* gc++filt.m4: New file.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "arch-utils.h"
23#include "dis-asm.h"
24#include "dwarf2-frame.h"
25#include "floatformat.h"
26#include "frame.h"
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
36#include "target.h"
37#include "value.h"
38
39#include "gdb_assert.h"
40#include "gdb_string.h"
41
42#include "sparc-tdep.h"
43
44struct regset;
45
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67#define floatformats_sparc_quad floatformats_ia64_quad
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
83#define X_RS1(i) (((i) >> 14) & 0x1f)
84#define X_RS2(i) ((i) & 0x1f)
85#define X_I(i) (((i) >> 13) & 1)
86/* Sign extension macros. */
87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
96{
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
100
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
104
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
110\f
111
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
155sparc_fetch_wcookie (struct gdbarch *gdbarch)
156{
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len, byte_order);
170}
171\f
172
173/* The functions on this page are intended to be used to classify
174 function arguments. */
175
176/* Check whether TYPE is "Integral or Pointer". */
177
178static int
179sparc_integral_or_pointer_p (const struct type *type)
180{
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203}
204
205/* Check whether TYPE is "Floating". */
206
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
223
224/* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
229
230static int
231sparc_structure_or_union_p (const struct type *type)
232{
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
237 case TYPE_CODE_ARRAY:
238 return 1;
239 default:
240 break;
241 }
242
243 return 0;
244}
245
246/* Register information. */
247
248static const char *sparc32_register_names[] =
249{
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
261};
262
263/* Total number of registers. */
264#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
265
266/* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269static const char *sparc32_pseudo_register_names[] =
270{
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273};
274
275/* Total number of pseudo registers. */
276#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278/* Return the name of register REGNUM. */
279
280static const char *
281sparc32_register_name (struct gdbarch *gdbarch, int regnum)
282{
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290}
291\f
292/* Construct types for ISA-specific registers. */
293
294static struct type *
295sparc_psr_type (struct gdbarch *gdbarch)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
302
303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
309
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314}
315
316static struct type *
317sparc_fsr_type (struct gdbarch *gdbarch)
318{
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
347}
348
349/* Return the GDB type object for the "standard" data type of data in
350 register REGNUM. */
351
352static struct type *
353sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354{
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
356 return builtin_type (gdbarch)->builtin_float;
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
359 return builtin_type (gdbarch)->builtin_double;
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
362 return builtin_type (gdbarch)->builtin_data_ptr;
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
365 return builtin_type (gdbarch)->builtin_func_ptr;
366
367 if (regnum == SPARC32_PSR_REGNUM)
368 return sparc_psr_type (gdbarch);
369
370 if (regnum == SPARC32_FSR_REGNUM)
371 return sparc_fsr_type (gdbarch);
372
373 return builtin_type (gdbarch)->builtin_int32;
374}
375
376static void
377sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
379 int regnum, gdb_byte *buf)
380{
381 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
382
383 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
384 regcache_raw_read (regcache, regnum, buf);
385 regcache_raw_read (regcache, regnum + 1, buf + 4);
386}
387
388static void
389sparc32_pseudo_register_write (struct gdbarch *gdbarch,
390 struct regcache *regcache,
391 int regnum, const gdb_byte *buf)
392{
393 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
394
395 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
396 regcache_raw_write (regcache, regnum, buf);
397 regcache_raw_write (regcache, regnum + 1, buf + 4);
398}
399\f
400
401static CORE_ADDR
402sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
403 CORE_ADDR funcaddr,
404 struct value **args, int nargs,
405 struct type *value_type,
406 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
407 struct regcache *regcache)
408{
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
410
411 *bp_addr = sp - 4;
412 *real_pc = funcaddr;
413
414 if (using_struct_return (gdbarch, NULL, value_type))
415 {
416 gdb_byte buf[4];
417
418 /* This is an UNIMP instruction. */
419 store_unsigned_integer (buf, 4, byte_order,
420 TYPE_LENGTH (value_type) & 0x1fff);
421 write_memory (sp - 8, buf, 4);
422 return sp - 8;
423 }
424
425 return sp - 4;
426}
427
428static CORE_ADDR
429sparc32_store_arguments (struct regcache *regcache, int nargs,
430 struct value **args, CORE_ADDR sp,
431 int struct_return, CORE_ADDR struct_addr)
432{
433 struct gdbarch *gdbarch = get_regcache_arch (regcache);
434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
435 /* Number of words in the "parameter array". */
436 int num_elements = 0;
437 int element = 0;
438 int i;
439
440 for (i = 0; i < nargs; i++)
441 {
442 struct type *type = value_type (args[i]);
443 int len = TYPE_LENGTH (type);
444
445 if (sparc_structure_or_union_p (type)
446 || (sparc_floating_p (type) && len == 16))
447 {
448 /* Structure, Union and Quad-Precision Arguments. */
449 sp -= len;
450
451 /* Use doubleword alignment for these values. That's always
452 correct, and wasting a few bytes shouldn't be a problem. */
453 sp &= ~0x7;
454
455 write_memory (sp, value_contents (args[i]), len);
456 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
457 num_elements++;
458 }
459 else if (sparc_floating_p (type))
460 {
461 /* Floating arguments. */
462 gdb_assert (len == 4 || len == 8);
463 num_elements += (len / 4);
464 }
465 else
466 {
467 /* Integral and pointer arguments. */
468 gdb_assert (sparc_integral_or_pointer_p (type));
469
470 if (len < 4)
471 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
472 args[i]);
473 num_elements += ((len + 3) / 4);
474 }
475 }
476
477 /* Always allocate at least six words. */
478 sp -= max (6, num_elements) * 4;
479
480 /* The psABI says that "Software convention requires space for the
481 struct/union return value pointer, even if the word is unused." */
482 sp -= 4;
483
484 /* The psABI says that "Although software convention and the
485 operating system require every stack frame to be doubleword
486 aligned." */
487 sp &= ~0x7;
488
489 for (i = 0; i < nargs; i++)
490 {
491 const bfd_byte *valbuf = value_contents (args[i]);
492 struct type *type = value_type (args[i]);
493 int len = TYPE_LENGTH (type);
494
495 gdb_assert (len == 4 || len == 8);
496
497 if (element < 6)
498 {
499 int regnum = SPARC_O0_REGNUM + element;
500
501 regcache_cooked_write (regcache, regnum, valbuf);
502 if (len > 4 && element < 5)
503 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
504 }
505
506 /* Always store the argument in memory. */
507 write_memory (sp + 4 + element * 4, valbuf, len);
508 element += len / 4;
509 }
510
511 gdb_assert (element == num_elements);
512
513 if (struct_return)
514 {
515 gdb_byte buf[4];
516
517 store_unsigned_integer (buf, 4, byte_order, struct_addr);
518 write_memory (sp, buf, 4);
519 }
520
521 return sp;
522}
523
524static CORE_ADDR
525sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
526 struct regcache *regcache, CORE_ADDR bp_addr,
527 int nargs, struct value **args, CORE_ADDR sp,
528 int struct_return, CORE_ADDR struct_addr)
529{
530 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
531
532 /* Set return address. */
533 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
534
535 /* Set up function arguments. */
536 sp = sparc32_store_arguments (regcache, nargs, args, sp,
537 struct_return, struct_addr);
538
539 /* Allocate the 16-word window save area. */
540 sp -= 16 * 4;
541
542 /* Stack should be doubleword aligned at this point. */
543 gdb_assert (sp % 8 == 0);
544
545 /* Finally, update the stack pointer. */
546 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
547
548 return sp;
549}
550\f
551
552/* Use the program counter to determine the contents and size of a
553 breakpoint instruction. Return a pointer to a string of bytes that
554 encode a breakpoint instruction, store the length of the string in
555 *LEN and optionally adjust *PC to point to the correct memory
556 location for inserting the breakpoint. */
557
558static const gdb_byte *
559sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
560{
561 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
562
563 *len = sizeof (break_insn);
564 return break_insn;
565}
566\f
567
568/* Allocate and initialize a frame cache. */
569
570static struct sparc_frame_cache *
571sparc_alloc_frame_cache (void)
572{
573 struct sparc_frame_cache *cache;
574 int i;
575
576 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
577
578 /* Base address. */
579 cache->base = 0;
580 cache->pc = 0;
581
582 /* Frameless until proven otherwise. */
583 cache->frameless_p = 1;
584
585 cache->struct_return_p = 0;
586
587 return cache;
588}
589
590/* GCC generates several well-known sequences of instructions at the begining
591 of each function prologue when compiling with -fstack-check. If one of
592 such sequences starts at START_PC, then return the address of the
593 instruction immediately past this sequence. Otherwise, return START_PC. */
594
595static CORE_ADDR
596sparc_skip_stack_check (const CORE_ADDR start_pc)
597{
598 CORE_ADDR pc = start_pc;
599 unsigned long insn;
600 int offset_stack_checking_sequence = 0;
601
602 /* With GCC, all stack checking sequences begin with the same two
603 instructions. */
604
605 /* sethi <some immediate>,%g1 */
606 insn = sparc_fetch_instruction (pc);
607 pc = pc + 4;
608 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
609 return start_pc;
610
611 /* sub %sp, %g1, %g1 */
612 insn = sparc_fetch_instruction (pc);
613 pc = pc + 4;
614 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
615 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
616 return start_pc;
617
618 insn = sparc_fetch_instruction (pc);
619 pc = pc + 4;
620
621 /* First possible sequence:
622 [first two instructions above]
623 clr [%g1 - some immediate] */
624
625 /* clr [%g1 - some immediate] */
626 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
627 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
628 {
629 /* Valid stack-check sequence, return the new PC. */
630 return pc;
631 }
632
633 /* Second possible sequence: A small number of probes.
634 [first two instructions above]
635 clr [%g1]
636 add %g1, -<some immediate>, %g1
637 clr [%g1]
638 [repeat the two instructions above any (small) number of times]
639 clr [%g1 - some immediate] */
640
641 /* clr [%g1] */
642 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
643 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
644 {
645 while (1)
646 {
647 /* add %g1, -<some immediate>, %g1 */
648 insn = sparc_fetch_instruction (pc);
649 pc = pc + 4;
650 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
651 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
652 break;
653
654 /* clr [%g1] */
655 insn = sparc_fetch_instruction (pc);
656 pc = pc + 4;
657 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
658 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
659 return start_pc;
660 }
661
662 /* clr [%g1 - some immediate] */
663 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
664 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
665 return start_pc;
666
667 /* We found a valid stack-check sequence, return the new PC. */
668 return pc;
669 }
670
671 /* Third sequence: A probing loop.
672 [first two instructions above]
673 sethi <some immediate>, %g4
674 sub %g1, %g4, %g4
675 cmp %g1, %g4
676 be <disp>
677 add %g1, -<some immediate>, %g1
678 ba <disp>
679 clr [%g1]
680 clr [%g4 - some immediate] */
681
682 /* sethi <some immediate>, %g4 */
683 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
684 {
685 /* sub %g1, %g4, %g4 */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
689 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
690 return start_pc;
691
692 /* cmp %g1, %g4 */
693 insn = sparc_fetch_instruction (pc);
694 pc = pc + 4;
695 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
696 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
697 return start_pc;
698
699 /* be <disp> */
700 insn = sparc_fetch_instruction (pc);
701 pc = pc + 4;
702 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
703 return start_pc;
704
705 /* add %g1, -<some immediate>, %g1 */
706 insn = sparc_fetch_instruction (pc);
707 pc = pc + 4;
708 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
709 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
710 return start_pc;
711
712 /* ba <disp> */
713 insn = sparc_fetch_instruction (pc);
714 pc = pc + 4;
715 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
716 return start_pc;
717
718 /* clr [%g1] */
719 insn = sparc_fetch_instruction (pc);
720 pc = pc + 4;
721 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
722 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
723 return start_pc;
724
725 /* clr [%g4 - some immediate] */
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
729 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
730 return start_pc;
731
732 /* We found a valid stack-check sequence, return the new PC. */
733 return pc;
734 }
735
736 /* No stack check code in our prologue, return the start_pc. */
737 return start_pc;
738}
739
740CORE_ADDR
741sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
742 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
743{
744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
745 unsigned long insn;
746 int offset = 0;
747 int dest = -1;
748
749 pc = sparc_skip_stack_check (pc);
750
751 if (current_pc <= pc)
752 return current_pc;
753
754 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
755 SPARC the linker usually defines a symbol (typically
756 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
757 This symbol makes us end up here with PC pointing at the start of
758 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
759 would do our normal prologue analysis, we would probably conclude
760 that we've got a frame when in reality we don't, since the
761 dynamic linker patches up the first PLT with some code that
762 starts with a SAVE instruction. Patch up PC such that it points
763 at the start of our PLT entry. */
764 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
765 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
766
767 insn = sparc_fetch_instruction (pc);
768
769 /* Recognize a SETHI insn and record its destination. */
770 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
771 {
772 dest = X_RD (insn);
773 offset += 4;
774
775 insn = sparc_fetch_instruction (pc + 4);
776 }
777
778 /* Allow for an arithmetic operation on DEST or %g1. */
779 if (X_OP (insn) == 2 && X_I (insn)
780 && (X_RD (insn) == 1 || X_RD (insn) == dest))
781 {
782 offset += 4;
783
784 insn = sparc_fetch_instruction (pc + 8);
785 }
786
787 /* Check for the SAVE instruction that sets up the frame. */
788 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
789 {
790 cache->frameless_p = 0;
791 return pc + offset + 4;
792 }
793
794 return pc;
795}
796
797static CORE_ADDR
798sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
799{
800 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
801 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
802}
803
804/* Return PC of first real instruction of the function starting at
805 START_PC. */
806
807static CORE_ADDR
808sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
809{
810 struct symtab_and_line sal;
811 CORE_ADDR func_start, func_end;
812 struct sparc_frame_cache cache;
813
814 /* This is the preferred method, find the end of the prologue by
815 using the debugging information. */
816 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
817 {
818 sal = find_pc_line (func_start, 0);
819
820 if (sal.end < func_end
821 && start_pc <= sal.end)
822 return sal.end;
823 }
824
825 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
826
827 /* The psABI says that "Although the first 6 words of arguments
828 reside in registers, the standard stack frame reserves space for
829 them.". It also suggests that a function may use that space to
830 "write incoming arguments 0 to 5" into that space, and that's
831 indeed what GCC seems to be doing. In that case GCC will
832 generate debug information that points to the stack slots instead
833 of the registers, so we should consider the instructions that
834 write out these incoming arguments onto the stack. Of course we
835 only need to do this if we have a stack frame. */
836
837 while (!cache.frameless_p)
838 {
839 unsigned long insn = sparc_fetch_instruction (start_pc);
840
841 /* Recognize instructions that store incoming arguments in
842 %i0...%i5 into the corresponding stack slot. */
843 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
844 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
845 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
846 {
847 start_pc += 4;
848 continue;
849 }
850
851 break;
852 }
853
854 return start_pc;
855}
856
857/* Normal frames. */
858
859struct sparc_frame_cache *
860sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
861{
862 struct sparc_frame_cache *cache;
863
864 if (*this_cache)
865 return *this_cache;
866
867 cache = sparc_alloc_frame_cache ();
868 *this_cache = cache;
869
870 cache->pc = get_frame_func (this_frame);
871 if (cache->pc != 0)
872 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
873 get_frame_pc (this_frame), cache);
874
875 if (cache->frameless_p)
876 {
877 /* This function is frameless, so %fp (%i6) holds the frame
878 pointer for our calling frame. Use %sp (%o6) as this frame's
879 base address. */
880 cache->base =
881 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
882 }
883 else
884 {
885 /* For normal frames, %fp (%i6) holds the frame pointer, the
886 base address for the current stack frame. */
887 cache->base =
888 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
889 }
890
891 if (cache->base & 1)
892 cache->base += BIAS;
893
894 return cache;
895}
896
897static int
898sparc32_struct_return_from_sym (struct symbol *sym)
899{
900 struct type *type = check_typedef (SYMBOL_TYPE (sym));
901 enum type_code code = TYPE_CODE (type);
902
903 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
904 {
905 type = check_typedef (TYPE_TARGET_TYPE (type));
906 if (sparc_structure_or_union_p (type)
907 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
908 return 1;
909 }
910
911 return 0;
912}
913
914struct sparc_frame_cache *
915sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
916{
917 struct sparc_frame_cache *cache;
918 struct symbol *sym;
919
920 if (*this_cache)
921 return *this_cache;
922
923 cache = sparc_frame_cache (this_frame, this_cache);
924
925 sym = find_pc_function (cache->pc);
926 if (sym)
927 {
928 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
929 }
930 else
931 {
932 /* There is no debugging information for this function to
933 help us determine whether this function returns a struct
934 or not. So we rely on another heuristic which is to check
935 the instruction at the return address and see if this is
936 an "unimp" instruction. If it is, then it is a struct-return
937 function. */
938 CORE_ADDR pc;
939 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
940
941 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
942 if (sparc_is_unimp_insn (pc))
943 cache->struct_return_p = 1;
944 }
945
946 return cache;
947}
948
949static void
950sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
951 struct frame_id *this_id)
952{
953 struct sparc_frame_cache *cache =
954 sparc32_frame_cache (this_frame, this_cache);
955
956 /* This marks the outermost frame. */
957 if (cache->base == 0)
958 return;
959
960 (*this_id) = frame_id_build (cache->base, cache->pc);
961}
962
963static struct value *
964sparc32_frame_prev_register (struct frame_info *this_frame,
965 void **this_cache, int regnum)
966{
967 struct gdbarch *gdbarch = get_frame_arch (this_frame);
968 struct sparc_frame_cache *cache =
969 sparc32_frame_cache (this_frame, this_cache);
970
971 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
972 {
973 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
974
975 /* If this functions has a Structure, Union or Quad-Precision
976 return value, we have to skip the UNIMP instruction that encodes
977 the size of the structure. */
978 if (cache->struct_return_p)
979 pc += 4;
980
981 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
982 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
983 return frame_unwind_got_constant (this_frame, regnum, pc);
984 }
985
986 /* Handle StackGhost. */
987 {
988 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
989
990 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
991 {
992 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
993 ULONGEST i7;
994
995 /* Read the value in from memory. */
996 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
997 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
998 }
999 }
1000
1001 /* The previous frame's `local' and `in' registers have been saved
1002 in the register save area. */
1003 if (!cache->frameless_p
1004 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1005 {
1006 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1007
1008 return frame_unwind_got_memory (this_frame, regnum, addr);
1009 }
1010
1011 /* The previous frame's `out' registers are accessible as the
1012 current frame's `in' registers. */
1013 if (!cache->frameless_p
1014 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1015 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1016
1017 return frame_unwind_got_register (this_frame, regnum, regnum);
1018}
1019
1020static const struct frame_unwind sparc32_frame_unwind =
1021{
1022 NORMAL_FRAME,
1023 sparc32_frame_this_id,
1024 sparc32_frame_prev_register,
1025 NULL,
1026 default_frame_sniffer
1027};
1028\f
1029
1030static CORE_ADDR
1031sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1032{
1033 struct sparc_frame_cache *cache =
1034 sparc32_frame_cache (this_frame, this_cache);
1035
1036 return cache->base;
1037}
1038
1039static const struct frame_base sparc32_frame_base =
1040{
1041 &sparc32_frame_unwind,
1042 sparc32_frame_base_address,
1043 sparc32_frame_base_address,
1044 sparc32_frame_base_address
1045};
1046
1047static struct frame_id
1048sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1049{
1050 CORE_ADDR sp;
1051
1052 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1053 if (sp & 1)
1054 sp += BIAS;
1055 return frame_id_build (sp, get_frame_pc (this_frame));
1056}
1057\f
1058
1059/* Extract a function return value of TYPE from REGCACHE, and copy
1060 that into VALBUF. */
1061
1062static void
1063sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1064 gdb_byte *valbuf)
1065{
1066 int len = TYPE_LENGTH (type);
1067 gdb_byte buf[8];
1068
1069 gdb_assert (!sparc_structure_or_union_p (type));
1070 gdb_assert (!(sparc_floating_p (type) && len == 16));
1071
1072 if (sparc_floating_p (type))
1073 {
1074 /* Floating return values. */
1075 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1076 if (len > 4)
1077 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1078 memcpy (valbuf, buf, len);
1079 }
1080 else
1081 {
1082 /* Integral and pointer return values. */
1083 gdb_assert (sparc_integral_or_pointer_p (type));
1084
1085 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1086 if (len > 4)
1087 {
1088 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1089 gdb_assert (len == 8);
1090 memcpy (valbuf, buf, 8);
1091 }
1092 else
1093 {
1094 /* Just stripping off any unused bytes should preserve the
1095 signed-ness just fine. */
1096 memcpy (valbuf, buf + 4 - len, len);
1097 }
1098 }
1099}
1100
1101/* Store the function return value of type TYPE from VALBUF into
1102 REGCACHE. */
1103
1104static void
1105sparc32_store_return_value (struct type *type, struct regcache *regcache,
1106 const gdb_byte *valbuf)
1107{
1108 int len = TYPE_LENGTH (type);
1109 gdb_byte buf[8];
1110
1111 gdb_assert (!sparc_structure_or_union_p (type));
1112 gdb_assert (!(sparc_floating_p (type) && len == 16));
1113 gdb_assert (len <= 8);
1114
1115 if (sparc_floating_p (type))
1116 {
1117 /* Floating return values. */
1118 memcpy (buf, valbuf, len);
1119 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1120 if (len > 4)
1121 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1122 }
1123 else
1124 {
1125 /* Integral and pointer return values. */
1126 gdb_assert (sparc_integral_or_pointer_p (type));
1127
1128 if (len > 4)
1129 {
1130 gdb_assert (len == 8);
1131 memcpy (buf, valbuf, 8);
1132 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1133 }
1134 else
1135 {
1136 /* ??? Do we need to do any sign-extension here? */
1137 memcpy (buf + 4 - len, valbuf, len);
1138 }
1139 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1140 }
1141}
1142
1143static enum return_value_convention
1144sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1145 struct type *type, struct regcache *regcache,
1146 gdb_byte *readbuf, const gdb_byte *writebuf)
1147{
1148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1149
1150 /* The psABI says that "...every stack frame reserves the word at
1151 %fp+64. If a function returns a structure, union, or
1152 quad-precision value, this word should hold the address of the
1153 object into which the return value should be copied." This
1154 guarantees that we can always find the return value, not just
1155 before the function returns. */
1156
1157 if (sparc_structure_or_union_p (type)
1158 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1159 {
1160 if (readbuf)
1161 {
1162 ULONGEST sp;
1163 CORE_ADDR addr;
1164
1165 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1166 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1167 read_memory (addr, readbuf, TYPE_LENGTH (type));
1168 }
1169
1170 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1171 }
1172
1173 if (readbuf)
1174 sparc32_extract_return_value (type, regcache, readbuf);
1175 if (writebuf)
1176 sparc32_store_return_value (type, regcache, writebuf);
1177
1178 return RETURN_VALUE_REGISTER_CONVENTION;
1179}
1180
1181static int
1182sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1183{
1184 return (sparc_structure_or_union_p (type)
1185 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1186}
1187
1188static int
1189sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1190{
1191 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1192 struct symbol *sym = find_pc_function (pc);
1193
1194 if (sym)
1195 return sparc32_struct_return_from_sym (sym);
1196 return 0;
1197}
1198
1199static void
1200sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1201 struct dwarf2_frame_state_reg *reg,
1202 struct frame_info *this_frame)
1203{
1204 int off;
1205
1206 switch (regnum)
1207 {
1208 case SPARC_G0_REGNUM:
1209 /* Since %g0 is always zero, there is no point in saving it, and
1210 people will be inclined omit it from the CFI. Make sure we
1211 don't warn about that. */
1212 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1213 break;
1214 case SPARC_SP_REGNUM:
1215 reg->how = DWARF2_FRAME_REG_CFA;
1216 break;
1217 case SPARC32_PC_REGNUM:
1218 case SPARC32_NPC_REGNUM:
1219 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1220 off = 8;
1221 if (sparc32_dwarf2_struct_return_p (this_frame))
1222 off += 4;
1223 if (regnum == SPARC32_NPC_REGNUM)
1224 off += 4;
1225 reg->loc.offset = off;
1226 break;
1227 }
1228}
1229
1230\f
1231/* The SPARC Architecture doesn't have hardware single-step support,
1232 and most operating systems don't implement it either, so we provide
1233 software single-step mechanism. */
1234
1235static CORE_ADDR
1236sparc_analyze_control_transfer (struct frame_info *frame,
1237 CORE_ADDR pc, CORE_ADDR *npc)
1238{
1239 unsigned long insn = sparc_fetch_instruction (pc);
1240 int conditional_p = X_COND (insn) & 0x7;
1241 int branch_p = 0;
1242 long offset = 0; /* Must be signed for sign-extend. */
1243
1244 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1245 {
1246 /* Branch on Integer Register with Prediction (BPr). */
1247 branch_p = 1;
1248 conditional_p = 1;
1249 }
1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1251 {
1252 /* Branch on Floating-Point Condition Codes (FBfcc). */
1253 branch_p = 1;
1254 offset = 4 * X_DISP22 (insn);
1255 }
1256 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1257 {
1258 /* Branch on Floating-Point Condition Codes with Prediction
1259 (FBPfcc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP19 (insn);
1262 }
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1264 {
1265 /* Branch on Integer Condition Codes (Bicc). */
1266 branch_p = 1;
1267 offset = 4 * X_DISP22 (insn);
1268 }
1269 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1270 {
1271 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1272 branch_p = 1;
1273 offset = 4 * X_DISP19 (insn);
1274 }
1275 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1276 {
1277 /* Trap instruction (TRAP). */
1278 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1279 }
1280
1281 /* FIXME: Handle DONE and RETRY instructions. */
1282
1283 if (branch_p)
1284 {
1285 if (conditional_p)
1286 {
1287 /* For conditional branches, return nPC + 4 iff the annul
1288 bit is 1. */
1289 return (X_A (insn) ? *npc + 4 : 0);
1290 }
1291 else
1292 {
1293 /* For unconditional branches, return the target if its
1294 specified condition is "always" and return nPC + 4 if the
1295 condition is "never". If the annul bit is 1, set *NPC to
1296 zero. */
1297 if (X_COND (insn) == 0x0)
1298 pc = *npc, offset = 4;
1299 if (X_A (insn))
1300 *npc = 0;
1301
1302 gdb_assert (offset != 0);
1303 return pc + offset;
1304 }
1305 }
1306
1307 return 0;
1308}
1309
1310static CORE_ADDR
1311sparc_step_trap (struct frame_info *frame, unsigned long insn)
1312{
1313 return 0;
1314}
1315
1316int
1317sparc_software_single_step (struct frame_info *frame)
1318{
1319 struct gdbarch *arch = get_frame_arch (frame);
1320 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1321 struct address_space *aspace = get_frame_address_space (frame);
1322 CORE_ADDR npc, nnpc;
1323
1324 CORE_ADDR pc, orig_npc;
1325
1326 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1327 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1328
1329 /* Analyze the instruction at PC. */
1330 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1331 if (npc != 0)
1332 insert_single_step_breakpoint (arch, aspace, npc);
1333
1334 if (nnpc != 0)
1335 insert_single_step_breakpoint (arch, aspace, nnpc);
1336
1337 /* Assert that we have set at least one breakpoint, and that
1338 they're not set at the same spot - unless we're going
1339 from here straight to NULL, i.e. a call or jump to 0. */
1340 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1341 gdb_assert (nnpc != npc || orig_npc == 0);
1342
1343 return 1;
1344}
1345
1346static void
1347sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1348{
1349 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1350
1351 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1352 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1353}
1354\f
1355
1356/* Return the appropriate register set for the core section identified
1357 by SECT_NAME and SECT_SIZE. */
1358
1359static const struct regset *
1360sparc_regset_from_core_section (struct gdbarch *gdbarch,
1361 const char *sect_name, size_t sect_size)
1362{
1363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1364
1365 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1366 return tdep->gregset;
1367
1368 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1369 return tdep->fpregset;
1370
1371 return NULL;
1372}
1373\f
1374
1375static struct gdbarch *
1376sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1377{
1378 struct gdbarch_tdep *tdep;
1379 struct gdbarch *gdbarch;
1380
1381 /* If there is already a candidate, use it. */
1382 arches = gdbarch_list_lookup_by_info (arches, &info);
1383 if (arches != NULL)
1384 return arches->gdbarch;
1385
1386 /* Allocate space for the new architecture. */
1387 tdep = XZALLOC (struct gdbarch_tdep);
1388 gdbarch = gdbarch_alloc (&info, tdep);
1389
1390 tdep->pc_regnum = SPARC32_PC_REGNUM;
1391 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1392 tdep->step_trap = sparc_step_trap;
1393
1394 set_gdbarch_long_double_bit (gdbarch, 128);
1395 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1396
1397 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1398 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1399 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1400 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1401 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1402 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1403
1404 /* Register numbers of various important registers. */
1405 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1406 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1407 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1408
1409 /* Call dummy code. */
1410 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1411 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1412 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1413
1414 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1415 set_gdbarch_stabs_argument_has_addr
1416 (gdbarch, sparc32_stabs_argument_has_addr);
1417
1418 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1419
1420 /* Stack grows downward. */
1421 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1422
1423 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1424
1425 set_gdbarch_frame_args_skip (gdbarch, 8);
1426
1427 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1428
1429 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1430 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1431
1432 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1433
1434 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1435
1436 frame_base_set_default (gdbarch, &sparc32_frame_base);
1437
1438 /* Hook in the DWARF CFI frame unwinder. */
1439 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1440 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1441 StackGhost issues have been resolved. */
1442
1443 /* Hook in ABI-specific overrides, if they have been registered. */
1444 gdbarch_init_osabi (info, gdbarch);
1445
1446 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1447
1448 /* If we have register sets, enable the generic core file support. */
1449 if (tdep->gregset)
1450 set_gdbarch_regset_from_core_section (gdbarch,
1451 sparc_regset_from_core_section);
1452
1453 return gdbarch;
1454}
1455\f
1456/* Helper functions for dealing with register windows. */
1457
1458void
1459sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1460{
1461 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1463 int offset = 0;
1464 gdb_byte buf[8];
1465 int i;
1466
1467 if (sp & 1)
1468 {
1469 /* Registers are 64-bit. */
1470 sp += BIAS;
1471
1472 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1473 {
1474 if (regnum == i || regnum == -1)
1475 {
1476 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1477
1478 /* Handle StackGhost. */
1479 if (i == SPARC_I7_REGNUM)
1480 {
1481 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1482 ULONGEST i7;
1483
1484 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1485 store_unsigned_integer (buf + offset, 8, byte_order,
1486 i7 ^ wcookie);
1487 }
1488
1489 regcache_raw_supply (regcache, i, buf);
1490 }
1491 }
1492 }
1493 else
1494 {
1495 /* Registers are 32-bit. Toss any sign-extension of the stack
1496 pointer. */
1497 sp &= 0xffffffffUL;
1498
1499 /* Clear out the top half of the temporary buffer, and put the
1500 register value in the bottom half if we're in 64-bit mode. */
1501 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1502 {
1503 memset (buf, 0, 4);
1504 offset = 4;
1505 }
1506
1507 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1508 {
1509 if (regnum == i || regnum == -1)
1510 {
1511 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1512 buf + offset, 4);
1513
1514 /* Handle StackGhost. */
1515 if (i == SPARC_I7_REGNUM)
1516 {
1517 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1518 ULONGEST i7;
1519
1520 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1521 store_unsigned_integer (buf + offset, 4, byte_order,
1522 i7 ^ wcookie);
1523 }
1524
1525 regcache_raw_supply (regcache, i, buf);
1526 }
1527 }
1528 }
1529}
1530
1531void
1532sparc_collect_rwindow (const struct regcache *regcache,
1533 CORE_ADDR sp, int regnum)
1534{
1535 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1537 int offset = 0;
1538 gdb_byte buf[8];
1539 int i;
1540
1541 if (sp & 1)
1542 {
1543 /* Registers are 64-bit. */
1544 sp += BIAS;
1545
1546 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1547 {
1548 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1549 {
1550 regcache_raw_collect (regcache, i, buf);
1551
1552 /* Handle StackGhost. */
1553 if (i == SPARC_I7_REGNUM)
1554 {
1555 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1556 ULONGEST i7;
1557
1558 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1559 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1560 }
1561
1562 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1563 }
1564 }
1565 }
1566 else
1567 {
1568 /* Registers are 32-bit. Toss any sign-extension of the stack
1569 pointer. */
1570 sp &= 0xffffffffUL;
1571
1572 /* Only use the bottom half if we're in 64-bit mode. */
1573 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1574 offset = 4;
1575
1576 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1577 {
1578 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1579 {
1580 regcache_raw_collect (regcache, i, buf);
1581
1582 /* Handle StackGhost. */
1583 if (i == SPARC_I7_REGNUM)
1584 {
1585 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1586 ULONGEST i7;
1587
1588 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1589 store_unsigned_integer (buf + offset, 4, byte_order,
1590 i7 ^ wcookie);
1591 }
1592
1593 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1594 buf + offset, 4);
1595 }
1596 }
1597 }
1598}
1599
1600/* Helper functions for dealing with register sets. */
1601
1602void
1603sparc32_supply_gregset (const struct sparc_gregset *gregset,
1604 struct regcache *regcache,
1605 int regnum, const void *gregs)
1606{
1607 const gdb_byte *regs = gregs;
1608 int i;
1609
1610 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1611 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1612 regs + gregset->r_psr_offset);
1613
1614 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1615 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1616 regs + gregset->r_pc_offset);
1617
1618 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1619 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1620 regs + gregset->r_npc_offset);
1621
1622 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1623 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1624 regs + gregset->r_y_offset);
1625
1626 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1627 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1628
1629 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1630 {
1631 int offset = gregset->r_g1_offset;
1632
1633 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1634 {
1635 if (regnum == i || regnum == -1)
1636 regcache_raw_supply (regcache, i, regs + offset);
1637 offset += 4;
1638 }
1639 }
1640
1641 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1642 {
1643 /* Not all of the register set variants include Locals and
1644 Inputs. For those that don't, we read them off the stack. */
1645 if (gregset->r_l0_offset == -1)
1646 {
1647 ULONGEST sp;
1648
1649 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1650 sparc_supply_rwindow (regcache, sp, regnum);
1651 }
1652 else
1653 {
1654 int offset = gregset->r_l0_offset;
1655
1656 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1657 {
1658 if (regnum == i || regnum == -1)
1659 regcache_raw_supply (regcache, i, regs + offset);
1660 offset += 4;
1661 }
1662 }
1663 }
1664}
1665
1666void
1667sparc32_collect_gregset (const struct sparc_gregset *gregset,
1668 const struct regcache *regcache,
1669 int regnum, void *gregs)
1670{
1671 gdb_byte *regs = gregs;
1672 int i;
1673
1674 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1675 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1676 regs + gregset->r_psr_offset);
1677
1678 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1679 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1680 regs + gregset->r_pc_offset);
1681
1682 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1683 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1684 regs + gregset->r_npc_offset);
1685
1686 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1687 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1688 regs + gregset->r_y_offset);
1689
1690 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1691 {
1692 int offset = gregset->r_g1_offset;
1693
1694 /* %g0 is always zero. */
1695 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1696 {
1697 if (regnum == i || regnum == -1)
1698 regcache_raw_collect (regcache, i, regs + offset);
1699 offset += 4;
1700 }
1701 }
1702
1703 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1704 {
1705 /* Not all of the register set variants include Locals and
1706 Inputs. For those that don't, we read them off the stack. */
1707 if (gregset->r_l0_offset != -1)
1708 {
1709 int offset = gregset->r_l0_offset;
1710
1711 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1712 {
1713 if (regnum == i || regnum == -1)
1714 regcache_raw_collect (regcache, i, regs + offset);
1715 offset += 4;
1716 }
1717 }
1718 }
1719}
1720
1721void
1722sparc32_supply_fpregset (struct regcache *regcache,
1723 int regnum, const void *fpregs)
1724{
1725 const gdb_byte *regs = fpregs;
1726 int i;
1727
1728 for (i = 0; i < 32; i++)
1729 {
1730 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1731 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1732 }
1733
1734 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1735 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1736}
1737
1738void
1739sparc32_collect_fpregset (const struct regcache *regcache,
1740 int regnum, void *fpregs)
1741{
1742 gdb_byte *regs = fpregs;
1743 int i;
1744
1745 for (i = 0; i < 32; i++)
1746 {
1747 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1748 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1749 }
1750
1751 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1752 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1753}
1754\f
1755
1756/* SunOS 4. */
1757
1758/* From <machine/reg.h>. */
1759const struct sparc_gregset sparc32_sunos4_gregset =
1760{
1761 0 * 4, /* %psr */
1762 1 * 4, /* %pc */
1763 2 * 4, /* %npc */
1764 3 * 4, /* %y */
1765 -1, /* %wim */
1766 -1, /* %tbr */
1767 4 * 4, /* %g1 */
1768 -1 /* %l0 */
1769};
1770\f
1771
1772/* Provide a prototype to silence -Wmissing-prototypes. */
1773void _initialize_sparc_tdep (void);
1774
1775void
1776_initialize_sparc_tdep (void)
1777{
1778 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1779}
This page took 0.032039 seconds and 4 git commands to generate.