* config/djgpp/fnchange.lst: Add mappings for linux-ppc-low.c and
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "bfdlink.h"
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "source.h"
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
41#include "inferior.h" /* for write_pc */
42#include "filenames.h" /* for DOSish file names */
43#include "gdb-stabs.h"
44#include "gdb_obstack.h"
45#include "completer.h"
46#include "bcache.h"
47#include "hashtab.h"
48#include "readline/readline.h"
49#include "gdb_assert.h"
50#include "block.h"
51#include "observer.h"
52
53#include <sys/types.h>
54#include <fcntl.h>
55#include "gdb_string.h"
56#include "gdb_stat.h"
57#include <ctype.h>
58#include <time.h>
59
60#ifndef O_BINARY
61#define O_BINARY 0
62#endif
63
64int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
65void (*deprecated_show_load_progress) (const char *section,
66 unsigned long section_sent,
67 unsigned long section_size,
68 unsigned long total_sent,
69 unsigned long total_size);
70void (*deprecated_pre_add_symbol_hook) (const char *);
71void (*deprecated_post_add_symbol_hook) (void);
72void (*deprecated_target_new_objfile_hook) (struct objfile *);
73
74static void clear_symtab_users_cleanup (void *ignore);
75
76/* Global variables owned by this file */
77int readnow_symbol_files; /* Read full symbols immediately */
78
79/* External variables and functions referenced. */
80
81extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83/* Functions this file defines */
84
85#if 0
86static int simple_read_overlay_region_table (void);
87static void simple_free_overlay_region_table (void);
88#endif
89
90static void set_initial_language (void);
91
92static void load_command (char *, int);
93
94static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96static void add_symbol_file_command (char *, int);
97
98static void add_shared_symbol_files_command (char *, int);
99
100static void reread_separate_symbols (struct objfile *objfile);
101
102static void cashier_psymtab (struct partial_symtab *);
103
104bfd *symfile_bfd_open (char *);
105
106int get_section_index (struct objfile *, char *);
107
108static void find_sym_fns (struct objfile *);
109
110static void decrement_reading_symtab (void *);
111
112static void overlay_invalidate_all (void);
113
114static int overlay_is_mapped (struct obj_section *);
115
116void list_overlays_command (char *, int);
117
118void map_overlay_command (char *, int);
119
120void unmap_overlay_command (char *, int);
121
122static void overlay_auto_command (char *, int);
123
124static void overlay_manual_command (char *, int);
125
126static void overlay_off_command (char *, int);
127
128static void overlay_load_command (char *, int);
129
130static void overlay_command (char *, int);
131
132static void simple_free_overlay_table (void);
133
134static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136static int simple_read_overlay_table (void);
137
138static int simple_overlay_update_1 (struct obj_section *);
139
140static void add_filename_language (char *ext, enum language lang);
141
142static void info_ext_lang_command (char *args, int from_tty);
143
144static char *find_separate_debug_file (struct objfile *objfile);
145
146static void init_filename_language_table (void);
147
148void _initialize_symfile (void);
149
150/* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154static struct sym_fns *symtab_fns = NULL;
155
156/* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159#ifdef SYMBOL_RELOADING_DEFAULT
160int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161#else
162int symbol_reloading = 0;
163#endif
164static void
165show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("\
169Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171}
172
173
174/* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184int auto_solib_add = 1;
185
186/* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194int auto_solib_limit;
195\f
196
197/* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200static int
201compare_psymbols (const void *s1p, const void *s2p)
202{
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208}
209
210void
211sort_pst_symbols (struct partial_symtab *pst)
212{
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218}
219
220/* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225char *
226obsavestring (const char *ptr, int size, struct obstack *obstackp)
227{
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241}
242
243/* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246char *
247obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249{
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256}
257
258/* True if we are nested inside psymtab_to_symtab. */
259
260int currently_reading_symtab = 0;
261
262static void
263decrement_reading_symtab (void *dummy)
264{
265 currently_reading_symtab--;
266}
267
268/* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273struct symtab *
274psymtab_to_symtab (struct partial_symtab *pst)
275{
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290}
291
292/* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301void
302find_lowest_section (bfd *abfd, asection *sect, void *obj)
303{
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316}
317
318/* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320struct section_addr_info *
321alloc_section_addr_info (size_t num_sections)
322{
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333}
334
335
336/* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338struct section_addr_info *
339copy_section_addr_info (struct section_addr_info *addrs)
340{
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357}
358
359
360
361/* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364extern struct section_addr_info *
365build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367{
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389}
390
391
392/* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394extern void
395free_section_addr_info (struct section_addr_info *sap)
396{
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403}
404
405
406/* Initialize OBJFILE's sect_index_* members. */
407static void
408init_objfile_sect_indices (struct objfile *objfile)
409{
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. Except when explicitly adding symbol files at
433 some address, section_offsets contains nothing but zeros, so it
434 doesn't matter which slot in section_offsets the individual
435 sect_index_* members index into. So if they are all zero, it is
436 safe to just point all the currently uninitialized indices to the
437 first slot. */
438
439 for (i = 0; i < objfile->num_sections; i++)
440 {
441 if (ANOFFSET (objfile->section_offsets, i) != 0)
442 {
443 break;
444 }
445 }
446 if (i == objfile->num_sections)
447 {
448 if (objfile->sect_index_text == -1)
449 objfile->sect_index_text = 0;
450 if (objfile->sect_index_data == -1)
451 objfile->sect_index_data = 0;
452 if (objfile->sect_index_bss == -1)
453 objfile->sect_index_bss = 0;
454 if (objfile->sect_index_rodata == -1)
455 objfile->sect_index_rodata = 0;
456 }
457}
458
459
460/* Parse the user's idea of an offset for dynamic linking, into our idea
461 of how to represent it for fast symbol reading. This is the default
462 version of the sym_fns.sym_offsets function for symbol readers that
463 don't need to do anything special. It allocates a section_offsets table
464 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
465
466void
467default_symfile_offsets (struct objfile *objfile,
468 struct section_addr_info *addrs)
469{
470 int i;
471
472 objfile->num_sections = bfd_count_sections (objfile->obfd);
473 objfile->section_offsets = (struct section_offsets *)
474 obstack_alloc (&objfile->objfile_obstack,
475 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
476 memset (objfile->section_offsets, 0,
477 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
478
479 /* Now calculate offsets for section that were specified by the
480 caller. */
481 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
482 {
483 struct other_sections *osp ;
484
485 osp = &addrs->other[i] ;
486 if (osp->addr == 0)
487 continue;
488
489 /* Record all sections in offsets */
490 /* The section_offsets in the objfile are here filled in using
491 the BFD index. */
492 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
493 }
494
495 /* Remember the bfd indexes for the .text, .data, .bss and
496 .rodata sections. */
497 init_objfile_sect_indices (objfile);
498}
499
500
501/* Process a symbol file, as either the main file or as a dynamically
502 loaded file.
503
504 OBJFILE is where the symbols are to be read from.
505
506 ADDRS is the list of section load addresses. If the user has given
507 an 'add-symbol-file' command, then this is the list of offsets and
508 addresses he or she provided as arguments to the command; or, if
509 we're handling a shared library, these are the actual addresses the
510 sections are loaded at, according to the inferior's dynamic linker
511 (as gleaned by GDB's shared library code). We convert each address
512 into an offset from the section VMA's as it appears in the object
513 file, and then call the file's sym_offsets function to convert this
514 into a format-specific offset table --- a `struct section_offsets'.
515 If ADDRS is non-zero, OFFSETS must be zero.
516
517 OFFSETS is a table of section offsets already in the right
518 format-specific representation. NUM_OFFSETS is the number of
519 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
520 assume this is the proper table the call to sym_offsets described
521 above would produce. Instead of calling sym_offsets, we just dump
522 it right into objfile->section_offsets. (When we're re-reading
523 symbols from an objfile, we don't have the original load address
524 list any more; all we have is the section offset table.) If
525 OFFSETS is non-zero, ADDRS must be zero.
526
527 MAINLINE is nonzero if this is the main symbol file, or zero if
528 it's an extra symbol file such as dynamically loaded code.
529
530 VERBO is nonzero if the caller has printed a verbose message about
531 the symbol reading (and complaints can be more terse about it). */
532
533void
534syms_from_objfile (struct objfile *objfile,
535 struct section_addr_info *addrs,
536 struct section_offsets *offsets,
537 int num_offsets,
538 int mainline,
539 int verbo)
540{
541 struct section_addr_info *local_addr = NULL;
542 struct cleanup *old_chain;
543
544 gdb_assert (! (addrs && offsets));
545
546 init_entry_point_info (objfile);
547 find_sym_fns (objfile);
548
549 if (objfile->sf == NULL)
550 return; /* No symbols. */
551
552 /* Make sure that partially constructed symbol tables will be cleaned up
553 if an error occurs during symbol reading. */
554 old_chain = make_cleanup_free_objfile (objfile);
555
556 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
557 list. We now establish the convention that an addr of zero means
558 no load address was specified. */
559 if (! addrs && ! offsets)
560 {
561 local_addr
562 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
563 make_cleanup (xfree, local_addr);
564 addrs = local_addr;
565 }
566
567 /* Now either addrs or offsets is non-zero. */
568
569 if (mainline)
570 {
571 /* We will modify the main symbol table, make sure that all its users
572 will be cleaned up if an error occurs during symbol reading. */
573 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
574
575 /* Since no error yet, throw away the old symbol table. */
576
577 if (symfile_objfile != NULL)
578 {
579 free_objfile (symfile_objfile);
580 symfile_objfile = NULL;
581 }
582
583 /* Currently we keep symbols from the add-symbol-file command.
584 If the user wants to get rid of them, they should do "symbol-file"
585 without arguments first. Not sure this is the best behavior
586 (PR 2207). */
587
588 (*objfile->sf->sym_new_init) (objfile);
589 }
590
591 /* Convert addr into an offset rather than an absolute address.
592 We find the lowest address of a loaded segment in the objfile,
593 and assume that <addr> is where that got loaded.
594
595 We no longer warn if the lowest section is not a text segment (as
596 happens for the PA64 port. */
597 if (!mainline && addrs && addrs->other[0].name)
598 {
599 asection *lower_sect;
600 asection *sect;
601 CORE_ADDR lower_offset;
602 int i;
603
604 /* Find lowest loadable section to be used as starting point for
605 continguous sections. FIXME!! won't work without call to find
606 .text first, but this assumes text is lowest section. */
607 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
608 if (lower_sect == NULL)
609 bfd_map_over_sections (objfile->obfd, find_lowest_section,
610 &lower_sect);
611 if (lower_sect == NULL)
612 warning (_("no loadable sections found in added symbol-file %s"),
613 objfile->name);
614 else
615 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
616 warning (_("Lowest section in %s is %s at %s"),
617 objfile->name,
618 bfd_section_name (objfile->obfd, lower_sect),
619 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
620 if (lower_sect != NULL)
621 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
622 else
623 lower_offset = 0;
624
625 /* Calculate offsets for the loadable sections.
626 FIXME! Sections must be in order of increasing loadable section
627 so that contiguous sections can use the lower-offset!!!
628
629 Adjust offsets if the segments are not contiguous.
630 If the section is contiguous, its offset should be set to
631 the offset of the highest loadable section lower than it
632 (the loadable section directly below it in memory).
633 this_offset = lower_offset = lower_addr - lower_orig_addr */
634
635 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
636 {
637 if (addrs->other[i].addr != 0)
638 {
639 sect = bfd_get_section_by_name (objfile->obfd,
640 addrs->other[i].name);
641 if (sect)
642 {
643 addrs->other[i].addr
644 -= bfd_section_vma (objfile->obfd, sect);
645 lower_offset = addrs->other[i].addr;
646 /* This is the index used by BFD. */
647 addrs->other[i].sectindex = sect->index ;
648 }
649 else
650 {
651 warning (_("section %s not found in %s"),
652 addrs->other[i].name,
653 objfile->name);
654 addrs->other[i].addr = 0;
655 }
656 }
657 else
658 addrs->other[i].addr = lower_offset;
659 }
660 }
661
662 /* Initialize symbol reading routines for this objfile, allow complaints to
663 appear for this new file, and record how verbose to be, then do the
664 initial symbol reading for this file. */
665
666 (*objfile->sf->sym_init) (objfile);
667 clear_complaints (&symfile_complaints, 1, verbo);
668
669 if (addrs)
670 (*objfile->sf->sym_offsets) (objfile, addrs);
671 else
672 {
673 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
674
675 /* Just copy in the offset table directly as given to us. */
676 objfile->num_sections = num_offsets;
677 objfile->section_offsets
678 = ((struct section_offsets *)
679 obstack_alloc (&objfile->objfile_obstack, size));
680 memcpy (objfile->section_offsets, offsets, size);
681
682 init_objfile_sect_indices (objfile);
683 }
684
685#ifndef DEPRECATED_IBM6000_TARGET
686 /* This is a SVR4/SunOS specific hack, I think. In any event, it
687 screws RS/6000. sym_offsets should be doing this sort of thing,
688 because it knows the mapping between bfd sections and
689 section_offsets. */
690 /* This is a hack. As far as I can tell, section offsets are not
691 target dependent. They are all set to addr with a couple of
692 exceptions. The exceptions are sysvr4 shared libraries, whose
693 offsets are kept in solib structures anyway and rs6000 xcoff
694 which handles shared libraries in a completely unique way.
695
696 Section offsets are built similarly, except that they are built
697 by adding addr in all cases because there is no clear mapping
698 from section_offsets into actual sections. Note that solib.c
699 has a different algorithm for finding section offsets.
700
701 These should probably all be collapsed into some target
702 independent form of shared library support. FIXME. */
703
704 if (addrs)
705 {
706 struct obj_section *s;
707
708 /* Map section offsets in "addr" back to the object's
709 sections by comparing the section names with bfd's
710 section names. Then adjust the section address by
711 the offset. */ /* for gdb/13815 */
712
713 ALL_OBJFILE_OSECTIONS (objfile, s)
714 {
715 CORE_ADDR s_addr = 0;
716 int i;
717
718 for (i = 0;
719 !s_addr && i < addrs->num_sections && addrs->other[i].name;
720 i++)
721 if (strcmp (bfd_section_name (s->objfile->obfd,
722 s->the_bfd_section),
723 addrs->other[i].name) == 0)
724 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
725
726 s->addr -= s->offset;
727 s->addr += s_addr;
728 s->endaddr -= s->offset;
729 s->endaddr += s_addr;
730 s->offset += s_addr;
731 }
732 }
733#endif /* not DEPRECATED_IBM6000_TARGET */
734
735 (*objfile->sf->sym_read) (objfile, mainline);
736
737 /* Don't allow char * to have a typename (else would get caddr_t).
738 Ditto void *. FIXME: Check whether this is now done by all the
739 symbol readers themselves (many of them now do), and if so remove
740 it from here. */
741
742 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
743 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
744
745 /* Mark the objfile has having had initial symbol read attempted. Note
746 that this does not mean we found any symbols... */
747
748 objfile->flags |= OBJF_SYMS;
749
750 /* Discard cleanups as symbol reading was successful. */
751
752 discard_cleanups (old_chain);
753}
754
755/* Perform required actions after either reading in the initial
756 symbols for a new objfile, or mapping in the symbols from a reusable
757 objfile. */
758
759void
760new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
761{
762
763 /* If this is the main symbol file we have to clean up all users of the
764 old main symbol file. Otherwise it is sufficient to fixup all the
765 breakpoints that may have been redefined by this symbol file. */
766 if (mainline)
767 {
768 /* OK, make it the "real" symbol file. */
769 symfile_objfile = objfile;
770
771 clear_symtab_users ();
772 }
773 else
774 {
775 breakpoint_re_set ();
776 }
777
778 /* We're done reading the symbol file; finish off complaints. */
779 clear_complaints (&symfile_complaints, 0, verbo);
780}
781
782/* Process a symbol file, as either the main file or as a dynamically
783 loaded file.
784
785 ABFD is a BFD already open on the file, as from symfile_bfd_open.
786 This BFD will be closed on error, and is always consumed by this function.
787
788 FROM_TTY says how verbose to be.
789
790 MAINLINE specifies whether this is the main symbol file, or whether
791 it's an extra symbol file such as dynamically loaded code.
792
793 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
794 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
795 non-zero.
796
797 Upon success, returns a pointer to the objfile that was added.
798 Upon failure, jumps back to command level (never returns). */
799static struct objfile *
800symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
801 struct section_addr_info *addrs,
802 struct section_offsets *offsets,
803 int num_offsets,
804 int mainline, int flags)
805{
806 struct objfile *objfile;
807 struct partial_symtab *psymtab;
808 char *debugfile;
809 struct section_addr_info *orig_addrs = NULL;
810 struct cleanup *my_cleanups;
811 const char *name = bfd_get_filename (abfd);
812
813 my_cleanups = make_cleanup_bfd_close (abfd);
814
815 /* Give user a chance to burp if we'd be
816 interactively wiping out any existing symbols. */
817
818 if ((have_full_symbols () || have_partial_symbols ())
819 && mainline
820 && from_tty
821 && !query ("Load new symbol table from \"%s\"? ", name))
822 error (_("Not confirmed."));
823
824 objfile = allocate_objfile (abfd, flags);
825 discard_cleanups (my_cleanups);
826
827 if (addrs)
828 {
829 orig_addrs = copy_section_addr_info (addrs);
830 make_cleanup_free_section_addr_info (orig_addrs);
831 }
832
833 /* We either created a new mapped symbol table, mapped an existing
834 symbol table file which has not had initial symbol reading
835 performed, or need to read an unmapped symbol table. */
836 if (from_tty || info_verbose)
837 {
838 if (deprecated_pre_add_symbol_hook)
839 deprecated_pre_add_symbol_hook (name);
840 else
841 {
842 printf_unfiltered (_("Reading symbols from %s..."), name);
843 wrap_here ("");
844 gdb_flush (gdb_stdout);
845 }
846 }
847 syms_from_objfile (objfile, addrs, offsets, num_offsets,
848 mainline, from_tty);
849
850 /* We now have at least a partial symbol table. Check to see if the
851 user requested that all symbols be read on initial access via either
852 the gdb startup command line or on a per symbol file basis. Expand
853 all partial symbol tables for this objfile if so. */
854
855 if ((flags & OBJF_READNOW) || readnow_symbol_files)
856 {
857 if (from_tty || info_verbose)
858 {
859 printf_unfiltered (_("expanding to full symbols..."));
860 wrap_here ("");
861 gdb_flush (gdb_stdout);
862 }
863
864 for (psymtab = objfile->psymtabs;
865 psymtab != NULL;
866 psymtab = psymtab->next)
867 {
868 psymtab_to_symtab (psymtab);
869 }
870 }
871
872 debugfile = find_separate_debug_file (objfile);
873 if (debugfile)
874 {
875 if (addrs != NULL)
876 {
877 objfile->separate_debug_objfile
878 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
879 }
880 else
881 {
882 objfile->separate_debug_objfile
883 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
884 }
885 objfile->separate_debug_objfile->separate_debug_objfile_backlink
886 = objfile;
887
888 /* Put the separate debug object before the normal one, this is so that
889 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
890 put_objfile_before (objfile->separate_debug_objfile, objfile);
891
892 xfree (debugfile);
893 }
894
895 if (!have_partial_symbols () && !have_full_symbols ())
896 {
897 wrap_here ("");
898 printf_filtered (_("(no debugging symbols found)"));
899 if (from_tty || info_verbose)
900 printf_filtered ("...");
901 else
902 printf_filtered ("\n");
903 wrap_here ("");
904 }
905
906 if (from_tty || info_verbose)
907 {
908 if (deprecated_post_add_symbol_hook)
909 deprecated_post_add_symbol_hook ();
910 else
911 {
912 printf_unfiltered (_("done.\n"));
913 }
914 }
915
916 /* We print some messages regardless of whether 'from_tty ||
917 info_verbose' is true, so make sure they go out at the right
918 time. */
919 gdb_flush (gdb_stdout);
920
921 do_cleanups (my_cleanups);
922
923 if (objfile->sf == NULL)
924 return objfile; /* No symbols. */
925
926 new_symfile_objfile (objfile, mainline, from_tty);
927
928 if (deprecated_target_new_objfile_hook)
929 deprecated_target_new_objfile_hook (objfile);
930
931 bfd_cache_close_all ();
932 return (objfile);
933}
934
935
936/* Process the symbol file ABFD, as either the main file or as a
937 dynamically loaded file.
938
939 See symbol_file_add_with_addrs_or_offsets's comments for
940 details. */
941struct objfile *
942symbol_file_add_from_bfd (bfd *abfd, int from_tty,
943 struct section_addr_info *addrs,
944 int mainline, int flags)
945{
946 return symbol_file_add_with_addrs_or_offsets (abfd,
947 from_tty, addrs, 0, 0,
948 mainline, flags);
949}
950
951
952/* Process a symbol file, as either the main file or as a dynamically
953 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
954 for details. */
955struct objfile *
956symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
957 int mainline, int flags)
958{
959 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
960 addrs, mainline, flags);
961}
962
963
964/* Call symbol_file_add() with default values and update whatever is
965 affected by the loading of a new main().
966 Used when the file is supplied in the gdb command line
967 and by some targets with special loading requirements.
968 The auxiliary function, symbol_file_add_main_1(), has the flags
969 argument for the switches that can only be specified in the symbol_file
970 command itself. */
971
972void
973symbol_file_add_main (char *args, int from_tty)
974{
975 symbol_file_add_main_1 (args, from_tty, 0);
976}
977
978static void
979symbol_file_add_main_1 (char *args, int from_tty, int flags)
980{
981 symbol_file_add (args, from_tty, NULL, 1, flags);
982
983 /* Getting new symbols may change our opinion about
984 what is frameless. */
985 reinit_frame_cache ();
986
987 set_initial_language ();
988}
989
990void
991symbol_file_clear (int from_tty)
992{
993 if ((have_full_symbols () || have_partial_symbols ())
994 && from_tty
995 && !query ("Discard symbol table from `%s'? ",
996 symfile_objfile->name))
997 error (_("Not confirmed."));
998 free_all_objfiles ();
999
1000 /* solib descriptors may have handles to objfiles. Since their
1001 storage has just been released, we'd better wipe the solib
1002 descriptors as well.
1003 */
1004#if defined(SOLIB_RESTART)
1005 SOLIB_RESTART ();
1006#endif
1007
1008 symfile_objfile = NULL;
1009 if (from_tty)
1010 printf_unfiltered (_("No symbol file now.\n"));
1011}
1012
1013static char *
1014get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1015{
1016 asection *sect;
1017 bfd_size_type debuglink_size;
1018 unsigned long crc32;
1019 char *contents;
1020 int crc_offset;
1021 unsigned char *p;
1022
1023 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1024
1025 if (sect == NULL)
1026 return NULL;
1027
1028 debuglink_size = bfd_section_size (objfile->obfd, sect);
1029
1030 contents = xmalloc (debuglink_size);
1031 bfd_get_section_contents (objfile->obfd, sect, contents,
1032 (file_ptr)0, (bfd_size_type)debuglink_size);
1033
1034 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1035 crc_offset = strlen (contents) + 1;
1036 crc_offset = (crc_offset + 3) & ~3;
1037
1038 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1039
1040 *crc32_out = crc32;
1041 return contents;
1042}
1043
1044static int
1045separate_debug_file_exists (const char *name, unsigned long crc)
1046{
1047 unsigned long file_crc = 0;
1048 int fd;
1049 char buffer[8*1024];
1050 int count;
1051
1052 fd = open (name, O_RDONLY | O_BINARY);
1053 if (fd < 0)
1054 return 0;
1055
1056 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1057 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1058
1059 close (fd);
1060
1061 return crc == file_crc;
1062}
1063
1064static char *debug_file_directory = NULL;
1065static void
1066show_debug_file_directory (struct ui_file *file, int from_tty,
1067 struct cmd_list_element *c, const char *value)
1068{
1069 fprintf_filtered (file, _("\
1070The directory where separate debug symbols are searched for is \"%s\".\n"),
1071 value);
1072}
1073
1074#if ! defined (DEBUG_SUBDIRECTORY)
1075#define DEBUG_SUBDIRECTORY ".debug"
1076#endif
1077
1078static char *
1079find_separate_debug_file (struct objfile *objfile)
1080{
1081 asection *sect;
1082 char *basename;
1083 char *dir;
1084 char *debugfile;
1085 char *name_copy;
1086 bfd_size_type debuglink_size;
1087 unsigned long crc32;
1088 int i;
1089
1090 basename = get_debug_link_info (objfile, &crc32);
1091
1092 if (basename == NULL)
1093 return NULL;
1094
1095 dir = xstrdup (objfile->name);
1096
1097 /* Strip off the final filename part, leaving the directory name,
1098 followed by a slash. Objfile names should always be absolute and
1099 tilde-expanded, so there should always be a slash in there
1100 somewhere. */
1101 for (i = strlen(dir) - 1; i >= 0; i--)
1102 {
1103 if (IS_DIR_SEPARATOR (dir[i]))
1104 break;
1105 }
1106 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1107 dir[i+1] = '\0';
1108
1109 debugfile = alloca (strlen (debug_file_directory) + 1
1110 + strlen (dir)
1111 + strlen (DEBUG_SUBDIRECTORY)
1112 + strlen ("/")
1113 + strlen (basename)
1114 + 1);
1115
1116 /* First try in the same directory as the original file. */
1117 strcpy (debugfile, dir);
1118 strcat (debugfile, basename);
1119
1120 if (separate_debug_file_exists (debugfile, crc32))
1121 {
1122 xfree (basename);
1123 xfree (dir);
1124 return xstrdup (debugfile);
1125 }
1126
1127 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1128 strcpy (debugfile, dir);
1129 strcat (debugfile, DEBUG_SUBDIRECTORY);
1130 strcat (debugfile, "/");
1131 strcat (debugfile, basename);
1132
1133 if (separate_debug_file_exists (debugfile, crc32))
1134 {
1135 xfree (basename);
1136 xfree (dir);
1137 return xstrdup (debugfile);
1138 }
1139
1140 /* Then try in the global debugfile directory. */
1141 strcpy (debugfile, debug_file_directory);
1142 strcat (debugfile, "/");
1143 strcat (debugfile, dir);
1144 strcat (debugfile, basename);
1145
1146 if (separate_debug_file_exists (debugfile, crc32))
1147 {
1148 xfree (basename);
1149 xfree (dir);
1150 return xstrdup (debugfile);
1151 }
1152
1153 xfree (basename);
1154 xfree (dir);
1155 return NULL;
1156}
1157
1158
1159/* This is the symbol-file command. Read the file, analyze its
1160 symbols, and add a struct symtab to a symtab list. The syntax of
1161 the command is rather bizarre--(1) buildargv implements various
1162 quoting conventions which are undocumented and have little or
1163 nothing in common with the way things are quoted (or not quoted)
1164 elsewhere in GDB, (2) options are used, which are not generally
1165 used in GDB (perhaps "set mapped on", "set readnow on" would be
1166 better), (3) the order of options matters, which is contrary to GNU
1167 conventions (because it is confusing and inconvenient). */
1168
1169void
1170symbol_file_command (char *args, int from_tty)
1171{
1172 char **argv;
1173 char *name = NULL;
1174 struct cleanup *cleanups;
1175 int flags = OBJF_USERLOADED;
1176
1177 dont_repeat ();
1178
1179 if (args == NULL)
1180 {
1181 symbol_file_clear (from_tty);
1182 }
1183 else
1184 {
1185 if ((argv = buildargv (args)) == NULL)
1186 {
1187 nomem (0);
1188 }
1189 cleanups = make_cleanup_freeargv (argv);
1190 while (*argv != NULL)
1191 {
1192 if (strcmp (*argv, "-readnow") == 0)
1193 flags |= OBJF_READNOW;
1194 else if (**argv == '-')
1195 error (_("unknown option `%s'"), *argv);
1196 else
1197 {
1198 name = *argv;
1199
1200 symbol_file_add_main_1 (name, from_tty, flags);
1201 }
1202 argv++;
1203 }
1204
1205 if (name == NULL)
1206 {
1207 error (_("no symbol file name was specified"));
1208 }
1209 do_cleanups (cleanups);
1210 }
1211}
1212
1213/* Set the initial language.
1214
1215 A better solution would be to record the language in the psymtab when reading
1216 partial symbols, and then use it (if known) to set the language. This would
1217 be a win for formats that encode the language in an easily discoverable place,
1218 such as DWARF. For stabs, we can jump through hoops looking for specially
1219 named symbols or try to intuit the language from the specific type of stabs
1220 we find, but we can't do that until later when we read in full symbols.
1221 FIXME. */
1222
1223static void
1224set_initial_language (void)
1225{
1226 struct partial_symtab *pst;
1227 enum language lang = language_unknown;
1228
1229 pst = find_main_psymtab ();
1230 if (pst != NULL)
1231 {
1232 if (pst->filename != NULL)
1233 {
1234 lang = deduce_language_from_filename (pst->filename);
1235 }
1236 if (lang == language_unknown)
1237 {
1238 /* Make C the default language */
1239 lang = language_c;
1240 }
1241 set_language (lang);
1242 expected_language = current_language; /* Don't warn the user */
1243 }
1244}
1245
1246/* Open file specified by NAME and hand it off to BFD for preliminary
1247 analysis. Result is a newly initialized bfd *, which includes a newly
1248 malloc'd` copy of NAME (tilde-expanded and made absolute).
1249 In case of trouble, error() is called. */
1250
1251bfd *
1252symfile_bfd_open (char *name)
1253{
1254 bfd *sym_bfd;
1255 int desc;
1256 char *absolute_name;
1257
1258
1259
1260 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1261
1262 /* Look down path for it, allocate 2nd new malloc'd copy. */
1263 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1264 0, &absolute_name);
1265#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1266 if (desc < 0)
1267 {
1268 char *exename = alloca (strlen (name) + 5);
1269 strcat (strcpy (exename, name), ".exe");
1270 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1271 O_RDONLY | O_BINARY, 0, &absolute_name);
1272 }
1273#endif
1274 if (desc < 0)
1275 {
1276 make_cleanup (xfree, name);
1277 perror_with_name (name);
1278 }
1279 xfree (name); /* Free 1st new malloc'd copy */
1280 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1281 /* It'll be freed in free_objfile(). */
1282
1283 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1284 if (!sym_bfd)
1285 {
1286 close (desc);
1287 make_cleanup (xfree, name);
1288 error (_("\"%s\": can't open to read symbols: %s."), name,
1289 bfd_errmsg (bfd_get_error ()));
1290 }
1291 bfd_set_cacheable (sym_bfd, 1);
1292
1293 if (!bfd_check_format (sym_bfd, bfd_object))
1294 {
1295 /* FIXME: should be checking for errors from bfd_close (for one thing,
1296 on error it does not free all the storage associated with the
1297 bfd). */
1298 bfd_close (sym_bfd); /* This also closes desc */
1299 make_cleanup (xfree, name);
1300 error (_("\"%s\": can't read symbols: %s."), name,
1301 bfd_errmsg (bfd_get_error ()));
1302 }
1303 return (sym_bfd);
1304}
1305
1306/* Return the section index for the given section name. Return -1 if
1307 the section was not found. */
1308int
1309get_section_index (struct objfile *objfile, char *section_name)
1310{
1311 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1312 if (sect)
1313 return sect->index;
1314 else
1315 return -1;
1316}
1317
1318/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1319 startup by the _initialize routine in each object file format reader,
1320 to register information about each format the the reader is prepared
1321 to handle. */
1322
1323void
1324add_symtab_fns (struct sym_fns *sf)
1325{
1326 sf->next = symtab_fns;
1327 symtab_fns = sf;
1328}
1329
1330
1331/* Initialize to read symbols from the symbol file sym_bfd. It either
1332 returns or calls error(). The result is an initialized struct sym_fns
1333 in the objfile structure, that contains cached information about the
1334 symbol file. */
1335
1336static void
1337find_sym_fns (struct objfile *objfile)
1338{
1339 struct sym_fns *sf;
1340 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1341 char *our_target = bfd_get_target (objfile->obfd);
1342
1343 if (our_flavour == bfd_target_srec_flavour
1344 || our_flavour == bfd_target_ihex_flavour
1345 || our_flavour == bfd_target_tekhex_flavour)
1346 return; /* No symbols. */
1347
1348 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1349 {
1350 if (our_flavour == sf->sym_flavour)
1351 {
1352 objfile->sf = sf;
1353 return;
1354 }
1355 }
1356 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1357 bfd_get_target (objfile->obfd));
1358}
1359\f
1360/* This function runs the load command of our current target. */
1361
1362static void
1363load_command (char *arg, int from_tty)
1364{
1365 if (arg == NULL)
1366 arg = get_exec_file (1);
1367 target_load (arg, from_tty);
1368
1369 /* After re-loading the executable, we don't really know which
1370 overlays are mapped any more. */
1371 overlay_cache_invalid = 1;
1372}
1373
1374/* This version of "load" should be usable for any target. Currently
1375 it is just used for remote targets, not inftarg.c or core files,
1376 on the theory that only in that case is it useful.
1377
1378 Avoiding xmodem and the like seems like a win (a) because we don't have
1379 to worry about finding it, and (b) On VMS, fork() is very slow and so
1380 we don't want to run a subprocess. On the other hand, I'm not sure how
1381 performance compares. */
1382
1383static int download_write_size = 512;
1384static void
1385show_download_write_size (struct ui_file *file, int from_tty,
1386 struct cmd_list_element *c, const char *value)
1387{
1388 fprintf_filtered (file, _("\
1389The write size used when downloading a program is %s.\n"),
1390 value);
1391}
1392static int validate_download = 0;
1393
1394/* Callback service function for generic_load (bfd_map_over_sections). */
1395
1396static void
1397add_section_size_callback (bfd *abfd, asection *asec, void *data)
1398{
1399 bfd_size_type *sum = data;
1400
1401 *sum += bfd_get_section_size (asec);
1402}
1403
1404/* Opaque data for load_section_callback. */
1405struct load_section_data {
1406 unsigned long load_offset;
1407 unsigned long write_count;
1408 unsigned long data_count;
1409 bfd_size_type total_size;
1410};
1411
1412/* Callback service function for generic_load (bfd_map_over_sections). */
1413
1414static void
1415load_section_callback (bfd *abfd, asection *asec, void *data)
1416{
1417 struct load_section_data *args = data;
1418
1419 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1420 {
1421 bfd_size_type size = bfd_get_section_size (asec);
1422 if (size > 0)
1423 {
1424 char *buffer;
1425 struct cleanup *old_chain;
1426 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1427 bfd_size_type block_size;
1428 int err;
1429 const char *sect_name = bfd_get_section_name (abfd, asec);
1430 bfd_size_type sent;
1431
1432 if (download_write_size > 0 && size > download_write_size)
1433 block_size = download_write_size;
1434 else
1435 block_size = size;
1436
1437 buffer = xmalloc (size);
1438 old_chain = make_cleanup (xfree, buffer);
1439
1440 /* Is this really necessary? I guess it gives the user something
1441 to look at during a long download. */
1442 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1443 sect_name, paddr_nz (size), paddr_nz (lma));
1444
1445 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1446
1447 sent = 0;
1448 do
1449 {
1450 int len;
1451 bfd_size_type this_transfer = size - sent;
1452
1453 if (this_transfer >= block_size)
1454 this_transfer = block_size;
1455 len = target_write_memory_partial (lma, buffer,
1456 this_transfer, &err);
1457 if (err)
1458 break;
1459 if (validate_download)
1460 {
1461 /* Broken memories and broken monitors manifest
1462 themselves here when bring new computers to
1463 life. This doubles already slow downloads. */
1464 /* NOTE: cagney/1999-10-18: A more efficient
1465 implementation might add a verify_memory()
1466 method to the target vector and then use
1467 that. remote.c could implement that method
1468 using the ``qCRC'' packet. */
1469 char *check = xmalloc (len);
1470 struct cleanup *verify_cleanups =
1471 make_cleanup (xfree, check);
1472
1473 if (target_read_memory (lma, check, len) != 0)
1474 error (_("Download verify read failed at 0x%s"),
1475 paddr (lma));
1476 if (memcmp (buffer, check, len) != 0)
1477 error (_("Download verify compare failed at 0x%s"),
1478 paddr (lma));
1479 do_cleanups (verify_cleanups);
1480 }
1481 args->data_count += len;
1482 lma += len;
1483 buffer += len;
1484 args->write_count += 1;
1485 sent += len;
1486 if (quit_flag
1487 || (deprecated_ui_load_progress_hook != NULL
1488 && deprecated_ui_load_progress_hook (sect_name, sent)))
1489 error (_("Canceled the download"));
1490
1491 if (deprecated_show_load_progress != NULL)
1492 deprecated_show_load_progress (sect_name, sent, size,
1493 args->data_count,
1494 args->total_size);
1495 }
1496 while (sent < size);
1497
1498 if (err != 0)
1499 error (_("Memory access error while loading section %s."), sect_name);
1500
1501 do_cleanups (old_chain);
1502 }
1503 }
1504}
1505
1506void
1507generic_load (char *args, int from_tty)
1508{
1509 asection *s;
1510 bfd *loadfile_bfd;
1511 time_t start_time, end_time; /* Start and end times of download */
1512 char *filename;
1513 struct cleanup *old_cleanups;
1514 char *offptr;
1515 struct load_section_data cbdata;
1516 CORE_ADDR entry;
1517
1518 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1519 cbdata.write_count = 0; /* Number of writes needed. */
1520 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1521 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1522
1523 /* Parse the input argument - the user can specify a load offset as
1524 a second argument. */
1525 filename = xmalloc (strlen (args) + 1);
1526 old_cleanups = make_cleanup (xfree, filename);
1527 strcpy (filename, args);
1528 offptr = strchr (filename, ' ');
1529 if (offptr != NULL)
1530 {
1531 char *endptr;
1532
1533 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1534 if (offptr == endptr)
1535 error (_("Invalid download offset:%s."), offptr);
1536 *offptr = '\0';
1537 }
1538 else
1539 cbdata.load_offset = 0;
1540
1541 /* Open the file for loading. */
1542 loadfile_bfd = bfd_openr (filename, gnutarget);
1543 if (loadfile_bfd == NULL)
1544 {
1545 perror_with_name (filename);
1546 return;
1547 }
1548
1549 /* FIXME: should be checking for errors from bfd_close (for one thing,
1550 on error it does not free all the storage associated with the
1551 bfd). */
1552 make_cleanup_bfd_close (loadfile_bfd);
1553
1554 if (!bfd_check_format (loadfile_bfd, bfd_object))
1555 {
1556 error (_("\"%s\" is not an object file: %s"), filename,
1557 bfd_errmsg (bfd_get_error ()));
1558 }
1559
1560 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1561 (void *) &cbdata.total_size);
1562
1563 start_time = time (NULL);
1564
1565 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1566
1567 end_time = time (NULL);
1568
1569 entry = bfd_get_start_address (loadfile_bfd);
1570 ui_out_text (uiout, "Start address ");
1571 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1572 ui_out_text (uiout, ", load size ");
1573 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1574 ui_out_text (uiout, "\n");
1575 /* We were doing this in remote-mips.c, I suspect it is right
1576 for other targets too. */
1577 write_pc (entry);
1578
1579 /* FIXME: are we supposed to call symbol_file_add or not? According
1580 to a comment from remote-mips.c (where a call to symbol_file_add
1581 was commented out), making the call confuses GDB if more than one
1582 file is loaded in. Some targets do (e.g., remote-vx.c) but
1583 others don't (or didn't - perhaps they have all been deleted). */
1584
1585 print_transfer_performance (gdb_stdout, cbdata.data_count,
1586 cbdata.write_count, end_time - start_time);
1587
1588 do_cleanups (old_cleanups);
1589}
1590
1591/* Report how fast the transfer went. */
1592
1593/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1594 replaced by print_transfer_performance (with a very different
1595 function signature). */
1596
1597void
1598report_transfer_performance (unsigned long data_count, time_t start_time,
1599 time_t end_time)
1600{
1601 print_transfer_performance (gdb_stdout, data_count,
1602 end_time - start_time, 0);
1603}
1604
1605void
1606print_transfer_performance (struct ui_file *stream,
1607 unsigned long data_count,
1608 unsigned long write_count,
1609 unsigned long time_count)
1610{
1611 ui_out_text (uiout, "Transfer rate: ");
1612 if (time_count > 0)
1613 {
1614 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1615 (data_count * 8) / time_count);
1616 ui_out_text (uiout, " bits/sec");
1617 }
1618 else
1619 {
1620 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1621 ui_out_text (uiout, " bits in <1 sec");
1622 }
1623 if (write_count > 0)
1624 {
1625 ui_out_text (uiout, ", ");
1626 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1627 ui_out_text (uiout, " bytes/write");
1628 }
1629 ui_out_text (uiout, ".\n");
1630}
1631
1632/* This function allows the addition of incrementally linked object files.
1633 It does not modify any state in the target, only in the debugger. */
1634/* Note: ezannoni 2000-04-13 This function/command used to have a
1635 special case syntax for the rombug target (Rombug is the boot
1636 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1637 rombug case, the user doesn't need to supply a text address,
1638 instead a call to target_link() (in target.c) would supply the
1639 value to use. We are now discontinuing this type of ad hoc syntax. */
1640
1641static void
1642add_symbol_file_command (char *args, int from_tty)
1643{
1644 char *filename = NULL;
1645 int flags = OBJF_USERLOADED;
1646 char *arg;
1647 int expecting_option = 0;
1648 int section_index = 0;
1649 int argcnt = 0;
1650 int sec_num = 0;
1651 int i;
1652 int expecting_sec_name = 0;
1653 int expecting_sec_addr = 0;
1654
1655 struct sect_opt
1656 {
1657 char *name;
1658 char *value;
1659 };
1660
1661 struct section_addr_info *section_addrs;
1662 struct sect_opt *sect_opts = NULL;
1663 size_t num_sect_opts = 0;
1664 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1665
1666 num_sect_opts = 16;
1667 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1668 * sizeof (struct sect_opt));
1669
1670 dont_repeat ();
1671
1672 if (args == NULL)
1673 error (_("add-symbol-file takes a file name and an address"));
1674
1675 /* Make a copy of the string that we can safely write into. */
1676 args = xstrdup (args);
1677
1678 while (*args != '\000')
1679 {
1680 /* Any leading spaces? */
1681 while (isspace (*args))
1682 args++;
1683
1684 /* Point arg to the beginning of the argument. */
1685 arg = args;
1686
1687 /* Move args pointer over the argument. */
1688 while ((*args != '\000') && !isspace (*args))
1689 args++;
1690
1691 /* If there are more arguments, terminate arg and
1692 proceed past it. */
1693 if (*args != '\000')
1694 *args++ = '\000';
1695
1696 /* Now process the argument. */
1697 if (argcnt == 0)
1698 {
1699 /* The first argument is the file name. */
1700 filename = tilde_expand (arg);
1701 make_cleanup (xfree, filename);
1702 }
1703 else
1704 if (argcnt == 1)
1705 {
1706 /* The second argument is always the text address at which
1707 to load the program. */
1708 sect_opts[section_index].name = ".text";
1709 sect_opts[section_index].value = arg;
1710 if (++section_index > num_sect_opts)
1711 {
1712 num_sect_opts *= 2;
1713 sect_opts = ((struct sect_opt *)
1714 xrealloc (sect_opts,
1715 num_sect_opts
1716 * sizeof (struct sect_opt)));
1717 }
1718 }
1719 else
1720 {
1721 /* It's an option (starting with '-') or it's an argument
1722 to an option */
1723
1724 if (*arg == '-')
1725 {
1726 if (strcmp (arg, "-readnow") == 0)
1727 flags |= OBJF_READNOW;
1728 else if (strcmp (arg, "-s") == 0)
1729 {
1730 expecting_sec_name = 1;
1731 expecting_sec_addr = 1;
1732 }
1733 }
1734 else
1735 {
1736 if (expecting_sec_name)
1737 {
1738 sect_opts[section_index].name = arg;
1739 expecting_sec_name = 0;
1740 }
1741 else
1742 if (expecting_sec_addr)
1743 {
1744 sect_opts[section_index].value = arg;
1745 expecting_sec_addr = 0;
1746 if (++section_index > num_sect_opts)
1747 {
1748 num_sect_opts *= 2;
1749 sect_opts = ((struct sect_opt *)
1750 xrealloc (sect_opts,
1751 num_sect_opts
1752 * sizeof (struct sect_opt)));
1753 }
1754 }
1755 else
1756 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1757 }
1758 }
1759 argcnt++;
1760 }
1761
1762 /* Print the prompt for the query below. And save the arguments into
1763 a sect_addr_info structure to be passed around to other
1764 functions. We have to split this up into separate print
1765 statements because hex_string returns a local static
1766 string. */
1767
1768 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1769 section_addrs = alloc_section_addr_info (section_index);
1770 make_cleanup (xfree, section_addrs);
1771 for (i = 0; i < section_index; i++)
1772 {
1773 CORE_ADDR addr;
1774 char *val = sect_opts[i].value;
1775 char *sec = sect_opts[i].name;
1776
1777 addr = parse_and_eval_address (val);
1778
1779 /* Here we store the section offsets in the order they were
1780 entered on the command line. */
1781 section_addrs->other[sec_num].name = sec;
1782 section_addrs->other[sec_num].addr = addr;
1783 printf_unfiltered ("\t%s_addr = %s\n",
1784 sec, hex_string ((unsigned long)addr));
1785 sec_num++;
1786
1787 /* The object's sections are initialized when a
1788 call is made to build_objfile_section_table (objfile).
1789 This happens in reread_symbols.
1790 At this point, we don't know what file type this is,
1791 so we can't determine what section names are valid. */
1792 }
1793
1794 if (from_tty && (!query ("%s", "")))
1795 error (_("Not confirmed."));
1796
1797 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1798
1799 /* Getting new symbols may change our opinion about what is
1800 frameless. */
1801 reinit_frame_cache ();
1802 do_cleanups (my_cleanups);
1803}
1804\f
1805static void
1806add_shared_symbol_files_command (char *args, int from_tty)
1807{
1808#ifdef ADD_SHARED_SYMBOL_FILES
1809 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1810#else
1811 error (_("This command is not available in this configuration of GDB."));
1812#endif
1813}
1814\f
1815/* Re-read symbols if a symbol-file has changed. */
1816void
1817reread_symbols (void)
1818{
1819 struct objfile *objfile;
1820 long new_modtime;
1821 int reread_one = 0;
1822 struct stat new_statbuf;
1823 int res;
1824
1825 /* With the addition of shared libraries, this should be modified,
1826 the load time should be saved in the partial symbol tables, since
1827 different tables may come from different source files. FIXME.
1828 This routine should then walk down each partial symbol table
1829 and see if the symbol table that it originates from has been changed */
1830
1831 for (objfile = object_files; objfile; objfile = objfile->next)
1832 {
1833 if (objfile->obfd)
1834 {
1835#ifdef DEPRECATED_IBM6000_TARGET
1836 /* If this object is from a shared library, then you should
1837 stat on the library name, not member name. */
1838
1839 if (objfile->obfd->my_archive)
1840 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1841 else
1842#endif
1843 res = stat (objfile->name, &new_statbuf);
1844 if (res != 0)
1845 {
1846 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1847 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1848 objfile->name);
1849 continue;
1850 }
1851 new_modtime = new_statbuf.st_mtime;
1852 if (new_modtime != objfile->mtime)
1853 {
1854 struct cleanup *old_cleanups;
1855 struct section_offsets *offsets;
1856 int num_offsets;
1857 char *obfd_filename;
1858
1859 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1860 objfile->name);
1861
1862 /* There are various functions like symbol_file_add,
1863 symfile_bfd_open, syms_from_objfile, etc., which might
1864 appear to do what we want. But they have various other
1865 effects which we *don't* want. So we just do stuff
1866 ourselves. We don't worry about mapped files (for one thing,
1867 any mapped file will be out of date). */
1868
1869 /* If we get an error, blow away this objfile (not sure if
1870 that is the correct response for things like shared
1871 libraries). */
1872 old_cleanups = make_cleanup_free_objfile (objfile);
1873 /* We need to do this whenever any symbols go away. */
1874 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1875
1876 /* Clean up any state BFD has sitting around. We don't need
1877 to close the descriptor but BFD lacks a way of closing the
1878 BFD without closing the descriptor. */
1879 obfd_filename = bfd_get_filename (objfile->obfd);
1880 if (!bfd_close (objfile->obfd))
1881 error (_("Can't close BFD for %s: %s"), objfile->name,
1882 bfd_errmsg (bfd_get_error ()));
1883 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1884 if (objfile->obfd == NULL)
1885 error (_("Can't open %s to read symbols."), objfile->name);
1886 /* bfd_openr sets cacheable to true, which is what we want. */
1887 if (!bfd_check_format (objfile->obfd, bfd_object))
1888 error (_("Can't read symbols from %s: %s."), objfile->name,
1889 bfd_errmsg (bfd_get_error ()));
1890
1891 /* Save the offsets, we will nuke them with the rest of the
1892 objfile_obstack. */
1893 num_offsets = objfile->num_sections;
1894 offsets = ((struct section_offsets *)
1895 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1896 memcpy (offsets, objfile->section_offsets,
1897 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1898
1899 /* Nuke all the state that we will re-read. Much of the following
1900 code which sets things to NULL really is necessary to tell
1901 other parts of GDB that there is nothing currently there. */
1902
1903 /* FIXME: Do we have to free a whole linked list, or is this
1904 enough? */
1905 if (objfile->global_psymbols.list)
1906 xfree (objfile->global_psymbols.list);
1907 memset (&objfile->global_psymbols, 0,
1908 sizeof (objfile->global_psymbols));
1909 if (objfile->static_psymbols.list)
1910 xfree (objfile->static_psymbols.list);
1911 memset (&objfile->static_psymbols, 0,
1912 sizeof (objfile->static_psymbols));
1913
1914 /* Free the obstacks for non-reusable objfiles */
1915 bcache_xfree (objfile->psymbol_cache);
1916 objfile->psymbol_cache = bcache_xmalloc ();
1917 bcache_xfree (objfile->macro_cache);
1918 objfile->macro_cache = bcache_xmalloc ();
1919 if (objfile->demangled_names_hash != NULL)
1920 {
1921 htab_delete (objfile->demangled_names_hash);
1922 objfile->demangled_names_hash = NULL;
1923 }
1924 obstack_free (&objfile->objfile_obstack, 0);
1925 objfile->sections = NULL;
1926 objfile->symtabs = NULL;
1927 objfile->psymtabs = NULL;
1928 objfile->free_psymtabs = NULL;
1929 objfile->cp_namespace_symtab = NULL;
1930 objfile->msymbols = NULL;
1931 objfile->deprecated_sym_private = NULL;
1932 objfile->minimal_symbol_count = 0;
1933 memset (&objfile->msymbol_hash, 0,
1934 sizeof (objfile->msymbol_hash));
1935 memset (&objfile->msymbol_demangled_hash, 0,
1936 sizeof (objfile->msymbol_demangled_hash));
1937 objfile->fundamental_types = NULL;
1938 clear_objfile_data (objfile);
1939 if (objfile->sf != NULL)
1940 {
1941 (*objfile->sf->sym_finish) (objfile);
1942 }
1943
1944 /* We never make this a mapped file. */
1945 objfile->md = NULL;
1946 objfile->psymbol_cache = bcache_xmalloc ();
1947 objfile->macro_cache = bcache_xmalloc ();
1948 /* obstack_init also initializes the obstack so it is
1949 empty. We could use obstack_specify_allocation but
1950 gdb_obstack.h specifies the alloc/dealloc
1951 functions. */
1952 obstack_init (&objfile->objfile_obstack);
1953 if (build_objfile_section_table (objfile))
1954 {
1955 error (_("Can't find the file sections in `%s': %s"),
1956 objfile->name, bfd_errmsg (bfd_get_error ()));
1957 }
1958 terminate_minimal_symbol_table (objfile);
1959
1960 /* We use the same section offsets as from last time. I'm not
1961 sure whether that is always correct for shared libraries. */
1962 objfile->section_offsets = (struct section_offsets *)
1963 obstack_alloc (&objfile->objfile_obstack,
1964 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1965 memcpy (objfile->section_offsets, offsets,
1966 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1967 objfile->num_sections = num_offsets;
1968
1969 /* What the hell is sym_new_init for, anyway? The concept of
1970 distinguishing between the main file and additional files
1971 in this way seems rather dubious. */
1972 if (objfile == symfile_objfile)
1973 {
1974 (*objfile->sf->sym_new_init) (objfile);
1975 }
1976
1977 (*objfile->sf->sym_init) (objfile);
1978 clear_complaints (&symfile_complaints, 1, 1);
1979 /* The "mainline" parameter is a hideous hack; I think leaving it
1980 zero is OK since dbxread.c also does what it needs to do if
1981 objfile->global_psymbols.size is 0. */
1982 (*objfile->sf->sym_read) (objfile, 0);
1983 if (!have_partial_symbols () && !have_full_symbols ())
1984 {
1985 wrap_here ("");
1986 printf_unfiltered (_("(no debugging symbols found)\n"));
1987 wrap_here ("");
1988 }
1989 objfile->flags |= OBJF_SYMS;
1990
1991 /* We're done reading the symbol file; finish off complaints. */
1992 clear_complaints (&symfile_complaints, 0, 1);
1993
1994 /* Getting new symbols may change our opinion about what is
1995 frameless. */
1996
1997 reinit_frame_cache ();
1998
1999 /* Discard cleanups as symbol reading was successful. */
2000 discard_cleanups (old_cleanups);
2001
2002 /* If the mtime has changed between the time we set new_modtime
2003 and now, we *want* this to be out of date, so don't call stat
2004 again now. */
2005 objfile->mtime = new_modtime;
2006 reread_one = 1;
2007 reread_separate_symbols (objfile);
2008 }
2009 }
2010 }
2011
2012 if (reread_one)
2013 {
2014 clear_symtab_users ();
2015 /* At least one objfile has changed, so we can consider that
2016 the executable we're debugging has changed too. */
2017 observer_notify_executable_changed (NULL);
2018 }
2019
2020}
2021
2022
2023/* Handle separate debug info for OBJFILE, which has just been
2024 re-read:
2025 - If we had separate debug info before, but now we don't, get rid
2026 of the separated objfile.
2027 - If we didn't have separated debug info before, but now we do,
2028 read in the new separated debug info file.
2029 - If the debug link points to a different file, toss the old one
2030 and read the new one.
2031 This function does *not* handle the case where objfile is still
2032 using the same separate debug info file, but that file's timestamp
2033 has changed. That case should be handled by the loop in
2034 reread_symbols already. */
2035static void
2036reread_separate_symbols (struct objfile *objfile)
2037{
2038 char *debug_file;
2039 unsigned long crc32;
2040
2041 /* Does the updated objfile's debug info live in a
2042 separate file? */
2043 debug_file = find_separate_debug_file (objfile);
2044
2045 if (objfile->separate_debug_objfile)
2046 {
2047 /* There are two cases where we need to get rid of
2048 the old separated debug info objfile:
2049 - if the new primary objfile doesn't have
2050 separated debug info, or
2051 - if the new primary objfile has separate debug
2052 info, but it's under a different filename.
2053
2054 If the old and new objfiles both have separate
2055 debug info, under the same filename, then we're
2056 okay --- if the separated file's contents have
2057 changed, we will have caught that when we
2058 visited it in this function's outermost
2059 loop. */
2060 if (! debug_file
2061 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2062 free_objfile (objfile->separate_debug_objfile);
2063 }
2064
2065 /* If the new objfile has separate debug info, and we
2066 haven't loaded it already, do so now. */
2067 if (debug_file
2068 && ! objfile->separate_debug_objfile)
2069 {
2070 /* Use the same section offset table as objfile itself.
2071 Preserve the flags from objfile that make sense. */
2072 objfile->separate_debug_objfile
2073 = (symbol_file_add_with_addrs_or_offsets
2074 (symfile_bfd_open (debug_file),
2075 info_verbose, /* from_tty: Don't override the default. */
2076 0, /* No addr table. */
2077 objfile->section_offsets, objfile->num_sections,
2078 0, /* Not mainline. See comments about this above. */
2079 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2080 | OBJF_USERLOADED)));
2081 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2082 = objfile;
2083 }
2084}
2085
2086
2087\f
2088
2089
2090typedef struct
2091{
2092 char *ext;
2093 enum language lang;
2094}
2095filename_language;
2096
2097static filename_language *filename_language_table;
2098static int fl_table_size, fl_table_next;
2099
2100static void
2101add_filename_language (char *ext, enum language lang)
2102{
2103 if (fl_table_next >= fl_table_size)
2104 {
2105 fl_table_size += 10;
2106 filename_language_table =
2107 xrealloc (filename_language_table,
2108 fl_table_size * sizeof (*filename_language_table));
2109 }
2110
2111 filename_language_table[fl_table_next].ext = xstrdup (ext);
2112 filename_language_table[fl_table_next].lang = lang;
2113 fl_table_next++;
2114}
2115
2116static char *ext_args;
2117static void
2118show_ext_args (struct ui_file *file, int from_tty,
2119 struct cmd_list_element *c, const char *value)
2120{
2121 fprintf_filtered (file, _("\
2122Mapping between filename extension and source language is \"%s\".\n"),
2123 value);
2124}
2125
2126static void
2127set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2128{
2129 int i;
2130 char *cp = ext_args;
2131 enum language lang;
2132
2133 /* First arg is filename extension, starting with '.' */
2134 if (*cp != '.')
2135 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2136
2137 /* Find end of first arg. */
2138 while (*cp && !isspace (*cp))
2139 cp++;
2140
2141 if (*cp == '\0')
2142 error (_("'%s': two arguments required -- filename extension and language"),
2143 ext_args);
2144
2145 /* Null-terminate first arg */
2146 *cp++ = '\0';
2147
2148 /* Find beginning of second arg, which should be a source language. */
2149 while (*cp && isspace (*cp))
2150 cp++;
2151
2152 if (*cp == '\0')
2153 error (_("'%s': two arguments required -- filename extension and language"),
2154 ext_args);
2155
2156 /* Lookup the language from among those we know. */
2157 lang = language_enum (cp);
2158
2159 /* Now lookup the filename extension: do we already know it? */
2160 for (i = 0; i < fl_table_next; i++)
2161 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2162 break;
2163
2164 if (i >= fl_table_next)
2165 {
2166 /* new file extension */
2167 add_filename_language (ext_args, lang);
2168 }
2169 else
2170 {
2171 /* redefining a previously known filename extension */
2172
2173 /* if (from_tty) */
2174 /* query ("Really make files of type %s '%s'?", */
2175 /* ext_args, language_str (lang)); */
2176
2177 xfree (filename_language_table[i].ext);
2178 filename_language_table[i].ext = xstrdup (ext_args);
2179 filename_language_table[i].lang = lang;
2180 }
2181}
2182
2183static void
2184info_ext_lang_command (char *args, int from_tty)
2185{
2186 int i;
2187
2188 printf_filtered (_("Filename extensions and the languages they represent:"));
2189 printf_filtered ("\n\n");
2190 for (i = 0; i < fl_table_next; i++)
2191 printf_filtered ("\t%s\t- %s\n",
2192 filename_language_table[i].ext,
2193 language_str (filename_language_table[i].lang));
2194}
2195
2196static void
2197init_filename_language_table (void)
2198{
2199 if (fl_table_size == 0) /* protect against repetition */
2200 {
2201 fl_table_size = 20;
2202 fl_table_next = 0;
2203 filename_language_table =
2204 xmalloc (fl_table_size * sizeof (*filename_language_table));
2205 add_filename_language (".c", language_c);
2206 add_filename_language (".C", language_cplus);
2207 add_filename_language (".cc", language_cplus);
2208 add_filename_language (".cp", language_cplus);
2209 add_filename_language (".cpp", language_cplus);
2210 add_filename_language (".cxx", language_cplus);
2211 add_filename_language (".c++", language_cplus);
2212 add_filename_language (".java", language_java);
2213 add_filename_language (".class", language_java);
2214 add_filename_language (".m", language_objc);
2215 add_filename_language (".f", language_fortran);
2216 add_filename_language (".F", language_fortran);
2217 add_filename_language (".s", language_asm);
2218 add_filename_language (".S", language_asm);
2219 add_filename_language (".pas", language_pascal);
2220 add_filename_language (".p", language_pascal);
2221 add_filename_language (".pp", language_pascal);
2222 add_filename_language (".adb", language_ada);
2223 add_filename_language (".ads", language_ada);
2224 add_filename_language (".a", language_ada);
2225 add_filename_language (".ada", language_ada);
2226 }
2227}
2228
2229enum language
2230deduce_language_from_filename (char *filename)
2231{
2232 int i;
2233 char *cp;
2234
2235 if (filename != NULL)
2236 if ((cp = strrchr (filename, '.')) != NULL)
2237 for (i = 0; i < fl_table_next; i++)
2238 if (strcmp (cp, filename_language_table[i].ext) == 0)
2239 return filename_language_table[i].lang;
2240
2241 return language_unknown;
2242}
2243\f
2244/* allocate_symtab:
2245
2246 Allocate and partly initialize a new symbol table. Return a pointer
2247 to it. error() if no space.
2248
2249 Caller must set these fields:
2250 LINETABLE(symtab)
2251 symtab->blockvector
2252 symtab->dirname
2253 symtab->free_code
2254 symtab->free_ptr
2255 possibly free_named_symtabs (symtab->filename);
2256 */
2257
2258struct symtab *
2259allocate_symtab (char *filename, struct objfile *objfile)
2260{
2261 struct symtab *symtab;
2262
2263 symtab = (struct symtab *)
2264 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2265 memset (symtab, 0, sizeof (*symtab));
2266 symtab->filename = obsavestring (filename, strlen (filename),
2267 &objfile->objfile_obstack);
2268 symtab->fullname = NULL;
2269 symtab->language = deduce_language_from_filename (filename);
2270 symtab->debugformat = obsavestring ("unknown", 7,
2271 &objfile->objfile_obstack);
2272
2273 /* Hook it to the objfile it comes from */
2274
2275 symtab->objfile = objfile;
2276 symtab->next = objfile->symtabs;
2277 objfile->symtabs = symtab;
2278
2279 /* FIXME: This should go away. It is only defined for the Z8000,
2280 and the Z8000 definition of this macro doesn't have anything to
2281 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2282 here for convenience. */
2283#ifdef INIT_EXTRA_SYMTAB_INFO
2284 INIT_EXTRA_SYMTAB_INFO (symtab);
2285#endif
2286
2287 return (symtab);
2288}
2289
2290struct partial_symtab *
2291allocate_psymtab (char *filename, struct objfile *objfile)
2292{
2293 struct partial_symtab *psymtab;
2294
2295 if (objfile->free_psymtabs)
2296 {
2297 psymtab = objfile->free_psymtabs;
2298 objfile->free_psymtabs = psymtab->next;
2299 }
2300 else
2301 psymtab = (struct partial_symtab *)
2302 obstack_alloc (&objfile->objfile_obstack,
2303 sizeof (struct partial_symtab));
2304
2305 memset (psymtab, 0, sizeof (struct partial_symtab));
2306 psymtab->filename = obsavestring (filename, strlen (filename),
2307 &objfile->objfile_obstack);
2308 psymtab->symtab = NULL;
2309
2310 /* Prepend it to the psymtab list for the objfile it belongs to.
2311 Psymtabs are searched in most recent inserted -> least recent
2312 inserted order. */
2313
2314 psymtab->objfile = objfile;
2315 psymtab->next = objfile->psymtabs;
2316 objfile->psymtabs = psymtab;
2317#if 0
2318 {
2319 struct partial_symtab **prev_pst;
2320 psymtab->objfile = objfile;
2321 psymtab->next = NULL;
2322 prev_pst = &(objfile->psymtabs);
2323 while ((*prev_pst) != NULL)
2324 prev_pst = &((*prev_pst)->next);
2325 (*prev_pst) = psymtab;
2326 }
2327#endif
2328
2329 return (psymtab);
2330}
2331
2332void
2333discard_psymtab (struct partial_symtab *pst)
2334{
2335 struct partial_symtab **prev_pst;
2336
2337 /* From dbxread.c:
2338 Empty psymtabs happen as a result of header files which don't
2339 have any symbols in them. There can be a lot of them. But this
2340 check is wrong, in that a psymtab with N_SLINE entries but
2341 nothing else is not empty, but we don't realize that. Fixing
2342 that without slowing things down might be tricky. */
2343
2344 /* First, snip it out of the psymtab chain */
2345
2346 prev_pst = &(pst->objfile->psymtabs);
2347 while ((*prev_pst) != pst)
2348 prev_pst = &((*prev_pst)->next);
2349 (*prev_pst) = pst->next;
2350
2351 /* Next, put it on a free list for recycling */
2352
2353 pst->next = pst->objfile->free_psymtabs;
2354 pst->objfile->free_psymtabs = pst;
2355}
2356\f
2357
2358/* Reset all data structures in gdb which may contain references to symbol
2359 table data. */
2360
2361void
2362clear_symtab_users (void)
2363{
2364 /* Someday, we should do better than this, by only blowing away
2365 the things that really need to be blown. */
2366
2367 /* Clear the "current" symtab first, because it is no longer valid.
2368 breakpoint_re_set may try to access the current symtab. */
2369 clear_current_source_symtab_and_line ();
2370
2371 clear_value_history ();
2372 clear_displays ();
2373 clear_internalvars ();
2374 breakpoint_re_set ();
2375 set_default_breakpoint (0, 0, 0, 0);
2376 clear_pc_function_cache ();
2377 if (deprecated_target_new_objfile_hook)
2378 deprecated_target_new_objfile_hook (NULL);
2379}
2380
2381static void
2382clear_symtab_users_cleanup (void *ignore)
2383{
2384 clear_symtab_users ();
2385}
2386
2387/* clear_symtab_users_once:
2388
2389 This function is run after symbol reading, or from a cleanup.
2390 If an old symbol table was obsoleted, the old symbol table
2391 has been blown away, but the other GDB data structures that may
2392 reference it have not yet been cleared or re-directed. (The old
2393 symtab was zapped, and the cleanup queued, in free_named_symtab()
2394 below.)
2395
2396 This function can be queued N times as a cleanup, or called
2397 directly; it will do all the work the first time, and then will be a
2398 no-op until the next time it is queued. This works by bumping a
2399 counter at queueing time. Much later when the cleanup is run, or at
2400 the end of symbol processing (in case the cleanup is discarded), if
2401 the queued count is greater than the "done-count", we do the work
2402 and set the done-count to the queued count. If the queued count is
2403 less than or equal to the done-count, we just ignore the call. This
2404 is needed because reading a single .o file will often replace many
2405 symtabs (one per .h file, for example), and we don't want to reset
2406 the breakpoints N times in the user's face.
2407
2408 The reason we both queue a cleanup, and call it directly after symbol
2409 reading, is because the cleanup protects us in case of errors, but is
2410 discarded if symbol reading is successful. */
2411
2412#if 0
2413/* FIXME: As free_named_symtabs is currently a big noop this function
2414 is no longer needed. */
2415static void clear_symtab_users_once (void);
2416
2417static int clear_symtab_users_queued;
2418static int clear_symtab_users_done;
2419
2420static void
2421clear_symtab_users_once (void)
2422{
2423 /* Enforce once-per-`do_cleanups'-semantics */
2424 if (clear_symtab_users_queued <= clear_symtab_users_done)
2425 return;
2426 clear_symtab_users_done = clear_symtab_users_queued;
2427
2428 clear_symtab_users ();
2429}
2430#endif
2431
2432/* Delete the specified psymtab, and any others that reference it. */
2433
2434static void
2435cashier_psymtab (struct partial_symtab *pst)
2436{
2437 struct partial_symtab *ps, *pprev = NULL;
2438 int i;
2439
2440 /* Find its previous psymtab in the chain */
2441 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2442 {
2443 if (ps == pst)
2444 break;
2445 pprev = ps;
2446 }
2447
2448 if (ps)
2449 {
2450 /* Unhook it from the chain. */
2451 if (ps == pst->objfile->psymtabs)
2452 pst->objfile->psymtabs = ps->next;
2453 else
2454 pprev->next = ps->next;
2455
2456 /* FIXME, we can't conveniently deallocate the entries in the
2457 partial_symbol lists (global_psymbols/static_psymbols) that
2458 this psymtab points to. These just take up space until all
2459 the psymtabs are reclaimed. Ditto the dependencies list and
2460 filename, which are all in the objfile_obstack. */
2461
2462 /* We need to cashier any psymtab that has this one as a dependency... */
2463 again:
2464 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2465 {
2466 for (i = 0; i < ps->number_of_dependencies; i++)
2467 {
2468 if (ps->dependencies[i] == pst)
2469 {
2470 cashier_psymtab (ps);
2471 goto again; /* Must restart, chain has been munged. */
2472 }
2473 }
2474 }
2475 }
2476}
2477
2478/* If a symtab or psymtab for filename NAME is found, free it along
2479 with any dependent breakpoints, displays, etc.
2480 Used when loading new versions of object modules with the "add-file"
2481 command. This is only called on the top-level symtab or psymtab's name;
2482 it is not called for subsidiary files such as .h files.
2483
2484 Return value is 1 if we blew away the environment, 0 if not.
2485 FIXME. The return value appears to never be used.
2486
2487 FIXME. I think this is not the best way to do this. We should
2488 work on being gentler to the environment while still cleaning up
2489 all stray pointers into the freed symtab. */
2490
2491int
2492free_named_symtabs (char *name)
2493{
2494#if 0
2495 /* FIXME: With the new method of each objfile having it's own
2496 psymtab list, this function needs serious rethinking. In particular,
2497 why was it ever necessary to toss psymtabs with specific compilation
2498 unit filenames, as opposed to all psymtabs from a particular symbol
2499 file? -- fnf
2500 Well, the answer is that some systems permit reloading of particular
2501 compilation units. We want to blow away any old info about these
2502 compilation units, regardless of which objfiles they arrived in. --gnu. */
2503
2504 struct symtab *s;
2505 struct symtab *prev;
2506 struct partial_symtab *ps;
2507 struct blockvector *bv;
2508 int blewit = 0;
2509
2510 /* We only wack things if the symbol-reload switch is set. */
2511 if (!symbol_reloading)
2512 return 0;
2513
2514 /* Some symbol formats have trouble providing file names... */
2515 if (name == 0 || *name == '\0')
2516 return 0;
2517
2518 /* Look for a psymtab with the specified name. */
2519
2520again2:
2521 for (ps = partial_symtab_list; ps; ps = ps->next)
2522 {
2523 if (strcmp (name, ps->filename) == 0)
2524 {
2525 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2526 goto again2; /* Must restart, chain has been munged */
2527 }
2528 }
2529
2530 /* Look for a symtab with the specified name. */
2531
2532 for (s = symtab_list; s; s = s->next)
2533 {
2534 if (strcmp (name, s->filename) == 0)
2535 break;
2536 prev = s;
2537 }
2538
2539 if (s)
2540 {
2541 if (s == symtab_list)
2542 symtab_list = s->next;
2543 else
2544 prev->next = s->next;
2545
2546 /* For now, queue a delete for all breakpoints, displays, etc., whether
2547 or not they depend on the symtab being freed. This should be
2548 changed so that only those data structures affected are deleted. */
2549
2550 /* But don't delete anything if the symtab is empty.
2551 This test is necessary due to a bug in "dbxread.c" that
2552 causes empty symtabs to be created for N_SO symbols that
2553 contain the pathname of the object file. (This problem
2554 has been fixed in GDB 3.9x). */
2555
2556 bv = BLOCKVECTOR (s);
2557 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2558 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2559 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2560 {
2561 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2562 name);
2563 clear_symtab_users_queued++;
2564 make_cleanup (clear_symtab_users_once, 0);
2565 blewit = 1;
2566 }
2567 else
2568 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2569 name);
2570
2571 free_symtab (s);
2572 }
2573 else
2574 {
2575 /* It is still possible that some breakpoints will be affected
2576 even though no symtab was found, since the file might have
2577 been compiled without debugging, and hence not be associated
2578 with a symtab. In order to handle this correctly, we would need
2579 to keep a list of text address ranges for undebuggable files.
2580 For now, we do nothing, since this is a fairly obscure case. */
2581 ;
2582 }
2583
2584 /* FIXME, what about the minimal symbol table? */
2585 return blewit;
2586#else
2587 return (0);
2588#endif
2589}
2590\f
2591/* Allocate and partially fill a partial symtab. It will be
2592 completely filled at the end of the symbol list.
2593
2594 FILENAME is the name of the symbol-file we are reading from. */
2595
2596struct partial_symtab *
2597start_psymtab_common (struct objfile *objfile,
2598 struct section_offsets *section_offsets, char *filename,
2599 CORE_ADDR textlow, struct partial_symbol **global_syms,
2600 struct partial_symbol **static_syms)
2601{
2602 struct partial_symtab *psymtab;
2603
2604 psymtab = allocate_psymtab (filename, objfile);
2605 psymtab->section_offsets = section_offsets;
2606 psymtab->textlow = textlow;
2607 psymtab->texthigh = psymtab->textlow; /* default */
2608 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2609 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2610 return (psymtab);
2611}
2612\f
2613/* Add a symbol with a long value to a psymtab.
2614 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2615 Return the partial symbol that has been added. */
2616
2617/* NOTE: carlton/2003-09-11: The reason why we return the partial
2618 symbol is so that callers can get access to the symbol's demangled
2619 name, which they don't have any cheap way to determine otherwise.
2620 (Currenly, dwarf2read.c is the only file who uses that information,
2621 though it's possible that other readers might in the future.)
2622 Elena wasn't thrilled about that, and I don't blame her, but we
2623 couldn't come up with a better way to get that information. If
2624 it's needed in other situations, we could consider breaking up
2625 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2626 cache. */
2627
2628const struct partial_symbol *
2629add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2630 enum address_class class,
2631 struct psymbol_allocation_list *list, long val, /* Value as a long */
2632 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2633 enum language language, struct objfile *objfile)
2634{
2635 struct partial_symbol *psym;
2636 char *buf = alloca (namelength + 1);
2637 /* psymbol is static so that there will be no uninitialized gaps in the
2638 structure which might contain random data, causing cache misses in
2639 bcache. */
2640 static struct partial_symbol psymbol;
2641
2642 /* Create local copy of the partial symbol */
2643 memcpy (buf, name, namelength);
2644 buf[namelength] = '\0';
2645 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2646 if (val != 0)
2647 {
2648 SYMBOL_VALUE (&psymbol) = val;
2649 }
2650 else
2651 {
2652 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2653 }
2654 SYMBOL_SECTION (&psymbol) = 0;
2655 SYMBOL_LANGUAGE (&psymbol) = language;
2656 PSYMBOL_DOMAIN (&psymbol) = domain;
2657 PSYMBOL_CLASS (&psymbol) = class;
2658
2659 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2660
2661 /* Stash the partial symbol away in the cache */
2662 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2663 objfile->psymbol_cache);
2664
2665 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2666 if (list->next >= list->list + list->size)
2667 {
2668 extend_psymbol_list (list, objfile);
2669 }
2670 *list->next++ = psym;
2671 OBJSTAT (objfile, n_psyms++);
2672
2673 return psym;
2674}
2675
2676/* Add a symbol with a long value to a psymtab. This differs from
2677 * add_psymbol_to_list above in taking both a mangled and a demangled
2678 * name. */
2679
2680void
2681add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2682 int dem_namelength, domain_enum domain,
2683 enum address_class class,
2684 struct psymbol_allocation_list *list, long val, /* Value as a long */
2685 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2686 enum language language,
2687 struct objfile *objfile)
2688{
2689 struct partial_symbol *psym;
2690 char *buf = alloca (namelength + 1);
2691 /* psymbol is static so that there will be no uninitialized gaps in the
2692 structure which might contain random data, causing cache misses in
2693 bcache. */
2694 static struct partial_symbol psymbol;
2695
2696 /* Create local copy of the partial symbol */
2697
2698 memcpy (buf, name, namelength);
2699 buf[namelength] = '\0';
2700 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2701 objfile->psymbol_cache);
2702
2703 buf = alloca (dem_namelength + 1);
2704 memcpy (buf, dem_name, dem_namelength);
2705 buf[dem_namelength] = '\0';
2706
2707 switch (language)
2708 {
2709 case language_c:
2710 case language_cplus:
2711 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2712 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2713 break;
2714 /* FIXME What should be done for the default case? Ignoring for now. */
2715 }
2716
2717 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2718 if (val != 0)
2719 {
2720 SYMBOL_VALUE (&psymbol) = val;
2721 }
2722 else
2723 {
2724 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2725 }
2726 SYMBOL_SECTION (&psymbol) = 0;
2727 SYMBOL_LANGUAGE (&psymbol) = language;
2728 PSYMBOL_DOMAIN (&psymbol) = domain;
2729 PSYMBOL_CLASS (&psymbol) = class;
2730 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2731
2732 /* Stash the partial symbol away in the cache */
2733 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2734 objfile->psymbol_cache);
2735
2736 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2737 if (list->next >= list->list + list->size)
2738 {
2739 extend_psymbol_list (list, objfile);
2740 }
2741 *list->next++ = psym;
2742 OBJSTAT (objfile, n_psyms++);
2743}
2744
2745/* Initialize storage for partial symbols. */
2746
2747void
2748init_psymbol_list (struct objfile *objfile, int total_symbols)
2749{
2750 /* Free any previously allocated psymbol lists. */
2751
2752 if (objfile->global_psymbols.list)
2753 {
2754 xfree (objfile->global_psymbols.list);
2755 }
2756 if (objfile->static_psymbols.list)
2757 {
2758 xfree (objfile->static_psymbols.list);
2759 }
2760
2761 /* Current best guess is that approximately a twentieth
2762 of the total symbols (in a debugging file) are global or static
2763 oriented symbols */
2764
2765 objfile->global_psymbols.size = total_symbols / 10;
2766 objfile->static_psymbols.size = total_symbols / 10;
2767
2768 if (objfile->global_psymbols.size > 0)
2769 {
2770 objfile->global_psymbols.next =
2771 objfile->global_psymbols.list = (struct partial_symbol **)
2772 xmalloc ((objfile->global_psymbols.size
2773 * sizeof (struct partial_symbol *)));
2774 }
2775 if (objfile->static_psymbols.size > 0)
2776 {
2777 objfile->static_psymbols.next =
2778 objfile->static_psymbols.list = (struct partial_symbol **)
2779 xmalloc ((objfile->static_psymbols.size
2780 * sizeof (struct partial_symbol *)));
2781 }
2782}
2783
2784/* OVERLAYS:
2785 The following code implements an abstraction for debugging overlay sections.
2786
2787 The target model is as follows:
2788 1) The gnu linker will permit multiple sections to be mapped into the
2789 same VMA, each with its own unique LMA (or load address).
2790 2) It is assumed that some runtime mechanism exists for mapping the
2791 sections, one by one, from the load address into the VMA address.
2792 3) This code provides a mechanism for gdb to keep track of which
2793 sections should be considered to be mapped from the VMA to the LMA.
2794 This information is used for symbol lookup, and memory read/write.
2795 For instance, if a section has been mapped then its contents
2796 should be read from the VMA, otherwise from the LMA.
2797
2798 Two levels of debugger support for overlays are available. One is
2799 "manual", in which the debugger relies on the user to tell it which
2800 overlays are currently mapped. This level of support is
2801 implemented entirely in the core debugger, and the information about
2802 whether a section is mapped is kept in the objfile->obj_section table.
2803
2804 The second level of support is "automatic", and is only available if
2805 the target-specific code provides functionality to read the target's
2806 overlay mapping table, and translate its contents for the debugger
2807 (by updating the mapped state information in the obj_section tables).
2808
2809 The interface is as follows:
2810 User commands:
2811 overlay map <name> -- tell gdb to consider this section mapped
2812 overlay unmap <name> -- tell gdb to consider this section unmapped
2813 overlay list -- list the sections that GDB thinks are mapped
2814 overlay read-target -- get the target's state of what's mapped
2815 overlay off/manual/auto -- set overlay debugging state
2816 Functional interface:
2817 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2818 section, return that section.
2819 find_pc_overlay(pc): find any overlay section that contains
2820 the pc, either in its VMA or its LMA
2821 overlay_is_mapped(sect): true if overlay is marked as mapped
2822 section_is_overlay(sect): true if section's VMA != LMA
2823 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2824 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2825 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2826 overlay_mapped_address(...): map an address from section's LMA to VMA
2827 overlay_unmapped_address(...): map an address from section's VMA to LMA
2828 symbol_overlayed_address(...): Return a "current" address for symbol:
2829 either in VMA or LMA depending on whether
2830 the symbol's section is currently mapped
2831 */
2832
2833/* Overlay debugging state: */
2834
2835enum overlay_debugging_state overlay_debugging = ovly_off;
2836int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2837
2838/* Target vector for refreshing overlay mapped state */
2839static void simple_overlay_update (struct obj_section *);
2840void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2841
2842/* Function: section_is_overlay (SECTION)
2843 Returns true if SECTION has VMA not equal to LMA, ie.
2844 SECTION is loaded at an address different from where it will "run". */
2845
2846int
2847section_is_overlay (asection *section)
2848{
2849 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2850
2851 if (overlay_debugging)
2852 if (section && section->lma != 0 &&
2853 section->vma != section->lma)
2854 return 1;
2855
2856 return 0;
2857}
2858
2859/* Function: overlay_invalidate_all (void)
2860 Invalidate the mapped state of all overlay sections (mark it as stale). */
2861
2862static void
2863overlay_invalidate_all (void)
2864{
2865 struct objfile *objfile;
2866 struct obj_section *sect;
2867
2868 ALL_OBJSECTIONS (objfile, sect)
2869 if (section_is_overlay (sect->the_bfd_section))
2870 sect->ovly_mapped = -1;
2871}
2872
2873/* Function: overlay_is_mapped (SECTION)
2874 Returns true if section is an overlay, and is currently mapped.
2875 Private: public access is thru function section_is_mapped.
2876
2877 Access to the ovly_mapped flag is restricted to this function, so
2878 that we can do automatic update. If the global flag
2879 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2880 overlay_invalidate_all. If the mapped state of the particular
2881 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2882
2883static int
2884overlay_is_mapped (struct obj_section *osect)
2885{
2886 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2887 return 0;
2888
2889 switch (overlay_debugging)
2890 {
2891 default:
2892 case ovly_off:
2893 return 0; /* overlay debugging off */
2894 case ovly_auto: /* overlay debugging automatic */
2895 /* Unles there is a target_overlay_update function,
2896 there's really nothing useful to do here (can't really go auto) */
2897 if (target_overlay_update)
2898 {
2899 if (overlay_cache_invalid)
2900 {
2901 overlay_invalidate_all ();
2902 overlay_cache_invalid = 0;
2903 }
2904 if (osect->ovly_mapped == -1)
2905 (*target_overlay_update) (osect);
2906 }
2907 /* fall thru to manual case */
2908 case ovly_on: /* overlay debugging manual */
2909 return osect->ovly_mapped == 1;
2910 }
2911}
2912
2913/* Function: section_is_mapped
2914 Returns true if section is an overlay, and is currently mapped. */
2915
2916int
2917section_is_mapped (asection *section)
2918{
2919 struct objfile *objfile;
2920 struct obj_section *osect;
2921
2922 if (overlay_debugging)
2923 if (section && section_is_overlay (section))
2924 ALL_OBJSECTIONS (objfile, osect)
2925 if (osect->the_bfd_section == section)
2926 return overlay_is_mapped (osect);
2927
2928 return 0;
2929}
2930
2931/* Function: pc_in_unmapped_range
2932 If PC falls into the lma range of SECTION, return true, else false. */
2933
2934CORE_ADDR
2935pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2936{
2937 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2938
2939 int size;
2940
2941 if (overlay_debugging)
2942 if (section && section_is_overlay (section))
2943 {
2944 size = bfd_get_section_size (section);
2945 if (section->lma <= pc && pc < section->lma + size)
2946 return 1;
2947 }
2948 return 0;
2949}
2950
2951/* Function: pc_in_mapped_range
2952 If PC falls into the vma range of SECTION, return true, else false. */
2953
2954CORE_ADDR
2955pc_in_mapped_range (CORE_ADDR pc, asection *section)
2956{
2957 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2958
2959 int size;
2960
2961 if (overlay_debugging)
2962 if (section && section_is_overlay (section))
2963 {
2964 size = bfd_get_section_size (section);
2965 if (section->vma <= pc && pc < section->vma + size)
2966 return 1;
2967 }
2968 return 0;
2969}
2970
2971
2972/* Return true if the mapped ranges of sections A and B overlap, false
2973 otherwise. */
2974static int
2975sections_overlap (asection *a, asection *b)
2976{
2977 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2978
2979 CORE_ADDR a_start = a->vma;
2980 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2981 CORE_ADDR b_start = b->vma;
2982 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2983
2984 return (a_start < b_end && b_start < a_end);
2985}
2986
2987/* Function: overlay_unmapped_address (PC, SECTION)
2988 Returns the address corresponding to PC in the unmapped (load) range.
2989 May be the same as PC. */
2990
2991CORE_ADDR
2992overlay_unmapped_address (CORE_ADDR pc, asection *section)
2993{
2994 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2995
2996 if (overlay_debugging)
2997 if (section && section_is_overlay (section) &&
2998 pc_in_mapped_range (pc, section))
2999 return pc + section->lma - section->vma;
3000
3001 return pc;
3002}
3003
3004/* Function: overlay_mapped_address (PC, SECTION)
3005 Returns the address corresponding to PC in the mapped (runtime) range.
3006 May be the same as PC. */
3007
3008CORE_ADDR
3009overlay_mapped_address (CORE_ADDR pc, asection *section)
3010{
3011 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3012
3013 if (overlay_debugging)
3014 if (section && section_is_overlay (section) &&
3015 pc_in_unmapped_range (pc, section))
3016 return pc + section->vma - section->lma;
3017
3018 return pc;
3019}
3020
3021
3022/* Function: symbol_overlayed_address
3023 Return one of two addresses (relative to the VMA or to the LMA),
3024 depending on whether the section is mapped or not. */
3025
3026CORE_ADDR
3027symbol_overlayed_address (CORE_ADDR address, asection *section)
3028{
3029 if (overlay_debugging)
3030 {
3031 /* If the symbol has no section, just return its regular address. */
3032 if (section == 0)
3033 return address;
3034 /* If the symbol's section is not an overlay, just return its address */
3035 if (!section_is_overlay (section))
3036 return address;
3037 /* If the symbol's section is mapped, just return its address */
3038 if (section_is_mapped (section))
3039 return address;
3040 /*
3041 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3042 * then return its LOADED address rather than its vma address!!
3043 */
3044 return overlay_unmapped_address (address, section);
3045 }
3046 return address;
3047}
3048
3049/* Function: find_pc_overlay (PC)
3050 Return the best-match overlay section for PC:
3051 If PC matches a mapped overlay section's VMA, return that section.
3052 Else if PC matches an unmapped section's VMA, return that section.
3053 Else if PC matches an unmapped section's LMA, return that section. */
3054
3055asection *
3056find_pc_overlay (CORE_ADDR pc)
3057{
3058 struct objfile *objfile;
3059 struct obj_section *osect, *best_match = NULL;
3060
3061 if (overlay_debugging)
3062 ALL_OBJSECTIONS (objfile, osect)
3063 if (section_is_overlay (osect->the_bfd_section))
3064 {
3065 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3066 {
3067 if (overlay_is_mapped (osect))
3068 return osect->the_bfd_section;
3069 else
3070 best_match = osect;
3071 }
3072 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3073 best_match = osect;
3074 }
3075 return best_match ? best_match->the_bfd_section : NULL;
3076}
3077
3078/* Function: find_pc_mapped_section (PC)
3079 If PC falls into the VMA address range of an overlay section that is
3080 currently marked as MAPPED, return that section. Else return NULL. */
3081
3082asection *
3083find_pc_mapped_section (CORE_ADDR pc)
3084{
3085 struct objfile *objfile;
3086 struct obj_section *osect;
3087
3088 if (overlay_debugging)
3089 ALL_OBJSECTIONS (objfile, osect)
3090 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3091 overlay_is_mapped (osect))
3092 return osect->the_bfd_section;
3093
3094 return NULL;
3095}
3096
3097/* Function: list_overlays_command
3098 Print a list of mapped sections and their PC ranges */
3099
3100void
3101list_overlays_command (char *args, int from_tty)
3102{
3103 int nmapped = 0;
3104 struct objfile *objfile;
3105 struct obj_section *osect;
3106
3107 if (overlay_debugging)
3108 ALL_OBJSECTIONS (objfile, osect)
3109 if (overlay_is_mapped (osect))
3110 {
3111 const char *name;
3112 bfd_vma lma, vma;
3113 int size;
3114
3115 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3116 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3117 size = bfd_get_section_size (osect->the_bfd_section);
3118 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3119
3120 printf_filtered ("Section %s, loaded at ", name);
3121 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3122 puts_filtered (" - ");
3123 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3124 printf_filtered (", mapped at ");
3125 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3126 puts_filtered (" - ");
3127 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3128 puts_filtered ("\n");
3129
3130 nmapped++;
3131 }
3132 if (nmapped == 0)
3133 printf_filtered (_("No sections are mapped.\n"));
3134}
3135
3136/* Function: map_overlay_command
3137 Mark the named section as mapped (ie. residing at its VMA address). */
3138
3139void
3140map_overlay_command (char *args, int from_tty)
3141{
3142 struct objfile *objfile, *objfile2;
3143 struct obj_section *sec, *sec2;
3144 asection *bfdsec;
3145
3146 if (!overlay_debugging)
3147 error (_("\
3148Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3149the 'overlay manual' command."));
3150
3151 if (args == 0 || *args == 0)
3152 error (_("Argument required: name of an overlay section"));
3153
3154 /* First, find a section matching the user supplied argument */
3155 ALL_OBJSECTIONS (objfile, sec)
3156 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3157 {
3158 /* Now, check to see if the section is an overlay. */
3159 bfdsec = sec->the_bfd_section;
3160 if (!section_is_overlay (bfdsec))
3161 continue; /* not an overlay section */
3162
3163 /* Mark the overlay as "mapped" */
3164 sec->ovly_mapped = 1;
3165
3166 /* Next, make a pass and unmap any sections that are
3167 overlapped by this new section: */
3168 ALL_OBJSECTIONS (objfile2, sec2)
3169 if (sec2->ovly_mapped
3170 && sec != sec2
3171 && sec->the_bfd_section != sec2->the_bfd_section
3172 && sections_overlap (sec->the_bfd_section,
3173 sec2->the_bfd_section))
3174 {
3175 if (info_verbose)
3176 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3177 bfd_section_name (objfile->obfd,
3178 sec2->the_bfd_section));
3179 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3180 }
3181 return;
3182 }
3183 error (_("No overlay section called %s"), args);
3184}
3185
3186/* Function: unmap_overlay_command
3187 Mark the overlay section as unmapped
3188 (ie. resident in its LMA address range, rather than the VMA range). */
3189
3190void
3191unmap_overlay_command (char *args, int from_tty)
3192{
3193 struct objfile *objfile;
3194 struct obj_section *sec;
3195
3196 if (!overlay_debugging)
3197 error (_("\
3198Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3199the 'overlay manual' command."));
3200
3201 if (args == 0 || *args == 0)
3202 error (_("Argument required: name of an overlay section"));
3203
3204 /* First, find a section matching the user supplied argument */
3205 ALL_OBJSECTIONS (objfile, sec)
3206 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3207 {
3208 if (!sec->ovly_mapped)
3209 error (_("Section %s is not mapped"), args);
3210 sec->ovly_mapped = 0;
3211 return;
3212 }
3213 error (_("No overlay section called %s"), args);
3214}
3215
3216/* Function: overlay_auto_command
3217 A utility command to turn on overlay debugging.
3218 Possibly this should be done via a set/show command. */
3219
3220static void
3221overlay_auto_command (char *args, int from_tty)
3222{
3223 overlay_debugging = ovly_auto;
3224 enable_overlay_breakpoints ();
3225 if (info_verbose)
3226 printf_unfiltered (_("Automatic overlay debugging enabled."));
3227}
3228
3229/* Function: overlay_manual_command
3230 A utility command to turn on overlay debugging.
3231 Possibly this should be done via a set/show command. */
3232
3233static void
3234overlay_manual_command (char *args, int from_tty)
3235{
3236 overlay_debugging = ovly_on;
3237 disable_overlay_breakpoints ();
3238 if (info_verbose)
3239 printf_unfiltered (_("Overlay debugging enabled."));
3240}
3241
3242/* Function: overlay_off_command
3243 A utility command to turn on overlay debugging.
3244 Possibly this should be done via a set/show command. */
3245
3246static void
3247overlay_off_command (char *args, int from_tty)
3248{
3249 overlay_debugging = ovly_off;
3250 disable_overlay_breakpoints ();
3251 if (info_verbose)
3252 printf_unfiltered (_("Overlay debugging disabled."));
3253}
3254
3255static void
3256overlay_load_command (char *args, int from_tty)
3257{
3258 if (target_overlay_update)
3259 (*target_overlay_update) (NULL);
3260 else
3261 error (_("This target does not know how to read its overlay state."));
3262}
3263
3264/* Function: overlay_command
3265 A place-holder for a mis-typed command */
3266
3267/* Command list chain containing all defined "overlay" subcommands. */
3268struct cmd_list_element *overlaylist;
3269
3270static void
3271overlay_command (char *args, int from_tty)
3272{
3273 printf_unfiltered
3274 ("\"overlay\" must be followed by the name of an overlay command.\n");
3275 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3276}
3277
3278
3279/* Target Overlays for the "Simplest" overlay manager:
3280
3281 This is GDB's default target overlay layer. It works with the
3282 minimal overlay manager supplied as an example by Cygnus. The
3283 entry point is via a function pointer "target_overlay_update",
3284 so targets that use a different runtime overlay manager can
3285 substitute their own overlay_update function and take over the
3286 function pointer.
3287
3288 The overlay_update function pokes around in the target's data structures
3289 to see what overlays are mapped, and updates GDB's overlay mapping with
3290 this information.
3291
3292 In this simple implementation, the target data structures are as follows:
3293 unsigned _novlys; /# number of overlay sections #/
3294 unsigned _ovly_table[_novlys][4] = {
3295 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3296 {..., ..., ..., ...},
3297 }
3298 unsigned _novly_regions; /# number of overlay regions #/
3299 unsigned _ovly_region_table[_novly_regions][3] = {
3300 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3301 {..., ..., ...},
3302 }
3303 These functions will attempt to update GDB's mappedness state in the
3304 symbol section table, based on the target's mappedness state.
3305
3306 To do this, we keep a cached copy of the target's _ovly_table, and
3307 attempt to detect when the cached copy is invalidated. The main
3308 entry point is "simple_overlay_update(SECT), which looks up SECT in
3309 the cached table and re-reads only the entry for that section from
3310 the target (whenever possible).
3311 */
3312
3313/* Cached, dynamically allocated copies of the target data structures: */
3314static unsigned (*cache_ovly_table)[4] = 0;
3315#if 0
3316static unsigned (*cache_ovly_region_table)[3] = 0;
3317#endif
3318static unsigned cache_novlys = 0;
3319#if 0
3320static unsigned cache_novly_regions = 0;
3321#endif
3322static CORE_ADDR cache_ovly_table_base = 0;
3323#if 0
3324static CORE_ADDR cache_ovly_region_table_base = 0;
3325#endif
3326enum ovly_index
3327 {
3328 VMA, SIZE, LMA, MAPPED
3329 };
3330#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3331
3332/* Throw away the cached copy of _ovly_table */
3333static void
3334simple_free_overlay_table (void)
3335{
3336 if (cache_ovly_table)
3337 xfree (cache_ovly_table);
3338 cache_novlys = 0;
3339 cache_ovly_table = NULL;
3340 cache_ovly_table_base = 0;
3341}
3342
3343#if 0
3344/* Throw away the cached copy of _ovly_region_table */
3345static void
3346simple_free_overlay_region_table (void)
3347{
3348 if (cache_ovly_region_table)
3349 xfree (cache_ovly_region_table);
3350 cache_novly_regions = 0;
3351 cache_ovly_region_table = NULL;
3352 cache_ovly_region_table_base = 0;
3353}
3354#endif
3355
3356/* Read an array of ints from the target into a local buffer.
3357 Convert to host order. int LEN is number of ints */
3358static void
3359read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3360{
3361 /* FIXME (alloca): Not safe if array is very large. */
3362 char *buf = alloca (len * TARGET_LONG_BYTES);
3363 int i;
3364
3365 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3366 for (i = 0; i < len; i++)
3367 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3368 TARGET_LONG_BYTES);
3369}
3370
3371/* Find and grab a copy of the target _ovly_table
3372 (and _novlys, which is needed for the table's size) */
3373static int
3374simple_read_overlay_table (void)
3375{
3376 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3377
3378 simple_free_overlay_table ();
3379 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3380 if (! novlys_msym)
3381 {
3382 error (_("Error reading inferior's overlay table: "
3383 "couldn't find `_novlys' variable\n"
3384 "in inferior. Use `overlay manual' mode."));
3385 return 0;
3386 }
3387
3388 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3389 if (! ovly_table_msym)
3390 {
3391 error (_("Error reading inferior's overlay table: couldn't find "
3392 "`_ovly_table' array\n"
3393 "in inferior. Use `overlay manual' mode."));
3394 return 0;
3395 }
3396
3397 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3398 cache_ovly_table
3399 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3400 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3401 read_target_long_array (cache_ovly_table_base,
3402 (int *) cache_ovly_table,
3403 cache_novlys * 4);
3404
3405 return 1; /* SUCCESS */
3406}
3407
3408#if 0
3409/* Find and grab a copy of the target _ovly_region_table
3410 (and _novly_regions, which is needed for the table's size) */
3411static int
3412simple_read_overlay_region_table (void)
3413{
3414 struct minimal_symbol *msym;
3415
3416 simple_free_overlay_region_table ();
3417 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3418 if (msym != NULL)
3419 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3420 else
3421 return 0; /* failure */
3422 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3423 if (cache_ovly_region_table != NULL)
3424 {
3425 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3426 if (msym != NULL)
3427 {
3428 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3429 read_target_long_array (cache_ovly_region_table_base,
3430 (int *) cache_ovly_region_table,
3431 cache_novly_regions * 3);
3432 }
3433 else
3434 return 0; /* failure */
3435 }
3436 else
3437 return 0; /* failure */
3438 return 1; /* SUCCESS */
3439}
3440#endif
3441
3442/* Function: simple_overlay_update_1
3443 A helper function for simple_overlay_update. Assuming a cached copy
3444 of _ovly_table exists, look through it to find an entry whose vma,
3445 lma and size match those of OSECT. Re-read the entry and make sure
3446 it still matches OSECT (else the table may no longer be valid).
3447 Set OSECT's mapped state to match the entry. Return: 1 for
3448 success, 0 for failure. */
3449
3450static int
3451simple_overlay_update_1 (struct obj_section *osect)
3452{
3453 int i, size;
3454 bfd *obfd = osect->objfile->obfd;
3455 asection *bsect = osect->the_bfd_section;
3456
3457 size = bfd_get_section_size (osect->the_bfd_section);
3458 for (i = 0; i < cache_novlys; i++)
3459 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3460 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3461 /* && cache_ovly_table[i][SIZE] == size */ )
3462 {
3463 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3464 (int *) cache_ovly_table[i], 4);
3465 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3466 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3467 /* && cache_ovly_table[i][SIZE] == size */ )
3468 {
3469 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3470 return 1;
3471 }
3472 else /* Warning! Warning! Target's ovly table has changed! */
3473 return 0;
3474 }
3475 return 0;
3476}
3477
3478/* Function: simple_overlay_update
3479 If OSECT is NULL, then update all sections' mapped state
3480 (after re-reading the entire target _ovly_table).
3481 If OSECT is non-NULL, then try to find a matching entry in the
3482 cached ovly_table and update only OSECT's mapped state.
3483 If a cached entry can't be found or the cache isn't valid, then
3484 re-read the entire cache, and go ahead and update all sections. */
3485
3486static void
3487simple_overlay_update (struct obj_section *osect)
3488{
3489 struct objfile *objfile;
3490
3491 /* Were we given an osect to look up? NULL means do all of them. */
3492 if (osect)
3493 /* Have we got a cached copy of the target's overlay table? */
3494 if (cache_ovly_table != NULL)
3495 /* Does its cached location match what's currently in the symtab? */
3496 if (cache_ovly_table_base ==
3497 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3498 /* Then go ahead and try to look up this single section in the cache */
3499 if (simple_overlay_update_1 (osect))
3500 /* Found it! We're done. */
3501 return;
3502
3503 /* Cached table no good: need to read the entire table anew.
3504 Or else we want all the sections, in which case it's actually
3505 more efficient to read the whole table in one block anyway. */
3506
3507 if (! simple_read_overlay_table ())
3508 return;
3509
3510 /* Now may as well update all sections, even if only one was requested. */
3511 ALL_OBJSECTIONS (objfile, osect)
3512 if (section_is_overlay (osect->the_bfd_section))
3513 {
3514 int i, size;
3515 bfd *obfd = osect->objfile->obfd;
3516 asection *bsect = osect->the_bfd_section;
3517
3518 size = bfd_get_section_size (bsect);
3519 for (i = 0; i < cache_novlys; i++)
3520 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3521 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3522 /* && cache_ovly_table[i][SIZE] == size */ )
3523 { /* obj_section matches i'th entry in ovly_table */
3524 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3525 break; /* finished with inner for loop: break out */
3526 }
3527 }
3528}
3529
3530/* Set the output sections and output offsets for section SECTP in
3531 ABFD. The relocation code in BFD will read these offsets, so we
3532 need to be sure they're initialized. We map each section to itself,
3533 with no offset; this means that SECTP->vma will be honored. */
3534
3535static void
3536symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3537{
3538 sectp->output_section = sectp;
3539 sectp->output_offset = 0;
3540}
3541
3542/* Relocate the contents of a debug section SECTP in ABFD. The
3543 contents are stored in BUF if it is non-NULL, or returned in a
3544 malloc'd buffer otherwise.
3545
3546 For some platforms and debug info formats, shared libraries contain
3547 relocations against the debug sections (particularly for DWARF-2;
3548 one affected platform is PowerPC GNU/Linux, although it depends on
3549 the version of the linker in use). Also, ELF object files naturally
3550 have unresolved relocations for their debug sections. We need to apply
3551 the relocations in order to get the locations of symbols correct. */
3552
3553bfd_byte *
3554symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3555{
3556 /* We're only interested in debugging sections with relocation
3557 information. */
3558 if ((sectp->flags & SEC_RELOC) == 0)
3559 return NULL;
3560 if ((sectp->flags & SEC_DEBUGGING) == 0)
3561 return NULL;
3562
3563 /* We will handle section offsets properly elsewhere, so relocate as if
3564 all sections begin at 0. */
3565 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3566
3567 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3568}
3569
3570void
3571_initialize_symfile (void)
3572{
3573 struct cmd_list_element *c;
3574
3575 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3576Load symbol table from executable file FILE.\n\
3577The `file' command can also load symbol tables, as well as setting the file\n\
3578to execute."), &cmdlist);
3579 set_cmd_completer (c, filename_completer);
3580
3581 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3582Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3583Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3584ADDR is the starting address of the file's text.\n\
3585The optional arguments are section-name section-address pairs and\n\
3586should be specified if the data and bss segments are not contiguous\n\
3587with the text. SECT is a section name to be loaded at SECT_ADDR."),
3588 &cmdlist);
3589 set_cmd_completer (c, filename_completer);
3590
3591 c = add_cmd ("add-shared-symbol-files", class_files,
3592 add_shared_symbol_files_command, _("\
3593Load the symbols from shared objects in the dynamic linker's link map."),
3594 &cmdlist);
3595 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3596 &cmdlist);
3597
3598 c = add_cmd ("load", class_files, load_command, _("\
3599Dynamically load FILE into the running program, and record its symbols\n\
3600for access from GDB."), &cmdlist);
3601 set_cmd_completer (c, filename_completer);
3602
3603 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3604 &symbol_reloading, _("\
3605Set dynamic symbol table reloading multiple times in one run."), _("\
3606Show dynamic symbol table reloading multiple times in one run."), NULL,
3607 NULL,
3608 show_symbol_reloading,
3609 &setlist, &showlist);
3610
3611 add_prefix_cmd ("overlay", class_support, overlay_command,
3612 _("Commands for debugging overlays."), &overlaylist,
3613 "overlay ", 0, &cmdlist);
3614
3615 add_com_alias ("ovly", "overlay", class_alias, 1);
3616 add_com_alias ("ov", "overlay", class_alias, 1);
3617
3618 add_cmd ("map-overlay", class_support, map_overlay_command,
3619 _("Assert that an overlay section is mapped."), &overlaylist);
3620
3621 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3622 _("Assert that an overlay section is unmapped."), &overlaylist);
3623
3624 add_cmd ("list-overlays", class_support, list_overlays_command,
3625 _("List mappings of overlay sections."), &overlaylist);
3626
3627 add_cmd ("manual", class_support, overlay_manual_command,
3628 _("Enable overlay debugging."), &overlaylist);
3629 add_cmd ("off", class_support, overlay_off_command,
3630 _("Disable overlay debugging."), &overlaylist);
3631 add_cmd ("auto", class_support, overlay_auto_command,
3632 _("Enable automatic overlay debugging."), &overlaylist);
3633 add_cmd ("load-target", class_support, overlay_load_command,
3634 _("Read the overlay mapping state from the target."), &overlaylist);
3635
3636 /* Filename extension to source language lookup table: */
3637 init_filename_language_table ();
3638 add_setshow_string_noescape_cmd ("extension-language", class_files,
3639 &ext_args, _("\
3640Set mapping between filename extension and source language."), _("\
3641Show mapping between filename extension and source language."), _("\
3642Usage: set extension-language .foo bar"),
3643 set_ext_lang_command,
3644 show_ext_args,
3645 &setlist, &showlist);
3646
3647 add_info ("extensions", info_ext_lang_command,
3648 _("All filename extensions associated with a source language."));
3649
3650 add_setshow_integer_cmd ("download-write-size", class_obscure,
3651 &download_write_size, _("\
3652Set the write size used when downloading a program."), _("\
3653Show the write size used when downloading a program."), _("\
3654Only used when downloading a program onto a remote\n\
3655target. Specify zero, or a negative value, to disable\n\
3656blocked writes. The actual size of each transfer is also\n\
3657limited by the size of the target packet and the memory\n\
3658cache."),
3659 NULL,
3660 show_download_write_size,
3661 &setlist, &showlist);
3662
3663 debug_file_directory = xstrdup (DEBUGDIR);
3664 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3665 &debug_file_directory, _("\
3666Set the directory where separate debug symbols are searched for."), _("\
3667Show the directory where separate debug symbols are searched for."), _("\
3668Separate debug symbols are first searched for in the same\n\
3669directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3670and lastly at the path of the directory of the binary with\n\
3671the global debug-file directory prepended."),
3672 NULL,
3673 show_debug_file_directory,
3674 &setlist, &showlist);
3675}
This page took 0.034018 seconds and 4 git commands to generate.