* Makefile.in (ALLDEPFILES): Remove alphanbsd-nat.c.
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
39#include "inferior.h" /* for write_pc */
40#include "gdb-stabs.h"
41#include "obstack.h"
42#include "completer.h"
43
44#include <sys/types.h>
45#include <fcntl.h>
46#include "gdb_string.h"
47#include "gdb_stat.h"
48#include <ctype.h>
49#include <time.h>
50
51#ifndef O_BINARY
52#define O_BINARY 0
53#endif
54
55#ifdef HPUXHPPA
56
57/* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
59
60extern int hp_som_som_object_present;
61extern int hp_cxx_exception_support_initialized;
62#define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
65 } while (0)
66#endif
67
68int (*ui_load_progress_hook) (const char *section, unsigned long num);
69void (*show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74void (*pre_add_symbol_hook) (char *);
75void (*post_add_symbol_hook) (void);
76void (*target_new_objfile_hook) (struct objfile *);
77
78static void clear_symtab_users_cleanup (void *ignore);
79
80/* Global variables owned by this file */
81int readnow_symbol_files; /* Read full symbols immediately */
82
83struct complaint oldsyms_complaint =
84{
85 "Replacing old symbols for `%s'", 0, 0
86};
87
88struct complaint empty_symtab_complaint =
89{
90 "Empty symbol table found for `%s'", 0, 0
91};
92
93struct complaint unknown_option_complaint =
94{
95 "Unknown option `%s' ignored", 0, 0
96};
97
98/* External variables and functions referenced. */
99
100extern void report_transfer_performance (unsigned long, time_t, time_t);
101
102/* Functions this file defines */
103
104#if 0
105static int simple_read_overlay_region_table (void);
106static void simple_free_overlay_region_table (void);
107#endif
108
109static void set_initial_language (void);
110
111static void load_command (char *, int);
112
113static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
114
115static void add_symbol_file_command (char *, int);
116
117static void add_shared_symbol_files_command (char *, int);
118
119static void cashier_psymtab (struct partial_symtab *);
120
121bfd *symfile_bfd_open (char *);
122
123int get_section_index (struct objfile *, char *);
124
125static void find_sym_fns (struct objfile *);
126
127static void decrement_reading_symtab (void *);
128
129static void overlay_invalidate_all (void);
130
131static int overlay_is_mapped (struct obj_section *);
132
133void list_overlays_command (char *, int);
134
135void map_overlay_command (char *, int);
136
137void unmap_overlay_command (char *, int);
138
139static void overlay_auto_command (char *, int);
140
141static void overlay_manual_command (char *, int);
142
143static void overlay_off_command (char *, int);
144
145static void overlay_load_command (char *, int);
146
147static void overlay_command (char *, int);
148
149static void simple_free_overlay_table (void);
150
151static void read_target_long_array (CORE_ADDR, unsigned int *, int);
152
153static int simple_read_overlay_table (void);
154
155static int simple_overlay_update_1 (struct obj_section *);
156
157static void add_filename_language (char *ext, enum language lang);
158
159static void set_ext_lang_command (char *args, int from_tty);
160
161static void info_ext_lang_command (char *args, int from_tty);
162
163static void init_filename_language_table (void);
164
165void _initialize_symfile (void);
166
167/* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
169 prepared to read. */
170
171static struct sym_fns *symtab_fns = NULL;
172
173/* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
175
176#ifdef SYMBOL_RELOADING_DEFAULT
177int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
178#else
179int symbol_reloading = 0;
180#endif
181
182/* If non-zero, shared library symbols will be added automatically
183 when the inferior is created, new libraries are loaded, or when
184 attaching to the inferior. This is almost always what users will
185 want to have happen; but for very large programs, the startup time
186 will be excessive, and so if this is a problem, the user can clear
187 this flag and then add the shared library symbols as needed. Note
188 that there is a potential for confusion, since if the shared
189 library symbols are not loaded, commands like "info fun" will *not*
190 report all the functions that are actually present. */
191
192int auto_solib_add = 1;
193
194/* For systems that support it, a threshold size in megabytes. If
195 automatically adding a new library's symbol table to those already
196 known to the debugger would cause the total shared library symbol
197 size to exceed this threshhold, then the shlib's symbols are not
198 added. The threshold is ignored if the user explicitly asks for a
199 shlib to be added, such as when using the "sharedlibrary"
200 command. */
201
202int auto_solib_limit;
203\f
204
205/* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
208
209static int
210compare_symbols (const void *s1p, const void *s2p)
211{
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
217}
218
219/*
220
221 LOCAL FUNCTION
222
223 compare_psymbols -- compare two partial symbols by name
224
225 DESCRIPTION
226
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
230
231 NOTES
232
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
238
239 */
240
241static int
242compare_psymbols (const void *s1p, const void *s2p)
243{
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
246
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
251
252
253 if ((st1[0] - st2[0]) || !st1[0])
254 {
255 return (st1[0] - st2[0]);
256 }
257 else if ((st1[1] - st2[1]) || !st1[1])
258 {
259 return (st1[1] - st2[1]);
260 }
261 else
262 {
263 return (strcmp (st1, st2));
264 }
265}
266
267void
268sort_pst_symbols (struct partial_symtab *pst)
269{
270 /* Sort the global list; don't sort the static list */
271
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
274 compare_psymbols);
275}
276
277/* Call sort_block_syms to sort alphabetically the symbols of one block. */
278
279void
280sort_block_syms (register struct block *b)
281{
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
284}
285
286/* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
288
289void
290sort_symtab_syms (register struct symtab *s)
291{
292 register struct blockvector *bv;
293 int nbl;
294 int i;
295 register struct block *b;
296
297 if (s == 0)
298 return;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
302 {
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
305 sort_block_syms (b);
306 }
307}
308
309/* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
313
314char *
315obsavestring (char *ptr, int size, struct obstack *obstackp)
316{
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
320 inline memcpy? */
321 {
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
325 while (p1 != end)
326 *p2++ = *p1++;
327 }
328 p[size] = 0;
329 return p;
330}
331
332/* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
334
335char *
336obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 const char *s3)
338{
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
341 strcpy (val, s1);
342 strcat (val, s2);
343 strcat (val, s3);
344 return val;
345}
346
347/* True if we are nested inside psymtab_to_symtab. */
348
349int currently_reading_symtab = 0;
350
351static void
352decrement_reading_symtab (void *dummy)
353{
354 currently_reading_symtab--;
355}
356
357/* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
360 case inline. */
361
362struct symtab *
363psymtab_to_symtab (register struct partial_symtab *pst)
364{
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
371 {
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379}
380
381/* Initialize entry point information for this objfile. */
382
383void
384init_entry_point_info (struct objfile *objfile)
385{
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
388
389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
390 {
391 /* Executable file -- record its entry point so we'll recognize
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
394 }
395 else
396 {
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
399 }
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
406}
407
408/* Get current entry point address. */
409
410CORE_ADDR
411entry_point_address (void)
412{
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414}
415
416/* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
418
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
421
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
424
425void
426find_lowest_section (bfd *abfd, asection *sect, PTR obj)
427{
428 asection **lowest = (asection **) obj;
429
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 return;
432 if (!*lowest)
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
439 *lowest = sect;
440}
441
442
443/* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
445
446extern struct section_addr_info *
447build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
449{
450 struct section_addr_info *sap;
451 const struct section_table *stp;
452 int oidx;
453
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
456
457 for (stp = start, oidx = 0; stp != end; stp++)
458 {
459 if (bfd_get_section_flags (stp->bfd,
460 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
461 && oidx < MAX_SECTIONS)
462 {
463 sap->other[oidx].addr = stp->addr;
464 sap->other[oidx].name
465 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
466 sap->other[oidx].sectindex = stp->the_bfd_section->index;
467 oidx++;
468 }
469 }
470
471 return sap;
472}
473
474
475/* Free all memory allocated by build_section_addr_info_from_section_table. */
476
477extern void
478free_section_addr_info (struct section_addr_info *sap)
479{
480 int idx;
481
482 for (idx = 0; idx < MAX_SECTIONS; idx++)
483 if (sap->other[idx].name)
484 xfree (sap->other[idx].name);
485 xfree (sap);
486}
487
488
489/* Parse the user's idea of an offset for dynamic linking, into our idea
490 of how to represent it for fast symbol reading. This is the default
491 version of the sym_fns.sym_offsets function for symbol readers that
492 don't need to do anything special. It allocates a section_offsets table
493 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
494
495void
496default_symfile_offsets (struct objfile *objfile,
497 struct section_addr_info *addrs)
498{
499 int i;
500 asection *sect = NULL;
501
502 objfile->num_sections = SECT_OFF_MAX;
503 objfile->section_offsets = (struct section_offsets *)
504 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
505 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525
526 sect = bfd_get_section_by_name (objfile->obfd, ".text");
527 if (sect)
528 objfile->sect_index_text = sect->index;
529
530 sect = bfd_get_section_by_name (objfile->obfd, ".data");
531 if (sect)
532 objfile->sect_index_data = sect->index;
533
534 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
535 if (sect)
536 objfile->sect_index_bss = sect->index;
537
538 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
539 if (sect)
540 objfile->sect_index_rodata = sect->index;
541
542}
543
544/* Process a symbol file, as either the main file or as a dynamically
545 loaded file.
546
547 OBJFILE is where the symbols are to be read from.
548
549 ADDR is the address where the text segment was loaded, unless the
550 objfile is the main symbol file, in which case it is zero.
551
552 MAINLINE is nonzero if this is the main symbol file, or zero if
553 it's an extra symbol file such as dynamically loaded code.
554
555 VERBO is nonzero if the caller has printed a verbose message about
556 the symbol reading (and complaints can be more terse about it). */
557
558void
559syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
560 int mainline, int verbo)
561{
562 asection *lower_sect;
563 asection *sect;
564 CORE_ADDR lower_offset;
565 struct section_addr_info local_addr;
566 struct cleanup *old_chain;
567 int i;
568
569 /* If ADDRS is NULL, initialize the local section_addr_info struct and
570 point ADDRS to it. We now establish the convention that an addr of
571 zero means no load address was specified. */
572
573 if (addrs == NULL)
574 {
575 memset (&local_addr, 0, sizeof (local_addr));
576 addrs = &local_addr;
577 }
578
579 init_entry_point_info (objfile);
580 find_sym_fns (objfile);
581
582 if (objfile->sf == NULL)
583 return; /* No symbols. */
584
585 /* Make sure that partially constructed symbol tables will be cleaned up
586 if an error occurs during symbol reading. */
587 old_chain = make_cleanup_free_objfile (objfile);
588
589 if (mainline)
590 {
591 /* We will modify the main symbol table, make sure that all its users
592 will be cleaned up if an error occurs during symbol reading. */
593 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
594
595 /* Since no error yet, throw away the old symbol table. */
596
597 if (symfile_objfile != NULL)
598 {
599 free_objfile (symfile_objfile);
600 symfile_objfile = NULL;
601 }
602
603 /* Currently we keep symbols from the add-symbol-file command.
604 If the user wants to get rid of them, they should do "symbol-file"
605 without arguments first. Not sure this is the best behavior
606 (PR 2207). */
607
608 (*objfile->sf->sym_new_init) (objfile);
609 }
610
611 /* Convert addr into an offset rather than an absolute address.
612 We find the lowest address of a loaded segment in the objfile,
613 and assume that <addr> is where that got loaded.
614
615 We no longer warn if the lowest section is not a text segment (as
616 happens for the PA64 port. */
617 if (!mainline)
618 {
619 /* Find lowest loadable section to be used as starting point for
620 continguous sections. FIXME!! won't work without call to find
621 .text first, but this assumes text is lowest section. */
622 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
623 if (lower_sect == NULL)
624 bfd_map_over_sections (objfile->obfd, find_lowest_section,
625 (PTR) &lower_sect);
626 if (lower_sect == NULL)
627 warning ("no loadable sections found in added symbol-file %s",
628 objfile->name);
629 else
630 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
631 warning ("Lowest section in %s is %s at %s",
632 objfile->name,
633 bfd_section_name (objfile->obfd, lower_sect),
634 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
635 if (lower_sect != NULL)
636 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
637 else
638 lower_offset = 0;
639
640 /* Calculate offsets for the loadable sections.
641 FIXME! Sections must be in order of increasing loadable section
642 so that contiguous sections can use the lower-offset!!!
643
644 Adjust offsets if the segments are not contiguous.
645 If the section is contiguous, its offset should be set to
646 the offset of the highest loadable section lower than it
647 (the loadable section directly below it in memory).
648 this_offset = lower_offset = lower_addr - lower_orig_addr */
649
650 /* Calculate offsets for sections. */
651 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
652 {
653 if (addrs->other[i].addr != 0)
654 {
655 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
656 if (sect)
657 {
658 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
659 lower_offset = addrs->other[i].addr;
660 /* This is the index used by BFD. */
661 addrs->other[i].sectindex = sect->index ;
662 }
663 else
664 {
665 warning ("section %s not found in %s", addrs->other[i].name,
666 objfile->name);
667 addrs->other[i].addr = 0;
668 }
669 }
670 else
671 addrs->other[i].addr = lower_offset;
672 }
673 }
674
675 /* Initialize symbol reading routines for this objfile, allow complaints to
676 appear for this new file, and record how verbose to be, then do the
677 initial symbol reading for this file. */
678
679 (*objfile->sf->sym_init) (objfile);
680 clear_complaints (1, verbo);
681
682 (*objfile->sf->sym_offsets) (objfile, addrs);
683
684#ifndef IBM6000_TARGET
685 /* This is a SVR4/SunOS specific hack, I think. In any event, it
686 screws RS/6000. sym_offsets should be doing this sort of thing,
687 because it knows the mapping between bfd sections and
688 section_offsets. */
689 /* This is a hack. As far as I can tell, section offsets are not
690 target dependent. They are all set to addr with a couple of
691 exceptions. The exceptions are sysvr4 shared libraries, whose
692 offsets are kept in solib structures anyway and rs6000 xcoff
693 which handles shared libraries in a completely unique way.
694
695 Section offsets are built similarly, except that they are built
696 by adding addr in all cases because there is no clear mapping
697 from section_offsets into actual sections. Note that solib.c
698 has a different algorithm for finding section offsets.
699
700 These should probably all be collapsed into some target
701 independent form of shared library support. FIXME. */
702
703 if (addrs)
704 {
705 struct obj_section *s;
706
707 /* Map section offsets in "addr" back to the object's
708 sections by comparing the section names with bfd's
709 section names. Then adjust the section address by
710 the offset. */ /* for gdb/13815 */
711
712 ALL_OBJFILE_OSECTIONS (objfile, s)
713 {
714 CORE_ADDR s_addr = 0;
715 int i;
716
717 for (i = 0;
718 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
719 i++)
720 if (strcmp (bfd_section_name (s->objfile->obfd,
721 s->the_bfd_section),
722 addrs->other[i].name) == 0)
723 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
724
725 s->addr -= s->offset;
726 s->addr += s_addr;
727 s->endaddr -= s->offset;
728 s->endaddr += s_addr;
729 s->offset += s_addr;
730 }
731 }
732#endif /* not IBM6000_TARGET */
733
734 (*objfile->sf->sym_read) (objfile, mainline);
735
736 if (!have_partial_symbols () && !have_full_symbols ())
737 {
738 wrap_here ("");
739 printf_filtered ("(no debugging symbols found)...");
740 wrap_here ("");
741 }
742
743 /* Don't allow char * to have a typename (else would get caddr_t).
744 Ditto void *. FIXME: Check whether this is now done by all the
745 symbol readers themselves (many of them now do), and if so remove
746 it from here. */
747
748 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
749 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
750
751 /* Mark the objfile has having had initial symbol read attempted. Note
752 that this does not mean we found any symbols... */
753
754 objfile->flags |= OBJF_SYMS;
755
756 /* Discard cleanups as symbol reading was successful. */
757
758 discard_cleanups (old_chain);
759
760 /* Call this after reading in a new symbol table to give target
761 dependent code a crack at the new symbols. For instance, this
762 could be used to update the values of target-specific symbols GDB
763 needs to keep track of (such as _sigtramp, or whatever). */
764
765 TARGET_SYMFILE_POSTREAD (objfile);
766}
767
768/* Perform required actions after either reading in the initial
769 symbols for a new objfile, or mapping in the symbols from a reusable
770 objfile. */
771
772void
773new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
774{
775
776 /* If this is the main symbol file we have to clean up all users of the
777 old main symbol file. Otherwise it is sufficient to fixup all the
778 breakpoints that may have been redefined by this symbol file. */
779 if (mainline)
780 {
781 /* OK, make it the "real" symbol file. */
782 symfile_objfile = objfile;
783
784 clear_symtab_users ();
785 }
786 else
787 {
788 breakpoint_re_set ();
789 }
790
791 /* We're done reading the symbol file; finish off complaints. */
792 clear_complaints (0, verbo);
793}
794
795/* Process a symbol file, as either the main file or as a dynamically
796 loaded file.
797
798 NAME is the file name (which will be tilde-expanded and made
799 absolute herein) (but we don't free or modify NAME itself).
800 FROM_TTY says how verbose to be. MAINLINE specifies whether this
801 is the main symbol file, or whether it's an extra symbol file such
802 as dynamically loaded code. If !mainline, ADDR is the address
803 where the text segment was loaded.
804
805 Upon success, returns a pointer to the objfile that was added.
806 Upon failure, jumps back to command level (never returns). */
807
808struct objfile *
809symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
810 int mainline, int flags)
811{
812 struct objfile *objfile;
813 struct partial_symtab *psymtab;
814 bfd *abfd;
815
816 /* Open a bfd for the file, and give user a chance to burp if we'd be
817 interactively wiping out any existing symbols. */
818
819 abfd = symfile_bfd_open (name);
820
821 if ((have_full_symbols () || have_partial_symbols ())
822 && mainline
823 && from_tty
824 && !query ("Load new symbol table from \"%s\"? ", name))
825 error ("Not confirmed.");
826
827 objfile = allocate_objfile (abfd, flags);
828
829 /* If the objfile uses a mapped symbol file, and we have a psymtab for
830 it, then skip reading any symbols at this time. */
831
832 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
833 {
834 /* We mapped in an existing symbol table file that already has had
835 initial symbol reading performed, so we can skip that part. Notify
836 the user that instead of reading the symbols, they have been mapped.
837 */
838 if (from_tty || info_verbose)
839 {
840 printf_filtered ("Mapped symbols for %s...", name);
841 wrap_here ("");
842 gdb_flush (gdb_stdout);
843 }
844 init_entry_point_info (objfile);
845 find_sym_fns (objfile);
846 }
847 else
848 {
849 /* We either created a new mapped symbol table, mapped an existing
850 symbol table file which has not had initial symbol reading
851 performed, or need to read an unmapped symbol table. */
852 if (from_tty || info_verbose)
853 {
854 if (pre_add_symbol_hook)
855 pre_add_symbol_hook (name);
856 else
857 {
858 printf_filtered ("Reading symbols from %s...", name);
859 wrap_here ("");
860 gdb_flush (gdb_stdout);
861 }
862 }
863 syms_from_objfile (objfile, addrs, mainline, from_tty);
864 }
865
866 /* We now have at least a partial symbol table. Check to see if the
867 user requested that all symbols be read on initial access via either
868 the gdb startup command line or on a per symbol file basis. Expand
869 all partial symbol tables for this objfile if so. */
870
871 if ((flags & OBJF_READNOW) || readnow_symbol_files)
872 {
873 if (from_tty || info_verbose)
874 {
875 printf_filtered ("expanding to full symbols...");
876 wrap_here ("");
877 gdb_flush (gdb_stdout);
878 }
879
880 for (psymtab = objfile->psymtabs;
881 psymtab != NULL;
882 psymtab = psymtab->next)
883 {
884 psymtab_to_symtab (psymtab);
885 }
886 }
887
888 if (from_tty || info_verbose)
889 {
890 if (post_add_symbol_hook)
891 post_add_symbol_hook ();
892 else
893 {
894 printf_filtered ("done.\n");
895 gdb_flush (gdb_stdout);
896 }
897 }
898
899 if (objfile->sf == NULL)
900 return objfile; /* No symbols. */
901
902 new_symfile_objfile (objfile, mainline, from_tty);
903
904 if (target_new_objfile_hook)
905 target_new_objfile_hook (objfile);
906
907 return (objfile);
908}
909
910/* Call symbol_file_add() with default values and update whatever is
911 affected by the loading of a new main().
912 Used when the file is supplied in the gdb command line
913 and by some targets with special loading requirements.
914 The auxiliary function, symbol_file_add_main_1(), has the flags
915 argument for the switches that can only be specified in the symbol_file
916 command itself. */
917
918void
919symbol_file_add_main (char *args, int from_tty)
920{
921 symbol_file_add_main_1 (args, from_tty, 0);
922}
923
924static void
925symbol_file_add_main_1 (char *args, int from_tty, int flags)
926{
927 symbol_file_add (args, from_tty, NULL, 1, flags);
928
929#ifdef HPUXHPPA
930 RESET_HP_UX_GLOBALS ();
931#endif
932
933 /* Getting new symbols may change our opinion about
934 what is frameless. */
935 reinit_frame_cache ();
936
937 set_initial_language ();
938}
939
940void
941symbol_file_clear (int from_tty)
942{
943 if ((have_full_symbols () || have_partial_symbols ())
944 && from_tty
945 && !query ("Discard symbol table from `%s'? ",
946 symfile_objfile->name))
947 error ("Not confirmed.");
948 free_all_objfiles ();
949
950 /* solib descriptors may have handles to objfiles. Since their
951 storage has just been released, we'd better wipe the solib
952 descriptors as well.
953 */
954#if defined(SOLIB_RESTART)
955 SOLIB_RESTART ();
956#endif
957
958 symfile_objfile = NULL;
959 if (from_tty)
960 printf_unfiltered ("No symbol file now.\n");
961#ifdef HPUXHPPA
962 RESET_HP_UX_GLOBALS ();
963#endif
964}
965
966/* This is the symbol-file command. Read the file, analyze its
967 symbols, and add a struct symtab to a symtab list. The syntax of
968 the command is rather bizarre--(1) buildargv implements various
969 quoting conventions which are undocumented and have little or
970 nothing in common with the way things are quoted (or not quoted)
971 elsewhere in GDB, (2) options are used, which are not generally
972 used in GDB (perhaps "set mapped on", "set readnow on" would be
973 better), (3) the order of options matters, which is contrary to GNU
974 conventions (because it is confusing and inconvenient). */
975/* Note: ezannoni 2000-04-17. This function used to have support for
976 rombug (see remote-os9k.c). It consisted of a call to target_link()
977 (target.c) to get the address of the text segment from the target,
978 and pass that to symbol_file_add(). This is no longer supported. */
979
980void
981symbol_file_command (char *args, int from_tty)
982{
983 char **argv;
984 char *name = NULL;
985 struct cleanup *cleanups;
986 int flags = OBJF_USERLOADED;
987
988 dont_repeat ();
989
990 if (args == NULL)
991 {
992 symbol_file_clear (from_tty);
993 }
994 else
995 {
996 if ((argv = buildargv (args)) == NULL)
997 {
998 nomem (0);
999 }
1000 cleanups = make_cleanup_freeargv (argv);
1001 while (*argv != NULL)
1002 {
1003 if (STREQ (*argv, "-mapped"))
1004 flags |= OBJF_MAPPED;
1005 else
1006 if (STREQ (*argv, "-readnow"))
1007 flags |= OBJF_READNOW;
1008 else
1009 if (**argv == '-')
1010 error ("unknown option `%s'", *argv);
1011 else
1012 {
1013 name = *argv;
1014
1015 symbol_file_add_main_1 (name, from_tty, flags);
1016 }
1017 argv++;
1018 }
1019
1020 if (name == NULL)
1021 {
1022 error ("no symbol file name was specified");
1023 }
1024 do_cleanups (cleanups);
1025 }
1026}
1027
1028/* Set the initial language.
1029
1030 A better solution would be to record the language in the psymtab when reading
1031 partial symbols, and then use it (if known) to set the language. This would
1032 be a win for formats that encode the language in an easily discoverable place,
1033 such as DWARF. For stabs, we can jump through hoops looking for specially
1034 named symbols or try to intuit the language from the specific type of stabs
1035 we find, but we can't do that until later when we read in full symbols.
1036 FIXME. */
1037
1038static void
1039set_initial_language (void)
1040{
1041 struct partial_symtab *pst;
1042 enum language lang = language_unknown;
1043
1044 pst = find_main_psymtab ();
1045 if (pst != NULL)
1046 {
1047 if (pst->filename != NULL)
1048 {
1049 lang = deduce_language_from_filename (pst->filename);
1050 }
1051 if (lang == language_unknown)
1052 {
1053 /* Make C the default language */
1054 lang = language_c;
1055 }
1056 set_language (lang);
1057 expected_language = current_language; /* Don't warn the user */
1058 }
1059}
1060
1061/* Open file specified by NAME and hand it off to BFD for preliminary
1062 analysis. Result is a newly initialized bfd *, which includes a newly
1063 malloc'd` copy of NAME (tilde-expanded and made absolute).
1064 In case of trouble, error() is called. */
1065
1066bfd *
1067symfile_bfd_open (char *name)
1068{
1069 bfd *sym_bfd;
1070 int desc;
1071 char *absolute_name;
1072
1073
1074
1075 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1076
1077 /* Look down path for it, allocate 2nd new malloc'd copy. */
1078 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1079#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1080 if (desc < 0)
1081 {
1082 char *exename = alloca (strlen (name) + 5);
1083 strcat (strcpy (exename, name), ".exe");
1084 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1085 0, &absolute_name);
1086 }
1087#endif
1088 if (desc < 0)
1089 {
1090 make_cleanup (xfree, name);
1091 perror_with_name (name);
1092 }
1093 xfree (name); /* Free 1st new malloc'd copy */
1094 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1095 /* It'll be freed in free_objfile(). */
1096
1097 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1098 if (!sym_bfd)
1099 {
1100 close (desc);
1101 make_cleanup (xfree, name);
1102 error ("\"%s\": can't open to read symbols: %s.", name,
1103 bfd_errmsg (bfd_get_error ()));
1104 }
1105 sym_bfd->cacheable = 1;
1106
1107 if (!bfd_check_format (sym_bfd, bfd_object))
1108 {
1109 /* FIXME: should be checking for errors from bfd_close (for one thing,
1110 on error it does not free all the storage associated with the
1111 bfd). */
1112 bfd_close (sym_bfd); /* This also closes desc */
1113 make_cleanup (xfree, name);
1114 error ("\"%s\": can't read symbols: %s.", name,
1115 bfd_errmsg (bfd_get_error ()));
1116 }
1117 return (sym_bfd);
1118}
1119
1120/* Return the section index for the given section name. Return -1 if
1121 the section was not found. */
1122int
1123get_section_index (struct objfile *objfile, char *section_name)
1124{
1125 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1126 if (sect)
1127 return sect->index;
1128 else
1129 return -1;
1130}
1131
1132/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1133 startup by the _initialize routine in each object file format reader,
1134 to register information about each format the the reader is prepared
1135 to handle. */
1136
1137void
1138add_symtab_fns (struct sym_fns *sf)
1139{
1140 sf->next = symtab_fns;
1141 symtab_fns = sf;
1142}
1143
1144
1145/* Initialize to read symbols from the symbol file sym_bfd. It either
1146 returns or calls error(). The result is an initialized struct sym_fns
1147 in the objfile structure, that contains cached information about the
1148 symbol file. */
1149
1150static void
1151find_sym_fns (struct objfile *objfile)
1152{
1153 struct sym_fns *sf;
1154 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1155 char *our_target = bfd_get_target (objfile->obfd);
1156
1157 if (our_flavour == bfd_target_srec_flavour
1158 || our_flavour == bfd_target_ihex_flavour
1159 || our_flavour == bfd_target_tekhex_flavour)
1160 return; /* No symbols. */
1161
1162 /* Special kludge for apollo. See dstread.c. */
1163 if (STREQN (our_target, "apollo", 6))
1164 our_flavour = (enum bfd_flavour) -2;
1165
1166 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1167 {
1168 if (our_flavour == sf->sym_flavour)
1169 {
1170 objfile->sf = sf;
1171 return;
1172 }
1173 }
1174 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1175 bfd_get_target (objfile->obfd));
1176}
1177\f
1178/* This function runs the load command of our current target. */
1179
1180static void
1181load_command (char *arg, int from_tty)
1182{
1183 if (arg == NULL)
1184 arg = get_exec_file (1);
1185 target_load (arg, from_tty);
1186
1187 /* After re-loading the executable, we don't really know which
1188 overlays are mapped any more. */
1189 overlay_cache_invalid = 1;
1190}
1191
1192/* This version of "load" should be usable for any target. Currently
1193 it is just used for remote targets, not inftarg.c or core files,
1194 on the theory that only in that case is it useful.
1195
1196 Avoiding xmodem and the like seems like a win (a) because we don't have
1197 to worry about finding it, and (b) On VMS, fork() is very slow and so
1198 we don't want to run a subprocess. On the other hand, I'm not sure how
1199 performance compares. */
1200
1201static int download_write_size = 512;
1202static int validate_download = 0;
1203
1204/* Callback service function for generic_load (bfd_map_over_sections). */
1205
1206static void
1207add_section_size_callback (bfd *abfd, asection *asec, void *data)
1208{
1209 bfd_size_type *sum = data;
1210
1211 *sum += bfd_get_section_size_before_reloc (asec);
1212}
1213
1214/* Opaque data for load_section_callback. */
1215struct load_section_data {
1216 unsigned long load_offset;
1217 unsigned long write_count;
1218 unsigned long data_count;
1219 bfd_size_type total_size;
1220};
1221
1222/* Callback service function for generic_load (bfd_map_over_sections). */
1223
1224static void
1225load_section_callback (bfd *abfd, asection *asec, void *data)
1226{
1227 struct load_section_data *args = data;
1228
1229 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1230 {
1231 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1232 if (size > 0)
1233 {
1234 char *buffer;
1235 struct cleanup *old_chain;
1236 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1237 bfd_size_type block_size;
1238 int err;
1239 const char *sect_name = bfd_get_section_name (abfd, asec);
1240 bfd_size_type sent;
1241
1242 if (download_write_size > 0 && size > download_write_size)
1243 block_size = download_write_size;
1244 else
1245 block_size = size;
1246
1247 buffer = xmalloc (size);
1248 old_chain = make_cleanup (xfree, buffer);
1249
1250 /* Is this really necessary? I guess it gives the user something
1251 to look at during a long download. */
1252 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1253 sect_name, paddr_nz (size), paddr_nz (lma));
1254
1255 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1256
1257 sent = 0;
1258 do
1259 {
1260 int len;
1261 bfd_size_type this_transfer = size - sent;
1262
1263 if (this_transfer >= block_size)
1264 this_transfer = block_size;
1265 len = target_write_memory_partial (lma, buffer,
1266 this_transfer, &err);
1267 if (err)
1268 break;
1269 if (validate_download)
1270 {
1271 /* Broken memories and broken monitors manifest
1272 themselves here when bring new computers to
1273 life. This doubles already slow downloads. */
1274 /* NOTE: cagney/1999-10-18: A more efficient
1275 implementation might add a verify_memory()
1276 method to the target vector and then use
1277 that. remote.c could implement that method
1278 using the ``qCRC'' packet. */
1279 char *check = xmalloc (len);
1280 struct cleanup *verify_cleanups =
1281 make_cleanup (xfree, check);
1282
1283 if (target_read_memory (lma, check, len) != 0)
1284 error ("Download verify read failed at 0x%s",
1285 paddr (lma));
1286 if (memcmp (buffer, check, len) != 0)
1287 error ("Download verify compare failed at 0x%s",
1288 paddr (lma));
1289 do_cleanups (verify_cleanups);
1290 }
1291 args->data_count += len;
1292 lma += len;
1293 buffer += len;
1294 args->write_count += 1;
1295 sent += len;
1296 if (quit_flag
1297 || (ui_load_progress_hook != NULL
1298 && ui_load_progress_hook (sect_name, sent)))
1299 error ("Canceled the download");
1300
1301 if (show_load_progress != NULL)
1302 show_load_progress (sect_name, sent, size,
1303 args->data_count, args->total_size);
1304 }
1305 while (sent < size);
1306
1307 if (err != 0)
1308 error ("Memory access error while loading section %s.", sect_name);
1309
1310 do_cleanups (old_chain);
1311 }
1312 }
1313}
1314
1315void
1316generic_load (char *args, int from_tty)
1317{
1318 asection *s;
1319 bfd *loadfile_bfd;
1320 time_t start_time, end_time; /* Start and end times of download */
1321 char *filename;
1322 struct cleanup *old_cleanups;
1323 char *offptr;
1324 struct load_section_data cbdata;
1325 CORE_ADDR entry;
1326
1327 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1328 cbdata.write_count = 0; /* Number of writes needed. */
1329 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1330 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1331
1332 /* Parse the input argument - the user can specify a load offset as
1333 a second argument. */
1334 filename = xmalloc (strlen (args) + 1);
1335 old_cleanups = make_cleanup (xfree, filename);
1336 strcpy (filename, args);
1337 offptr = strchr (filename, ' ');
1338 if (offptr != NULL)
1339 {
1340 char *endptr;
1341
1342 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1343 if (offptr == endptr)
1344 error ("Invalid download offset:%s\n", offptr);
1345 *offptr = '\0';
1346 }
1347 else
1348 cbdata.load_offset = 0;
1349
1350 /* Open the file for loading. */
1351 loadfile_bfd = bfd_openr (filename, gnutarget);
1352 if (loadfile_bfd == NULL)
1353 {
1354 perror_with_name (filename);
1355 return;
1356 }
1357
1358 /* FIXME: should be checking for errors from bfd_close (for one thing,
1359 on error it does not free all the storage associated with the
1360 bfd). */
1361 make_cleanup_bfd_close (loadfile_bfd);
1362
1363 if (!bfd_check_format (loadfile_bfd, bfd_object))
1364 {
1365 error ("\"%s\" is not an object file: %s", filename,
1366 bfd_errmsg (bfd_get_error ()));
1367 }
1368
1369 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1370 (void *) &cbdata.total_size);
1371
1372 start_time = time (NULL);
1373
1374 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1375
1376 end_time = time (NULL);
1377
1378 entry = bfd_get_start_address (loadfile_bfd);
1379 ui_out_text (uiout, "Start address ");
1380 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1381 ui_out_text (uiout, ", load size ");
1382 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1383 ui_out_text (uiout, "\n");
1384 /* We were doing this in remote-mips.c, I suspect it is right
1385 for other targets too. */
1386 write_pc (entry);
1387
1388 /* FIXME: are we supposed to call symbol_file_add or not? According to
1389 a comment from remote-mips.c (where a call to symbol_file_add was
1390 commented out), making the call confuses GDB if more than one file is
1391 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1392 does. */
1393
1394 print_transfer_performance (gdb_stdout, cbdata.data_count,
1395 cbdata.write_count, end_time - start_time);
1396
1397 do_cleanups (old_cleanups);
1398}
1399
1400/* Report how fast the transfer went. */
1401
1402/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1403 replaced by print_transfer_performance (with a very different
1404 function signature). */
1405
1406void
1407report_transfer_performance (unsigned long data_count, time_t start_time,
1408 time_t end_time)
1409{
1410 print_transfer_performance (gdb_stdout, data_count,
1411 end_time - start_time, 0);
1412}
1413
1414void
1415print_transfer_performance (struct ui_file *stream,
1416 unsigned long data_count,
1417 unsigned long write_count,
1418 unsigned long time_count)
1419{
1420 ui_out_text (uiout, "Transfer rate: ");
1421 if (time_count > 0)
1422 {
1423 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1424 (data_count * 8) / time_count);
1425 ui_out_text (uiout, " bits/sec");
1426 }
1427 else
1428 {
1429 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1430 ui_out_text (uiout, " bits in <1 sec");
1431 }
1432 if (write_count > 0)
1433 {
1434 ui_out_text (uiout, ", ");
1435 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1436 ui_out_text (uiout, " bytes/write");
1437 }
1438 ui_out_text (uiout, ".\n");
1439}
1440
1441/* This function allows the addition of incrementally linked object files.
1442 It does not modify any state in the target, only in the debugger. */
1443/* Note: ezannoni 2000-04-13 This function/command used to have a
1444 special case syntax for the rombug target (Rombug is the boot
1445 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1446 rombug case, the user doesn't need to supply a text address,
1447 instead a call to target_link() (in target.c) would supply the
1448 value to use. We are now discontinuing this type of ad hoc syntax. */
1449
1450/* ARGSUSED */
1451static void
1452add_symbol_file_command (char *args, int from_tty)
1453{
1454 char *filename = NULL;
1455 int flags = OBJF_USERLOADED;
1456 char *arg;
1457 int expecting_option = 0;
1458 int section_index = 0;
1459 int argcnt = 0;
1460 int sec_num = 0;
1461 int i;
1462 int expecting_sec_name = 0;
1463 int expecting_sec_addr = 0;
1464
1465 struct
1466 {
1467 char *name;
1468 char *value;
1469 } sect_opts[SECT_OFF_MAX];
1470
1471 struct section_addr_info section_addrs;
1472 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1473
1474 dont_repeat ();
1475
1476 if (args == NULL)
1477 error ("add-symbol-file takes a file name and an address");
1478
1479 /* Make a copy of the string that we can safely write into. */
1480 args = xstrdup (args);
1481
1482 /* Ensure section_addrs is initialized */
1483 memset (&section_addrs, 0, sizeof (section_addrs));
1484
1485 while (*args != '\000')
1486 {
1487 /* Any leading spaces? */
1488 while (isspace (*args))
1489 args++;
1490
1491 /* Point arg to the beginning of the argument. */
1492 arg = args;
1493
1494 /* Move args pointer over the argument. */
1495 while ((*args != '\000') && !isspace (*args))
1496 args++;
1497
1498 /* If there are more arguments, terminate arg and
1499 proceed past it. */
1500 if (*args != '\000')
1501 *args++ = '\000';
1502
1503 /* Now process the argument. */
1504 if (argcnt == 0)
1505 {
1506 /* The first argument is the file name. */
1507 filename = tilde_expand (arg);
1508 make_cleanup (xfree, filename);
1509 }
1510 else
1511 if (argcnt == 1)
1512 {
1513 /* The second argument is always the text address at which
1514 to load the program. */
1515 sect_opts[section_index].name = ".text";
1516 sect_opts[section_index].value = arg;
1517 section_index++;
1518 }
1519 else
1520 {
1521 /* It's an option (starting with '-') or it's an argument
1522 to an option */
1523
1524 if (*arg == '-')
1525 {
1526 if (strcmp (arg, "-mapped") == 0)
1527 flags |= OBJF_MAPPED;
1528 else
1529 if (strcmp (arg, "-readnow") == 0)
1530 flags |= OBJF_READNOW;
1531 else
1532 if (strcmp (arg, "-s") == 0)
1533 {
1534 if (section_index >= SECT_OFF_MAX)
1535 error ("Too many sections specified.");
1536 expecting_sec_name = 1;
1537 expecting_sec_addr = 1;
1538 }
1539 }
1540 else
1541 {
1542 if (expecting_sec_name)
1543 {
1544 sect_opts[section_index].name = arg;
1545 expecting_sec_name = 0;
1546 }
1547 else
1548 if (expecting_sec_addr)
1549 {
1550 sect_opts[section_index].value = arg;
1551 expecting_sec_addr = 0;
1552 section_index++;
1553 }
1554 else
1555 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1556 }
1557 }
1558 argcnt++;
1559 }
1560
1561 /* Print the prompt for the query below. And save the arguments into
1562 a sect_addr_info structure to be passed around to other
1563 functions. We have to split this up into separate print
1564 statements because local_hex_string returns a local static
1565 string. */
1566
1567 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1568 for (i = 0; i < section_index; i++)
1569 {
1570 CORE_ADDR addr;
1571 char *val = sect_opts[i].value;
1572 char *sec = sect_opts[i].name;
1573
1574 val = sect_opts[i].value;
1575 if (val[0] == '0' && val[1] == 'x')
1576 addr = strtoul (val+2, NULL, 16);
1577 else
1578 addr = strtoul (val, NULL, 10);
1579
1580 /* Here we store the section offsets in the order they were
1581 entered on the command line. */
1582 section_addrs.other[sec_num].name = sec;
1583 section_addrs.other[sec_num].addr = addr;
1584 printf_filtered ("\t%s_addr = %s\n",
1585 sec,
1586 local_hex_string ((unsigned long)addr));
1587 sec_num++;
1588
1589 /* The object's sections are initialized when a
1590 call is made to build_objfile_section_table (objfile).
1591 This happens in reread_symbols.
1592 At this point, we don't know what file type this is,
1593 so we can't determine what section names are valid. */
1594 }
1595
1596 if (from_tty && (!query ("%s", "")))
1597 error ("Not confirmed.");
1598
1599 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1600
1601 /* Getting new symbols may change our opinion about what is
1602 frameless. */
1603 reinit_frame_cache ();
1604 do_cleanups (my_cleanups);
1605}
1606\f
1607static void
1608add_shared_symbol_files_command (char *args, int from_tty)
1609{
1610#ifdef ADD_SHARED_SYMBOL_FILES
1611 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1612#else
1613 error ("This command is not available in this configuration of GDB.");
1614#endif
1615}
1616\f
1617/* Re-read symbols if a symbol-file has changed. */
1618void
1619reread_symbols (void)
1620{
1621 struct objfile *objfile;
1622 long new_modtime;
1623 int reread_one = 0;
1624 struct stat new_statbuf;
1625 int res;
1626
1627 /* With the addition of shared libraries, this should be modified,
1628 the load time should be saved in the partial symbol tables, since
1629 different tables may come from different source files. FIXME.
1630 This routine should then walk down each partial symbol table
1631 and see if the symbol table that it originates from has been changed */
1632
1633 for (objfile = object_files; objfile; objfile = objfile->next)
1634 {
1635 if (objfile->obfd)
1636 {
1637#ifdef IBM6000_TARGET
1638 /* If this object is from a shared library, then you should
1639 stat on the library name, not member name. */
1640
1641 if (objfile->obfd->my_archive)
1642 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1643 else
1644#endif
1645 res = stat (objfile->name, &new_statbuf);
1646 if (res != 0)
1647 {
1648 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1649 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1650 objfile->name);
1651 continue;
1652 }
1653 new_modtime = new_statbuf.st_mtime;
1654 if (new_modtime != objfile->mtime)
1655 {
1656 struct cleanup *old_cleanups;
1657 struct section_offsets *offsets;
1658 int num_offsets;
1659 char *obfd_filename;
1660
1661 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1662 objfile->name);
1663
1664 /* There are various functions like symbol_file_add,
1665 symfile_bfd_open, syms_from_objfile, etc., which might
1666 appear to do what we want. But they have various other
1667 effects which we *don't* want. So we just do stuff
1668 ourselves. We don't worry about mapped files (for one thing,
1669 any mapped file will be out of date). */
1670
1671 /* If we get an error, blow away this objfile (not sure if
1672 that is the correct response for things like shared
1673 libraries). */
1674 old_cleanups = make_cleanup_free_objfile (objfile);
1675 /* We need to do this whenever any symbols go away. */
1676 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1677
1678 /* Clean up any state BFD has sitting around. We don't need
1679 to close the descriptor but BFD lacks a way of closing the
1680 BFD without closing the descriptor. */
1681 obfd_filename = bfd_get_filename (objfile->obfd);
1682 if (!bfd_close (objfile->obfd))
1683 error ("Can't close BFD for %s: %s", objfile->name,
1684 bfd_errmsg (bfd_get_error ()));
1685 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1686 if (objfile->obfd == NULL)
1687 error ("Can't open %s to read symbols.", objfile->name);
1688 /* bfd_openr sets cacheable to true, which is what we want. */
1689 if (!bfd_check_format (objfile->obfd, bfd_object))
1690 error ("Can't read symbols from %s: %s.", objfile->name,
1691 bfd_errmsg (bfd_get_error ()));
1692
1693 /* Save the offsets, we will nuke them with the rest of the
1694 psymbol_obstack. */
1695 num_offsets = objfile->num_sections;
1696 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1697 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1698
1699 /* Nuke all the state that we will re-read. Much of the following
1700 code which sets things to NULL really is necessary to tell
1701 other parts of GDB that there is nothing currently there. */
1702
1703 /* FIXME: Do we have to free a whole linked list, or is this
1704 enough? */
1705 if (objfile->global_psymbols.list)
1706 xmfree (objfile->md, objfile->global_psymbols.list);
1707 memset (&objfile->global_psymbols, 0,
1708 sizeof (objfile->global_psymbols));
1709 if (objfile->static_psymbols.list)
1710 xmfree (objfile->md, objfile->static_psymbols.list);
1711 memset (&objfile->static_psymbols, 0,
1712 sizeof (objfile->static_psymbols));
1713
1714 /* Free the obstacks for non-reusable objfiles */
1715 free_bcache (&objfile->psymbol_cache);
1716 obstack_free (&objfile->psymbol_obstack, 0);
1717 obstack_free (&objfile->symbol_obstack, 0);
1718 obstack_free (&objfile->type_obstack, 0);
1719 objfile->sections = NULL;
1720 objfile->symtabs = NULL;
1721 objfile->psymtabs = NULL;
1722 objfile->free_psymtabs = NULL;
1723 objfile->msymbols = NULL;
1724 objfile->minimal_symbol_count = 0;
1725 memset (&objfile->msymbol_hash, 0,
1726 sizeof (objfile->msymbol_hash));
1727 memset (&objfile->msymbol_demangled_hash, 0,
1728 sizeof (objfile->msymbol_demangled_hash));
1729 objfile->fundamental_types = NULL;
1730 if (objfile->sf != NULL)
1731 {
1732 (*objfile->sf->sym_finish) (objfile);
1733 }
1734
1735 /* We never make this a mapped file. */
1736 objfile->md = NULL;
1737 /* obstack_specify_allocation also initializes the obstack so
1738 it is empty. */
1739 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1740 xmalloc, xfree);
1741 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1742 xmalloc, xfree);
1743 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1744 xmalloc, xfree);
1745 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1746 xmalloc, xfree);
1747 if (build_objfile_section_table (objfile))
1748 {
1749 error ("Can't find the file sections in `%s': %s",
1750 objfile->name, bfd_errmsg (bfd_get_error ()));
1751 }
1752
1753 /* We use the same section offsets as from last time. I'm not
1754 sure whether that is always correct for shared libraries. */
1755 objfile->section_offsets = (struct section_offsets *)
1756 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1757 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1758 objfile->num_sections = num_offsets;
1759
1760 /* What the hell is sym_new_init for, anyway? The concept of
1761 distinguishing between the main file and additional files
1762 in this way seems rather dubious. */
1763 if (objfile == symfile_objfile)
1764 {
1765 (*objfile->sf->sym_new_init) (objfile);
1766#ifdef HPUXHPPA
1767 RESET_HP_UX_GLOBALS ();
1768#endif
1769 }
1770
1771 (*objfile->sf->sym_init) (objfile);
1772 clear_complaints (1, 1);
1773 /* The "mainline" parameter is a hideous hack; I think leaving it
1774 zero is OK since dbxread.c also does what it needs to do if
1775 objfile->global_psymbols.size is 0. */
1776 (*objfile->sf->sym_read) (objfile, 0);
1777 if (!have_partial_symbols () && !have_full_symbols ())
1778 {
1779 wrap_here ("");
1780 printf_filtered ("(no debugging symbols found)\n");
1781 wrap_here ("");
1782 }
1783 objfile->flags |= OBJF_SYMS;
1784
1785 /* We're done reading the symbol file; finish off complaints. */
1786 clear_complaints (0, 1);
1787
1788 /* Getting new symbols may change our opinion about what is
1789 frameless. */
1790
1791 reinit_frame_cache ();
1792
1793 /* Discard cleanups as symbol reading was successful. */
1794 discard_cleanups (old_cleanups);
1795
1796 /* If the mtime has changed between the time we set new_modtime
1797 and now, we *want* this to be out of date, so don't call stat
1798 again now. */
1799 objfile->mtime = new_modtime;
1800 reread_one = 1;
1801
1802 /* Call this after reading in a new symbol table to give target
1803 dependent code a crack at the new symbols. For instance, this
1804 could be used to update the values of target-specific symbols GDB
1805 needs to keep track of (such as _sigtramp, or whatever). */
1806
1807 TARGET_SYMFILE_POSTREAD (objfile);
1808 }
1809 }
1810 }
1811
1812 if (reread_one)
1813 clear_symtab_users ();
1814}
1815\f
1816
1817
1818typedef struct
1819{
1820 char *ext;
1821 enum language lang;
1822}
1823filename_language;
1824
1825static filename_language *filename_language_table;
1826static int fl_table_size, fl_table_next;
1827
1828static void
1829add_filename_language (char *ext, enum language lang)
1830{
1831 if (fl_table_next >= fl_table_size)
1832 {
1833 fl_table_size += 10;
1834 filename_language_table =
1835 xrealloc (filename_language_table,
1836 fl_table_size * sizeof (*filename_language_table));
1837 }
1838
1839 filename_language_table[fl_table_next].ext = xstrdup (ext);
1840 filename_language_table[fl_table_next].lang = lang;
1841 fl_table_next++;
1842}
1843
1844static char *ext_args;
1845
1846static void
1847set_ext_lang_command (char *args, int from_tty)
1848{
1849 int i;
1850 char *cp = ext_args;
1851 enum language lang;
1852
1853 /* First arg is filename extension, starting with '.' */
1854 if (*cp != '.')
1855 error ("'%s': Filename extension must begin with '.'", ext_args);
1856
1857 /* Find end of first arg. */
1858 while (*cp && !isspace (*cp))
1859 cp++;
1860
1861 if (*cp == '\0')
1862 error ("'%s': two arguments required -- filename extension and language",
1863 ext_args);
1864
1865 /* Null-terminate first arg */
1866 *cp++ = '\0';
1867
1868 /* Find beginning of second arg, which should be a source language. */
1869 while (*cp && isspace (*cp))
1870 cp++;
1871
1872 if (*cp == '\0')
1873 error ("'%s': two arguments required -- filename extension and language",
1874 ext_args);
1875
1876 /* Lookup the language from among those we know. */
1877 lang = language_enum (cp);
1878
1879 /* Now lookup the filename extension: do we already know it? */
1880 for (i = 0; i < fl_table_next; i++)
1881 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1882 break;
1883
1884 if (i >= fl_table_next)
1885 {
1886 /* new file extension */
1887 add_filename_language (ext_args, lang);
1888 }
1889 else
1890 {
1891 /* redefining a previously known filename extension */
1892
1893 /* if (from_tty) */
1894 /* query ("Really make files of type %s '%s'?", */
1895 /* ext_args, language_str (lang)); */
1896
1897 xfree (filename_language_table[i].ext);
1898 filename_language_table[i].ext = xstrdup (ext_args);
1899 filename_language_table[i].lang = lang;
1900 }
1901}
1902
1903static void
1904info_ext_lang_command (char *args, int from_tty)
1905{
1906 int i;
1907
1908 printf_filtered ("Filename extensions and the languages they represent:");
1909 printf_filtered ("\n\n");
1910 for (i = 0; i < fl_table_next; i++)
1911 printf_filtered ("\t%s\t- %s\n",
1912 filename_language_table[i].ext,
1913 language_str (filename_language_table[i].lang));
1914}
1915
1916static void
1917init_filename_language_table (void)
1918{
1919 if (fl_table_size == 0) /* protect against repetition */
1920 {
1921 fl_table_size = 20;
1922 fl_table_next = 0;
1923 filename_language_table =
1924 xmalloc (fl_table_size * sizeof (*filename_language_table));
1925 add_filename_language (".c", language_c);
1926 add_filename_language (".C", language_cplus);
1927 add_filename_language (".cc", language_cplus);
1928 add_filename_language (".cp", language_cplus);
1929 add_filename_language (".cpp", language_cplus);
1930 add_filename_language (".cxx", language_cplus);
1931 add_filename_language (".c++", language_cplus);
1932 add_filename_language (".java", language_java);
1933 add_filename_language (".class", language_java);
1934 add_filename_language (".ch", language_chill);
1935 add_filename_language (".c186", language_chill);
1936 add_filename_language (".c286", language_chill);
1937 add_filename_language (".f", language_fortran);
1938 add_filename_language (".F", language_fortran);
1939 add_filename_language (".s", language_asm);
1940 add_filename_language (".S", language_asm);
1941 add_filename_language (".pas", language_pascal);
1942 add_filename_language (".p", language_pascal);
1943 add_filename_language (".pp", language_pascal);
1944 }
1945}
1946
1947enum language
1948deduce_language_from_filename (char *filename)
1949{
1950 int i;
1951 char *cp;
1952
1953 if (filename != NULL)
1954 if ((cp = strrchr (filename, '.')) != NULL)
1955 for (i = 0; i < fl_table_next; i++)
1956 if (strcmp (cp, filename_language_table[i].ext) == 0)
1957 return filename_language_table[i].lang;
1958
1959 return language_unknown;
1960}
1961\f
1962/* allocate_symtab:
1963
1964 Allocate and partly initialize a new symbol table. Return a pointer
1965 to it. error() if no space.
1966
1967 Caller must set these fields:
1968 LINETABLE(symtab)
1969 symtab->blockvector
1970 symtab->dirname
1971 symtab->free_code
1972 symtab->free_ptr
1973 possibly free_named_symtabs (symtab->filename);
1974 */
1975
1976struct symtab *
1977allocate_symtab (char *filename, struct objfile *objfile)
1978{
1979 register struct symtab *symtab;
1980
1981 symtab = (struct symtab *)
1982 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1983 memset (symtab, 0, sizeof (*symtab));
1984 symtab->filename = obsavestring (filename, strlen (filename),
1985 &objfile->symbol_obstack);
1986 symtab->fullname = NULL;
1987 symtab->language = deduce_language_from_filename (filename);
1988 symtab->debugformat = obsavestring ("unknown", 7,
1989 &objfile->symbol_obstack);
1990
1991 /* Hook it to the objfile it comes from */
1992
1993 symtab->objfile = objfile;
1994 symtab->next = objfile->symtabs;
1995 objfile->symtabs = symtab;
1996
1997 /* FIXME: This should go away. It is only defined for the Z8000,
1998 and the Z8000 definition of this macro doesn't have anything to
1999 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2000 here for convenience. */
2001#ifdef INIT_EXTRA_SYMTAB_INFO
2002 INIT_EXTRA_SYMTAB_INFO (symtab);
2003#endif
2004
2005 return (symtab);
2006}
2007
2008struct partial_symtab *
2009allocate_psymtab (char *filename, struct objfile *objfile)
2010{
2011 struct partial_symtab *psymtab;
2012
2013 if (objfile->free_psymtabs)
2014 {
2015 psymtab = objfile->free_psymtabs;
2016 objfile->free_psymtabs = psymtab->next;
2017 }
2018 else
2019 psymtab = (struct partial_symtab *)
2020 obstack_alloc (&objfile->psymbol_obstack,
2021 sizeof (struct partial_symtab));
2022
2023 memset (psymtab, 0, sizeof (struct partial_symtab));
2024 psymtab->filename = obsavestring (filename, strlen (filename),
2025 &objfile->psymbol_obstack);
2026 psymtab->symtab = NULL;
2027
2028 /* Prepend it to the psymtab list for the objfile it belongs to.
2029 Psymtabs are searched in most recent inserted -> least recent
2030 inserted order. */
2031
2032 psymtab->objfile = objfile;
2033 psymtab->next = objfile->psymtabs;
2034 objfile->psymtabs = psymtab;
2035#if 0
2036 {
2037 struct partial_symtab **prev_pst;
2038 psymtab->objfile = objfile;
2039 psymtab->next = NULL;
2040 prev_pst = &(objfile->psymtabs);
2041 while ((*prev_pst) != NULL)
2042 prev_pst = &((*prev_pst)->next);
2043 (*prev_pst) = psymtab;
2044 }
2045#endif
2046
2047 return (psymtab);
2048}
2049
2050void
2051discard_psymtab (struct partial_symtab *pst)
2052{
2053 struct partial_symtab **prev_pst;
2054
2055 /* From dbxread.c:
2056 Empty psymtabs happen as a result of header files which don't
2057 have any symbols in them. There can be a lot of them. But this
2058 check is wrong, in that a psymtab with N_SLINE entries but
2059 nothing else is not empty, but we don't realize that. Fixing
2060 that without slowing things down might be tricky. */
2061
2062 /* First, snip it out of the psymtab chain */
2063
2064 prev_pst = &(pst->objfile->psymtabs);
2065 while ((*prev_pst) != pst)
2066 prev_pst = &((*prev_pst)->next);
2067 (*prev_pst) = pst->next;
2068
2069 /* Next, put it on a free list for recycling */
2070
2071 pst->next = pst->objfile->free_psymtabs;
2072 pst->objfile->free_psymtabs = pst;
2073}
2074\f
2075
2076/* Reset all data structures in gdb which may contain references to symbol
2077 table data. */
2078
2079void
2080clear_symtab_users (void)
2081{
2082 /* Someday, we should do better than this, by only blowing away
2083 the things that really need to be blown. */
2084 clear_value_history ();
2085 clear_displays ();
2086 clear_internalvars ();
2087 breakpoint_re_set ();
2088 set_default_breakpoint (0, 0, 0, 0);
2089 current_source_symtab = 0;
2090 current_source_line = 0;
2091 clear_pc_function_cache ();
2092 if (target_new_objfile_hook)
2093 target_new_objfile_hook (NULL);
2094}
2095
2096static void
2097clear_symtab_users_cleanup (void *ignore)
2098{
2099 clear_symtab_users ();
2100}
2101
2102/* clear_symtab_users_once:
2103
2104 This function is run after symbol reading, or from a cleanup.
2105 If an old symbol table was obsoleted, the old symbol table
2106 has been blown away, but the other GDB data structures that may
2107 reference it have not yet been cleared or re-directed. (The old
2108 symtab was zapped, and the cleanup queued, in free_named_symtab()
2109 below.)
2110
2111 This function can be queued N times as a cleanup, or called
2112 directly; it will do all the work the first time, and then will be a
2113 no-op until the next time it is queued. This works by bumping a
2114 counter at queueing time. Much later when the cleanup is run, or at
2115 the end of symbol processing (in case the cleanup is discarded), if
2116 the queued count is greater than the "done-count", we do the work
2117 and set the done-count to the queued count. If the queued count is
2118 less than or equal to the done-count, we just ignore the call. This
2119 is needed because reading a single .o file will often replace many
2120 symtabs (one per .h file, for example), and we don't want to reset
2121 the breakpoints N times in the user's face.
2122
2123 The reason we both queue a cleanup, and call it directly after symbol
2124 reading, is because the cleanup protects us in case of errors, but is
2125 discarded if symbol reading is successful. */
2126
2127#if 0
2128/* FIXME: As free_named_symtabs is currently a big noop this function
2129 is no longer needed. */
2130static void clear_symtab_users_once (void);
2131
2132static int clear_symtab_users_queued;
2133static int clear_symtab_users_done;
2134
2135static void
2136clear_symtab_users_once (void)
2137{
2138 /* Enforce once-per-`do_cleanups'-semantics */
2139 if (clear_symtab_users_queued <= clear_symtab_users_done)
2140 return;
2141 clear_symtab_users_done = clear_symtab_users_queued;
2142
2143 clear_symtab_users ();
2144}
2145#endif
2146
2147/* Delete the specified psymtab, and any others that reference it. */
2148
2149static void
2150cashier_psymtab (struct partial_symtab *pst)
2151{
2152 struct partial_symtab *ps, *pprev = NULL;
2153 int i;
2154
2155 /* Find its previous psymtab in the chain */
2156 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2157 {
2158 if (ps == pst)
2159 break;
2160 pprev = ps;
2161 }
2162
2163 if (ps)
2164 {
2165 /* Unhook it from the chain. */
2166 if (ps == pst->objfile->psymtabs)
2167 pst->objfile->psymtabs = ps->next;
2168 else
2169 pprev->next = ps->next;
2170
2171 /* FIXME, we can't conveniently deallocate the entries in the
2172 partial_symbol lists (global_psymbols/static_psymbols) that
2173 this psymtab points to. These just take up space until all
2174 the psymtabs are reclaimed. Ditto the dependencies list and
2175 filename, which are all in the psymbol_obstack. */
2176
2177 /* We need to cashier any psymtab that has this one as a dependency... */
2178 again:
2179 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2180 {
2181 for (i = 0; i < ps->number_of_dependencies; i++)
2182 {
2183 if (ps->dependencies[i] == pst)
2184 {
2185 cashier_psymtab (ps);
2186 goto again; /* Must restart, chain has been munged. */
2187 }
2188 }
2189 }
2190 }
2191}
2192
2193/* If a symtab or psymtab for filename NAME is found, free it along
2194 with any dependent breakpoints, displays, etc.
2195 Used when loading new versions of object modules with the "add-file"
2196 command. This is only called on the top-level symtab or psymtab's name;
2197 it is not called for subsidiary files such as .h files.
2198
2199 Return value is 1 if we blew away the environment, 0 if not.
2200 FIXME. The return value appears to never be used.
2201
2202 FIXME. I think this is not the best way to do this. We should
2203 work on being gentler to the environment while still cleaning up
2204 all stray pointers into the freed symtab. */
2205
2206int
2207free_named_symtabs (char *name)
2208{
2209#if 0
2210 /* FIXME: With the new method of each objfile having it's own
2211 psymtab list, this function needs serious rethinking. In particular,
2212 why was it ever necessary to toss psymtabs with specific compilation
2213 unit filenames, as opposed to all psymtabs from a particular symbol
2214 file? -- fnf
2215 Well, the answer is that some systems permit reloading of particular
2216 compilation units. We want to blow away any old info about these
2217 compilation units, regardless of which objfiles they arrived in. --gnu. */
2218
2219 register struct symtab *s;
2220 register struct symtab *prev;
2221 register struct partial_symtab *ps;
2222 struct blockvector *bv;
2223 int blewit = 0;
2224
2225 /* We only wack things if the symbol-reload switch is set. */
2226 if (!symbol_reloading)
2227 return 0;
2228
2229 /* Some symbol formats have trouble providing file names... */
2230 if (name == 0 || *name == '\0')
2231 return 0;
2232
2233 /* Look for a psymtab with the specified name. */
2234
2235again2:
2236 for (ps = partial_symtab_list; ps; ps = ps->next)
2237 {
2238 if (STREQ (name, ps->filename))
2239 {
2240 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2241 goto again2; /* Must restart, chain has been munged */
2242 }
2243 }
2244
2245 /* Look for a symtab with the specified name. */
2246
2247 for (s = symtab_list; s; s = s->next)
2248 {
2249 if (STREQ (name, s->filename))
2250 break;
2251 prev = s;
2252 }
2253
2254 if (s)
2255 {
2256 if (s == symtab_list)
2257 symtab_list = s->next;
2258 else
2259 prev->next = s->next;
2260
2261 /* For now, queue a delete for all breakpoints, displays, etc., whether
2262 or not they depend on the symtab being freed. This should be
2263 changed so that only those data structures affected are deleted. */
2264
2265 /* But don't delete anything if the symtab is empty.
2266 This test is necessary due to a bug in "dbxread.c" that
2267 causes empty symtabs to be created for N_SO symbols that
2268 contain the pathname of the object file. (This problem
2269 has been fixed in GDB 3.9x). */
2270
2271 bv = BLOCKVECTOR (s);
2272 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2273 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2274 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2275 {
2276 complain (&oldsyms_complaint, name);
2277
2278 clear_symtab_users_queued++;
2279 make_cleanup (clear_symtab_users_once, 0);
2280 blewit = 1;
2281 }
2282 else
2283 {
2284 complain (&empty_symtab_complaint, name);
2285 }
2286
2287 free_symtab (s);
2288 }
2289 else
2290 {
2291 /* It is still possible that some breakpoints will be affected
2292 even though no symtab was found, since the file might have
2293 been compiled without debugging, and hence not be associated
2294 with a symtab. In order to handle this correctly, we would need
2295 to keep a list of text address ranges for undebuggable files.
2296 For now, we do nothing, since this is a fairly obscure case. */
2297 ;
2298 }
2299
2300 /* FIXME, what about the minimal symbol table? */
2301 return blewit;
2302#else
2303 return (0);
2304#endif
2305}
2306\f
2307/* Allocate and partially fill a partial symtab. It will be
2308 completely filled at the end of the symbol list.
2309
2310 FILENAME is the name of the symbol-file we are reading from. */
2311
2312struct partial_symtab *
2313start_psymtab_common (struct objfile *objfile,
2314 struct section_offsets *section_offsets, char *filename,
2315 CORE_ADDR textlow, struct partial_symbol **global_syms,
2316 struct partial_symbol **static_syms)
2317{
2318 struct partial_symtab *psymtab;
2319
2320 psymtab = allocate_psymtab (filename, objfile);
2321 psymtab->section_offsets = section_offsets;
2322 psymtab->textlow = textlow;
2323 psymtab->texthigh = psymtab->textlow; /* default */
2324 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2325 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2326 return (psymtab);
2327}
2328\f
2329/* Add a symbol with a long value to a psymtab.
2330 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2331
2332void
2333add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2334 enum address_class class,
2335 struct psymbol_allocation_list *list, long val, /* Value as a long */
2336 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2337 enum language language, struct objfile *objfile)
2338{
2339 register struct partial_symbol *psym;
2340 char *buf = alloca (namelength + 1);
2341 /* psymbol is static so that there will be no uninitialized gaps in the
2342 structure which might contain random data, causing cache misses in
2343 bcache. */
2344 static struct partial_symbol psymbol;
2345
2346 /* Create local copy of the partial symbol */
2347 memcpy (buf, name, namelength);
2348 buf[namelength] = '\0';
2349 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2350 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2351 if (val != 0)
2352 {
2353 SYMBOL_VALUE (&psymbol) = val;
2354 }
2355 else
2356 {
2357 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2358 }
2359 SYMBOL_SECTION (&psymbol) = 0;
2360 SYMBOL_LANGUAGE (&psymbol) = language;
2361 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2362 PSYMBOL_CLASS (&psymbol) = class;
2363 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2364
2365 /* Stash the partial symbol away in the cache */
2366 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2367
2368 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2369 if (list->next >= list->list + list->size)
2370 {
2371 extend_psymbol_list (list, objfile);
2372 }
2373 *list->next++ = psym;
2374 OBJSTAT (objfile, n_psyms++);
2375}
2376
2377/* Add a symbol with a long value to a psymtab. This differs from
2378 * add_psymbol_to_list above in taking both a mangled and a demangled
2379 * name. */
2380
2381void
2382add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2383 int dem_namelength, namespace_enum namespace,
2384 enum address_class class,
2385 struct psymbol_allocation_list *list, long val, /* Value as a long */
2386 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2387 enum language language,
2388 struct objfile *objfile)
2389{
2390 register struct partial_symbol *psym;
2391 char *buf = alloca (namelength + 1);
2392 /* psymbol is static so that there will be no uninitialized gaps in the
2393 structure which might contain random data, causing cache misses in
2394 bcache. */
2395 static struct partial_symbol psymbol;
2396
2397 /* Create local copy of the partial symbol */
2398
2399 memcpy (buf, name, namelength);
2400 buf[namelength] = '\0';
2401 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2402
2403 buf = alloca (dem_namelength + 1);
2404 memcpy (buf, dem_name, dem_namelength);
2405 buf[dem_namelength] = '\0';
2406
2407 switch (language)
2408 {
2409 case language_c:
2410 case language_cplus:
2411 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2412 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2413 break;
2414 case language_chill:
2415 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2416 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2417
2418 /* FIXME What should be done for the default case? Ignoring for now. */
2419 }
2420
2421 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2422 if (val != 0)
2423 {
2424 SYMBOL_VALUE (&psymbol) = val;
2425 }
2426 else
2427 {
2428 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2429 }
2430 SYMBOL_SECTION (&psymbol) = 0;
2431 SYMBOL_LANGUAGE (&psymbol) = language;
2432 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2433 PSYMBOL_CLASS (&psymbol) = class;
2434 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2435
2436 /* Stash the partial symbol away in the cache */
2437 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2438
2439 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2440 if (list->next >= list->list + list->size)
2441 {
2442 extend_psymbol_list (list, objfile);
2443 }
2444 *list->next++ = psym;
2445 OBJSTAT (objfile, n_psyms++);
2446}
2447
2448/* Initialize storage for partial symbols. */
2449
2450void
2451init_psymbol_list (struct objfile *objfile, int total_symbols)
2452{
2453 /* Free any previously allocated psymbol lists. */
2454
2455 if (objfile->global_psymbols.list)
2456 {
2457 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2458 }
2459 if (objfile->static_psymbols.list)
2460 {
2461 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2462 }
2463
2464 /* Current best guess is that approximately a twentieth
2465 of the total symbols (in a debugging file) are global or static
2466 oriented symbols */
2467
2468 objfile->global_psymbols.size = total_symbols / 10;
2469 objfile->static_psymbols.size = total_symbols / 10;
2470
2471 if (objfile->global_psymbols.size > 0)
2472 {
2473 objfile->global_psymbols.next =
2474 objfile->global_psymbols.list = (struct partial_symbol **)
2475 xmmalloc (objfile->md, (objfile->global_psymbols.size
2476 * sizeof (struct partial_symbol *)));
2477 }
2478 if (objfile->static_psymbols.size > 0)
2479 {
2480 objfile->static_psymbols.next =
2481 objfile->static_psymbols.list = (struct partial_symbol **)
2482 xmmalloc (objfile->md, (objfile->static_psymbols.size
2483 * sizeof (struct partial_symbol *)));
2484 }
2485}
2486
2487/* OVERLAYS:
2488 The following code implements an abstraction for debugging overlay sections.
2489
2490 The target model is as follows:
2491 1) The gnu linker will permit multiple sections to be mapped into the
2492 same VMA, each with its own unique LMA (or load address).
2493 2) It is assumed that some runtime mechanism exists for mapping the
2494 sections, one by one, from the load address into the VMA address.
2495 3) This code provides a mechanism for gdb to keep track of which
2496 sections should be considered to be mapped from the VMA to the LMA.
2497 This information is used for symbol lookup, and memory read/write.
2498 For instance, if a section has been mapped then its contents
2499 should be read from the VMA, otherwise from the LMA.
2500
2501 Two levels of debugger support for overlays are available. One is
2502 "manual", in which the debugger relies on the user to tell it which
2503 overlays are currently mapped. This level of support is
2504 implemented entirely in the core debugger, and the information about
2505 whether a section is mapped is kept in the objfile->obj_section table.
2506
2507 The second level of support is "automatic", and is only available if
2508 the target-specific code provides functionality to read the target's
2509 overlay mapping table, and translate its contents for the debugger
2510 (by updating the mapped state information in the obj_section tables).
2511
2512 The interface is as follows:
2513 User commands:
2514 overlay map <name> -- tell gdb to consider this section mapped
2515 overlay unmap <name> -- tell gdb to consider this section unmapped
2516 overlay list -- list the sections that GDB thinks are mapped
2517 overlay read-target -- get the target's state of what's mapped
2518 overlay off/manual/auto -- set overlay debugging state
2519 Functional interface:
2520 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2521 section, return that section.
2522 find_pc_overlay(pc): find any overlay section that contains
2523 the pc, either in its VMA or its LMA
2524 overlay_is_mapped(sect): true if overlay is marked as mapped
2525 section_is_overlay(sect): true if section's VMA != LMA
2526 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2527 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2528 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2529 overlay_mapped_address(...): map an address from section's LMA to VMA
2530 overlay_unmapped_address(...): map an address from section's VMA to LMA
2531 symbol_overlayed_address(...): Return a "current" address for symbol:
2532 either in VMA or LMA depending on whether
2533 the symbol's section is currently mapped
2534 */
2535
2536/* Overlay debugging state: */
2537
2538enum overlay_debugging_state overlay_debugging = ovly_off;
2539int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2540
2541/* Target vector for refreshing overlay mapped state */
2542static void simple_overlay_update (struct obj_section *);
2543void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2544
2545/* Function: section_is_overlay (SECTION)
2546 Returns true if SECTION has VMA not equal to LMA, ie.
2547 SECTION is loaded at an address different from where it will "run". */
2548
2549int
2550section_is_overlay (asection *section)
2551{
2552 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2553
2554 if (overlay_debugging)
2555 if (section && section->lma != 0 &&
2556 section->vma != section->lma)
2557 return 1;
2558
2559 return 0;
2560}
2561
2562/* Function: overlay_invalidate_all (void)
2563 Invalidate the mapped state of all overlay sections (mark it as stale). */
2564
2565static void
2566overlay_invalidate_all (void)
2567{
2568 struct objfile *objfile;
2569 struct obj_section *sect;
2570
2571 ALL_OBJSECTIONS (objfile, sect)
2572 if (section_is_overlay (sect->the_bfd_section))
2573 sect->ovly_mapped = -1;
2574}
2575
2576/* Function: overlay_is_mapped (SECTION)
2577 Returns true if section is an overlay, and is currently mapped.
2578 Private: public access is thru function section_is_mapped.
2579
2580 Access to the ovly_mapped flag is restricted to this function, so
2581 that we can do automatic update. If the global flag
2582 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2583 overlay_invalidate_all. If the mapped state of the particular
2584 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2585
2586static int
2587overlay_is_mapped (struct obj_section *osect)
2588{
2589 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2590 return 0;
2591
2592 switch (overlay_debugging)
2593 {
2594 default:
2595 case ovly_off:
2596 return 0; /* overlay debugging off */
2597 case ovly_auto: /* overlay debugging automatic */
2598 /* Unles there is a target_overlay_update function,
2599 there's really nothing useful to do here (can't really go auto) */
2600 if (target_overlay_update)
2601 {
2602 if (overlay_cache_invalid)
2603 {
2604 overlay_invalidate_all ();
2605 overlay_cache_invalid = 0;
2606 }
2607 if (osect->ovly_mapped == -1)
2608 (*target_overlay_update) (osect);
2609 }
2610 /* fall thru to manual case */
2611 case ovly_on: /* overlay debugging manual */
2612 return osect->ovly_mapped == 1;
2613 }
2614}
2615
2616/* Function: section_is_mapped
2617 Returns true if section is an overlay, and is currently mapped. */
2618
2619int
2620section_is_mapped (asection *section)
2621{
2622 struct objfile *objfile;
2623 struct obj_section *osect;
2624
2625 if (overlay_debugging)
2626 if (section && section_is_overlay (section))
2627 ALL_OBJSECTIONS (objfile, osect)
2628 if (osect->the_bfd_section == section)
2629 return overlay_is_mapped (osect);
2630
2631 return 0;
2632}
2633
2634/* Function: pc_in_unmapped_range
2635 If PC falls into the lma range of SECTION, return true, else false. */
2636
2637CORE_ADDR
2638pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2639{
2640 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2641
2642 int size;
2643
2644 if (overlay_debugging)
2645 if (section && section_is_overlay (section))
2646 {
2647 size = bfd_get_section_size_before_reloc (section);
2648 if (section->lma <= pc && pc < section->lma + size)
2649 return 1;
2650 }
2651 return 0;
2652}
2653
2654/* Function: pc_in_mapped_range
2655 If PC falls into the vma range of SECTION, return true, else false. */
2656
2657CORE_ADDR
2658pc_in_mapped_range (CORE_ADDR pc, asection *section)
2659{
2660 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2661
2662 int size;
2663
2664 if (overlay_debugging)
2665 if (section && section_is_overlay (section))
2666 {
2667 size = bfd_get_section_size_before_reloc (section);
2668 if (section->vma <= pc && pc < section->vma + size)
2669 return 1;
2670 }
2671 return 0;
2672}
2673
2674
2675/* Return true if the mapped ranges of sections A and B overlap, false
2676 otherwise. */
2677int
2678sections_overlap (asection *a, asection *b)
2679{
2680 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2681
2682 CORE_ADDR a_start = a->vma;
2683 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2684 CORE_ADDR b_start = b->vma;
2685 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2686
2687 return (a_start < b_end && b_start < a_end);
2688}
2689
2690/* Function: overlay_unmapped_address (PC, SECTION)
2691 Returns the address corresponding to PC in the unmapped (load) range.
2692 May be the same as PC. */
2693
2694CORE_ADDR
2695overlay_unmapped_address (CORE_ADDR pc, asection *section)
2696{
2697 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2698
2699 if (overlay_debugging)
2700 if (section && section_is_overlay (section) &&
2701 pc_in_mapped_range (pc, section))
2702 return pc + section->lma - section->vma;
2703
2704 return pc;
2705}
2706
2707/* Function: overlay_mapped_address (PC, SECTION)
2708 Returns the address corresponding to PC in the mapped (runtime) range.
2709 May be the same as PC. */
2710
2711CORE_ADDR
2712overlay_mapped_address (CORE_ADDR pc, asection *section)
2713{
2714 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2715
2716 if (overlay_debugging)
2717 if (section && section_is_overlay (section) &&
2718 pc_in_unmapped_range (pc, section))
2719 return pc + section->vma - section->lma;
2720
2721 return pc;
2722}
2723
2724
2725/* Function: symbol_overlayed_address
2726 Return one of two addresses (relative to the VMA or to the LMA),
2727 depending on whether the section is mapped or not. */
2728
2729CORE_ADDR
2730symbol_overlayed_address (CORE_ADDR address, asection *section)
2731{
2732 if (overlay_debugging)
2733 {
2734 /* If the symbol has no section, just return its regular address. */
2735 if (section == 0)
2736 return address;
2737 /* If the symbol's section is not an overlay, just return its address */
2738 if (!section_is_overlay (section))
2739 return address;
2740 /* If the symbol's section is mapped, just return its address */
2741 if (section_is_mapped (section))
2742 return address;
2743 /*
2744 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2745 * then return its LOADED address rather than its vma address!!
2746 */
2747 return overlay_unmapped_address (address, section);
2748 }
2749 return address;
2750}
2751
2752/* Function: find_pc_overlay (PC)
2753 Return the best-match overlay section for PC:
2754 If PC matches a mapped overlay section's VMA, return that section.
2755 Else if PC matches an unmapped section's VMA, return that section.
2756 Else if PC matches an unmapped section's LMA, return that section. */
2757
2758asection *
2759find_pc_overlay (CORE_ADDR pc)
2760{
2761 struct objfile *objfile;
2762 struct obj_section *osect, *best_match = NULL;
2763
2764 if (overlay_debugging)
2765 ALL_OBJSECTIONS (objfile, osect)
2766 if (section_is_overlay (osect->the_bfd_section))
2767 {
2768 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2769 {
2770 if (overlay_is_mapped (osect))
2771 return osect->the_bfd_section;
2772 else
2773 best_match = osect;
2774 }
2775 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2776 best_match = osect;
2777 }
2778 return best_match ? best_match->the_bfd_section : NULL;
2779}
2780
2781/* Function: find_pc_mapped_section (PC)
2782 If PC falls into the VMA address range of an overlay section that is
2783 currently marked as MAPPED, return that section. Else return NULL. */
2784
2785asection *
2786find_pc_mapped_section (CORE_ADDR pc)
2787{
2788 struct objfile *objfile;
2789 struct obj_section *osect;
2790
2791 if (overlay_debugging)
2792 ALL_OBJSECTIONS (objfile, osect)
2793 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2794 overlay_is_mapped (osect))
2795 return osect->the_bfd_section;
2796
2797 return NULL;
2798}
2799
2800/* Function: list_overlays_command
2801 Print a list of mapped sections and their PC ranges */
2802
2803void
2804list_overlays_command (char *args, int from_tty)
2805{
2806 int nmapped = 0;
2807 struct objfile *objfile;
2808 struct obj_section *osect;
2809
2810 if (overlay_debugging)
2811 ALL_OBJSECTIONS (objfile, osect)
2812 if (overlay_is_mapped (osect))
2813 {
2814 const char *name;
2815 bfd_vma lma, vma;
2816 int size;
2817
2818 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2819 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2820 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2821 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2822
2823 printf_filtered ("Section %s, loaded at ", name);
2824 print_address_numeric (lma, 1, gdb_stdout);
2825 puts_filtered (" - ");
2826 print_address_numeric (lma + size, 1, gdb_stdout);
2827 printf_filtered (", mapped at ");
2828 print_address_numeric (vma, 1, gdb_stdout);
2829 puts_filtered (" - ");
2830 print_address_numeric (vma + size, 1, gdb_stdout);
2831 puts_filtered ("\n");
2832
2833 nmapped++;
2834 }
2835 if (nmapped == 0)
2836 printf_filtered ("No sections are mapped.\n");
2837}
2838
2839/* Function: map_overlay_command
2840 Mark the named section as mapped (ie. residing at its VMA address). */
2841
2842void
2843map_overlay_command (char *args, int from_tty)
2844{
2845 struct objfile *objfile, *objfile2;
2846 struct obj_section *sec, *sec2;
2847 asection *bfdsec;
2848
2849 if (!overlay_debugging)
2850 error ("\
2851Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2852the 'overlay manual' command.");
2853
2854 if (args == 0 || *args == 0)
2855 error ("Argument required: name of an overlay section");
2856
2857 /* First, find a section matching the user supplied argument */
2858 ALL_OBJSECTIONS (objfile, sec)
2859 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2860 {
2861 /* Now, check to see if the section is an overlay. */
2862 bfdsec = sec->the_bfd_section;
2863 if (!section_is_overlay (bfdsec))
2864 continue; /* not an overlay section */
2865
2866 /* Mark the overlay as "mapped" */
2867 sec->ovly_mapped = 1;
2868
2869 /* Next, make a pass and unmap any sections that are
2870 overlapped by this new section: */
2871 ALL_OBJSECTIONS (objfile2, sec2)
2872 if (sec2->ovly_mapped
2873 && sec != sec2
2874 && sec->the_bfd_section != sec2->the_bfd_section
2875 && sections_overlap (sec->the_bfd_section,
2876 sec2->the_bfd_section))
2877 {
2878 if (info_verbose)
2879 printf_filtered ("Note: section %s unmapped by overlap\n",
2880 bfd_section_name (objfile->obfd,
2881 sec2->the_bfd_section));
2882 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2883 }
2884 return;
2885 }
2886 error ("No overlay section called %s", args);
2887}
2888
2889/* Function: unmap_overlay_command
2890 Mark the overlay section as unmapped
2891 (ie. resident in its LMA address range, rather than the VMA range). */
2892
2893void
2894unmap_overlay_command (char *args, int from_tty)
2895{
2896 struct objfile *objfile;
2897 struct obj_section *sec;
2898
2899 if (!overlay_debugging)
2900 error ("\
2901Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2902the 'overlay manual' command.");
2903
2904 if (args == 0 || *args == 0)
2905 error ("Argument required: name of an overlay section");
2906
2907 /* First, find a section matching the user supplied argument */
2908 ALL_OBJSECTIONS (objfile, sec)
2909 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2910 {
2911 if (!sec->ovly_mapped)
2912 error ("Section %s is not mapped", args);
2913 sec->ovly_mapped = 0;
2914 return;
2915 }
2916 error ("No overlay section called %s", args);
2917}
2918
2919/* Function: overlay_auto_command
2920 A utility command to turn on overlay debugging.
2921 Possibly this should be done via a set/show command. */
2922
2923static void
2924overlay_auto_command (char *args, int from_tty)
2925{
2926 overlay_debugging = ovly_auto;
2927 enable_overlay_breakpoints ();
2928 if (info_verbose)
2929 printf_filtered ("Automatic overlay debugging enabled.");
2930}
2931
2932/* Function: overlay_manual_command
2933 A utility command to turn on overlay debugging.
2934 Possibly this should be done via a set/show command. */
2935
2936static void
2937overlay_manual_command (char *args, int from_tty)
2938{
2939 overlay_debugging = ovly_on;
2940 disable_overlay_breakpoints ();
2941 if (info_verbose)
2942 printf_filtered ("Overlay debugging enabled.");
2943}
2944
2945/* Function: overlay_off_command
2946 A utility command to turn on overlay debugging.
2947 Possibly this should be done via a set/show command. */
2948
2949static void
2950overlay_off_command (char *args, int from_tty)
2951{
2952 overlay_debugging = ovly_off;
2953 disable_overlay_breakpoints ();
2954 if (info_verbose)
2955 printf_filtered ("Overlay debugging disabled.");
2956}
2957
2958static void
2959overlay_load_command (char *args, int from_tty)
2960{
2961 if (target_overlay_update)
2962 (*target_overlay_update) (NULL);
2963 else
2964 error ("This target does not know how to read its overlay state.");
2965}
2966
2967/* Function: overlay_command
2968 A place-holder for a mis-typed command */
2969
2970/* Command list chain containing all defined "overlay" subcommands. */
2971struct cmd_list_element *overlaylist;
2972
2973static void
2974overlay_command (char *args, int from_tty)
2975{
2976 printf_unfiltered
2977 ("\"overlay\" must be followed by the name of an overlay command.\n");
2978 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2979}
2980
2981
2982/* Target Overlays for the "Simplest" overlay manager:
2983
2984 This is GDB's default target overlay layer. It works with the
2985 minimal overlay manager supplied as an example by Cygnus. The
2986 entry point is via a function pointer "target_overlay_update",
2987 so targets that use a different runtime overlay manager can
2988 substitute their own overlay_update function and take over the
2989 function pointer.
2990
2991 The overlay_update function pokes around in the target's data structures
2992 to see what overlays are mapped, and updates GDB's overlay mapping with
2993 this information.
2994
2995 In this simple implementation, the target data structures are as follows:
2996 unsigned _novlys; /# number of overlay sections #/
2997 unsigned _ovly_table[_novlys][4] = {
2998 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2999 {..., ..., ..., ...},
3000 }
3001 unsigned _novly_regions; /# number of overlay regions #/
3002 unsigned _ovly_region_table[_novly_regions][3] = {
3003 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3004 {..., ..., ...},
3005 }
3006 These functions will attempt to update GDB's mappedness state in the
3007 symbol section table, based on the target's mappedness state.
3008
3009 To do this, we keep a cached copy of the target's _ovly_table, and
3010 attempt to detect when the cached copy is invalidated. The main
3011 entry point is "simple_overlay_update(SECT), which looks up SECT in
3012 the cached table and re-reads only the entry for that section from
3013 the target (whenever possible).
3014 */
3015
3016/* Cached, dynamically allocated copies of the target data structures: */
3017static unsigned (*cache_ovly_table)[4] = 0;
3018#if 0
3019static unsigned (*cache_ovly_region_table)[3] = 0;
3020#endif
3021static unsigned cache_novlys = 0;
3022#if 0
3023static unsigned cache_novly_regions = 0;
3024#endif
3025static CORE_ADDR cache_ovly_table_base = 0;
3026#if 0
3027static CORE_ADDR cache_ovly_region_table_base = 0;
3028#endif
3029enum ovly_index
3030 {
3031 VMA, SIZE, LMA, MAPPED
3032 };
3033#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3034
3035/* Throw away the cached copy of _ovly_table */
3036static void
3037simple_free_overlay_table (void)
3038{
3039 if (cache_ovly_table)
3040 xfree (cache_ovly_table);
3041 cache_novlys = 0;
3042 cache_ovly_table = NULL;
3043 cache_ovly_table_base = 0;
3044}
3045
3046#if 0
3047/* Throw away the cached copy of _ovly_region_table */
3048static void
3049simple_free_overlay_region_table (void)
3050{
3051 if (cache_ovly_region_table)
3052 xfree (cache_ovly_region_table);
3053 cache_novly_regions = 0;
3054 cache_ovly_region_table = NULL;
3055 cache_ovly_region_table_base = 0;
3056}
3057#endif
3058
3059/* Read an array of ints from the target into a local buffer.
3060 Convert to host order. int LEN is number of ints */
3061static void
3062read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3063{
3064 /* FIXME (alloca): Not safe if array is very large. */
3065 char *buf = alloca (len * TARGET_LONG_BYTES);
3066 int i;
3067
3068 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3069 for (i = 0; i < len; i++)
3070 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3071 TARGET_LONG_BYTES);
3072}
3073
3074/* Find and grab a copy of the target _ovly_table
3075 (and _novlys, which is needed for the table's size) */
3076static int
3077simple_read_overlay_table (void)
3078{
3079 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3080
3081 simple_free_overlay_table ();
3082 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3083 if (! novlys_msym)
3084 {
3085 error ("Error reading inferior's overlay table: "
3086 "couldn't find `_novlys' variable\n"
3087 "in inferior. Use `overlay manual' mode.");
3088 return 0;
3089 }
3090
3091 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3092 if (! ovly_table_msym)
3093 {
3094 error ("Error reading inferior's overlay table: couldn't find "
3095 "`_ovly_table' array\n"
3096 "in inferior. Use `overlay manual' mode.");
3097 return 0;
3098 }
3099
3100 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3101 cache_ovly_table
3102 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3103 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3104 read_target_long_array (cache_ovly_table_base,
3105 (int *) cache_ovly_table,
3106 cache_novlys * 4);
3107
3108 return 1; /* SUCCESS */
3109}
3110
3111#if 0
3112/* Find and grab a copy of the target _ovly_region_table
3113 (and _novly_regions, which is needed for the table's size) */
3114static int
3115simple_read_overlay_region_table (void)
3116{
3117 struct minimal_symbol *msym;
3118
3119 simple_free_overlay_region_table ();
3120 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3121 if (msym != NULL)
3122 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3123 else
3124 return 0; /* failure */
3125 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3126 if (cache_ovly_region_table != NULL)
3127 {
3128 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3129 if (msym != NULL)
3130 {
3131 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3132 read_target_long_array (cache_ovly_region_table_base,
3133 (int *) cache_ovly_region_table,
3134 cache_novly_regions * 3);
3135 }
3136 else
3137 return 0; /* failure */
3138 }
3139 else
3140 return 0; /* failure */
3141 return 1; /* SUCCESS */
3142}
3143#endif
3144
3145/* Function: simple_overlay_update_1
3146 A helper function for simple_overlay_update. Assuming a cached copy
3147 of _ovly_table exists, look through it to find an entry whose vma,
3148 lma and size match those of OSECT. Re-read the entry and make sure
3149 it still matches OSECT (else the table may no longer be valid).
3150 Set OSECT's mapped state to match the entry. Return: 1 for
3151 success, 0 for failure. */
3152
3153static int
3154simple_overlay_update_1 (struct obj_section *osect)
3155{
3156 int i, size;
3157 bfd *obfd = osect->objfile->obfd;
3158 asection *bsect = osect->the_bfd_section;
3159
3160 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3161 for (i = 0; i < cache_novlys; i++)
3162 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3163 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3164 /* && cache_ovly_table[i][SIZE] == size */ )
3165 {
3166 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3167 (int *) cache_ovly_table[i], 4);
3168 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3169 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3170 /* && cache_ovly_table[i][SIZE] == size */ )
3171 {
3172 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3173 return 1;
3174 }
3175 else /* Warning! Warning! Target's ovly table has changed! */
3176 return 0;
3177 }
3178 return 0;
3179}
3180
3181/* Function: simple_overlay_update
3182 If OSECT is NULL, then update all sections' mapped state
3183 (after re-reading the entire target _ovly_table).
3184 If OSECT is non-NULL, then try to find a matching entry in the
3185 cached ovly_table and update only OSECT's mapped state.
3186 If a cached entry can't be found or the cache isn't valid, then
3187 re-read the entire cache, and go ahead and update all sections. */
3188
3189static void
3190simple_overlay_update (struct obj_section *osect)
3191{
3192 struct objfile *objfile;
3193
3194 /* Were we given an osect to look up? NULL means do all of them. */
3195 if (osect)
3196 /* Have we got a cached copy of the target's overlay table? */
3197 if (cache_ovly_table != NULL)
3198 /* Does its cached location match what's currently in the symtab? */
3199 if (cache_ovly_table_base ==
3200 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3201 /* Then go ahead and try to look up this single section in the cache */
3202 if (simple_overlay_update_1 (osect))
3203 /* Found it! We're done. */
3204 return;
3205
3206 /* Cached table no good: need to read the entire table anew.
3207 Or else we want all the sections, in which case it's actually
3208 more efficient to read the whole table in one block anyway. */
3209
3210 if (! simple_read_overlay_table ())
3211 return;
3212
3213 /* Now may as well update all sections, even if only one was requested. */
3214 ALL_OBJSECTIONS (objfile, osect)
3215 if (section_is_overlay (osect->the_bfd_section))
3216 {
3217 int i, size;
3218 bfd *obfd = osect->objfile->obfd;
3219 asection *bsect = osect->the_bfd_section;
3220
3221 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3222 for (i = 0; i < cache_novlys; i++)
3223 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3224 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3225 /* && cache_ovly_table[i][SIZE] == size */ )
3226 { /* obj_section matches i'th entry in ovly_table */
3227 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3228 break; /* finished with inner for loop: break out */
3229 }
3230 }
3231}
3232
3233
3234void
3235_initialize_symfile (void)
3236{
3237 struct cmd_list_element *c;
3238
3239 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3240 "Load symbol table from executable file FILE.\n\
3241The `file' command can also load symbol tables, as well as setting the file\n\
3242to execute.", &cmdlist);
3243 set_cmd_completer (c, filename_completer);
3244
3245 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3246 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3247Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3248ADDR is the starting address of the file's text.\n\
3249The optional arguments are section-name section-address pairs and\n\
3250should be specified if the data and bss segments are not contiguous\n\
3251with the text. SECT is a section name to be loaded at SECT_ADDR.",
3252 &cmdlist);
3253 set_cmd_completer (c, filename_completer);
3254
3255 c = add_cmd ("add-shared-symbol-files", class_files,
3256 add_shared_symbol_files_command,
3257 "Load the symbols from shared objects in the dynamic linker's link map.",
3258 &cmdlist);
3259 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3260 &cmdlist);
3261
3262 c = add_cmd ("load", class_files, load_command,
3263 "Dynamically load FILE into the running program, and record its symbols\n\
3264for access from GDB.", &cmdlist);
3265 set_cmd_completer (c, filename_completer);
3266
3267 add_show_from_set
3268 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3269 (char *) &symbol_reloading,
3270 "Set dynamic symbol table reloading multiple times in one run.",
3271 &setlist),
3272 &showlist);
3273
3274 add_prefix_cmd ("overlay", class_support, overlay_command,
3275 "Commands for debugging overlays.", &overlaylist,
3276 "overlay ", 0, &cmdlist);
3277
3278 add_com_alias ("ovly", "overlay", class_alias, 1);
3279 add_com_alias ("ov", "overlay", class_alias, 1);
3280
3281 add_cmd ("map-overlay", class_support, map_overlay_command,
3282 "Assert that an overlay section is mapped.", &overlaylist);
3283
3284 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3285 "Assert that an overlay section is unmapped.", &overlaylist);
3286
3287 add_cmd ("list-overlays", class_support, list_overlays_command,
3288 "List mappings of overlay sections.", &overlaylist);
3289
3290 add_cmd ("manual", class_support, overlay_manual_command,
3291 "Enable overlay debugging.", &overlaylist);
3292 add_cmd ("off", class_support, overlay_off_command,
3293 "Disable overlay debugging.", &overlaylist);
3294 add_cmd ("auto", class_support, overlay_auto_command,
3295 "Enable automatic overlay debugging.", &overlaylist);
3296 add_cmd ("load-target", class_support, overlay_load_command,
3297 "Read the overlay mapping state from the target.", &overlaylist);
3298
3299 /* Filename extension to source language lookup table: */
3300 init_filename_language_table ();
3301 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3302 (char *) &ext_args,
3303 "Set mapping between filename extension and source language.\n\
3304Usage: set extension-language .foo bar",
3305 &setlist);
3306 set_cmd_cfunc (c, set_ext_lang_command);
3307
3308 add_info ("extensions", info_ext_lang_command,
3309 "All filename extensions associated with a source language.");
3310
3311 add_show_from_set
3312 (add_set_cmd ("download-write-size", class_obscure,
3313 var_integer, (char *) &download_write_size,
3314 "Set the write size used when downloading a program.\n"
3315 "Only used when downloading a program onto a remote\n"
3316 "target. Specify zero, or a negative value, to disable\n"
3317 "blocked writes. The actual size of each transfer is also\n"
3318 "limited by the size of the target packet and the memory\n"
3319 "cache.\n",
3320 &setlist),
3321 &showlist);
3322}
This page took 0.051187 seconds and 4 git commands to generate.