction (gdbarch, pc);
1451 if ((op & 0xffff0000) != 0x398c0000)
1452 break;
1453
1454 /* stw 0,0(12) */
1455 pc = pc + 4;
1456 op = rs6000_fetch_instruction (gdbarch, pc);
1457 if (op != 0x900c0000)
1458 break;
1459
1460 /* b <disp> */
1461 pc = pc + 4;
1462 op = rs6000_fetch_instruction (gdbarch, pc);
1463 if ((op & 0xfc000001) != 0x48000000)
1464 break;
1465
1466 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1467 pc = pc + 4;
1468 op = rs6000_fetch_instruction (gdbarch, pc);
1469 if ((op & 0xffff0000) == 0x900c0000)
1470 {
1471 pc = pc + 4;
1472 op = rs6000_fetch_instruction (gdbarch, pc);
1473 }
1474
1475 /* We found a valid stack-check sequence, return the new PC. */
1476 return pc;
1477 }
1478
1479 /* Third sequence: No probe; instead, a comparizon between the stack size
1480 limit (saved in a run-time global variable) and the current stack
1481 pointer:
1482
1483 addi 0,1,-<some immediate>
1484 lis 12,__gnat_stack_limit@ha
1485 lwz 12,__gnat_stack_limit@l(12)
1486 twllt 0,12
1487
1488 or, with a small variant in the case of a bigger stack frame:
1489 addis 0,1,<some immediate>
1490 addic 0,0,-<some immediate>
1491 lis 12,__gnat_stack_limit@ha
1492 lwz 12,__gnat_stack_limit@l(12)
1493 twllt 0,12
1494 */
1495 while (1)
1496 {
1497 /* addi 0,1,-<some immediate> */
1498 if ((op & 0xffff0000) != 0x38010000)
1499 {
1500 /* small stack frame variant not recognized; try the
1501 big stack frame variant: */
1502
1503 /* addis 0,1,<some immediate> */
1504 if ((op & 0xffff0000) != 0x3c010000)
1505 break;
1506
1507 /* addic 0,0,-<some immediate> */
1508 pc = pc + 4;
1509 op = rs6000_fetch_instruction (gdbarch, pc);
1510 if ((op & 0xffff0000) != 0x30000000)
1511 break;
1512 }
1513
1514 /* lis 12,<some immediate> */
1515 pc = pc + 4;
1516 op = rs6000_fetch_instruction (gdbarch, pc);
1517 if ((op & 0xffff0000) != 0x3d800000)
1518 break;
1519
1520 /* lwz 12,<some immediate>(12) */
1521 pc = pc + 4;
1522 op = rs6000_fetch_instruction (gdbarch, pc);
1523 if ((op & 0xffff0000) != 0x818c0000)
1524 break;
1525
1526 /* twllt 0,12 */
1527 pc = pc + 4;
1528 op = rs6000_fetch_instruction (gdbarch, pc);
1529 if ((op & 0xfffffffe) != 0x7c406008)
1530 break;
1531
1532 /* We found a valid stack-check sequence, return the new PC. */
1533 return pc;
1534 }
1535
1536 /* No stack check code in our prologue, return the start_pc. */
1537 return start_pc;
1538}
1539
1540/* return pc value after skipping a function prologue and also return
1541 information about a function frame.
1542
1543 in struct rs6000_framedata fdata:
1544 - frameless is TRUE, if function does not have a frame.
1545 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1546 - offset is the initial size of this stack frame --- the amount by
1547 which we decrement the sp to allocate the frame.
1548 - saved_gpr is the number of the first saved gpr.
1549 - saved_fpr is the number of the first saved fpr.
1550 - saved_vr is the number of the first saved vr.
1551 - saved_ev is the number of the first saved ev.
1552 - alloca_reg is the number of the register used for alloca() handling.
1553 Otherwise -1.
1554 - gpr_offset is the offset of the first saved gpr from the previous frame.
1555 - fpr_offset is the offset of the first saved fpr from the previous frame.
1556 - vr_offset is the offset of the first saved vr from the previous frame.
1557 - ev_offset is the offset of the first saved ev from the previous frame.
1558 - lr_offset is the offset of the saved lr
1559 - cr_offset is the offset of the saved cr
1560 - vrsave_offset is the offset of the saved vrsave register. */
1561
1562static CORE_ADDR
1563skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1564 struct rs6000_framedata *fdata)
1565{
1566 CORE_ADDR orig_pc = pc;
1567 CORE_ADDR last_prologue_pc = pc;
1568 CORE_ADDR li_found_pc = 0;
1569 gdb_byte buf[4];
1570 unsigned long op;
1571 long offset = 0;
1572 long vr_saved_offset = 0;
1573 int lr_reg = -1;
1574 int cr_reg = -1;
1575 int vr_reg = -1;
1576 int ev_reg = -1;
1577 long ev_offset = 0;
1578 int vrsave_reg = -1;
1579 int reg;
1580 int framep = 0;
1581 int minimal_toc_loaded = 0;
1582 int prev_insn_was_prologue_insn = 1;
1583 int num_skip_non_prologue_insns = 0;
1584 int r0_contains_arg = 0;
1585 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1588
1589 memset (fdata, 0, sizeof (struct rs6000_framedata));
1590 fdata->saved_gpr = -1;
1591 fdata->saved_fpr = -1;
1592 fdata->saved_vr = -1;
1593 fdata->saved_ev = -1;
1594 fdata->alloca_reg = -1;
1595 fdata->frameless = 1;
1596 fdata->nosavedpc = 1;
1597 fdata->lr_register = -1;
1598
1599 pc = rs6000_skip_stack_check (gdbarch, pc);
1600 if (pc >= lim_pc)
1601 pc = lim_pc;
1602
1603 for (;; pc += 4)
1604 {
1605 /* Sometimes it isn't clear if an instruction is a prologue
1606 instruction or not. When we encounter one of these ambiguous
1607 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1608 Otherwise, we'll assume that it really is a prologue instruction. */
1609 if (prev_insn_was_prologue_insn)
1610 last_prologue_pc = pc;
1611
1612 /* Stop scanning if we've hit the limit. */
1613 if (pc >= lim_pc)
1614 break;
1615
1616 prev_insn_was_prologue_insn = 1;
1617
1618 /* Fetch the instruction and convert it to an integer. */
1619 if (target_read_memory (pc, buf, 4))
1620 break;
1621 op = extract_unsigned_integer (buf, 4, byte_order);
1622
1623 if ((op & 0xfc1fffff) == 0x7c0802a6)
1624 { /* mflr Rx */
1625 /* Since shared library / PIC code, which needs to get its
1626 address at runtime, can appear to save more than one link
1627 register vis:
1628
1629 *INDENT-OFF*
1630 stwu r1,-304(r1)
1631 mflr r3
1632 bl 0xff570d0 (blrl)
1633 stw r30,296(r1)
1634 mflr r30
1635 stw r31,300(r1)
1636 stw r3,308(r1);
1637 ...
1638 *INDENT-ON*
1639
1640 remember just the first one, but skip over additional
1641 ones. */
1642 if (lr_reg == -1)
1643 lr_reg = (op & 0x03e00000) >> 21;
1644 if (lr_reg == 0)
1645 r0_contains_arg = 0;
1646 continue;
1647 }
1648 else if ((op & 0xfc1fffff) == 0x7c000026)
1649 { /* mfcr Rx */
1650 cr_reg = (op & 0x03e00000);
1651 if (cr_reg == 0)
1652 r0_contains_arg = 0;
1653 continue;
1654
1655 }
1656 else if ((op & 0xfc1f0000) == 0xd8010000)
1657 { /* stfd Rx,NUM(r1) */
1658 reg = GET_SRC_REG (op);
1659 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1660 {
1661 fdata->saved_fpr = reg;
1662 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1663 }
1664 continue;
1665
1666 }
1667 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1668 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1669 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1670 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1671 {
1672
1673 reg = GET_SRC_REG (op);
1674 if ((op & 0xfc1f0000) == 0xbc010000)
1675 fdata->gpr_mask |= ~((1U << reg) - 1);
1676 else
1677 fdata->gpr_mask |= 1U << reg;
1678 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1679 {
1680 fdata->saved_gpr = reg;
1681 if ((op & 0xfc1f0003) == 0xf8010000)
1682 op &= ~3UL;
1683 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1684 }
1685 continue;
1686
1687 }
1688 else if ((op & 0xffff0000) == 0x3c4c0000
1689 || (op & 0xffff0000) == 0x3c400000
1690 || (op & 0xffff0000) == 0x38420000)
1691 {
1692 /* . 0: addis 2,12,.TOC.-0b@ha
1693 . addi 2,2,.TOC.-0b@l
1694 or
1695 . lis 2,.TOC.@ha
1696 . addi 2,2,.TOC.@l
1697 used by ELFv2 global entry points to set up r2. */
1698 continue;
1699 }
1700 else if (op == 0x60000000)
1701 {
1702 /* nop */
1703 /* Allow nops in the prologue, but do not consider them to
1704 be part of the prologue unless followed by other prologue
1705 instructions. */
1706 prev_insn_was_prologue_insn = 0;
1707 continue;
1708
1709 }
1710 else if ((op & 0xffff0000) == 0x3c000000)
1711 { /* addis 0,0,NUM, used for >= 32k frames */
1712 fdata->offset = (op & 0x0000ffff) << 16;
1713 fdata->frameless = 0;
1714 r0_contains_arg = 0;
1715 continue;
1716
1717 }
1718 else if ((op & 0xffff0000) == 0x60000000)
1719 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1720 fdata->offset |= (op & 0x0000ffff);
1721 fdata->frameless = 0;
1722 r0_contains_arg = 0;
1723 continue;
1724
1725 }
1726 else if (lr_reg >= 0 &&
1727 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1728 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1729 /* stw Rx, NUM(r1) */
1730 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1731 /* stwu Rx, NUM(r1) */
1732 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1733 { /* where Rx == lr */
1734 fdata->lr_offset = offset;
1735 fdata->nosavedpc = 0;
1736 /* Invalidate lr_reg, but don't set it to -1.
1737 That would mean that it had never been set. */
1738 lr_reg = -2;
1739 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1740 (op & 0xfc000000) == 0x90000000) /* stw */
1741 {
1742 /* Does not update r1, so add displacement to lr_offset. */
1743 fdata->lr_offset += SIGNED_SHORT (op);
1744 }
1745 continue;
1746
1747 }
1748 else if (cr_reg >= 0 &&
1749 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1750 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1751 /* stw Rx, NUM(r1) */
1752 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1753 /* stwu Rx, NUM(r1) */
1754 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1755 { /* where Rx == cr */
1756 fdata->cr_offset = offset;
1757 /* Invalidate cr_reg, but don't set it to -1.
1758 That would mean that it had never been set. */
1759 cr_reg = -2;
1760 if ((op & 0xfc000003) == 0xf8000000 ||
1761 (op & 0xfc000000) == 0x90000000)
1762 {
1763 /* Does not update r1, so add displacement to cr_offset. */
1764 fdata->cr_offset += SIGNED_SHORT (op);
1765 }
1766 continue;
1767
1768 }
1769 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1770 {
1771 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1772 prediction bits. If the LR has already been saved, we can
1773 skip it. */
1774 continue;
1775 }
1776 else if (op == 0x48000005)
1777 { /* bl .+4 used in
1778 -mrelocatable */
1779 fdata->used_bl = 1;
1780 continue;
1781
1782 }
1783 else if (op == 0x48000004)
1784 { /* b .+4 (xlc) */
1785 break;
1786
1787 }
1788 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1789 in V.4 -mminimal-toc */
1790 (op & 0xffff0000) == 0x3bde0000)
1791 { /* addi 30,30,foo@l */
1792 continue;
1793
1794 }
1795 else if ((op & 0xfc000001) == 0x48000001)
1796 { /* bl foo,
1797 to save fprs??? */
1798
1799 fdata->frameless = 0;
1800
1801 /* If the return address has already been saved, we can skip
1802 calls to blrl (for PIC). */
1803 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1804 {
1805 fdata->used_bl = 1;
1806 continue;
1807 }
1808
1809 /* Don't skip over the subroutine call if it is not within
1810 the first three instructions of the prologue and either
1811 we have no line table information or the line info tells
1812 us that the subroutine call is not part of the line
1813 associated with the prologue. */
1814 if ((pc - orig_pc) > 8)
1815 {
1816 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1817 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1818
1819 if ((prologue_sal.line == 0)
1820 || (prologue_sal.line != this_sal.line))
1821 break;
1822 }
1823
1824 op = read_memory_integer (pc + 4, 4, byte_order);
1825
1826 /* At this point, make sure this is not a trampoline
1827 function (a function that simply calls another functions,
1828 and nothing else). If the next is not a nop, this branch
1829 was part of the function prologue. */
1830
1831 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1832 break; /* Don't skip over
1833 this branch. */
1834
1835 fdata->used_bl = 1;
1836 continue;
1837 }
1838 /* update stack pointer */
1839 else if ((op & 0xfc1f0000) == 0x94010000)
1840 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1841 fdata->frameless = 0;
1842 fdata->offset = SIGNED_SHORT (op);
1843 offset = fdata->offset;
1844 continue;
1845 }
1846 else if ((op & 0xfc1f016a) == 0x7c01016e)
1847 { /* stwux rX,r1,rY */
1848 /* No way to figure out what r1 is going to be. */
1849 fdata->frameless = 0;
1850 offset = fdata->offset;
1851 continue;
1852 }
1853 else if ((op & 0xfc1f0003) == 0xf8010001)
1854 { /* stdu rX,NUM(r1) */
1855 fdata->frameless = 0;
1856 fdata->offset = SIGNED_SHORT (op & ~3UL);
1857 offset = fdata->offset;
1858 continue;
1859 }
1860 else if ((op & 0xfc1f016a) == 0x7c01016a)
1861 { /* stdux rX,r1,rY */
1862 /* No way to figure out what r1 is going to be. */
1863 fdata->frameless = 0;
1864 offset = fdata->offset;
1865 continue;
1866 }
1867 else if ((op & 0xffff0000) == 0x38210000)
1868 { /* addi r1,r1,SIMM */
1869 fdata->frameless = 0;
1870 fdata->offset += SIGNED_SHORT (op);
1871 offset = fdata->offset;
1872 continue;
1873 }
1874 /* Load up minimal toc pointer. Do not treat an epilogue restore
1875 of r31 as a minimal TOC load. */
1876 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1877 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1878 && !framep
1879 && !minimal_toc_loaded)
1880 {
1881 minimal_toc_loaded = 1;
1882 continue;
1883
1884 /* move parameters from argument registers to local variable
1885 registers */
1886 }
1887 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1888 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1889 (((op >> 21) & 31) <= 10) &&
1890 ((long) ((op >> 16) & 31)
1891 >= fdata->saved_gpr)) /* Rx: local var reg */
1892 {
1893 continue;
1894
1895 /* store parameters in stack */
1896 }
1897 /* Move parameters from argument registers to temporary register. */
1898 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1899 {
1900 continue;
1901
1902 /* Set up frame pointer */
1903 }
1904 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1905 {
1906 fdata->frameless = 0;
1907 framep = 1;
1908 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1909 continue;
1910
1911 /* Another way to set up the frame pointer. */
1912 }
1913 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1914 || op == 0x7c3f0b78)
1915 { /* mr r31, r1 */
1916 fdata->frameless = 0;
1917 framep = 1;
1918 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1919 continue;
1920
1921 /* Another way to set up the frame pointer. */
1922 }
1923 else if ((op & 0xfc1fffff) == 0x38010000)
1924 { /* addi rX, r1, 0x0 */
1925 fdata->frameless = 0;
1926 framep = 1;
1927 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1928 + ((op & ~0x38010000) >> 21));
1929 continue;
1930 }
1931 /* AltiVec related instructions. */
1932 /* Store the vrsave register (spr 256) in another register for
1933 later manipulation, or load a register into the vrsave
1934 register. 2 instructions are used: mfvrsave and
1935 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1936 and mtspr SPR256, Rn. */
1937 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1938 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1939 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1940 {
1941 vrsave_reg = GET_SRC_REG (op);
1942 continue;
1943 }
1944 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1945 {
1946 continue;
1947 }
1948 /* Store the register where vrsave was saved to onto the stack:
1949 rS is the register where vrsave was stored in a previous
1950 instruction. */
1951 /* 100100 sssss 00001 dddddddd dddddddd */
1952 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1953 {
1954 if (vrsave_reg == GET_SRC_REG (op))
1955 {
1956 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1957 vrsave_reg = -1;
1958 }
1959 continue;
1960 }
1961 /* Compute the new value of vrsave, by modifying the register
1962 where vrsave was saved to. */
1963 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1964 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1965 {
1966 continue;
1967 }
1968 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1969 in a pair of insns to save the vector registers on the
1970 stack. */
1971 /* 001110 00000 00000 iiii iiii iiii iiii */
1972 /* 001110 01110 00000 iiii iiii iiii iiii */
1973 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1974 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1975 {
1976 if ((op & 0xffff0000) == 0x38000000)
1977 r0_contains_arg = 0;
1978 li_found_pc = pc;
1979 vr_saved_offset = SIGNED_SHORT (op);
1980
1981 /* This insn by itself is not part of the prologue, unless
1982 if part of the pair of insns mentioned above. So do not
1983 record this insn as part of the prologue yet. */
1984 prev_insn_was_prologue_insn = 0;
1985 }
1986 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1987 /* 011111 sssss 11111 00000 00111001110 */
1988 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1989 {
1990 if (pc == (li_found_pc + 4))
1991 {
1992 vr_reg = GET_SRC_REG (op);
1993 /* If this is the first vector reg to be saved, or if
1994 it has a lower number than others previously seen,
1995 reupdate the frame info. */
1996 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1997 {
1998 fdata->saved_vr = vr_reg;
1999 fdata->vr_offset = vr_saved_offset + offset;
2000 }
2001 vr_saved_offset = -1;
2002 vr_reg = -1;
2003 li_found_pc = 0;
2004 }
2005 }
2006 /* End AltiVec related instructions. */
2007
2008 /* Start BookE related instructions. */
2009 /* Store gen register S at (r31+uimm).
2010 Any register less than r13 is volatile, so we don't care. */
2011 /* 000100 sssss 11111 iiiii 01100100001 */
2012 else if (arch_info->mach == bfd_mach_ppc_e500
2013 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2014 {
2015 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2016 {
2017 unsigned int imm;
2018 ev_reg = GET_SRC_REG (op);
2019 imm = (op >> 11) & 0x1f;
2020 ev_offset = imm * 8;
2021 /* If this is the first vector reg to be saved, or if
2022 it has a lower number than others previously seen,
2023 reupdate the frame info. */
2024 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2025 {
2026 fdata->saved_ev = ev_reg;
2027 fdata->ev_offset = ev_offset + offset;
2028 }
2029 }
2030 continue;
2031 }
2032 /* Store gen register rS at (r1+rB). */
2033 /* 000100 sssss 00001 bbbbb 01100100000 */
2034 else if (arch_info->mach == bfd_mach_ppc_e500
2035 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2036 {
2037 if (pc == (li_found_pc + 4))
2038 {
2039 ev_reg = GET_SRC_REG (op);
2040 /* If this is the first vector reg to be saved, or if
2041 it has a lower number than others previously seen,
2042 reupdate the frame info. */
2043 /* We know the contents of rB from the previous instruction. */
2044 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2045 {
2046 fdata->saved_ev = ev_reg;
2047 fdata->ev_offset = vr_saved_offset + offset;
2048 }
2049 vr_saved_offset = -1;
2050 ev_reg = -1;
2051 li_found_pc = 0;
2052 }
2053 continue;
2054 }
2055 /* Store gen register r31 at (rA+uimm). */
2056 /* 000100 11111 aaaaa iiiii 01100100001 */
2057 else if (arch_info->mach == bfd_mach_ppc_e500
2058 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2059 {
2060 /* Wwe know that the source register is 31 already, but
2061 it can't hurt to compute it. */
2062 ev_reg = GET_SRC_REG (op);
2063 ev_offset = ((op >> 11) & 0x1f) * 8;
2064 /* If this is the first vector reg to be saved, or if
2065 it has a lower number than others previously seen,
2066 reupdate the frame info. */
2067 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2068 {
2069 fdata->saved_ev = ev_reg;
2070 fdata->ev_offset = ev_offset + offset;
2071 }
2072
2073 continue;
2074 }
2075 /* Store gen register S at (r31+r0).
2076 Store param on stack when offset from SP bigger than 4 bytes. */
2077 /* 000100 sssss 11111 00000 01100100000 */
2078 else if (arch_info->mach == bfd_mach_ppc_e500
2079 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2080 {
2081 if (pc == (li_found_pc + 4))
2082 {
2083 if ((op & 0x03e00000) >= 0x01a00000)
2084 {
2085 ev_reg = GET_SRC_REG (op);
2086 /* If this is the first vector reg to be saved, or if
2087 it has a lower number than others previously seen,
2088 reupdate the frame info. */
2089 /* We know the contents of r0 from the previous
2090 instruction. */
2091 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2092 {
2093 fdata->saved_ev = ev_reg;
2094 fdata->ev_offset = vr_saved_offset + offset;
2095 }
2096 ev_reg = -1;
2097 }
2098 vr_saved_offset = -1;
2099 li_found_pc = 0;
2100 continue;
2101 }
2102 }
2103 /* End BookE related instructions. */
2104
2105 else
2106 {
2107 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2108
2109 /* Not a recognized prologue instruction.
2110 Handle optimizer code motions into the prologue by continuing
2111 the search if we have no valid frame yet or if the return
2112 address is not yet saved in the frame. Also skip instructions
2113 if some of the GPRs expected to be saved are not yet saved. */
2114 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2115 && (fdata->gpr_mask & all_mask) == all_mask)
2116 break;
2117
2118 if (op == 0x4e800020 /* blr */
2119 || op == 0x4e800420) /* bctr */
2120 /* Do not scan past epilogue in frameless functions or
2121 trampolines. */
2122 break;
2123 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2124 /* Never skip branches. */
2125 break;
2126
2127 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2128 /* Do not scan too many insns, scanning insns is expensive with
2129 remote targets. */
2130 break;
2131
2132 /* Continue scanning. */
2133 prev_insn_was_prologue_insn = 0;
2134 continue;
2135 }
2136 }
2137
2138#if 0
2139/* I have problems with skipping over __main() that I need to address
2140 * sometime. Previously, I used to use misc_function_vector which
2141 * didn't work as well as I wanted to be. -MGO */
2142
2143 /* If the first thing after skipping a prolog is a branch to a function,
2144 this might be a call to an initializer in main(), introduced by gcc2.
2145 We'd like to skip over it as well. Fortunately, xlc does some extra
2146 work before calling a function right after a prologue, thus we can
2147 single out such gcc2 behaviour. */
2148
2149
2150 if ((op & 0xfc000001) == 0x48000001)
2151 { /* bl foo, an initializer function? */
2152 op = read_memory_integer (pc + 4, 4, byte_order);
2153
2154 if (op == 0x4def7b82)
2155 { /* cror 0xf, 0xf, 0xf (nop) */
2156
2157 /* Check and see if we are in main. If so, skip over this
2158 initializer function as well. */
2159
2160 tmp = find_pc_misc_function (pc);
2161 if (tmp >= 0
2162 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2163 return pc + 8;
2164 }
2165 }
2166#endif /* 0 */
2167
2168 if (pc == lim_pc && lr_reg >= 0)
2169 fdata->lr_register = lr_reg;
2170
2171 fdata->offset = -fdata->offset;
2172 return last_prologue_pc;
2173}
2174
2175static CORE_ADDR
2176rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2177{
2178 struct rs6000_framedata frame;
2179 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2180
2181 /* See if we can determine the end of the prologue via the symbol table.
2182 If so, then return either PC, or the PC after the prologue, whichever
2183 is greater. */
2184 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2185 {
2186 CORE_ADDR post_prologue_pc
2187 = skip_prologue_using_sal (gdbarch, func_addr);
2188 if (post_prologue_pc != 0)
2189 return std::max (pc, post_prologue_pc);
2190 }
2191
2192 /* Can't determine prologue from the symbol table, need to examine
2193 instructions. */
2194
2195 /* Find an upper limit on the function prologue using the debug
2196 information. If the debug information could not be used to provide
2197 that bound, then use an arbitrary large number as the upper bound. */
2198 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2199 if (limit_pc == 0)
2200 limit_pc = pc + 100; /* Magic. */
2201
2202 /* Do not allow limit_pc to be past the function end, if we know
2203 where that end is... */
2204 if (func_end_addr && limit_pc > func_end_addr)
2205 limit_pc = func_end_addr;
2206
2207 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2208 return pc;
2209}
2210
2211/* When compiling for EABI, some versions of GCC emit a call to __eabi
2212 in the prologue of main().
2213
2214 The function below examines the code pointed at by PC and checks to
2215 see if it corresponds to a call to __eabi. If so, it returns the
2216 address of the instruction following that call. Otherwise, it simply
2217 returns PC. */
2218
2219static CORE_ADDR
2220rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2221{
2222 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2223 gdb_byte buf[4];
2224 unsigned long op;
2225
2226 if (target_read_memory (pc, buf, 4))
2227 return pc;
2228 op = extract_unsigned_integer (buf, 4, byte_order);
2229
2230 if ((op & BL_MASK) == BL_INSTRUCTION)
2231 {
2232 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2233 CORE_ADDR call_dest = pc + 4 + displ;
2234 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2235
2236 /* We check for ___eabi (three leading underscores) in addition
2237 to __eabi in case the GCC option "-fleading-underscore" was
2238 used to compile the program. */
2239 if (s.minsym != NULL
2240 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2241 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2242 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2243 pc += 4;
2244 }
2245 return pc;
2246}
2247
2248/* All the ABI's require 16 byte alignment. */
2249static CORE_ADDR
2250rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2251{
2252 return (addr & -16);
2253}
2254
2255/* Return whether handle_inferior_event() should proceed through code
2256 starting at PC in function NAME when stepping.
2257
2258 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2259 handle memory references that are too distant to fit in instructions
2260 generated by the compiler. For example, if 'foo' in the following
2261 instruction:
2262
2263 lwz r9,foo(r2)
2264
2265 is greater than 32767, the linker might replace the lwz with a branch to
2266 somewhere in @FIX1 that does the load in 2 instructions and then branches
2267 back to where execution should continue.
2268
2269 GDB should silently step over @FIX code, just like AIX dbx does.
2270 Unfortunately, the linker uses the "b" instruction for the
2271 branches, meaning that the link register doesn't get set.
2272 Therefore, GDB's usual step_over_function () mechanism won't work.
2273
2274 Instead, use the gdbarch_skip_trampoline_code and
2275 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2276 @FIX code. */
2277
2278static int
2279rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2280 CORE_ADDR pc, const char *name)
2281{
2282 return name && startswith (name, "@FIX");
2283}
2284
2285/* Skip code that the user doesn't want to see when stepping:
2286
2287 1. Indirect function calls use a piece of trampoline code to do context
2288 switching, i.e. to set the new TOC table. Skip such code if we are on
2289 its first instruction (as when we have single-stepped to here).
2290
2291 2. Skip shared library trampoline code (which is different from
2292 indirect function call trampolines).
2293
2294 3. Skip bigtoc fixup code.
2295
2296 Result is desired PC to step until, or NULL if we are not in
2297 code that should be skipped. */
2298
2299static CORE_ADDR
2300rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2301{
2302 struct gdbarch *gdbarch = get_frame_arch (frame);
2303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2305 unsigned int ii, op;
2306 int rel;
2307 CORE_ADDR solib_target_pc;
2308 struct bound_minimal_symbol msymbol;
2309
2310 static unsigned trampoline_code[] =
2311 {
2312 0x800b0000, /* l r0,0x0(r11) */
2313 0x90410014, /* st r2,0x14(r1) */
2314 0x7c0903a6, /* mtctr r0 */
2315 0x804b0004, /* l r2,0x4(r11) */
2316 0x816b0008, /* l r11,0x8(r11) */
2317 0x4e800420, /* bctr */
2318 0x4e800020, /* br */
2319 0
2320 };
2321
2322 /* Check for bigtoc fixup code. */
2323 msymbol = lookup_minimal_symbol_by_pc (pc);
2324 if (msymbol.minsym
2325 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2326 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2327 {
2328 /* Double-check that the third instruction from PC is relative "b". */
2329 op = read_memory_integer (pc + 8, 4, byte_order);
2330 if ((op & 0xfc000003) == 0x48000000)
2331 {
2332 /* Extract bits 6-29 as a signed 24-bit relative word address and
2333 add it to the containing PC. */
2334 rel = ((int)(op << 6) >> 6);
2335 return pc + 8 + rel;
2336 }
2337 }
2338
2339 /* If pc is in a shared library trampoline, return its target. */
2340 solib_target_pc = find_solib_trampoline_target (frame, pc);
2341 if (solib_target_pc)
2342 return solib_target_pc;
2343
2344 for (ii = 0; trampoline_code[ii]; ++ii)
2345 {
2346 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2347 if (op != trampoline_code[ii])
2348 return 0;
2349 }
2350 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2351 addr. */
2352 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2353 return pc;
2354}
2355
2356/* ISA-specific vector types. */
2357
2358static struct type *
2359rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2360{
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2362
2363 if (!tdep->ppc_builtin_type_vec64)
2364 {
2365 const struct builtin_type *bt = builtin_type (gdbarch);
2366
2367 /* The type we're building is this: */
2368#if 0
2369 union __gdb_builtin_type_vec64
2370 {
2371 int64_t uint64;
2372 float v2_float[2];
2373 int32_t v2_int32[2];
2374 int16_t v4_int16[4];
2375 int8_t v8_int8[8];
2376 };
2377#endif
2378
2379 struct type *t;
2380
2381 t = arch_composite_type (gdbarch,
2382 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2383 append_composite_type_field (t, "uint64", bt->builtin_int64);
2384 append_composite_type_field (t, "v2_float",
2385 init_vector_type (bt->builtin_float, 2));
2386 append_composite_type_field (t, "v2_int32",
2387 init_vector_type (bt->builtin_int32, 2));
2388 append_composite_type_field (t, "v4_int16",
2389 init_vector_type (bt->builtin_int16, 4));
2390 append_composite_type_field (t, "v8_int8",
2391 init_vector_type (bt->builtin_int8, 8));
2392
2393 TYPE_VECTOR (t) = 1;
2394 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2395 tdep->ppc_builtin_type_vec64 = t;
2396 }
2397
2398 return tdep->ppc_builtin_type_vec64;
2399}
2400
2401/* Vector 128 type. */
2402
2403static struct type *
2404rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2405{
2406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2407
2408 if (!tdep->ppc_builtin_type_vec128)
2409 {
2410 const struct builtin_type *bt = builtin_type (gdbarch);
2411
2412 /* The type we're building is this
2413
2414 type = union __ppc_builtin_type_vec128 {
2415 uint128_t uint128;
2416 double v2_double[2];
2417 float v4_float[4];
2418 int32_t v4_int32[4];
2419 int16_t v8_int16[8];
2420 int8_t v16_int8[16];
2421 }
2422 */
2423
2424 struct type *t;
2425
2426 t = arch_composite_type (gdbarch,
2427 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2428 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2429 append_composite_type_field (t, "v2_double",
2430 init_vector_type (bt->builtin_double, 2));
2431 append_composite_type_field (t, "v4_float",
2432 init_vector_type (bt->builtin_float, 4));
2433 append_composite_type_field (t, "v4_int32",
2434 init_vector_type (bt->builtin_int32, 4));
2435 append_composite_type_field (t, "v8_int16",
2436 init_vector_type (bt->builtin_int16, 8));
2437 append_composite_type_field (t, "v16_int8",
2438 init_vector_type (bt->builtin_int8, 16));
2439
2440 TYPE_VECTOR (t) = 1;
2441 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2442 tdep->ppc_builtin_type_vec128 = t;
2443 }
2444
2445 return tdep->ppc_builtin_type_vec128;
2446}
2447
2448/* Return the name of register number REGNO, or the empty string if it
2449 is an anonymous register. */
2450
2451static const char *
2452rs6000_register_name (struct gdbarch *gdbarch, int regno)
2453{
2454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2455
2456 /* The upper half "registers" have names in the XML description,
2457 but we present only the low GPRs and the full 64-bit registers
2458 to the user. */
2459 if (tdep->ppc_ev0_upper_regnum >= 0
2460 && tdep->ppc_ev0_upper_regnum <= regno
2461 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2462 return "";
2463
2464 /* Hide the upper halves of the vs0~vs31 registers. */
2465 if (tdep->ppc_vsr0_regnum >= 0
2466 && tdep->ppc_vsr0_upper_regnum <= regno
2467 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2468 return "";
2469
2470 /* Check if the SPE pseudo registers are available. */
2471 if (IS_SPE_PSEUDOREG (tdep, regno))
2472 {
2473 static const char *const spe_regnames[] = {
2474 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2475 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2476 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2477 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2478 };
2479 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2480 }
2481
2482 /* Check if the decimal128 pseudo-registers are available. */
2483 if (IS_DFP_PSEUDOREG (tdep, regno))
2484 {
2485 static const char *const dfp128_regnames[] = {
2486 "dl0", "dl1", "dl2", "dl3",
2487 "dl4", "dl5", "dl6", "dl7",
2488 "dl8", "dl9", "dl10", "dl11",
2489 "dl12", "dl13", "dl14", "dl15"
2490 };
2491 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2492 }
2493
2494 /* Check if this is a VSX pseudo-register. */
2495 if (IS_VSX_PSEUDOREG (tdep, regno))
2496 {
2497 static const char *const vsx_regnames[] = {
2498 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2499 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2500 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2501 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2502 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2503 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2504 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2505 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2506 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2507 };
2508 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2509 }
2510
2511 /* Check if the this is a Extended FP pseudo-register. */
2512 if (IS_EFP_PSEUDOREG (tdep, regno))
2513 {
2514 static const char *const efpr_regnames[] = {
2515 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2516 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2517 "f46", "f47", "f48", "f49", "f50", "f51",
2518 "f52", "f53", "f54", "f55", "f56", "f57",
2519 "f58", "f59", "f60", "f61", "f62", "f63"
2520 };
2521 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2522 }
2523
2524 return tdesc_register_name (gdbarch, regno);
2525}
2526
2527/* Return the GDB type object for the "standard" data type of data in
2528 register N. */
2529
2530static struct type *
2531rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2532{
2533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2534
2535 /* These are the only pseudo-registers we support. */
2536 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2537 || IS_DFP_PSEUDOREG (tdep, regnum)
2538 || IS_VSX_PSEUDOREG (tdep, regnum)
2539 || IS_EFP_PSEUDOREG (tdep, regnum));
2540
2541 /* These are the e500 pseudo-registers. */
2542 if (IS_SPE_PSEUDOREG (tdep, regnum))
2543 return rs6000_builtin_type_vec64 (gdbarch);
2544 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2545 /* PPC decimal128 pseudo-registers. */
2546 return builtin_type (gdbarch)->builtin_declong;
2547 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2548 /* POWER7 VSX pseudo-registers. */
2549 return rs6000_builtin_type_vec128 (gdbarch);
2550 else
2551 /* POWER7 Extended FP pseudo-registers. */
2552 return builtin_type (gdbarch)->builtin_double;
2553}
2554
2555/* Is REGNUM a member of REGGROUP? */
2556static int
2557rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2558 struct reggroup *group)
2559{
2560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2561
2562 /* These are the only pseudo-registers we support. */
2563 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2564 || IS_DFP_PSEUDOREG (tdep, regnum)
2565 || IS_VSX_PSEUDOREG (tdep, regnum)
2566 || IS_EFP_PSEUDOREG (tdep, regnum));
2567
2568 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2569 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2570 return group == all_reggroup || group == vector_reggroup;
2571 else
2572 /* PPC decimal128 or Extended FP pseudo-registers. */
2573 return group == all_reggroup || group == float_reggroup;
2574}
2575
2576/* The register format for RS/6000 floating point registers is always
2577 double, we need a conversion if the memory format is float. */
2578
2579static int
2580rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2581 struct type *type)
2582{
2583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2584
2585 return (tdep->ppc_fp0_regnum >= 0
2586 && regnum >= tdep->ppc_fp0_regnum
2587 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2588 && TYPE_CODE (type) == TYPE_CODE_FLT
2589 && TYPE_LENGTH (type)
2590 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2591}
2592
2593static int
2594rs6000_register_to_value (struct frame_info *frame,
2595 int regnum,
2596 struct type *type,
2597 gdb_byte *to,
2598 int *optimizedp, int *unavailablep)
2599{
2600 struct gdbarch *gdbarch = get_frame_arch (frame);
2601 gdb_byte from[MAX_REGISTER_SIZE];
2602
2603 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2604
2605 if (!get_frame_register_bytes (frame, regnum, 0,
2606 register_size (gdbarch, regnum),
2607 from, optimizedp, unavailablep))
2608 return 0;
2609
2610 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2611 to, type);
2612 *optimizedp = *unavailablep = 0;
2613 return 1;
2614}
2615
2616static void
2617rs6000_value_to_register (struct frame_info *frame,
2618 int regnum,
2619 struct type *type,
2620 const gdb_byte *from)
2621{
2622 struct gdbarch *gdbarch = get_frame_arch (frame);
2623 gdb_byte to[MAX_REGISTER_SIZE];
2624
2625 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2626
2627 convert_typed_floating (from, type,
2628 to, builtin_type (gdbarch)->builtin_double);
2629 put_frame_register (frame, regnum, to);
2630}
2631
2632 /* The type of a function that moves the value of REG between CACHE
2633 or BUF --- in either direction. */
2634typedef enum register_status (*move_ev_register_func) (struct regcache *,
2635 int, void *);
2636
2637/* Move SPE vector register values between a 64-bit buffer and the two
2638 32-bit raw register halves in a regcache. This function handles
2639 both splitting a 64-bit value into two 32-bit halves, and joining
2640 two halves into a whole 64-bit value, depending on the function
2641 passed as the MOVE argument.
2642
2643 EV_REG must be the number of an SPE evN vector register --- a
2644 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2645 64-bit buffer.
2646
2647 Call MOVE once for each 32-bit half of that register, passing
2648 REGCACHE, the number of the raw register corresponding to that
2649 half, and the address of the appropriate half of BUFFER.
2650
2651 For example, passing 'regcache_raw_read' as the MOVE function will
2652 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2653 'regcache_raw_supply' will supply the contents of BUFFER to the
2654 appropriate pair of raw registers in REGCACHE.
2655
2656 You may need to cast away some 'const' qualifiers when passing
2657 MOVE, since this function can't tell at compile-time which of
2658 REGCACHE or BUFFER is acting as the source of the data. If C had
2659 co-variant type qualifiers, ... */
2660
2661static enum register_status
2662e500_move_ev_register (move_ev_register_func move,
2663 struct regcache *regcache, int ev_reg, void *buffer)
2664{
2665 struct gdbarch *arch = get_regcache_arch (regcache);
2666 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2667 int reg_index;
2668 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2669 enum register_status status;
2670
2671 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2672
2673 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2674
2675 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2676 {
2677 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2678 byte_buffer);
2679 if (status == REG_VALID)
2680 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2681 byte_buffer + 4);
2682 }
2683 else
2684 {
2685 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2686 if (status == REG_VALID)
2687 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2688 byte_buffer + 4);
2689 }
2690
2691 return status;
2692}
2693
2694static enum register_status
2695do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2696{
2697 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
2698}
2699
2700static enum register_status
2701do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2702{
2703 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2704
2705 return REG_VALID;
2706}
2707
2708static enum register_status
2709e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2710 int reg_nr, gdb_byte *buffer)
2711{
2712 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2713}
2714
2715static void
2716e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2717 int reg_nr, const gdb_byte *buffer)
2718{
2719 e500_move_ev_register (do_regcache_raw_write, regcache,
2720 reg_nr, (void *) buffer);
2721}
2722
2723/* Read method for DFP pseudo-registers. */
2724static enum register_status
2725dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2726 int reg_nr, gdb_byte *buffer)
2727{
2728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2729 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2730 enum register_status status;
2731
2732 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2733 {
2734 /* Read two FP registers to form a whole dl register. */
2735 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2736 2 * reg_index, buffer);
2737 if (status == REG_VALID)
2738 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2739 2 * reg_index + 1, buffer + 8);
2740 }
2741 else
2742 {
2743 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2744 2 * reg_index + 1, buffer);
2745 if (status == REG_VALID)
2746 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2747 2 * reg_index, buffer + 8);
2748 }
2749
2750 return status;
2751}
2752
2753/* Write method for DFP pseudo-registers. */
2754static void
2755dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2756 int reg_nr, const gdb_byte *buffer)
2757{
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2760
2761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2762 {
2763 /* Write each half of the dl register into a separate
2764 FP register. */
2765 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2766 2 * reg_index, buffer);
2767 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2768 2 * reg_index + 1, buffer + 8);
2769 }
2770 else
2771 {
2772 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2773 2 * reg_index + 1, buffer);
2774 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2775 2 * reg_index, buffer + 8);
2776 }
2777}
2778
2779/* Read method for POWER7 VSX pseudo-registers. */
2780static enum register_status
2781vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2782 int reg_nr, gdb_byte *buffer)
2783{
2784 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2785 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2786 enum register_status status;
2787
2788 /* Read the portion that overlaps the VMX registers. */
2789 if (reg_index > 31)
2790 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2791 reg_index - 32, buffer);
2792 else
2793 /* Read the portion that overlaps the FPR registers. */
2794 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2795 {
2796 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2797 reg_index, buffer);
2798 if (status == REG_VALID)
2799 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2800 reg_index, buffer + 8);
2801 }
2802 else
2803 {
2804 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2805 reg_index, buffer + 8);
2806 if (status == REG_VALID)
2807 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2808 reg_index, buffer);
2809 }
2810
2811 return status;
2812}
2813
2814/* Write method for POWER7 VSX pseudo-registers. */
2815static void
2816vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2817 int reg_nr, const gdb_byte *buffer)
2818{
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2820 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2821
2822 /* Write the portion that overlaps the VMX registers. */
2823 if (reg_index > 31)
2824 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2825 reg_index - 32, buffer);
2826 else
2827 /* Write the portion that overlaps the FPR registers. */
2828 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2829 {
2830 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2831 reg_index, buffer);
2832 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2833 reg_index, buffer + 8);
2834 }
2835 else
2836 {
2837 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2838 reg_index, buffer + 8);
2839 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2840 reg_index, buffer);
2841 }
2842}
2843
2844/* Read method for POWER7 Extended FP pseudo-registers. */
2845static enum register_status
2846efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2847 int reg_nr, gdb_byte *buffer)
2848{
2849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2850 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2851 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2852
2853 /* Read the portion that overlaps the VMX register. */
2854 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2855 offset, register_size (gdbarch, reg_nr),
2856 buffer);
2857}
2858
2859/* Write method for POWER7 Extended FP pseudo-registers. */
2860static void
2861efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2862 int reg_nr, const gdb_byte *buffer)
2863{
2864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2865 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2866 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2867
2868 /* Write the portion that overlaps the VMX register. */
2869 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2870 offset, register_size (gdbarch, reg_nr),
2871 buffer);
2872}
2873
2874static enum register_status
2875rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2876 struct regcache *regcache,
2877 int reg_nr, gdb_byte *buffer)
2878{
2879 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2881
2882 gdb_assert (regcache_arch == gdbarch);
2883
2884 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2885 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2886 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2887 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2888 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2889 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2890 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2891 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2892 else
2893 internal_error (__FILE__, __LINE__,
2894 _("rs6000_pseudo_register_read: "
2895 "called on unexpected register '%s' (%d)"),
2896 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2897}
2898
2899static void
2900rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2901 struct regcache *regcache,
2902 int reg_nr, const gdb_byte *buffer)
2903{
2904 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2905 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2906
2907 gdb_assert (regcache_arch == gdbarch);
2908
2909 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2910 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2911 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2912 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2913 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2914 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2915 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2916 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2917 else
2918 internal_error (__FILE__, __LINE__,
2919 _("rs6000_pseudo_register_write: "
2920 "called on unexpected register '%s' (%d)"),
2921 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2922}
2923
2924static int
2925rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2926 struct agent_expr *ax, int reg_nr)
2927{
2928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2929 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2930 {
2931 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2932 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2933 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2934 }
2935 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2936 {
2937 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2938 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2939 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2940 }
2941 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2942 {
2943 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2944 if (reg_index > 31)
2945 {
2946 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2947 }
2948 else
2949 {
2950 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2951 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2952 }
2953 }
2954 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2955 {
2956 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2957 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2958 }
2959 else
2960 internal_error (__FILE__, __LINE__,
2961 _("rs6000_pseudo_register_collect: "
2962 "called on unexpected register '%s' (%d)"),
2963 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2964 return 0;
2965}
2966
2967
2968static void
2969rs6000_gen_return_address (struct gdbarch *gdbarch,
2970 struct agent_expr *ax, struct axs_value *value,
2971 CORE_ADDR scope)
2972{
2973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2974 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2975 value->kind = axs_lvalue_register;
2976 value->u.reg = tdep->ppc_lr_regnum;
2977}
2978
2979
2980/* Convert a DBX STABS register number to a GDB register number. */
2981static int
2982rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2983{
2984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2985
2986 if (0 <= num && num <= 31)
2987 return tdep->ppc_gp0_regnum + num;
2988 else if (32 <= num && num <= 63)
2989 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2990 specifies registers the architecture doesn't have? Our
2991 callers don't check the value we return. */
2992 return tdep->ppc_fp0_regnum + (num - 32);
2993 else if (77 <= num && num <= 108)
2994 return tdep->ppc_vr0_regnum + (num - 77);
2995 else if (1200 <= num && num < 1200 + 32)
2996 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2997 else
2998 switch (num)
2999 {
3000 case 64:
3001 return tdep->ppc_mq_regnum;
3002 case 65:
3003 return tdep->ppc_lr_regnum;
3004 case 66:
3005 return tdep->ppc_ctr_regnum;
3006 case 76:
3007 return tdep->ppc_xer_regnum;
3008 case 109:
3009 return tdep->ppc_vrsave_regnum;
3010 case 110:
3011 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3012 case 111:
3013 return tdep->ppc_acc_regnum;
3014 case 112:
3015 return tdep->ppc_spefscr_regnum;
3016 default:
3017 return num;
3018 }
3019}
3020
3021
3022/* Convert a Dwarf 2 register number to a GDB register number. */
3023static int
3024rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3025{
3026 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3027
3028 if (0 <= num && num <= 31)
3029 return tdep->ppc_gp0_regnum + num;
3030 else if (32 <= num && num <= 63)
3031 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3032 specifies registers the architecture doesn't have? Our
3033 callers don't check the value we return. */
3034 return tdep->ppc_fp0_regnum + (num - 32);
3035 else if (1124 <= num && num < 1124 + 32)
3036 return tdep->ppc_vr0_regnum + (num - 1124);
3037 else if (1200 <= num && num < 1200 + 32)
3038 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3039 else
3040 switch (num)
3041 {
3042 case 64:
3043 return tdep->ppc_cr_regnum;
3044 case 67:
3045 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3046 case 99:
3047 return tdep->ppc_acc_regnum;
3048 case 100:
3049 return tdep->ppc_mq_regnum;
3050 case 101:
3051 return tdep->ppc_xer_regnum;
3052 case 108:
3053 return tdep->ppc_lr_regnum;
3054 case 109:
3055 return tdep->ppc_ctr_regnum;
3056 case 356:
3057 return tdep->ppc_vrsave_regnum;
3058 case 612:
3059 return tdep->ppc_spefscr_regnum;
3060 default:
3061 return num;
3062 }
3063}
3064
3065/* Translate a .eh_frame register to DWARF register, or adjust a
3066 .debug_frame register. */
3067
3068static int
3069rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3070{
3071 /* GCC releases before 3.4 use GCC internal register numbering in
3072 .debug_frame (and .debug_info, et cetera). The numbering is
3073 different from the standard SysV numbering for everything except
3074 for GPRs and FPRs. We can not detect this problem in most cases
3075 - to get accurate debug info for variables living in lr, ctr, v0,
3076 et cetera, use a newer version of GCC. But we must detect
3077 one important case - lr is in column 65 in .debug_frame output,
3078 instead of 108.
3079
3080 GCC 3.4, and the "hammer" branch, have a related problem. They
3081 record lr register saves in .debug_frame as 108, but still record
3082 the return column as 65. We fix that up too.
3083
3084 We can do this because 65 is assigned to fpsr, and GCC never
3085 generates debug info referring to it. To add support for
3086 handwritten debug info that restores fpsr, we would need to add a
3087 producer version check to this. */
3088 if (!eh_frame_p)
3089 {
3090 if (num == 65)
3091 return 108;
3092 else
3093 return num;
3094 }
3095
3096 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3097 internal register numbering; translate that to the standard DWARF2
3098 register numbering. */
3099 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3100 return num;
3101 else if (68 <= num && num <= 75) /* cr0-cr8 */
3102 return num - 68 + 86;
3103 else if (77 <= num && num <= 108) /* vr0-vr31 */
3104 return num - 77 + 1124;
3105 else
3106 switch (num)
3107 {
3108 case 64: /* mq */
3109 return 100;
3110 case 65: /* lr */
3111 return 108;
3112 case 66: /* ctr */
3113 return 109;
3114 case 76: /* xer */
3115 return 101;
3116 case 109: /* vrsave */
3117 return 356;
3118 case 110: /* vscr */
3119 return 67;
3120 case 111: /* spe_acc */
3121 return 99;
3122 case 112: /* spefscr */
3123 return 612;
3124 default:
3125 return num;
3126 }
3127}
3128\f
3129
3130/* Handling the various POWER/PowerPC variants. */
3131
3132/* Information about a particular processor variant. */
3133
3134struct variant
3135 {
3136 /* Name of this variant. */
3137 char *name;
3138
3139 /* English description of the variant. */
3140 char *description;
3141
3142 /* bfd_arch_info.arch corresponding to variant. */
3143 enum bfd_architecture arch;
3144
3145 /* bfd_arch_info.mach corresponding to variant. */
3146 unsigned long mach;
3147
3148 /* Target description for this variant. */
3149 struct target_desc **tdesc;
3150 };
3151
3152static struct variant variants[] =
3153{
3154 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3155 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3156 {"power", "POWER user-level", bfd_arch_rs6000,
3157 bfd_mach_rs6k, &tdesc_rs6000},
3158 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3159 bfd_mach_ppc_403, &tdesc_powerpc_403},
3160 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3161 bfd_mach_ppc_405, &tdesc_powerpc_405},
3162 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3163 bfd_mach_ppc_601, &tdesc_powerpc_601},
3164 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3165 bfd_mach_ppc_602, &tdesc_powerpc_602},
3166 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3167 bfd_mach_ppc_603, &tdesc_powerpc_603},
3168 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3169 604, &tdesc_powerpc_604},
3170 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3171 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3172 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3173 bfd_mach_ppc_505, &tdesc_powerpc_505},
3174 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3175 bfd_mach_ppc_860, &tdesc_powerpc_860},
3176 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3177 bfd_mach_ppc_750, &tdesc_powerpc_750},
3178 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3179 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3180 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3181 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3182
3183 /* 64-bit */
3184 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3185 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3186 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3187 bfd_mach_ppc_620, &tdesc_powerpc_64},
3188 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3189 bfd_mach_ppc_630, &tdesc_powerpc_64},
3190 {"a35", "PowerPC A35", bfd_arch_powerpc,
3191 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3192 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3193 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3194 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3195 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3196
3197 /* FIXME: I haven't checked the register sets of the following. */
3198 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3199 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3200 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3201 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3202 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3203 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3204
3205 {0, 0, (enum bfd_architecture) 0, 0, 0}
3206};
3207
3208/* Return the variant corresponding to architecture ARCH and machine number
3209 MACH. If no such variant exists, return null. */
3210
3211static const struct variant *
3212find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3213{
3214 const struct variant *v;
3215
3216 for (v = variants; v->name; v++)
3217 if (arch == v->arch && mach == v->mach)
3218 return v;
3219
3220 return NULL;
3221}
3222
3223static int
3224gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3225{
3226 if (info->endian == BFD_ENDIAN_BIG)
3227 return print_insn_big_powerpc (memaddr, info);
3228 else
3229 return print_insn_little_powerpc (memaddr, info);
3230}
3231\f
3232static CORE_ADDR
3233rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3234{
3235 return frame_unwind_register_unsigned (next_frame,
3236 gdbarch_pc_regnum (gdbarch));
3237}
3238
3239static struct frame_id
3240rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3241{
3242 return frame_id_build (get_frame_register_unsigned
3243 (this_frame, gdbarch_sp_regnum (gdbarch)),
3244 get_frame_pc (this_frame));
3245}
3246
3247struct rs6000_frame_cache
3248{
3249 CORE_ADDR base;
3250 CORE_ADDR initial_sp;
3251 struct trad_frame_saved_reg *saved_regs;
3252
3253 /* Set BASE_P to true if this frame cache is properly initialized.
3254 Otherwise set to false because some registers or memory cannot
3255 collected. */
3256 int base_p;
3257 /* Cache PC for building unavailable frame. */
3258 CORE_ADDR pc;
3259};
3260
3261static struct rs6000_frame_cache *
3262rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3263{
3264 struct rs6000_frame_cache *cache;
3265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3268 struct rs6000_framedata fdata;
3269 int wordsize = tdep->wordsize;
3270 CORE_ADDR func = 0, pc = 0;
3271
3272 if ((*this_cache) != NULL)
3273 return (struct rs6000_frame_cache *) (*this_cache);
3274 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3275 (*this_cache) = cache;
3276 cache->pc = 0;
3277 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3278
3279 TRY
3280 {
3281 func = get_frame_func (this_frame);
3282 cache->pc = func;
3283 pc = get_frame_pc (this_frame);
3284 skip_prologue (gdbarch, func, pc, &fdata);
3285
3286 /* Figure out the parent's stack pointer. */
3287
3288 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3289 address of the current frame. Things might be easier if the
3290 ->frame pointed to the outer-most address of the frame. In
3291 the mean time, the address of the prev frame is used as the
3292 base address of this frame. */
3293 cache->base = get_frame_register_unsigned
3294 (this_frame, gdbarch_sp_regnum (gdbarch));
3295 }
3296 CATCH (ex, RETURN_MASK_ERROR)
3297 {
3298 if (ex.error != NOT_AVAILABLE_ERROR)
3299 throw_exception (ex);
3300 return (struct rs6000_frame_cache *) (*this_cache);
3301 }
3302 END_CATCH
3303
3304 /* If the function appears to be frameless, check a couple of likely
3305 indicators that we have simply failed to find the frame setup.
3306 Two common cases of this are missing symbols (i.e.
3307 get_frame_func returns the wrong address or 0), and assembly
3308 stubs which have a fast exit path but set up a frame on the slow
3309 path.
3310
3311 If the LR appears to return to this function, then presume that
3312 we have an ABI compliant frame that we failed to find. */
3313 if (fdata.frameless && fdata.lr_offset == 0)
3314 {
3315 CORE_ADDR saved_lr;
3316 int make_frame = 0;
3317
3318 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3319 if (func == 0 && saved_lr == pc)
3320 make_frame = 1;
3321 else if (func != 0)
3322 {
3323 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3324 if (func == saved_func)
3325 make_frame = 1;
3326 }
3327
3328 if (make_frame)
3329 {
3330 fdata.frameless = 0;
3331 fdata.lr_offset = tdep->lr_frame_offset;
3332 }
3333 }
3334
3335 if (!fdata.frameless)
3336 {
3337 /* Frameless really means stackless. */
3338 ULONGEST backchain;
3339
3340 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3341 byte_order, &backchain))
3342 cache->base = (CORE_ADDR) backchain;
3343 }
3344
3345 trad_frame_set_value (cache->saved_regs,
3346 gdbarch_sp_regnum (gdbarch), cache->base);
3347
3348 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3349 All fpr's from saved_fpr to fp31 are saved. */
3350
3351 if (fdata.saved_fpr >= 0)
3352 {
3353 int i;
3354 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3355
3356 /* If skip_prologue says floating-point registers were saved,
3357 but the current architecture has no floating-point registers,
3358 then that's strange. But we have no indices to even record
3359 the addresses under, so we just ignore it. */
3360 if (ppc_floating_point_unit_p (gdbarch))
3361 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3362 {
3363 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3364 fpr_addr += 8;
3365 }
3366 }
3367
3368 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3369 All gpr's from saved_gpr to gpr31 are saved (except during the
3370 prologue). */
3371
3372 if (fdata.saved_gpr >= 0)
3373 {
3374 int i;
3375 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3376 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3377 {
3378 if (fdata.gpr_mask & (1U << i))
3379 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3380 gpr_addr += wordsize;
3381 }
3382 }
3383
3384 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3385 All vr's from saved_vr to vr31 are saved. */
3386 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3387 {
3388 if (fdata.saved_vr >= 0)
3389 {
3390 int i;
3391 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3392 for (i = fdata.saved_vr; i < 32; i++)
3393 {
3394 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3395 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3396 }
3397 }
3398 }
3399
3400 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3401 All vr's from saved_ev to ev31 are saved. ????? */
3402 if (tdep->ppc_ev0_regnum != -1)
3403 {
3404 if (fdata.saved_ev >= 0)
3405 {
3406 int i;
3407 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3408 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3409
3410 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3411 {
3412 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3413 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3414 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3415 }
3416 }
3417 }
3418
3419 /* If != 0, fdata.cr_offset is the offset from the frame that
3420 holds the CR. */
3421 if (fdata.cr_offset != 0)
3422 cache->saved_regs[tdep->ppc_cr_regnum].addr
3423 = cache->base + fdata.cr_offset;
3424
3425 /* If != 0, fdata.lr_offset is the offset from the frame that
3426 holds the LR. */
3427 if (fdata.lr_offset != 0)
3428 cache->saved_regs[tdep->ppc_lr_regnum].addr
3429 = cache->base + fdata.lr_offset;
3430 else if (fdata.lr_register != -1)
3431 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3432 /* The PC is found in the link register. */
3433 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3434 cache->saved_regs[tdep->ppc_lr_regnum];
3435
3436 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3437 holds the VRSAVE. */
3438 if (fdata.vrsave_offset != 0)
3439 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3440 = cache->base + fdata.vrsave_offset;
3441
3442 if (fdata.alloca_reg < 0)
3443 /* If no alloca register used, then fi->frame is the value of the
3444 %sp for this frame, and it is good enough. */
3445 cache->initial_sp
3446 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3447 else
3448 cache->initial_sp
3449 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3450
3451 cache->base_p = 1;
3452 return cache;
3453}
3454
3455static void
3456rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3457 struct frame_id *this_id)
3458{
3459 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3460 this_cache);
3461
3462 if (!info->base_p)
3463 {
3464 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3465 return;
3466 }
3467
3468 /* This marks the outermost frame. */
3469 if (info->base == 0)
3470 return;
3471
3472 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3473}
3474
3475static struct value *
3476rs6000_frame_prev_register (struct frame_info *this_frame,
3477 void **this_cache, int regnum)
3478{
3479 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3480 this_cache);
3481 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3482}
3483
3484static const struct frame_unwind rs6000_frame_unwind =
3485{
3486 NORMAL_FRAME,
3487 default_frame_unwind_stop_reason,
3488 rs6000_frame_this_id,
3489 rs6000_frame_prev_register,
3490 NULL,
3491 default_frame_sniffer
3492};
3493
3494/* Allocate and initialize a frame cache for an epilogue frame.
3495 SP is restored and prev-PC is stored in LR. */
3496
3497static struct rs6000_frame_cache *
3498rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3499{
3500 struct rs6000_frame_cache *cache;
3501 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3503
3504 if (*this_cache)
3505 return (struct rs6000_frame_cache *) *this_cache;
3506
3507 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3508 (*this_cache) = cache;
3509 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3510
3511 TRY
3512 {
3513 /* At this point the stack looks as if we just entered the
3514 function, and the return address is stored in LR. */
3515 CORE_ADDR sp, lr;
3516
3517 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3518 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3519
3520 cache->base = sp;
3521 cache->initial_sp = sp;
3522
3523 trad_frame_set_value (cache->saved_regs,
3524 gdbarch_pc_regnum (gdbarch), lr);
3525 }
3526 CATCH (ex, RETURN_MASK_ERROR)
3527 {
3528 if (ex.error != NOT_AVAILABLE_ERROR)
3529 throw_exception (ex);
3530 }
3531 END_CATCH
3532
3533 return cache;
3534}
3535
3536/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3537 Return the frame ID of an epilogue frame. */
3538
3539static void
3540rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3541 void **this_cache, struct frame_id *this_id)
3542{
3543 CORE_ADDR pc;
3544 struct rs6000_frame_cache *info =
3545 rs6000_epilogue_frame_cache (this_frame, this_cache);
3546
3547 pc = get_frame_func (this_frame);
3548 if (info->base == 0)
3549 (*this_id) = frame_id_build_unavailable_stack (pc);
3550 else
3551 (*this_id) = frame_id_build (info->base, pc);
3552}
3553
3554/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3555 Return the register value of REGNUM in previous frame. */
3556
3557static struct value *
3558rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3559 void **this_cache, int regnum)
3560{
3561 struct rs6000_frame_cache *info =
3562 rs6000_epilogue_frame_cache (this_frame, this_cache);
3563 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3564}
3565
3566/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3567 Check whether this an epilogue frame. */
3568
3569static int
3570rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3571 struct frame_info *this_frame,
3572 void **this_prologue_cache)
3573{
3574 if (frame_relative_level (this_frame) == 0)
3575 return rs6000_in_function_epilogue_frame_p (this_frame,
3576 get_frame_arch (this_frame),
3577 get_frame_pc (this_frame));
3578 else
3579 return 0;
3580}
3581
3582/* Frame unwinder for epilogue frame. This is required for reverse step-over
3583 a function without debug information. */
3584
3585static const struct frame_unwind rs6000_epilogue_frame_unwind =
3586{
3587 NORMAL_FRAME,
3588 default_frame_unwind_stop_reason,
3589 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3590 NULL,
3591 rs6000_epilogue_frame_sniffer
3592};
3593\f
3594
3595static CORE_ADDR
3596rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3597{
3598 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3599 this_cache);
3600 return info->initial_sp;
3601}
3602
3603static const struct frame_base rs6000_frame_base = {
3604 &rs6000_frame_unwind,
3605 rs6000_frame_base_address,
3606 rs6000_frame_base_address,
3607 rs6000_frame_base_address
3608};
3609
3610static const struct frame_base *
3611rs6000_frame_base_sniffer (struct frame_info *this_frame)
3612{
3613 return &rs6000_frame_base;
3614}
3615
3616/* DWARF-2 frame support. Used to handle the detection of
3617 clobbered registers during function calls. */
3618
3619static void
3620ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3621 struct dwarf2_frame_state_reg *reg,
3622 struct frame_info *this_frame)
3623{
3624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3625
3626 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3627 non-volatile registers. We will use the same code for both. */
3628
3629 /* Call-saved GP registers. */
3630 if ((regnum >= tdep->ppc_gp0_regnum + 14
3631 && regnum <= tdep->ppc_gp0_regnum + 31)
3632 || (regnum == tdep->ppc_gp0_regnum + 1))
3633 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3634
3635 /* Call-clobbered GP registers. */
3636 if ((regnum >= tdep->ppc_gp0_regnum + 3
3637 && regnum <= tdep->ppc_gp0_regnum + 12)
3638 || (regnum == tdep->ppc_gp0_regnum))
3639 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3640
3641 /* Deal with FP registers, if supported. */
3642 if (tdep->ppc_fp0_regnum >= 0)
3643 {
3644 /* Call-saved FP registers. */
3645 if ((regnum >= tdep->ppc_fp0_regnum + 14
3646 && regnum <= tdep->ppc_fp0_regnum + 31))
3647 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3648
3649 /* Call-clobbered FP registers. */
3650 if ((regnum >= tdep->ppc_fp0_regnum
3651 && regnum <= tdep->ppc_fp0_regnum + 13))
3652 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3653 }
3654
3655 /* Deal with ALTIVEC registers, if supported. */
3656 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3657 {
3658 /* Call-saved Altivec registers. */
3659 if ((regnum >= tdep->ppc_vr0_regnum + 20
3660 && regnum <= tdep->ppc_vr0_regnum + 31)
3661 || regnum == tdep->ppc_vrsave_regnum)
3662 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3663
3664 /* Call-clobbered Altivec registers. */
3665 if ((regnum >= tdep->ppc_vr0_regnum
3666 && regnum <= tdep->ppc_vr0_regnum + 19))
3667 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3668 }
3669
3670 /* Handle PC register and Stack Pointer correctly. */
3671 if (regnum == gdbarch_pc_regnum (gdbarch))
3672 reg->how = DWARF2_FRAME_REG_RA;
3673 else if (regnum == gdbarch_sp_regnum (gdbarch))
3674 reg->how = DWARF2_FRAME_REG_CFA;
3675}
3676
3677
3678/* Return true if a .gnu_attributes section exists in BFD and it
3679 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3680 section exists in BFD and it indicates that SPE extensions are in
3681 use. Check the .gnu.attributes section first, as the binary might be
3682 compiled for SPE, but not actually using SPE instructions. */
3683
3684static int
3685bfd_uses_spe_extensions (bfd *abfd)
3686{
3687 asection *sect;
3688 gdb_byte *contents = NULL;
3689 bfd_size_type size;
3690 gdb_byte *ptr;
3691 int success = 0;
3692 int vector_abi;
3693
3694 if (!abfd)
3695 return 0;
3696
3697#ifdef HAVE_ELF
3698 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3699 could be using the SPE vector abi without actually using any spe
3700 bits whatsoever. But it's close enough for now. */
3701 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3702 Tag_GNU_Power_ABI_Vector);
3703 if (vector_abi == 3)
3704 return 1;
3705#endif
3706
3707 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3708 if (!sect)
3709 return 0;
3710
3711 size = bfd_get_section_size (sect);
3712 contents = (gdb_byte *) xmalloc (size);
3713 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3714 {
3715 xfree (contents);
3716 return 0;
3717 }
3718
3719 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3720
3721 struct {
3722 uint32 name_len;
3723 uint32 data_len;
3724 uint32 type;
3725 char name[name_len rounded up to 4-byte alignment];
3726 char data[data_len];
3727 };
3728
3729 Technically, there's only supposed to be one such structure in a
3730 given apuinfo section, but the linker is not always vigilant about
3731 merging apuinfo sections from input files. Just go ahead and parse
3732 them all, exiting early when we discover the binary uses SPE
3733 insns.
3734
3735 It's not specified in what endianness the information in this
3736 section is stored. Assume that it's the endianness of the BFD. */
3737 ptr = contents;
3738 while (1)
3739 {
3740 unsigned int name_len;
3741 unsigned int data_len;
3742 unsigned int type;
3743
3744 /* If we can't read the first three fields, we're done. */
3745 if (size < 12)
3746 break;
3747
3748 name_len = bfd_get_32 (abfd, ptr);
3749 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3750 data_len = bfd_get_32 (abfd, ptr + 4);
3751 type = bfd_get_32 (abfd, ptr + 8);
3752 ptr += 12;
3753
3754 /* The name must be "APUinfo\0". */
3755 if (name_len != 8
3756 && strcmp ((const char *) ptr, "APUinfo") != 0)
3757 break;
3758 ptr += name_len;
3759
3760 /* The type must be 2. */
3761 if (type != 2)
3762 break;
3763
3764 /* The data is stored as a series of uint32. The upper half of
3765 each uint32 indicates the particular APU used and the lower
3766 half indicates the revision of that APU. We just care about
3767 the upper half. */
3768
3769 /* Not 4-byte quantities. */
3770 if (data_len & 3U)
3771 break;
3772
3773 while (data_len)
3774 {
3775 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3776 unsigned int apu = apuinfo >> 16;
3777 ptr += 4;
3778 data_len -= 4;
3779
3780 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3781 either. */
3782 if (apu == 0x100 || apu == 0x101)
3783 {
3784 success = 1;
3785 data_len = 0;
3786 }
3787 }
3788
3789 if (success)
3790 break;
3791 }
3792
3793 xfree (contents);
3794 return success;
3795}
3796
3797/* These are macros for parsing instruction fields (I.1.6.28) */
3798
3799#define PPC_FIELD(value, from, len) \
3800 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3801#define PPC_SEXT(v, bs) \
3802 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3803 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3804 - ((CORE_ADDR) 1 << ((bs) - 1)))
3805#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3806#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3807#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3808#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3809#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3810#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3811#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3812#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3813#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3814#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3815 | (PPC_FIELD (insn, 16, 5) << 5))
3816#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3817#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3818#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3819#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3820#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3821#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3822#define PPC_OE(insn) PPC_BIT (insn, 21)
3823#define PPC_RC(insn) PPC_BIT (insn, 31)
3824#define PPC_Rc(insn) PPC_BIT (insn, 21)
3825#define PPC_LK(insn) PPC_BIT (insn, 31)
3826#define PPC_TX(insn) PPC_BIT (insn, 31)
3827#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3828
3829#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3830#define PPC_XER_NB(xer) (xer & 0x7f)
3831
3832/* Record Vector-Scalar Registers.
3833 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3834 Otherwise, it's just a VR register. Record them accordingly. */
3835
3836static int
3837ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3838{
3839 if (vsr < 0 || vsr >= 64)
3840 return -1;
3841
3842 if (vsr >= 32)
3843 {
3844 if (tdep->ppc_vr0_regnum >= 0)
3845 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3846 }
3847 else
3848 {
3849 if (tdep->ppc_fp0_regnum >= 0)
3850 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3851 if (tdep->ppc_vsr0_upper_regnum >= 0)
3852 record_full_arch_list_add_reg (regcache,
3853 tdep->ppc_vsr0_upper_regnum + vsr);
3854 }
3855
3856 return 0;
3857}
3858
3859/* Parse and record instructions primary opcode-4 at ADDR.
3860 Return 0 if successful. */
3861
3862static int
3863ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3864 CORE_ADDR addr, uint32_t insn)
3865{
3866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3867 int ext = PPC_FIELD (insn, 21, 11);
3868 int vra = PPC_FIELD (insn, 11, 5);
3869
3870 switch (ext & 0x3f)
3871 {
3872 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3873 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3874 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3875 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3876 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3877 /* FALL-THROUGH */
3878 case 42: /* Vector Select */
3879 case 43: /* Vector Permute */
3880 case 59: /* Vector Permute Right-indexed */
3881 case 44: /* Vector Shift Left Double by Octet Immediate */
3882 case 45: /* Vector Permute and Exclusive-OR */
3883 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3884 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3885 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3886 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3887 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3888 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3889 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3890 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3891 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3892 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3893 case 46: /* Vector Multiply-Add Single-Precision */
3894 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3895 record_full_arch_list_add_reg (regcache,
3896 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3897 return 0;
3898
3899 case 48: /* Multiply-Add High Doubleword */
3900 case 49: /* Multiply-Add High Doubleword Unsigned */
3901 case 51: /* Multiply-Add Low Doubleword */
3902 record_full_arch_list_add_reg (regcache,
3903 tdep->ppc_gp0_regnum + PPC_RT (insn));
3904 return 0;
3905 }
3906
3907 switch ((ext & 0x1ff))
3908 {
3909 case 385:
3910 if (vra != 0 /* Decimal Convert To Signed Quadword */
3911 && vra != 2 /* Decimal Convert From Signed Quadword */
3912 && vra != 4 /* Decimal Convert To Zoned */
3913 && vra != 5 /* Decimal Convert To National */
3914 && vra != 6 /* Decimal Convert From Zoned */
3915 && vra != 7 /* Decimal Convert From National */
3916 && vra != 31) /* Decimal Set Sign */
3917 break;
3918 /* 5.16 Decimal Integer Arithmetic Instructions */
3919 case 1: /* Decimal Add Modulo */
3920 case 65: /* Decimal Subtract Modulo */
3921
3922 case 193: /* Decimal Shift */
3923 case 129: /* Decimal Unsigned Shift */
3924 case 449: /* Decimal Shift and Round */
3925
3926 case 257: /* Decimal Truncate */
3927 case 321: /* Decimal Unsigned Truncate */
3928
3929 /* Bit-21 should be set. */
3930 if (!PPC_BIT (insn, 21))
3931 break;
3932
3933 record_full_arch_list_add_reg (regcache,
3934 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3935 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3936 return 0;
3937 }
3938
3939 /* Bit-21 is used for RC */
3940 switch (ext & 0x3ff)
3941 {
3942 case 6: /* Vector Compare Equal To Unsigned Byte */
3943 case 70: /* Vector Compare Equal To Unsigned Halfword */
3944 case 134: /* Vector Compare Equal To Unsigned Word */
3945 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3946 case 774: /* Vector Compare Greater Than Signed Byte */
3947 case 838: /* Vector Compare Greater Than Signed Halfword */
3948 case 902: /* Vector Compare Greater Than Signed Word */
3949 case 967: /* Vector Compare Greater Than Signed Doubleword */
3950 case 518: /* Vector Compare Greater Than Unsigned Byte */
3951 case 646: /* Vector Compare Greater Than Unsigned Word */
3952 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3953 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3954 case 966: /* Vector Compare Bounds Single-Precision */
3955 case 198: /* Vector Compare Equal To Single-Precision */
3956 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3957 case 710: /* Vector Compare Greater Than Single-Precision */
3958 case 7: /* Vector Compare Not Equal Byte */
3959 case 71: /* Vector Compare Not Equal Halfword */
3960 case 135: /* Vector Compare Not Equal Word */
3961 case 263: /* Vector Compare Not Equal or Zero Byte */
3962 case 327: /* Vector Compare Not Equal or Zero Halfword */
3963 case 391: /* Vector Compare Not Equal or Zero Word */
3964 if (PPC_Rc (insn))
3965 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3966 record_full_arch_list_add_reg (regcache,
3967 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3968 return 0;
3969 }
3970
3971 if (ext == 1538)
3972 {
3973 switch (vra)
3974 {
3975 case 0: /* Vector Count Leading Zero Least-Significant Bits
3976 Byte */
3977 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3978 Byte */
3979 record_full_arch_list_add_reg (regcache,
3980 tdep->ppc_gp0_regnum + PPC_RT (insn));
3981 return 0;
3982
3983 case 6: /* Vector Negate Word */
3984 case 7: /* Vector Negate Doubleword */
3985 case 8: /* Vector Parity Byte Word */
3986 case 9: /* Vector Parity Byte Doubleword */
3987 case 10: /* Vector Parity Byte Quadword */
3988 case 16: /* Vector Extend Sign Byte To Word */
3989 case 17: /* Vector Extend Sign Halfword To Word */
3990 case 24: /* Vector Extend Sign Byte To Doubleword */
3991 case 25: /* Vector Extend Sign Halfword To Doubleword */
3992 case 26: /* Vector Extend Sign Word To Doubleword */
3993 case 28: /* Vector Count Trailing Zeros Byte */
3994 case 29: /* Vector Count Trailing Zeros Halfword */
3995 case 30: /* Vector Count Trailing Zeros Word */
3996 case 31: /* Vector Count Trailing Zeros Doubleword */
3997 record_full_arch_list_add_reg (regcache,
3998 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3999 return 0;
4000 }
4001 }
4002
4003 switch (ext)
4004 {
4005 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4006 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4007 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4008 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4009 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4010 case 462: /* Vector Pack Signed Word Signed Saturate */
4011 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4012 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4013 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4014 case 512: /* Vector Add Unsigned Byte Saturate */
4015 case 576: /* Vector Add Unsigned Halfword Saturate */
4016 case 640: /* Vector Add Unsigned Word Saturate */
4017 case 768: /* Vector Add Signed Byte Saturate */
4018 case 832: /* Vector Add Signed Halfword Saturate */
4019 case 896: /* Vector Add Signed Word Saturate */
4020 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4021 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4022 case 1664: /* Vector Subtract Unsigned Word Saturate */
4023 case 1792: /* Vector Subtract Signed Byte Saturate */
4024 case 1856: /* Vector Subtract Signed Halfword Saturate */
4025 case 1920: /* Vector Subtract Signed Word Saturate */
4026
4027 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4028 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4029 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4030 case 1672: /* Vector Sum across Half Signed Word Saturate */
4031 case 1928: /* Vector Sum across Signed Word Saturate */
4032 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4033 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4034 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4035 /* FALL-THROUGH */
4036 case 12: /* Vector Merge High Byte */
4037 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4038 case 76: /* Vector Merge High Halfword */
4039 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4040 case 140: /* Vector Merge High Word */
4041 case 268: /* Vector Merge Low Byte */
4042 case 332: /* Vector Merge Low Halfword */
4043 case 396: /* Vector Merge Low Word */
4044 case 526: /* Vector Unpack High Signed Byte */
4045 case 590: /* Vector Unpack High Signed Halfword */
4046 case 654: /* Vector Unpack Low Signed Byte */
4047 case 718: /* Vector Unpack Low Signed Halfword */
4048 case 782: /* Vector Pack Pixel */
4049 case 846: /* Vector Unpack High Pixel */
4050 case 974: /* Vector Unpack Low Pixel */
4051 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4052 case 1614: /* Vector Unpack High Signed Word */
4053 case 1676: /* Vector Merge Odd Word */
4054 case 1742: /* Vector Unpack Low Signed Word */
4055 case 1932: /* Vector Merge Even Word */
4056 case 524: /* Vector Splat Byte */
4057 case 588: /* Vector Splat Halfword */
4058 case 652: /* Vector Splat Word */
4059 case 780: /* Vector Splat Immediate Signed Byte */
4060 case 844: /* Vector Splat Immediate Signed Halfword */
4061 case 908: /* Vector Splat Immediate Signed Word */
4062 case 452: /* Vector Shift Left */
4063 case 708: /* Vector Shift Right */
4064 case 1036: /* Vector Shift Left by Octet */
4065 case 1100: /* Vector Shift Right by Octet */
4066 case 0: /* Vector Add Unsigned Byte Modulo */
4067 case 64: /* Vector Add Unsigned Halfword Modulo */
4068 case 128: /* Vector Add Unsigned Word Modulo */
4069 case 192: /* Vector Add Unsigned Doubleword Modulo */
4070 case 256: /* Vector Add Unsigned Quadword Modulo */
4071 case 320: /* Vector Add & write Carry Unsigned Quadword */
4072 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4073 case 8: /* Vector Multiply Odd Unsigned Byte */
4074 case 72: /* Vector Multiply Odd Unsigned Halfword */
4075 case 136: /* Vector Multiply Odd Unsigned Word */
4076 case 264: /* Vector Multiply Odd Signed Byte */
4077 case 328: /* Vector Multiply Odd Signed Halfword */
4078 case 392: /* Vector Multiply Odd Signed Word */
4079 case 520: /* Vector Multiply Even Unsigned Byte */
4080 case 584: /* Vector Multiply Even Unsigned Halfword */
4081 case 648: /* Vector Multiply Even Unsigned Word */
4082 case 776: /* Vector Multiply Even Signed Byte */
4083 case 840: /* Vector Multiply Even Signed Halfword */
4084 case 904: /* Vector Multiply Even Signed Word */
4085 case 137: /* Vector Multiply Unsigned Word Modulo */
4086 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4087 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4088 case 1152: /* Vector Subtract Unsigned Word Modulo */
4089 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4090 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4091 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4092 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4093 case 1282: /* Vector Average Signed Byte */
4094 case 1346: /* Vector Average Signed Halfword */
4095 case 1410: /* Vector Average Signed Word */
4096 case 1026: /* Vector Average Unsigned Byte */
4097 case 1090: /* Vector Average Unsigned Halfword */
4098 case 1154: /* Vector Average Unsigned Word */
4099 case 258: /* Vector Maximum Signed Byte */
4100 case 322: /* Vector Maximum Signed Halfword */
4101 case 386: /* Vector Maximum Signed Word */
4102 case 450: /* Vector Maximum Signed Doubleword */
4103 case 2: /* Vector Maximum Unsigned Byte */
4104 case 66: /* Vector Maximum Unsigned Halfword */
4105 case 130: /* Vector Maximum Unsigned Word */
4106 case 194: /* Vector Maximum Unsigned Doubleword */
4107 case 770: /* Vector Minimum Signed Byte */
4108 case 834: /* Vector Minimum Signed Halfword */
4109 case 898: /* Vector Minimum Signed Word */
4110 case 962: /* Vector Minimum Signed Doubleword */
4111 case 514: /* Vector Minimum Unsigned Byte */
4112 case 578: /* Vector Minimum Unsigned Halfword */
4113 case 642: /* Vector Minimum Unsigned Word */
4114 case 706: /* Vector Minimum Unsigned Doubleword */
4115 case 1028: /* Vector Logical AND */
4116 case 1668: /* Vector Logical Equivalent */
4117 case 1092: /* Vector Logical AND with Complement */
4118 case 1412: /* Vector Logical NAND */
4119 case 1348: /* Vector Logical OR with Complement */
4120 case 1156: /* Vector Logical OR */
4121 case 1284: /* Vector Logical NOR */
4122 case 1220: /* Vector Logical XOR */
4123 case 4: /* Vector Rotate Left Byte */
4124 case 132: /* Vector Rotate Left Word VX-form */
4125 case 68: /* Vector Rotate Left Halfword */
4126 case 196: /* Vector Rotate Left Doubleword */
4127 case 260: /* Vector Shift Left Byte */
4128 case 388: /* Vector Shift Left Word */
4129 case 324: /* Vector Shift Left Halfword */
4130 case 1476: /* Vector Shift Left Doubleword */
4131 case 516: /* Vector Shift Right Byte */
4132 case 644: /* Vector Shift Right Word */
4133 case 580: /* Vector Shift Right Halfword */
4134 case 1732: /* Vector Shift Right Doubleword */
4135 case 772: /* Vector Shift Right Algebraic Byte */
4136 case 900: /* Vector Shift Right Algebraic Word */
4137 case 836: /* Vector Shift Right Algebraic Halfword */
4138 case 964: /* Vector Shift Right Algebraic Doubleword */
4139 case 10: /* Vector Add Single-Precision */
4140 case 74: /* Vector Subtract Single-Precision */
4141 case 1034: /* Vector Maximum Single-Precision */
4142 case 1098: /* Vector Minimum Single-Precision */
4143 case 842: /* Vector Convert From Signed Fixed-Point Word */
4144 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4145 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4146 case 522: /* Vector Round to Single-Precision Integer Nearest */
4147 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4148 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4149 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4150 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4151 case 266: /* Vector Reciprocal Estimate Single-Precision */
4152 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4153 case 1288: /* Vector AES Cipher */
4154 case 1289: /* Vector AES Cipher Last */
4155 case 1352: /* Vector AES Inverse Cipher */
4156 case 1353: /* Vector AES Inverse Cipher Last */
4157 case 1480: /* Vector AES SubBytes */
4158 case 1730: /* Vector SHA-512 Sigma Doubleword */
4159 case 1666: /* Vector SHA-256 Sigma Word */
4160 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4161 case 1160: /* Vector Polynomial Multiply-Sum Word */
4162 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4163 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4164 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4165 case 1794: /* Vector Count Leading Zeros Byte */
4166 case 1858: /* Vector Count Leading Zeros Halfword */
4167 case 1922: /* Vector Count Leading Zeros Word */
4168 case 1986: /* Vector Count Leading Zeros Doubleword */
4169 case 1795: /* Vector Population Count Byte */
4170 case 1859: /* Vector Population Count Halfword */
4171 case 1923: /* Vector Population Count Word */
4172 case 1987: /* Vector Population Count Doubleword */
4173 case 1356: /* Vector Bit Permute Quadword */
4174 case 1484: /* Vector Bit Permute Doubleword */
4175 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4176 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4177 Quadword */
4178 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4179 case 65: /* Vector Multiply-by-10 Extended & write Carry
4180 Unsigned Quadword */
4181 case 1027: /* Vector Absolute Difference Unsigned Byte */
4182 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4183 case 1155: /* Vector Absolute Difference Unsigned Word */
4184 case 1796: /* Vector Shift Right Variable */
4185 case 1860: /* Vector Shift Left Variable */
4186 case 133: /* Vector Rotate Left Word then Mask Insert */
4187 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4188 case 389: /* Vector Rotate Left Word then AND with Mask */
4189 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4190 case 525: /* Vector Extract Unsigned Byte */
4191 case 589: /* Vector Extract Unsigned Halfword */
4192 case 653: /* Vector Extract Unsigned Word */
4193 case 717: /* Vector Extract Doubleword */
4194 case 781: /* Vector Insert Byte */
4195 case 845: /* Vector Insert Halfword */
4196 case 909: /* Vector Insert Word */
4197 case 973: /* Vector Insert Doubleword */
4198 record_full_arch_list_add_reg (regcache,
4199 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4200 return 0;
4201
4202 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4203 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4204 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4205 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4206 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4207 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4208 record_full_arch_list_add_reg (regcache,
4209 tdep->ppc_gp0_regnum + PPC_RT (insn));
4210 return 0;
4211
4212 case 1604: /* Move To Vector Status and Control Register */
4213 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4214 return 0;
4215 case 1540: /* Move From Vector Status and Control Register */
4216 record_full_arch_list_add_reg (regcache,
4217 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4218 return 0;
4219 case 833: /* Decimal Copy Sign */
4220 record_full_arch_list_add_reg (regcache,
4221 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4222 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4223 return 0;
4224 }
4225
4226 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4227 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4228 return -1;
4229}
4230
4231/* Parse and record instructions of primary opcode-19 at ADDR.
4232 Return 0 if successful. */
4233
4234static int
4235ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4236 CORE_ADDR addr, uint32_t insn)
4237{
4238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4239 int ext = PPC_EXTOP (insn);
4240
4241 switch (ext & 0x01f)
4242 {
4243 case 2: /* Add PC Immediate Shifted */
4244 record_full_arch_list_add_reg (regcache,
4245 tdep->ppc_gp0_regnum + PPC_RT (insn));
4246 return 0;
4247 }
4248
4249 switch (ext)
4250 {
4251 case 0: /* Move Condition Register Field */
4252 case 33: /* Condition Register NOR */
4253 case 129: /* Condition Register AND with Complement */
4254 case 193: /* Condition Register XOR */
4255 case 225: /* Condition Register NAND */
4256 case 257: /* Condition Register AND */
4257 case 289: /* Condition Register Equivalent */
4258 case 417: /* Condition Register OR with Complement */
4259 case 449: /* Condition Register OR */
4260 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4261 return 0;
4262
4263 case 16: /* Branch Conditional */
4264 case 560: /* Branch Conditional to Branch Target Address Register */
4265 if ((PPC_BO (insn) & 0x4) == 0)
4266 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4267 /* FALL-THROUGH */
4268 case 528: /* Branch Conditional to Count Register */
4269 if (PPC_LK (insn))
4270 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4271 return 0;
4272
4273 case 150: /* Instruction Synchronize */
4274 /* Do nothing. */
4275 return 0;
4276 }
4277
4278 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4279 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4280 return -1;
4281}
4282
4283/* Parse and record instructions of primary opcode-31 at ADDR.
4284 Return 0 if successful. */
4285
4286static int
4287ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4288 CORE_ADDR addr, uint32_t insn)
4289{
4290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4291 int ext = PPC_EXTOP (insn);
4292 int tmp, nr, nb, i;
4293 CORE_ADDR at_dcsz, ea = 0;
4294 ULONGEST rb, ra, xer;
4295 int size = 0;
4296
4297 /* These instructions have OE bit. */
4298 switch (ext & 0x1ff)
4299 {
4300 /* These write RT and XER. Update CR if RC is set. */
4301 case 8: /* Subtract from carrying */
4302 case 10: /* Add carrying */
4303 case 136: /* Subtract from extended */
4304 case 138: /* Add extended */
4305 case 200: /* Subtract from zero extended */
4306 case 202: /* Add to zero extended */
4307 case 232: /* Subtract from minus one extended */
4308 case 234: /* Add to minus one extended */
4309 /* CA is always altered, but SO/OV are only altered when OE=1.
4310 In any case, XER is always altered. */
4311 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4312 if (PPC_RC (insn))
4313 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4314 record_full_arch_list_add_reg (regcache,
4315 tdep->ppc_gp0_regnum + PPC_RT (insn));
4316 return 0;
4317
4318 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4319 case 40: /* Subtract from */
4320 case 104: /* Negate */
4321 case 233: /* Multiply low doubleword */
4322 case 235: /* Multiply low word */
4323 case 266: /* Add */
4324 case 393: /* Divide Doubleword Extended Unsigned */
4325 case 395: /* Divide Word Extended Unsigned */
4326 case 425: /* Divide Doubleword Extended */
4327 case 427: /* Divide Word Extended */
4328 case 457: /* Divide Doubleword Unsigned */
4329 case 459: /* Divide Word Unsigned */
4330 case 489: /* Divide Doubleword */
4331 case 491: /* Divide Word */
4332 if (PPC_OE (insn))
4333 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4334 /* FALL-THROUGH */
4335 case 9: /* Multiply High Doubleword Unsigned */
4336 case 11: /* Multiply High Word Unsigned */
4337 case 73: /* Multiply High Doubleword */
4338 case 75: /* Multiply High Word */
4339 if (PPC_RC (insn))
4340 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4341 record_full_arch_list_add_reg (regcache,
4342 tdep->ppc_gp0_regnum + PPC_RT (insn));
4343 return 0;
4344 }
4345
4346 if ((ext & 0x1f) == 15)
4347 {
4348 /* Integer Select. bit[16:20] is used for BC. */
4349 record_full_arch_list_add_reg (regcache,
4350 tdep->ppc_gp0_regnum + PPC_RT (insn));
4351 return 0;
4352 }
4353
4354 if ((ext & 0xff) == 170)
4355 {
4356 /* Add Extended using alternate carry bits */
4357 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4358 record_full_arch_list_add_reg (regcache,
4359 tdep->ppc_gp0_regnum + PPC_RT (insn));
4360 return 0;
4361 }
4362
4363 switch (ext)
4364 {
4365 case 78: /* Determine Leftmost Zero Byte */
4366 if (PPC_RC (insn))
4367 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4368 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4369 record_full_arch_list_add_reg (regcache,
4370 tdep->ppc_gp0_regnum + PPC_RT (insn));
4371 return 0;
4372
4373 /* These only write RT. */
4374 case 19: /* Move from condition register */
4375 /* Move From One Condition Register Field */
4376 case 74: /* Add and Generate Sixes */
4377 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4378 case 302: /* Move From Branch History Rolling Buffer */
4379 case 339: /* Move From Special Purpose Register */
4380 case 371: /* Move From Time Base [Phased-Out] */
4381 case 309: /* Load Doubleword Monitored Indexed */
4382 case 128: /* Set Boolean */
4383 case 755: /* Deliver A Random Number */
4384 record_full_arch_list_add_reg (regcache,
4385 tdep->ppc_gp0_regnum + PPC_RT (insn));
4386 return 0;
4387
4388 /* These only write to RA. */
4389 case 51: /* Move From VSR Doubleword */
4390 case 115: /* Move From VSR Word and Zero */
4391 case 122: /* Population count bytes */
4392 case 378: /* Population count words */
4393 case 506: /* Population count doublewords */
4394 case 154: /* Parity Word */
4395 case 186: /* Parity Doubleword */
4396 case 252: /* Bit Permute Doubleword */
4397 case 282: /* Convert Declets To Binary Coded Decimal */
4398 case 314: /* Convert Binary Coded Decimal To Declets */
4399 case 508: /* Compare bytes */
4400 case 307: /* Move From VSR Lower Doubleword */
4401 record_full_arch_list_add_reg (regcache,
4402 tdep->ppc_gp0_regnum + PPC_RA (insn));
4403 return 0;
4404
4405 /* These write CR and optional RA. */
4406 case 792: /* Shift Right Algebraic Word */
4407 case 794: /* Shift Right Algebraic Doubleword */
4408 case 824: /* Shift Right Algebraic Word Immediate */
4409 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4410 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4411 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4412 record_full_arch_list_add_reg (regcache,
4413 tdep->ppc_gp0_regnum + PPC_RA (insn));
4414 /* FALL-THROUGH */
4415 case 0: /* Compare */
4416 case 32: /* Compare logical */
4417 case 144: /* Move To Condition Register Fields */
4418 /* Move To One Condition Register Field */
4419 case 192: /* Compare Ranged Byte */
4420 case 224: /* Compare Equal Byte */
4421 case 576: /* Move XER to CR Extended */
4422 case 902: /* Paste (should always fail due to single-stepping and
4423 the memory location might not be accessible, so
4424 record only CR) */
4425 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4426 return 0;
4427
4428 /* These write to RT. Update RA if 'update indexed.' */
4429 case 53: /* Load Doubleword with Update Indexed */
4430 case 119: /* Load Byte and Zero with Update Indexed */
4431 case 311: /* Load Halfword and Zero with Update Indexed */
4432 case 55: /* Load Word and Zero with Update Indexed */
4433 case 375: /* Load Halfword Algebraic with Update Indexed */
4434 case 373: /* Load Word Algebraic with Update Indexed */
4435 record_full_arch_list_add_reg (regcache,
4436 tdep->ppc_gp0_regnum + PPC_RA (insn));
4437 /* FALL-THROUGH */
4438 case 21: /* Load Doubleword Indexed */
4439 case 52: /* Load Byte And Reserve Indexed */
4440 case 116: /* Load Halfword And Reserve Indexed */
4441 case 20: /* Load Word And Reserve Indexed */
4442 case 84: /* Load Doubleword And Reserve Indexed */
4443 case 87: /* Load Byte and Zero Indexed */
4444 case 279: /* Load Halfword and Zero Indexed */
4445 case 23: /* Load Word and Zero Indexed */
4446 case 343: /* Load Halfword Algebraic Indexed */
4447 case 341: /* Load Word Algebraic Indexed */
4448 case 790: /* Load Halfword Byte-Reverse Indexed */
4449 case 534: /* Load Word Byte-Reverse Indexed */
4450 case 532: /* Load Doubleword Byte-Reverse Indexed */
4451 case 582: /* Load Word Atomic */
4452 case 614: /* Load Doubleword Atomic */
4453 case 265: /* Modulo Unsigned Doubleword */
4454 case 777: /* Modulo Signed Doubleword */
4455 case 267: /* Modulo Unsigned Word */
4456 case 779: /* Modulo Signed Word */
4457 record_full_arch_list_add_reg (regcache,
4458 tdep->ppc_gp0_regnum + PPC_RT (insn));
4459 return 0;
4460
4461 case 597: /* Load String Word Immediate */
4462 case 533: /* Load String Word Indexed */
4463 if (ext == 597)
4464 {
4465 nr = PPC_NB (insn);
4466 if (nr == 0)
4467 nr = 32;
4468 }
4469 else
4470 {
4471 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4472 nr = PPC_XER_NB (xer);
4473 }
4474
4475 nr = (nr + 3) >> 2;
4476
4477 /* If n=0, the contents of register RT are undefined. */
4478 if (nr == 0)
4479 nr = 1;
4480
4481 for (i = 0; i < nr; i++)
4482 record_full_arch_list_add_reg (regcache,
4483 tdep->ppc_gp0_regnum
4484 + ((PPC_RT (insn) + i) & 0x1f));
4485 return 0;
4486
4487 case 276: /* Load Quadword And Reserve Indexed */
4488 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4489 record_full_arch_list_add_reg (regcache, tmp);
4490 record_full_arch_list_add_reg (regcache, tmp + 1);
4491 return 0;
4492
4493 /* These write VRT. */
4494 case 6: /* Load Vector for Shift Left Indexed */
4495 case 38: /* Load Vector for Shift Right Indexed */
4496 case 7: /* Load Vector Element Byte Indexed */
4497 case 39: /* Load Vector Element Halfword Indexed */
4498 case 71: /* Load Vector Element Word Indexed */
4499 case 103: /* Load Vector Indexed */
4500 case 359: /* Load Vector Indexed LRU */
4501 record_full_arch_list_add_reg (regcache,
4502 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4503 return 0;
4504
4505 /* These write FRT. Update RA if 'update indexed.' */
4506 case 567: /* Load Floating-Point Single with Update Indexed */
4507 case 631: /* Load Floating-Point Double with Update Indexed */
4508 record_full_arch_list_add_reg (regcache,
4509 tdep->ppc_gp0_regnum + PPC_RA (insn));
4510 /* FALL-THROUGH */
4511 case 535: /* Load Floating-Point Single Indexed */
4512 case 599: /* Load Floating-Point Double Indexed */
4513 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4514 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4515 record_full_arch_list_add_reg (regcache,
4516 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4517 return 0;
4518
4519 case 791: /* Load Floating-Point Double Pair Indexed */
4520 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4521 record_full_arch_list_add_reg (regcache, tmp);
4522 record_full_arch_list_add_reg (regcache, tmp + 1);
4523 return 0;
4524
4525 case 179: /* Move To VSR Doubleword */
4526 case 211: /* Move To VSR Word Algebraic */
4527 case 243: /* Move To VSR Word and Zero */
4528 case 588: /* Load VSX Scalar Doubleword Indexed */
4529 case 524: /* Load VSX Scalar Single-Precision Indexed */
4530 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4531 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4532 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4533 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4534 case 780: /* Load VSX Vector Word*4 Indexed */
4535 case 268: /* Load VSX Vector Indexed */
4536 case 364: /* Load VSX Vector Word & Splat Indexed */
4537 case 812: /* Load VSX Vector Halfword*8 Indexed */
4538 case 876: /* Load VSX Vector Byte*16 Indexed */
4539 case 269: /* Load VSX Vector with Length */
4540 case 301: /* Load VSX Vector Left-justified with Length */
4541 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4542 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4543 case 403: /* Move To VSR Word & Splat */
4544 case 435: /* Move To VSR Double Doubleword */
4545 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4546 return 0;
4547
4548 /* These write RA. Update CR if RC is set. */
4549 case 24: /* Shift Left Word */
4550 case 26: /* Count Leading Zeros Word */
4551 case 27: /* Shift Left Doubleword */
4552 case 28: /* AND */
4553 case 58: /* Count Leading Zeros Doubleword */
4554 case 60: /* AND with Complement */
4555 case 124: /* NOR */
4556 case 284: /* Equivalent */
4557 case 316: /* XOR */
4558 case 476: /* NAND */
4559 case 412: /* OR with Complement */
4560 case 444: /* OR */
4561 case 536: /* Shift Right Word */
4562 case 539: /* Shift Right Doubleword */
4563 case 922: /* Extend Sign Halfword */
4564 case 954: /* Extend Sign Byte */
4565 case 986: /* Extend Sign Word */
4566 case 538: /* Count Trailing Zeros Word */
4567 case 570: /* Count Trailing Zeros Doubleword */
4568 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4569 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4570 if (PPC_RC (insn))
4571 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4572 record_full_arch_list_add_reg (regcache,
4573 tdep->ppc_gp0_regnum + PPC_RA (insn));
4574 return 0;
4575
4576 /* Store memory. */
4577 case 181: /* Store Doubleword with Update Indexed */
4578 case 183: /* Store Word with Update Indexed */
4579 case 247: /* Store Byte with Update Indexed */
4580 case 439: /* Store Half Word with Update Indexed */
4581 case 695: /* Store Floating-Point Single with Update Indexed */
4582 case 759: /* Store Floating-Point Double with Update Indexed */
4583 record_full_arch_list_add_reg (regcache,
4584 tdep->ppc_gp0_regnum + PPC_RA (insn));
4585 /* FALL-THROUGH */
4586 case 135: /* Store Vector Element Byte Indexed */
4587 case 167: /* Store Vector Element Halfword Indexed */
4588 case 199: /* Store Vector Element Word Indexed */
4589 case 231: /* Store Vector Indexed */
4590 case 487: /* Store Vector Indexed LRU */
4591 case 716: /* Store VSX Scalar Doubleword Indexed */
4592 case 140: /* Store VSX Scalar as Integer Word Indexed */
4593 case 652: /* Store VSX Scalar Single-Precision Indexed */
4594 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4595 case 908: /* Store VSX Vector Word*4 Indexed */
4596 case 149: /* Store Doubleword Indexed */
4597 case 151: /* Store Word Indexed */
4598 case 215: /* Store Byte Indexed */
4599 case 407: /* Store Half Word Indexed */
4600 case 694: /* Store Byte Conditional Indexed */
4601 case 726: /* Store Halfword Conditional Indexed */
4602 case 150: /* Store Word Conditional Indexed */
4603 case 214: /* Store Doubleword Conditional Indexed */
4604 case 182: /* Store Quadword Conditional Indexed */
4605 case 662: /* Store Word Byte-Reverse Indexed */
4606 case 918: /* Store Halfword Byte-Reverse Indexed */
4607 case 660: /* Store Doubleword Byte-Reverse Indexed */
4608 case 663: /* Store Floating-Point Single Indexed */
4609 case 727: /* Store Floating-Point Double Indexed */
4610 case 919: /* Store Floating-Point Double Pair Indexed */
4611 case 983: /* Store Floating-Point as Integer Word Indexed */
4612 case 396: /* Store VSX Vector Indexed */
4613 case 940: /* Store VSX Vector Halfword*8 Indexed */
4614 case 1004: /* Store VSX Vector Byte*16 Indexed */
4615 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4616 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4617 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4618 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4619
4620 ra = 0;
4621 if (PPC_RA (insn) != 0)
4622 regcache_raw_read_unsigned (regcache,
4623 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4624 regcache_raw_read_unsigned (regcache,
4625 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4626 ea = ra + rb;
4627
4628 switch (ext)
4629 {
4630 case 183: /* Store Word with Update Indexed */
4631 case 199: /* Store Vector Element Word Indexed */
4632 case 140: /* Store VSX Scalar as Integer Word Indexed */
4633 case 652: /* Store VSX Scalar Single-Precision Indexed */
4634 case 151: /* Store Word Indexed */
4635 case 150: /* Store Word Conditional Indexed */
4636 case 662: /* Store Word Byte-Reverse Indexed */
4637 case 663: /* Store Floating-Point Single Indexed */
4638 case 695: /* Store Floating-Point Single with Update Indexed */
4639 case 983: /* Store Floating-Point as Integer Word Indexed */
4640 size = 4;
4641 break;
4642 case 247: /* Store Byte with Update Indexed */
4643 case 135: /* Store Vector Element Byte Indexed */
4644 case 215: /* Store Byte Indexed */
4645 case 694: /* Store Byte Conditional Indexed */
4646 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4647 size = 1;
4648 break;
4649 case 439: /* Store Halfword with Update Indexed */
4650 case 167: /* Store Vector Element Halfword Indexed */
4651 case 407: /* Store Halfword Indexed */
4652 case 726: /* Store Halfword Conditional Indexed */
4653 case 918: /* Store Halfword Byte-Reverse Indexed */
4654 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4655 size = 2;
4656 break;
4657 case 181: /* Store Doubleword with Update Indexed */
4658 case 716: /* Store VSX Scalar Doubleword Indexed */
4659 case 149: /* Store Doubleword Indexed */
4660 case 214: /* Store Doubleword Conditional Indexed */
4661 case 660: /* Store Doubleword Byte-Reverse Indexed */
4662 case 727: /* Store Floating-Point Double Indexed */
4663 case 759: /* Store Floating-Point Double with Update Indexed */
4664 size = 8;
4665 break;
4666 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4667 case 908: /* Store VSX Vector Word*4 Indexed */
4668 case 182: /* Store Quadword Conditional Indexed */
4669 case 231: /* Store Vector Indexed */
4670 case 487: /* Store Vector Indexed LRU */
4671 case 919: /* Store Floating-Point Double Pair Indexed */
4672 case 396: /* Store VSX Vector Indexed */
4673 case 940: /* Store VSX Vector Halfword*8 Indexed */
4674 case 1004: /* Store VSX Vector Byte*16 Indexed */
4675 size = 16;
4676 break;
4677 default:
4678 gdb_assert (0);
4679 }
4680
4681 /* Align address for Store Vector instructions. */
4682 switch (ext)
4683 {
4684 case 167: /* Store Vector Element Halfword Indexed */
4685 addr = addr & ~0x1ULL;
4686 break;
4687
4688 case 199: /* Store Vector Element Word Indexed */
4689 addr = addr & ~0x3ULL;
4690 break;
4691
4692 case 231: /* Store Vector Indexed */
4693 case 487: /* Store Vector Indexed LRU */
4694 addr = addr & ~0xfULL;
4695 break;
4696 }
4697
4698 record_full_arch_list_add_mem (addr, size);
4699 return 0;
4700
4701 case 397: /* Store VSX Vector with Length */
4702 case 429: /* Store VSX Vector Left-justified with Length */
4703 ra = 0;
4704 if (PPC_RA (insn) != 0)
4705 regcache_raw_read_unsigned (regcache,
4706 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4707 ea = ra;
4708 regcache_raw_read_unsigned (regcache,
4709 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4710 /* Store up to 16 bytes. */
4711 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4712 if (nb > 0)
4713 record_full_arch_list_add_mem (ea, nb);
4714 return 0;
4715
4716 case 710: /* Store Word Atomic */
4717 case 742: /* Store Doubleword Atomic */
4718 ra = 0;
4719 if (PPC_RA (insn) != 0)
4720 regcache_raw_read_unsigned (regcache,
4721 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4722 ea = ra;
4723 switch (ext)
4724 {
4725 case 710: /* Store Word Atomic */
4726 size = 8;
4727 break;
4728 case 742: /* Store Doubleword Atomic */
4729 size = 16;
4730 break;
4731 default:
4732 gdb_assert (0);
4733 }
4734 record_full_arch_list_add_mem (ea, size);
4735 return 0;
4736
4737 case 725: /* Store String Word Immediate */
4738 ra = 0;
4739 if (PPC_RA (insn) != 0)
4740 regcache_raw_read_unsigned (regcache,
4741 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4742 ea += ra;
4743
4744 nb = PPC_NB (insn);
4745 if (nb == 0)
4746 nb = 32;
4747
4748 record_full_arch_list_add_mem (ea, nb);
4749
4750 return 0;
4751
4752 case 661: /* Store String Word Indexed */
4753 ra = 0;
4754 if (PPC_RA (insn) != 0)
4755 regcache_raw_read_unsigned (regcache,
4756 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4757 ea += ra;
4758
4759 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4760 nb = PPC_XER_NB (xer);
4761
4762 if (nb != 0)
4763 {
4764 regcache_raw_read_unsigned (regcache,
4765 tdep->ppc_gp0_regnum + PPC_RB (insn),
4766 &rb);
4767 ea += rb;
4768 record_full_arch_list_add_mem (ea, nb);
4769 }
4770
4771 return 0;
4772
4773 case 467: /* Move To Special Purpose Register */
4774 switch (PPC_SPR (insn))
4775 {
4776 case 1: /* XER */
4777 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4778 return 0;
4779 case 8: /* LR */
4780 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4781 return 0;
4782 case 9: /* CTR */
4783 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4784 return 0;
4785 case 256: /* VRSAVE */
4786 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4787 return 0;
4788 }
4789
4790 goto UNKNOWN_OP;
4791
4792 case 147: /* Move To Split Little Endian */
4793 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4794 return 0;
4795
4796 case 512: /* Move to Condition Register from XER */
4797 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4798 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4799 return 0;
4800
4801 case 4: /* Trap Word */
4802 case 68: /* Trap Doubleword */
4803 case 430: /* Clear BHRB */
4804 case 598: /* Synchronize */
4805 case 62: /* Wait for Interrupt */
4806 case 30: /* Wait */
4807 case 22: /* Instruction Cache Block Touch */
4808 case 854: /* Enforce In-order Execution of I/O */
4809 case 246: /* Data Cache Block Touch for Store */
4810 case 54: /* Data Cache Block Store */
4811 case 86: /* Data Cache Block Flush */
4812 case 278: /* Data Cache Block Touch */
4813 case 758: /* Data Cache Block Allocate */
4814 case 982: /* Instruction Cache Block Invalidate */
4815 case 774: /* Copy */
4816 case 838: /* CP_Abort */
4817 return 0;
4818
4819 case 654: /* Transaction Begin */
4820 case 686: /* Transaction End */
4821 case 750: /* Transaction Suspend or Resume */
4822 case 782: /* Transaction Abort Word Conditional */
4823 case 814: /* Transaction Abort Doubleword Conditional */
4824 case 846: /* Transaction Abort Word Conditional Immediate */
4825 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4826 case 910: /* Transaction Abort */
4827 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4828 /* FALL-THROUGH */
4829 case 718: /* Transaction Check */
4830 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4831 return 0;
4832
4833 case 1014: /* Data Cache Block set to Zero */
4834 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4835 || at_dcsz == 0)
4836 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4837
4838 ra = 0;
4839 if (PPC_RA (insn) != 0)
4840 regcache_raw_read_unsigned (regcache,
4841 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4842 regcache_raw_read_unsigned (regcache,
4843 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4844 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4845 record_full_arch_list_add_mem (ea, at_dcsz);
4846 return 0;
4847 }
4848
4849UNKNOWN_OP:
4850 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4851 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4852 return -1;
4853}
4854
4855/* Parse and record instructions of primary opcode-59 at ADDR.
4856 Return 0 if successful. */
4857
4858static int
4859ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4860 CORE_ADDR addr, uint32_t insn)
4861{
4862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4863 int ext = PPC_EXTOP (insn);
4864
4865 switch (ext & 0x1f)
4866 {
4867 case 18: /* Floating Divide */
4868 case 20: /* Floating Subtract */
4869 case 21: /* Floating Add */
4870 case 22: /* Floating Square Root */
4871 case 24: /* Floating Reciprocal Estimate */
4872 case 25: /* Floating Multiply */
4873 case 26: /* Floating Reciprocal Square Root Estimate */
4874 case 28: /* Floating Multiply-Subtract */
4875 case 29: /* Floating Multiply-Add */
4876 case 30: /* Floating Negative Multiply-Subtract */
4877 case 31: /* Floating Negative Multiply-Add */
4878 record_full_arch_list_add_reg (regcache,
4879 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4880 if (PPC_RC (insn))
4881 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4882 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4883
4884 return 0;
4885 }
4886
4887 switch (ext)
4888 {
4889 case 2: /* DFP Add */
4890 case 3: /* DFP Quantize */
4891 case 34: /* DFP Multiply */
4892 case 35: /* DFP Reround */
4893 case 67: /* DFP Quantize Immediate */
4894 case 99: /* DFP Round To FP Integer With Inexact */
4895 case 227: /* DFP Round To FP Integer Without Inexact */
4896 case 258: /* DFP Convert To DFP Long! */
4897 case 290: /* DFP Convert To Fixed */
4898 case 514: /* DFP Subtract */
4899 case 546: /* DFP Divide */
4900 case 770: /* DFP Round To DFP Short! */
4901 case 802: /* DFP Convert From Fixed */
4902 case 834: /* DFP Encode BCD To DPD */
4903 if (PPC_RC (insn))
4904 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4905 record_full_arch_list_add_reg (regcache,
4906 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4907 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4908 return 0;
4909
4910 case 130: /* DFP Compare Ordered */
4911 case 162: /* DFP Test Exponent */
4912 case 194: /* DFP Test Data Class */
4913 case 226: /* DFP Test Data Group */
4914 case 642: /* DFP Compare Unordered */
4915 case 674: /* DFP Test Significance */
4916 case 675: /* DFP Test Significance Immediate */
4917 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4918 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4919 return 0;
4920
4921 case 66: /* DFP Shift Significand Left Immediate */
4922 case 98: /* DFP Shift Significand Right Immediate */
4923 case 322: /* DFP Decode DPD To BCD */
4924 case 354: /* DFP Extract Biased Exponent */
4925 case 866: /* DFP Insert Biased Exponent */
4926 record_full_arch_list_add_reg (regcache,
4927 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4928 if (PPC_RC (insn))
4929 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4930 return 0;
4931
4932 case 846: /* Floating Convert From Integer Doubleword Single */
4933 case 974: /* Floating Convert From Integer Doubleword Unsigned
4934 Single */
4935 record_full_arch_list_add_reg (regcache,
4936 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4937 if (PPC_RC (insn))
4938 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4939 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4940
4941 return 0;
4942 }
4943
4944 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4945 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4946 return -1;
4947}
4948
4949/* Parse and record instructions of primary opcode-60 at ADDR.
4950 Return 0 if successful. */
4951
4952static int
4953ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4954 CORE_ADDR addr, uint32_t insn)
4955{
4956 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4957 int ext = PPC_EXTOP (insn);
4958
4959 switch (ext >> 2)
4960 {
4961 case 0: /* VSX Scalar Add Single-Precision */
4962 case 32: /* VSX Scalar Add Double-Precision */
4963 case 24: /* VSX Scalar Divide Single-Precision */
4964 case 56: /* VSX Scalar Divide Double-Precision */
4965 case 176: /* VSX Scalar Copy Sign Double-Precision */
4966 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4967 case 41: /* ditto */
4968 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4969 case 9: /* ditto */
4970 case 160: /* VSX Scalar Maximum Double-Precision */
4971 case 168: /* VSX Scalar Minimum Double-Precision */
4972 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4973 case 57: /* ditto */
4974 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4975 case 25: /* ditto */
4976 case 48: /* VSX Scalar Multiply Double-Precision */
4977 case 16: /* VSX Scalar Multiply Single-Precision */
4978 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4979 case 169: /* ditto */
4980 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4981 case 137: /* ditto */
4982 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4983 case 185: /* ditto */
4984 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4985 case 153: /* ditto */
4986 case 40: /* VSX Scalar Subtract Double-Precision */
4987 case 8: /* VSX Scalar Subtract Single-Precision */
4988 case 96: /* VSX Vector Add Double-Precision */
4989 case 64: /* VSX Vector Add Single-Precision */
4990 case 120: /* VSX Vector Divide Double-Precision */
4991 case 88: /* VSX Vector Divide Single-Precision */
4992 case 97: /* VSX Vector Multiply-Add Double-Precision */
4993 case 105: /* ditto */
4994 case 65: /* VSX Vector Multiply-Add Single-Precision */
4995 case 73: /* ditto */
4996 case 224: /* VSX Vector Maximum Double-Precision */
4997 case 192: /* VSX Vector Maximum Single-Precision */
4998 case 232: /* VSX Vector Minimum Double-Precision */
4999 case 200: /* VSX Vector Minimum Single-Precision */
5000 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5001 case 121: /* ditto */
5002 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5003 case 89: /* ditto */
5004 case 112: /* VSX Vector Multiply Double-Precision */
5005 case 80: /* VSX Vector Multiply Single-Precision */
5006 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5007 case 233: /* ditto */
5008 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5009 case 201: /* ditto */
5010 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5011 case 249: /* ditto */
5012 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5013 case 217: /* ditto */
5014 case 104: /* VSX Vector Subtract Double-Precision */
5015 case 72: /* VSX Vector Subtract Single-Precision */
5016 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5017 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5018 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5019 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5020 case 3: /* VSX Scalar Compare Equal Double-Precision */
5021 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5022 case 19: /* VSX Scalar Compare Greater Than or Equal
5023 Double-Precision */
5024 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5025 /* FALL-THROUGH */
5026 case 240: /* VSX Vector Copy Sign Double-Precision */
5027 case 208: /* VSX Vector Copy Sign Single-Precision */
5028 case 130: /* VSX Logical AND */
5029 case 138: /* VSX Logical AND with Complement */
5030 case 186: /* VSX Logical Equivalence */
5031 case 178: /* VSX Logical NAND */
5032 case 170: /* VSX Logical OR with Complement */
5033 case 162: /* VSX Logical NOR */
5034 case 146: /* VSX Logical OR */
5035 case 154: /* VSX Logical XOR */
5036 case 18: /* VSX Merge High Word */
5037 case 50: /* VSX Merge Low Word */
5038 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5039 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5040 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5041 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5042 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5043 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5044 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5045 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5046 case 216: /* VSX Vector Insert Exponent Single-Precision */
5047 case 248: /* VSX Vector Insert Exponent Double-Precision */
5048 case 26: /* VSX Vector Permute */
5049 case 58: /* VSX Vector Permute Right-indexed */
5050 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5051 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5052 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5053 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5054 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5055 return 0;
5056
5057 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5058 case 125: /* VSX Vector Test for software Divide Double-Precision */
5059 case 93: /* VSX Vector Test for software Divide Single-Precision */
5060 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5061 return 0;
5062
5063 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5064 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5065 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5066 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5067 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5068 return 0;
5069 }
5070
5071 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5072 {
5073 case 99: /* VSX Vector Compare Equal To Double-Precision */
5074 case 67: /* VSX Vector Compare Equal To Single-Precision */
5075 case 115: /* VSX Vector Compare Greater Than or
5076 Equal To Double-Precision */
5077 case 83: /* VSX Vector Compare Greater Than or
5078 Equal To Single-Precision */
5079 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5080 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5081 if (PPC_Rc (insn))
5082 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5083 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5084 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5085 return 0;
5086 }
5087
5088 switch (ext >> 1)
5089 {
5090 case 265: /* VSX Scalar round Double-Precision to
5091 Single-Precision and Convert to
5092 Single-Precision format */
5093 case 344: /* VSX Scalar truncate Double-Precision to
5094 Integer and Convert to Signed Integer
5095 Doubleword format with Saturate */
5096 case 88: /* VSX Scalar truncate Double-Precision to
5097 Integer and Convert to Signed Integer Word
5098 Format with Saturate */
5099 case 328: /* VSX Scalar truncate Double-Precision integer
5100 and Convert to Unsigned Integer Doubleword
5101 Format with Saturate */
5102 case 72: /* VSX Scalar truncate Double-Precision to
5103 Integer and Convert to Unsigned Integer Word
5104 Format with Saturate */
5105 case 329: /* VSX Scalar Convert Single-Precision to
5106 Double-Precision format */
5107 case 376: /* VSX Scalar Convert Signed Integer
5108 Doubleword to floating-point format and
5109 Round to Double-Precision format */
5110 case 312: /* VSX Scalar Convert Signed Integer
5111 Doubleword to floating-point format and
5112 round to Single-Precision */
5113 case 360: /* VSX Scalar Convert Unsigned Integer
5114 Doubleword to floating-point format and
5115 Round to Double-Precision format */
5116 case 296: /* VSX Scalar Convert Unsigned Integer
5117 Doubleword to floating-point format and
5118 Round to Single-Precision */
5119 case 73: /* VSX Scalar Round to Double-Precision Integer
5120 Using Round to Nearest Away */
5121 case 107: /* VSX Scalar Round to Double-Precision Integer
5122 Exact using Current rounding mode */
5123 case 121: /* VSX Scalar Round to Double-Precision Integer
5124 Using Round toward -Infinity */
5125 case 105: /* VSX Scalar Round to Double-Precision Integer
5126 Using Round toward +Infinity */
5127 case 89: /* VSX Scalar Round to Double-Precision Integer
5128 Using Round toward Zero */
5129 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5130 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5131 case 281: /* VSX Scalar Round to Single-Precision */
5132 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5133 Double-Precision */
5134 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5135 Single-Precision */
5136 case 75: /* VSX Scalar Square Root Double-Precision */
5137 case 11: /* VSX Scalar Square Root Single-Precision */
5138 case 393: /* VSX Vector round Double-Precision to
5139 Single-Precision and Convert to
5140 Single-Precision format */
5141 case 472: /* VSX Vector truncate Double-Precision to
5142 Integer and Convert to Signed Integer
5143 Doubleword format with Saturate */
5144 case 216: /* VSX Vector truncate Double-Precision to
5145 Integer and Convert to Signed Integer Word
5146 Format with Saturate */
5147 case 456: /* VSX Vector truncate Double-Precision to
5148 Integer and Convert to Unsigned Integer
5149 Doubleword format with Saturate */
5150 case 200: /* VSX Vector truncate Double-Precision to
5151 Integer and Convert to Unsigned Integer Word
5152 Format with Saturate */
5153 case 457: /* VSX Vector Convert Single-Precision to
5154 Double-Precision format */
5155 case 408: /* VSX Vector truncate Single-Precision to
5156 Integer and Convert to Signed Integer
5157 Doubleword format with Saturate */
5158 case 152: /* VSX Vector truncate Single-Precision to
5159 Integer and Convert to Signed Integer Word
5160 Format with Saturate */
5161 case 392: /* VSX Vector truncate Single-Precision to
5162 Integer and Convert to Unsigned Integer
5163 Doubleword format with Saturate */
5164 case 136: /* VSX Vector truncate Single-Precision to
5165 Integer and Convert to Unsigned Integer Word
5166 Format with Saturate */
5167 case 504: /* VSX Vector Convert and round Signed Integer
5168 Doubleword to Double-Precision format */
5169 case 440: /* VSX Vector Convert and round Signed Integer
5170 Doubleword to Single-Precision format */
5171 case 248: /* VSX Vector Convert Signed Integer Word to
5172 Double-Precision format */
5173 case 184: /* VSX Vector Convert and round Signed Integer
5174 Word to Single-Precision format */
5175 case 488: /* VSX Vector Convert and round Unsigned
5176 Integer Doubleword to Double-Precision format */
5177 case 424: /* VSX Vector Convert and round Unsigned
5178 Integer Doubleword to Single-Precision format */
5179 case 232: /* VSX Vector Convert and round Unsigned
5180 Integer Word to Double-Precision format */
5181 case 168: /* VSX Vector Convert and round Unsigned
5182 Integer Word to Single-Precision format */
5183 case 201: /* VSX Vector Round to Double-Precision
5184 Integer using round to Nearest Away */
5185 case 235: /* VSX Vector Round to Double-Precision
5186 Integer Exact using Current rounding mode */
5187 case 249: /* VSX Vector Round to Double-Precision
5188 Integer using round toward -Infinity */
5189 case 233: /* VSX Vector Round to Double-Precision
5190 Integer using round toward +Infinity */
5191 case 217: /* VSX Vector Round to Double-Precision
5192 Integer using round toward Zero */
5193 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5194 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5195 case 137: /* VSX Vector Round to Single-Precision Integer
5196 Using Round to Nearest Away */
5197 case 171: /* VSX Vector Round to Single-Precision Integer
5198 Exact Using Current rounding mode */
5199 case 185: /* VSX Vector Round to Single-Precision Integer
5200 Using Round toward -Infinity */
5201 case 169: /* VSX Vector Round to Single-Precision Integer
5202 Using Round toward +Infinity */
5203 case 153: /* VSX Vector Round to Single-Precision Integer
5204 Using round toward Zero */
5205 case 202: /* VSX Vector Reciprocal Square Root Estimate
5206 Double-Precision */
5207 case 138: /* VSX Vector Reciprocal Square Root Estimate
5208 Single-Precision */
5209 case 203: /* VSX Vector Square Root Double-Precision */
5210 case 139: /* VSX Vector Square Root Single-Precision */
5211 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5212 /* FALL-THROUGH */
5213 case 345: /* VSX Scalar Absolute Value Double-Precision */
5214 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5215 Vector Single-Precision format Non-signalling */
5216 case 331: /* VSX Scalar Convert Single-Precision to
5217 Double-Precision format Non-signalling */
5218 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5219 case 377: /* VSX Scalar Negate Double-Precision */
5220 case 473: /* VSX Vector Absolute Value Double-Precision */
5221 case 409: /* VSX Vector Absolute Value Single-Precision */
5222 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5223 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5224 case 505: /* VSX Vector Negate Double-Precision */
5225 case 441: /* VSX Vector Negate Single-Precision */
5226 case 164: /* VSX Splat Word */
5227 case 165: /* VSX Vector Extract Unsigned Word */
5228 case 181: /* VSX Vector Insert Word */
5229 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5230 return 0;
5231
5232 case 298: /* VSX Scalar Test Data Class Single-Precision */
5233 case 362: /* VSX Scalar Test Data Class Double-Precision */
5234 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5235 /* FALL-THROUGH */
5236 case 106: /* VSX Scalar Test for software Square Root
5237 Double-Precision */
5238 case 234: /* VSX Vector Test for software Square Root
5239 Double-Precision */
5240 case 170: /* VSX Vector Test for software Square Root
5241 Single-Precision */
5242 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5243 return 0;
5244
5245 case 347:
5246 switch (PPC_FIELD (insn, 11, 5))
5247 {
5248 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5249 case 1: /* VSX Scalar Extract Significand Double-Precision */
5250 record_full_arch_list_add_reg (regcache,
5251 tdep->ppc_gp0_regnum + PPC_RT (insn));
5252 return 0;
5253 case 16: /* VSX Scalar Convert Half-Precision format to
5254 Double-Precision format */
5255 case 17: /* VSX Scalar round & Convert Double-Precision format
5256 to Half-Precision format */
5257 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5258 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5259 return 0;
5260 }
5261 break;
5262
5263 case 475:
5264 switch (PPC_FIELD (insn, 11, 5))
5265 {
5266 case 24: /* VSX Vector Convert Half-Precision format to
5267 Single-Precision format */
5268 case 25: /* VSX Vector round and Convert Single-Precision format
5269 to Half-Precision format */
5270 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5271 /* FALL-THROUGH */
5272 case 0: /* VSX Vector Extract Exponent Double-Precision */
5273 case 1: /* VSX Vector Extract Significand Double-Precision */
5274 case 7: /* VSX Vector Byte-Reverse Halfword */
5275 case 8: /* VSX Vector Extract Exponent Single-Precision */
5276 case 9: /* VSX Vector Extract Significand Single-Precision */
5277 case 15: /* VSX Vector Byte-Reverse Word */
5278 case 23: /* VSX Vector Byte-Reverse Doubleword */
5279 case 31: /* VSX Vector Byte-Reverse Quadword */
5280 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5281 return 0;
5282 }
5283 break;
5284 }
5285
5286 switch (ext)
5287 {
5288 case 360: /* VSX Vector Splat Immediate Byte */
5289 if (PPC_FIELD (insn, 11, 2) == 0)
5290 {
5291 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5292 return 0;
5293 }
5294 break;
5295 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5296 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5297 return 0;
5298 }
5299
5300 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5301 {
5302 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5303 return 0;
5304 }
5305
5306 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5307 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5308 return -1;
5309}
5310
5311/* Parse and record instructions of primary opcode-61 at ADDR.
5312 Return 0 if successful. */
5313
5314static int
5315ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5316 CORE_ADDR addr, uint32_t insn)
5317{
5318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5319 ULONGEST ea = 0;
5320 int size;
5321
5322 switch (insn & 0x3)
5323 {
5324 case 0: /* Store Floating-Point Double Pair */
5325 case 2: /* Store VSX Scalar Doubleword */
5326 case 3: /* Store VSX Scalar Single */
5327 if (PPC_RA (insn) != 0)
5328 regcache_raw_read_unsigned (regcache,
5329 tdep->ppc_gp0_regnum + PPC_RA (insn),
5330 &ea);
5331 ea += PPC_DS (insn) << 2;
5332 switch (insn & 0x3)
5333 {
5334 case 0: /* Store Floating-Point Double Pair */
5335 size = 16;
5336 break;
5337 case 2: /* Store VSX Scalar Doubleword */
5338 size = 8;
5339 break;
5340 case 3: /* Store VSX Scalar Single */
5341 size = 4;
5342 break;
5343 default:
5344 gdb_assert (0);
5345 }
5346 record_full_arch_list_add_mem (ea, size);
5347 return 0;
5348 }
5349
5350 switch (insn & 0x7)
5351 {
5352 case 1: /* Load VSX Vector */
5353 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5354 return 0;
5355 case 5: /* Store VSX Vector */
5356 if (PPC_RA (insn) != 0)
5357 regcache_raw_read_unsigned (regcache,
5358 tdep->ppc_gp0_regnum + PPC_RA (insn),
5359 &ea);
5360 ea += PPC_DQ (insn) << 4;
5361 record_full_arch_list_add_mem (ea, 16);
5362 return 0;
5363 }
5364
5365 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5366 "at %s.\n", insn, paddress (gdbarch, addr));
5367 return -1;
5368}
5369
5370/* Parse and record instructions of primary opcode-63 at ADDR.
5371 Return 0 if successful. */
5372
5373static int
5374ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5375 CORE_ADDR addr, uint32_t insn)
5376{
5377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5378 int ext = PPC_EXTOP (insn);
5379 int tmp;
5380
5381 switch (ext & 0x1f)
5382 {
5383 case 18: /* Floating Divide */
5384 case 20: /* Floating Subtract */
5385 case 21: /* Floating Add */
5386 case 22: /* Floating Square Root */
5387 case 24: /* Floating Reciprocal Estimate */
5388 case 25: /* Floating Multiply */
5389 case 26: /* Floating Reciprocal Square Root Estimate */
5390 case 28: /* Floating Multiply-Subtract */
5391 case 29: /* Floating Multiply-Add */
5392 case 30: /* Floating Negative Multiply-Subtract */
5393 case 31: /* Floating Negative Multiply-Add */
5394 record_full_arch_list_add_reg (regcache,
5395 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5396 if (PPC_RC (insn))
5397 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5398 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5399 return 0;
5400
5401 case 23: /* Floating Select */
5402 record_full_arch_list_add_reg (regcache,
5403 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5404 if (PPC_RC (insn))
5405 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5406 return 0;
5407 }
5408
5409 switch (ext & 0xff)
5410 {
5411 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5412 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5413 Precision */
5414 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5415 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5416 return 0;
5417 }
5418
5419 switch (ext)
5420 {
5421 case 2: /* DFP Add Quad */
5422 case 3: /* DFP Quantize Quad */
5423 case 34: /* DFP Multiply Quad */
5424 case 35: /* DFP Reround Quad */
5425 case 67: /* DFP Quantize Immediate Quad */
5426 case 99: /* DFP Round To FP Integer With Inexact Quad */
5427 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5428 case 258: /* DFP Convert To DFP Extended Quad */
5429 case 514: /* DFP Subtract Quad */
5430 case 546: /* DFP Divide Quad */
5431 case 770: /* DFP Round To DFP Long Quad */
5432 case 802: /* DFP Convert From Fixed Quad */
5433 case 834: /* DFP Encode BCD To DPD Quad */
5434 if (PPC_RC (insn))
5435 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5436 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5437 record_full_arch_list_add_reg (regcache, tmp);
5438 record_full_arch_list_add_reg (regcache, tmp + 1);
5439 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5440 return 0;
5441
5442 case 130: /* DFP Compare Ordered Quad */
5443 case 162: /* DFP Test Exponent Quad */
5444 case 194: /* DFP Test Data Class Quad */
5445 case 226: /* DFP Test Data Group Quad */
5446 case 642: /* DFP Compare Unordered Quad */
5447 case 674: /* DFP Test Significance Quad */
5448 case 675: /* DFP Test Significance Immediate Quad */
5449 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5450 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5451 return 0;
5452
5453 case 66: /* DFP Shift Significand Left Immediate Quad */
5454 case 98: /* DFP Shift Significand Right Immediate Quad */
5455 case 322: /* DFP Decode DPD To BCD Quad */
5456 case 866: /* DFP Insert Biased Exponent Quad */
5457 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5458 record_full_arch_list_add_reg (regcache, tmp);
5459 record_full_arch_list_add_reg (regcache, tmp + 1);
5460 if (PPC_RC (insn))
5461 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5462 return 0;
5463
5464 case 290: /* DFP Convert To Fixed Quad */
5465 record_full_arch_list_add_reg (regcache,
5466 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5467 if (PPC_RC (insn))
5468 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5469 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5470 return 0;
5471
5472 case 354: /* DFP Extract Biased Exponent Quad */
5473 record_full_arch_list_add_reg (regcache,
5474 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5475 if (PPC_RC (insn))
5476 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5477 return 0;
5478
5479 case 12: /* Floating Round to Single-Precision */
5480 case 14: /* Floating Convert To Integer Word */
5481 case 15: /* Floating Convert To Integer Word
5482 with round toward Zero */
5483 case 142: /* Floating Convert To Integer Word Unsigned */
5484 case 143: /* Floating Convert To Integer Word Unsigned
5485 with round toward Zero */
5486 case 392: /* Floating Round to Integer Nearest */
5487 case 424: /* Floating Round to Integer Toward Zero */
5488 case 456: /* Floating Round to Integer Plus */
5489 case 488: /* Floating Round to Integer Minus */
5490 case 814: /* Floating Convert To Integer Doubleword */
5491 case 815: /* Floating Convert To Integer Doubleword
5492 with round toward Zero */
5493 case 846: /* Floating Convert From Integer Doubleword */
5494 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5495 case 943: /* Floating Convert To Integer Doubleword Unsigned
5496 with round toward Zero */
5497 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5498 record_full_arch_list_add_reg (regcache,
5499 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5500 if (PPC_RC (insn))
5501 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5502 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5503 return 0;
5504
5505 case 583:
5506 switch (PPC_FIELD (insn, 11, 5))
5507 {
5508 case 1: /* Move From FPSCR & Clear Enables */
5509 case 20: /* Move From FPSCR Control & set DRN */
5510 case 21: /* Move From FPSCR Control & set DRN Immediate */
5511 case 22: /* Move From FPSCR Control & set RN */
5512 case 23: /* Move From FPSCR Control & set RN Immediate */
5513 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5514 case 0: /* Move From FPSCR */
5515 case 24: /* Move From FPSCR Lightweight */
5516 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5517 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5518 record_full_arch_list_add_reg (regcache,
5519 tdep->ppc_fp0_regnum
5520 + PPC_FRT (insn));
5521 return 0;
5522 }
5523 break;
5524
5525 case 8: /* Floating Copy Sign */
5526 case 40: /* Floating Negate */
5527 case 72: /* Floating Move Register */
5528 case 136: /* Floating Negative Absolute Value */
5529 case 264: /* Floating Absolute Value */
5530 record_full_arch_list_add_reg (regcache,
5531 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5532 if (PPC_RC (insn))
5533 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5534 return 0;
5535
5536 case 838: /* Floating Merge Odd Word */
5537 case 966: /* Floating Merge Even Word */
5538 record_full_arch_list_add_reg (regcache,
5539 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5540 return 0;
5541
5542 case 38: /* Move To FPSCR Bit 1 */
5543 case 70: /* Move To FPSCR Bit 0 */
5544 case 134: /* Move To FPSCR Field Immediate */
5545 case 711: /* Move To FPSCR Fields */
5546 if (PPC_RC (insn))
5547 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5548 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5549 return 0;
5550
5551 case 0: /* Floating Compare Unordered */
5552 case 32: /* Floating Compare Ordered */
5553 case 64: /* Move to Condition Register from FPSCR */
5554 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5555 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5556 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5557 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5558 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5559 /* FALL-THROUGH */
5560 case 128: /* Floating Test for software Divide */
5561 case 160: /* Floating Test for software Square Root */
5562 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5563 return 0;
5564
5565 case 4: /* VSX Scalar Add Quad-Precision */
5566 case 36: /* VSX Scalar Multiply Quad-Precision */
5567 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5568 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5569 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5570 case 484: /* VSX Scalar Negative Multiply-Subtract
5571 Quad-Precision */
5572 case 516: /* VSX Scalar Subtract Quad-Precision */
5573 case 548: /* VSX Scalar Divide Quad-Precision */
5574 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5575 /* FALL-THROUGH */
5576 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5577 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5578 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5579 return 0;
5580
5581 case 804:
5582 switch (PPC_FIELD (insn, 11, 5))
5583 {
5584 case 27: /* VSX Scalar Square Root Quad-Precision */
5585 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5586 /* FALL-THROUGH */
5587 case 0: /* VSX Scalar Absolute Quad-Precision */
5588 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5589 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5590 case 16: /* VSX Scalar Negate Quad-Precision */
5591 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5592 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5593 return 0;
5594 }
5595 break;
5596
5597 case 836:
5598 switch (PPC_FIELD (insn, 11, 5))
5599 {
5600 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5601 to Unsigned Word format */
5602 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5603 Quad-Precision format */
5604 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5605 to Signed Word format */
5606 case 10: /* VSX Scalar Convert Signed Doubleword format to
5607 Quad-Precision format */
5608 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5609 to Unsigned Doubleword format */
5610 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5611 Double-Precision format */
5612 case 22: /* VSX Scalar Convert Double-Precision format to
5613 Quad-Precision format */
5614 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5615 to Signed Doubleword format */
5616 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5617 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5618 return 0;
5619 }
5620 }
5621
5622 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5623 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5624 return -1;
5625}
5626
5627/* Parse the current instruction and record the values of the registers and
5628 memory that will be changed in current instruction to "record_arch_list".
5629 Return -1 if something wrong. */
5630
5631int
5632ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5633 CORE_ADDR addr)
5634{
5635 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5637 uint32_t insn;
5638 int op6, tmp, i;
5639
5640 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5641 op6 = PPC_OP6 (insn);
5642
5643 switch (op6)
5644 {
5645 case 2: /* Trap Doubleword Immediate */
5646 case 3: /* Trap Word Immediate */
5647 /* Do nothing. */
5648 break;
5649
5650 case 4:
5651 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5652 return -1;
5653 break;
5654
5655 case 17: /* System call */
5656 if (PPC_LEV (insn) != 0)
5657 goto UNKNOWN_OP;
5658
5659 if (tdep->ppc_syscall_record != NULL)
5660 {
5661 if (tdep->ppc_syscall_record (regcache) != 0)
5662 return -1;
5663 }
5664 else
5665 {
5666 printf_unfiltered (_("no syscall record support\n"));
5667 return -1;
5668 }
5669 break;
5670
5671 case 7: /* Multiply Low Immediate */
5672 record_full_arch_list_add_reg (regcache,
5673 tdep->ppc_gp0_regnum + PPC_RT (insn));
5674 break;
5675
5676 case 8: /* Subtract From Immediate Carrying */
5677 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5678 record_full_arch_list_add_reg (regcache,
5679 tdep->ppc_gp0_regnum + PPC_RT (insn));
5680 break;
5681
5682 case 10: /* Compare Logical Immediate */
5683 case 11: /* Compare Immediate */
5684 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5685 break;
5686
5687 case 13: /* Add Immediate Carrying and Record */
5688 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5689 /* FALL-THROUGH */
5690 case 12: /* Add Immediate Carrying */
5691 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5692 /* FALL-THROUGH */
5693 case 14: /* Add Immediate */
5694 case 15: /* Add Immediate Shifted */
5695 record_full_arch_list_add_reg (regcache,
5696 tdep->ppc_gp0_regnum + PPC_RT (insn));
5697 break;
5698
5699 case 16: /* Branch Conditional */
5700 if ((PPC_BO (insn) & 0x4) == 0)
5701 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5702 /* FALL-THROUGH */
5703 case 18: /* Branch */
5704 if (PPC_LK (insn))
5705 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5706 break;
5707
5708 case 19:
5709 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5710 return -1;
5711 break;
5712
5713 case 20: /* Rotate Left Word Immediate then Mask Insert */
5714 case 21: /* Rotate Left Word Immediate then AND with Mask */
5715 case 23: /* Rotate Left Word then AND with Mask */
5716 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5717 /* Rotate Left Doubleword Immediate then Clear Right */
5718 /* Rotate Left Doubleword Immediate then Clear */
5719 /* Rotate Left Doubleword then Clear Left */
5720 /* Rotate Left Doubleword then Clear Right */
5721 /* Rotate Left Doubleword Immediate then Mask Insert */
5722 if (PPC_RC (insn))
5723 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5724 record_full_arch_list_add_reg (regcache,
5725 tdep->ppc_gp0_regnum + PPC_RA (insn));
5726 break;
5727
5728 case 28: /* AND Immediate */
5729 case 29: /* AND Immediate Shifted */
5730 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5731 /* FALL-THROUGH */
5732 case 24: /* OR Immediate */
5733 case 25: /* OR Immediate Shifted */
5734 case 26: /* XOR Immediate */
5735 case 27: /* XOR Immediate Shifted */
5736 record_full_arch_list_add_reg (regcache,
5737 tdep->ppc_gp0_regnum + PPC_RA (insn));
5738 break;
5739
5740 case 31:
5741 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5742 return -1;
5743 break;
5744
5745 case 33: /* Load Word and Zero with Update */
5746 case 35: /* Load Byte and Zero with Update */
5747 case 41: /* Load Halfword and Zero with Update */
5748 case 43: /* Load Halfword Algebraic with Update */
5749 record_full_arch_list_add_reg (regcache,
5750 tdep->ppc_gp0_regnum + PPC_RA (insn));
5751 /* FALL-THROUGH */
5752 case 32: /* Load Word and Zero */
5753 case 34: /* Load Byte and Zero */
5754 case 40: /* Load Halfword and Zero */
5755 case 42: /* Load Halfword Algebraic */
5756 record_full_arch_list_add_reg (regcache,
5757 tdep->ppc_gp0_regnum + PPC_RT (insn));
5758 break;
5759
5760 case 46: /* Load Multiple Word */
5761 for (i = PPC_RT (insn); i < 32; i++)
5762 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5763 break;
5764
5765 case 56: /* Load Quadword */
5766 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5767 record_full_arch_list_add_reg (regcache, tmp);
5768 record_full_arch_list_add_reg (regcache, tmp + 1);
5769 break;
5770
5771 case 49: /* Load Floating-Point Single with Update */
5772 case 51: /* Load Floating-Point Double with Update */
5773 record_full_arch_list_add_reg (regcache,
5774 tdep->ppc_gp0_regnum + PPC_RA (insn));
5775 /* FALL-THROUGH */
5776 case 48: /* Load Floating-Point Single */
5777 case 50: /* Load Floating-Point Double */
5778 record_full_arch_list_add_reg (regcache,
5779 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5780 break;
5781
5782 case 47: /* Store Multiple Word */
5783 {
5784 ULONGEST addr = 0;
5785
5786 if (PPC_RA (insn) != 0)
5787 regcache_raw_read_unsigned (regcache,
5788 tdep->ppc_gp0_regnum + PPC_RA (insn),
5789 &addr);
5790
5791 addr += PPC_D (insn);
5792 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5793 }
5794 break;
5795
5796 case 37: /* Store Word with Update */
5797 case 39: /* Store Byte with Update */
5798 case 45: /* Store Halfword with Update */
5799 case 53: /* Store Floating-Point Single with Update */
5800 case 55: /* Store Floating-Point Double with Update */
5801 record_full_arch_list_add_reg (regcache,
5802 tdep->ppc_gp0_regnum + PPC_RA (insn));
5803 /* FALL-THROUGH */
5804 case 36: /* Store Word */
5805 case 38: /* Store Byte */
5806 case 44: /* Store Halfword */
5807 case 52: /* Store Floating-Point Single */
5808 case 54: /* Store Floating-Point Double */
5809 {
5810 ULONGEST addr = 0;
5811 int size = -1;
5812
5813 if (PPC_RA (insn) != 0)
5814 regcache_raw_read_unsigned (regcache,
5815 tdep->ppc_gp0_regnum + PPC_RA (insn),
5816 &addr);
5817 addr += PPC_D (insn);
5818
5819 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5820 size = 4;
5821 else if (op6 == 54 || op6 == 55)
5822 size = 8;
5823 else if (op6 == 44 || op6 == 45)
5824 size = 2;
5825 else if (op6 == 38 || op6 == 39)
5826 size = 1;
5827 else
5828 gdb_assert (0);
5829
5830 record_full_arch_list_add_mem (addr, size);
5831 }
5832 break;
5833
5834 case 57:
5835 switch (insn & 0x3)
5836 {
5837 case 0: /* Load Floating-Point Double Pair */
5838 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5839 record_full_arch_list_add_reg (regcache, tmp);
5840 record_full_arch_list_add_reg (regcache, tmp + 1);
5841 break;
5842 case 2: /* Load VSX Scalar Doubleword */
5843 case 3: /* Load VSX Scalar Single */
5844 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5845 break;
5846 default:
5847 goto UNKNOWN_OP;
5848 }
5849 break;
5850
5851 case 58: /* Load Doubleword */
5852 /* Load Doubleword with Update */
5853 /* Load Word Algebraic */
5854 if (PPC_FIELD (insn, 30, 2) > 2)
5855 goto UNKNOWN_OP;
5856
5857 record_full_arch_list_add_reg (regcache,
5858 tdep->ppc_gp0_regnum + PPC_RT (insn));
5859 if (PPC_BIT (insn, 31))
5860 record_full_arch_list_add_reg (regcache,
5861 tdep->ppc_gp0_regnum + PPC_RA (insn));
5862 break;
5863
5864 case 59:
5865 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5866 return -1;
5867 break;
5868
5869 case 60:
5870 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5871 return -1;
5872 break;
5873
5874 case 61:
5875 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5876 return -1;
5877 break;
5878
5879 case 62: /* Store Doubleword */
5880 /* Store Doubleword with Update */
5881 /* Store Quadword with Update */
5882 {
5883 ULONGEST addr = 0;
5884 int size;
5885 int sub2 = PPC_FIELD (insn, 30, 2);
5886
5887 if (sub2 > 2)
5888 goto UNKNOWN_OP;
5889
5890 if (PPC_RA (insn) != 0)
5891 regcache_raw_read_unsigned (regcache,
5892 tdep->ppc_gp0_regnum + PPC_RA (insn),
5893 &addr);
5894
5895 size = (sub2 == 2) ? 16 : 8;
5896
5897 addr += PPC_DS (insn) << 2;
5898 record_full_arch_list_add_mem (addr, size);
5899
5900 if (op6 == 62 && sub2 == 1)
5901 record_full_arch_list_add_reg (regcache,
5902 tdep->ppc_gp0_regnum +
5903 PPC_RA (insn));
5904
5905 break;
5906 }
5907
5908 case 63:
5909 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5910 return -1;
5911 break;
5912
5913 default:
5914UNKNOWN_OP:
5915 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5916 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5917 return -1;
5918 }
5919
5920 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5921 return -1;
5922 if (record_full_arch_list_add_end ())
5923 return -1;
5924 return 0;
5925}
5926
5927/* Initialize the current architecture based on INFO. If possible, re-use an
5928 architecture from ARCHES, which is a list of architectures already created
5929 during this debugging session.
5930
5931 Called e.g. at program startup, when reading a core file, and when reading
5932 a binary file. */
5933
5934static struct gdbarch *
5935rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5936{
5937 struct gdbarch *gdbarch;
5938 struct gdbarch_tdep *tdep;
5939 int wordsize, from_xcoff_exec, from_elf_exec;
5940 enum bfd_architecture arch;
5941 unsigned long mach;
5942 bfd abfd;
5943 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5944 int soft_float;
5945 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5946 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5947 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5948 have_vsx = 0;
5949 int tdesc_wordsize = -1;
5950 const struct target_desc *tdesc = info.target_desc;
5951 struct tdesc_arch_data *tdesc_data = NULL;
5952 int num_pseudoregs = 0;
5953 int cur_reg;
5954
5955 /* INFO may refer to a binary that is not of the PowerPC architecture,
5956 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5957 In this case, we must not attempt to infer properties of the (PowerPC
5958 side) of the target system from properties of that executable. Trust
5959 the target description instead. */
5960 if (info.abfd
5961 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5962 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5963 info.abfd = NULL;
5964
5965 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5966 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5967
5968 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5969 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5970
5971 /* Check word size. If INFO is from a binary file, infer it from
5972 that, else choose a likely default. */
5973 if (from_xcoff_exec)
5974 {
5975 if (bfd_xcoff_is_xcoff64 (info.abfd))
5976 wordsize = 8;
5977 else
5978 wordsize = 4;
5979 }
5980 else if (from_elf_exec)
5981 {
5982 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5983 wordsize = 8;
5984 else
5985 wordsize = 4;
5986 }
5987 else if (tdesc_has_registers (tdesc))
5988 wordsize = -1;
5989 else
5990 {
5991 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5992 wordsize = (info.bfd_arch_info->bits_per_word
5993 / info.bfd_arch_info->bits_per_byte);
5994 else
5995 wordsize = 4;
5996 }
5997
5998 /* Get the architecture and machine from the BFD. */
5999 arch = info.bfd_arch_info->arch;
6000 mach = info.bfd_arch_info->mach;
6001
6002 /* For e500 executables, the apuinfo section is of help here. Such
6003 section contains the identifier and revision number of each
6004 Application-specific Processing Unit that is present on the
6005 chip. The content of the section is determined by the assembler
6006 which looks at each instruction and determines which unit (and
6007 which version of it) can execute it. Grovel through the section
6008 looking for relevant e500 APUs. */
6009
6010 if (bfd_uses_spe_extensions (info.abfd))
6011 {
6012 arch = info.bfd_arch_info->arch;
6013 mach = bfd_mach_ppc_e500;
6014 bfd_default_set_arch_mach (&abfd, arch, mach);
6015 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6016 }
6017
6018 /* Find a default target description which describes our register
6019 layout, if we do not already have one. */
6020 if (! tdesc_has_registers (tdesc))
6021 {
6022 const struct variant *v;
6023
6024 /* Choose variant. */
6025 v = find_variant_by_arch (arch, mach);
6026 if (!v)
6027 return NULL;
6028
6029 tdesc = *v->tdesc;
6030 }
6031
6032 gdb_assert (tdesc_has_registers (tdesc));
6033
6034 /* Check any target description for validity. */
6035 if (tdesc_has_registers (tdesc))
6036 {
6037 static const char *const gprs[] = {
6038 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6039 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6040 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6041 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6042 };
6043 const struct tdesc_feature *feature;
6044 int i, valid_p;
6045 static const char *const msr_names[] = { "msr", "ps" };
6046 static const char *const cr_names[] = { "cr", "cnd" };
6047 static const char *const ctr_names[] = { "ctr", "cnt" };
6048
6049 feature = tdesc_find_feature (tdesc,
6050 "org.gnu.gdb.power.core");
6051 if (feature == NULL)
6052 return NULL;
6053
6054 tdesc_data = tdesc_data_alloc ();
6055
6056 valid_p = 1;
6057 for (i = 0; i < ppc_num_gprs; i++)
6058 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6059 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6060 "pc");
6061 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6062 "lr");
6063 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6064 "xer");
6065
6066 /* Allow alternate names for these registers, to accomodate GDB's
6067 historic naming. */
6068 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6069 PPC_MSR_REGNUM, msr_names);
6070 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6071 PPC_CR_REGNUM, cr_names);
6072 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6073 PPC_CTR_REGNUM, ctr_names);
6074
6075 if (!valid_p)
6076 {
6077 tdesc_data_cleanup (tdesc_data);
6078 return NULL;
6079 }
6080
6081 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6082 "mq");
6083
6084 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6085 if (wordsize == -1)
6086 wordsize = tdesc_wordsize;
6087
6088 feature = tdesc_find_feature (tdesc,
6089 "org.gnu.gdb.power.fpu");
6090 if (feature != NULL)
6091 {
6092 static const char *const fprs[] = {
6093 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6094 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6095 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6096 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6097 };
6098 valid_p = 1;
6099 for (i = 0; i < ppc_num_fprs; i++)
6100 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6101 PPC_F0_REGNUM + i, fprs[i]);
6102 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6103 PPC_FPSCR_REGNUM, "fpscr");
6104
6105 if (!valid_p)
6106 {
6107 tdesc_data_cleanup (tdesc_data);
6108 return NULL;
6109 }
6110 have_fpu = 1;
6111 }
6112 else
6113 have_fpu = 0;
6114
6115 /* The DFP pseudo-registers will be available when there are floating
6116 point registers. */
6117 have_dfp = have_fpu;
6118
6119 feature = tdesc_find_feature (tdesc,
6120 "org.gnu.gdb.power.altivec");
6121 if (feature != NULL)
6122 {
6123 static const char *const vector_regs[] = {
6124 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6125 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6126 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6127 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6128 };
6129
6130 valid_p = 1;
6131 for (i = 0; i < ppc_num_gprs; i++)
6132 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6133 PPC_VR0_REGNUM + i,
6134 vector_regs[i]);
6135 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6136 PPC_VSCR_REGNUM, "vscr");
6137 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6138 PPC_VRSAVE_REGNUM, "vrsave");
6139
6140 if (have_spe || !valid_p)
6141 {
6142 tdesc_data_cleanup (tdesc_data);
6143 return NULL;
6144 }
6145 have_altivec = 1;
6146 }
6147 else
6148 have_altivec = 0;
6149
6150 /* Check for POWER7 VSX registers support. */
6151 feature = tdesc_find_feature (tdesc,
6152 "org.gnu.gdb.power.vsx");
6153
6154 if (feature != NULL)
6155 {
6156 static const char *const vsx_regs[] = {
6157 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6158 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6159 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6160 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6161 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6162 "vs30h", "vs31h"
6163 };
6164
6165 valid_p = 1;
6166
6167 for (i = 0; i < ppc_num_vshrs; i++)
6168 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6169 PPC_VSR0_UPPER_REGNUM + i,
6170 vsx_regs[i]);
6171 if (!valid_p)
6172 {
6173 tdesc_data_cleanup (tdesc_data);
6174 return NULL;
6175 }
6176
6177 have_vsx = 1;
6178 }
6179 else
6180 have_vsx = 0;
6181
6182 /* On machines supporting the SPE APU, the general-purpose registers
6183 are 64 bits long. There are SIMD vector instructions to treat them
6184 as pairs of floats, but the rest of the instruction set treats them
6185 as 32-bit registers, and only operates on their lower halves.
6186
6187 In the GDB regcache, we treat their high and low halves as separate
6188 registers. The low halves we present as the general-purpose
6189 registers, and then we have pseudo-registers that stitch together
6190 the upper and lower halves and present them as pseudo-registers.
6191
6192 Thus, the target description is expected to supply the upper
6193 halves separately. */
6194
6195 feature = tdesc_find_feature (tdesc,
6196 "org.gnu.gdb.power.spe");
6197 if (feature != NULL)
6198 {
6199 static const char *const upper_spe[] = {
6200 "ev0h", "ev1h", "ev2h", "ev3h",
6201 "ev4h", "ev5h", "ev6h", "ev7h",
6202 "ev8h", "ev9h", "ev10h", "ev11h",
6203 "ev12h", "ev13h", "ev14h", "ev15h",
6204 "ev16h", "ev17h", "ev18h", "ev19h",
6205 "ev20h", "ev21h", "ev22h", "ev23h",
6206 "ev24h", "ev25h", "ev26h", "ev27h",
6207 "ev28h", "ev29h", "ev30h", "ev31h"
6208 };
6209
6210 valid_p = 1;
6211 for (i = 0; i < ppc_num_gprs; i++)
6212 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6213 PPC_SPE_UPPER_GP0_REGNUM + i,
6214 upper_spe[i]);
6215 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6216 PPC_SPE_ACC_REGNUM, "acc");
6217 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6218 PPC_SPE_FSCR_REGNUM, "spefscr");
6219
6220 if (have_mq || have_fpu || !valid_p)
6221 {
6222 tdesc_data_cleanup (tdesc_data);
6223 return NULL;
6224 }
6225 have_spe = 1;
6226 }
6227 else
6228 have_spe = 0;
6229 }
6230
6231 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6232 complain for a 32-bit binary on a 64-bit target; we do not yet
6233 support that. For instance, the 32-bit ABI routines expect
6234 32-bit GPRs.
6235
6236 As long as there isn't an explicit target description, we'll
6237 choose one based on the BFD architecture and get a word size
6238 matching the binary (probably powerpc:common or
6239 powerpc:common64). So there is only trouble if a 64-bit target
6240 supplies a 64-bit description while debugging a 32-bit
6241 binary. */
6242 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6243 {
6244 tdesc_data_cleanup (tdesc_data);
6245 return NULL;
6246 }
6247
6248#ifdef HAVE_ELF
6249 if (from_elf_exec)
6250 {
6251 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6252 {
6253 case 1:
6254 elf_abi = POWERPC_ELF_V1;
6255 break;
6256 case 2:
6257 elf_abi = POWERPC_ELF_V2;
6258 break;
6259 default:
6260 break;
6261 }
6262 }
6263
6264 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6265 {
6266 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6267 Tag_GNU_Power_ABI_FP))
6268 {
6269 case 1:
6270 soft_float_flag = AUTO_BOOLEAN_FALSE;
6271 break;
6272 case 2:
6273 soft_float_flag = AUTO_BOOLEAN_TRUE;
6274 break;
6275 default:
6276 break;
6277 }
6278 }
6279
6280 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6281 {
6282 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6283 Tag_GNU_Power_ABI_Vector))
6284 {
6285 case 1:
6286 vector_abi = POWERPC_VEC_GENERIC;
6287 break;
6288 case 2:
6289 vector_abi = POWERPC_VEC_ALTIVEC;
6290 break;
6291 case 3:
6292 vector_abi = POWERPC_VEC_SPE;
6293 break;
6294 default:
6295 break;
6296 }
6297 }
6298#endif
6299
6300 /* At this point, the only supported ELF-based 64-bit little-endian
6301 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6302 default. All other supported ELF-based operating systems use the
6303 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6304 e.g. because we run a legacy binary, or have attached to a process
6305 and have not found any associated binary file, set the default
6306 according to this heuristic. */
6307 if (elf_abi == POWERPC_ELF_AUTO)
6308 {
6309 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6310 elf_abi = POWERPC_ELF_V2;
6311 else
6312 elf_abi = POWERPC_ELF_V1;
6313 }
6314
6315 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6316 soft_float = 1;
6317 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6318 soft_float = 0;
6319 else
6320 soft_float = !have_fpu;
6321
6322 /* If we have a hard float binary or setting but no floating point
6323 registers, downgrade to soft float anyway. We're still somewhat
6324 useful in this scenario. */
6325 if (!soft_float && !have_fpu)
6326 soft_float = 1;
6327
6328 /* Similarly for vector registers. */
6329 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6330 vector_abi = POWERPC_VEC_GENERIC;
6331
6332 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6333 vector_abi = POWERPC_VEC_GENERIC;
6334
6335 if (vector_abi == POWERPC_VEC_AUTO)
6336 {
6337 if (have_altivec)
6338 vector_abi = POWERPC_VEC_ALTIVEC;
6339 else if (have_spe)
6340 vector_abi = POWERPC_VEC_SPE;
6341 else
6342 vector_abi = POWERPC_VEC_GENERIC;
6343 }
6344
6345 /* Do not limit the vector ABI based on available hardware, since we
6346 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6347
6348 /* Find a candidate among extant architectures. */
6349 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6350 arches != NULL;
6351 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6352 {
6353 /* Word size in the various PowerPC bfd_arch_info structs isn't
6354 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6355 separate word size check. */
6356 tdep = gdbarch_tdep (arches->gdbarch);
6357 if (tdep && tdep->elf_abi != elf_abi)
6358 continue;
6359 if (tdep && tdep->soft_float != soft_float)
6360 continue;
6361 if (tdep && tdep->vector_abi != vector_abi)
6362 continue;
6363 if (tdep && tdep->wordsize == wordsize)
6364 {
6365 if (tdesc_data != NULL)
6366 tdesc_data_cleanup (tdesc_data);
6367 return arches->gdbarch;
6368 }
6369 }
6370
6371 /* None found, create a new architecture from INFO, whose bfd_arch_info
6372 validity depends on the source:
6373 - executable useless
6374 - rs6000_host_arch() good
6375 - core file good
6376 - "set arch" trust blindly
6377 - GDB startup useless but harmless */
6378
6379 tdep = XCNEW (struct gdbarch_tdep);
6380 tdep->wordsize = wordsize;
6381 tdep->elf_abi = elf_abi;
6382 tdep->soft_float = soft_float;
6383 tdep->vector_abi = vector_abi;
6384
6385 gdbarch = gdbarch_alloc (&info, tdep);
6386
6387 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6388 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6389 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6390 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6391 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6392 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6393 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6394 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6395
6396 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6397 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6398 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6399 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6400 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6401 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6402 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6403 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6404
6405 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6406 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6407 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6408 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6409
6410 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6411 GDB traditionally called it "ps", though, so let GDB add an
6412 alias. */
6413 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6414
6415 if (wordsize == 8)
6416 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6417 else
6418 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6419
6420 /* Set lr_frame_offset. */
6421 if (wordsize == 8)
6422 tdep->lr_frame_offset = 16;
6423 else
6424 tdep->lr_frame_offset = 4;
6425
6426 if (have_spe || have_dfp || have_vsx)
6427 {
6428 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6429 set_gdbarch_pseudo_register_write (gdbarch,
6430 rs6000_pseudo_register_write);
6431 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6432 rs6000_ax_pseudo_register_collect);
6433 }
6434
6435 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6436
6437 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6438
6439 /* Select instruction printer. */
6440 if (arch == bfd_arch_rs6000)
6441 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
6442 else
6443 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
6444
6445 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6446
6447 if (have_spe)
6448 num_pseudoregs += 32;
6449 if (have_dfp)
6450 num_pseudoregs += 16;
6451 if (have_vsx)
6452 /* Include both VSX and Extended FP registers. */
6453 num_pseudoregs += 96;
6454
6455 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6456
6457 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6458 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6459 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6460 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6461 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6462 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6463 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6464 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6465 set_gdbarch_char_signed (gdbarch, 0);
6466
6467 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6468 if (wordsize == 8)
6469 /* PPC64 SYSV. */
6470 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6471
6472 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6473 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6474 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6475
6476 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6477 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6478
6479 if (wordsize == 4)
6480 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6481 else if (wordsize == 8)
6482 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6483
6484 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6485 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6486 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6487
6488 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6489 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
6490
6491 /* The value of symbols of type N_SO and N_FUN maybe null when
6492 it shouldn't be. */
6493 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6494
6495 /* Handles single stepping of atomic sequences. */
6496 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6497
6498 /* Not sure on this. FIXMEmgo */
6499 set_gdbarch_frame_args_skip (gdbarch, 8);
6500
6501 /* Helpers for function argument information. */
6502 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6503
6504 /* Trampoline. */
6505 set_gdbarch_in_solib_return_trampoline
6506 (gdbarch, rs6000_in_solib_return_trampoline);
6507 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6508
6509 /* Hook in the DWARF CFI frame unwinder. */
6510 dwarf2_append_unwinders (gdbarch);
6511 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6512
6513 /* Frame handling. */
6514 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6515
6516 /* Setup displaced stepping. */
6517 set_gdbarch_displaced_step_copy_insn (gdbarch,
6518 ppc_displaced_step_copy_insn);
6519 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6520 ppc_displaced_step_hw_singlestep);
6521 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6522 set_gdbarch_displaced_step_free_closure (gdbarch,
6523 simple_displaced_step_free_closure);
6524 set_gdbarch_displaced_step_location (gdbarch,
6525 displaced_step_at_entry_point);
6526
6527 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6528
6529 /* Hook in ABI-specific overrides, if they have been registered. */
6530 info.target_desc = tdesc;
6531 info.tdep_info = tdesc_data;
6532 gdbarch_init_osabi (info, gdbarch);
6533
6534 switch (info.osabi)
6535 {
6536 case GDB_OSABI_LINUX:
6537 case GDB_OSABI_NETBSD_AOUT:
6538 case GDB_OSABI_NETBSD_ELF:
6539 case GDB_OSABI_UNKNOWN:
6540 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6541 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6542 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6543 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6544 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6545 break;
6546 default:
6547 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6548
6549 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6550 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6551 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6552 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6553 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6554 }
6555
6556 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6557 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6558 rs6000_pseudo_register_reggroup_p);
6559 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6560
6561 /* Override the normal target description method to make the SPE upper
6562 halves anonymous. */
6563 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6564
6565 /* Choose register numbers for all supported pseudo-registers. */
6566 tdep->ppc_ev0_regnum = -1;
6567 tdep->ppc_dl0_regnum = -1;
6568 tdep->ppc_vsr0_regnum = -1;
6569 tdep->ppc_efpr0_regnum = -1;
6570
6571 cur_reg = gdbarch_num_regs (gdbarch);
6572
6573 if (have_spe)
6574 {
6575 tdep->ppc_ev0_regnum = cur_reg;
6576 cur_reg += 32;
6577 }
6578 if (have_dfp)
6579 {
6580 tdep->ppc_dl0_regnum = cur_reg;
6581 cur_reg += 16;
6582 }
6583 if (have_vsx)
6584 {
6585 tdep->ppc_vsr0_regnum = cur_reg;
6586 cur_reg += 64;
6587 tdep->ppc_efpr0_regnum = cur_reg;
6588 cur_reg += 32;
6589 }
6590
6591 gdb_assert (gdbarch_num_regs (gdbarch)
6592 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6593
6594 /* Register the ravenscar_arch_ops. */
6595 if (mach == bfd_mach_ppc_e500)
6596 register_e500_ravenscar_ops (gdbarch);
6597 else
6598 register_ppc_ravenscar_ops (gdbarch);
6599
6600 return gdbarch;
6601}
6602
6603static void
6604rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6605{
6606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6607
6608 if (tdep == NULL)
6609 return;
6610
6611 /* FIXME: Dump gdbarch_tdep. */
6612}
6613
6614/* PowerPC-specific commands. */
6615
6616static void
6617set_powerpc_command (char *args, int from_tty)
6618{
6619 printf_unfiltered (_("\
6620\"set powerpc\" must be followed by an appropriate subcommand.\n"));
6621 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6622}
6623
6624static void
6625show_powerpc_command (char *args, int from_tty)
6626{
6627 cmd_show_list (showpowerpccmdlist, from_tty, "");
6628}
6629
6630static void
6631powerpc_set_soft_float (char *args, int from_tty,
6632 struct cmd_list_element *c)
6633{
6634 struct gdbarch_info info;
6635
6636 /* Update the architecture. */
6637 gdbarch_info_init (&info);
6638 if (!gdbarch_update_p (info))
6639 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6640}
6641
6642static void
6643powerpc_set_vector_abi (char *args, int from_tty,
6644 struct cmd_list_element *c)
6645{
6646 struct gdbarch_info info;
6647 int vector_abi;
6648
6649 for (vector_abi = POWERPC_VEC_AUTO;
6650 vector_abi != POWERPC_VEC_LAST;
6651 vector_abi++)
6652 if (strcmp (powerpc_vector_abi_string,
6653 powerpc_vector_strings[vector_abi]) == 0)
6654 {
6655 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6656 break;
6657 }
6658
6659 if (vector_abi == POWERPC_VEC_LAST)
6660 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6661 powerpc_vector_abi_string);
6662
6663 /* Update the architecture. */
6664 gdbarch_info_init (&info);
6665 if (!gdbarch_update_p (info))
6666 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6667}
6668
6669/* Show the current setting of the exact watchpoints flag. */
6670
6671static void
6672show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6673 struct cmd_list_element *c,
6674 const char *value)
6675{
6676 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6677}
6678
6679/* Read a PPC instruction from memory. */
6680
6681static unsigned int
6682read_insn (struct frame_info *frame, CORE_ADDR pc)
6683{
6684 struct gdbarch *gdbarch = get_frame_arch (frame);
6685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6686
6687 return read_memory_unsigned_integer (pc, 4, byte_order);
6688}
6689
6690/* Return non-zero if the instructions at PC match the series
6691 described in PATTERN, or zero otherwise. PATTERN is an array of
6692 'struct ppc_insn_pattern' objects, terminated by an entry whose
6693 mask is zero.
6694
6695 When the match is successful, fill INSN[i] with what PATTERN[i]
6696 matched. If PATTERN[i] is optional, and the instruction wasn't
6697 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6698 INSN should have as many elements as PATTERN. Note that, if
6699 PATTERN contains optional instructions which aren't present in
6700 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6701 i'th instruction in memory. */
6702
6703int
6704ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6705 struct ppc_insn_pattern *pattern,
6706 unsigned int *insns)
6707{
6708 int i;
6709 unsigned int insn;
6710
6711 for (i = 0, insn = 0; pattern[i].mask; i++)
6712 {
6713 if (insn == 0)
6714 insn = read_insn (frame, pc);
6715 insns[i] = 0;
6716 if ((insn & pattern[i].mask) == pattern[i].data)
6717 {
6718 insns[i] = insn;
6719 pc += 4;
6720 insn = 0;
6721 }
6722 else if (!pattern[i].optional)
6723 return 0;
6724 }
6725
6726 return 1;
6727}
6728
6729/* Return the 'd' field of the d-form instruction INSN, properly
6730 sign-extended. */
6731
6732CORE_ADDR
6733ppc_insn_d_field (unsigned int insn)
6734{
6735 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6736}
6737
6738/* Return the 'ds' field of the ds-form instruction INSN, with the two
6739 zero bits concatenated at the right, and properly
6740 sign-extended. */
6741
6742CORE_ADDR
6743ppc_insn_ds_field (unsigned int insn)
6744{
6745 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6746}
6747
6748/* Initialization code. */
6749
6750/* -Wmissing-prototypes */
6751extern initialize_file_ftype _initialize_rs6000_tdep;
6752
6753void
6754_initialize_rs6000_tdep (void)
6755{
6756 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6757 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6758
6759 /* Initialize the standard target descriptions. */
6760 initialize_tdesc_powerpc_32 ();
6761 initialize_tdesc_powerpc_altivec32 ();
6762 initialize_tdesc_powerpc_vsx32 ();
6763 initialize_tdesc_powerpc_403 ();
6764 initialize_tdesc_powerpc_403gc ();
6765 initialize_tdesc_powerpc_405 ();
6766 initialize_tdesc_powerpc_505 ();
6767 initialize_tdesc_powerpc_601 ();
6768 initialize_tdesc_powerpc_602 ();
6769 initialize_tdesc_powerpc_603 ();
6770 initialize_tdesc_powerpc_604 ();
6771 initialize_tdesc_powerpc_64 ();
6772 initialize_tdesc_powerpc_altivec64 ();
6773 initialize_tdesc_powerpc_vsx64 ();
6774 initialize_tdesc_powerpc_7400 ();
6775 initialize_tdesc_powerpc_750 ();
6776 initialize_tdesc_powerpc_860 ();
6777 initialize_tdesc_powerpc_e500 ();
6778 initialize_tdesc_rs6000 ();
6779
6780 /* Add root prefix command for all "set powerpc"/"show powerpc"
6781 commands. */
6782 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6783 _("Various PowerPC-specific commands."),
6784 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6785
6786 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6787 _("Various PowerPC-specific commands."),
6788 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6789
6790 /* Add a command to allow the user to force the ABI. */
6791 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6792 &powerpc_soft_float_global,
6793 _("Set whether to use a soft-float ABI."),
6794 _("Show whether to use a soft-float ABI."),
6795 NULL,
6796 powerpc_set_soft_float, NULL,
6797 &setpowerpccmdlist, &showpowerpccmdlist);
6798
6799 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6800 &powerpc_vector_abi_string,
6801 _("Set the vector ABI."),
6802 _("Show the vector ABI."),
6803 NULL, powerpc_set_vector_abi, NULL,
6804 &setpowerpccmdlist, &showpowerpccmdlist);
6805
6806 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6807 &target_exact_watchpoints,
6808 _("\
6809Set whether to use just one debug register for watchpoints on scalars."),
6810 _("\
6811Show whether to use just one debug register for watchpoints on scalars."),
6812 _("\
6813If true, GDB will use only one debug register when watching a variable of\n\
6814scalar type, thus assuming that the variable is accessed through the address\n\
6815of its first byte."),
6816 NULL, show_powerpc_exact_watchpoints,
6817 &setpowerpccmdlist, &showpowerpccmdlist);
6818}
This page took 0.04526 seconds and 4 git commands to generate.