Fix "obvious" fall-through warnings
[deliverable/binutils-gdb.git] / gdb / stabsread.c
... / ...
CommitLineData
1/* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20/* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27#include "defs.h"
28#include "bfd.h"
29#include "gdb_obstack.h"
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
39#include "buildsym.h"
40#include "complaints.h"
41#include "demangle.h"
42#include "gdb-demangle.h"
43#include "language.h"
44#include "target-float.h"
45#include "cp-abi.h"
46#include "cp-support.h"
47#include <ctype.h>
48
49/* Ask stabsread.h to define the vars it normally declares `extern'. */
50#define EXTERN
51/**/
52#include "stabsread.h" /* Our own declarations */
53#undef EXTERN
54
55struct nextfield
56{
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65};
66
67struct next_fnfieldlist
68{
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71};
72
73/* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85static void
86read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91static long read_huge_number (const char **, int, int *, int);
92
93static struct type *error_type (const char **, struct objfile *);
94
95static void
96patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99static void fix_common_block (struct symbol *, CORE_ADDR);
100
101static int read_type_number (const char **, int *);
102
103static struct type *read_type (const char **, struct objfile *);
104
105static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116static struct type *rs6000_builtin_type (int, struct objfile *);
117
118static int
119read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122static int
123read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126static int
127read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130static int
131read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149static void add_undefined_type (struct type *, int[2]);
150
151static int
152read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155static const char *find_name_end (const char *name);
156
157static int process_reference (const char **string);
158
159void stabsread_clear_cache (void);
160
161static const char vptr_name[] = "_vptr$";
162static const char vb_name[] = "_vb$";
163
164static void
165invalid_cpp_abbrev_complaint (const char *arg1)
166{
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168}
169
170static void
171reg_value_complaint (int regnum, int num_regs, const char *sym)
172{
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176}
177
178static void
179stabs_general_complaint (const char *arg1)
180{
181 complaint (&symfile_complaints, "%s", arg1);
182}
183
184/* Make a list of forward references which haven't been defined. */
185
186static struct type **undef_types;
187static int undef_types_allocated;
188static int undef_types_length;
189static struct symbol *current_symbol = NULL;
190
191/* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196struct nat
197{
198 int typenums[2];
199 struct type *type;
200};
201static struct nat *noname_undefs;
202static int noname_undefs_allocated;
203static int noname_undefs_length;
204
205/* Check for and handle cretinous stabs symbol name continuation! */
206#define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212/* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218static struct type **type_vector;
219
220/* Number of elements allocated for type_vector currently. */
221
222static int type_vector_length;
223
224/* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227#define INITIAL_TYPE_VECTOR_LENGTH 160
228\f
229
230/* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237static struct type **
238dbx_lookup_type (int typenums[2], struct objfile *objfile)
239{
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
256 goto error_return;
257 }
258
259 if (filenum == 0)
260 {
261 if (index < 0)
262 {
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
269
270 temp_type = rs6000_builtin_type (index, objfile);
271 return &temp_type;
272 }
273
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
277 {
278 old_len = type_vector_length;
279 if (old_len == 0)
280 {
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
300 if (real_filenum >= N_HEADER_FILES (objfile))
301 {
302 static struct type *temp_type;
303
304 warning (_("GDB internal error: bad real_filenum"));
305
306 error_return:
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
309 }
310
311 f = HEADER_FILES (objfile) + real_filenum;
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327}
328
329/* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
334
335static struct type *
336dbx_alloc_type (int typenums[2], struct objfile *objfile)
337{
338 struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums, objfile);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356}
357
358/* Allocate a floating-point type of size BITS. */
359
360static struct type *
361dbx_init_float_type (struct objfile *objfile, int bits)
362{
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
365 struct type *type;
366
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 if (format)
369 type = init_float_type (objfile, bits, NULL, format);
370 else
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
372
373 return type;
374}
375
376/* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379static void
380patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
382{
383 int ii;
384 char *name;
385 const char *pp;
386 struct symbol *sym;
387
388 if (stabs)
389 {
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
398 while (pp[1] == ':')
399 {
400 pp += 2;
401 pp = (char *) strchr (pp, ':');
402 }
403 sym = find_symbol_in_list (symbols, name, pp - name);
404 if (!sym)
405 {
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
413
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
422 name, pp - name));
423 pp += 2;
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 {
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
429 SYMBOL_TYPE (sym) =
430 lookup_function_type (read_type (&pp, objfile));
431 }
432 else
433 {
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 }
436 add_symbol_to_list (sym, &global_symbols);
437 }
438 else
439 {
440 pp += 2;
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
442 {
443 SYMBOL_TYPE (sym) =
444 lookup_function_type (read_type (&pp, objfile));
445 }
446 else
447 {
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
449 }
450 }
451 }
452 }
453}
454\f
455
456/* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
461
462 Returns 0 for success, -1 for error. */
463
464static int
465read_type_number (const char **pp, int *typenums)
466{
467 int nbits;
468
469 if (**pp == '(')
470 {
471 (*pp)++;
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
473 if (nbits != 0)
474 return -1;
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
476 if (nbits != 0)
477 return -1;
478 }
479 else
480 {
481 typenums[0] = 0;
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
483 if (nbits != 0)
484 return -1;
485 }
486 return 0;
487}
488\f
489
490#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494
495/* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
497
498struct ref_map
499{
500 const char *stabs;
501 CORE_ADDR value;
502 struct symbol *sym;
503};
504
505#define MAX_CHUNK_REFS 100
506#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508
509static struct ref_map *ref_map;
510
511/* Ptr to free cell in chunk's linked list. */
512static int ref_count = 0;
513
514/* Number of chunks malloced. */
515static int ref_chunk = 0;
516
517/* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
520void
521stabsread_clear_cache (void)
522{
523 ref_count = 0;
524 ref_chunk = 0;
525}
526
527/* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
531void
532ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
533{
534 if (ref_count == 0)
535 ref_chunk = 0;
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 {
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
548 }
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
552}
553
554/* Return defined sym for the reference REFNUM. */
555struct symbol *
556ref_search (int refnum)
557{
558 if (refnum < 0 || refnum > ref_count)
559 return 0;
560 return ref_map[refnum].sym;
561}
562
563/* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
565
566static int
567process_reference (const char **string)
568{
569 const char *p;
570 int refnum = 0;
571
572 if (**string != '#')
573 return 0;
574
575 /* Advance beyond the initial '#'. */
576 p = *string + 1;
577
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
580 {
581 refnum = refnum * 10 + *p - '0';
582 p++;
583 }
584 *string = p;
585 return refnum;
586}
587
588/* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
590
591int
592symbol_reference_defined (const char **string)
593{
594 const char *p = *string;
595 int refnum = 0;
596
597 refnum = process_reference (&p);
598
599 /* Defining symbols end in '='. */
600 if (*p == '=')
601 {
602 /* Symbol is being defined here. */
603 *string = p + 1;
604 return refnum;
605 }
606 else
607 {
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
610 *string = p;
611 return -1;
612 }
613}
614
615static int
616stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617{
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619
620 if (regno < 0
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
623 {
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
628
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
630 }
631
632 return regno;
633}
634
635static const struct symbol_register_ops stab_register_funcs = {
636 stab_reg_to_regnum
637};
638
639/* The "aclass" indices for computed symbols. */
640
641static int stab_register_index;
642static int stab_regparm_index;
643
644struct symbol *
645define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
647{
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
649 struct symbol *sym;
650 const char *p = find_name_end (string);
651 int deftype;
652 int synonym = 0;
653 int i;
654
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
659
660 int nameless;
661
662 /* Ignore syms with empty names. */
663 if (string[0] == 0)
664 return 0;
665
666 /* Ignore old-style symbols from cc -go. */
667 if (p == 0)
668 return 0;
669
670 while (p[1] == ':')
671 {
672 p += 2;
673 p = strchr (p, ':');
674 if (p == NULL)
675 {
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
678 return NULL;
679 }
680 }
681
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685
686 current_symbol = sym = allocate_symbol (objfile);
687
688 if (processing_gcc_compilation)
689 {
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
693 }
694 else
695 {
696 SYMBOL_LINE (sym) = 0; /* unknown */
697 }
698
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701
702 if (is_cplus_marker (string[0]))
703 {
704 /* Special GNU C++ names. */
705 switch (string[1])
706 {
707 case 't':
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
709 break;
710
711 case 'v': /* $vtbl_ptr_type */
712 goto normal;
713
714 case 'e':
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
716 break;
717
718 case '_':
719 /* This was an anonymous type that was never fixed up. */
720 goto normal;
721
722 case 'X':
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
725 goto normal;
726 /* fall through */
727
728 default:
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
730 string);
731 goto normal; /* Do *something* with it. */
732 }
733 }
734 else
735 {
736 normal:
737 std::string new_name;
738
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
740 {
741 char *name = (char *) alloca (p - string + 1);
742
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
746 }
747 if (!new_name.empty ())
748 {
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
751 1, objfile);
752 }
753 else
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
755
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
758
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763#if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772#else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774#endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
788 if (*p != '=')
789 {
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 dbl_type = objfile_type (objfile)->builtin_double;
805 dbl_valu
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
808
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
810
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 }
829 break;
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
883 range_type
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 }
898 break;
899
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &file_symbols);
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966
967 /* fall into process_prototype_types. */
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
976 const char *p1 = p;
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 {
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1040 }
1041 add_symbol_to_list (sym, &global_symbols);
1042 break;
1043
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, &local_symbols);
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, &local_symbols);
1075
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1086 break;
1087
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 {
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1095 {
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1100 }
1101 break;
1102 }
1103
1104 case 'P':
1105 /* acc seems to use P to declare the prototypes of functions that
1106 are referenced by this file. gdb is not prepared to deal
1107 with this extra information. FIXME, it ought to. */
1108 if (type == N_FUN)
1109 {
1110 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1111 goto process_prototype_types;
1112 }
1113 /*FALLTHROUGH */
1114
1115 case 'R':
1116 /* Parameter which is in a register. */
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1119 SYMBOL_IS_ARGUMENT (sym) = 1;
1120 SYMBOL_VALUE (sym) = valu;
1121 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1122 add_symbol_to_list (sym, &local_symbols);
1123 break;
1124
1125 case 'r':
1126 /* Register variable (either global or local). */
1127 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1128 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1129 SYMBOL_VALUE (sym) = valu;
1130 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1131 if (within_function)
1132 {
1133 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 the same name to represent an argument passed in a
1135 register. GCC uses 'P' for the same case. So if we find
1136 such a symbol pair we combine it into one 'P' symbol.
1137 For Sun cc we need to do this regardless of
1138 stabs_argument_has_addr, because the compiler puts out
1139 the 'p' symbol even if it never saves the argument onto
1140 the stack.
1141
1142 On most machines, we want to preserve both symbols, so
1143 that we can still get information about what is going on
1144 with the stack (VAX for computing args_printed, using
1145 stack slots instead of saved registers in backtraces,
1146 etc.).
1147
1148 Note that this code illegally combines
1149 main(argc) struct foo argc; { register struct foo argc; }
1150 but this case is considered pathological and causes a warning
1151 from a decent compiler. */
1152
1153 if (local_symbols
1154 && local_symbols->nsyms > 0
1155 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1156 {
1157 struct symbol *prev_sym;
1158
1159 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1160 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1161 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1162 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1163 SYMBOL_LINKAGE_NAME (sym)) == 0)
1164 {
1165 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1166 /* Use the type from the LOC_REGISTER; that is the type
1167 that is actually in that register. */
1168 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1169 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1170 sym = prev_sym;
1171 break;
1172 }
1173 }
1174 add_symbol_to_list (sym, &local_symbols);
1175 }
1176 else
1177 add_symbol_to_list (sym, &file_symbols);
1178 break;
1179
1180 case 'S':
1181 /* Static symbol at top level of file. */
1182 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1183 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1184 SYMBOL_VALUE_ADDRESS (sym) = valu;
1185 if (gdbarch_static_transform_name_p (gdbarch)
1186 && gdbarch_static_transform_name (gdbarch,
1187 SYMBOL_LINKAGE_NAME (sym))
1188 != SYMBOL_LINKAGE_NAME (sym))
1189 {
1190 struct bound_minimal_symbol msym;
1191
1192 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1193 NULL, objfile);
1194 if (msym.minsym != NULL)
1195 {
1196 const char *new_name = gdbarch_static_transform_name
1197 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1198
1199 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1200 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1201 }
1202 }
1203 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1204 add_symbol_to_list (sym, &file_symbols);
1205 break;
1206
1207 case 't':
1208 /* In Ada, there is no distinction between typedef and non-typedef;
1209 any type declaration implicitly has the equivalent of a typedef,
1210 and thus 't' is in fact equivalent to 'Tt'.
1211
1212 Therefore, for Ada units, we check the character immediately
1213 before the 't', and if we do not find a 'T', then make sure to
1214 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1215 will be stored in the VAR_DOMAIN). If the symbol was indeed
1216 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1217 elsewhere, so we don't need to take care of that.
1218
1219 This is important to do, because of forward references:
1220 The cleanup of undefined types stored in undef_types only uses
1221 STRUCT_DOMAIN symbols to perform the replacement. */
1222 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1223
1224 /* Typedef */
1225 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1226
1227 /* For a nameless type, we don't want a create a symbol, thus we
1228 did not use `sym'. Return without further processing. */
1229 if (nameless)
1230 return NULL;
1231
1232 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1233 SYMBOL_VALUE (sym) = valu;
1234 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1235 /* C++ vagaries: we may have a type which is derived from
1236 a base type which did not have its name defined when the
1237 derived class was output. We fill in the derived class's
1238 base part member's name here in that case. */
1239 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1242 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1243 {
1244 int j;
1245
1246 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1247 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1248 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1249 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1250 }
1251
1252 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1253 {
1254 /* gcc-2.6 or later (when using -fvtable-thunks)
1255 emits a unique named type for a vtable entry.
1256 Some gdb code depends on that specific name. */
1257 extern const char vtbl_ptr_name[];
1258
1259 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1260 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1261 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1262 {
1263 /* If we are giving a name to a type such as "pointer to
1264 foo" or "function returning foo", we better not set
1265 the TYPE_NAME. If the program contains "typedef char
1266 *caddr_t;", we don't want all variables of type char
1267 * to print as caddr_t. This is not just a
1268 consequence of GDB's type management; PCC and GCC (at
1269 least through version 2.4) both output variables of
1270 either type char * or caddr_t with the type number
1271 defined in the 't' symbol for caddr_t. If a future
1272 compiler cleans this up it GDB is not ready for it
1273 yet, but if it becomes ready we somehow need to
1274 disable this check (without breaking the PCC/GCC2.4
1275 case).
1276
1277 Sigh.
1278
1279 Fortunately, this check seems not to be necessary
1280 for anything except pointers or functions. */
1281 /* ezannoni: 2000-10-26. This seems to apply for
1282 versions of gcc older than 2.8. This was the original
1283 problem: with the following code gdb would tell that
1284 the type for name1 is caddr_t, and func is char().
1285
1286 typedef char *caddr_t;
1287 char *name2;
1288 struct x
1289 {
1290 char *name1;
1291 } xx;
1292 char *func()
1293 {
1294 }
1295 main () {}
1296 */
1297
1298 /* Pascal accepts names for pointer types. */
1299 if (current_subfile->language == language_pascal)
1300 {
1301 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1302 }
1303 }
1304 else
1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1306 }
1307
1308 add_symbol_to_list (sym, &file_symbols);
1309
1310 if (synonym)
1311 {
1312 /* Create the STRUCT_DOMAIN clone. */
1313 struct symbol *struct_sym = allocate_symbol (objfile);
1314
1315 *struct_sym = *sym;
1316 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1317 SYMBOL_VALUE (struct_sym) = valu;
1318 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1319 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1320 TYPE_NAME (SYMBOL_TYPE (sym))
1321 = obconcat (&objfile->objfile_obstack,
1322 SYMBOL_LINKAGE_NAME (sym),
1323 (char *) NULL);
1324 add_symbol_to_list (struct_sym, &file_symbols);
1325 }
1326
1327 break;
1328
1329 case 'T':
1330 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1331 by 't' which means we are typedef'ing it as well. */
1332 synonym = *p == 't';
1333
1334 if (synonym)
1335 p++;
1336
1337 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1338
1339 /* For a nameless type, we don't want a create a symbol, thus we
1340 did not use `sym'. Return without further processing. */
1341 if (nameless)
1342 return NULL;
1343
1344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1345 SYMBOL_VALUE (sym) = valu;
1346 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1347 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1348 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack,
1350 SYMBOL_LINKAGE_NAME (sym),
1351 (char *) NULL);
1352 add_symbol_to_list (sym, &file_symbols);
1353
1354 if (synonym)
1355 {
1356 /* Clone the sym and then modify it. */
1357 struct symbol *typedef_sym = allocate_symbol (objfile);
1358
1359 *typedef_sym = *sym;
1360 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1361 SYMBOL_VALUE (typedef_sym) = valu;
1362 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1363 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1364 TYPE_NAME (SYMBOL_TYPE (sym))
1365 = obconcat (&objfile->objfile_obstack,
1366 SYMBOL_LINKAGE_NAME (sym),
1367 (char *) NULL);
1368 add_symbol_to_list (typedef_sym, &file_symbols);
1369 }
1370 break;
1371
1372 case 'V':
1373 /* Static symbol of local scope. */
1374 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1375 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1376 SYMBOL_VALUE_ADDRESS (sym) = valu;
1377 if (gdbarch_static_transform_name_p (gdbarch)
1378 && gdbarch_static_transform_name (gdbarch,
1379 SYMBOL_LINKAGE_NAME (sym))
1380 != SYMBOL_LINKAGE_NAME (sym))
1381 {
1382 struct bound_minimal_symbol msym;
1383
1384 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1385 NULL, objfile);
1386 if (msym.minsym != NULL)
1387 {
1388 const char *new_name = gdbarch_static_transform_name
1389 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1390
1391 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1392 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1393 }
1394 }
1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1396 add_symbol_to_list (sym, &local_symbols);
1397 break;
1398
1399 case 'v':
1400 /* Reference parameter */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1403 SYMBOL_IS_ARGUMENT (sym) = 1;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 case 'a':
1410 /* Reference parameter which is in a register. */
1411 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1412 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1413 SYMBOL_IS_ARGUMENT (sym) = 1;
1414 SYMBOL_VALUE (sym) = valu;
1415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1416 add_symbol_to_list (sym, &local_symbols);
1417 break;
1418
1419 case 'X':
1420 /* This is used by Sun FORTRAN for "function result value".
1421 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1422 that Pascal uses it too, but when I tried it Pascal used
1423 "x:3" (local symbol) instead. */
1424 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1425 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1426 SYMBOL_VALUE (sym) = valu;
1427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1428 add_symbol_to_list (sym, &local_symbols);
1429 break;
1430
1431 default:
1432 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1434 SYMBOL_VALUE (sym) = 0;
1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1436 add_symbol_to_list (sym, &file_symbols);
1437 break;
1438 }
1439
1440 /* Some systems pass variables of certain types by reference instead
1441 of by value, i.e. they will pass the address of a structure (in a
1442 register or on the stack) instead of the structure itself. */
1443
1444 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1445 && SYMBOL_IS_ARGUMENT (sym))
1446 {
1447 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1448 variables passed in a register). */
1449 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1450 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1451 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1452 and subsequent arguments on SPARC, for example). */
1453 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1455 }
1456
1457 return sym;
1458}
1459
1460/* Skip rest of this symbol and return an error type.
1461
1462 General notes on error recovery: error_type always skips to the
1463 end of the symbol (modulo cretinous dbx symbol name continuation).
1464 Thus code like this:
1465
1466 if (*(*pp)++ != ';')
1467 return error_type (pp, objfile);
1468
1469 is wrong because if *pp starts out pointing at '\0' (typically as the
1470 result of an earlier error), it will be incremented to point to the
1471 start of the next symbol, which might produce strange results, at least
1472 if you run off the end of the string table. Instead use
1473
1474 if (**pp != ';')
1475 return error_type (pp, objfile);
1476 ++*pp;
1477
1478 or
1479
1480 if (**pp != ';')
1481 foo = error_type (pp, objfile);
1482 else
1483 ++*pp;
1484
1485 And in case it isn't obvious, the point of all this hair is so the compiler
1486 can define new types and new syntaxes, and old versions of the
1487 debugger will be able to read the new symbol tables. */
1488
1489static struct type *
1490error_type (const char **pp, struct objfile *objfile)
1491{
1492 complaint (&symfile_complaints,
1493 _("couldn't parse type; debugger out of date?"));
1494 while (1)
1495 {
1496 /* Skip to end of symbol. */
1497 while (**pp != '\0')
1498 {
1499 (*pp)++;
1500 }
1501
1502 /* Check for and handle cretinous dbx symbol name continuation! */
1503 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1504 {
1505 *pp = next_symbol_text (objfile);
1506 }
1507 else
1508 {
1509 break;
1510 }
1511 }
1512 return objfile_type (objfile)->builtin_error;
1513}
1514\f
1515
1516/* Read type information or a type definition; return the type. Even
1517 though this routine accepts either type information or a type
1518 definition, the distinction is relevant--some parts of stabsread.c
1519 assume that type information starts with a digit, '-', or '(' in
1520 deciding whether to call read_type. */
1521
1522static struct type *
1523read_type (const char **pp, struct objfile *objfile)
1524{
1525 struct type *type = 0;
1526 struct type *type1;
1527 int typenums[2];
1528 char type_descriptor;
1529
1530 /* Size in bits of type if specified by a type attribute, or -1 if
1531 there is no size attribute. */
1532 int type_size = -1;
1533
1534 /* Used to distinguish string and bitstring from char-array and set. */
1535 int is_string = 0;
1536
1537 /* Used to distinguish vector from array. */
1538 int is_vector = 0;
1539
1540 /* Read type number if present. The type number may be omitted.
1541 for instance in a two-dimensional array declared with type
1542 "ar1;1;10;ar1;1;10;4". */
1543 if ((**pp >= '0' && **pp <= '9')
1544 || **pp == '('
1545 || **pp == '-')
1546 {
1547 if (read_type_number (pp, typenums) != 0)
1548 return error_type (pp, objfile);
1549
1550 if (**pp != '=')
1551 {
1552 /* Type is not being defined here. Either it already
1553 exists, or this is a forward reference to it.
1554 dbx_alloc_type handles both cases. */
1555 type = dbx_alloc_type (typenums, objfile);
1556
1557 /* If this is a forward reference, arrange to complain if it
1558 doesn't get patched up by the time we're done
1559 reading. */
1560 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1561 add_undefined_type (type, typenums);
1562
1563 return type;
1564 }
1565
1566 /* Type is being defined here. */
1567 /* Skip the '='.
1568 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1569 (*pp) += 2;
1570 }
1571 else
1572 {
1573 /* 'typenums=' not present, type is anonymous. Read and return
1574 the definition, but don't put it in the type vector. */
1575 typenums[0] = typenums[1] = -1;
1576 (*pp)++;
1577 }
1578
1579again:
1580 type_descriptor = (*pp)[-1];
1581 switch (type_descriptor)
1582 {
1583 case 'x':
1584 {
1585 enum type_code code;
1586
1587 /* Used to index through file_symbols. */
1588 struct pending *ppt;
1589 int i;
1590
1591 /* Name including "struct", etc. */
1592 char *type_name;
1593
1594 {
1595 const char *from, *p, *q1, *q2;
1596
1597 /* Set the type code according to the following letter. */
1598 switch ((*pp)[0])
1599 {
1600 case 's':
1601 code = TYPE_CODE_STRUCT;
1602 break;
1603 case 'u':
1604 code = TYPE_CODE_UNION;
1605 break;
1606 case 'e':
1607 code = TYPE_CODE_ENUM;
1608 break;
1609 default:
1610 {
1611 /* Complain and keep going, so compilers can invent new
1612 cross-reference types. */
1613 complaint (&symfile_complaints,
1614 _("Unrecognized cross-reference type `%c'"),
1615 (*pp)[0]);
1616 code = TYPE_CODE_STRUCT;
1617 break;
1618 }
1619 }
1620
1621 q1 = strchr (*pp, '<');
1622 p = strchr (*pp, ':');
1623 if (p == NULL)
1624 return error_type (pp, objfile);
1625 if (q1 && p > q1 && p[1] == ':')
1626 {
1627 int nesting_level = 0;
1628
1629 for (q2 = q1; *q2; q2++)
1630 {
1631 if (*q2 == '<')
1632 nesting_level++;
1633 else if (*q2 == '>')
1634 nesting_level--;
1635 else if (*q2 == ':' && nesting_level == 0)
1636 break;
1637 }
1638 p = q2;
1639 if (*p != ':')
1640 return error_type (pp, objfile);
1641 }
1642 type_name = NULL;
1643 if (current_subfile->language == language_cplus)
1644 {
1645 char *name = (char *) alloca (p - *pp + 1);
1646
1647 memcpy (name, *pp, p - *pp);
1648 name[p - *pp] = '\0';
1649
1650 std::string new_name = cp_canonicalize_string (name);
1651 if (!new_name.empty ())
1652 {
1653 type_name
1654 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1655 new_name.c_str (),
1656 new_name.length ());
1657 }
1658 }
1659 if (type_name == NULL)
1660 {
1661 char *to = type_name = (char *)
1662 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1663
1664 /* Copy the name. */
1665 from = *pp + 1;
1666 while (from < p)
1667 *to++ = *from++;
1668 *to = '\0';
1669 }
1670
1671 /* Set the pointer ahead of the name which we just read, and
1672 the colon. */
1673 *pp = p + 1;
1674 }
1675
1676 /* If this type has already been declared, then reuse the same
1677 type, rather than allocating a new one. This saves some
1678 memory. */
1679
1680 for (ppt = file_symbols; ppt; ppt = ppt->next)
1681 for (i = 0; i < ppt->nsyms; i++)
1682 {
1683 struct symbol *sym = ppt->symbol[i];
1684
1685 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1686 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1687 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1688 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1689 {
1690 obstack_free (&objfile->objfile_obstack, type_name);
1691 type = SYMBOL_TYPE (sym);
1692 if (typenums[0] != -1)
1693 *dbx_lookup_type (typenums, objfile) = type;
1694 return type;
1695 }
1696 }
1697
1698 /* Didn't find the type to which this refers, so we must
1699 be dealing with a forward reference. Allocate a type
1700 structure for it, and keep track of it so we can
1701 fill in the rest of the fields when we get the full
1702 type. */
1703 type = dbx_alloc_type (typenums, objfile);
1704 TYPE_CODE (type) = code;
1705 TYPE_TAG_NAME (type) = type_name;
1706 INIT_CPLUS_SPECIFIC (type);
1707 TYPE_STUB (type) = 1;
1708
1709 add_undefined_type (type, typenums);
1710 return type;
1711 }
1712
1713 case '-': /* RS/6000 built-in type */
1714 case '0':
1715 case '1':
1716 case '2':
1717 case '3':
1718 case '4':
1719 case '5':
1720 case '6':
1721 case '7':
1722 case '8':
1723 case '9':
1724 case '(':
1725 (*pp)--;
1726
1727 /* We deal with something like t(1,2)=(3,4)=... which
1728 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1729
1730 /* Allocate and enter the typedef type first.
1731 This handles recursive types. */
1732 type = dbx_alloc_type (typenums, objfile);
1733 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1734 {
1735 struct type *xtype = read_type (pp, objfile);
1736
1737 if (type == xtype)
1738 {
1739 /* It's being defined as itself. That means it is "void". */
1740 TYPE_CODE (type) = TYPE_CODE_VOID;
1741 TYPE_LENGTH (type) = 1;
1742 }
1743 else if (type_size >= 0 || is_string)
1744 {
1745 /* This is the absolute wrong way to construct types. Every
1746 other debug format has found a way around this problem and
1747 the related problems with unnecessarily stubbed types;
1748 someone motivated should attempt to clean up the issue
1749 here as well. Once a type pointed to has been created it
1750 should not be modified.
1751
1752 Well, it's not *absolutely* wrong. Constructing recursive
1753 types (trees, linked lists) necessarily entails modifying
1754 types after creating them. Constructing any loop structure
1755 entails side effects. The Dwarf 2 reader does handle this
1756 more gracefully (it never constructs more than once
1757 instance of a type object, so it doesn't have to copy type
1758 objects wholesale), but it still mutates type objects after
1759 other folks have references to them.
1760
1761 Keep in mind that this circularity/mutation issue shows up
1762 at the source language level, too: C's "incomplete types",
1763 for example. So the proper cleanup, I think, would be to
1764 limit GDB's type smashing to match exactly those required
1765 by the source language. So GDB could have a
1766 "complete_this_type" function, but never create unnecessary
1767 copies of a type otherwise. */
1768 replace_type (type, xtype);
1769 TYPE_NAME (type) = NULL;
1770 TYPE_TAG_NAME (type) = NULL;
1771 }
1772 else
1773 {
1774 TYPE_TARGET_STUB (type) = 1;
1775 TYPE_TARGET_TYPE (type) = xtype;
1776 }
1777 }
1778 break;
1779
1780 /* In the following types, we must be sure to overwrite any existing
1781 type that the typenums refer to, rather than allocating a new one
1782 and making the typenums point to the new one. This is because there
1783 may already be pointers to the existing type (if it had been
1784 forward-referenced), and we must change it to a pointer, function,
1785 reference, or whatever, *in-place*. */
1786
1787 case '*': /* Pointer to another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1790 break;
1791
1792 case '&': /* Reference to another type */
1793 type1 = read_type (pp, objfile);
1794 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1795 TYPE_CODE_REF);
1796 break;
1797
1798 case 'f': /* Function returning another type */
1799 type1 = read_type (pp, objfile);
1800 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1801 break;
1802
1803 case 'g': /* Prototyped function. (Sun) */
1804 {
1805 /* Unresolved questions:
1806
1807 - According to Sun's ``STABS Interface Manual'', for 'f'
1808 and 'F' symbol descriptors, a `0' in the argument type list
1809 indicates a varargs function. But it doesn't say how 'g'
1810 type descriptors represent that info. Someone with access
1811 to Sun's toolchain should try it out.
1812
1813 - According to the comment in define_symbol (search for
1814 `process_prototype_types:'), Sun emits integer arguments as
1815 types which ref themselves --- like `void' types. Do we
1816 have to deal with that here, too? Again, someone with
1817 access to Sun's toolchain should try it out and let us
1818 know. */
1819
1820 const char *type_start = (*pp) - 1;
1821 struct type *return_type = read_type (pp, objfile);
1822 struct type *func_type
1823 = make_function_type (return_type,
1824 dbx_lookup_type (typenums, objfile));
1825 struct type_list {
1826 struct type *type;
1827 struct type_list *next;
1828 } *arg_types = 0;
1829 int num_args = 0;
1830
1831 while (**pp && **pp != '#')
1832 {
1833 struct type *arg_type = read_type (pp, objfile);
1834 struct type_list *newobj = XALLOCA (struct type_list);
1835 newobj->type = arg_type;
1836 newobj->next = arg_types;
1837 arg_types = newobj;
1838 num_args++;
1839 }
1840 if (**pp == '#')
1841 ++*pp;
1842 else
1843 {
1844 complaint (&symfile_complaints,
1845 _("Prototyped function type didn't "
1846 "end arguments with `#':\n%s"),
1847 type_start);
1848 }
1849
1850 /* If there is just one argument whose type is `void', then
1851 that's just an empty argument list. */
1852 if (arg_types
1853 && ! arg_types->next
1854 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1855 num_args = 0;
1856
1857 TYPE_FIELDS (func_type)
1858 = (struct field *) TYPE_ALLOC (func_type,
1859 num_args * sizeof (struct field));
1860 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1861 {
1862 int i;
1863 struct type_list *t;
1864
1865 /* We stuck each argument type onto the front of the list
1866 when we read it, so the list is reversed. Build the
1867 fields array right-to-left. */
1868 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1869 TYPE_FIELD_TYPE (func_type, i) = t->type;
1870 }
1871 TYPE_NFIELDS (func_type) = num_args;
1872 TYPE_PROTOTYPED (func_type) = 1;
1873
1874 type = func_type;
1875 break;
1876 }
1877
1878 case 'k': /* Const qualifier on some type (Sun) */
1879 type = read_type (pp, objfile);
1880 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1881 dbx_lookup_type (typenums, objfile));
1882 break;
1883
1884 case 'B': /* Volatile qual on some type (Sun) */
1885 type = read_type (pp, objfile);
1886 type = make_cv_type (TYPE_CONST (type), 1, type,
1887 dbx_lookup_type (typenums, objfile));
1888 break;
1889
1890 case '@':
1891 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1892 { /* Member (class & variable) type */
1893 /* FIXME -- we should be doing smash_to_XXX types here. */
1894
1895 struct type *domain = read_type (pp, objfile);
1896 struct type *memtype;
1897
1898 if (**pp != ',')
1899 /* Invalid member type data format. */
1900 return error_type (pp, objfile);
1901 ++*pp;
1902
1903 memtype = read_type (pp, objfile);
1904 type = dbx_alloc_type (typenums, objfile);
1905 smash_to_memberptr_type (type, domain, memtype);
1906 }
1907 else
1908 /* type attribute */
1909 {
1910 const char *attr = *pp;
1911
1912 /* Skip to the semicolon. */
1913 while (**pp != ';' && **pp != '\0')
1914 ++(*pp);
1915 if (**pp == '\0')
1916 return error_type (pp, objfile);
1917 else
1918 ++ * pp; /* Skip the semicolon. */
1919
1920 switch (*attr)
1921 {
1922 case 's': /* Size attribute */
1923 type_size = atoi (attr + 1);
1924 if (type_size <= 0)
1925 type_size = -1;
1926 break;
1927
1928 case 'S': /* String attribute */
1929 /* FIXME: check to see if following type is array? */
1930 is_string = 1;
1931 break;
1932
1933 case 'V': /* Vector attribute */
1934 /* FIXME: check to see if following type is array? */
1935 is_vector = 1;
1936 break;
1937
1938 default:
1939 /* Ignore unrecognized type attributes, so future compilers
1940 can invent new ones. */
1941 break;
1942 }
1943 ++*pp;
1944 goto again;
1945 }
1946 break;
1947
1948 case '#': /* Method (class & fn) type */
1949 if ((*pp)[0] == '#')
1950 {
1951 /* We'll get the parameter types from the name. */
1952 struct type *return_type;
1953
1954 (*pp)++;
1955 return_type = read_type (pp, objfile);
1956 if (*(*pp)++ != ';')
1957 complaint (&symfile_complaints,
1958 _("invalid (minimal) member type "
1959 "data format at symtab pos %d."),
1960 symnum);
1961 type = allocate_stub_method (return_type);
1962 if (typenums[0] != -1)
1963 *dbx_lookup_type (typenums, objfile) = type;
1964 }
1965 else
1966 {
1967 struct type *domain = read_type (pp, objfile);
1968 struct type *return_type;
1969 struct field *args;
1970 int nargs, varargs;
1971
1972 if (**pp != ',')
1973 /* Invalid member type data format. */
1974 return error_type (pp, objfile);
1975 else
1976 ++(*pp);
1977
1978 return_type = read_type (pp, objfile);
1979 args = read_args (pp, ';', objfile, &nargs, &varargs);
1980 if (args == NULL)
1981 return error_type (pp, objfile);
1982 type = dbx_alloc_type (typenums, objfile);
1983 smash_to_method_type (type, domain, return_type, args,
1984 nargs, varargs);
1985 }
1986 break;
1987
1988 case 'r': /* Range type */
1989 type = read_range_type (pp, typenums, type_size, objfile);
1990 if (typenums[0] != -1)
1991 *dbx_lookup_type (typenums, objfile) = type;
1992 break;
1993
1994 case 'b':
1995 {
1996 /* Sun ACC builtin int type */
1997 type = read_sun_builtin_type (pp, typenums, objfile);
1998 if (typenums[0] != -1)
1999 *dbx_lookup_type (typenums, objfile) = type;
2000 }
2001 break;
2002
2003 case 'R': /* Sun ACC builtin float type */
2004 type = read_sun_floating_type (pp, typenums, objfile);
2005 if (typenums[0] != -1)
2006 *dbx_lookup_type (typenums, objfile) = type;
2007 break;
2008
2009 case 'e': /* Enumeration type */
2010 type = dbx_alloc_type (typenums, objfile);
2011 type = read_enum_type (pp, type, objfile);
2012 if (typenums[0] != -1)
2013 *dbx_lookup_type (typenums, objfile) = type;
2014 break;
2015
2016 case 's': /* Struct type */
2017 case 'u': /* Union type */
2018 {
2019 enum type_code type_code = TYPE_CODE_UNDEF;
2020 type = dbx_alloc_type (typenums, objfile);
2021 switch (type_descriptor)
2022 {
2023 case 's':
2024 type_code = TYPE_CODE_STRUCT;
2025 break;
2026 case 'u':
2027 type_code = TYPE_CODE_UNION;
2028 break;
2029 }
2030 type = read_struct_type (pp, type, type_code, objfile);
2031 break;
2032 }
2033
2034 case 'a': /* Array type */
2035 if (**pp != 'r')
2036 return error_type (pp, objfile);
2037 ++*pp;
2038
2039 type = dbx_alloc_type (typenums, objfile);
2040 type = read_array_type (pp, type, objfile);
2041 if (is_string)
2042 TYPE_CODE (type) = TYPE_CODE_STRING;
2043 if (is_vector)
2044 make_vector_type (type);
2045 break;
2046
2047 case 'S': /* Set type */
2048 type1 = read_type (pp, objfile);
2049 type = create_set_type ((struct type *) NULL, type1);
2050 if (typenums[0] != -1)
2051 *dbx_lookup_type (typenums, objfile) = type;
2052 break;
2053
2054 default:
2055 --*pp; /* Go back to the symbol in error. */
2056 /* Particularly important if it was \0! */
2057 return error_type (pp, objfile);
2058 }
2059
2060 if (type == 0)
2061 {
2062 warning (_("GDB internal error, type is NULL in stabsread.c."));
2063 return error_type (pp, objfile);
2064 }
2065
2066 /* Size specified in a type attribute overrides any other size. */
2067 if (type_size != -1)
2068 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2069
2070 return type;
2071}
2072\f
2073/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2074 Return the proper type node for a given builtin type number. */
2075
2076static const struct objfile_data *rs6000_builtin_type_data;
2077
2078static struct type *
2079rs6000_builtin_type (int typenum, struct objfile *objfile)
2080{
2081 struct type **negative_types
2082 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2083
2084 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2085#define NUMBER_RECOGNIZED 34
2086 struct type *rettype = NULL;
2087
2088 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2089 {
2090 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2091 return objfile_type (objfile)->builtin_error;
2092 }
2093
2094 if (!negative_types)
2095 {
2096 /* This includes an empty slot for type number -0. */
2097 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2098 NUMBER_RECOGNIZED + 1, struct type *);
2099 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2100 }
2101
2102 if (negative_types[-typenum] != NULL)
2103 return negative_types[-typenum];
2104
2105#if TARGET_CHAR_BIT != 8
2106#error This code wrong for TARGET_CHAR_BIT not 8
2107 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2108 that if that ever becomes not true, the correct fix will be to
2109 make the size in the struct type to be in bits, not in units of
2110 TARGET_CHAR_BIT. */
2111#endif
2112
2113 switch (-typenum)
2114 {
2115 case 1:
2116 /* The size of this and all the other types are fixed, defined
2117 by the debugging format. If there is a type called "int" which
2118 is other than 32 bits, then it should use a new negative type
2119 number (or avoid negative type numbers for that case).
2120 See stabs.texinfo. */
2121 rettype = init_integer_type (objfile, 32, 0, "int");
2122 break;
2123 case 2:
2124 rettype = init_integer_type (objfile, 8, 0, "char");
2125 TYPE_NOSIGN (rettype) = 1;
2126 break;
2127 case 3:
2128 rettype = init_integer_type (objfile, 16, 0, "short");
2129 break;
2130 case 4:
2131 rettype = init_integer_type (objfile, 32, 0, "long");
2132 break;
2133 case 5:
2134 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2135 break;
2136 case 6:
2137 rettype = init_integer_type (objfile, 8, 0, "signed char");
2138 break;
2139 case 7:
2140 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2141 break;
2142 case 8:
2143 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2144 break;
2145 case 9:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2147 break;
2148 case 10:
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2150 break;
2151 case 11:
2152 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2153 break;
2154 case 12:
2155 /* IEEE single precision (32 bit). */
2156 rettype = init_float_type (objfile, 32, "float",
2157 floatformats_ieee_single);
2158 break;
2159 case 13:
2160 /* IEEE double precision (64 bit). */
2161 rettype = init_float_type (objfile, 64, "double",
2162 floatformats_ieee_double);
2163 break;
2164 case 14:
2165 /* This is an IEEE double on the RS/6000, and different machines with
2166 different sizes for "long double" should use different negative
2167 type numbers. See stabs.texinfo. */
2168 rettype = init_float_type (objfile, 64, "long double",
2169 floatformats_ieee_double);
2170 break;
2171 case 15:
2172 rettype = init_integer_type (objfile, 32, 0, "integer");
2173 break;
2174 case 16:
2175 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2176 break;
2177 case 17:
2178 rettype = init_float_type (objfile, 32, "short real",
2179 floatformats_ieee_single);
2180 break;
2181 case 18:
2182 rettype = init_float_type (objfile, 64, "real",
2183 floatformats_ieee_double);
2184 break;
2185 case 19:
2186 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2187 break;
2188 case 20:
2189 rettype = init_character_type (objfile, 8, 1, "character");
2190 break;
2191 case 21:
2192 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2193 break;
2194 case 22:
2195 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2196 break;
2197 case 23:
2198 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2199 break;
2200 case 24:
2201 rettype = init_boolean_type (objfile, 32, 1, "logical");
2202 break;
2203 case 25:
2204 /* Complex type consisting of two IEEE single precision values. */
2205 rettype = init_complex_type (objfile, "complex",
2206 rs6000_builtin_type (12, objfile));
2207 break;
2208 case 26:
2209 /* Complex type consisting of two IEEE double precision values. */
2210 rettype = init_complex_type (objfile, "double complex",
2211 rs6000_builtin_type (13, objfile));
2212 break;
2213 case 27:
2214 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2215 break;
2216 case 28:
2217 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2218 break;
2219 case 29:
2220 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2221 break;
2222 case 30:
2223 rettype = init_character_type (objfile, 16, 0, "wchar");
2224 break;
2225 case 31:
2226 rettype = init_integer_type (objfile, 64, 0, "long long");
2227 break;
2228 case 32:
2229 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2230 break;
2231 case 33:
2232 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2233 break;
2234 case 34:
2235 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2236 break;
2237 }
2238 negative_types[-typenum] = rettype;
2239 return rettype;
2240}
2241\f
2242/* This page contains subroutines of read_type. */
2243
2244/* Wrapper around method_name_from_physname to flag a complaint
2245 if there is an error. */
2246
2247static char *
2248stabs_method_name_from_physname (const char *physname)
2249{
2250 char *method_name;
2251
2252 method_name = method_name_from_physname (physname);
2253
2254 if (method_name == NULL)
2255 {
2256 complaint (&symfile_complaints,
2257 _("Method has bad physname %s\n"), physname);
2258 return NULL;
2259 }
2260
2261 return method_name;
2262}
2263
2264/* Read member function stabs info for C++ classes. The form of each member
2265 function data is:
2266
2267 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2268
2269 An example with two member functions is:
2270
2271 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2272
2273 For the case of overloaded operators, the format is op$::*.funcs, where
2274 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2275 name (such as `+=') and `.' marks the end of the operator name.
2276
2277 Returns 1 for success, 0 for failure. */
2278
2279static int
2280read_member_functions (struct field_info *fip, const char **pp,
2281 struct type *type, struct objfile *objfile)
2282{
2283 int nfn_fields = 0;
2284 int length = 0;
2285 int i;
2286 struct next_fnfield
2287 {
2288 struct next_fnfield *next;
2289 struct fn_field fn_field;
2290 }
2291 *sublist;
2292 struct type *look_ahead_type;
2293 struct next_fnfieldlist *new_fnlist;
2294 struct next_fnfield *new_sublist;
2295 char *main_fn_name;
2296 const char *p;
2297
2298 /* Process each list until we find something that is not a member function
2299 or find the end of the functions. */
2300
2301 while (**pp != ';')
2302 {
2303 /* We should be positioned at the start of the function name.
2304 Scan forward to find the first ':' and if it is not the
2305 first of a "::" delimiter, then this is not a member function. */
2306 p = *pp;
2307 while (*p != ':')
2308 {
2309 p++;
2310 }
2311 if (p[1] != ':')
2312 {
2313 break;
2314 }
2315
2316 sublist = NULL;
2317 look_ahead_type = NULL;
2318 length = 0;
2319
2320 new_fnlist = XCNEW (struct next_fnfieldlist);
2321 make_cleanup (xfree, new_fnlist);
2322
2323 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2324 {
2325 /* This is a completely wierd case. In order to stuff in the
2326 names that might contain colons (the usual name delimiter),
2327 Mike Tiemann defined a different name format which is
2328 signalled if the identifier is "op$". In that case, the
2329 format is "op$::XXXX." where XXXX is the name. This is
2330 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2331 /* This lets the user type "break operator+".
2332 We could just put in "+" as the name, but that wouldn't
2333 work for "*". */
2334 static char opname[32] = "op$";
2335 char *o = opname + 3;
2336
2337 /* Skip past '::'. */
2338 *pp = p + 2;
2339
2340 STABS_CONTINUE (pp, objfile);
2341 p = *pp;
2342 while (*p != '.')
2343 {
2344 *o++ = *p++;
2345 }
2346 main_fn_name = savestring (opname, o - opname);
2347 /* Skip past '.' */
2348 *pp = p + 1;
2349 }
2350 else
2351 {
2352 main_fn_name = savestring (*pp, p - *pp);
2353 /* Skip past '::'. */
2354 *pp = p + 2;
2355 }
2356 new_fnlist->fn_fieldlist.name = main_fn_name;
2357
2358 do
2359 {
2360 new_sublist = XCNEW (struct next_fnfield);
2361 make_cleanup (xfree, new_sublist);
2362
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
2366 /* Normal case. */
2367 STABS_CONTINUE (pp, objfile);
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2381 }
2382
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
2389
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 else
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2396
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2399 {
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2403 }
2404
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2406 *pp = p + 1;
2407
2408 /* Set this member function's visibility fields. */
2409 switch (*(*pp)++)
2410 {
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2413 break;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2416 break;
2417 }
2418
2419 STABS_CONTINUE (pp, objfile);
2420 switch (**pp)
2421 {
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2430 (*pp)++;
2431 break;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2440 (*pp)++;
2441 break;
2442 case '*': /* File compiled with g++ version 1 --
2443 no info. */
2444 case '?':
2445 case '.':
2446 break;
2447 default:
2448 complaint (&symfile_complaints,
2449 _("const/volatile indicator missing, got '%c'"),
2450 **pp);
2451 break;
2452 }
2453
2454 switch (*(*pp)++)
2455 {
2456 case '*':
2457 {
2458 int nbits;
2459 /* virtual member function, followed by index.
2460 The sign bit is set to distinguish pointers-to-methods
2461 from virtual function indicies. Since the array is
2462 in words, the quantity must be shifted left by 1
2463 on 16 bit machine, and by 2 on 32 bit machine, forcing
2464 the sign bit out, and usable as a valid index into
2465 the array. Remove the sign bit here. */
2466 new_sublist->fn_field.voffset =
2467 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2468 if (nbits != 0)
2469 return 0;
2470
2471 STABS_CONTINUE (pp, objfile);
2472 if (**pp == ';' || **pp == '\0')
2473 {
2474 /* Must be g++ version 1. */
2475 new_sublist->fn_field.fcontext = 0;
2476 }
2477 else
2478 {
2479 /* Figure out from whence this virtual function came.
2480 It may belong to virtual function table of
2481 one of its baseclasses. */
2482 look_ahead_type = read_type (pp, objfile);
2483 if (**pp == ':')
2484 {
2485 /* g++ version 1 overloaded methods. */
2486 }
2487 else
2488 {
2489 new_sublist->fn_field.fcontext = look_ahead_type;
2490 if (**pp != ';')
2491 {
2492 return 0;
2493 }
2494 else
2495 {
2496 ++*pp;
2497 }
2498 look_ahead_type = NULL;
2499 }
2500 }
2501 break;
2502 }
2503 case '?':
2504 /* static member function. */
2505 {
2506 int slen = strlen (main_fn_name);
2507
2508 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2509
2510 /* For static member functions, we can't tell if they
2511 are stubbed, as they are put out as functions, and not as
2512 methods.
2513 GCC v2 emits the fully mangled name if
2514 dbxout.c:flag_minimal_debug is not set, so we have to
2515 detect a fully mangled physname here and set is_stub
2516 accordingly. Fully mangled physnames in v2 start with
2517 the member function name, followed by two underscores.
2518 GCC v3 currently always emits stubbed member functions,
2519 but with fully mangled physnames, which start with _Z. */
2520 if (!(strncmp (new_sublist->fn_field.physname,
2521 main_fn_name, slen) == 0
2522 && new_sublist->fn_field.physname[slen] == '_'
2523 && new_sublist->fn_field.physname[slen + 1] == '_'))
2524 {
2525 new_sublist->fn_field.is_stub = 1;
2526 }
2527 break;
2528 }
2529
2530 default:
2531 /* error */
2532 complaint (&symfile_complaints,
2533 _("member function type missing, got '%c'"),
2534 (*pp)[-1]);
2535 /* Normal member function. */
2536 /* Fall through. */
2537
2538 case '.':
2539 /* normal member function. */
2540 new_sublist->fn_field.voffset = 0;
2541 new_sublist->fn_field.fcontext = 0;
2542 break;
2543 }
2544
2545 new_sublist->next = sublist;
2546 sublist = new_sublist;
2547 length++;
2548 STABS_CONTINUE (pp, objfile);
2549 }
2550 while (**pp != ';' && **pp != '\0');
2551
2552 (*pp)++;
2553 STABS_CONTINUE (pp, objfile);
2554
2555 /* Skip GCC 3.X member functions which are duplicates of the callable
2556 constructor/destructor. */
2557 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2558 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2559 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2560 {
2561 xfree (main_fn_name);
2562 }
2563 else
2564 {
2565 int has_stub = 0;
2566 int has_destructor = 0, has_other = 0;
2567 int is_v3 = 0;
2568 struct next_fnfield *tmp_sublist;
2569
2570 /* Various versions of GCC emit various mostly-useless
2571 strings in the name field for special member functions.
2572
2573 For stub methods, we need to defer correcting the name
2574 until we are ready to unstub the method, because the current
2575 name string is used by gdb_mangle_name. The only stub methods
2576 of concern here are GNU v2 operators; other methods have their
2577 names correct (see caveat below).
2578
2579 For non-stub methods, in GNU v3, we have a complete physname.
2580 Therefore we can safely correct the name now. This primarily
2581 affects constructors and destructors, whose name will be
2582 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2583 operators will also have incorrect names; for instance,
2584 "operator int" will be named "operator i" (i.e. the type is
2585 mangled).
2586
2587 For non-stub methods in GNU v2, we have no easy way to
2588 know if we have a complete physname or not. For most
2589 methods the result depends on the platform (if CPLUS_MARKER
2590 can be `$' or `.', it will use minimal debug information, or
2591 otherwise the full physname will be included).
2592
2593 Rather than dealing with this, we take a different approach.
2594 For v3 mangled names, we can use the full physname; for v2,
2595 we use cplus_demangle_opname (which is actually v2 specific),
2596 because the only interesting names are all operators - once again
2597 barring the caveat below. Skip this process if any method in the
2598 group is a stub, to prevent our fouling up the workings of
2599 gdb_mangle_name.
2600
2601 The caveat: GCC 2.95.x (and earlier?) put constructors and
2602 destructors in the same method group. We need to split this
2603 into two groups, because they should have different names.
2604 So for each method group we check whether it contains both
2605 routines whose physname appears to be a destructor (the physnames
2606 for and destructors are always provided, due to quirks in v2
2607 mangling) and routines whose physname does not appear to be a
2608 destructor. If so then we break up the list into two halves.
2609 Even if the constructors and destructors aren't in the same group
2610 the destructor will still lack the leading tilde, so that also
2611 needs to be fixed.
2612
2613 So, to summarize what we expect and handle here:
2614
2615 Given Given Real Real Action
2616 method name physname physname method name
2617
2618 __opi [none] __opi__3Foo operator int opname
2619 [now or later]
2620 Foo _._3Foo _._3Foo ~Foo separate and
2621 rename
2622 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2623 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2624 */
2625
2626 tmp_sublist = sublist;
2627 while (tmp_sublist != NULL)
2628 {
2629 if (tmp_sublist->fn_field.is_stub)
2630 has_stub = 1;
2631 if (tmp_sublist->fn_field.physname[0] == '_'
2632 && tmp_sublist->fn_field.physname[1] == 'Z')
2633 is_v3 = 1;
2634
2635 if (is_destructor_name (tmp_sublist->fn_field.physname))
2636 has_destructor++;
2637 else
2638 has_other++;
2639
2640 tmp_sublist = tmp_sublist->next;
2641 }
2642
2643 if (has_destructor && has_other)
2644 {
2645 struct next_fnfieldlist *destr_fnlist;
2646 struct next_fnfield *last_sublist;
2647
2648 /* Create a new fn_fieldlist for the destructors. */
2649
2650 destr_fnlist = XCNEW (struct next_fnfieldlist);
2651 make_cleanup (xfree, destr_fnlist);
2652
2653 destr_fnlist->fn_fieldlist.name
2654 = obconcat (&objfile->objfile_obstack, "~",
2655 new_fnlist->fn_fieldlist.name, (char *) NULL);
2656
2657 destr_fnlist->fn_fieldlist.fn_fields =
2658 XOBNEWVEC (&objfile->objfile_obstack,
2659 struct fn_field, has_destructor);
2660 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2661 sizeof (struct fn_field) * has_destructor);
2662 tmp_sublist = sublist;
2663 last_sublist = NULL;
2664 i = 0;
2665 while (tmp_sublist != NULL)
2666 {
2667 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2668 {
2669 tmp_sublist = tmp_sublist->next;
2670 continue;
2671 }
2672
2673 destr_fnlist->fn_fieldlist.fn_fields[i++]
2674 = tmp_sublist->fn_field;
2675 if (last_sublist)
2676 last_sublist->next = tmp_sublist->next;
2677 else
2678 sublist = tmp_sublist->next;
2679 last_sublist = tmp_sublist;
2680 tmp_sublist = tmp_sublist->next;
2681 }
2682
2683 destr_fnlist->fn_fieldlist.length = has_destructor;
2684 destr_fnlist->next = fip->fnlist;
2685 fip->fnlist = destr_fnlist;
2686 nfn_fields++;
2687 length -= has_destructor;
2688 }
2689 else if (is_v3)
2690 {
2691 /* v3 mangling prevents the use of abbreviated physnames,
2692 so we can do this here. There are stubbed methods in v3
2693 only:
2694 - in -gstabs instead of -gstabs+
2695 - or for static methods, which are output as a function type
2696 instead of a method type. */
2697 char *new_method_name =
2698 stabs_method_name_from_physname (sublist->fn_field.physname);
2699
2700 if (new_method_name != NULL
2701 && strcmp (new_method_name,
2702 new_fnlist->fn_fieldlist.name) != 0)
2703 {
2704 new_fnlist->fn_fieldlist.name = new_method_name;
2705 xfree (main_fn_name);
2706 }
2707 else
2708 xfree (new_method_name);
2709 }
2710 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2711 {
2712 new_fnlist->fn_fieldlist.name =
2713 obconcat (&objfile->objfile_obstack,
2714 "~", main_fn_name, (char *)NULL);
2715 xfree (main_fn_name);
2716 }
2717 else if (!has_stub)
2718 {
2719 char dem_opname[256];
2720 int ret;
2721
2722 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2723 dem_opname, DMGL_ANSI);
2724 if (!ret)
2725 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2726 dem_opname, 0);
2727 if (ret)
2728 new_fnlist->fn_fieldlist.name
2729 = ((const char *)
2730 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2731 strlen (dem_opname)));
2732 xfree (main_fn_name);
2733 }
2734
2735 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2736 obstack_alloc (&objfile->objfile_obstack,
2737 sizeof (struct fn_field) * length);
2738 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2739 sizeof (struct fn_field) * length);
2740 for (i = length; (i--, sublist); sublist = sublist->next)
2741 {
2742 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2743 }
2744
2745 new_fnlist->fn_fieldlist.length = length;
2746 new_fnlist->next = fip->fnlist;
2747 fip->fnlist = new_fnlist;
2748 nfn_fields++;
2749 }
2750 }
2751
2752 if (nfn_fields)
2753 {
2754 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2755 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2756 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2757 memset (TYPE_FN_FIELDLISTS (type), 0,
2758 sizeof (struct fn_fieldlist) * nfn_fields);
2759 TYPE_NFN_FIELDS (type) = nfn_fields;
2760 }
2761
2762 return 1;
2763}
2764
2765/* Special GNU C++ name.
2766
2767 Returns 1 for success, 0 for failure. "failure" means that we can't
2768 keep parsing and it's time for error_type(). */
2769
2770static int
2771read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2772 struct objfile *objfile)
2773{
2774 const char *p;
2775 const char *name;
2776 char cpp_abbrev;
2777 struct type *context;
2778
2779 p = *pp;
2780 if (*++p == 'v')
2781 {
2782 name = NULL;
2783 cpp_abbrev = *++p;
2784
2785 *pp = p + 1;
2786
2787 /* At this point, *pp points to something like "22:23=*22...",
2788 where the type number before the ':' is the "context" and
2789 everything after is a regular type definition. Lookup the
2790 type, find it's name, and construct the field name. */
2791
2792 context = read_type (pp, objfile);
2793
2794 switch (cpp_abbrev)
2795 {
2796 case 'f': /* $vf -- a virtual function table pointer */
2797 name = type_name_no_tag (context);
2798 if (name == NULL)
2799 {
2800 name = "";
2801 }
2802 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2803 vptr_name, name, (char *) NULL);
2804 break;
2805
2806 case 'b': /* $vb -- a virtual bsomethingorother */
2807 name = type_name_no_tag (context);
2808 if (name == NULL)
2809 {
2810 complaint (&symfile_complaints,
2811 _("C++ abbreviated type name "
2812 "unknown at symtab pos %d"),
2813 symnum);
2814 name = "FOO";
2815 }
2816 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2817 name, (char *) NULL);
2818 break;
2819
2820 default:
2821 invalid_cpp_abbrev_complaint (*pp);
2822 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2823 "INVALID_CPLUSPLUS_ABBREV",
2824 (char *) NULL);
2825 break;
2826 }
2827
2828 /* At this point, *pp points to the ':'. Skip it and read the
2829 field type. */
2830
2831 p = ++(*pp);
2832 if (p[-1] != ':')
2833 {
2834 invalid_cpp_abbrev_complaint (*pp);
2835 return 0;
2836 }
2837 fip->list->field.type = read_type (pp, objfile);
2838 if (**pp == ',')
2839 (*pp)++; /* Skip the comma. */
2840 else
2841 return 0;
2842
2843 {
2844 int nbits;
2845
2846 SET_FIELD_BITPOS (fip->list->field,
2847 read_huge_number (pp, ';', &nbits, 0));
2848 if (nbits != 0)
2849 return 0;
2850 }
2851 /* This field is unpacked. */
2852 FIELD_BITSIZE (fip->list->field) = 0;
2853 fip->list->visibility = VISIBILITY_PRIVATE;
2854 }
2855 else
2856 {
2857 invalid_cpp_abbrev_complaint (*pp);
2858 /* We have no idea what syntax an unrecognized abbrev would have, so
2859 better return 0. If we returned 1, we would need to at least advance
2860 *pp to avoid an infinite loop. */
2861 return 0;
2862 }
2863 return 1;
2864}
2865
2866static void
2867read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2868 struct type *type, struct objfile *objfile)
2869{
2870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2871
2872 fip->list->field.name
2873 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2874 *pp = p + 1;
2875
2876 /* This means we have a visibility for a field coming. */
2877 if (**pp == '/')
2878 {
2879 (*pp)++;
2880 fip->list->visibility = *(*pp)++;
2881 }
2882 else
2883 {
2884 /* normal dbx-style format, no explicit visibility */
2885 fip->list->visibility = VISIBILITY_PUBLIC;
2886 }
2887
2888 fip->list->field.type = read_type (pp, objfile);
2889 if (**pp == ':')
2890 {
2891 p = ++(*pp);
2892#if 0
2893 /* Possible future hook for nested types. */
2894 if (**pp == '!')
2895 {
2896 fip->list->field.bitpos = (long) -2; /* nested type */
2897 p = ++(*pp);
2898 }
2899 else
2900 ...;
2901#endif
2902 while (*p != ';')
2903 {
2904 p++;
2905 }
2906 /* Static class member. */
2907 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2908 *pp = p + 1;
2909 return;
2910 }
2911 else if (**pp != ',')
2912 {
2913 /* Bad structure-type format. */
2914 stabs_general_complaint ("bad structure-type format");
2915 return;
2916 }
2917
2918 (*pp)++; /* Skip the comma. */
2919
2920 {
2921 int nbits;
2922
2923 SET_FIELD_BITPOS (fip->list->field,
2924 read_huge_number (pp, ',', &nbits, 0));
2925 if (nbits != 0)
2926 {
2927 stabs_general_complaint ("bad structure-type format");
2928 return;
2929 }
2930 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2931 if (nbits != 0)
2932 {
2933 stabs_general_complaint ("bad structure-type format");
2934 return;
2935 }
2936 }
2937
2938 if (FIELD_BITPOS (fip->list->field) == 0
2939 && FIELD_BITSIZE (fip->list->field) == 0)
2940 {
2941 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2942 it is a field which has been optimized out. The correct stab for
2943 this case is to use VISIBILITY_IGNORE, but that is a recent
2944 invention. (2) It is a 0-size array. For example
2945 union { int num; char str[0]; } foo. Printing _("<no value>" for
2946 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2947 will continue to work, and a 0-size array as a whole doesn't
2948 have any contents to print.
2949
2950 I suspect this probably could also happen with gcc -gstabs (not
2951 -gstabs+) for static fields, and perhaps other C++ extensions.
2952 Hopefully few people use -gstabs with gdb, since it is intended
2953 for dbx compatibility. */
2954
2955 /* Ignore this field. */
2956 fip->list->visibility = VISIBILITY_IGNORE;
2957 }
2958 else
2959 {
2960 /* Detect an unpacked field and mark it as such.
2961 dbx gives a bit size for all fields.
2962 Note that forward refs cannot be packed,
2963 and treat enums as if they had the width of ints. */
2964
2965 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2966
2967 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2968 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2969 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2970 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2971 {
2972 FIELD_BITSIZE (fip->list->field) = 0;
2973 }
2974 if ((FIELD_BITSIZE (fip->list->field)
2975 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2976 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2977 && FIELD_BITSIZE (fip->list->field)
2978 == gdbarch_int_bit (gdbarch))
2979 )
2980 &&
2981 FIELD_BITPOS (fip->list->field) % 8 == 0)
2982 {
2983 FIELD_BITSIZE (fip->list->field) = 0;
2984 }
2985 }
2986}
2987
2988
2989/* Read struct or class data fields. They have the form:
2990
2991 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2992
2993 At the end, we see a semicolon instead of a field.
2994
2995 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2996 a static field.
2997
2998 The optional VISIBILITY is one of:
2999
3000 '/0' (VISIBILITY_PRIVATE)
3001 '/1' (VISIBILITY_PROTECTED)
3002 '/2' (VISIBILITY_PUBLIC)
3003 '/9' (VISIBILITY_IGNORE)
3004
3005 or nothing, for C style fields with public visibility.
3006
3007 Returns 1 for success, 0 for failure. */
3008
3009static int
3010read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3011 struct objfile *objfile)
3012{
3013 const char *p;
3014 struct nextfield *newobj;
3015
3016 /* We better set p right now, in case there are no fields at all... */
3017
3018 p = *pp;
3019
3020 /* Read each data member type until we find the terminating ';' at the end of
3021 the data member list, or break for some other reason such as finding the
3022 start of the member function list. */
3023 /* Stab string for structure/union does not end with two ';' in
3024 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3025
3026 while (**pp != ';' && **pp != '\0')
3027 {
3028 STABS_CONTINUE (pp, objfile);
3029 /* Get space to record the next field's data. */
3030 newobj = XCNEW (struct nextfield);
3031 make_cleanup (xfree, newobj);
3032
3033 newobj->next = fip->list;
3034 fip->list = newobj;
3035
3036 /* Get the field name. */
3037 p = *pp;
3038
3039 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3040 unless the CPLUS_MARKER is followed by an underscore, in
3041 which case it is just the name of an anonymous type, which we
3042 should handle like any other type name. */
3043
3044 if (is_cplus_marker (p[0]) && p[1] != '_')
3045 {
3046 if (!read_cpp_abbrev (fip, pp, type, objfile))
3047 return 0;
3048 continue;
3049 }
3050
3051 /* Look for the ':' that separates the field name from the field
3052 values. Data members are delimited by a single ':', while member
3053 functions are delimited by a pair of ':'s. When we hit the member
3054 functions (if any), terminate scan loop and return. */
3055
3056 while (*p != ':' && *p != '\0')
3057 {
3058 p++;
3059 }
3060 if (*p == '\0')
3061 return 0;
3062
3063 /* Check to see if we have hit the member functions yet. */
3064 if (p[1] == ':')
3065 {
3066 break;
3067 }
3068 read_one_struct_field (fip, pp, p, type, objfile);
3069 }
3070 if (p[0] == ':' && p[1] == ':')
3071 {
3072 /* (the deleted) chill the list of fields: the last entry (at
3073 the head) is a partially constructed entry which we now
3074 scrub. */
3075 fip->list = fip->list->next;
3076 }
3077 return 1;
3078}
3079/* *INDENT-OFF* */
3080/* The stabs for C++ derived classes contain baseclass information which
3081 is marked by a '!' character after the total size. This function is
3082 called when we encounter the baseclass marker, and slurps up all the
3083 baseclass information.
3084
3085 Immediately following the '!' marker is the number of base classes that
3086 the class is derived from, followed by information for each base class.
3087 For each base class, there are two visibility specifiers, a bit offset
3088 to the base class information within the derived class, a reference to
3089 the type for the base class, and a terminating semicolon.
3090
3091 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3092 ^^ ^ ^ ^ ^ ^ ^
3093 Baseclass information marker __________________|| | | | | | |
3094 Number of baseclasses __________________________| | | | | | |
3095 Visibility specifiers (2) ________________________| | | | | |
3096 Offset in bits from start of class _________________| | | | |
3097 Type number for base class ___________________________| | | |
3098 Visibility specifiers (2) _______________________________| | |
3099 Offset in bits from start of class ________________________| |
3100 Type number of base class ____________________________________|
3101
3102 Return 1 for success, 0 for (error-type-inducing) failure. */
3103/* *INDENT-ON* */
3104
3105
3106
3107static int
3108read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3109 struct objfile *objfile)
3110{
3111 int i;
3112 struct nextfield *newobj;
3113
3114 if (**pp != '!')
3115 {
3116 return 1;
3117 }
3118 else
3119 {
3120 /* Skip the '!' baseclass information marker. */
3121 (*pp)++;
3122 }
3123
3124 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3125 {
3126 int nbits;
3127
3128 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3129 if (nbits != 0)
3130 return 0;
3131 }
3132
3133#if 0
3134 /* Some stupid compilers have trouble with the following, so break
3135 it up into simpler expressions. */
3136 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3137 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3138#else
3139 {
3140 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3141 char *pointer;
3142
3143 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3144 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3145 }
3146#endif /* 0 */
3147
3148 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3149
3150 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3151 {
3152 newobj = XCNEW (struct nextfield);
3153 make_cleanup (xfree, newobj);
3154
3155 newobj->next = fip->list;
3156 fip->list = newobj;
3157 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3158 field! */
3159
3160 STABS_CONTINUE (pp, objfile);
3161 switch (**pp)
3162 {
3163 case '0':
3164 /* Nothing to do. */
3165 break;
3166 case '1':
3167 SET_TYPE_FIELD_VIRTUAL (type, i);
3168 break;
3169 default:
3170 /* Unknown character. Complain and treat it as non-virtual. */
3171 {
3172 complaint (&symfile_complaints,
3173 _("Unknown virtual character `%c' for baseclass"),
3174 **pp);
3175 }
3176 }
3177 ++(*pp);
3178
3179 newobj->visibility = *(*pp)++;
3180 switch (newobj->visibility)
3181 {
3182 case VISIBILITY_PRIVATE:
3183 case VISIBILITY_PROTECTED:
3184 case VISIBILITY_PUBLIC:
3185 break;
3186 default:
3187 /* Bad visibility format. Complain and treat it as
3188 public. */
3189 {
3190 complaint (&symfile_complaints,
3191 _("Unknown visibility `%c' for baseclass"),
3192 newobj->visibility);
3193 newobj->visibility = VISIBILITY_PUBLIC;
3194 }
3195 }
3196
3197 {
3198 int nbits;
3199
3200 /* The remaining value is the bit offset of the portion of the object
3201 corresponding to this baseclass. Always zero in the absence of
3202 multiple inheritance. */
3203
3204 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3205 if (nbits != 0)
3206 return 0;
3207 }
3208
3209 /* The last piece of baseclass information is the type of the
3210 base class. Read it, and remember it's type name as this
3211 field's name. */
3212
3213 newobj->field.type = read_type (pp, objfile);
3214 newobj->field.name = type_name_no_tag (newobj->field.type);
3215
3216 /* Skip trailing ';' and bump count of number of fields seen. */
3217 if (**pp == ';')
3218 (*pp)++;
3219 else
3220 return 0;
3221 }
3222 return 1;
3223}
3224
3225/* The tail end of stabs for C++ classes that contain a virtual function
3226 pointer contains a tilde, a %, and a type number.
3227 The type number refers to the base class (possibly this class itself) which
3228 contains the vtable pointer for the current class.
3229
3230 This function is called when we have parsed all the method declarations,
3231 so we can look for the vptr base class info. */
3232
3233static int
3234read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3235 struct objfile *objfile)
3236{
3237 const char *p;
3238
3239 STABS_CONTINUE (pp, objfile);
3240
3241 /* If we are positioned at a ';', then skip it. */
3242 if (**pp == ';')
3243 {
3244 (*pp)++;
3245 }
3246
3247 if (**pp == '~')
3248 {
3249 (*pp)++;
3250
3251 if (**pp == '=' || **pp == '+' || **pp == '-')
3252 {
3253 /* Obsolete flags that used to indicate the presence
3254 of constructors and/or destructors. */
3255 (*pp)++;
3256 }
3257
3258 /* Read either a '%' or the final ';'. */
3259 if (*(*pp)++ == '%')
3260 {
3261 /* The next number is the type number of the base class
3262 (possibly our own class) which supplies the vtable for
3263 this class. Parse it out, and search that class to find
3264 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3265 and TYPE_VPTR_FIELDNO. */
3266
3267 struct type *t;
3268 int i;
3269
3270 t = read_type (pp, objfile);
3271 p = (*pp)++;
3272 while (*p != '\0' && *p != ';')
3273 {
3274 p++;
3275 }
3276 if (*p == '\0')
3277 {
3278 /* Premature end of symbol. */
3279 return 0;
3280 }
3281
3282 set_type_vptr_basetype (type, t);
3283 if (type == t) /* Our own class provides vtbl ptr. */
3284 {
3285 for (i = TYPE_NFIELDS (t) - 1;
3286 i >= TYPE_N_BASECLASSES (t);
3287 --i)
3288 {
3289 const char *name = TYPE_FIELD_NAME (t, i);
3290
3291 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3292 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3293 {
3294 set_type_vptr_fieldno (type, i);
3295 goto gotit;
3296 }
3297 }
3298 /* Virtual function table field not found. */
3299 complaint (&symfile_complaints,
3300 _("virtual function table pointer "
3301 "not found when defining class `%s'"),
3302 TYPE_NAME (type));
3303 return 0;
3304 }
3305 else
3306 {
3307 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3308 }
3309
3310 gotit:
3311 *pp = p + 1;
3312 }
3313 }
3314 return 1;
3315}
3316
3317static int
3318attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3319{
3320 int n;
3321
3322 for (n = TYPE_NFN_FIELDS (type);
3323 fip->fnlist != NULL;
3324 fip->fnlist = fip->fnlist->next)
3325 {
3326 --n; /* Circumvent Sun3 compiler bug. */
3327 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3328 }
3329 return 1;
3330}
3331
3332/* Create the vector of fields, and record how big it is.
3333 We need this info to record proper virtual function table information
3334 for this class's virtual functions. */
3335
3336static int
3337attach_fields_to_type (struct field_info *fip, struct type *type,
3338 struct objfile *objfile)
3339{
3340 int nfields = 0;
3341 int non_public_fields = 0;
3342 struct nextfield *scan;
3343
3344 /* Count up the number of fields that we have, as well as taking note of
3345 whether or not there are any non-public fields, which requires us to
3346 allocate and build the private_field_bits and protected_field_bits
3347 bitfields. */
3348
3349 for (scan = fip->list; scan != NULL; scan = scan->next)
3350 {
3351 nfields++;
3352 if (scan->visibility != VISIBILITY_PUBLIC)
3353 {
3354 non_public_fields++;
3355 }
3356 }
3357
3358 /* Now we know how many fields there are, and whether or not there are any
3359 non-public fields. Record the field count, allocate space for the
3360 array of fields, and create blank visibility bitfields if necessary. */
3361
3362 TYPE_NFIELDS (type) = nfields;
3363 TYPE_FIELDS (type) = (struct field *)
3364 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3365 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3366
3367 if (non_public_fields)
3368 {
3369 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3370
3371 TYPE_FIELD_PRIVATE_BITS (type) =
3372 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3373 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3374
3375 TYPE_FIELD_PROTECTED_BITS (type) =
3376 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3377 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3378
3379 TYPE_FIELD_IGNORE_BITS (type) =
3380 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3381 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3382 }
3383
3384 /* Copy the saved-up fields into the field vector. Start from the
3385 head of the list, adding to the tail of the field array, so that
3386 they end up in the same order in the array in which they were
3387 added to the list. */
3388
3389 while (nfields-- > 0)
3390 {
3391 TYPE_FIELD (type, nfields) = fip->list->field;
3392 switch (fip->list->visibility)
3393 {
3394 case VISIBILITY_PRIVATE:
3395 SET_TYPE_FIELD_PRIVATE (type, nfields);
3396 break;
3397
3398 case VISIBILITY_PROTECTED:
3399 SET_TYPE_FIELD_PROTECTED (type, nfields);
3400 break;
3401
3402 case VISIBILITY_IGNORE:
3403 SET_TYPE_FIELD_IGNORE (type, nfields);
3404 break;
3405
3406 case VISIBILITY_PUBLIC:
3407 break;
3408
3409 default:
3410 /* Unknown visibility. Complain and treat it as public. */
3411 {
3412 complaint (&symfile_complaints,
3413 _("Unknown visibility `%c' for field"),
3414 fip->list->visibility);
3415 }
3416 break;
3417 }
3418 fip->list = fip->list->next;
3419 }
3420 return 1;
3421}
3422
3423
3424/* Complain that the compiler has emitted more than one definition for the
3425 structure type TYPE. */
3426static void
3427complain_about_struct_wipeout (struct type *type)
3428{
3429 const char *name = "";
3430 const char *kind = "";
3431
3432 if (TYPE_TAG_NAME (type))
3433 {
3434 name = TYPE_TAG_NAME (type);
3435 switch (TYPE_CODE (type))
3436 {
3437 case TYPE_CODE_STRUCT: kind = "struct "; break;
3438 case TYPE_CODE_UNION: kind = "union "; break;
3439 case TYPE_CODE_ENUM: kind = "enum "; break;
3440 default: kind = "";
3441 }
3442 }
3443 else if (TYPE_NAME (type))
3444 {
3445 name = TYPE_NAME (type);
3446 kind = "";
3447 }
3448 else
3449 {
3450 name = "<unknown>";
3451 kind = "";
3452 }
3453
3454 complaint (&symfile_complaints,
3455 _("struct/union type gets multiply defined: %s%s"), kind, name);
3456}
3457
3458/* Set the length for all variants of a same main_type, which are
3459 connected in the closed chain.
3460
3461 This is something that needs to be done when a type is defined *after*
3462 some cross references to this type have already been read. Consider
3463 for instance the following scenario where we have the following two
3464 stabs entries:
3465
3466 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3467 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3468
3469 A stubbed version of type dummy is created while processing the first
3470 stabs entry. The length of that type is initially set to zero, since
3471 it is unknown at this point. Also, a "constant" variation of type
3472 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3473 the stabs line).
3474
3475 The second stabs entry allows us to replace the stubbed definition
3476 with the real definition. However, we still need to adjust the length
3477 of the "constant" variation of that type, as its length was left
3478 untouched during the main type replacement... */
3479
3480static void
3481set_length_in_type_chain (struct type *type)
3482{
3483 struct type *ntype = TYPE_CHAIN (type);
3484
3485 while (ntype != type)
3486 {
3487 if (TYPE_LENGTH(ntype) == 0)
3488 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3489 else
3490 complain_about_struct_wipeout (ntype);
3491 ntype = TYPE_CHAIN (ntype);
3492 }
3493}
3494
3495/* Read the description of a structure (or union type) and return an object
3496 describing the type.
3497
3498 PP points to a character pointer that points to the next unconsumed token
3499 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3500 *PP will point to "4a:1,0,32;;".
3501
3502 TYPE points to an incomplete type that needs to be filled in.
3503
3504 OBJFILE points to the current objfile from which the stabs information is
3505 being read. (Note that it is redundant in that TYPE also contains a pointer
3506 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3507 */
3508
3509static struct type *
3510read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3511 struct objfile *objfile)
3512{
3513 struct cleanup *back_to;
3514 struct field_info fi;
3515
3516 fi.list = NULL;
3517 fi.fnlist = NULL;
3518
3519 /* When describing struct/union/class types in stabs, G++ always drops
3520 all qualifications from the name. So if you've got:
3521 struct A { ... struct B { ... }; ... };
3522 then G++ will emit stabs for `struct A::B' that call it simply
3523 `struct B'. Obviously, if you've got a real top-level definition for
3524 `struct B', or other nested definitions, this is going to cause
3525 problems.
3526
3527 Obviously, GDB can't fix this by itself, but it can at least avoid
3528 scribbling on existing structure type objects when new definitions
3529 appear. */
3530 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3531 || TYPE_STUB (type)))
3532 {
3533 complain_about_struct_wipeout (type);
3534
3535 /* It's probably best to return the type unchanged. */
3536 return type;
3537 }
3538
3539 back_to = make_cleanup (null_cleanup, 0);
3540
3541 INIT_CPLUS_SPECIFIC (type);
3542 TYPE_CODE (type) = type_code;
3543 TYPE_STUB (type) = 0;
3544
3545 /* First comes the total size in bytes. */
3546
3547 {
3548 int nbits;
3549
3550 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3551 if (nbits != 0)
3552 {
3553 do_cleanups (back_to);
3554 return error_type (pp, objfile);
3555 }
3556 set_length_in_type_chain (type);
3557 }
3558
3559 /* Now read the baseclasses, if any, read the regular C struct or C++
3560 class member fields, attach the fields to the type, read the C++
3561 member functions, attach them to the type, and then read any tilde
3562 field (baseclass specifier for the class holding the main vtable). */
3563
3564 if (!read_baseclasses (&fi, pp, type, objfile)
3565 || !read_struct_fields (&fi, pp, type, objfile)
3566 || !attach_fields_to_type (&fi, type, objfile)
3567 || !read_member_functions (&fi, pp, type, objfile)
3568 || !attach_fn_fields_to_type (&fi, type)
3569 || !read_tilde_fields (&fi, pp, type, objfile))
3570 {
3571 type = error_type (pp, objfile);
3572 }
3573
3574 do_cleanups (back_to);
3575 return (type);
3576}
3577
3578/* Read a definition of an array type,
3579 and create and return a suitable type object.
3580 Also creates a range type which represents the bounds of that
3581 array. */
3582
3583static struct type *
3584read_array_type (const char **pp, struct type *type,
3585 struct objfile *objfile)
3586{
3587 struct type *index_type, *element_type, *range_type;
3588 int lower, upper;
3589 int adjustable = 0;
3590 int nbits;
3591
3592 /* Format of an array type:
3593 "ar<index type>;lower;upper;<array_contents_type>".
3594 OS9000: "arlower,upper;<array_contents_type>".
3595
3596 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3597 for these, produce a type like float[][]. */
3598
3599 {
3600 index_type = read_type (pp, objfile);
3601 if (**pp != ';')
3602 /* Improper format of array type decl. */
3603 return error_type (pp, objfile);
3604 ++*pp;
3605 }
3606
3607 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3608 {
3609 (*pp)++;
3610 adjustable = 1;
3611 }
3612 lower = read_huge_number (pp, ';', &nbits, 0);
3613
3614 if (nbits != 0)
3615 return error_type (pp, objfile);
3616
3617 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3618 {
3619 (*pp)++;
3620 adjustable = 1;
3621 }
3622 upper = read_huge_number (pp, ';', &nbits, 0);
3623 if (nbits != 0)
3624 return error_type (pp, objfile);
3625
3626 element_type = read_type (pp, objfile);
3627
3628 if (adjustable)
3629 {
3630 lower = 0;
3631 upper = -1;
3632 }
3633
3634 range_type =
3635 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3636 type = create_array_type (type, element_type, range_type);
3637
3638 return type;
3639}
3640
3641
3642/* Read a definition of an enumeration type,
3643 and create and return a suitable type object.
3644 Also defines the symbols that represent the values of the type. */
3645
3646static struct type *
3647read_enum_type (const char **pp, struct type *type,
3648 struct objfile *objfile)
3649{
3650 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3651 const char *p;
3652 char *name;
3653 long n;
3654 struct symbol *sym;
3655 int nsyms = 0;
3656 struct pending **symlist;
3657 struct pending *osyms, *syms;
3658 int o_nsyms;
3659 int nbits;
3660 int unsigned_enum = 1;
3661
3662#if 0
3663 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3664 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3665 to do? For now, force all enum values to file scope. */
3666 if (within_function)
3667 symlist = &local_symbols;
3668 else
3669#endif
3670 symlist = &file_symbols;
3671 osyms = *symlist;
3672 o_nsyms = osyms ? osyms->nsyms : 0;
3673
3674 /* The aix4 compiler emits an extra field before the enum members;
3675 my guess is it's a type of some sort. Just ignore it. */
3676 if (**pp == '-')
3677 {
3678 /* Skip over the type. */
3679 while (**pp != ':')
3680 (*pp)++;
3681
3682 /* Skip over the colon. */
3683 (*pp)++;
3684 }
3685
3686 /* Read the value-names and their values.
3687 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3688 A semicolon or comma instead of a NAME means the end. */
3689 while (**pp && **pp != ';' && **pp != ',')
3690 {
3691 STABS_CONTINUE (pp, objfile);
3692 p = *pp;
3693 while (*p != ':')
3694 p++;
3695 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3696 *pp = p + 1;
3697 n = read_huge_number (pp, ',', &nbits, 0);
3698 if (nbits != 0)
3699 return error_type (pp, objfile);
3700
3701 sym = allocate_symbol (objfile);
3702 SYMBOL_SET_LINKAGE_NAME (sym, name);
3703 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3704 &objfile->objfile_obstack);
3705 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3706 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3707 SYMBOL_VALUE (sym) = n;
3708 if (n < 0)
3709 unsigned_enum = 0;
3710 add_symbol_to_list (sym, symlist);
3711 nsyms++;
3712 }
3713
3714 if (**pp == ';')
3715 (*pp)++; /* Skip the semicolon. */
3716
3717 /* Now fill in the fields of the type-structure. */
3718
3719 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3720 set_length_in_type_chain (type);
3721 TYPE_CODE (type) = TYPE_CODE_ENUM;
3722 TYPE_STUB (type) = 0;
3723 if (unsigned_enum)
3724 TYPE_UNSIGNED (type) = 1;
3725 TYPE_NFIELDS (type) = nsyms;
3726 TYPE_FIELDS (type) = (struct field *)
3727 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3728 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3729
3730 /* Find the symbols for the values and put them into the type.
3731 The symbols can be found in the symlist that we put them on
3732 to cause them to be defined. osyms contains the old value
3733 of that symlist; everything up to there was defined by us. */
3734 /* Note that we preserve the order of the enum constants, so
3735 that in something like "enum {FOO, LAST_THING=FOO}" we print
3736 FOO, not LAST_THING. */
3737
3738 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3739 {
3740 int last = syms == osyms ? o_nsyms : 0;
3741 int j = syms->nsyms;
3742
3743 for (; --j >= last; --n)
3744 {
3745 struct symbol *xsym = syms->symbol[j];
3746
3747 SYMBOL_TYPE (xsym) = type;
3748 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3749 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3750 TYPE_FIELD_BITSIZE (type, n) = 0;
3751 }
3752 if (syms == osyms)
3753 break;
3754 }
3755
3756 return type;
3757}
3758
3759/* Sun's ACC uses a somewhat saner method for specifying the builtin
3760 typedefs in every file (for int, long, etc):
3761
3762 type = b <signed> <width> <format type>; <offset>; <nbits>
3763 signed = u or s.
3764 optional format type = c or b for char or boolean.
3765 offset = offset from high order bit to start bit of type.
3766 width is # bytes in object of this type, nbits is # bits in type.
3767
3768 The width/offset stuff appears to be for small objects stored in
3769 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3770 FIXME. */
3771
3772static struct type *
3773read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3774{
3775 int type_bits;
3776 int nbits;
3777 int unsigned_type;
3778 int boolean_type = 0;
3779
3780 switch (**pp)
3781 {
3782 case 's':
3783 unsigned_type = 0;
3784 break;
3785 case 'u':
3786 unsigned_type = 1;
3787 break;
3788 default:
3789 return error_type (pp, objfile);
3790 }
3791 (*pp)++;
3792
3793 /* For some odd reason, all forms of char put a c here. This is strange
3794 because no other type has this honor. We can safely ignore this because
3795 we actually determine 'char'acterness by the number of bits specified in
3796 the descriptor.
3797 Boolean forms, e.g Fortran logical*X, put a b here. */
3798
3799 if (**pp == 'c')
3800 (*pp)++;
3801 else if (**pp == 'b')
3802 {
3803 boolean_type = 1;
3804 (*pp)++;
3805 }
3806
3807 /* The first number appears to be the number of bytes occupied
3808 by this type, except that unsigned short is 4 instead of 2.
3809 Since this information is redundant with the third number,
3810 we will ignore it. */
3811 read_huge_number (pp, ';', &nbits, 0);
3812 if (nbits != 0)
3813 return error_type (pp, objfile);
3814
3815 /* The second number is always 0, so ignore it too. */
3816 read_huge_number (pp, ';', &nbits, 0);
3817 if (nbits != 0)
3818 return error_type (pp, objfile);
3819
3820 /* The third number is the number of bits for this type. */
3821 type_bits = read_huge_number (pp, 0, &nbits, 0);
3822 if (nbits != 0)
3823 return error_type (pp, objfile);
3824 /* The type *should* end with a semicolon. If it are embedded
3825 in a larger type the semicolon may be the only way to know where
3826 the type ends. If this type is at the end of the stabstring we
3827 can deal with the omitted semicolon (but we don't have to like
3828 it). Don't bother to complain(), Sun's compiler omits the semicolon
3829 for "void". */
3830 if (**pp == ';')
3831 ++(*pp);
3832
3833 if (type_bits == 0)
3834 {
3835 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3836 TARGET_CHAR_BIT, NULL);
3837 if (unsigned_type)
3838 TYPE_UNSIGNED (type) = 1;
3839 return type;
3840 }
3841
3842 if (boolean_type)
3843 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3844 else
3845 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3846}
3847
3848static struct type *
3849read_sun_floating_type (const char **pp, int typenums[2],
3850 struct objfile *objfile)
3851{
3852 int nbits;
3853 int details;
3854 int nbytes;
3855 struct type *rettype;
3856
3857 /* The first number has more details about the type, for example
3858 FN_COMPLEX. */
3859 details = read_huge_number (pp, ';', &nbits, 0);
3860 if (nbits != 0)
3861 return error_type (pp, objfile);
3862
3863 /* The second number is the number of bytes occupied by this type. */
3864 nbytes = read_huge_number (pp, ';', &nbits, 0);
3865 if (nbits != 0)
3866 return error_type (pp, objfile);
3867
3868 nbits = nbytes * TARGET_CHAR_BIT;
3869
3870 if (details == NF_COMPLEX || details == NF_COMPLEX16
3871 || details == NF_COMPLEX32)
3872 {
3873 rettype = dbx_init_float_type (objfile, nbits / 2);
3874 return init_complex_type (objfile, NULL, rettype);
3875 }
3876
3877 return dbx_init_float_type (objfile, nbits);
3878}
3879
3880/* Read a number from the string pointed to by *PP.
3881 The value of *PP is advanced over the number.
3882 If END is nonzero, the character that ends the
3883 number must match END, or an error happens;
3884 and that character is skipped if it does match.
3885 If END is zero, *PP is left pointing to that character.
3886
3887 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3888 the number is represented in an octal representation, assume that
3889 it is represented in a 2's complement representation with a size of
3890 TWOS_COMPLEMENT_BITS.
3891
3892 If the number fits in a long, set *BITS to 0 and return the value.
3893 If not, set *BITS to be the number of bits in the number and return 0.
3894
3895 If encounter garbage, set *BITS to -1 and return 0. */
3896
3897static long
3898read_huge_number (const char **pp, int end, int *bits,
3899 int twos_complement_bits)
3900{
3901 const char *p = *pp;
3902 int sign = 1;
3903 int sign_bit = 0;
3904 long n = 0;
3905 int radix = 10;
3906 char overflow = 0;
3907 int nbits = 0;
3908 int c;
3909 long upper_limit;
3910 int twos_complement_representation = 0;
3911
3912 if (*p == '-')
3913 {
3914 sign = -1;
3915 p++;
3916 }
3917
3918 /* Leading zero means octal. GCC uses this to output values larger
3919 than an int (because that would be hard in decimal). */
3920 if (*p == '0')
3921 {
3922 radix = 8;
3923 p++;
3924 }
3925
3926 /* Skip extra zeros. */
3927 while (*p == '0')
3928 p++;
3929
3930 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3931 {
3932 /* Octal, possibly signed. Check if we have enough chars for a
3933 negative number. */
3934
3935 size_t len;
3936 const char *p1 = p;
3937
3938 while ((c = *p1) >= '0' && c < '8')
3939 p1++;
3940
3941 len = p1 - p;
3942 if (len > twos_complement_bits / 3
3943 || (twos_complement_bits % 3 == 0
3944 && len == twos_complement_bits / 3))
3945 {
3946 /* Ok, we have enough characters for a signed value, check
3947 for signness by testing if the sign bit is set. */
3948 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3949 c = *p - '0';
3950 if (c & (1 << sign_bit))
3951 {
3952 /* Definitely signed. */
3953 twos_complement_representation = 1;
3954 sign = -1;
3955 }
3956 }
3957 }
3958
3959 upper_limit = LONG_MAX / radix;
3960
3961 while ((c = *p++) >= '0' && c < ('0' + radix))
3962 {
3963 if (n <= upper_limit)
3964 {
3965 if (twos_complement_representation)
3966 {
3967 /* Octal, signed, twos complement representation. In
3968 this case, n is the corresponding absolute value. */
3969 if (n == 0)
3970 {
3971 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3972
3973 n = -sn;
3974 }
3975 else
3976 {
3977 n *= radix;
3978 n -= c - '0';
3979 }
3980 }
3981 else
3982 {
3983 /* unsigned representation */
3984 n *= radix;
3985 n += c - '0'; /* FIXME this overflows anyway. */
3986 }
3987 }
3988 else
3989 overflow = 1;
3990
3991 /* This depends on large values being output in octal, which is
3992 what GCC does. */
3993 if (radix == 8)
3994 {
3995 if (nbits == 0)
3996 {
3997 if (c == '0')
3998 /* Ignore leading zeroes. */
3999 ;
4000 else if (c == '1')
4001 nbits = 1;
4002 else if (c == '2' || c == '3')
4003 nbits = 2;
4004 else
4005 nbits = 3;
4006 }
4007 else
4008 nbits += 3;
4009 }
4010 }
4011 if (end)
4012 {
4013 if (c && c != end)
4014 {
4015 if (bits != NULL)
4016 *bits = -1;
4017 return 0;
4018 }
4019 }
4020 else
4021 --p;
4022
4023 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4024 {
4025 /* We were supposed to parse a number with maximum
4026 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4027 if (bits != NULL)
4028 *bits = -1;
4029 return 0;
4030 }
4031
4032 *pp = p;
4033 if (overflow)
4034 {
4035 if (nbits == 0)
4036 {
4037 /* Large decimal constants are an error (because it is hard to
4038 count how many bits are in them). */
4039 if (bits != NULL)
4040 *bits = -1;
4041 return 0;
4042 }
4043
4044 /* -0x7f is the same as 0x80. So deal with it by adding one to
4045 the number of bits. Two's complement represention octals
4046 can't have a '-' in front. */
4047 if (sign == -1 && !twos_complement_representation)
4048 ++nbits;
4049 if (bits)
4050 *bits = nbits;
4051 }
4052 else
4053 {
4054 if (bits)
4055 *bits = 0;
4056 return n * sign;
4057 }
4058 /* It's *BITS which has the interesting information. */
4059 return 0;
4060}
4061
4062static struct type *
4063read_range_type (const char **pp, int typenums[2], int type_size,
4064 struct objfile *objfile)
4065{
4066 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4067 const char *orig_pp = *pp;
4068 int rangenums[2];
4069 long n2, n3;
4070 int n2bits, n3bits;
4071 int self_subrange;
4072 struct type *result_type;
4073 struct type *index_type = NULL;
4074
4075 /* First comes a type we are a subrange of.
4076 In C it is usually 0, 1 or the type being defined. */
4077 if (read_type_number (pp, rangenums) != 0)
4078 return error_type (pp, objfile);
4079 self_subrange = (rangenums[0] == typenums[0] &&
4080 rangenums[1] == typenums[1]);
4081
4082 if (**pp == '=')
4083 {
4084 *pp = orig_pp;
4085 index_type = read_type (pp, objfile);
4086 }
4087
4088 /* A semicolon should now follow; skip it. */
4089 if (**pp == ';')
4090 (*pp)++;
4091
4092 /* The remaining two operands are usually lower and upper bounds
4093 of the range. But in some special cases they mean something else. */
4094 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4095 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4096
4097 if (n2bits == -1 || n3bits == -1)
4098 return error_type (pp, objfile);
4099
4100 if (index_type)
4101 goto handle_true_range;
4102
4103 /* If limits are huge, must be large integral type. */
4104 if (n2bits != 0 || n3bits != 0)
4105 {
4106 char got_signed = 0;
4107 char got_unsigned = 0;
4108 /* Number of bits in the type. */
4109 int nbits = 0;
4110
4111 /* If a type size attribute has been specified, the bounds of
4112 the range should fit in this size. If the lower bounds needs
4113 more bits than the upper bound, then the type is signed. */
4114 if (n2bits <= type_size && n3bits <= type_size)
4115 {
4116 if (n2bits == type_size && n2bits > n3bits)
4117 got_signed = 1;
4118 else
4119 got_unsigned = 1;
4120 nbits = type_size;
4121 }
4122 /* Range from 0 to <large number> is an unsigned large integral type. */
4123 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4124 {
4125 got_unsigned = 1;
4126 nbits = n3bits;
4127 }
4128 /* Range from <large number> to <large number>-1 is a large signed
4129 integral type. Take care of the case where <large number> doesn't
4130 fit in a long but <large number>-1 does. */
4131 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4132 || (n2bits != 0 && n3bits == 0
4133 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4134 && n3 == LONG_MAX))
4135 {
4136 got_signed = 1;
4137 nbits = n2bits;
4138 }
4139
4140 if (got_signed || got_unsigned)
4141 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4142 else
4143 return error_type (pp, objfile);
4144 }
4145
4146 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4147 if (self_subrange && n2 == 0 && n3 == 0)
4148 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4149
4150 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4151 is the width in bytes.
4152
4153 Fortran programs appear to use this for complex types also. To
4154 distinguish between floats and complex, g77 (and others?) seem
4155 to use self-subranges for the complexes, and subranges of int for
4156 the floats.
4157
4158 Also note that for complexes, g77 sets n2 to the size of one of
4159 the member floats, not the whole complex beast. My guess is that
4160 this was to work well with pre-COMPLEX versions of gdb. */
4161
4162 if (n3 == 0 && n2 > 0)
4163 {
4164 struct type *float_type
4165 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4166
4167 if (self_subrange)
4168 return init_complex_type (objfile, NULL, float_type);
4169 else
4170 return float_type;
4171 }
4172
4173 /* If the upper bound is -1, it must really be an unsigned integral. */
4174
4175 else if (n2 == 0 && n3 == -1)
4176 {
4177 int bits = type_size;
4178
4179 if (bits <= 0)
4180 {
4181 /* We don't know its size. It is unsigned int or unsigned
4182 long. GCC 2.3.3 uses this for long long too, but that is
4183 just a GDB 3.5 compatibility hack. */
4184 bits = gdbarch_int_bit (gdbarch);
4185 }
4186
4187 return init_integer_type (objfile, bits, 1, NULL);
4188 }
4189
4190 /* Special case: char is defined (Who knows why) as a subrange of
4191 itself with range 0-127. */
4192 else if (self_subrange && n2 == 0 && n3 == 127)
4193 {
4194 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4195 0, NULL);
4196 TYPE_NOSIGN (type) = 1;
4197 return type;
4198 }
4199 /* We used to do this only for subrange of self or subrange of int. */
4200 else if (n2 == 0)
4201 {
4202 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4203 "unsigned long", and we already checked for that,
4204 so don't need to test for it here. */
4205
4206 if (n3 < 0)
4207 /* n3 actually gives the size. */
4208 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4209
4210 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4211 unsigned n-byte integer. But do require n to be a power of
4212 two; we don't want 3- and 5-byte integers flying around. */
4213 {
4214 int bytes;
4215 unsigned long bits;
4216
4217 bits = n3;
4218 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4219 bits >>= 8;
4220 if (bits == 0
4221 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4222 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4223 }
4224 }
4225 /* I think this is for Convex "long long". Since I don't know whether
4226 Convex sets self_subrange, I also accept that particular size regardless
4227 of self_subrange. */
4228 else if (n3 == 0 && n2 < 0
4229 && (self_subrange
4230 || n2 == -gdbarch_long_long_bit
4231 (gdbarch) / TARGET_CHAR_BIT))
4232 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4233 else if (n2 == -n3 - 1)
4234 {
4235 if (n3 == 0x7f)
4236 return init_integer_type (objfile, 8, 0, NULL);
4237 if (n3 == 0x7fff)
4238 return init_integer_type (objfile, 16, 0, NULL);
4239 if (n3 == 0x7fffffff)
4240 return init_integer_type (objfile, 32, 0, NULL);
4241 }
4242
4243 /* We have a real range type on our hands. Allocate space and
4244 return a real pointer. */
4245handle_true_range:
4246
4247 if (self_subrange)
4248 index_type = objfile_type (objfile)->builtin_int;
4249 else
4250 index_type = *dbx_lookup_type (rangenums, objfile);
4251 if (index_type == NULL)
4252 {
4253 /* Does this actually ever happen? Is that why we are worrying
4254 about dealing with it rather than just calling error_type? */
4255
4256 complaint (&symfile_complaints,
4257 _("base type %d of range type is not defined"), rangenums[1]);
4258
4259 index_type = objfile_type (objfile)->builtin_int;
4260 }
4261
4262 result_type
4263 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4264 return (result_type);
4265}
4266
4267/* Read in an argument list. This is a list of types, separated by commas
4268 and terminated with END. Return the list of types read in, or NULL
4269 if there is an error. */
4270
4271static struct field *
4272read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4273 int *varargsp)
4274{
4275 /* FIXME! Remove this arbitrary limit! */
4276 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4277 int n = 0, i;
4278 struct field *rval;
4279
4280 while (**pp != end)
4281 {
4282 if (**pp != ',')
4283 /* Invalid argument list: no ','. */
4284 return NULL;
4285 (*pp)++;
4286 STABS_CONTINUE (pp, objfile);
4287 types[n++] = read_type (pp, objfile);
4288 }
4289 (*pp)++; /* get past `end' (the ':' character). */
4290
4291 if (n == 0)
4292 {
4293 /* We should read at least the THIS parameter here. Some broken stabs
4294 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4295 have been present ";-16,(0,43)" reference instead. This way the
4296 excessive ";" marker prematurely stops the parameters parsing. */
4297
4298 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4299 *varargsp = 0;
4300 }
4301 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4302 *varargsp = 1;
4303 else
4304 {
4305 n--;
4306 *varargsp = 0;
4307 }
4308
4309 rval = XCNEWVEC (struct field, n);
4310 for (i = 0; i < n; i++)
4311 rval[i].type = types[i];
4312 *nargsp = n;
4313 return rval;
4314}
4315\f
4316/* Common block handling. */
4317
4318/* List of symbols declared since the last BCOMM. This list is a tail
4319 of local_symbols. When ECOMM is seen, the symbols on the list
4320 are noted so their proper addresses can be filled in later,
4321 using the common block base address gotten from the assembler
4322 stabs. */
4323
4324static struct pending *common_block;
4325static int common_block_i;
4326
4327/* Name of the current common block. We get it from the BCOMM instead of the
4328 ECOMM to match IBM documentation (even though IBM puts the name both places
4329 like everyone else). */
4330static char *common_block_name;
4331
4332/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4333 to remain after this function returns. */
4334
4335void
4336common_block_start (const char *name, struct objfile *objfile)
4337{
4338 if (common_block_name != NULL)
4339 {
4340 complaint (&symfile_complaints,
4341 _("Invalid symbol data: common block within common block"));
4342 }
4343 common_block = local_symbols;
4344 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4345 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4346 strlen (name));
4347}
4348
4349/* Process a N_ECOMM symbol. */
4350
4351void
4352common_block_end (struct objfile *objfile)
4353{
4354 /* Symbols declared since the BCOMM are to have the common block
4355 start address added in when we know it. common_block and
4356 common_block_i point to the first symbol after the BCOMM in
4357 the local_symbols list; copy the list and hang it off the
4358 symbol for the common block name for later fixup. */
4359 int i;
4360 struct symbol *sym;
4361 struct pending *newobj = 0;
4362 struct pending *next;
4363 int j;
4364
4365 if (common_block_name == NULL)
4366 {
4367 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4368 return;
4369 }
4370
4371 sym = allocate_symbol (objfile);
4372 /* Note: common_block_name already saved on objfile_obstack. */
4373 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4374 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4375
4376 /* Now we copy all the symbols which have been defined since the BCOMM. */
4377
4378 /* Copy all the struct pendings before common_block. */
4379 for (next = local_symbols;
4380 next != NULL && next != common_block;
4381 next = next->next)
4382 {
4383 for (j = 0; j < next->nsyms; j++)
4384 add_symbol_to_list (next->symbol[j], &newobj);
4385 }
4386
4387 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4388 NULL, it means copy all the local symbols (which we already did
4389 above). */
4390
4391 if (common_block != NULL)
4392 for (j = common_block_i; j < common_block->nsyms; j++)
4393 add_symbol_to_list (common_block->symbol[j], &newobj);
4394
4395 SYMBOL_TYPE (sym) = (struct type *) newobj;
4396
4397 /* Should we be putting local_symbols back to what it was?
4398 Does it matter? */
4399
4400 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4401 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4402 global_sym_chain[i] = sym;
4403 common_block_name = NULL;
4404}
4405
4406/* Add a common block's start address to the offset of each symbol
4407 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4408 the common block name). */
4409
4410static void
4411fix_common_block (struct symbol *sym, CORE_ADDR valu)
4412{
4413 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4414
4415 for (; next; next = next->next)
4416 {
4417 int j;
4418
4419 for (j = next->nsyms - 1; j >= 0; j--)
4420 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4421 }
4422}
4423\f
4424
4425
4426/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4427 See add_undefined_type for more details. */
4428
4429static void
4430add_undefined_type_noname (struct type *type, int typenums[2])
4431{
4432 struct nat nat;
4433
4434 nat.typenums[0] = typenums [0];
4435 nat.typenums[1] = typenums [1];
4436 nat.type = type;
4437
4438 if (noname_undefs_length == noname_undefs_allocated)
4439 {
4440 noname_undefs_allocated *= 2;
4441 noname_undefs = (struct nat *)
4442 xrealloc ((char *) noname_undefs,
4443 noname_undefs_allocated * sizeof (struct nat));
4444 }
4445 noname_undefs[noname_undefs_length++] = nat;
4446}
4447
4448/* Add TYPE to the UNDEF_TYPES vector.
4449 See add_undefined_type for more details. */
4450
4451static void
4452add_undefined_type_1 (struct type *type)
4453{
4454 if (undef_types_length == undef_types_allocated)
4455 {
4456 undef_types_allocated *= 2;
4457 undef_types = (struct type **)
4458 xrealloc ((char *) undef_types,
4459 undef_types_allocated * sizeof (struct type *));
4460 }
4461 undef_types[undef_types_length++] = type;
4462}
4463
4464/* What about types defined as forward references inside of a small lexical
4465 scope? */
4466/* Add a type to the list of undefined types to be checked through
4467 once this file has been read in.
4468
4469 In practice, we actually maintain two such lists: The first list
4470 (UNDEF_TYPES) is used for types whose name has been provided, and
4471 concerns forward references (eg 'xs' or 'xu' forward references);
4472 the second list (NONAME_UNDEFS) is used for types whose name is
4473 unknown at creation time, because they were referenced through
4474 their type number before the actual type was declared.
4475 This function actually adds the given type to the proper list. */
4476
4477static void
4478add_undefined_type (struct type *type, int typenums[2])
4479{
4480 if (TYPE_TAG_NAME (type) == NULL)
4481 add_undefined_type_noname (type, typenums);
4482 else
4483 add_undefined_type_1 (type);
4484}
4485
4486/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4487
4488static void
4489cleanup_undefined_types_noname (struct objfile *objfile)
4490{
4491 int i;
4492
4493 for (i = 0; i < noname_undefs_length; i++)
4494 {
4495 struct nat nat = noname_undefs[i];
4496 struct type **type;
4497
4498 type = dbx_lookup_type (nat.typenums, objfile);
4499 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4500 {
4501 /* The instance flags of the undefined type are still unset,
4502 and needs to be copied over from the reference type.
4503 Since replace_type expects them to be identical, we need
4504 to set these flags manually before hand. */
4505 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4506 replace_type (nat.type, *type);
4507 }
4508 }
4509
4510 noname_undefs_length = 0;
4511}
4512
4513/* Go through each undefined type, see if it's still undefined, and fix it
4514 up if possible. We have two kinds of undefined types:
4515
4516 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4517 Fix: update array length using the element bounds
4518 and the target type's length.
4519 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4520 yet defined at the time a pointer to it was made.
4521 Fix: Do a full lookup on the struct/union tag. */
4522
4523static void
4524cleanup_undefined_types_1 (void)
4525{
4526 struct type **type;
4527
4528 /* Iterate over every undefined type, and look for a symbol whose type
4529 matches our undefined type. The symbol matches if:
4530 1. It is a typedef in the STRUCT domain;
4531 2. It has the same name, and same type code;
4532 3. The instance flags are identical.
4533
4534 It is important to check the instance flags, because we have seen
4535 examples where the debug info contained definitions such as:
4536
4537 "foo_t:t30=B31=xefoo_t:"
4538
4539 In this case, we have created an undefined type named "foo_t" whose
4540 instance flags is null (when processing "xefoo_t"), and then created
4541 another type with the same name, but with different instance flags
4542 ('B' means volatile). I think that the definition above is wrong,
4543 since the same type cannot be volatile and non-volatile at the same
4544 time, but we need to be able to cope with it when it happens. The
4545 approach taken here is to treat these two types as different. */
4546
4547 for (type = undef_types; type < undef_types + undef_types_length; type++)
4548 {
4549 switch (TYPE_CODE (*type))
4550 {
4551
4552 case TYPE_CODE_STRUCT:
4553 case TYPE_CODE_UNION:
4554 case TYPE_CODE_ENUM:
4555 {
4556 /* Check if it has been defined since. Need to do this here
4557 as well as in check_typedef to deal with the (legitimate in
4558 C though not C++) case of several types with the same name
4559 in different source files. */
4560 if (TYPE_STUB (*type))
4561 {
4562 struct pending *ppt;
4563 int i;
4564 /* Name of the type, without "struct" or "union". */
4565 const char *type_name = TYPE_TAG_NAME (*type);
4566
4567 if (type_name == NULL)
4568 {
4569 complaint (&symfile_complaints, _("need a type name"));
4570 break;
4571 }
4572 for (ppt = file_symbols; ppt; ppt = ppt->next)
4573 {
4574 for (i = 0; i < ppt->nsyms; i++)
4575 {
4576 struct symbol *sym = ppt->symbol[i];
4577
4578 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4579 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4580 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4581 TYPE_CODE (*type))
4582 && (TYPE_INSTANCE_FLAGS (*type) ==
4583 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4584 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4585 type_name) == 0)
4586 replace_type (*type, SYMBOL_TYPE (sym));
4587 }
4588 }
4589 }
4590 }
4591 break;
4592
4593 default:
4594 {
4595 complaint (&symfile_complaints,
4596 _("forward-referenced types left unresolved, "
4597 "type code %d."),
4598 TYPE_CODE (*type));
4599 }
4600 break;
4601 }
4602 }
4603
4604 undef_types_length = 0;
4605}
4606
4607/* Try to fix all the undefined types we ecountered while processing
4608 this unit. */
4609
4610void
4611cleanup_undefined_stabs_types (struct objfile *objfile)
4612{
4613 cleanup_undefined_types_1 ();
4614 cleanup_undefined_types_noname (objfile);
4615}
4616
4617/* Scan through all of the global symbols defined in the object file,
4618 assigning values to the debugging symbols that need to be assigned
4619 to. Get these symbols from the minimal symbol table. */
4620
4621void
4622scan_file_globals (struct objfile *objfile)
4623{
4624 int hash;
4625 struct minimal_symbol *msymbol;
4626 struct symbol *sym, *prev;
4627 struct objfile *resolve_objfile;
4628
4629 /* SVR4 based linkers copy referenced global symbols from shared
4630 libraries to the main executable.
4631 If we are scanning the symbols for a shared library, try to resolve
4632 them from the minimal symbols of the main executable first. */
4633
4634 if (symfile_objfile && objfile != symfile_objfile)
4635 resolve_objfile = symfile_objfile;
4636 else
4637 resolve_objfile = objfile;
4638
4639 while (1)
4640 {
4641 /* Avoid expensive loop through all minimal symbols if there are
4642 no unresolved symbols. */
4643 for (hash = 0; hash < HASHSIZE; hash++)
4644 {
4645 if (global_sym_chain[hash])
4646 break;
4647 }
4648 if (hash >= HASHSIZE)
4649 return;
4650
4651 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4652 {
4653 QUIT;
4654
4655 /* Skip static symbols. */
4656 switch (MSYMBOL_TYPE (msymbol))
4657 {
4658 case mst_file_text:
4659 case mst_file_data:
4660 case mst_file_bss:
4661 continue;
4662 default:
4663 break;
4664 }
4665
4666 prev = NULL;
4667
4668 /* Get the hash index and check all the symbols
4669 under that hash index. */
4670
4671 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4672
4673 for (sym = global_sym_chain[hash]; sym;)
4674 {
4675 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4676 SYMBOL_LINKAGE_NAME (sym)) == 0)
4677 {
4678 /* Splice this symbol out of the hash chain and
4679 assign the value we have to it. */
4680 if (prev)
4681 {
4682 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4683 }
4684 else
4685 {
4686 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4687 }
4688
4689 /* Check to see whether we need to fix up a common block. */
4690 /* Note: this code might be executed several times for
4691 the same symbol if there are multiple references. */
4692 if (sym)
4693 {
4694 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4695 {
4696 fix_common_block (sym,
4697 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4698 msymbol));
4699 }
4700 else
4701 {
4702 SYMBOL_VALUE_ADDRESS (sym)
4703 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4704 }
4705 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4706 }
4707
4708 if (prev)
4709 {
4710 sym = SYMBOL_VALUE_CHAIN (prev);
4711 }
4712 else
4713 {
4714 sym = global_sym_chain[hash];
4715 }
4716 }
4717 else
4718 {
4719 prev = sym;
4720 sym = SYMBOL_VALUE_CHAIN (sym);
4721 }
4722 }
4723 }
4724 if (resolve_objfile == objfile)
4725 break;
4726 resolve_objfile = objfile;
4727 }
4728
4729 /* Change the storage class of any remaining unresolved globals to
4730 LOC_UNRESOLVED and remove them from the chain. */
4731 for (hash = 0; hash < HASHSIZE; hash++)
4732 {
4733 sym = global_sym_chain[hash];
4734 while (sym)
4735 {
4736 prev = sym;
4737 sym = SYMBOL_VALUE_CHAIN (sym);
4738
4739 /* Change the symbol address from the misleading chain value
4740 to address zero. */
4741 SYMBOL_VALUE_ADDRESS (prev) = 0;
4742
4743 /* Complain about unresolved common block symbols. */
4744 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4745 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4746 else
4747 complaint (&symfile_complaints,
4748 _("%s: common block `%s' from "
4749 "global_sym_chain unresolved"),
4750 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4751 }
4752 }
4753 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4754}
4755
4756/* Initialize anything that needs initializing when starting to read
4757 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4758 to a psymtab. */
4759
4760void
4761stabsread_init (void)
4762{
4763}
4764
4765/* Initialize anything that needs initializing when a completely new
4766 symbol file is specified (not just adding some symbols from another
4767 file, e.g. a shared library). */
4768
4769void
4770stabsread_new_init (void)
4771{
4772 /* Empty the hash table of global syms looking for values. */
4773 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4774}
4775
4776/* Initialize anything that needs initializing at the same time as
4777 start_symtab() is called. */
4778
4779void
4780start_stabs (void)
4781{
4782 global_stabs = NULL; /* AIX COFF */
4783 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4784 n_this_object_header_files = 1;
4785 type_vector_length = 0;
4786 type_vector = (struct type **) 0;
4787
4788 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4789 common_block_name = NULL;
4790}
4791
4792/* Call after end_symtab(). */
4793
4794void
4795end_stabs (void)
4796{
4797 if (type_vector)
4798 {
4799 xfree (type_vector);
4800 }
4801 type_vector = 0;
4802 type_vector_length = 0;
4803 previous_stab_code = 0;
4804}
4805
4806void
4807finish_global_stabs (struct objfile *objfile)
4808{
4809 if (global_stabs)
4810 {
4811 patch_block_stabs (global_symbols, global_stabs, objfile);
4812 xfree (global_stabs);
4813 global_stabs = NULL;
4814 }
4815}
4816
4817/* Find the end of the name, delimited by a ':', but don't match
4818 ObjC symbols which look like -[Foo bar::]:bla. */
4819static const char *
4820find_name_end (const char *name)
4821{
4822 const char *s = name;
4823
4824 if (s[0] == '-' || *s == '+')
4825 {
4826 /* Must be an ObjC method symbol. */
4827 if (s[1] != '[')
4828 {
4829 error (_("invalid symbol name \"%s\""), name);
4830 }
4831 s = strchr (s, ']');
4832 if (s == NULL)
4833 {
4834 error (_("invalid symbol name \"%s\""), name);
4835 }
4836 return strchr (s, ':');
4837 }
4838 else
4839 {
4840 return strchr (s, ':');
4841 }
4842}
4843
4844/* Initializer for this module. */
4845
4846void
4847_initialize_stabsread (void)
4848{
4849 rs6000_builtin_type_data = register_objfile_data ();
4850
4851 undef_types_allocated = 20;
4852 undef_types_length = 0;
4853 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4854
4855 noname_undefs_allocated = 20;
4856 noname_undefs_length = 0;
4857 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4858
4859 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4860 &stab_register_funcs);
4861 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4862 &stab_register_funcs);
4863}
This page took 0.05927 seconds and 4 git commands to generate.