Refactor disassembly code
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
... / ...
CommitLineData
1/* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "disasm.h"
37#include "objfiles.h"
38#include "language.h"
39#include "regcache.h"
40#include "reggroups.h"
41#include "floatformat.h"
42#include "block.h"
43#include "observer.h"
44#include "infcall.h"
45#include "dwarf2.h"
46#include "dwarf2-frame.h"
47#include "ax.h"
48#include "spu-tdep.h"
49#include "location.h"
50
51/* The list of available "set spu " and "show spu " commands. */
52static struct cmd_list_element *setspucmdlist = NULL;
53static struct cmd_list_element *showspucmdlist = NULL;
54
55/* Whether to stop for new SPE contexts. */
56static int spu_stop_on_load_p = 0;
57/* Whether to automatically flush the SW-managed cache. */
58static int spu_auto_flush_cache_p = 1;
59
60
61/* The tdep structure. */
62struct gdbarch_tdep
63{
64 /* The spufs ID identifying our address space. */
65 int id;
66
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69};
70
71
72/* SPU-specific vector type. */
73static struct type *
74spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75{
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
80 const struct builtin_type *bt = builtin_type (gdbarch);
81 struct type *t;
82
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
85 append_composite_type_field (t, "uint128", bt->builtin_int128);
86 append_composite_type_field (t, "v2_int64",
87 init_vector_type (bt->builtin_int64, 2));
88 append_composite_type_field (t, "v4_int32",
89 init_vector_type (bt->builtin_int32, 4));
90 append_composite_type_field (t, "v8_int16",
91 init_vector_type (bt->builtin_int16, 8));
92 append_composite_type_field (t, "v16_int8",
93 init_vector_type (bt->builtin_int8, 16));
94 append_composite_type_field (t, "v2_double",
95 init_vector_type (bt->builtin_double, 2));
96 append_composite_type_field (t, "v4_float",
97 init_vector_type (bt->builtin_float, 4));
98
99 TYPE_VECTOR (t) = 1;
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106}
107
108
109/* The list of available "info spu " commands. */
110static struct cmd_list_element *infospucmdlist = NULL;
111
112/* Registers. */
113
114static const char *
115spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116{
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144}
145
146static struct type *
147spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148{
149 if (reg_nr < SPU_NUM_GPRS)
150 return spu_builtin_type_vec128 (gdbarch);
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
155 return builtin_type (gdbarch)->builtin_uint32;
156
157 case SPU_PC_REGNUM:
158 return builtin_type (gdbarch)->builtin_func_ptr;
159
160 case SPU_SP_REGNUM:
161 return builtin_type (gdbarch)->builtin_data_ptr;
162
163 case SPU_FPSCR_REGNUM:
164 return builtin_type (gdbarch)->builtin_uint128;
165
166 case SPU_SRR0_REGNUM:
167 return builtin_type (gdbarch)->builtin_uint32;
168
169 case SPU_LSLR_REGNUM:
170 return builtin_type (gdbarch)->builtin_uint32;
171
172 case SPU_DECR_REGNUM:
173 return builtin_type (gdbarch)->builtin_uint32;
174
175 case SPU_DECR_STATUS_REGNUM:
176 return builtin_type (gdbarch)->builtin_uint32;
177
178 default:
179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
180 }
181}
182
183/* Pseudo registers for preferred slots - stack pointer. */
184
185static enum register_status
186spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188{
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 enum register_status status;
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
195 ULONGEST ul;
196
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
207 return REG_VALID;
208}
209
210static enum register_status
211spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213{
214 gdb_byte reg[16];
215 char annex[32];
216 ULONGEST id;
217 enum register_status status;
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
225 memcpy (buf, reg, 4);
226 return status;
227
228 case SPU_FPSCR_REGNUM:
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
234 return status;
235
236 case SPU_SRR0_REGNUM:
237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238
239 case SPU_LSLR_REGNUM:
240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241
242 case SPU_DECR_REGNUM:
243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244
245 case SPU_DECR_STATUS_REGNUM:
246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
247
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251}
252
253static void
254spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256{
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 char reg[32];
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
268 (gdb_byte *) reg, 0, strlen (reg));
269}
270
271static void
272spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274{
275 gdb_byte reg[16];
276 char annex[32];
277 ULONGEST id;
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312}
313
314static int
315spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
316 struct agent_expr *ax, int regnum)
317{
318 switch (regnum)
319 {
320 case SPU_SP_REGNUM:
321 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
322 return 0;
323
324 case SPU_FPSCR_REGNUM:
325 case SPU_SRR0_REGNUM:
326 case SPU_LSLR_REGNUM:
327 case SPU_DECR_REGNUM:
328 case SPU_DECR_STATUS_REGNUM:
329 return -1;
330
331 default:
332 internal_error (__FILE__, __LINE__, _("invalid regnum"));
333 }
334}
335
336static int
337spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
338 struct agent_expr *ax, int regnum)
339{
340 switch (regnum)
341 {
342 case SPU_SP_REGNUM:
343 ax_reg (ax, SPU_RAW_SP_REGNUM);
344 return 0;
345
346 case SPU_FPSCR_REGNUM:
347 case SPU_SRR0_REGNUM:
348 case SPU_LSLR_REGNUM:
349 case SPU_DECR_REGNUM:
350 case SPU_DECR_STATUS_REGNUM:
351 return -1;
352
353 default:
354 internal_error (__FILE__, __LINE__, _("invalid regnum"));
355 }
356}
357
358
359/* Value conversion -- access scalar values at the preferred slot. */
360
361static struct value *
362spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
363 int regnum, struct frame_id frame_id)
364{
365 struct value *value = default_value_from_register (gdbarch, type,
366 regnum, frame_id);
367 LONGEST len = TYPE_LENGTH (type);
368
369 if (regnum < SPU_NUM_GPRS && len < 16)
370 {
371 int preferred_slot = len < 4 ? 4 - len : 0;
372 set_value_offset (value, preferred_slot);
373 }
374
375 return value;
376}
377
378/* Register groups. */
379
380static int
381spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
382 struct reggroup *group)
383{
384 /* Registers displayed via 'info regs'. */
385 if (group == general_reggroup)
386 return 1;
387
388 /* Registers displayed via 'info float'. */
389 if (group == float_reggroup)
390 return 0;
391
392 /* Registers that need to be saved/restored in order to
393 push or pop frames. */
394 if (group == save_reggroup || group == restore_reggroup)
395 return 1;
396
397 return default_register_reggroup_p (gdbarch, regnum, group);
398}
399
400/* DWARF-2 register numbers. */
401
402static int
403spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404{
405 /* Use cooked instead of raw SP. */
406 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
407}
408
409
410/* Address handling. */
411
412static int
413spu_gdbarch_id (struct gdbarch *gdbarch)
414{
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int id = tdep->id;
417
418 /* The objfile architecture of a standalone SPU executable does not
419 provide an SPU ID. Retrieve it from the objfile's relocated
420 address range in this special case. */
421 if (id == -1
422 && symfile_objfile && symfile_objfile->obfd
423 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
424 && symfile_objfile->sections != symfile_objfile->sections_end)
425 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
426
427 return id;
428}
429
430static int
431spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432{
433 if (dwarf2_addr_class == 1)
434 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
435 else
436 return 0;
437}
438
439static const char *
440spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441{
442 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
443 return "__ea";
444 else
445 return NULL;
446}
447
448static int
449spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
450 const char *name, int *type_flags_ptr)
451{
452 if (strcmp (name, "__ea") == 0)
453 {
454 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
455 return 1;
456 }
457 else
458 return 0;
459}
460
461static void
462spu_address_to_pointer (struct gdbarch *gdbarch,
463 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464{
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
467 SPUADDR_ADDR (addr));
468}
469
470static CORE_ADDR
471spu_pointer_to_address (struct gdbarch *gdbarch,
472 struct type *type, const gdb_byte *buf)
473{
474 int id = spu_gdbarch_id (gdbarch);
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 ULONGEST addr
477 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
478
479 /* Do not convert __ea pointers. */
480 if (TYPE_ADDRESS_CLASS_1 (type))
481 return addr;
482
483 return addr? SPUADDR (id, addr) : 0;
484}
485
486static CORE_ADDR
487spu_integer_to_address (struct gdbarch *gdbarch,
488 struct type *type, const gdb_byte *buf)
489{
490 int id = spu_gdbarch_id (gdbarch);
491 ULONGEST addr = unpack_long (type, buf);
492
493 return SPUADDR (id, addr);
494}
495
496
497/* Decoding SPU instructions. */
498
499enum
500 {
501 op_lqd = 0x34,
502 op_lqx = 0x3c4,
503 op_lqa = 0x61,
504 op_lqr = 0x67,
505 op_stqd = 0x24,
506 op_stqx = 0x144,
507 op_stqa = 0x41,
508 op_stqr = 0x47,
509
510 op_il = 0x081,
511 op_ila = 0x21,
512 op_a = 0x0c0,
513 op_ai = 0x1c,
514
515 op_selb = 0x8,
516
517 op_br = 0x64,
518 op_bra = 0x60,
519 op_brsl = 0x66,
520 op_brasl = 0x62,
521 op_brnz = 0x42,
522 op_brz = 0x40,
523 op_brhnz = 0x46,
524 op_brhz = 0x44,
525 op_bi = 0x1a8,
526 op_bisl = 0x1a9,
527 op_biz = 0x128,
528 op_binz = 0x129,
529 op_bihz = 0x12a,
530 op_bihnz = 0x12b,
531 };
532
533static int
534is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535{
536 if ((insn >> 21) == op)
537 {
538 *rt = insn & 127;
539 *ra = (insn >> 7) & 127;
540 *rb = (insn >> 14) & 127;
541 return 1;
542 }
543
544 return 0;
545}
546
547static int
548is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549{
550 if ((insn >> 28) == op)
551 {
552 *rt = (insn >> 21) & 127;
553 *ra = (insn >> 7) & 127;
554 *rb = (insn >> 14) & 127;
555 *rc = insn & 127;
556 return 1;
557 }
558
559 return 0;
560}
561
562static int
563is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564{
565 if ((insn >> 21) == op)
566 {
567 *rt = insn & 127;
568 *ra = (insn >> 7) & 127;
569 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
570 return 1;
571 }
572
573 return 0;
574}
575
576static int
577is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578{
579 if ((insn >> 24) == op)
580 {
581 *rt = insn & 127;
582 *ra = (insn >> 7) & 127;
583 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
584 return 1;
585 }
586
587 return 0;
588}
589
590static int
591is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592{
593 if ((insn >> 23) == op)
594 {
595 *rt = insn & 127;
596 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
597 return 1;
598 }
599
600 return 0;
601}
602
603static int
604is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605{
606 if ((insn >> 25) == op)
607 {
608 *rt = insn & 127;
609 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
610 return 1;
611 }
612
613 return 0;
614}
615
616static int
617is_branch (unsigned int insn, int *offset, int *reg)
618{
619 int rt, i7, i16;
620
621 if (is_ri16 (insn, op_br, &rt, &i16)
622 || is_ri16 (insn, op_brsl, &rt, &i16)
623 || is_ri16 (insn, op_brnz, &rt, &i16)
624 || is_ri16 (insn, op_brz, &rt, &i16)
625 || is_ri16 (insn, op_brhnz, &rt, &i16)
626 || is_ri16 (insn, op_brhz, &rt, &i16))
627 {
628 *reg = SPU_PC_REGNUM;
629 *offset = i16 << 2;
630 return 1;
631 }
632
633 if (is_ri16 (insn, op_bra, &rt, &i16)
634 || is_ri16 (insn, op_brasl, &rt, &i16))
635 {
636 *reg = -1;
637 *offset = i16 << 2;
638 return 1;
639 }
640
641 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
642 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
643 || is_ri7 (insn, op_biz, &rt, reg, &i7)
644 || is_ri7 (insn, op_binz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
646 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
647 {
648 *offset = 0;
649 return 1;
650 }
651
652 return 0;
653}
654
655
656/* Prolog parsing. */
657
658struct spu_prologue_data
659 {
660 /* Stack frame size. -1 if analysis was unsuccessful. */
661 int size;
662
663 /* How to find the CFA. The CFA is equal to SP at function entry. */
664 int cfa_reg;
665 int cfa_offset;
666
667 /* Offset relative to CFA where a register is saved. -1 if invalid. */
668 int reg_offset[SPU_NUM_GPRS];
669 };
670
671static CORE_ADDR
672spu_analyze_prologue (struct gdbarch *gdbarch,
673 CORE_ADDR start_pc, CORE_ADDR end_pc,
674 struct spu_prologue_data *data)
675{
676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
677 int found_sp = 0;
678 int found_fp = 0;
679 int found_lr = 0;
680 int found_bc = 0;
681 int reg_immed[SPU_NUM_GPRS];
682 gdb_byte buf[16];
683 CORE_ADDR prolog_pc = start_pc;
684 CORE_ADDR pc;
685 int i;
686
687
688 /* Initialize DATA to default values. */
689 data->size = -1;
690
691 data->cfa_reg = SPU_RAW_SP_REGNUM;
692 data->cfa_offset = 0;
693
694 for (i = 0; i < SPU_NUM_GPRS; i++)
695 data->reg_offset[i] = -1;
696
697 /* Set up REG_IMMED array. This is non-zero for a register if we know its
698 preferred slot currently holds this immediate value. */
699 for (i = 0; i < SPU_NUM_GPRS; i++)
700 reg_immed[i] = 0;
701
702 /* Scan instructions until the first branch.
703
704 The following instructions are important prolog components:
705
706 - The first instruction to set up the stack pointer.
707 - The first instruction to set up the frame pointer.
708 - The first instruction to save the link register.
709 - The first instruction to save the backchain.
710
711 We return the instruction after the latest of these four,
712 or the incoming PC if none is found. The first instruction
713 to set up the stack pointer also defines the frame size.
714
715 Note that instructions saving incoming arguments to their stack
716 slots are not counted as important, because they are hard to
717 identify with certainty. This should not matter much, because
718 arguments are relevant only in code compiled with debug data,
719 and in such code the GDB core will advance until the first source
720 line anyway, using SAL data.
721
722 For purposes of stack unwinding, we analyze the following types
723 of instructions in addition:
724
725 - Any instruction adding to the current frame pointer.
726 - Any instruction loading an immediate constant into a register.
727 - Any instruction storing a register onto the stack.
728
729 These are used to compute the CFA and REG_OFFSET output. */
730
731 for (pc = start_pc; pc < end_pc; pc += 4)
732 {
733 unsigned int insn;
734 int rt, ra, rb, rc, immed;
735
736 if (target_read_memory (pc, buf, 4))
737 break;
738 insn = extract_unsigned_integer (buf, 4, byte_order);
739
740 /* AI is the typical instruction to set up a stack frame.
741 It is also used to initialize the frame pointer. */
742 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 {
744 if (rt == data->cfa_reg && ra == data->cfa_reg)
745 data->cfa_offset -= immed;
746
747 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
748 && !found_sp)
749 {
750 found_sp = 1;
751 prolog_pc = pc + 4;
752
753 data->size = -immed;
754 }
755 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
756 && !found_fp)
757 {
758 found_fp = 1;
759 prolog_pc = pc + 4;
760
761 data->cfa_reg = SPU_FP_REGNUM;
762 data->cfa_offset -= immed;
763 }
764 }
765
766 /* A is used to set up stack frames of size >= 512 bytes.
767 If we have tracked the contents of the addend register,
768 we can handle this as well. */
769 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 {
771 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 {
773 if (reg_immed[rb] != 0)
774 data->cfa_offset -= reg_immed[rb];
775 else
776 data->cfa_reg = -1; /* We don't know the CFA any more. */
777 }
778
779 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
780 && !found_sp)
781 {
782 found_sp = 1;
783 prolog_pc = pc + 4;
784
785 if (reg_immed[rb] != 0)
786 data->size = -reg_immed[rb];
787 }
788 }
789
790 /* We need to track IL and ILA used to load immediate constants
791 in case they are later used as input to an A instruction. */
792 else if (is_ri16 (insn, op_il, &rt, &immed))
793 {
794 reg_immed[rt] = immed;
795
796 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
797 found_sp = 1;
798 }
799
800 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 {
802 reg_immed[rt] = immed & 0x3ffff;
803
804 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
805 found_sp = 1;
806 }
807
808 /* STQD is used to save registers to the stack. */
809 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 {
811 if (ra == data->cfa_reg)
812 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813
814 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
815 && !found_lr)
816 {
817 found_lr = 1;
818 prolog_pc = pc + 4;
819 }
820
821 if (ra == SPU_RAW_SP_REGNUM
822 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
823 && !found_bc)
824 {
825 found_bc = 1;
826 prolog_pc = pc + 4;
827 }
828 }
829
830 /* _start uses SELB to set up the stack pointer. */
831 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 {
833 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
834 found_sp = 1;
835 }
836
837 /* We terminate if we find a branch. */
838 else if (is_branch (insn, &immed, &ra))
839 break;
840 }
841
842
843 /* If we successfully parsed until here, and didn't find any instruction
844 modifying SP, we assume we have a frameless function. */
845 if (!found_sp)
846 data->size = 0;
847
848 /* Return cooked instead of raw SP. */
849 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
850 data->cfa_reg = SPU_SP_REGNUM;
851
852 return prolog_pc;
853}
854
855/* Return the first instruction after the prologue starting at PC. */
856static CORE_ADDR
857spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
858{
859 struct spu_prologue_data data;
860 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
861}
862
863/* Return the frame pointer in use at address PC. */
864static void
865spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
866 int *reg, LONGEST *offset)
867{
868 struct spu_prologue_data data;
869 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
870
871 if (data.size != -1 && data.cfa_reg != -1)
872 {
873 /* The 'frame pointer' address is CFA minus frame size. */
874 *reg = data.cfa_reg;
875 *offset = data.cfa_offset - data.size;
876 }
877 else
878 {
879 /* ??? We don't really know ... */
880 *reg = SPU_SP_REGNUM;
881 *offset = 0;
882 }
883}
884
885/* Implement the stack_frame_destroyed_p gdbarch method.
886
887 1) scan forward from the point of execution:
888 a) If you find an instruction that modifies the stack pointer
889 or transfers control (except a return), execution is not in
890 an epilogue, return.
891 b) Stop scanning if you find a return instruction or reach the
892 end of the function or reach the hard limit for the size of
893 an epilogue.
894 2) scan backward from the point of execution:
895 a) If you find an instruction that modifies the stack pointer,
896 execution *is* in an epilogue, return.
897 b) Stop scanning if you reach an instruction that transfers
898 control or the beginning of the function or reach the hard
899 limit for the size of an epilogue. */
900
901static int
902spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903{
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
906 bfd_byte buf[4];
907 unsigned int insn;
908 int rt, ra, rb, immed;
909
910 /* Find the search limits based on function boundaries and hard limit.
911 We assume the epilogue can be up to 64 instructions long. */
912
913 const int spu_max_epilogue_size = 64 * 4;
914
915 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
916 return 0;
917
918 if (pc - func_start < spu_max_epilogue_size)
919 epilogue_start = func_start;
920 else
921 epilogue_start = pc - spu_max_epilogue_size;
922
923 if (func_end - pc < spu_max_epilogue_size)
924 epilogue_end = func_end;
925 else
926 epilogue_end = pc + spu_max_epilogue_size;
927
928 /* Scan forward until next 'bi $0'. */
929
930 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 {
932 if (target_read_memory (scan_pc, buf, 4))
933 return 0;
934 insn = extract_unsigned_integer (buf, 4, byte_order);
935
936 if (is_branch (insn, &immed, &ra))
937 {
938 if (immed == 0 && ra == SPU_LR_REGNUM)
939 break;
940
941 return 0;
942 }
943
944 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
945 || is_rr (insn, op_a, &rt, &ra, &rb)
946 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 {
948 if (rt == SPU_RAW_SP_REGNUM)
949 return 0;
950 }
951 }
952
953 if (scan_pc >= epilogue_end)
954 return 0;
955
956 /* Scan backward until adjustment to stack pointer (R1). */
957
958 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 {
960 if (target_read_memory (scan_pc, buf, 4))
961 return 0;
962 insn = extract_unsigned_integer (buf, 4, byte_order);
963
964 if (is_branch (insn, &immed, &ra))
965 return 0;
966
967 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
968 || is_rr (insn, op_a, &rt, &ra, &rb)
969 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 {
971 if (rt == SPU_RAW_SP_REGNUM)
972 return 1;
973 }
974 }
975
976 return 0;
977}
978
979
980/* Normal stack frames. */
981
982struct spu_unwind_cache
983{
984 CORE_ADDR func;
985 CORE_ADDR frame_base;
986 CORE_ADDR local_base;
987
988 struct trad_frame_saved_reg *saved_regs;
989};
990
991static struct spu_unwind_cache *
992spu_frame_unwind_cache (struct frame_info *this_frame,
993 void **this_prologue_cache)
994{
995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
998 struct spu_unwind_cache *info;
999 struct spu_prologue_data data;
1000 CORE_ADDR id = tdep->id;
1001 gdb_byte buf[16];
1002
1003 if (*this_prologue_cache)
1004 return (struct spu_unwind_cache *) *this_prologue_cache;
1005
1006 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1007 *this_prologue_cache = info;
1008 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1009 info->frame_base = 0;
1010 info->local_base = 0;
1011
1012 /* Find the start of the current function, and analyze its prologue. */
1013 info->func = get_frame_func (this_frame);
1014 if (info->func == 0)
1015 {
1016 /* Fall back to using the current PC as frame ID. */
1017 info->func = get_frame_pc (this_frame);
1018 data.size = -1;
1019 }
1020 else
1021 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1022 &data);
1023
1024 /* If successful, use prologue analysis data. */
1025 if (data.size != -1 && data.cfa_reg != -1)
1026 {
1027 CORE_ADDR cfa;
1028 int i;
1029
1030 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1031 get_frame_register (this_frame, data.cfa_reg, buf);
1032 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1033 cfa = SPUADDR (id, cfa);
1034
1035 /* Call-saved register slots. */
1036 for (i = 0; i < SPU_NUM_GPRS; i++)
1037 if (i == SPU_LR_REGNUM
1038 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1039 if (data.reg_offset[i] != -1)
1040 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1041
1042 /* Frame bases. */
1043 info->frame_base = cfa;
1044 info->local_base = cfa - data.size;
1045 }
1046
1047 /* Otherwise, fall back to reading the backchain link. */
1048 else
1049 {
1050 CORE_ADDR reg;
1051 LONGEST backchain;
1052 ULONGEST lslr;
1053 int status;
1054
1055 /* Get local store limit. */
1056 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 if (!lslr)
1058 lslr = (ULONGEST) -1;
1059
1060 /* Get the backchain. */
1061 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1062 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1063 &backchain);
1064
1065 /* A zero backchain terminates the frame chain. Also, sanity
1066 check against the local store size limit. */
1067 if (status && backchain > 0 && backchain <= lslr)
1068 {
1069 /* Assume the link register is saved into its slot. */
1070 if (backchain + 16 <= lslr)
1071 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1072 backchain + 16);
1073
1074 /* Frame bases. */
1075 info->frame_base = SPUADDR (id, backchain);
1076 info->local_base = SPUADDR (id, reg);
1077 }
1078 }
1079
1080 /* If we didn't find a frame, we cannot determine SP / return address. */
1081 if (info->frame_base == 0)
1082 return info;
1083
1084 /* The previous SP is equal to the CFA. */
1085 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1086 SPUADDR_ADDR (info->frame_base));
1087
1088 /* Read full contents of the unwound link register in order to
1089 be able to determine the return address. */
1090 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1091 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 else
1093 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094
1095 /* Normally, the return address is contained in the slot 0 of the
1096 link register, and slots 1-3 are zero. For an overlay return,
1097 slot 0 contains the address of the overlay manager return stub,
1098 slot 1 contains the partition number of the overlay section to
1099 be returned to, and slot 2 contains the return address within
1100 that section. Return the latter address in that case. */
1101 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1102 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1103 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 else
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1106 extract_unsigned_integer (buf, 4, byte_order));
1107
1108 return info;
1109}
1110
1111static void
1112spu_frame_this_id (struct frame_info *this_frame,
1113 void **this_prologue_cache, struct frame_id *this_id)
1114{
1115 struct spu_unwind_cache *info =
1116 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117
1118 if (info->frame_base == 0)
1119 return;
1120
1121 *this_id = frame_id_build (info->frame_base, info->func);
1122}
1123
1124static struct value *
1125spu_frame_prev_register (struct frame_info *this_frame,
1126 void **this_prologue_cache, int regnum)
1127{
1128 struct spu_unwind_cache *info
1129 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130
1131 /* Special-case the stack pointer. */
1132 if (regnum == SPU_RAW_SP_REGNUM)
1133 regnum = SPU_SP_REGNUM;
1134
1135 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1136}
1137
1138static const struct frame_unwind spu_frame_unwind = {
1139 NORMAL_FRAME,
1140 default_frame_unwind_stop_reason,
1141 spu_frame_this_id,
1142 spu_frame_prev_register,
1143 NULL,
1144 default_frame_sniffer
1145};
1146
1147static CORE_ADDR
1148spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149{
1150 struct spu_unwind_cache *info
1151 = spu_frame_unwind_cache (this_frame, this_cache);
1152 return info->local_base;
1153}
1154
1155static const struct frame_base spu_frame_base = {
1156 &spu_frame_unwind,
1157 spu_frame_base_address,
1158 spu_frame_base_address,
1159 spu_frame_base_address
1160};
1161
1162static CORE_ADDR
1163spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164{
1165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1166 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1167 /* Mask off interrupt enable bit. */
1168 return SPUADDR (tdep->id, pc & -4);
1169}
1170
1171static CORE_ADDR
1172spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173{
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1176 return SPUADDR (tdep->id, sp);
1177}
1178
1179static CORE_ADDR
1180spu_read_pc (struct regcache *regcache)
1181{
1182 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1183 ULONGEST pc;
1184 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1185 /* Mask off interrupt enable bit. */
1186 return SPUADDR (tdep->id, pc & -4);
1187}
1188
1189static void
1190spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191{
1192 /* Keep interrupt enabled state unchanged. */
1193 ULONGEST old_pc;
1194
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1198}
1199
1200
1201/* Cell/B.E. cross-architecture unwinder support. */
1202
1203struct spu2ppu_cache
1204{
1205 struct frame_id frame_id;
1206 struct regcache *regcache;
1207};
1208
1209static struct gdbarch *
1210spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211{
1212 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1213 return get_regcache_arch (cache->regcache);
1214}
1215
1216static void
1217spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219{
1220 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1221 *this_id = cache->frame_id;
1222}
1223
1224static struct value *
1225spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227{
1228 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1229 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1230 gdb_byte *buf;
1231
1232 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1233 regcache_cooked_read (cache->regcache, regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235}
1236
1237static int
1238spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240{
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi);
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1278 cache->regcache = regcache_dup (regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285}
1286
1287static void
1288spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289{
1290 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1291 regcache_xfree (cache->regcache);
1292}
1293
1294static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
1296 default_frame_unwind_stop_reason,
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303};
1304
1305
1306/* Function calling convention. */
1307
1308static CORE_ADDR
1309spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310{
1311 return sp & ~15;
1312}
1313
1314static CORE_ADDR
1315spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319{
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328}
1329
1330static int
1331spu_scalar_value_p (struct type *type)
1332{
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347}
1348
1349static void
1350spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352{
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372}
1373
1374static void
1375spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377{
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397}
1398
1399static CORE_ADDR
1400spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404{
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 CORE_ADDR sp_delta;
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
1485 /* Finally, update all slots of the SP register. */
1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1487 for (i = 0; i < 4; i++)
1488 {
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1493
1494 return sp;
1495}
1496
1497static struct frame_id
1498spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499{
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1504}
1505
1506/* Function return value access. */
1507
1508static enum return_value_convention
1509spu_return_value (struct gdbarch *gdbarch, struct value *function,
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
1512{
1513 struct type *func_type = function ? value_type (function) : NULL;
1514 enum return_value_convention rvc;
1515 int opencl_vector = 0;
1516
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
1548 error (_("Cannot set function return value."));
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
1564 error (_("Function return value unknown."));
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570}
1571
1572
1573/* Breakpoints. */
1574constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1575
1576typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1577
1578static int
1579spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1580 struct bp_target_info *bp_tgt)
1581{
1582 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1583 that in a combined application, we have some breakpoints inserted in SPU
1584 code, and now the application forks (on the PPU side). GDB common code
1585 will assume that the fork system call copied all breakpoints into the new
1586 process' address space, and that all those copies now need to be removed
1587 (see breakpoint.c:detach_breakpoints).
1588
1589 While this is certainly true for PPU side breakpoints, it is not true
1590 for SPU side breakpoints. fork will clone the SPU context file
1591 descriptors, so that all the existing SPU contexts are in accessible
1592 in the new process. However, the contents of the SPU contexts themselves
1593 are *not* cloned. Therefore the effect of detach_breakpoints is to
1594 remove SPU breakpoints from the *original* SPU context's local store
1595 -- this is not the correct behaviour.
1596
1597 The workaround is to check whether the PID we are asked to remove this
1598 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1599 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1600 true in the context of detach_breakpoints. If so, we simply do nothing.
1601 [ Note that for the fork child process, it does not matter if breakpoints
1602 remain inserted, because those SPU contexts are not runnable anyway --
1603 the Linux kernel allows only the original process to invoke spu_run. */
1604
1605 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1606 return 0;
1607
1608 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1609}
1610
1611
1612/* Software single-stepping support. */
1613
1614static VEC (CORE_ADDR) *
1615spu_software_single_step (struct regcache *regcache)
1616{
1617 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1619 CORE_ADDR pc, next_pc;
1620 unsigned int insn;
1621 int offset, reg;
1622 gdb_byte buf[4];
1623 ULONGEST lslr;
1624 VEC (CORE_ADDR) *next_pcs = NULL;
1625
1626 pc = regcache_read_pc (regcache);
1627
1628 if (target_read_memory (pc, buf, 4))
1629 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1630 paddress (gdbarch, pc));
1631
1632 insn = extract_unsigned_integer (buf, 4, byte_order);
1633
1634 /* Get local store limit. */
1635 lslr = regcache_raw_get_unsigned (regcache, SPU_LSLR_REGNUM);
1636 if (!lslr)
1637 lslr = (ULONGEST) -1;
1638
1639 /* Next sequential instruction is at PC + 4, except if the current
1640 instruction is a PPE-assisted call, in which case it is at PC + 8.
1641 Wrap around LS limit to be on the safe side. */
1642 if ((insn & 0xffffff00) == 0x00002100)
1643 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1644 else
1645 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1646
1647 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc), next_pc));
1648
1649 if (is_branch (insn, &offset, &reg))
1650 {
1651 CORE_ADDR target = offset;
1652
1653 if (reg == SPU_PC_REGNUM)
1654 target += SPUADDR_ADDR (pc);
1655 else if (reg != -1)
1656 target += regcache_raw_get_unsigned (regcache, reg) & -4;
1657
1658 target = target & lslr;
1659 if (target != next_pc)
1660 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc),
1661 target));
1662 }
1663
1664 return next_pcs;
1665}
1666
1667
1668/* Longjmp support. */
1669
1670static int
1671spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1672{
1673 struct gdbarch *gdbarch = get_frame_arch (frame);
1674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1676 gdb_byte buf[4];
1677 CORE_ADDR jb_addr;
1678 int optim, unavail;
1679
1680 /* Jump buffer is pointed to by the argument register $r3. */
1681 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1682 &optim, &unavail))
1683 return 0;
1684
1685 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1686 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1687 return 0;
1688
1689 *pc = extract_unsigned_integer (buf, 4, byte_order);
1690 *pc = SPUADDR (tdep->id, *pc);
1691 return 1;
1692}
1693
1694
1695/* Disassembler. */
1696
1697struct spu_dis_asm_info : disassemble_info
1698{
1699 int id;
1700};
1701
1702static void
1703spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1704{
1705 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1706 gdb_disassembler *di
1707 = static_cast<gdb_disassembler *>(info->application_data);
1708
1709 print_address (di->arch (), SPUADDR (data->id, addr),
1710 (struct ui_file *) info->stream);
1711}
1712
1713static int
1714gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1715{
1716 /* The opcodes disassembler does 18-bit address arithmetic. Make
1717 sure the SPU ID encoded in the high bits is added back when we
1718 call print_address. */
1719 struct spu_dis_asm_info spu_info;
1720
1721 memcpy (&spu_info, info, sizeof (*info));
1722 spu_info.id = SPUADDR_SPU (memaddr);
1723 spu_info.print_address_func = spu_dis_asm_print_address;
1724 return print_insn_spu (memaddr, &spu_info);
1725}
1726
1727
1728/* Target overlays for the SPU overlay manager.
1729
1730 See the documentation of simple_overlay_update for how the
1731 interface is supposed to work.
1732
1733 Data structures used by the overlay manager:
1734
1735 struct ovly_table
1736 {
1737 u32 vma;
1738 u32 size;
1739 u32 pos;
1740 u32 buf;
1741 } _ovly_table[]; -- one entry per overlay section
1742
1743 struct ovly_buf_table
1744 {
1745 u32 mapped;
1746 } _ovly_buf_table[]; -- one entry per overlay buffer
1747
1748 _ovly_table should never change.
1749
1750 Both tables are aligned to a 16-byte boundary, the symbols
1751 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1752 size set to the size of the respective array. buf in _ovly_table is
1753 an index into _ovly_buf_table.
1754
1755 mapped is an index into _ovly_table. Both the mapped and buf indices start
1756 from one to reference the first entry in their respective tables. */
1757
1758/* Using the per-objfile private data mechanism, we store for each
1759 objfile an array of "struct spu_overlay_table" structures, one
1760 for each obj_section of the objfile. This structure holds two
1761 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1762 is *not* an overlay section. If it is non-zero, it represents
1763 a target address. The overlay section is mapped iff the target
1764 integer at this location equals MAPPED_VAL. */
1765
1766static const struct objfile_data *spu_overlay_data;
1767
1768struct spu_overlay_table
1769 {
1770 CORE_ADDR mapped_ptr;
1771 CORE_ADDR mapped_val;
1772 };
1773
1774/* Retrieve the overlay table for OBJFILE. If not already cached, read
1775 the _ovly_table data structure from the target and initialize the
1776 spu_overlay_table data structure from it. */
1777static struct spu_overlay_table *
1778spu_get_overlay_table (struct objfile *objfile)
1779{
1780 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1781 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1782 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1783 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1784 unsigned ovly_table_size, ovly_buf_table_size;
1785 struct spu_overlay_table *tbl;
1786 struct obj_section *osect;
1787 gdb_byte *ovly_table;
1788 int i;
1789
1790 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1791 if (tbl)
1792 return tbl;
1793
1794 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1795 if (!ovly_table_msym.minsym)
1796 return NULL;
1797
1798 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1799 NULL, objfile);
1800 if (!ovly_buf_table_msym.minsym)
1801 return NULL;
1802
1803 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1804 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1805
1806 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1807 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1808
1809 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1810 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1811
1812 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1813 objfile->sections_end - objfile->sections,
1814 struct spu_overlay_table);
1815
1816 for (i = 0; i < ovly_table_size / 16; i++)
1817 {
1818 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1819 4, byte_order);
1820 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1821 4, byte_order);
1822 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1823 4, byte_order);
1824 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1825 4, byte_order);
1826
1827 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1828 continue;
1829
1830 ALL_OBJFILE_OSECTIONS (objfile, osect)
1831 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1832 && pos == osect->the_bfd_section->filepos)
1833 {
1834 int ndx = osect - objfile->sections;
1835 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1836 tbl[ndx].mapped_val = i + 1;
1837 break;
1838 }
1839 }
1840
1841 xfree (ovly_table);
1842 set_objfile_data (objfile, spu_overlay_data, tbl);
1843 return tbl;
1844}
1845
1846/* Read _ovly_buf_table entry from the target to dermine whether
1847 OSECT is currently mapped, and update the mapped state. */
1848static void
1849spu_overlay_update_osect (struct obj_section *osect)
1850{
1851 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1852 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1853 struct spu_overlay_table *ovly_table;
1854 CORE_ADDR id, val;
1855
1856 ovly_table = spu_get_overlay_table (osect->objfile);
1857 if (!ovly_table)
1858 return;
1859
1860 ovly_table += osect - osect->objfile->sections;
1861 if (ovly_table->mapped_ptr == 0)
1862 return;
1863
1864 id = SPUADDR_SPU (obj_section_addr (osect));
1865 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1866 4, byte_order);
1867 osect->ovly_mapped = (val == ovly_table->mapped_val);
1868}
1869
1870/* If OSECT is NULL, then update all sections' mapped state.
1871 If OSECT is non-NULL, then update only OSECT's mapped state. */
1872static void
1873spu_overlay_update (struct obj_section *osect)
1874{
1875 /* Just one section. */
1876 if (osect)
1877 spu_overlay_update_osect (osect);
1878
1879 /* All sections. */
1880 else
1881 {
1882 struct objfile *objfile;
1883
1884 ALL_OBJSECTIONS (objfile, osect)
1885 if (section_is_overlay (osect))
1886 spu_overlay_update_osect (osect);
1887 }
1888}
1889
1890/* Whenever a new objfile is loaded, read the target's _ovly_table.
1891 If there is one, go through all sections and make sure for non-
1892 overlay sections LMA equals VMA, while for overlay sections LMA
1893 is larger than SPU_OVERLAY_LMA. */
1894static void
1895spu_overlay_new_objfile (struct objfile *objfile)
1896{
1897 struct spu_overlay_table *ovly_table;
1898 struct obj_section *osect;
1899
1900 /* If we've already touched this file, do nothing. */
1901 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1902 return;
1903
1904 /* Consider only SPU objfiles. */
1905 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1906 return;
1907
1908 /* Check if this objfile has overlays. */
1909 ovly_table = spu_get_overlay_table (objfile);
1910 if (!ovly_table)
1911 return;
1912
1913 /* Now go and fiddle with all the LMAs. */
1914 ALL_OBJFILE_OSECTIONS (objfile, osect)
1915 {
1916 bfd *obfd = objfile->obfd;
1917 asection *bsect = osect->the_bfd_section;
1918 int ndx = osect - objfile->sections;
1919
1920 if (ovly_table[ndx].mapped_ptr == 0)
1921 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1922 else
1923 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1924 }
1925}
1926
1927
1928/* Insert temporary breakpoint on "main" function of newly loaded
1929 SPE context OBJFILE. */
1930static void
1931spu_catch_start (struct objfile *objfile)
1932{
1933 struct bound_minimal_symbol minsym;
1934 struct compunit_symtab *cust;
1935 CORE_ADDR pc;
1936 struct event_location *location;
1937 struct cleanup *back_to;
1938
1939 /* Do this only if requested by "set spu stop-on-load on". */
1940 if (!spu_stop_on_load_p)
1941 return;
1942
1943 /* Consider only SPU objfiles. */
1944 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1945 return;
1946
1947 /* The main objfile is handled differently. */
1948 if (objfile == symfile_objfile)
1949 return;
1950
1951 /* There can be multiple symbols named "main". Search for the
1952 "main" in *this* objfile. */
1953 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1954 if (!minsym.minsym)
1955 return;
1956
1957 /* If we have debugging information, try to use it -- this
1958 will allow us to properly skip the prologue. */
1959 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1960 cust
1961 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1962 minsym.minsym));
1963 if (cust != NULL)
1964 {
1965 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1966 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1967 struct symbol *sym;
1968 struct symtab_and_line sal;
1969
1970 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1971 if (sym)
1972 {
1973 fixup_symbol_section (sym, objfile);
1974 sal = find_function_start_sal (sym, 1);
1975 pc = sal.pc;
1976 }
1977 }
1978
1979 /* Use a numerical address for the set_breakpoint command to avoid having
1980 the breakpoint re-set incorrectly. */
1981 location = new_address_location (pc, NULL, 0);
1982 back_to = make_cleanup_delete_event_location (location);
1983 create_breakpoint (get_objfile_arch (objfile), location,
1984 NULL /* cond_string */, -1 /* thread */,
1985 NULL /* extra_string */,
1986 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1987 bp_breakpoint /* type_wanted */,
1988 0 /* ignore_count */,
1989 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1990 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1991 1 /* enabled */, 0 /* internal */, 0);
1992 do_cleanups (back_to);
1993}
1994
1995
1996/* Look up OBJFILE loaded into FRAME's SPU context. */
1997static struct objfile *
1998spu_objfile_from_frame (struct frame_info *frame)
1999{
2000 struct gdbarch *gdbarch = get_frame_arch (frame);
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2002 struct objfile *obj;
2003
2004 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2005 return NULL;
2006
2007 ALL_OBJFILES (obj)
2008 {
2009 if (obj->sections != obj->sections_end
2010 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2011 return obj;
2012 }
2013
2014 return NULL;
2015}
2016
2017/* Flush cache for ea pointer access if available. */
2018static void
2019flush_ea_cache (void)
2020{
2021 struct bound_minimal_symbol msymbol;
2022 struct objfile *obj;
2023
2024 if (!has_stack_frames ())
2025 return;
2026
2027 obj = spu_objfile_from_frame (get_current_frame ());
2028 if (obj == NULL)
2029 return;
2030
2031 /* Lookup inferior function __cache_flush. */
2032 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2033 if (msymbol.minsym != NULL)
2034 {
2035 struct type *type;
2036 CORE_ADDR addr;
2037
2038 type = objfile_type (obj)->builtin_void;
2039 type = lookup_function_type (type);
2040 type = lookup_pointer_type (type);
2041 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2042
2043 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2044 }
2045}
2046
2047/* This handler is called when the inferior has stopped. If it is stopped in
2048 SPU architecture then flush the ea cache if used. */
2049static void
2050spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2051{
2052 if (!spu_auto_flush_cache_p)
2053 return;
2054
2055 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2056 re-entering this function when __cache_flush stops. */
2057 spu_auto_flush_cache_p = 0;
2058 flush_ea_cache ();
2059 spu_auto_flush_cache_p = 1;
2060}
2061
2062
2063/* "info spu" commands. */
2064
2065static void
2066info_spu_event_command (char *args, int from_tty)
2067{
2068 struct frame_info *frame = get_selected_frame (NULL);
2069 ULONGEST event_status = 0;
2070 ULONGEST event_mask = 0;
2071 struct cleanup *chain;
2072 gdb_byte buf[100];
2073 char annex[32];
2074 LONGEST len;
2075 int id;
2076
2077 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2078 error (_("\"info spu\" is only supported on the SPU architecture."));
2079
2080 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2081
2082 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2083 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2084 buf, 0, (sizeof (buf) - 1));
2085 if (len <= 0)
2086 error (_("Could not read event_status."));
2087 buf[len] = '\0';
2088 event_status = strtoulst ((char *) buf, NULL, 16);
2089
2090 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2091 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2092 buf, 0, (sizeof (buf) - 1));
2093 if (len <= 0)
2094 error (_("Could not read event_mask."));
2095 buf[len] = '\0';
2096 event_mask = strtoulst ((char *) buf, NULL, 16);
2097
2098 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2099
2100 if (current_uiout->is_mi_like_p ())
2101 {
2102 current_uiout->field_fmt ("event_status",
2103 "0x%s", phex_nz (event_status, 4));
2104 current_uiout->field_fmt ("event_mask",
2105 "0x%s", phex_nz (event_mask, 4));
2106 }
2107 else
2108 {
2109 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2110 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2111 }
2112
2113 do_cleanups (chain);
2114}
2115
2116static void
2117info_spu_signal_command (char *args, int from_tty)
2118{
2119 struct frame_info *frame = get_selected_frame (NULL);
2120 struct gdbarch *gdbarch = get_frame_arch (frame);
2121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2122 ULONGEST signal1 = 0;
2123 ULONGEST signal1_type = 0;
2124 int signal1_pending = 0;
2125 ULONGEST signal2 = 0;
2126 ULONGEST signal2_type = 0;
2127 int signal2_pending = 0;
2128 struct cleanup *chain;
2129 char annex[32];
2130 gdb_byte buf[100];
2131 LONGEST len;
2132 int id;
2133
2134 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2135 error (_("\"info spu\" is only supported on the SPU architecture."));
2136
2137 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2138
2139 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2140 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2141 if (len < 0)
2142 error (_("Could not read signal1."));
2143 else if (len == 4)
2144 {
2145 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2146 signal1_pending = 1;
2147 }
2148
2149 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2150 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2151 buf, 0, (sizeof (buf) - 1));
2152 if (len <= 0)
2153 error (_("Could not read signal1_type."));
2154 buf[len] = '\0';
2155 signal1_type = strtoulst ((char *) buf, NULL, 16);
2156
2157 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2158 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2159 if (len < 0)
2160 error (_("Could not read signal2."));
2161 else if (len == 4)
2162 {
2163 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2164 signal2_pending = 1;
2165 }
2166
2167 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2168 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2169 buf, 0, (sizeof (buf) - 1));
2170 if (len <= 0)
2171 error (_("Could not read signal2_type."));
2172 buf[len] = '\0';
2173 signal2_type = strtoulst ((char *) buf, NULL, 16);
2174
2175 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2176
2177 if (current_uiout->is_mi_like_p ())
2178 {
2179 current_uiout->field_int ("signal1_pending", signal1_pending);
2180 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2181 current_uiout->field_int ("signal1_type", signal1_type);
2182 current_uiout->field_int ("signal2_pending", signal2_pending);
2183 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2184 current_uiout->field_int ("signal2_type", signal2_type);
2185 }
2186 else
2187 {
2188 if (signal1_pending)
2189 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2190 else
2191 printf_filtered (_("Signal 1 not pending "));
2192
2193 if (signal1_type)
2194 printf_filtered (_("(Type Or)\n"));
2195 else
2196 printf_filtered (_("(Type Overwrite)\n"));
2197
2198 if (signal2_pending)
2199 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2200 else
2201 printf_filtered (_("Signal 2 not pending "));
2202
2203 if (signal2_type)
2204 printf_filtered (_("(Type Or)\n"));
2205 else
2206 printf_filtered (_("(Type Overwrite)\n"));
2207 }
2208
2209 do_cleanups (chain);
2210}
2211
2212static void
2213info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2214 const char *field, const char *msg)
2215{
2216 struct cleanup *chain;
2217 int i;
2218
2219 if (nr <= 0)
2220 return;
2221
2222 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2223
2224 current_uiout->table_header (32, ui_left, field, msg);
2225 current_uiout->table_body ();
2226
2227 for (i = 0; i < nr; i++)
2228 {
2229 struct cleanup *val_chain;
2230 ULONGEST val;
2231 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2232 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2233 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2234 do_cleanups (val_chain);
2235
2236 if (!current_uiout->is_mi_like_p ())
2237 printf_filtered ("\n");
2238 }
2239
2240 do_cleanups (chain);
2241}
2242
2243static void
2244info_spu_mailbox_command (char *args, int from_tty)
2245{
2246 struct frame_info *frame = get_selected_frame (NULL);
2247 struct gdbarch *gdbarch = get_frame_arch (frame);
2248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2249 struct cleanup *chain;
2250 char annex[32];
2251 gdb_byte buf[1024];
2252 LONGEST len;
2253 int id;
2254
2255 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2256 error (_("\"info spu\" is only supported on the SPU architecture."));
2257
2258 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2259
2260 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2261
2262 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2263 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2264 buf, 0, sizeof buf);
2265 if (len < 0)
2266 error (_("Could not read mbox_info."));
2267
2268 info_spu_mailbox_list (buf, len / 4, byte_order,
2269 "mbox", "SPU Outbound Mailbox");
2270
2271 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2272 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2273 buf, 0, sizeof buf);
2274 if (len < 0)
2275 error (_("Could not read ibox_info."));
2276
2277 info_spu_mailbox_list (buf, len / 4, byte_order,
2278 "ibox", "SPU Outbound Interrupt Mailbox");
2279
2280 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2281 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2282 buf, 0, sizeof buf);
2283 if (len < 0)
2284 error (_("Could not read wbox_info."));
2285
2286 info_spu_mailbox_list (buf, len / 4, byte_order,
2287 "wbox", "SPU Inbound Mailbox");
2288
2289 do_cleanups (chain);
2290}
2291
2292static ULONGEST
2293spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2294{
2295 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2296 return (word >> (63 - last)) & mask;
2297}
2298
2299static void
2300info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2301{
2302 static char *spu_mfc_opcode[256] =
2303 {
2304 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2305 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2306 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2307 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2309 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2310 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2311 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2312 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2313 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2314 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2321 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2322 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2325 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2327 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2328 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2330 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 };
2337
2338 int *seq = XALLOCAVEC (int, nr);
2339 int done = 0;
2340 struct cleanup *chain;
2341 int i, j;
2342
2343
2344 /* Determine sequence in which to display (valid) entries. */
2345 for (i = 0; i < nr; i++)
2346 {
2347 /* Search for the first valid entry all of whose
2348 dependencies are met. */
2349 for (j = 0; j < nr; j++)
2350 {
2351 ULONGEST mfc_cq_dw3;
2352 ULONGEST dependencies;
2353
2354 if (done & (1 << (nr - 1 - j)))
2355 continue;
2356
2357 mfc_cq_dw3
2358 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2359 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2360 continue;
2361
2362 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2363 if ((dependencies & done) != dependencies)
2364 continue;
2365
2366 seq[i] = j;
2367 done |= 1 << (nr - 1 - j);
2368 break;
2369 }
2370
2371 if (j == nr)
2372 break;
2373 }
2374
2375 nr = i;
2376
2377
2378 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2379 "dma_cmd");
2380
2381 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2382 current_uiout->table_header (3, ui_left, "tag", "Tag");
2383 current_uiout->table_header (3, ui_left, "tid", "TId");
2384 current_uiout->table_header (3, ui_left, "rid", "RId");
2385 current_uiout->table_header (18, ui_left, "ea", "EA");
2386 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2387 current_uiout->table_header (7, ui_left, "size", "Size");
2388 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2389 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2390 current_uiout->table_header (1, ui_left, "error_p", "E");
2391
2392 current_uiout->table_body ();
2393
2394 for (i = 0; i < nr; i++)
2395 {
2396 struct cleanup *cmd_chain;
2397 ULONGEST mfc_cq_dw0;
2398 ULONGEST mfc_cq_dw1;
2399 ULONGEST mfc_cq_dw2;
2400 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2401 int list_lsa, list_size, mfc_lsa, mfc_size;
2402 ULONGEST mfc_ea;
2403 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2404
2405 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2406 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2407
2408 mfc_cq_dw0
2409 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2410 mfc_cq_dw1
2411 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2412 mfc_cq_dw2
2413 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2414
2415 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2416 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2417 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2418 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2419 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2420 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2421 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2422
2423 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2424 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2425
2426 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2427 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2428 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2429 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2430 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2431
2432 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2433
2434 if (spu_mfc_opcode[mfc_cmd_opcode])
2435 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2436 else
2437 current_uiout->field_int ("opcode", mfc_cmd_opcode);
2438
2439 current_uiout->field_int ("tag", mfc_cmd_tag);
2440 current_uiout->field_int ("tid", tclass_id);
2441 current_uiout->field_int ("rid", rclass_id);
2442
2443 if (ea_valid_p)
2444 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2445 else
2446 current_uiout->field_skip ("ea");
2447
2448 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2449 if (qw_valid_p)
2450 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2451 else
2452 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
2453
2454 if (list_valid_p)
2455 {
2456 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2457 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2458 }
2459 else
2460 {
2461 current_uiout->field_skip ("lstaddr");
2462 current_uiout->field_skip ("lstsize");
2463 }
2464
2465 if (cmd_error_p)
2466 current_uiout->field_string ("error_p", "*");
2467 else
2468 current_uiout->field_skip ("error_p");
2469
2470 do_cleanups (cmd_chain);
2471
2472 if (!current_uiout->is_mi_like_p ())
2473 printf_filtered ("\n");
2474 }
2475
2476 do_cleanups (chain);
2477}
2478
2479static void
2480info_spu_dma_command (char *args, int from_tty)
2481{
2482 struct frame_info *frame = get_selected_frame (NULL);
2483 struct gdbarch *gdbarch = get_frame_arch (frame);
2484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2485 ULONGEST dma_info_type;
2486 ULONGEST dma_info_mask;
2487 ULONGEST dma_info_status;
2488 ULONGEST dma_info_stall_and_notify;
2489 ULONGEST dma_info_atomic_command_status;
2490 struct cleanup *chain;
2491 char annex[32];
2492 gdb_byte buf[1024];
2493 LONGEST len;
2494 int id;
2495
2496 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2497 error (_("\"info spu\" is only supported on the SPU architecture."));
2498
2499 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2500
2501 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2502 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2503 buf, 0, 40 + 16 * 32);
2504 if (len <= 0)
2505 error (_("Could not read dma_info."));
2506
2507 dma_info_type
2508 = extract_unsigned_integer (buf, 8, byte_order);
2509 dma_info_mask
2510 = extract_unsigned_integer (buf + 8, 8, byte_order);
2511 dma_info_status
2512 = extract_unsigned_integer (buf + 16, 8, byte_order);
2513 dma_info_stall_and_notify
2514 = extract_unsigned_integer (buf + 24, 8, byte_order);
2515 dma_info_atomic_command_status
2516 = extract_unsigned_integer (buf + 32, 8, byte_order);
2517
2518 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2519
2520 if (current_uiout->is_mi_like_p ())
2521 {
2522 current_uiout->field_fmt ("dma_info_type", "0x%s",
2523 phex_nz (dma_info_type, 4));
2524 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2525 phex_nz (dma_info_mask, 4));
2526 current_uiout->field_fmt ("dma_info_status", "0x%s",
2527 phex_nz (dma_info_status, 4));
2528 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2529 phex_nz (dma_info_stall_and_notify, 4));
2530 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2531 phex_nz (dma_info_atomic_command_status, 4));
2532 }
2533 else
2534 {
2535 const char *query_msg = _("no query pending");
2536
2537 if (dma_info_type & 4)
2538 switch (dma_info_type & 3)
2539 {
2540 case 1: query_msg = _("'any' query pending"); break;
2541 case 2: query_msg = _("'all' query pending"); break;
2542 default: query_msg = _("undefined query type"); break;
2543 }
2544
2545 printf_filtered (_("Tag-Group Status 0x%s\n"),
2546 phex (dma_info_status, 4));
2547 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2548 phex (dma_info_mask, 4), query_msg);
2549 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2550 phex (dma_info_stall_and_notify, 4));
2551 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2552 phex (dma_info_atomic_command_status, 4));
2553 printf_filtered ("\n");
2554 }
2555
2556 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2557 do_cleanups (chain);
2558}
2559
2560static void
2561info_spu_proxydma_command (char *args, int from_tty)
2562{
2563 struct frame_info *frame = get_selected_frame (NULL);
2564 struct gdbarch *gdbarch = get_frame_arch (frame);
2565 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2566 ULONGEST dma_info_type;
2567 ULONGEST dma_info_mask;
2568 ULONGEST dma_info_status;
2569 struct cleanup *chain;
2570 char annex[32];
2571 gdb_byte buf[1024];
2572 LONGEST len;
2573 int id;
2574
2575 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2576 error (_("\"info spu\" is only supported on the SPU architecture."));
2577
2578 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2579
2580 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2581 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2582 buf, 0, 24 + 8 * 32);
2583 if (len <= 0)
2584 error (_("Could not read proxydma_info."));
2585
2586 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2587 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2588 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2589
2590 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2591 "SPUInfoProxyDMA");
2592
2593 if (current_uiout->is_mi_like_p ())
2594 {
2595 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2596 phex_nz (dma_info_type, 4));
2597 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2598 phex_nz (dma_info_mask, 4));
2599 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2600 phex_nz (dma_info_status, 4));
2601 }
2602 else
2603 {
2604 const char *query_msg;
2605
2606 switch (dma_info_type & 3)
2607 {
2608 case 0: query_msg = _("no query pending"); break;
2609 case 1: query_msg = _("'any' query pending"); break;
2610 case 2: query_msg = _("'all' query pending"); break;
2611 default: query_msg = _("undefined query type"); break;
2612 }
2613
2614 printf_filtered (_("Tag-Group Status 0x%s\n"),
2615 phex (dma_info_status, 4));
2616 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2617 phex (dma_info_mask, 4), query_msg);
2618 printf_filtered ("\n");
2619 }
2620
2621 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2622 do_cleanups (chain);
2623}
2624
2625static void
2626info_spu_command (char *args, int from_tty)
2627{
2628 printf_unfiltered (_("\"info spu\" must be followed by "
2629 "the name of an SPU facility.\n"));
2630 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2631}
2632
2633
2634/* Root of all "set spu "/"show spu " commands. */
2635
2636static void
2637show_spu_command (char *args, int from_tty)
2638{
2639 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2640}
2641
2642static void
2643set_spu_command (char *args, int from_tty)
2644{
2645 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2646}
2647
2648static void
2649show_spu_stop_on_load (struct ui_file *file, int from_tty,
2650 struct cmd_list_element *c, const char *value)
2651{
2652 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2653 value);
2654}
2655
2656static void
2657show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2658 struct cmd_list_element *c, const char *value)
2659{
2660 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2661 value);
2662}
2663
2664
2665/* Set up gdbarch struct. */
2666
2667static struct gdbarch *
2668spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2669{
2670 struct gdbarch *gdbarch;
2671 struct gdbarch_tdep *tdep;
2672 int id = -1;
2673
2674 /* Which spufs ID was requested as address space? */
2675 if (info.tdep_info)
2676 id = *(int *)info.tdep_info;
2677 /* For objfile architectures of SPU solibs, decode the ID from the name.
2678 This assumes the filename convention employed by solib-spu.c. */
2679 else if (info.abfd)
2680 {
2681 const char *name = strrchr (info.abfd->filename, '@');
2682 if (name)
2683 sscanf (name, "@0x%*x <%d>", &id);
2684 }
2685
2686 /* Find a candidate among extant architectures. */
2687 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2688 arches != NULL;
2689 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2690 {
2691 tdep = gdbarch_tdep (arches->gdbarch);
2692 if (tdep && tdep->id == id)
2693 return arches->gdbarch;
2694 }
2695
2696 /* None found, so create a new architecture. */
2697 tdep = XCNEW (struct gdbarch_tdep);
2698 tdep->id = id;
2699 gdbarch = gdbarch_alloc (&info, tdep);
2700
2701 /* Disassembler. */
2702 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2703
2704 /* Registers. */
2705 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2706 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2707 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2708 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2709 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2710 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2711 set_gdbarch_register_name (gdbarch, spu_register_name);
2712 set_gdbarch_register_type (gdbarch, spu_register_type);
2713 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2714 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2715 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2716 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2717 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2718 set_gdbarch_ax_pseudo_register_collect
2719 (gdbarch, spu_ax_pseudo_register_collect);
2720 set_gdbarch_ax_pseudo_register_push_stack
2721 (gdbarch, spu_ax_pseudo_register_push_stack);
2722
2723 /* Data types. */
2724 set_gdbarch_char_signed (gdbarch, 0);
2725 set_gdbarch_ptr_bit (gdbarch, 32);
2726 set_gdbarch_addr_bit (gdbarch, 32);
2727 set_gdbarch_short_bit (gdbarch, 16);
2728 set_gdbarch_int_bit (gdbarch, 32);
2729 set_gdbarch_long_bit (gdbarch, 32);
2730 set_gdbarch_long_long_bit (gdbarch, 64);
2731 set_gdbarch_float_bit (gdbarch, 32);
2732 set_gdbarch_double_bit (gdbarch, 64);
2733 set_gdbarch_long_double_bit (gdbarch, 64);
2734 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2735 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2736 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2737
2738 /* Address handling. */
2739 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2740 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2741 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2742 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2743 set_gdbarch_address_class_type_flags_to_name
2744 (gdbarch, spu_address_class_type_flags_to_name);
2745 set_gdbarch_address_class_name_to_type_flags
2746 (gdbarch, spu_address_class_name_to_type_flags);
2747
2748
2749 /* Inferior function calls. */
2750 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2751 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2752 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2753 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2754 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2755 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2756 set_gdbarch_return_value (gdbarch, spu_return_value);
2757
2758 /* Frame handling. */
2759 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2760 dwarf2_append_unwinders (gdbarch);
2761 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2762 frame_base_set_default (gdbarch, &spu_frame_base);
2763 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2764 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2765 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2766 set_gdbarch_frame_args_skip (gdbarch, 0);
2767 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2768 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2769
2770 /* Cell/B.E. cross-architecture unwinder support. */
2771 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2772
2773 /* Breakpoints. */
2774 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2775 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2776 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2777 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2778 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2779 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2780
2781 /* Overlays. */
2782 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2783
2784 return gdbarch;
2785}
2786
2787/* Provide a prototype to silence -Wmissing-prototypes. */
2788extern initialize_file_ftype _initialize_spu_tdep;
2789
2790void
2791_initialize_spu_tdep (void)
2792{
2793 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2794
2795 /* Add ourselves to objfile event chain. */
2796 observer_attach_new_objfile (spu_overlay_new_objfile);
2797 spu_overlay_data = register_objfile_data ();
2798
2799 /* Install spu stop-on-load handler. */
2800 observer_attach_new_objfile (spu_catch_start);
2801
2802 /* Add ourselves to normal_stop event chain. */
2803 observer_attach_normal_stop (spu_attach_normal_stop);
2804
2805 /* Add root prefix command for all "set spu"/"show spu" commands. */
2806 add_prefix_cmd ("spu", no_class, set_spu_command,
2807 _("Various SPU specific commands."),
2808 &setspucmdlist, "set spu ", 0, &setlist);
2809 add_prefix_cmd ("spu", no_class, show_spu_command,
2810 _("Various SPU specific commands."),
2811 &showspucmdlist, "show spu ", 0, &showlist);
2812
2813 /* Toggle whether or not to add a temporary breakpoint at the "main"
2814 function of new SPE contexts. */
2815 add_setshow_boolean_cmd ("stop-on-load", class_support,
2816 &spu_stop_on_load_p, _("\
2817Set whether to stop for new SPE threads."),
2818 _("\
2819Show whether to stop for new SPE threads."),
2820 _("\
2821Use \"on\" to give control to the user when a new SPE thread\n\
2822enters its \"main\" function.\n\
2823Use \"off\" to disable stopping for new SPE threads."),
2824 NULL,
2825 show_spu_stop_on_load,
2826 &setspucmdlist, &showspucmdlist);
2827
2828 /* Toggle whether or not to automatically flush the software-managed
2829 cache whenever SPE execution stops. */
2830 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2831 &spu_auto_flush_cache_p, _("\
2832Set whether to automatically flush the software-managed cache."),
2833 _("\
2834Show whether to automatically flush the software-managed cache."),
2835 _("\
2836Use \"on\" to automatically flush the software-managed cache\n\
2837whenever SPE execution stops.\n\
2838Use \"off\" to never automatically flush the software-managed cache."),
2839 NULL,
2840 show_spu_auto_flush_cache,
2841 &setspucmdlist, &showspucmdlist);
2842
2843 /* Add root prefix command for all "info spu" commands. */
2844 add_prefix_cmd ("spu", class_info, info_spu_command,
2845 _("Various SPU specific commands."),
2846 &infospucmdlist, "info spu ", 0, &infolist);
2847
2848 /* Add various "info spu" commands. */
2849 add_cmd ("event", class_info, info_spu_event_command,
2850 _("Display SPU event facility status.\n"),
2851 &infospucmdlist);
2852 add_cmd ("signal", class_info, info_spu_signal_command,
2853 _("Display SPU signal notification facility status.\n"),
2854 &infospucmdlist);
2855 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2856 _("Display SPU mailbox facility status.\n"),
2857 &infospucmdlist);
2858 add_cmd ("dma", class_info, info_spu_dma_command,
2859 _("Display MFC DMA status.\n"),
2860 &infospucmdlist);
2861 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2862 _("Display MFC Proxy-DMA status.\n"),
2863 &infospucmdlist);
2864}
This page took 0.031782 seconds and 4 git commands to generate.