| 1 | /* Target-dependent code for the Renesas RX for GDB, the GNU debugger. |
| 2 | |
| 3 | Copyright (C) 2008-2014 Free Software Foundation, Inc. |
| 4 | |
| 5 | Contributed by Red Hat, Inc. |
| 6 | |
| 7 | This file is part of GDB. |
| 8 | |
| 9 | This program is free software; you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Public License as published by |
| 11 | the Free Software Foundation; either version 3 of the License, or |
| 12 | (at your option) any later version. |
| 13 | |
| 14 | This program is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #include "defs.h" |
| 23 | #include "arch-utils.h" |
| 24 | #include "prologue-value.h" |
| 25 | #include "target.h" |
| 26 | #include "regcache.h" |
| 27 | #include "opcode/rx.h" |
| 28 | #include "dis-asm.h" |
| 29 | #include "gdbtypes.h" |
| 30 | #include "frame.h" |
| 31 | #include "frame-unwind.h" |
| 32 | #include "frame-base.h" |
| 33 | #include "value.h" |
| 34 | #include "gdbcore.h" |
| 35 | #include "dwarf2-frame.h" |
| 36 | |
| 37 | #include "elf/rx.h" |
| 38 | #include "elf-bfd.h" |
| 39 | |
| 40 | /* Certain important register numbers. */ |
| 41 | enum |
| 42 | { |
| 43 | RX_SP_REGNUM = 0, |
| 44 | RX_R1_REGNUM = 1, |
| 45 | RX_R4_REGNUM = 4, |
| 46 | RX_FP_REGNUM = 6, |
| 47 | RX_R15_REGNUM = 15, |
| 48 | RX_PC_REGNUM = 19, |
| 49 | RX_ACC_REGNUM = 25, |
| 50 | RX_NUM_REGS = 26 |
| 51 | }; |
| 52 | |
| 53 | /* Architecture specific data. */ |
| 54 | struct gdbarch_tdep |
| 55 | { |
| 56 | /* The ELF header flags specify the multilib used. */ |
| 57 | int elf_flags; |
| 58 | }; |
| 59 | |
| 60 | /* This structure holds the results of a prologue analysis. */ |
| 61 | struct rx_prologue |
| 62 | { |
| 63 | /* The offset from the frame base to the stack pointer --- always |
| 64 | zero or negative. |
| 65 | |
| 66 | Calling this a "size" is a bit misleading, but given that the |
| 67 | stack grows downwards, using offsets for everything keeps one |
| 68 | from going completely sign-crazy: you never change anything's |
| 69 | sign for an ADD instruction; always change the second operand's |
| 70 | sign for a SUB instruction; and everything takes care of |
| 71 | itself. */ |
| 72 | int frame_size; |
| 73 | |
| 74 | /* Non-zero if this function has initialized the frame pointer from |
| 75 | the stack pointer, zero otherwise. */ |
| 76 | int has_frame_ptr; |
| 77 | |
| 78 | /* If has_frame_ptr is non-zero, this is the offset from the frame |
| 79 | base to where the frame pointer points. This is always zero or |
| 80 | negative. */ |
| 81 | int frame_ptr_offset; |
| 82 | |
| 83 | /* The address of the first instruction at which the frame has been |
| 84 | set up and the arguments are where the debug info says they are |
| 85 | --- as best as we can tell. */ |
| 86 | CORE_ADDR prologue_end; |
| 87 | |
| 88 | /* reg_offset[R] is the offset from the CFA at which register R is |
| 89 | saved, or 1 if register R has not been saved. (Real values are |
| 90 | always zero or negative.) */ |
| 91 | int reg_offset[RX_NUM_REGS]; |
| 92 | }; |
| 93 | |
| 94 | /* Implement the "register_name" gdbarch method. */ |
| 95 | static const char * |
| 96 | rx_register_name (struct gdbarch *gdbarch, int regnr) |
| 97 | { |
| 98 | static const char *const reg_names[] = { |
| 99 | "r0", |
| 100 | "r1", |
| 101 | "r2", |
| 102 | "r3", |
| 103 | "r4", |
| 104 | "r5", |
| 105 | "r6", |
| 106 | "r7", |
| 107 | "r8", |
| 108 | "r9", |
| 109 | "r10", |
| 110 | "r11", |
| 111 | "r12", |
| 112 | "r13", |
| 113 | "r14", |
| 114 | "r15", |
| 115 | "usp", |
| 116 | "isp", |
| 117 | "psw", |
| 118 | "pc", |
| 119 | "intb", |
| 120 | "bpsw", |
| 121 | "bpc", |
| 122 | "fintv", |
| 123 | "fpsw", |
| 124 | "acc" |
| 125 | }; |
| 126 | |
| 127 | return reg_names[regnr]; |
| 128 | } |
| 129 | |
| 130 | /* Implement the "register_type" gdbarch method. */ |
| 131 | static struct type * |
| 132 | rx_register_type (struct gdbarch *gdbarch, int reg_nr) |
| 133 | { |
| 134 | if (reg_nr == RX_PC_REGNUM) |
| 135 | return builtin_type (gdbarch)->builtin_func_ptr; |
| 136 | else if (reg_nr == RX_ACC_REGNUM) |
| 137 | return builtin_type (gdbarch)->builtin_unsigned_long_long; |
| 138 | else |
| 139 | return builtin_type (gdbarch)->builtin_unsigned_long; |
| 140 | } |
| 141 | |
| 142 | |
| 143 | /* Function for finding saved registers in a 'struct pv_area'; this |
| 144 | function is passed to pv_area_scan. |
| 145 | |
| 146 | If VALUE is a saved register, ADDR says it was saved at a constant |
| 147 | offset from the frame base, and SIZE indicates that the whole |
| 148 | register was saved, record its offset. */ |
| 149 | static void |
| 150 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) |
| 151 | { |
| 152 | struct rx_prologue *result = (struct rx_prologue *) result_untyped; |
| 153 | |
| 154 | if (value.kind == pvk_register |
| 155 | && value.k == 0 |
| 156 | && pv_is_register (addr, RX_SP_REGNUM) |
| 157 | && size == register_size (target_gdbarch (), value.reg)) |
| 158 | result->reg_offset[value.reg] = addr.k; |
| 159 | } |
| 160 | |
| 161 | /* Define a "handle" struct for fetching the next opcode. */ |
| 162 | struct rx_get_opcode_byte_handle |
| 163 | { |
| 164 | CORE_ADDR pc; |
| 165 | }; |
| 166 | |
| 167 | /* Fetch a byte on behalf of the opcode decoder. HANDLE contains |
| 168 | the memory address of the next byte to fetch. If successful, |
| 169 | the address in the handle is updated and the byte fetched is |
| 170 | returned as the value of the function. If not successful, -1 |
| 171 | is returned. */ |
| 172 | static int |
| 173 | rx_get_opcode_byte (void *handle) |
| 174 | { |
| 175 | struct rx_get_opcode_byte_handle *opcdata = handle; |
| 176 | int status; |
| 177 | gdb_byte byte; |
| 178 | |
| 179 | status = target_read_memory (opcdata->pc, &byte, 1); |
| 180 | if (status == 0) |
| 181 | { |
| 182 | opcdata->pc += 1; |
| 183 | return byte; |
| 184 | } |
| 185 | else |
| 186 | return -1; |
| 187 | } |
| 188 | |
| 189 | /* Analyze a prologue starting at START_PC, going no further than |
| 190 | LIMIT_PC. Fill in RESULT as appropriate. */ |
| 191 | static void |
| 192 | rx_analyze_prologue (CORE_ADDR start_pc, |
| 193 | CORE_ADDR limit_pc, struct rx_prologue *result) |
| 194 | { |
| 195 | CORE_ADDR pc, next_pc; |
| 196 | int rn; |
| 197 | pv_t reg[RX_NUM_REGS]; |
| 198 | struct pv_area *stack; |
| 199 | struct cleanup *back_to; |
| 200 | CORE_ADDR after_last_frame_setup_insn = start_pc; |
| 201 | |
| 202 | memset (result, 0, sizeof (*result)); |
| 203 | |
| 204 | for (rn = 0; rn < RX_NUM_REGS; rn++) |
| 205 | { |
| 206 | reg[rn] = pv_register (rn, 0); |
| 207 | result->reg_offset[rn] = 1; |
| 208 | } |
| 209 | |
| 210 | stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ())); |
| 211 | back_to = make_cleanup_free_pv_area (stack); |
| 212 | |
| 213 | /* The call instruction has saved the return address on the stack. */ |
| 214 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); |
| 215 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]); |
| 216 | |
| 217 | pc = start_pc; |
| 218 | while (pc < limit_pc) |
| 219 | { |
| 220 | int bytes_read; |
| 221 | struct rx_get_opcode_byte_handle opcode_handle; |
| 222 | RX_Opcode_Decoded opc; |
| 223 | |
| 224 | opcode_handle.pc = pc; |
| 225 | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, |
| 226 | &opcode_handle); |
| 227 | next_pc = pc + bytes_read; |
| 228 | |
| 229 | if (opc.id == RXO_pushm /* pushm r1, r2 */ |
| 230 | && opc.op[1].type == RX_Operand_Register |
| 231 | && opc.op[2].type == RX_Operand_Register) |
| 232 | { |
| 233 | int r1, r2; |
| 234 | int r; |
| 235 | |
| 236 | r1 = opc.op[1].reg; |
| 237 | r2 = opc.op[2].reg; |
| 238 | for (r = r2; r >= r1; r--) |
| 239 | { |
| 240 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); |
| 241 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]); |
| 242 | } |
| 243 | after_last_frame_setup_insn = next_pc; |
| 244 | } |
| 245 | else if (opc.id == RXO_mov /* mov.l rdst, rsrc */ |
| 246 | && opc.op[0].type == RX_Operand_Register |
| 247 | && opc.op[1].type == RX_Operand_Register |
| 248 | && opc.size == RX_Long) |
| 249 | { |
| 250 | int rdst, rsrc; |
| 251 | |
| 252 | rdst = opc.op[0].reg; |
| 253 | rsrc = opc.op[1].reg; |
| 254 | reg[rdst] = reg[rsrc]; |
| 255 | if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM) |
| 256 | after_last_frame_setup_insn = next_pc; |
| 257 | } |
| 258 | else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */ |
| 259 | && opc.op[0].type == RX_Operand_Predec |
| 260 | && opc.op[0].reg == RX_SP_REGNUM |
| 261 | && opc.op[1].type == RX_Operand_Register |
| 262 | && opc.size == RX_Long) |
| 263 | { |
| 264 | int rsrc; |
| 265 | |
| 266 | rsrc = opc.op[1].reg; |
| 267 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); |
| 268 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]); |
| 269 | after_last_frame_setup_insn = next_pc; |
| 270 | } |
| 271 | else if (opc.id == RXO_add /* add #const, rsrc, rdst */ |
| 272 | && opc.op[0].type == RX_Operand_Register |
| 273 | && opc.op[1].type == RX_Operand_Immediate |
| 274 | && opc.op[2].type == RX_Operand_Register) |
| 275 | { |
| 276 | int rdst = opc.op[0].reg; |
| 277 | int addend = opc.op[1].addend; |
| 278 | int rsrc = opc.op[2].reg; |
| 279 | reg[rdst] = pv_add_constant (reg[rsrc], addend); |
| 280 | /* Negative adjustments to the stack pointer or frame pointer |
| 281 | are (most likely) part of the prologue. */ |
| 282 | if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0) |
| 283 | after_last_frame_setup_insn = next_pc; |
| 284 | } |
| 285 | else if (opc.id == RXO_mov |
| 286 | && opc.op[0].type == RX_Operand_Indirect |
| 287 | && opc.op[1].type == RX_Operand_Register |
| 288 | && opc.size == RX_Long |
| 289 | && (opc.op[0].reg == RX_SP_REGNUM |
| 290 | || opc.op[0].reg == RX_FP_REGNUM) |
| 291 | && (RX_R1_REGNUM <= opc.op[1].reg |
| 292 | && opc.op[1].reg <= RX_R4_REGNUM)) |
| 293 | { |
| 294 | /* This moves an argument register to the stack. Don't |
| 295 | record it, but allow it to be a part of the prologue. */ |
| 296 | } |
| 297 | else if (opc.id == RXO_branch |
| 298 | && opc.op[0].type == RX_Operand_Immediate |
| 299 | && next_pc < opc.op[0].addend) |
| 300 | { |
| 301 | /* When a loop appears as the first statement of a function |
| 302 | body, gcc 4.x will use a BRA instruction to branch to the |
| 303 | loop condition checking code. This BRA instruction is |
| 304 | marked as part of the prologue. We therefore set next_pc |
| 305 | to this branch target and also stop the prologue scan. |
| 306 | The instructions at and beyond the branch target should |
| 307 | no longer be associated with the prologue. |
| 308 | |
| 309 | Note that we only consider forward branches here. We |
| 310 | presume that a forward branch is being used to skip over |
| 311 | a loop body. |
| 312 | |
| 313 | A backwards branch is covered by the default case below. |
| 314 | If we were to encounter a backwards branch, that would |
| 315 | most likely mean that we've scanned through a loop body. |
| 316 | We definitely want to stop the prologue scan when this |
| 317 | happens and that is precisely what is done by the default |
| 318 | case below. */ |
| 319 | |
| 320 | after_last_frame_setup_insn = opc.op[0].addend; |
| 321 | break; /* Scan no further if we hit this case. */ |
| 322 | } |
| 323 | else |
| 324 | { |
| 325 | /* Terminate the prologue scan. */ |
| 326 | break; |
| 327 | } |
| 328 | |
| 329 | pc = next_pc; |
| 330 | } |
| 331 | |
| 332 | /* Is the frame size (offset, really) a known constant? */ |
| 333 | if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM)) |
| 334 | result->frame_size = reg[RX_SP_REGNUM].k; |
| 335 | |
| 336 | /* Was the frame pointer initialized? */ |
| 337 | if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM)) |
| 338 | { |
| 339 | result->has_frame_ptr = 1; |
| 340 | result->frame_ptr_offset = reg[RX_FP_REGNUM].k; |
| 341 | } |
| 342 | |
| 343 | /* Record where all the registers were saved. */ |
| 344 | pv_area_scan (stack, check_for_saved, (void *) result); |
| 345 | |
| 346 | result->prologue_end = after_last_frame_setup_insn; |
| 347 | |
| 348 | do_cleanups (back_to); |
| 349 | } |
| 350 | |
| 351 | |
| 352 | /* Implement the "skip_prologue" gdbarch method. */ |
| 353 | static CORE_ADDR |
| 354 | rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| 355 | { |
| 356 | const char *name; |
| 357 | CORE_ADDR func_addr, func_end; |
| 358 | struct rx_prologue p; |
| 359 | |
| 360 | /* Try to find the extent of the function that contains PC. */ |
| 361 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) |
| 362 | return pc; |
| 363 | |
| 364 | rx_analyze_prologue (pc, func_end, &p); |
| 365 | return p.prologue_end; |
| 366 | } |
| 367 | |
| 368 | /* Given a frame described by THIS_FRAME, decode the prologue of its |
| 369 | associated function if there is not cache entry as specified by |
| 370 | THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and |
| 371 | return that struct as the value of this function. */ |
| 372 | static struct rx_prologue * |
| 373 | rx_analyze_frame_prologue (struct frame_info *this_frame, |
| 374 | void **this_prologue_cache) |
| 375 | { |
| 376 | if (!*this_prologue_cache) |
| 377 | { |
| 378 | CORE_ADDR func_start, stop_addr; |
| 379 | |
| 380 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue); |
| 381 | |
| 382 | func_start = get_frame_func (this_frame); |
| 383 | stop_addr = get_frame_pc (this_frame); |
| 384 | |
| 385 | /* If we couldn't find any function containing the PC, then |
| 386 | just initialize the prologue cache, but don't do anything. */ |
| 387 | if (!func_start) |
| 388 | stop_addr = func_start; |
| 389 | |
| 390 | rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache); |
| 391 | } |
| 392 | |
| 393 | return *this_prologue_cache; |
| 394 | } |
| 395 | |
| 396 | /* Given the next frame and a prologue cache, return this frame's |
| 397 | base. */ |
| 398 | static CORE_ADDR |
| 399 | rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache) |
| 400 | { |
| 401 | struct rx_prologue *p |
| 402 | = rx_analyze_frame_prologue (this_frame, this_prologue_cache); |
| 403 | |
| 404 | /* In functions that use alloca, the distance between the stack |
| 405 | pointer and the frame base varies dynamically, so we can't use |
| 406 | the SP plus static information like prologue analysis to find the |
| 407 | frame base. However, such functions must have a frame pointer, |
| 408 | to be able to restore the SP on exit. So whenever we do have a |
| 409 | frame pointer, use that to find the base. */ |
| 410 | if (p->has_frame_ptr) |
| 411 | { |
| 412 | CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM); |
| 413 | return fp - p->frame_ptr_offset; |
| 414 | } |
| 415 | else |
| 416 | { |
| 417 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM); |
| 418 | return sp - p->frame_size; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | /* Implement the "frame_this_id" method for unwinding frames. */ |
| 423 | static void |
| 424 | rx_frame_this_id (struct frame_info *this_frame, |
| 425 | void **this_prologue_cache, struct frame_id *this_id) |
| 426 | { |
| 427 | *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache), |
| 428 | get_frame_func (this_frame)); |
| 429 | } |
| 430 | |
| 431 | /* Implement the "frame_prev_register" method for unwinding frames. */ |
| 432 | static struct value * |
| 433 | rx_frame_prev_register (struct frame_info *this_frame, |
| 434 | void **this_prologue_cache, int regnum) |
| 435 | { |
| 436 | struct rx_prologue *p |
| 437 | = rx_analyze_frame_prologue (this_frame, this_prologue_cache); |
| 438 | CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache); |
| 439 | int reg_size = register_size (get_frame_arch (this_frame), regnum); |
| 440 | |
| 441 | if (regnum == RX_SP_REGNUM) |
| 442 | return frame_unwind_got_constant (this_frame, regnum, frame_base); |
| 443 | |
| 444 | /* If prologue analysis says we saved this register somewhere, |
| 445 | return a description of the stack slot holding it. */ |
| 446 | else if (p->reg_offset[regnum] != 1) |
| 447 | return frame_unwind_got_memory (this_frame, regnum, |
| 448 | frame_base + p->reg_offset[regnum]); |
| 449 | |
| 450 | /* Otherwise, presume we haven't changed the value of this |
| 451 | register, and get it from the next frame. */ |
| 452 | else |
| 453 | return frame_unwind_got_register (this_frame, regnum, regnum); |
| 454 | } |
| 455 | |
| 456 | static const struct frame_unwind rx_frame_unwind = { |
| 457 | NORMAL_FRAME, |
| 458 | default_frame_unwind_stop_reason, |
| 459 | rx_frame_this_id, |
| 460 | rx_frame_prev_register, |
| 461 | NULL, |
| 462 | default_frame_sniffer |
| 463 | }; |
| 464 | |
| 465 | /* Implement the "unwind_pc" gdbarch method. */ |
| 466 | static CORE_ADDR |
| 467 | rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 468 | { |
| 469 | ULONGEST pc; |
| 470 | |
| 471 | pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM); |
| 472 | return pc; |
| 473 | } |
| 474 | |
| 475 | /* Implement the "unwind_sp" gdbarch method. */ |
| 476 | static CORE_ADDR |
| 477 | rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 478 | { |
| 479 | ULONGEST sp; |
| 480 | |
| 481 | sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM); |
| 482 | return sp; |
| 483 | } |
| 484 | |
| 485 | /* Implement the "dummy_id" gdbarch method. */ |
| 486 | static struct frame_id |
| 487 | rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| 488 | { |
| 489 | return |
| 490 | frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM), |
| 491 | get_frame_pc (this_frame)); |
| 492 | } |
| 493 | |
| 494 | /* Implement the "push_dummy_call" gdbarch method. */ |
| 495 | static CORE_ADDR |
| 496 | rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| 497 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
| 498 | struct value **args, CORE_ADDR sp, int struct_return, |
| 499 | CORE_ADDR struct_addr) |
| 500 | { |
| 501 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 502 | int write_pass; |
| 503 | int sp_off = 0; |
| 504 | CORE_ADDR cfa; |
| 505 | int num_register_candidate_args; |
| 506 | |
| 507 | struct type *func_type = value_type (function); |
| 508 | |
| 509 | /* Dereference function pointer types. */ |
| 510 | while (TYPE_CODE (func_type) == TYPE_CODE_PTR) |
| 511 | func_type = TYPE_TARGET_TYPE (func_type); |
| 512 | |
| 513 | /* The end result had better be a function or a method. */ |
| 514 | gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC |
| 515 | || TYPE_CODE (func_type) == TYPE_CODE_METHOD); |
| 516 | |
| 517 | /* Functions with a variable number of arguments have all of their |
| 518 | variable arguments and the last non-variable argument passed |
| 519 | on the stack. |
| 520 | |
| 521 | Otherwise, we can pass up to four arguments on the stack. |
| 522 | |
| 523 | Once computed, we leave this value alone. I.e. we don't update |
| 524 | it in case of a struct return going in a register or an argument |
| 525 | requiring multiple registers, etc. We rely instead on the value |
| 526 | of the ``arg_reg'' variable to get these other details correct. */ |
| 527 | |
| 528 | if (TYPE_VARARGS (func_type)) |
| 529 | num_register_candidate_args = TYPE_NFIELDS (func_type) - 1; |
| 530 | else |
| 531 | num_register_candidate_args = 4; |
| 532 | |
| 533 | /* We make two passes; the first does the stack allocation, |
| 534 | the second actually stores the arguments. */ |
| 535 | for (write_pass = 0; write_pass <= 1; write_pass++) |
| 536 | { |
| 537 | int i; |
| 538 | int arg_reg = RX_R1_REGNUM; |
| 539 | |
| 540 | if (write_pass) |
| 541 | sp = align_down (sp - sp_off, 4); |
| 542 | sp_off = 0; |
| 543 | |
| 544 | if (struct_return) |
| 545 | { |
| 546 | struct type *return_type = TYPE_TARGET_TYPE (func_type); |
| 547 | |
| 548 | gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT |
| 549 | || TYPE_CODE (func_type) == TYPE_CODE_UNION); |
| 550 | |
| 551 | if (TYPE_LENGTH (return_type) > 16 |
| 552 | || TYPE_LENGTH (return_type) % 4 != 0) |
| 553 | { |
| 554 | if (write_pass) |
| 555 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, |
| 556 | struct_addr); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | /* Push the arguments. */ |
| 561 | for (i = 0; i < nargs; i++) |
| 562 | { |
| 563 | struct value *arg = args[i]; |
| 564 | const gdb_byte *arg_bits = value_contents_all (arg); |
| 565 | struct type *arg_type = check_typedef (value_type (arg)); |
| 566 | ULONGEST arg_size = TYPE_LENGTH (arg_type); |
| 567 | |
| 568 | if (i == 0 && struct_addr != 0 && !struct_return |
| 569 | && TYPE_CODE (arg_type) == TYPE_CODE_PTR |
| 570 | && extract_unsigned_integer (arg_bits, 4, |
| 571 | byte_order) == struct_addr) |
| 572 | { |
| 573 | /* This argument represents the address at which C++ (and |
| 574 | possibly other languages) store their return value. |
| 575 | Put this value in R15. */ |
| 576 | if (write_pass) |
| 577 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, |
| 578 | struct_addr); |
| 579 | } |
| 580 | else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT |
| 581 | && TYPE_CODE (arg_type) != TYPE_CODE_UNION) |
| 582 | { |
| 583 | /* Argument is a scalar. */ |
| 584 | if (arg_size == 8) |
| 585 | { |
| 586 | if (i < num_register_candidate_args |
| 587 | && arg_reg <= RX_R4_REGNUM - 1) |
| 588 | { |
| 589 | /* If argument registers are going to be used to pass |
| 590 | an 8 byte scalar, the ABI specifies that two registers |
| 591 | must be available. */ |
| 592 | if (write_pass) |
| 593 | { |
| 594 | regcache_cooked_write_unsigned (regcache, arg_reg, |
| 595 | extract_unsigned_integer |
| 596 | (arg_bits, 4, |
| 597 | byte_order)); |
| 598 | regcache_cooked_write_unsigned (regcache, |
| 599 | arg_reg + 1, |
| 600 | extract_unsigned_integer |
| 601 | (arg_bits + 4, 4, |
| 602 | byte_order)); |
| 603 | } |
| 604 | arg_reg += 2; |
| 605 | } |
| 606 | else |
| 607 | { |
| 608 | sp_off = align_up (sp_off, 4); |
| 609 | /* Otherwise, pass the 8 byte scalar on the stack. */ |
| 610 | if (write_pass) |
| 611 | write_memory (sp + sp_off, arg_bits, 8); |
| 612 | sp_off += 8; |
| 613 | } |
| 614 | } |
| 615 | else |
| 616 | { |
| 617 | ULONGEST u; |
| 618 | |
| 619 | gdb_assert (arg_size <= 4); |
| 620 | |
| 621 | u = |
| 622 | extract_unsigned_integer (arg_bits, arg_size, byte_order); |
| 623 | |
| 624 | if (i < num_register_candidate_args |
| 625 | && arg_reg <= RX_R4_REGNUM) |
| 626 | { |
| 627 | if (write_pass) |
| 628 | regcache_cooked_write_unsigned (regcache, arg_reg, u); |
| 629 | arg_reg += 1; |
| 630 | } |
| 631 | else |
| 632 | { |
| 633 | int p_arg_size = 4; |
| 634 | |
| 635 | if (TYPE_PROTOTYPED (func_type) |
| 636 | && i < TYPE_NFIELDS (func_type)) |
| 637 | { |
| 638 | struct type *p_arg_type = |
| 639 | TYPE_FIELD_TYPE (func_type, i); |
| 640 | p_arg_size = TYPE_LENGTH (p_arg_type); |
| 641 | } |
| 642 | |
| 643 | sp_off = align_up (sp_off, p_arg_size); |
| 644 | |
| 645 | if (write_pass) |
| 646 | write_memory_unsigned_integer (sp + sp_off, |
| 647 | p_arg_size, byte_order, |
| 648 | u); |
| 649 | sp_off += p_arg_size; |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | else |
| 654 | { |
| 655 | /* Argument is a struct or union. Pass as much of the struct |
| 656 | in registers, if possible. Pass the rest on the stack. */ |
| 657 | while (arg_size > 0) |
| 658 | { |
| 659 | if (i < num_register_candidate_args |
| 660 | && arg_reg <= RX_R4_REGNUM |
| 661 | && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1) |
| 662 | && arg_size % 4 == 0) |
| 663 | { |
| 664 | int len = min (arg_size, 4); |
| 665 | |
| 666 | if (write_pass) |
| 667 | regcache_cooked_write_unsigned (regcache, arg_reg, |
| 668 | extract_unsigned_integer |
| 669 | (arg_bits, len, |
| 670 | byte_order)); |
| 671 | arg_bits += len; |
| 672 | arg_size -= len; |
| 673 | arg_reg++; |
| 674 | } |
| 675 | else |
| 676 | { |
| 677 | sp_off = align_up (sp_off, 4); |
| 678 | if (write_pass) |
| 679 | write_memory (sp + sp_off, arg_bits, arg_size); |
| 680 | sp_off += align_up (arg_size, 4); |
| 681 | arg_size = 0; |
| 682 | } |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | /* Keep track of the stack address prior to pushing the return address. |
| 689 | This is the value that we'll return. */ |
| 690 | cfa = sp; |
| 691 | |
| 692 | /* Push the return address. */ |
| 693 | sp = sp - 4; |
| 694 | write_memory_unsigned_integer (sp, 4, byte_order, bp_addr); |
| 695 | |
| 696 | /* Update the stack pointer. */ |
| 697 | regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp); |
| 698 | |
| 699 | return cfa; |
| 700 | } |
| 701 | |
| 702 | /* Implement the "return_value" gdbarch method. */ |
| 703 | static enum return_value_convention |
| 704 | rx_return_value (struct gdbarch *gdbarch, |
| 705 | struct value *function, |
| 706 | struct type *valtype, |
| 707 | struct regcache *regcache, |
| 708 | gdb_byte *readbuf, const gdb_byte *writebuf) |
| 709 | { |
| 710 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| 711 | ULONGEST valtype_len = TYPE_LENGTH (valtype); |
| 712 | |
| 713 | if (TYPE_LENGTH (valtype) > 16 |
| 714 | || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
| 715 | || TYPE_CODE (valtype) == TYPE_CODE_UNION) |
| 716 | && TYPE_LENGTH (valtype) % 4 != 0)) |
| 717 | return RETURN_VALUE_STRUCT_CONVENTION; |
| 718 | |
| 719 | if (readbuf) |
| 720 | { |
| 721 | ULONGEST u; |
| 722 | int argreg = RX_R1_REGNUM; |
| 723 | int offset = 0; |
| 724 | |
| 725 | while (valtype_len > 0) |
| 726 | { |
| 727 | int len = min (valtype_len, 4); |
| 728 | |
| 729 | regcache_cooked_read_unsigned (regcache, argreg, &u); |
| 730 | store_unsigned_integer (readbuf + offset, len, byte_order, u); |
| 731 | valtype_len -= len; |
| 732 | offset += len; |
| 733 | argreg++; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | if (writebuf) |
| 738 | { |
| 739 | ULONGEST u; |
| 740 | int argreg = RX_R1_REGNUM; |
| 741 | int offset = 0; |
| 742 | |
| 743 | while (valtype_len > 0) |
| 744 | { |
| 745 | int len = min (valtype_len, 4); |
| 746 | |
| 747 | u = extract_unsigned_integer (writebuf + offset, len, byte_order); |
| 748 | regcache_cooked_write_unsigned (regcache, argreg, u); |
| 749 | valtype_len -= len; |
| 750 | offset += len; |
| 751 | argreg++; |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | return RETURN_VALUE_REGISTER_CONVENTION; |
| 756 | } |
| 757 | |
| 758 | /* Implement the "breakpoint_from_pc" gdbarch method. */ |
| 759 | static const gdb_byte * |
| 760 | rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) |
| 761 | { |
| 762 | static gdb_byte breakpoint[] = { 0x00 }; |
| 763 | *lenptr = sizeof breakpoint; |
| 764 | return breakpoint; |
| 765 | } |
| 766 | |
| 767 | /* Allocate and initialize a gdbarch object. */ |
| 768 | static struct gdbarch * |
| 769 | rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| 770 | { |
| 771 | struct gdbarch *gdbarch; |
| 772 | struct gdbarch_tdep *tdep; |
| 773 | int elf_flags; |
| 774 | |
| 775 | /* Extract the elf_flags if available. */ |
| 776 | if (info.abfd != NULL |
| 777 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) |
| 778 | elf_flags = elf_elfheader (info.abfd)->e_flags; |
| 779 | else |
| 780 | elf_flags = 0; |
| 781 | |
| 782 | |
| 783 | /* Try to find the architecture in the list of already defined |
| 784 | architectures. */ |
| 785 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
| 786 | arches != NULL; |
| 787 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) |
| 788 | { |
| 789 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) |
| 790 | continue; |
| 791 | |
| 792 | return arches->gdbarch; |
| 793 | } |
| 794 | |
| 795 | /* None found, create a new architecture from the information |
| 796 | provided. */ |
| 797 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); |
| 798 | gdbarch = gdbarch_alloc (&info, tdep); |
| 799 | tdep->elf_flags = elf_flags; |
| 800 | |
| 801 | set_gdbarch_num_regs (gdbarch, RX_NUM_REGS); |
| 802 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
| 803 | set_gdbarch_register_name (gdbarch, rx_register_name); |
| 804 | set_gdbarch_register_type (gdbarch, rx_register_type); |
| 805 | set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM); |
| 806 | set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM); |
| 807 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| 808 | set_gdbarch_decr_pc_after_break (gdbarch, 1); |
| 809 | set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc); |
| 810 | set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue); |
| 811 | |
| 812 | set_gdbarch_print_insn (gdbarch, print_insn_rx); |
| 813 | |
| 814 | set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc); |
| 815 | set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp); |
| 816 | |
| 817 | /* Target builtin data types. */ |
| 818 | set_gdbarch_char_signed (gdbarch, 0); |
| 819 | set_gdbarch_short_bit (gdbarch, 16); |
| 820 | set_gdbarch_int_bit (gdbarch, 32); |
| 821 | set_gdbarch_long_bit (gdbarch, 32); |
| 822 | set_gdbarch_long_long_bit (gdbarch, 64); |
| 823 | set_gdbarch_ptr_bit (gdbarch, 32); |
| 824 | set_gdbarch_float_bit (gdbarch, 32); |
| 825 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
| 826 | if (elf_flags & E_FLAG_RX_64BIT_DOUBLES) |
| 827 | { |
| 828 | set_gdbarch_double_bit (gdbarch, 64); |
| 829 | set_gdbarch_long_double_bit (gdbarch, 64); |
| 830 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); |
| 831 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); |
| 832 | } |
| 833 | else |
| 834 | { |
| 835 | set_gdbarch_double_bit (gdbarch, 32); |
| 836 | set_gdbarch_long_double_bit (gdbarch, 32); |
| 837 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); |
| 838 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); |
| 839 | } |
| 840 | |
| 841 | /* Frame unwinding. */ |
| 842 | #if 0 |
| 843 | /* Note: The test results are better with the dwarf2 unwinder disabled, |
| 844 | so it's turned off for now. */ |
| 845 | dwarf2_append_unwinders (gdbarch); |
| 846 | #endif |
| 847 | frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind); |
| 848 | |
| 849 | /* Methods for saving / extracting a dummy frame's ID. |
| 850 | The ID's stack address must match the SP value returned by |
| 851 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ |
| 852 | set_gdbarch_dummy_id (gdbarch, rx_dummy_id); |
| 853 | set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call); |
| 854 | set_gdbarch_return_value (gdbarch, rx_return_value); |
| 855 | |
| 856 | /* Virtual tables. */ |
| 857 | set_gdbarch_vbit_in_delta (gdbarch, 1); |
| 858 | |
| 859 | return gdbarch; |
| 860 | } |
| 861 | |
| 862 | /* -Wmissing-prototypes */ |
| 863 | extern initialize_file_ftype _initialize_rx_tdep; |
| 864 | |
| 865 | /* Register the above initialization routine. */ |
| 866 | |
| 867 | void |
| 868 | _initialize_rx_tdep (void) |
| 869 | { |
| 870 | register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init); |
| 871 | } |