merge from gcc
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "bfdlink.h"
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "source.h"
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
41#include "inferior.h" /* for write_pc */
42#include "filenames.h" /* for DOSish file names */
43#include "gdb-stabs.h"
44#include "gdb_obstack.h"
45#include "completer.h"
46#include "bcache.h"
47#include "hashtab.h"
48#include <readline/readline.h>
49#include "gdb_assert.h"
50#include "block.h"
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include <time.h>
58
59#ifndef O_BINARY
60#define O_BINARY 0
61#endif
62
63#ifdef HPUXHPPA
64
65/* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68extern int hp_som_som_object_present;
69extern int hp_cxx_exception_support_initialized;
70#define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74#endif
75
76int (*ui_load_progress_hook) (const char *section, unsigned long num);
77void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82void (*pre_add_symbol_hook) (char *);
83void (*post_add_symbol_hook) (void);
84void (*target_new_objfile_hook) (struct objfile *);
85
86static void clear_symtab_users_cleanup (void *ignore);
87
88/* Global variables owned by this file */
89int readnow_symbol_files; /* Read full symbols immediately */
90
91/* External variables and functions referenced. */
92
93extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95/* Functions this file defines */
96
97#if 0
98static int simple_read_overlay_region_table (void);
99static void simple_free_overlay_region_table (void);
100#endif
101
102static void set_initial_language (void);
103
104static void load_command (char *, int);
105
106static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108static void add_symbol_file_command (char *, int);
109
110static void add_shared_symbol_files_command (char *, int);
111
112static void reread_separate_symbols (struct objfile *objfile);
113
114static void cashier_psymtab (struct partial_symtab *);
115
116bfd *symfile_bfd_open (char *);
117
118int get_section_index (struct objfile *, char *);
119
120static void find_sym_fns (struct objfile *);
121
122static void decrement_reading_symtab (void *);
123
124static void overlay_invalidate_all (void);
125
126static int overlay_is_mapped (struct obj_section *);
127
128void list_overlays_command (char *, int);
129
130void map_overlay_command (char *, int);
131
132void unmap_overlay_command (char *, int);
133
134static void overlay_auto_command (char *, int);
135
136static void overlay_manual_command (char *, int);
137
138static void overlay_off_command (char *, int);
139
140static void overlay_load_command (char *, int);
141
142static void overlay_command (char *, int);
143
144static void simple_free_overlay_table (void);
145
146static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148static int simple_read_overlay_table (void);
149
150static int simple_overlay_update_1 (struct obj_section *);
151
152static void add_filename_language (char *ext, enum language lang);
153
154static void set_ext_lang_command (char *args, int from_tty);
155
156static void info_ext_lang_command (char *args, int from_tty);
157
158static char *find_separate_debug_file (struct objfile *objfile);
159
160static void init_filename_language_table (void);
161
162void _initialize_symfile (void);
163
164/* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168static struct sym_fns *symtab_fns = NULL;
169
170/* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173#ifdef SYMBOL_RELOADING_DEFAULT
174int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175#else
176int symbol_reloading = 0;
177#endif
178
179/* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189int auto_solib_add = 1;
190
191/* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199int auto_solib_limit;
200\f
201
202/* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206static int
207compare_symbols (const void *s1p, const void *s2p)
208{
209 struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
214}
215
216/* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
218
219static int
220compare_psymbols (const void *s1p, const void *s2p)
221{
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
227}
228
229void
230sort_pst_symbols (struct partial_symtab *pst)
231{
232 /* Sort the global list; don't sort the static list */
233
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
236 compare_psymbols);
237}
238
239/* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244char *
245obsavestring (const char *ptr, int size, struct obstack *obstackp)
246{
247 char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
252 const char *p1 = ptr;
253 char *p2 = p;
254 const char *end = ptr + size;
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260}
261
262/* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265char *
266obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
268{
269 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275}
276
277/* True if we are nested inside psymtab_to_symtab. */
278
279int currently_reading_symtab = 0;
280
281static void
282decrement_reading_symtab (void *dummy)
283{
284 currently_reading_symtab--;
285}
286
287/* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292struct symtab *
293psymtab_to_symtab (struct partial_symtab *pst)
294{
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
301 {
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309}
310
311/* Initialize entry point information for this objfile. */
312
313void
314init_entry_point_info (struct objfile *objfile)
315{
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
320 {
321 /* Executable file -- record its entry point so we'll recognize
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
329 }
330 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
336}
337
338/* Get current entry point address. */
339
340CORE_ADDR
341entry_point_address (void)
342{
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344}
345
346/* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355void
356find_lowest_section (bfd *abfd, asection *sect, void *obj)
357{
358 asection **lowest = (asection **) obj;
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370}
371
372/* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374struct section_addr_info *
375alloc_section_addr_info (size_t num_sections)
376{
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387}
388
389/* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392extern struct section_addr_info *
393build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395{
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
400 sap = alloc_section_addr_info (end - start);
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
406 && oidx < end - start)
407 {
408 sap->other[oidx].addr = stp->addr;
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417}
418
419
420/* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422extern void
423free_section_addr_info (struct section_addr_info *sap)
424{
425 int idx;
426
427 for (idx = 0; idx < sap->num_sections; idx++)
428 if (sap->other[idx].name)
429 xfree (sap->other[idx].name);
430 xfree (sap);
431}
432
433
434/* Initialize OBJFILE's sect_index_* members. */
435static void
436init_objfile_sect_indices (struct objfile *objfile)
437{
438 asection *sect;
439 int i;
440
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
485}
486
487
488/* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494void
495default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497{
498 int i;
499
500 objfile->num_sections = bfd_count_sections (objfile->obfd);
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526}
527
528
529/* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
532 OBJFILE is where the symbols are to be read from.
533
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
560
561void
562syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
568{
569 struct section_addr_info *local_addr = NULL;
570 struct cleanup *old_chain;
571
572 gdb_assert (! (addrs && offsets));
573
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
577 if (objfile->sf == NULL)
578 return; /* No symbols. */
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
583
584 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
585 list. We now establish the convention that an addr of zero means
586 no load address was specified. */
587 if (! addrs && ! offsets)
588 {
589 local_addr
590 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
591 make_cleanup (xfree, local_addr);
592 addrs = local_addr;
593 }
594
595 /* Now either addrs or offsets is non-zero. */
596
597 if (mainline)
598 {
599 /* We will modify the main symbol table, make sure that all its users
600 will be cleaned up if an error occurs during symbol reading. */
601 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
602
603 /* Since no error yet, throw away the old symbol table. */
604
605 if (symfile_objfile != NULL)
606 {
607 free_objfile (symfile_objfile);
608 symfile_objfile = NULL;
609 }
610
611 /* Currently we keep symbols from the add-symbol-file command.
612 If the user wants to get rid of them, they should do "symbol-file"
613 without arguments first. Not sure this is the best behavior
614 (PR 2207). */
615
616 (*objfile->sf->sym_new_init) (objfile);
617 }
618
619 /* Convert addr into an offset rather than an absolute address.
620 We find the lowest address of a loaded segment in the objfile,
621 and assume that <addr> is where that got loaded.
622
623 We no longer warn if the lowest section is not a text segment (as
624 happens for the PA64 port. */
625 if (!mainline && addrs && addrs->other[0].name)
626 {
627 asection *lower_sect;
628 asection *sect;
629 CORE_ADDR lower_offset;
630 int i;
631
632 /* Find lowest loadable section to be used as starting point for
633 continguous sections. FIXME!! won't work without call to find
634 .text first, but this assumes text is lowest section. */
635 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
636 if (lower_sect == NULL)
637 bfd_map_over_sections (objfile->obfd, find_lowest_section,
638 &lower_sect);
639 if (lower_sect == NULL)
640 warning ("no loadable sections found in added symbol-file %s",
641 objfile->name);
642 else
643 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
644 warning ("Lowest section in %s is %s at %s",
645 objfile->name,
646 bfd_section_name (objfile->obfd, lower_sect),
647 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
648 if (lower_sect != NULL)
649 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
650 else
651 lower_offset = 0;
652
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
665 if (addrs->other[i].addr != 0)
666 {
667 sect = bfd_get_section_by_name (objfile->obfd,
668 addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr
672 -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
676 }
677 else
678 {
679 warning ("section %s not found in %s",
680 addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
694 (*objfile->sf->sym_init) (objfile);
695 clear_complaints (&symfile_complaints, 1, verbo);
696
697 if (addrs)
698 (*objfile->sf->sym_offsets) (objfile, addrs);
699 else
700 {
701 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
702
703 /* Just copy in the offset table directly as given to us. */
704 objfile->num_sections = num_offsets;
705 objfile->section_offsets
706 = ((struct section_offsets *)
707 obstack_alloc (&objfile->psymbol_obstack, size));
708 memcpy (objfile->section_offsets, offsets, size);
709
710 init_objfile_sect_indices (objfile);
711 }
712
713#ifndef DEPRECATED_IBM6000_TARGET
714 /* This is a SVR4/SunOS specific hack, I think. In any event, it
715 screws RS/6000. sym_offsets should be doing this sort of thing,
716 because it knows the mapping between bfd sections and
717 section_offsets. */
718 /* This is a hack. As far as I can tell, section offsets are not
719 target dependent. They are all set to addr with a couple of
720 exceptions. The exceptions are sysvr4 shared libraries, whose
721 offsets are kept in solib structures anyway and rs6000 xcoff
722 which handles shared libraries in a completely unique way.
723
724 Section offsets are built similarly, except that they are built
725 by adding addr in all cases because there is no clear mapping
726 from section_offsets into actual sections. Note that solib.c
727 has a different algorithm for finding section offsets.
728
729 These should probably all be collapsed into some target
730 independent form of shared library support. FIXME. */
731
732 if (addrs)
733 {
734 struct obj_section *s;
735
736 /* Map section offsets in "addr" back to the object's
737 sections by comparing the section names with bfd's
738 section names. Then adjust the section address by
739 the offset. */ /* for gdb/13815 */
740
741 ALL_OBJFILE_OSECTIONS (objfile, s)
742 {
743 CORE_ADDR s_addr = 0;
744 int i;
745
746 for (i = 0;
747 !s_addr && i < addrs->num_sections && addrs->other[i].name;
748 i++)
749 if (strcmp (bfd_section_name (s->objfile->obfd,
750 s->the_bfd_section),
751 addrs->other[i].name) == 0)
752 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
753
754 s->addr -= s->offset;
755 s->addr += s_addr;
756 s->endaddr -= s->offset;
757 s->endaddr += s_addr;
758 s->offset += s_addr;
759 }
760 }
761#endif /* not DEPRECATED_IBM6000_TARGET */
762
763 (*objfile->sf->sym_read) (objfile, mainline);
764
765 /* Don't allow char * to have a typename (else would get caddr_t).
766 Ditto void *. FIXME: Check whether this is now done by all the
767 symbol readers themselves (many of them now do), and if so remove
768 it from here. */
769
770 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
771 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
772
773 /* Mark the objfile has having had initial symbol read attempted. Note
774 that this does not mean we found any symbols... */
775
776 objfile->flags |= OBJF_SYMS;
777
778 /* Discard cleanups as symbol reading was successful. */
779
780 discard_cleanups (old_chain);
781}
782
783/* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787void
788new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
789{
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
807 clear_complaints (&symfile_complaints, 0, verbo);
808}
809
810/* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
815
816 FROM_TTY says how verbose to be.
817
818 MAINLINE specifies whether this is the main symbol file, or whether
819 it's an extra symbol file such as dynamically loaded code.
820
821 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
822 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
823 non-zero.
824
825 Upon success, returns a pointer to the objfile that was added.
826 Upon failure, jumps back to command level (never returns). */
827static struct objfile *
828symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
829 struct section_addr_info *addrs,
830 struct section_offsets *offsets,
831 int num_offsets,
832 int mainline, int flags)
833{
834 struct objfile *objfile;
835 struct partial_symtab *psymtab;
836 char *debugfile;
837 bfd *abfd;
838 struct section_addr_info *orig_addrs;
839 struct cleanup *my_cleanups;
840
841 /* Open a bfd for the file, and give user a chance to burp if we'd be
842 interactively wiping out any existing symbols. */
843
844 abfd = symfile_bfd_open (name);
845
846 if ((have_full_symbols () || have_partial_symbols ())
847 && mainline
848 && from_tty
849 && !query ("Load new symbol table from \"%s\"? ", name))
850 error ("Not confirmed.");
851
852 objfile = allocate_objfile (abfd, flags);
853
854 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
855 my_cleanups = make_cleanup (xfree, orig_addrs);
856 if (addrs)
857 {
858 int i;
859 orig_addrs->num_sections = addrs->num_sections;
860 for (i = 0; i < addrs->num_sections; i++)
861 orig_addrs->other[i] = addrs->other[i];
862 }
863
864 /* If the objfile uses a mapped symbol file, and we have a psymtab for
865 it, then skip reading any symbols at this time. */
866
867 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
868 {
869 /* We mapped in an existing symbol table file that already has had
870 initial symbol reading performed, so we can skip that part. Notify
871 the user that instead of reading the symbols, they have been mapped.
872 */
873 if (from_tty || info_verbose)
874 {
875 printf_unfiltered ("Mapped symbols for %s...", name);
876 wrap_here ("");
877 gdb_flush (gdb_stdout);
878 }
879 init_entry_point_info (objfile);
880 find_sym_fns (objfile);
881 }
882 else
883 {
884 /* We either created a new mapped symbol table, mapped an existing
885 symbol table file which has not had initial symbol reading
886 performed, or need to read an unmapped symbol table. */
887 if (from_tty || info_verbose)
888 {
889 if (pre_add_symbol_hook)
890 pre_add_symbol_hook (name);
891 else
892 {
893 printf_unfiltered ("Reading symbols from %s...", name);
894 wrap_here ("");
895 gdb_flush (gdb_stdout);
896 }
897 }
898 syms_from_objfile (objfile, addrs, offsets, num_offsets,
899 mainline, from_tty);
900 }
901
902 /* We now have at least a partial symbol table. Check to see if the
903 user requested that all symbols be read on initial access via either
904 the gdb startup command line or on a per symbol file basis. Expand
905 all partial symbol tables for this objfile if so. */
906
907 if ((flags & OBJF_READNOW) || readnow_symbol_files)
908 {
909 if (from_tty || info_verbose)
910 {
911 printf_unfiltered ("expanding to full symbols...");
912 wrap_here ("");
913 gdb_flush (gdb_stdout);
914 }
915
916 for (psymtab = objfile->psymtabs;
917 psymtab != NULL;
918 psymtab = psymtab->next)
919 {
920 psymtab_to_symtab (psymtab);
921 }
922 }
923
924 debugfile = find_separate_debug_file (objfile);
925 if (debugfile)
926 {
927 if (addrs != NULL)
928 {
929 objfile->separate_debug_objfile
930 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
931 }
932 else
933 {
934 objfile->separate_debug_objfile
935 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
936 }
937 objfile->separate_debug_objfile->separate_debug_objfile_backlink
938 = objfile;
939
940 /* Put the separate debug object before the normal one, this is so that
941 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
942 put_objfile_before (objfile->separate_debug_objfile, objfile);
943
944 xfree (debugfile);
945 }
946
947 if (!have_partial_symbols () && !have_full_symbols ())
948 {
949 wrap_here ("");
950 printf_unfiltered ("(no debugging symbols found)...");
951 wrap_here ("");
952 }
953
954 if (from_tty || info_verbose)
955 {
956 if (post_add_symbol_hook)
957 post_add_symbol_hook ();
958 else
959 {
960 printf_unfiltered ("done.\n");
961 }
962 }
963
964 /* We print some messages regardless of whether 'from_tty ||
965 info_verbose' is true, so make sure they go out at the right
966 time. */
967 gdb_flush (gdb_stdout);
968
969 do_cleanups (my_cleanups);
970
971 if (objfile->sf == NULL)
972 return objfile; /* No symbols. */
973
974 new_symfile_objfile (objfile, mainline, from_tty);
975
976 if (target_new_objfile_hook)
977 target_new_objfile_hook (objfile);
978
979 return (objfile);
980}
981
982
983/* Process a symbol file, as either the main file or as a dynamically
984 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
985 for details. */
986struct objfile *
987symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
988 int mainline, int flags)
989{
990 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
991 mainline, flags);
992}
993
994
995/* Call symbol_file_add() with default values and update whatever is
996 affected by the loading of a new main().
997 Used when the file is supplied in the gdb command line
998 and by some targets with special loading requirements.
999 The auxiliary function, symbol_file_add_main_1(), has the flags
1000 argument for the switches that can only be specified in the symbol_file
1001 command itself. */
1002
1003void
1004symbol_file_add_main (char *args, int from_tty)
1005{
1006 symbol_file_add_main_1 (args, from_tty, 0);
1007}
1008
1009static void
1010symbol_file_add_main_1 (char *args, int from_tty, int flags)
1011{
1012 symbol_file_add (args, from_tty, NULL, 1, flags);
1013
1014#ifdef HPUXHPPA
1015 RESET_HP_UX_GLOBALS ();
1016#endif
1017
1018 /* Getting new symbols may change our opinion about
1019 what is frameless. */
1020 reinit_frame_cache ();
1021
1022 set_initial_language ();
1023}
1024
1025void
1026symbol_file_clear (int from_tty)
1027{
1028 if ((have_full_symbols () || have_partial_symbols ())
1029 && from_tty
1030 && !query ("Discard symbol table from `%s'? ",
1031 symfile_objfile->name))
1032 error ("Not confirmed.");
1033 free_all_objfiles ();
1034
1035 /* solib descriptors may have handles to objfiles. Since their
1036 storage has just been released, we'd better wipe the solib
1037 descriptors as well.
1038 */
1039#if defined(SOLIB_RESTART)
1040 SOLIB_RESTART ();
1041#endif
1042
1043 symfile_objfile = NULL;
1044 if (from_tty)
1045 printf_unfiltered ("No symbol file now.\n");
1046#ifdef HPUXHPPA
1047 RESET_HP_UX_GLOBALS ();
1048#endif
1049}
1050
1051static char *
1052get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1053{
1054 asection *sect;
1055 bfd_size_type debuglink_size;
1056 unsigned long crc32;
1057 char *contents;
1058 int crc_offset;
1059 unsigned char *p;
1060
1061 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1062
1063 if (sect == NULL)
1064 return NULL;
1065
1066 debuglink_size = bfd_section_size (objfile->obfd, sect);
1067
1068 contents = xmalloc (debuglink_size);
1069 bfd_get_section_contents (objfile->obfd, sect, contents,
1070 (file_ptr)0, (bfd_size_type)debuglink_size);
1071
1072 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1073 crc_offset = strlen (contents) + 1;
1074 crc_offset = (crc_offset + 3) & ~3;
1075
1076 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1077
1078 *crc32_out = crc32;
1079 return contents;
1080}
1081
1082static int
1083separate_debug_file_exists (const char *name, unsigned long crc)
1084{
1085 unsigned long file_crc = 0;
1086 int fd;
1087 char buffer[8*1024];
1088 int count;
1089
1090 fd = open (name, O_RDONLY | O_BINARY);
1091 if (fd < 0)
1092 return 0;
1093
1094 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1095 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1096
1097 close (fd);
1098
1099 return crc == file_crc;
1100}
1101
1102static char *debug_file_directory = NULL;
1103
1104#if ! defined (DEBUG_SUBDIRECTORY)
1105#define DEBUG_SUBDIRECTORY ".debug"
1106#endif
1107
1108static char *
1109find_separate_debug_file (struct objfile *objfile)
1110{
1111 asection *sect;
1112 char *basename;
1113 char *dir;
1114 char *debugfile;
1115 char *name_copy;
1116 bfd_size_type debuglink_size;
1117 unsigned long crc32;
1118 int i;
1119
1120 basename = get_debug_link_info (objfile, &crc32);
1121
1122 if (basename == NULL)
1123 return NULL;
1124
1125 dir = xstrdup (objfile->name);
1126
1127 /* Strip off the final filename part, leaving the directory name,
1128 followed by a slash. Objfile names should always be absolute and
1129 tilde-expanded, so there should always be a slash in there
1130 somewhere. */
1131 for (i = strlen(dir) - 1; i >= 0; i--)
1132 {
1133 if (IS_DIR_SEPARATOR (dir[i]))
1134 break;
1135 }
1136 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1137 dir[i+1] = '\0';
1138
1139 debugfile = alloca (strlen (debug_file_directory) + 1
1140 + strlen (dir)
1141 + strlen (DEBUG_SUBDIRECTORY)
1142 + strlen ("/")
1143 + strlen (basename)
1144 + 1);
1145
1146 /* First try in the same directory as the original file. */
1147 strcpy (debugfile, dir);
1148 strcat (debugfile, basename);
1149
1150 if (separate_debug_file_exists (debugfile, crc32))
1151 {
1152 xfree (basename);
1153 xfree (dir);
1154 return xstrdup (debugfile);
1155 }
1156
1157 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1158 strcpy (debugfile, dir);
1159 strcat (debugfile, DEBUG_SUBDIRECTORY);
1160 strcat (debugfile, "/");
1161 strcat (debugfile, basename);
1162
1163 if (separate_debug_file_exists (debugfile, crc32))
1164 {
1165 xfree (basename);
1166 xfree (dir);
1167 return xstrdup (debugfile);
1168 }
1169
1170 /* Then try in the global debugfile directory. */
1171 strcpy (debugfile, debug_file_directory);
1172 strcat (debugfile, "/");
1173 strcat (debugfile, dir);
1174 strcat (debugfile, basename);
1175
1176 if (separate_debug_file_exists (debugfile, crc32))
1177 {
1178 xfree (basename);
1179 xfree (dir);
1180 return xstrdup (debugfile);
1181 }
1182
1183 xfree (basename);
1184 xfree (dir);
1185 return NULL;
1186}
1187
1188
1189/* This is the symbol-file command. Read the file, analyze its
1190 symbols, and add a struct symtab to a symtab list. The syntax of
1191 the command is rather bizarre--(1) buildargv implements various
1192 quoting conventions which are undocumented and have little or
1193 nothing in common with the way things are quoted (or not quoted)
1194 elsewhere in GDB, (2) options are used, which are not generally
1195 used in GDB (perhaps "set mapped on", "set readnow on" would be
1196 better), (3) the order of options matters, which is contrary to GNU
1197 conventions (because it is confusing and inconvenient). */
1198/* Note: ezannoni 2000-04-17. This function used to have support for
1199 rombug (see remote-os9k.c). It consisted of a call to target_link()
1200 (target.c) to get the address of the text segment from the target,
1201 and pass that to symbol_file_add(). This is no longer supported. */
1202
1203void
1204symbol_file_command (char *args, int from_tty)
1205{
1206 char **argv;
1207 char *name = NULL;
1208 struct cleanup *cleanups;
1209 int flags = OBJF_USERLOADED;
1210
1211 dont_repeat ();
1212
1213 if (args == NULL)
1214 {
1215 symbol_file_clear (from_tty);
1216 }
1217 else
1218 {
1219 if ((argv = buildargv (args)) == NULL)
1220 {
1221 nomem (0);
1222 }
1223 cleanups = make_cleanup_freeargv (argv);
1224 while (*argv != NULL)
1225 {
1226 if (strcmp (*argv, "-mapped") == 0)
1227 flags |= OBJF_MAPPED;
1228 else
1229 if (STREQ (*argv, "-readnow"))
1230 flags |= OBJF_READNOW;
1231 else
1232 if (**argv == '-')
1233 error ("unknown option `%s'", *argv);
1234 else
1235 {
1236 name = *argv;
1237
1238 symbol_file_add_main_1 (name, from_tty, flags);
1239 }
1240 argv++;
1241 }
1242
1243 if (name == NULL)
1244 {
1245 error ("no symbol file name was specified");
1246 }
1247 do_cleanups (cleanups);
1248 }
1249}
1250
1251/* Set the initial language.
1252
1253 A better solution would be to record the language in the psymtab when reading
1254 partial symbols, and then use it (if known) to set the language. This would
1255 be a win for formats that encode the language in an easily discoverable place,
1256 such as DWARF. For stabs, we can jump through hoops looking for specially
1257 named symbols or try to intuit the language from the specific type of stabs
1258 we find, but we can't do that until later when we read in full symbols.
1259 FIXME. */
1260
1261static void
1262set_initial_language (void)
1263{
1264 struct partial_symtab *pst;
1265 enum language lang = language_unknown;
1266
1267 pst = find_main_psymtab ();
1268 if (pst != NULL)
1269 {
1270 if (pst->filename != NULL)
1271 {
1272 lang = deduce_language_from_filename (pst->filename);
1273 }
1274 if (lang == language_unknown)
1275 {
1276 /* Make C the default language */
1277 lang = language_c;
1278 }
1279 set_language (lang);
1280 expected_language = current_language; /* Don't warn the user */
1281 }
1282}
1283
1284/* Open file specified by NAME and hand it off to BFD for preliminary
1285 analysis. Result is a newly initialized bfd *, which includes a newly
1286 malloc'd` copy of NAME (tilde-expanded and made absolute).
1287 In case of trouble, error() is called. */
1288
1289bfd *
1290symfile_bfd_open (char *name)
1291{
1292 bfd *sym_bfd;
1293 int desc;
1294 char *absolute_name;
1295
1296
1297
1298 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1299
1300 /* Look down path for it, allocate 2nd new malloc'd copy. */
1301 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1302#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1303 if (desc < 0)
1304 {
1305 char *exename = alloca (strlen (name) + 5);
1306 strcat (strcpy (exename, name), ".exe");
1307 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1308 0, &absolute_name);
1309 }
1310#endif
1311 if (desc < 0)
1312 {
1313 make_cleanup (xfree, name);
1314 perror_with_name (name);
1315 }
1316 xfree (name); /* Free 1st new malloc'd copy */
1317 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1318 /* It'll be freed in free_objfile(). */
1319
1320 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1321 if (!sym_bfd)
1322 {
1323 close (desc);
1324 make_cleanup (xfree, name);
1325 error ("\"%s\": can't open to read symbols: %s.", name,
1326 bfd_errmsg (bfd_get_error ()));
1327 }
1328 sym_bfd->cacheable = 1;
1329
1330 if (!bfd_check_format (sym_bfd, bfd_object))
1331 {
1332 /* FIXME: should be checking for errors from bfd_close (for one thing,
1333 on error it does not free all the storage associated with the
1334 bfd). */
1335 bfd_close (sym_bfd); /* This also closes desc */
1336 make_cleanup (xfree, name);
1337 error ("\"%s\": can't read symbols: %s.", name,
1338 bfd_errmsg (bfd_get_error ()));
1339 }
1340 return (sym_bfd);
1341}
1342
1343/* Return the section index for the given section name. Return -1 if
1344 the section was not found. */
1345int
1346get_section_index (struct objfile *objfile, char *section_name)
1347{
1348 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1349 if (sect)
1350 return sect->index;
1351 else
1352 return -1;
1353}
1354
1355/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1356 startup by the _initialize routine in each object file format reader,
1357 to register information about each format the the reader is prepared
1358 to handle. */
1359
1360void
1361add_symtab_fns (struct sym_fns *sf)
1362{
1363 sf->next = symtab_fns;
1364 symtab_fns = sf;
1365}
1366
1367
1368/* Initialize to read symbols from the symbol file sym_bfd. It either
1369 returns or calls error(). The result is an initialized struct sym_fns
1370 in the objfile structure, that contains cached information about the
1371 symbol file. */
1372
1373static void
1374find_sym_fns (struct objfile *objfile)
1375{
1376 struct sym_fns *sf;
1377 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1378 char *our_target = bfd_get_target (objfile->obfd);
1379
1380 if (our_flavour == bfd_target_srec_flavour
1381 || our_flavour == bfd_target_ihex_flavour
1382 || our_flavour == bfd_target_tekhex_flavour)
1383 return; /* No symbols. */
1384
1385 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1386 {
1387 if (our_flavour == sf->sym_flavour)
1388 {
1389 objfile->sf = sf;
1390 return;
1391 }
1392 }
1393 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1394 bfd_get_target (objfile->obfd));
1395}
1396\f
1397/* This function runs the load command of our current target. */
1398
1399static void
1400load_command (char *arg, int from_tty)
1401{
1402 if (arg == NULL)
1403 arg = get_exec_file (1);
1404 target_load (arg, from_tty);
1405
1406 /* After re-loading the executable, we don't really know which
1407 overlays are mapped any more. */
1408 overlay_cache_invalid = 1;
1409}
1410
1411/* This version of "load" should be usable for any target. Currently
1412 it is just used for remote targets, not inftarg.c or core files,
1413 on the theory that only in that case is it useful.
1414
1415 Avoiding xmodem and the like seems like a win (a) because we don't have
1416 to worry about finding it, and (b) On VMS, fork() is very slow and so
1417 we don't want to run a subprocess. On the other hand, I'm not sure how
1418 performance compares. */
1419
1420static int download_write_size = 512;
1421static int validate_download = 0;
1422
1423/* Callback service function for generic_load (bfd_map_over_sections). */
1424
1425static void
1426add_section_size_callback (bfd *abfd, asection *asec, void *data)
1427{
1428 bfd_size_type *sum = data;
1429
1430 *sum += bfd_get_section_size_before_reloc (asec);
1431}
1432
1433/* Opaque data for load_section_callback. */
1434struct load_section_data {
1435 unsigned long load_offset;
1436 unsigned long write_count;
1437 unsigned long data_count;
1438 bfd_size_type total_size;
1439};
1440
1441/* Callback service function for generic_load (bfd_map_over_sections). */
1442
1443static void
1444load_section_callback (bfd *abfd, asection *asec, void *data)
1445{
1446 struct load_section_data *args = data;
1447
1448 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1449 {
1450 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1451 if (size > 0)
1452 {
1453 char *buffer;
1454 struct cleanup *old_chain;
1455 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1456 bfd_size_type block_size;
1457 int err;
1458 const char *sect_name = bfd_get_section_name (abfd, asec);
1459 bfd_size_type sent;
1460
1461 if (download_write_size > 0 && size > download_write_size)
1462 block_size = download_write_size;
1463 else
1464 block_size = size;
1465
1466 buffer = xmalloc (size);
1467 old_chain = make_cleanup (xfree, buffer);
1468
1469 /* Is this really necessary? I guess it gives the user something
1470 to look at during a long download. */
1471 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1472 sect_name, paddr_nz (size), paddr_nz (lma));
1473
1474 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1475
1476 sent = 0;
1477 do
1478 {
1479 int len;
1480 bfd_size_type this_transfer = size - sent;
1481
1482 if (this_transfer >= block_size)
1483 this_transfer = block_size;
1484 len = target_write_memory_partial (lma, buffer,
1485 this_transfer, &err);
1486 if (err)
1487 break;
1488 if (validate_download)
1489 {
1490 /* Broken memories and broken monitors manifest
1491 themselves here when bring new computers to
1492 life. This doubles already slow downloads. */
1493 /* NOTE: cagney/1999-10-18: A more efficient
1494 implementation might add a verify_memory()
1495 method to the target vector and then use
1496 that. remote.c could implement that method
1497 using the ``qCRC'' packet. */
1498 char *check = xmalloc (len);
1499 struct cleanup *verify_cleanups =
1500 make_cleanup (xfree, check);
1501
1502 if (target_read_memory (lma, check, len) != 0)
1503 error ("Download verify read failed at 0x%s",
1504 paddr (lma));
1505 if (memcmp (buffer, check, len) != 0)
1506 error ("Download verify compare failed at 0x%s",
1507 paddr (lma));
1508 do_cleanups (verify_cleanups);
1509 }
1510 args->data_count += len;
1511 lma += len;
1512 buffer += len;
1513 args->write_count += 1;
1514 sent += len;
1515 if (quit_flag
1516 || (ui_load_progress_hook != NULL
1517 && ui_load_progress_hook (sect_name, sent)))
1518 error ("Canceled the download");
1519
1520 if (show_load_progress != NULL)
1521 show_load_progress (sect_name, sent, size,
1522 args->data_count, args->total_size);
1523 }
1524 while (sent < size);
1525
1526 if (err != 0)
1527 error ("Memory access error while loading section %s.", sect_name);
1528
1529 do_cleanups (old_chain);
1530 }
1531 }
1532}
1533
1534void
1535generic_load (char *args, int from_tty)
1536{
1537 asection *s;
1538 bfd *loadfile_bfd;
1539 time_t start_time, end_time; /* Start and end times of download */
1540 char *filename;
1541 struct cleanup *old_cleanups;
1542 char *offptr;
1543 struct load_section_data cbdata;
1544 CORE_ADDR entry;
1545
1546 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1547 cbdata.write_count = 0; /* Number of writes needed. */
1548 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1549 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1550
1551 /* Parse the input argument - the user can specify a load offset as
1552 a second argument. */
1553 filename = xmalloc (strlen (args) + 1);
1554 old_cleanups = make_cleanup (xfree, filename);
1555 strcpy (filename, args);
1556 offptr = strchr (filename, ' ');
1557 if (offptr != NULL)
1558 {
1559 char *endptr;
1560
1561 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1562 if (offptr == endptr)
1563 error ("Invalid download offset:%s\n", offptr);
1564 *offptr = '\0';
1565 }
1566 else
1567 cbdata.load_offset = 0;
1568
1569 /* Open the file for loading. */
1570 loadfile_bfd = bfd_openr (filename, gnutarget);
1571 if (loadfile_bfd == NULL)
1572 {
1573 perror_with_name (filename);
1574 return;
1575 }
1576
1577 /* FIXME: should be checking for errors from bfd_close (for one thing,
1578 on error it does not free all the storage associated with the
1579 bfd). */
1580 make_cleanup_bfd_close (loadfile_bfd);
1581
1582 if (!bfd_check_format (loadfile_bfd, bfd_object))
1583 {
1584 error ("\"%s\" is not an object file: %s", filename,
1585 bfd_errmsg (bfd_get_error ()));
1586 }
1587
1588 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1589 (void *) &cbdata.total_size);
1590
1591 start_time = time (NULL);
1592
1593 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1594
1595 end_time = time (NULL);
1596
1597 entry = bfd_get_start_address (loadfile_bfd);
1598 ui_out_text (uiout, "Start address ");
1599 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1600 ui_out_text (uiout, ", load size ");
1601 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1602 ui_out_text (uiout, "\n");
1603 /* We were doing this in remote-mips.c, I suspect it is right
1604 for other targets too. */
1605 write_pc (entry);
1606
1607 /* FIXME: are we supposed to call symbol_file_add or not? According
1608 to a comment from remote-mips.c (where a call to symbol_file_add
1609 was commented out), making the call confuses GDB if more than one
1610 file is loaded in. Some targets do (e.g., remote-vx.c) but
1611 others don't (or didn't - perhaphs they have all been deleted). */
1612
1613 print_transfer_performance (gdb_stdout, cbdata.data_count,
1614 cbdata.write_count, end_time - start_time);
1615
1616 do_cleanups (old_cleanups);
1617}
1618
1619/* Report how fast the transfer went. */
1620
1621/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1622 replaced by print_transfer_performance (with a very different
1623 function signature). */
1624
1625void
1626report_transfer_performance (unsigned long data_count, time_t start_time,
1627 time_t end_time)
1628{
1629 print_transfer_performance (gdb_stdout, data_count,
1630 end_time - start_time, 0);
1631}
1632
1633void
1634print_transfer_performance (struct ui_file *stream,
1635 unsigned long data_count,
1636 unsigned long write_count,
1637 unsigned long time_count)
1638{
1639 ui_out_text (uiout, "Transfer rate: ");
1640 if (time_count > 0)
1641 {
1642 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1643 (data_count * 8) / time_count);
1644 ui_out_text (uiout, " bits/sec");
1645 }
1646 else
1647 {
1648 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1649 ui_out_text (uiout, " bits in <1 sec");
1650 }
1651 if (write_count > 0)
1652 {
1653 ui_out_text (uiout, ", ");
1654 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1655 ui_out_text (uiout, " bytes/write");
1656 }
1657 ui_out_text (uiout, ".\n");
1658}
1659
1660/* This function allows the addition of incrementally linked object files.
1661 It does not modify any state in the target, only in the debugger. */
1662/* Note: ezannoni 2000-04-13 This function/command used to have a
1663 special case syntax for the rombug target (Rombug is the boot
1664 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1665 rombug case, the user doesn't need to supply a text address,
1666 instead a call to target_link() (in target.c) would supply the
1667 value to use. We are now discontinuing this type of ad hoc syntax. */
1668
1669static void
1670add_symbol_file_command (char *args, int from_tty)
1671{
1672 char *filename = NULL;
1673 int flags = OBJF_USERLOADED;
1674 char *arg;
1675 int expecting_option = 0;
1676 int section_index = 0;
1677 int argcnt = 0;
1678 int sec_num = 0;
1679 int i;
1680 int expecting_sec_name = 0;
1681 int expecting_sec_addr = 0;
1682
1683 struct sect_opt
1684 {
1685 char *name;
1686 char *value;
1687 };
1688
1689 struct section_addr_info *section_addrs;
1690 struct sect_opt *sect_opts = NULL;
1691 size_t num_sect_opts = 0;
1692 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1693
1694 num_sect_opts = 16;
1695 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1696 * sizeof (struct sect_opt));
1697
1698 dont_repeat ();
1699
1700 if (args == NULL)
1701 error ("add-symbol-file takes a file name and an address");
1702
1703 /* Make a copy of the string that we can safely write into. */
1704 args = xstrdup (args);
1705
1706 while (*args != '\000')
1707 {
1708 /* Any leading spaces? */
1709 while (isspace (*args))
1710 args++;
1711
1712 /* Point arg to the beginning of the argument. */
1713 arg = args;
1714
1715 /* Move args pointer over the argument. */
1716 while ((*args != '\000') && !isspace (*args))
1717 args++;
1718
1719 /* If there are more arguments, terminate arg and
1720 proceed past it. */
1721 if (*args != '\000')
1722 *args++ = '\000';
1723
1724 /* Now process the argument. */
1725 if (argcnt == 0)
1726 {
1727 /* The first argument is the file name. */
1728 filename = tilde_expand (arg);
1729 make_cleanup (xfree, filename);
1730 }
1731 else
1732 if (argcnt == 1)
1733 {
1734 /* The second argument is always the text address at which
1735 to load the program. */
1736 sect_opts[section_index].name = ".text";
1737 sect_opts[section_index].value = arg;
1738 if (++section_index > num_sect_opts)
1739 {
1740 num_sect_opts *= 2;
1741 sect_opts = ((struct sect_opt *)
1742 xrealloc (sect_opts,
1743 num_sect_opts
1744 * sizeof (struct sect_opt)));
1745 }
1746 }
1747 else
1748 {
1749 /* It's an option (starting with '-') or it's an argument
1750 to an option */
1751
1752 if (*arg == '-')
1753 {
1754 if (strcmp (arg, "-mapped") == 0)
1755 flags |= OBJF_MAPPED;
1756 else
1757 if (strcmp (arg, "-readnow") == 0)
1758 flags |= OBJF_READNOW;
1759 else
1760 if (strcmp (arg, "-s") == 0)
1761 {
1762 expecting_sec_name = 1;
1763 expecting_sec_addr = 1;
1764 }
1765 }
1766 else
1767 {
1768 if (expecting_sec_name)
1769 {
1770 sect_opts[section_index].name = arg;
1771 expecting_sec_name = 0;
1772 }
1773 else
1774 if (expecting_sec_addr)
1775 {
1776 sect_opts[section_index].value = arg;
1777 expecting_sec_addr = 0;
1778 if (++section_index > num_sect_opts)
1779 {
1780 num_sect_opts *= 2;
1781 sect_opts = ((struct sect_opt *)
1782 xrealloc (sect_opts,
1783 num_sect_opts
1784 * sizeof (struct sect_opt)));
1785 }
1786 }
1787 else
1788 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1789 }
1790 }
1791 argcnt++;
1792 }
1793
1794 /* Print the prompt for the query below. And save the arguments into
1795 a sect_addr_info structure to be passed around to other
1796 functions. We have to split this up into separate print
1797 statements because local_hex_string returns a local static
1798 string. */
1799
1800 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1801 section_addrs = alloc_section_addr_info (section_index);
1802 make_cleanup (xfree, section_addrs);
1803 for (i = 0; i < section_index; i++)
1804 {
1805 CORE_ADDR addr;
1806 char *val = sect_opts[i].value;
1807 char *sec = sect_opts[i].name;
1808
1809 addr = parse_and_eval_address (val);
1810
1811 /* Here we store the section offsets in the order they were
1812 entered on the command line. */
1813 section_addrs->other[sec_num].name = sec;
1814 section_addrs->other[sec_num].addr = addr;
1815 printf_unfiltered ("\t%s_addr = %s\n",
1816 sec,
1817 local_hex_string ((unsigned long)addr));
1818 sec_num++;
1819
1820 /* The object's sections are initialized when a
1821 call is made to build_objfile_section_table (objfile).
1822 This happens in reread_symbols.
1823 At this point, we don't know what file type this is,
1824 so we can't determine what section names are valid. */
1825 }
1826
1827 if (from_tty && (!query ("%s", "")))
1828 error ("Not confirmed.");
1829
1830 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1831
1832 /* Getting new symbols may change our opinion about what is
1833 frameless. */
1834 reinit_frame_cache ();
1835 do_cleanups (my_cleanups);
1836}
1837\f
1838static void
1839add_shared_symbol_files_command (char *args, int from_tty)
1840{
1841#ifdef ADD_SHARED_SYMBOL_FILES
1842 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1843#else
1844 error ("This command is not available in this configuration of GDB.");
1845#endif
1846}
1847\f
1848/* Re-read symbols if a symbol-file has changed. */
1849void
1850reread_symbols (void)
1851{
1852 struct objfile *objfile;
1853 long new_modtime;
1854 int reread_one = 0;
1855 struct stat new_statbuf;
1856 int res;
1857
1858 /* With the addition of shared libraries, this should be modified,
1859 the load time should be saved in the partial symbol tables, since
1860 different tables may come from different source files. FIXME.
1861 This routine should then walk down each partial symbol table
1862 and see if the symbol table that it originates from has been changed */
1863
1864 for (objfile = object_files; objfile; objfile = objfile->next)
1865 {
1866 if (objfile->obfd)
1867 {
1868#ifdef DEPRECATED_IBM6000_TARGET
1869 /* If this object is from a shared library, then you should
1870 stat on the library name, not member name. */
1871
1872 if (objfile->obfd->my_archive)
1873 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1874 else
1875#endif
1876 res = stat (objfile->name, &new_statbuf);
1877 if (res != 0)
1878 {
1879 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1880 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1881 objfile->name);
1882 continue;
1883 }
1884 new_modtime = new_statbuf.st_mtime;
1885 if (new_modtime != objfile->mtime)
1886 {
1887 struct cleanup *old_cleanups;
1888 struct section_offsets *offsets;
1889 int num_offsets;
1890 char *obfd_filename;
1891
1892 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1893 objfile->name);
1894
1895 /* There are various functions like symbol_file_add,
1896 symfile_bfd_open, syms_from_objfile, etc., which might
1897 appear to do what we want. But they have various other
1898 effects which we *don't* want. So we just do stuff
1899 ourselves. We don't worry about mapped files (for one thing,
1900 any mapped file will be out of date). */
1901
1902 /* If we get an error, blow away this objfile (not sure if
1903 that is the correct response for things like shared
1904 libraries). */
1905 old_cleanups = make_cleanup_free_objfile (objfile);
1906 /* We need to do this whenever any symbols go away. */
1907 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1908
1909 /* Clean up any state BFD has sitting around. We don't need
1910 to close the descriptor but BFD lacks a way of closing the
1911 BFD without closing the descriptor. */
1912 obfd_filename = bfd_get_filename (objfile->obfd);
1913 if (!bfd_close (objfile->obfd))
1914 error ("Can't close BFD for %s: %s", objfile->name,
1915 bfd_errmsg (bfd_get_error ()));
1916 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1917 if (objfile->obfd == NULL)
1918 error ("Can't open %s to read symbols.", objfile->name);
1919 /* bfd_openr sets cacheable to true, which is what we want. */
1920 if (!bfd_check_format (objfile->obfd, bfd_object))
1921 error ("Can't read symbols from %s: %s.", objfile->name,
1922 bfd_errmsg (bfd_get_error ()));
1923
1924 /* Save the offsets, we will nuke them with the rest of the
1925 psymbol_obstack. */
1926 num_offsets = objfile->num_sections;
1927 offsets = ((struct section_offsets *)
1928 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1929 memcpy (offsets, objfile->section_offsets,
1930 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1931
1932 /* Nuke all the state that we will re-read. Much of the following
1933 code which sets things to NULL really is necessary to tell
1934 other parts of GDB that there is nothing currently there. */
1935
1936 /* FIXME: Do we have to free a whole linked list, or is this
1937 enough? */
1938 if (objfile->global_psymbols.list)
1939 xmfree (objfile->md, objfile->global_psymbols.list);
1940 memset (&objfile->global_psymbols, 0,
1941 sizeof (objfile->global_psymbols));
1942 if (objfile->static_psymbols.list)
1943 xmfree (objfile->md, objfile->static_psymbols.list);
1944 memset (&objfile->static_psymbols, 0,
1945 sizeof (objfile->static_psymbols));
1946
1947 /* Free the obstacks for non-reusable objfiles */
1948 bcache_xfree (objfile->psymbol_cache);
1949 objfile->psymbol_cache = bcache_xmalloc ();
1950 bcache_xfree (objfile->macro_cache);
1951 objfile->macro_cache = bcache_xmalloc ();
1952 if (objfile->demangled_names_hash != NULL)
1953 {
1954 htab_delete (objfile->demangled_names_hash);
1955 objfile->demangled_names_hash = NULL;
1956 }
1957 obstack_free (&objfile->psymbol_obstack, 0);
1958 obstack_free (&objfile->symbol_obstack, 0);
1959 obstack_free (&objfile->type_obstack, 0);
1960 objfile->sections = NULL;
1961 objfile->symtabs = NULL;
1962 objfile->psymtabs = NULL;
1963 objfile->free_psymtabs = NULL;
1964 objfile->msymbols = NULL;
1965 objfile->sym_private = NULL;
1966 objfile->minimal_symbol_count = 0;
1967 memset (&objfile->msymbol_hash, 0,
1968 sizeof (objfile->msymbol_hash));
1969 memset (&objfile->msymbol_demangled_hash, 0,
1970 sizeof (objfile->msymbol_demangled_hash));
1971 objfile->fundamental_types = NULL;
1972 clear_objfile_data (objfile);
1973 if (objfile->sf != NULL)
1974 {
1975 (*objfile->sf->sym_finish) (objfile);
1976 }
1977
1978 /* We never make this a mapped file. */
1979 objfile->md = NULL;
1980 /* obstack_specify_allocation also initializes the obstack so
1981 it is empty. */
1982 objfile->psymbol_cache = bcache_xmalloc ();
1983 objfile->macro_cache = bcache_xmalloc ();
1984 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1985 xmalloc, xfree);
1986 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1987 xmalloc, xfree);
1988 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1989 xmalloc, xfree);
1990 if (build_objfile_section_table (objfile))
1991 {
1992 error ("Can't find the file sections in `%s': %s",
1993 objfile->name, bfd_errmsg (bfd_get_error ()));
1994 }
1995 terminate_minimal_symbol_table (objfile);
1996
1997 /* We use the same section offsets as from last time. I'm not
1998 sure whether that is always correct for shared libraries. */
1999 objfile->section_offsets = (struct section_offsets *)
2000 obstack_alloc (&objfile->psymbol_obstack,
2001 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2002 memcpy (objfile->section_offsets, offsets,
2003 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2004 objfile->num_sections = num_offsets;
2005
2006 /* What the hell is sym_new_init for, anyway? The concept of
2007 distinguishing between the main file and additional files
2008 in this way seems rather dubious. */
2009 if (objfile == symfile_objfile)
2010 {
2011 (*objfile->sf->sym_new_init) (objfile);
2012#ifdef HPUXHPPA
2013 RESET_HP_UX_GLOBALS ();
2014#endif
2015 }
2016
2017 (*objfile->sf->sym_init) (objfile);
2018 clear_complaints (&symfile_complaints, 1, 1);
2019 /* The "mainline" parameter is a hideous hack; I think leaving it
2020 zero is OK since dbxread.c also does what it needs to do if
2021 objfile->global_psymbols.size is 0. */
2022 (*objfile->sf->sym_read) (objfile, 0);
2023 if (!have_partial_symbols () && !have_full_symbols ())
2024 {
2025 wrap_here ("");
2026 printf_unfiltered ("(no debugging symbols found)\n");
2027 wrap_here ("");
2028 }
2029 objfile->flags |= OBJF_SYMS;
2030
2031 /* We're done reading the symbol file; finish off complaints. */
2032 clear_complaints (&symfile_complaints, 0, 1);
2033
2034 /* Getting new symbols may change our opinion about what is
2035 frameless. */
2036
2037 reinit_frame_cache ();
2038
2039 /* Discard cleanups as symbol reading was successful. */
2040 discard_cleanups (old_cleanups);
2041
2042 /* If the mtime has changed between the time we set new_modtime
2043 and now, we *want* this to be out of date, so don't call stat
2044 again now. */
2045 objfile->mtime = new_modtime;
2046 reread_one = 1;
2047 reread_separate_symbols (objfile);
2048 }
2049 }
2050 }
2051
2052 if (reread_one)
2053 clear_symtab_users ();
2054}
2055
2056
2057/* Handle separate debug info for OBJFILE, which has just been
2058 re-read:
2059 - If we had separate debug info before, but now we don't, get rid
2060 of the separated objfile.
2061 - If we didn't have separated debug info before, but now we do,
2062 read in the new separated debug info file.
2063 - If the debug link points to a different file, toss the old one
2064 and read the new one.
2065 This function does *not* handle the case where objfile is still
2066 using the same separate debug info file, but that file's timestamp
2067 has changed. That case should be handled by the loop in
2068 reread_symbols already. */
2069static void
2070reread_separate_symbols (struct objfile *objfile)
2071{
2072 char *debug_file;
2073 unsigned long crc32;
2074
2075 /* Does the updated objfile's debug info live in a
2076 separate file? */
2077 debug_file = find_separate_debug_file (objfile);
2078
2079 if (objfile->separate_debug_objfile)
2080 {
2081 /* There are two cases where we need to get rid of
2082 the old separated debug info objfile:
2083 - if the new primary objfile doesn't have
2084 separated debug info, or
2085 - if the new primary objfile has separate debug
2086 info, but it's under a different filename.
2087
2088 If the old and new objfiles both have separate
2089 debug info, under the same filename, then we're
2090 okay --- if the separated file's contents have
2091 changed, we will have caught that when we
2092 visited it in this function's outermost
2093 loop. */
2094 if (! debug_file
2095 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2096 free_objfile (objfile->separate_debug_objfile);
2097 }
2098
2099 /* If the new objfile has separate debug info, and we
2100 haven't loaded it already, do so now. */
2101 if (debug_file
2102 && ! objfile->separate_debug_objfile)
2103 {
2104 /* Use the same section offset table as objfile itself.
2105 Preserve the flags from objfile that make sense. */
2106 objfile->separate_debug_objfile
2107 = (symbol_file_add_with_addrs_or_offsets
2108 (debug_file,
2109 info_verbose, /* from_tty: Don't override the default. */
2110 0, /* No addr table. */
2111 objfile->section_offsets, objfile->num_sections,
2112 0, /* Not mainline. See comments about this above. */
2113 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2114 | OBJF_SHARED | OBJF_READNOW
2115 | OBJF_USERLOADED)));
2116 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2117 = objfile;
2118 }
2119}
2120
2121
2122\f
2123
2124
2125typedef struct
2126{
2127 char *ext;
2128 enum language lang;
2129}
2130filename_language;
2131
2132static filename_language *filename_language_table;
2133static int fl_table_size, fl_table_next;
2134
2135static void
2136add_filename_language (char *ext, enum language lang)
2137{
2138 if (fl_table_next >= fl_table_size)
2139 {
2140 fl_table_size += 10;
2141 filename_language_table =
2142 xrealloc (filename_language_table,
2143 fl_table_size * sizeof (*filename_language_table));
2144 }
2145
2146 filename_language_table[fl_table_next].ext = xstrdup (ext);
2147 filename_language_table[fl_table_next].lang = lang;
2148 fl_table_next++;
2149}
2150
2151static char *ext_args;
2152
2153static void
2154set_ext_lang_command (char *args, int from_tty)
2155{
2156 int i;
2157 char *cp = ext_args;
2158 enum language lang;
2159
2160 /* First arg is filename extension, starting with '.' */
2161 if (*cp != '.')
2162 error ("'%s': Filename extension must begin with '.'", ext_args);
2163
2164 /* Find end of first arg. */
2165 while (*cp && !isspace (*cp))
2166 cp++;
2167
2168 if (*cp == '\0')
2169 error ("'%s': two arguments required -- filename extension and language",
2170 ext_args);
2171
2172 /* Null-terminate first arg */
2173 *cp++ = '\0';
2174
2175 /* Find beginning of second arg, which should be a source language. */
2176 while (*cp && isspace (*cp))
2177 cp++;
2178
2179 if (*cp == '\0')
2180 error ("'%s': two arguments required -- filename extension and language",
2181 ext_args);
2182
2183 /* Lookup the language from among those we know. */
2184 lang = language_enum (cp);
2185
2186 /* Now lookup the filename extension: do we already know it? */
2187 for (i = 0; i < fl_table_next; i++)
2188 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2189 break;
2190
2191 if (i >= fl_table_next)
2192 {
2193 /* new file extension */
2194 add_filename_language (ext_args, lang);
2195 }
2196 else
2197 {
2198 /* redefining a previously known filename extension */
2199
2200 /* if (from_tty) */
2201 /* query ("Really make files of type %s '%s'?", */
2202 /* ext_args, language_str (lang)); */
2203
2204 xfree (filename_language_table[i].ext);
2205 filename_language_table[i].ext = xstrdup (ext_args);
2206 filename_language_table[i].lang = lang;
2207 }
2208}
2209
2210static void
2211info_ext_lang_command (char *args, int from_tty)
2212{
2213 int i;
2214
2215 printf_filtered ("Filename extensions and the languages they represent:");
2216 printf_filtered ("\n\n");
2217 for (i = 0; i < fl_table_next; i++)
2218 printf_filtered ("\t%s\t- %s\n",
2219 filename_language_table[i].ext,
2220 language_str (filename_language_table[i].lang));
2221}
2222
2223static void
2224init_filename_language_table (void)
2225{
2226 if (fl_table_size == 0) /* protect against repetition */
2227 {
2228 fl_table_size = 20;
2229 fl_table_next = 0;
2230 filename_language_table =
2231 xmalloc (fl_table_size * sizeof (*filename_language_table));
2232 add_filename_language (".c", language_c);
2233 add_filename_language (".C", language_cplus);
2234 add_filename_language (".cc", language_cplus);
2235 add_filename_language (".cp", language_cplus);
2236 add_filename_language (".cpp", language_cplus);
2237 add_filename_language (".cxx", language_cplus);
2238 add_filename_language (".c++", language_cplus);
2239 add_filename_language (".java", language_java);
2240 add_filename_language (".class", language_java);
2241 add_filename_language (".m", language_objc);
2242 add_filename_language (".f", language_fortran);
2243 add_filename_language (".F", language_fortran);
2244 add_filename_language (".s", language_asm);
2245 add_filename_language (".S", language_asm);
2246 add_filename_language (".pas", language_pascal);
2247 add_filename_language (".p", language_pascal);
2248 add_filename_language (".pp", language_pascal);
2249 }
2250}
2251
2252enum language
2253deduce_language_from_filename (char *filename)
2254{
2255 int i;
2256 char *cp;
2257
2258 if (filename != NULL)
2259 if ((cp = strrchr (filename, '.')) != NULL)
2260 for (i = 0; i < fl_table_next; i++)
2261 if (strcmp (cp, filename_language_table[i].ext) == 0)
2262 return filename_language_table[i].lang;
2263
2264 return language_unknown;
2265}
2266\f
2267/* allocate_symtab:
2268
2269 Allocate and partly initialize a new symbol table. Return a pointer
2270 to it. error() if no space.
2271
2272 Caller must set these fields:
2273 LINETABLE(symtab)
2274 symtab->blockvector
2275 symtab->dirname
2276 symtab->free_code
2277 symtab->free_ptr
2278 possibly free_named_symtabs (symtab->filename);
2279 */
2280
2281struct symtab *
2282allocate_symtab (char *filename, struct objfile *objfile)
2283{
2284 struct symtab *symtab;
2285
2286 symtab = (struct symtab *)
2287 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2288 memset (symtab, 0, sizeof (*symtab));
2289 symtab->filename = obsavestring (filename, strlen (filename),
2290 &objfile->symbol_obstack);
2291 symtab->fullname = NULL;
2292 symtab->language = deduce_language_from_filename (filename);
2293 symtab->debugformat = obsavestring ("unknown", 7,
2294 &objfile->symbol_obstack);
2295
2296 /* Hook it to the objfile it comes from */
2297
2298 symtab->objfile = objfile;
2299 symtab->next = objfile->symtabs;
2300 objfile->symtabs = symtab;
2301
2302 /* FIXME: This should go away. It is only defined for the Z8000,
2303 and the Z8000 definition of this macro doesn't have anything to
2304 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2305 here for convenience. */
2306#ifdef INIT_EXTRA_SYMTAB_INFO
2307 INIT_EXTRA_SYMTAB_INFO (symtab);
2308#endif
2309
2310 return (symtab);
2311}
2312
2313struct partial_symtab *
2314allocate_psymtab (char *filename, struct objfile *objfile)
2315{
2316 struct partial_symtab *psymtab;
2317
2318 if (objfile->free_psymtabs)
2319 {
2320 psymtab = objfile->free_psymtabs;
2321 objfile->free_psymtabs = psymtab->next;
2322 }
2323 else
2324 psymtab = (struct partial_symtab *)
2325 obstack_alloc (&objfile->psymbol_obstack,
2326 sizeof (struct partial_symtab));
2327
2328 memset (psymtab, 0, sizeof (struct partial_symtab));
2329 psymtab->filename = obsavestring (filename, strlen (filename),
2330 &objfile->psymbol_obstack);
2331 psymtab->symtab = NULL;
2332
2333 /* Prepend it to the psymtab list for the objfile it belongs to.
2334 Psymtabs are searched in most recent inserted -> least recent
2335 inserted order. */
2336
2337 psymtab->objfile = objfile;
2338 psymtab->next = objfile->psymtabs;
2339 objfile->psymtabs = psymtab;
2340#if 0
2341 {
2342 struct partial_symtab **prev_pst;
2343 psymtab->objfile = objfile;
2344 psymtab->next = NULL;
2345 prev_pst = &(objfile->psymtabs);
2346 while ((*prev_pst) != NULL)
2347 prev_pst = &((*prev_pst)->next);
2348 (*prev_pst) = psymtab;
2349 }
2350#endif
2351
2352 return (psymtab);
2353}
2354
2355void
2356discard_psymtab (struct partial_symtab *pst)
2357{
2358 struct partial_symtab **prev_pst;
2359
2360 /* From dbxread.c:
2361 Empty psymtabs happen as a result of header files which don't
2362 have any symbols in them. There can be a lot of them. But this
2363 check is wrong, in that a psymtab with N_SLINE entries but
2364 nothing else is not empty, but we don't realize that. Fixing
2365 that without slowing things down might be tricky. */
2366
2367 /* First, snip it out of the psymtab chain */
2368
2369 prev_pst = &(pst->objfile->psymtabs);
2370 while ((*prev_pst) != pst)
2371 prev_pst = &((*prev_pst)->next);
2372 (*prev_pst) = pst->next;
2373
2374 /* Next, put it on a free list for recycling */
2375
2376 pst->next = pst->objfile->free_psymtabs;
2377 pst->objfile->free_psymtabs = pst;
2378}
2379\f
2380
2381/* Reset all data structures in gdb which may contain references to symbol
2382 table data. */
2383
2384void
2385clear_symtab_users (void)
2386{
2387 /* Someday, we should do better than this, by only blowing away
2388 the things that really need to be blown. */
2389 clear_value_history ();
2390 clear_displays ();
2391 clear_internalvars ();
2392 breakpoint_re_set ();
2393 set_default_breakpoint (0, 0, 0, 0);
2394 clear_current_source_symtab_and_line ();
2395 clear_pc_function_cache ();
2396 if (target_new_objfile_hook)
2397 target_new_objfile_hook (NULL);
2398}
2399
2400static void
2401clear_symtab_users_cleanup (void *ignore)
2402{
2403 clear_symtab_users ();
2404}
2405
2406/* clear_symtab_users_once:
2407
2408 This function is run after symbol reading, or from a cleanup.
2409 If an old symbol table was obsoleted, the old symbol table
2410 has been blown away, but the other GDB data structures that may
2411 reference it have not yet been cleared or re-directed. (The old
2412 symtab was zapped, and the cleanup queued, in free_named_symtab()
2413 below.)
2414
2415 This function can be queued N times as a cleanup, or called
2416 directly; it will do all the work the first time, and then will be a
2417 no-op until the next time it is queued. This works by bumping a
2418 counter at queueing time. Much later when the cleanup is run, or at
2419 the end of symbol processing (in case the cleanup is discarded), if
2420 the queued count is greater than the "done-count", we do the work
2421 and set the done-count to the queued count. If the queued count is
2422 less than or equal to the done-count, we just ignore the call. This
2423 is needed because reading a single .o file will often replace many
2424 symtabs (one per .h file, for example), and we don't want to reset
2425 the breakpoints N times in the user's face.
2426
2427 The reason we both queue a cleanup, and call it directly after symbol
2428 reading, is because the cleanup protects us in case of errors, but is
2429 discarded if symbol reading is successful. */
2430
2431#if 0
2432/* FIXME: As free_named_symtabs is currently a big noop this function
2433 is no longer needed. */
2434static void clear_symtab_users_once (void);
2435
2436static int clear_symtab_users_queued;
2437static int clear_symtab_users_done;
2438
2439static void
2440clear_symtab_users_once (void)
2441{
2442 /* Enforce once-per-`do_cleanups'-semantics */
2443 if (clear_symtab_users_queued <= clear_symtab_users_done)
2444 return;
2445 clear_symtab_users_done = clear_symtab_users_queued;
2446
2447 clear_symtab_users ();
2448}
2449#endif
2450
2451/* Delete the specified psymtab, and any others that reference it. */
2452
2453static void
2454cashier_psymtab (struct partial_symtab *pst)
2455{
2456 struct partial_symtab *ps, *pprev = NULL;
2457 int i;
2458
2459 /* Find its previous psymtab in the chain */
2460 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2461 {
2462 if (ps == pst)
2463 break;
2464 pprev = ps;
2465 }
2466
2467 if (ps)
2468 {
2469 /* Unhook it from the chain. */
2470 if (ps == pst->objfile->psymtabs)
2471 pst->objfile->psymtabs = ps->next;
2472 else
2473 pprev->next = ps->next;
2474
2475 /* FIXME, we can't conveniently deallocate the entries in the
2476 partial_symbol lists (global_psymbols/static_psymbols) that
2477 this psymtab points to. These just take up space until all
2478 the psymtabs are reclaimed. Ditto the dependencies list and
2479 filename, which are all in the psymbol_obstack. */
2480
2481 /* We need to cashier any psymtab that has this one as a dependency... */
2482 again:
2483 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2484 {
2485 for (i = 0; i < ps->number_of_dependencies; i++)
2486 {
2487 if (ps->dependencies[i] == pst)
2488 {
2489 cashier_psymtab (ps);
2490 goto again; /* Must restart, chain has been munged. */
2491 }
2492 }
2493 }
2494 }
2495}
2496
2497/* If a symtab or psymtab for filename NAME is found, free it along
2498 with any dependent breakpoints, displays, etc.
2499 Used when loading new versions of object modules with the "add-file"
2500 command. This is only called on the top-level symtab or psymtab's name;
2501 it is not called for subsidiary files such as .h files.
2502
2503 Return value is 1 if we blew away the environment, 0 if not.
2504 FIXME. The return value appears to never be used.
2505
2506 FIXME. I think this is not the best way to do this. We should
2507 work on being gentler to the environment while still cleaning up
2508 all stray pointers into the freed symtab. */
2509
2510int
2511free_named_symtabs (char *name)
2512{
2513#if 0
2514 /* FIXME: With the new method of each objfile having it's own
2515 psymtab list, this function needs serious rethinking. In particular,
2516 why was it ever necessary to toss psymtabs with specific compilation
2517 unit filenames, as opposed to all psymtabs from a particular symbol
2518 file? -- fnf
2519 Well, the answer is that some systems permit reloading of particular
2520 compilation units. We want to blow away any old info about these
2521 compilation units, regardless of which objfiles they arrived in. --gnu. */
2522
2523 struct symtab *s;
2524 struct symtab *prev;
2525 struct partial_symtab *ps;
2526 struct blockvector *bv;
2527 int blewit = 0;
2528
2529 /* We only wack things if the symbol-reload switch is set. */
2530 if (!symbol_reloading)
2531 return 0;
2532
2533 /* Some symbol formats have trouble providing file names... */
2534 if (name == 0 || *name == '\0')
2535 return 0;
2536
2537 /* Look for a psymtab with the specified name. */
2538
2539again2:
2540 for (ps = partial_symtab_list; ps; ps = ps->next)
2541 {
2542 if (strcmp (name, ps->filename) == 0)
2543 {
2544 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2545 goto again2; /* Must restart, chain has been munged */
2546 }
2547 }
2548
2549 /* Look for a symtab with the specified name. */
2550
2551 for (s = symtab_list; s; s = s->next)
2552 {
2553 if (strcmp (name, s->filename) == 0)
2554 break;
2555 prev = s;
2556 }
2557
2558 if (s)
2559 {
2560 if (s == symtab_list)
2561 symtab_list = s->next;
2562 else
2563 prev->next = s->next;
2564
2565 /* For now, queue a delete for all breakpoints, displays, etc., whether
2566 or not they depend on the symtab being freed. This should be
2567 changed so that only those data structures affected are deleted. */
2568
2569 /* But don't delete anything if the symtab is empty.
2570 This test is necessary due to a bug in "dbxread.c" that
2571 causes empty symtabs to be created for N_SO symbols that
2572 contain the pathname of the object file. (This problem
2573 has been fixed in GDB 3.9x). */
2574
2575 bv = BLOCKVECTOR (s);
2576 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2578 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2579 {
2580 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2581 name);
2582 clear_symtab_users_queued++;
2583 make_cleanup (clear_symtab_users_once, 0);
2584 blewit = 1;
2585 }
2586 else
2587 {
2588 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2589 name);
2590 }
2591
2592 free_symtab (s);
2593 }
2594 else
2595 {
2596 /* It is still possible that some breakpoints will be affected
2597 even though no symtab was found, since the file might have
2598 been compiled without debugging, and hence not be associated
2599 with a symtab. In order to handle this correctly, we would need
2600 to keep a list of text address ranges for undebuggable files.
2601 For now, we do nothing, since this is a fairly obscure case. */
2602 ;
2603 }
2604
2605 /* FIXME, what about the minimal symbol table? */
2606 return blewit;
2607#else
2608 return (0);
2609#endif
2610}
2611\f
2612/* Allocate and partially fill a partial symtab. It will be
2613 completely filled at the end of the symbol list.
2614
2615 FILENAME is the name of the symbol-file we are reading from. */
2616
2617struct partial_symtab *
2618start_psymtab_common (struct objfile *objfile,
2619 struct section_offsets *section_offsets, char *filename,
2620 CORE_ADDR textlow, struct partial_symbol **global_syms,
2621 struct partial_symbol **static_syms)
2622{
2623 struct partial_symtab *psymtab;
2624
2625 psymtab = allocate_psymtab (filename, objfile);
2626 psymtab->section_offsets = section_offsets;
2627 psymtab->textlow = textlow;
2628 psymtab->texthigh = psymtab->textlow; /* default */
2629 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2630 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2631 return (psymtab);
2632}
2633\f
2634/* Add a symbol with a long value to a psymtab.
2635 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2636 Return the partial symbol that has been added. */
2637
2638/* NOTE: carlton/2003-09-11: The reason why we return the partial
2639 symbol is so that callers can get access to the symbol's demangled
2640 name, which they don't have any cheap way to determine otherwise.
2641 (Currenly, dwarf2read.c is the only file who uses that information,
2642 though it's possible that other readers might in the future.)
2643 Elena wasn't thrilled about that, and I don't blame her, but we
2644 couldn't come up with a better way to get that information. If
2645 it's needed in other situations, we could consider breaking up
2646 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2647 cache. */
2648
2649const struct partial_symbol *
2650add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2651 enum address_class class,
2652 struct psymbol_allocation_list *list, long val, /* Value as a long */
2653 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2654 enum language language, struct objfile *objfile)
2655{
2656 struct partial_symbol *psym;
2657 char *buf = alloca (namelength + 1);
2658 /* psymbol is static so that there will be no uninitialized gaps in the
2659 structure which might contain random data, causing cache misses in
2660 bcache. */
2661 static struct partial_symbol psymbol;
2662
2663 /* Create local copy of the partial symbol */
2664 memcpy (buf, name, namelength);
2665 buf[namelength] = '\0';
2666 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2667 if (val != 0)
2668 {
2669 SYMBOL_VALUE (&psymbol) = val;
2670 }
2671 else
2672 {
2673 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2674 }
2675 SYMBOL_SECTION (&psymbol) = 0;
2676 SYMBOL_LANGUAGE (&psymbol) = language;
2677 PSYMBOL_DOMAIN (&psymbol) = domain;
2678 PSYMBOL_CLASS (&psymbol) = class;
2679
2680 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2681
2682 /* Stash the partial symbol away in the cache */
2683 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2684 objfile->psymbol_cache);
2685
2686 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2687 if (list->next >= list->list + list->size)
2688 {
2689 extend_psymbol_list (list, objfile);
2690 }
2691 *list->next++ = psym;
2692 OBJSTAT (objfile, n_psyms++);
2693
2694 return psym;
2695}
2696
2697/* Add a symbol with a long value to a psymtab. This differs from
2698 * add_psymbol_to_list above in taking both a mangled and a demangled
2699 * name. */
2700
2701void
2702add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2703 int dem_namelength, domain_enum domain,
2704 enum address_class class,
2705 struct psymbol_allocation_list *list, long val, /* Value as a long */
2706 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2707 enum language language,
2708 struct objfile *objfile)
2709{
2710 struct partial_symbol *psym;
2711 char *buf = alloca (namelength + 1);
2712 /* psymbol is static so that there will be no uninitialized gaps in the
2713 structure which might contain random data, causing cache misses in
2714 bcache. */
2715 static struct partial_symbol psymbol;
2716
2717 /* Create local copy of the partial symbol */
2718
2719 memcpy (buf, name, namelength);
2720 buf[namelength] = '\0';
2721 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2722 objfile->psymbol_cache);
2723
2724 buf = alloca (dem_namelength + 1);
2725 memcpy (buf, dem_name, dem_namelength);
2726 buf[dem_namelength] = '\0';
2727
2728 switch (language)
2729 {
2730 case language_c:
2731 case language_cplus:
2732 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2733 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2734 break;
2735 /* FIXME What should be done for the default case? Ignoring for now. */
2736 }
2737
2738 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2739 if (val != 0)
2740 {
2741 SYMBOL_VALUE (&psymbol) = val;
2742 }
2743 else
2744 {
2745 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2746 }
2747 SYMBOL_SECTION (&psymbol) = 0;
2748 SYMBOL_LANGUAGE (&psymbol) = language;
2749 PSYMBOL_DOMAIN (&psymbol) = domain;
2750 PSYMBOL_CLASS (&psymbol) = class;
2751 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2752
2753 /* Stash the partial symbol away in the cache */
2754 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2755 objfile->psymbol_cache);
2756
2757 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2758 if (list->next >= list->list + list->size)
2759 {
2760 extend_psymbol_list (list, objfile);
2761 }
2762 *list->next++ = psym;
2763 OBJSTAT (objfile, n_psyms++);
2764}
2765
2766/* Initialize storage for partial symbols. */
2767
2768void
2769init_psymbol_list (struct objfile *objfile, int total_symbols)
2770{
2771 /* Free any previously allocated psymbol lists. */
2772
2773 if (objfile->global_psymbols.list)
2774 {
2775 xmfree (objfile->md, objfile->global_psymbols.list);
2776 }
2777 if (objfile->static_psymbols.list)
2778 {
2779 xmfree (objfile->md, objfile->static_psymbols.list);
2780 }
2781
2782 /* Current best guess is that approximately a twentieth
2783 of the total symbols (in a debugging file) are global or static
2784 oriented symbols */
2785
2786 objfile->global_psymbols.size = total_symbols / 10;
2787 objfile->static_psymbols.size = total_symbols / 10;
2788
2789 if (objfile->global_psymbols.size > 0)
2790 {
2791 objfile->global_psymbols.next =
2792 objfile->global_psymbols.list = (struct partial_symbol **)
2793 xmmalloc (objfile->md, (objfile->global_psymbols.size
2794 * sizeof (struct partial_symbol *)));
2795 }
2796 if (objfile->static_psymbols.size > 0)
2797 {
2798 objfile->static_psymbols.next =
2799 objfile->static_psymbols.list = (struct partial_symbol **)
2800 xmmalloc (objfile->md, (objfile->static_psymbols.size
2801 * sizeof (struct partial_symbol *)));
2802 }
2803}
2804
2805/* OVERLAYS:
2806 The following code implements an abstraction for debugging overlay sections.
2807
2808 The target model is as follows:
2809 1) The gnu linker will permit multiple sections to be mapped into the
2810 same VMA, each with its own unique LMA (or load address).
2811 2) It is assumed that some runtime mechanism exists for mapping the
2812 sections, one by one, from the load address into the VMA address.
2813 3) This code provides a mechanism for gdb to keep track of which
2814 sections should be considered to be mapped from the VMA to the LMA.
2815 This information is used for symbol lookup, and memory read/write.
2816 For instance, if a section has been mapped then its contents
2817 should be read from the VMA, otherwise from the LMA.
2818
2819 Two levels of debugger support for overlays are available. One is
2820 "manual", in which the debugger relies on the user to tell it which
2821 overlays are currently mapped. This level of support is
2822 implemented entirely in the core debugger, and the information about
2823 whether a section is mapped is kept in the objfile->obj_section table.
2824
2825 The second level of support is "automatic", and is only available if
2826 the target-specific code provides functionality to read the target's
2827 overlay mapping table, and translate its contents for the debugger
2828 (by updating the mapped state information in the obj_section tables).
2829
2830 The interface is as follows:
2831 User commands:
2832 overlay map <name> -- tell gdb to consider this section mapped
2833 overlay unmap <name> -- tell gdb to consider this section unmapped
2834 overlay list -- list the sections that GDB thinks are mapped
2835 overlay read-target -- get the target's state of what's mapped
2836 overlay off/manual/auto -- set overlay debugging state
2837 Functional interface:
2838 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2839 section, return that section.
2840 find_pc_overlay(pc): find any overlay section that contains
2841 the pc, either in its VMA or its LMA
2842 overlay_is_mapped(sect): true if overlay is marked as mapped
2843 section_is_overlay(sect): true if section's VMA != LMA
2844 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2845 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2846 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2847 overlay_mapped_address(...): map an address from section's LMA to VMA
2848 overlay_unmapped_address(...): map an address from section's VMA to LMA
2849 symbol_overlayed_address(...): Return a "current" address for symbol:
2850 either in VMA or LMA depending on whether
2851 the symbol's section is currently mapped
2852 */
2853
2854/* Overlay debugging state: */
2855
2856enum overlay_debugging_state overlay_debugging = ovly_off;
2857int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2858
2859/* Target vector for refreshing overlay mapped state */
2860static void simple_overlay_update (struct obj_section *);
2861void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2862
2863/* Function: section_is_overlay (SECTION)
2864 Returns true if SECTION has VMA not equal to LMA, ie.
2865 SECTION is loaded at an address different from where it will "run". */
2866
2867int
2868section_is_overlay (asection *section)
2869{
2870 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2871
2872 if (overlay_debugging)
2873 if (section && section->lma != 0 &&
2874 section->vma != section->lma)
2875 return 1;
2876
2877 return 0;
2878}
2879
2880/* Function: overlay_invalidate_all (void)
2881 Invalidate the mapped state of all overlay sections (mark it as stale). */
2882
2883static void
2884overlay_invalidate_all (void)
2885{
2886 struct objfile *objfile;
2887 struct obj_section *sect;
2888
2889 ALL_OBJSECTIONS (objfile, sect)
2890 if (section_is_overlay (sect->the_bfd_section))
2891 sect->ovly_mapped = -1;
2892}
2893
2894/* Function: overlay_is_mapped (SECTION)
2895 Returns true if section is an overlay, and is currently mapped.
2896 Private: public access is thru function section_is_mapped.
2897
2898 Access to the ovly_mapped flag is restricted to this function, so
2899 that we can do automatic update. If the global flag
2900 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2901 overlay_invalidate_all. If the mapped state of the particular
2902 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2903
2904static int
2905overlay_is_mapped (struct obj_section *osect)
2906{
2907 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2908 return 0;
2909
2910 switch (overlay_debugging)
2911 {
2912 default:
2913 case ovly_off:
2914 return 0; /* overlay debugging off */
2915 case ovly_auto: /* overlay debugging automatic */
2916 /* Unles there is a target_overlay_update function,
2917 there's really nothing useful to do here (can't really go auto) */
2918 if (target_overlay_update)
2919 {
2920 if (overlay_cache_invalid)
2921 {
2922 overlay_invalidate_all ();
2923 overlay_cache_invalid = 0;
2924 }
2925 if (osect->ovly_mapped == -1)
2926 (*target_overlay_update) (osect);
2927 }
2928 /* fall thru to manual case */
2929 case ovly_on: /* overlay debugging manual */
2930 return osect->ovly_mapped == 1;
2931 }
2932}
2933
2934/* Function: section_is_mapped
2935 Returns true if section is an overlay, and is currently mapped. */
2936
2937int
2938section_is_mapped (asection *section)
2939{
2940 struct objfile *objfile;
2941 struct obj_section *osect;
2942
2943 if (overlay_debugging)
2944 if (section && section_is_overlay (section))
2945 ALL_OBJSECTIONS (objfile, osect)
2946 if (osect->the_bfd_section == section)
2947 return overlay_is_mapped (osect);
2948
2949 return 0;
2950}
2951
2952/* Function: pc_in_unmapped_range
2953 If PC falls into the lma range of SECTION, return true, else false. */
2954
2955CORE_ADDR
2956pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2957{
2958 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2959
2960 int size;
2961
2962 if (overlay_debugging)
2963 if (section && section_is_overlay (section))
2964 {
2965 size = bfd_get_section_size_before_reloc (section);
2966 if (section->lma <= pc && pc < section->lma + size)
2967 return 1;
2968 }
2969 return 0;
2970}
2971
2972/* Function: pc_in_mapped_range
2973 If PC falls into the vma range of SECTION, return true, else false. */
2974
2975CORE_ADDR
2976pc_in_mapped_range (CORE_ADDR pc, asection *section)
2977{
2978 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2979
2980 int size;
2981
2982 if (overlay_debugging)
2983 if (section && section_is_overlay (section))
2984 {
2985 size = bfd_get_section_size_before_reloc (section);
2986 if (section->vma <= pc && pc < section->vma + size)
2987 return 1;
2988 }
2989 return 0;
2990}
2991
2992
2993/* Return true if the mapped ranges of sections A and B overlap, false
2994 otherwise. */
2995static int
2996sections_overlap (asection *a, asection *b)
2997{
2998 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2999
3000 CORE_ADDR a_start = a->vma;
3001 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3002 CORE_ADDR b_start = b->vma;
3003 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3004
3005 return (a_start < b_end && b_start < a_end);
3006}
3007
3008/* Function: overlay_unmapped_address (PC, SECTION)
3009 Returns the address corresponding to PC in the unmapped (load) range.
3010 May be the same as PC. */
3011
3012CORE_ADDR
3013overlay_unmapped_address (CORE_ADDR pc, asection *section)
3014{
3015 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3016
3017 if (overlay_debugging)
3018 if (section && section_is_overlay (section) &&
3019 pc_in_mapped_range (pc, section))
3020 return pc + section->lma - section->vma;
3021
3022 return pc;
3023}
3024
3025/* Function: overlay_mapped_address (PC, SECTION)
3026 Returns the address corresponding to PC in the mapped (runtime) range.
3027 May be the same as PC. */
3028
3029CORE_ADDR
3030overlay_mapped_address (CORE_ADDR pc, asection *section)
3031{
3032 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3033
3034 if (overlay_debugging)
3035 if (section && section_is_overlay (section) &&
3036 pc_in_unmapped_range (pc, section))
3037 return pc + section->vma - section->lma;
3038
3039 return pc;
3040}
3041
3042
3043/* Function: symbol_overlayed_address
3044 Return one of two addresses (relative to the VMA or to the LMA),
3045 depending on whether the section is mapped or not. */
3046
3047CORE_ADDR
3048symbol_overlayed_address (CORE_ADDR address, asection *section)
3049{
3050 if (overlay_debugging)
3051 {
3052 /* If the symbol has no section, just return its regular address. */
3053 if (section == 0)
3054 return address;
3055 /* If the symbol's section is not an overlay, just return its address */
3056 if (!section_is_overlay (section))
3057 return address;
3058 /* If the symbol's section is mapped, just return its address */
3059 if (section_is_mapped (section))
3060 return address;
3061 /*
3062 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3063 * then return its LOADED address rather than its vma address!!
3064 */
3065 return overlay_unmapped_address (address, section);
3066 }
3067 return address;
3068}
3069
3070/* Function: find_pc_overlay (PC)
3071 Return the best-match overlay section for PC:
3072 If PC matches a mapped overlay section's VMA, return that section.
3073 Else if PC matches an unmapped section's VMA, return that section.
3074 Else if PC matches an unmapped section's LMA, return that section. */
3075
3076asection *
3077find_pc_overlay (CORE_ADDR pc)
3078{
3079 struct objfile *objfile;
3080 struct obj_section *osect, *best_match = NULL;
3081
3082 if (overlay_debugging)
3083 ALL_OBJSECTIONS (objfile, osect)
3084 if (section_is_overlay (osect->the_bfd_section))
3085 {
3086 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3087 {
3088 if (overlay_is_mapped (osect))
3089 return osect->the_bfd_section;
3090 else
3091 best_match = osect;
3092 }
3093 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3094 best_match = osect;
3095 }
3096 return best_match ? best_match->the_bfd_section : NULL;
3097}
3098
3099/* Function: find_pc_mapped_section (PC)
3100 If PC falls into the VMA address range of an overlay section that is
3101 currently marked as MAPPED, return that section. Else return NULL. */
3102
3103asection *
3104find_pc_mapped_section (CORE_ADDR pc)
3105{
3106 struct objfile *objfile;
3107 struct obj_section *osect;
3108
3109 if (overlay_debugging)
3110 ALL_OBJSECTIONS (objfile, osect)
3111 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3112 overlay_is_mapped (osect))
3113 return osect->the_bfd_section;
3114
3115 return NULL;
3116}
3117
3118/* Function: list_overlays_command
3119 Print a list of mapped sections and their PC ranges */
3120
3121void
3122list_overlays_command (char *args, int from_tty)
3123{
3124 int nmapped = 0;
3125 struct objfile *objfile;
3126 struct obj_section *osect;
3127
3128 if (overlay_debugging)
3129 ALL_OBJSECTIONS (objfile, osect)
3130 if (overlay_is_mapped (osect))
3131 {
3132 const char *name;
3133 bfd_vma lma, vma;
3134 int size;
3135
3136 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3137 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3138 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3139 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3140
3141 printf_filtered ("Section %s, loaded at ", name);
3142 print_address_numeric (lma, 1, gdb_stdout);
3143 puts_filtered (" - ");
3144 print_address_numeric (lma + size, 1, gdb_stdout);
3145 printf_filtered (", mapped at ");
3146 print_address_numeric (vma, 1, gdb_stdout);
3147 puts_filtered (" - ");
3148 print_address_numeric (vma + size, 1, gdb_stdout);
3149 puts_filtered ("\n");
3150
3151 nmapped++;
3152 }
3153 if (nmapped == 0)
3154 printf_filtered ("No sections are mapped.\n");
3155}
3156
3157/* Function: map_overlay_command
3158 Mark the named section as mapped (ie. residing at its VMA address). */
3159
3160void
3161map_overlay_command (char *args, int from_tty)
3162{
3163 struct objfile *objfile, *objfile2;
3164 struct obj_section *sec, *sec2;
3165 asection *bfdsec;
3166
3167 if (!overlay_debugging)
3168 error ("\
3169Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3170the 'overlay manual' command.");
3171
3172 if (args == 0 || *args == 0)
3173 error ("Argument required: name of an overlay section");
3174
3175 /* First, find a section matching the user supplied argument */
3176 ALL_OBJSECTIONS (objfile, sec)
3177 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3178 {
3179 /* Now, check to see if the section is an overlay. */
3180 bfdsec = sec->the_bfd_section;
3181 if (!section_is_overlay (bfdsec))
3182 continue; /* not an overlay section */
3183
3184 /* Mark the overlay as "mapped" */
3185 sec->ovly_mapped = 1;
3186
3187 /* Next, make a pass and unmap any sections that are
3188 overlapped by this new section: */
3189 ALL_OBJSECTIONS (objfile2, sec2)
3190 if (sec2->ovly_mapped
3191 && sec != sec2
3192 && sec->the_bfd_section != sec2->the_bfd_section
3193 && sections_overlap (sec->the_bfd_section,
3194 sec2->the_bfd_section))
3195 {
3196 if (info_verbose)
3197 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3198 bfd_section_name (objfile->obfd,
3199 sec2->the_bfd_section));
3200 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3201 }
3202 return;
3203 }
3204 error ("No overlay section called %s", args);
3205}
3206
3207/* Function: unmap_overlay_command
3208 Mark the overlay section as unmapped
3209 (ie. resident in its LMA address range, rather than the VMA range). */
3210
3211void
3212unmap_overlay_command (char *args, int from_tty)
3213{
3214 struct objfile *objfile;
3215 struct obj_section *sec;
3216
3217 if (!overlay_debugging)
3218 error ("\
3219Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3220the 'overlay manual' command.");
3221
3222 if (args == 0 || *args == 0)
3223 error ("Argument required: name of an overlay section");
3224
3225 /* First, find a section matching the user supplied argument */
3226 ALL_OBJSECTIONS (objfile, sec)
3227 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3228 {
3229 if (!sec->ovly_mapped)
3230 error ("Section %s is not mapped", args);
3231 sec->ovly_mapped = 0;
3232 return;
3233 }
3234 error ("No overlay section called %s", args);
3235}
3236
3237/* Function: overlay_auto_command
3238 A utility command to turn on overlay debugging.
3239 Possibly this should be done via a set/show command. */
3240
3241static void
3242overlay_auto_command (char *args, int from_tty)
3243{
3244 overlay_debugging = ovly_auto;
3245 enable_overlay_breakpoints ();
3246 if (info_verbose)
3247 printf_unfiltered ("Automatic overlay debugging enabled.");
3248}
3249
3250/* Function: overlay_manual_command
3251 A utility command to turn on overlay debugging.
3252 Possibly this should be done via a set/show command. */
3253
3254static void
3255overlay_manual_command (char *args, int from_tty)
3256{
3257 overlay_debugging = ovly_on;
3258 disable_overlay_breakpoints ();
3259 if (info_verbose)
3260 printf_unfiltered ("Overlay debugging enabled.");
3261}
3262
3263/* Function: overlay_off_command
3264 A utility command to turn on overlay debugging.
3265 Possibly this should be done via a set/show command. */
3266
3267static void
3268overlay_off_command (char *args, int from_tty)
3269{
3270 overlay_debugging = ovly_off;
3271 disable_overlay_breakpoints ();
3272 if (info_verbose)
3273 printf_unfiltered ("Overlay debugging disabled.");
3274}
3275
3276static void
3277overlay_load_command (char *args, int from_tty)
3278{
3279 if (target_overlay_update)
3280 (*target_overlay_update) (NULL);
3281 else
3282 error ("This target does not know how to read its overlay state.");
3283}
3284
3285/* Function: overlay_command
3286 A place-holder for a mis-typed command */
3287
3288/* Command list chain containing all defined "overlay" subcommands. */
3289struct cmd_list_element *overlaylist;
3290
3291static void
3292overlay_command (char *args, int from_tty)
3293{
3294 printf_unfiltered
3295 ("\"overlay\" must be followed by the name of an overlay command.\n");
3296 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3297}
3298
3299
3300/* Target Overlays for the "Simplest" overlay manager:
3301
3302 This is GDB's default target overlay layer. It works with the
3303 minimal overlay manager supplied as an example by Cygnus. The
3304 entry point is via a function pointer "target_overlay_update",
3305 so targets that use a different runtime overlay manager can
3306 substitute their own overlay_update function and take over the
3307 function pointer.
3308
3309 The overlay_update function pokes around in the target's data structures
3310 to see what overlays are mapped, and updates GDB's overlay mapping with
3311 this information.
3312
3313 In this simple implementation, the target data structures are as follows:
3314 unsigned _novlys; /# number of overlay sections #/
3315 unsigned _ovly_table[_novlys][4] = {
3316 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3317 {..., ..., ..., ...},
3318 }
3319 unsigned _novly_regions; /# number of overlay regions #/
3320 unsigned _ovly_region_table[_novly_regions][3] = {
3321 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3322 {..., ..., ...},
3323 }
3324 These functions will attempt to update GDB's mappedness state in the
3325 symbol section table, based on the target's mappedness state.
3326
3327 To do this, we keep a cached copy of the target's _ovly_table, and
3328 attempt to detect when the cached copy is invalidated. The main
3329 entry point is "simple_overlay_update(SECT), which looks up SECT in
3330 the cached table and re-reads only the entry for that section from
3331 the target (whenever possible).
3332 */
3333
3334/* Cached, dynamically allocated copies of the target data structures: */
3335static unsigned (*cache_ovly_table)[4] = 0;
3336#if 0
3337static unsigned (*cache_ovly_region_table)[3] = 0;
3338#endif
3339static unsigned cache_novlys = 0;
3340#if 0
3341static unsigned cache_novly_regions = 0;
3342#endif
3343static CORE_ADDR cache_ovly_table_base = 0;
3344#if 0
3345static CORE_ADDR cache_ovly_region_table_base = 0;
3346#endif
3347enum ovly_index
3348 {
3349 VMA, SIZE, LMA, MAPPED
3350 };
3351#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3352
3353/* Throw away the cached copy of _ovly_table */
3354static void
3355simple_free_overlay_table (void)
3356{
3357 if (cache_ovly_table)
3358 xfree (cache_ovly_table);
3359 cache_novlys = 0;
3360 cache_ovly_table = NULL;
3361 cache_ovly_table_base = 0;
3362}
3363
3364#if 0
3365/* Throw away the cached copy of _ovly_region_table */
3366static void
3367simple_free_overlay_region_table (void)
3368{
3369 if (cache_ovly_region_table)
3370 xfree (cache_ovly_region_table);
3371 cache_novly_regions = 0;
3372 cache_ovly_region_table = NULL;
3373 cache_ovly_region_table_base = 0;
3374}
3375#endif
3376
3377/* Read an array of ints from the target into a local buffer.
3378 Convert to host order. int LEN is number of ints */
3379static void
3380read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3381{
3382 /* FIXME (alloca): Not safe if array is very large. */
3383 char *buf = alloca (len * TARGET_LONG_BYTES);
3384 int i;
3385
3386 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3387 for (i = 0; i < len; i++)
3388 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3389 TARGET_LONG_BYTES);
3390}
3391
3392/* Find and grab a copy of the target _ovly_table
3393 (and _novlys, which is needed for the table's size) */
3394static int
3395simple_read_overlay_table (void)
3396{
3397 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3398
3399 simple_free_overlay_table ();
3400 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3401 if (! novlys_msym)
3402 {
3403 error ("Error reading inferior's overlay table: "
3404 "couldn't find `_novlys' variable\n"
3405 "in inferior. Use `overlay manual' mode.");
3406 return 0;
3407 }
3408
3409 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3410 if (! ovly_table_msym)
3411 {
3412 error ("Error reading inferior's overlay table: couldn't find "
3413 "`_ovly_table' array\n"
3414 "in inferior. Use `overlay manual' mode.");
3415 return 0;
3416 }
3417
3418 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3419 cache_ovly_table
3420 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3421 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3422 read_target_long_array (cache_ovly_table_base,
3423 (int *) cache_ovly_table,
3424 cache_novlys * 4);
3425
3426 return 1; /* SUCCESS */
3427}
3428
3429#if 0
3430/* Find and grab a copy of the target _ovly_region_table
3431 (and _novly_regions, which is needed for the table's size) */
3432static int
3433simple_read_overlay_region_table (void)
3434{
3435 struct minimal_symbol *msym;
3436
3437 simple_free_overlay_region_table ();
3438 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3439 if (msym != NULL)
3440 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3441 else
3442 return 0; /* failure */
3443 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3444 if (cache_ovly_region_table != NULL)
3445 {
3446 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3447 if (msym != NULL)
3448 {
3449 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3450 read_target_long_array (cache_ovly_region_table_base,
3451 (int *) cache_ovly_region_table,
3452 cache_novly_regions * 3);
3453 }
3454 else
3455 return 0; /* failure */
3456 }
3457 else
3458 return 0; /* failure */
3459 return 1; /* SUCCESS */
3460}
3461#endif
3462
3463/* Function: simple_overlay_update_1
3464 A helper function for simple_overlay_update. Assuming a cached copy
3465 of _ovly_table exists, look through it to find an entry whose vma,
3466 lma and size match those of OSECT. Re-read the entry and make sure
3467 it still matches OSECT (else the table may no longer be valid).
3468 Set OSECT's mapped state to match the entry. Return: 1 for
3469 success, 0 for failure. */
3470
3471static int
3472simple_overlay_update_1 (struct obj_section *osect)
3473{
3474 int i, size;
3475 bfd *obfd = osect->objfile->obfd;
3476 asection *bsect = osect->the_bfd_section;
3477
3478 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3479 for (i = 0; i < cache_novlys; i++)
3480 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3481 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3482 /* && cache_ovly_table[i][SIZE] == size */ )
3483 {
3484 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3485 (int *) cache_ovly_table[i], 4);
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3489 {
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 return 1;
3492 }
3493 else /* Warning! Warning! Target's ovly table has changed! */
3494 return 0;
3495 }
3496 return 0;
3497}
3498
3499/* Function: simple_overlay_update
3500 If OSECT is NULL, then update all sections' mapped state
3501 (after re-reading the entire target _ovly_table).
3502 If OSECT is non-NULL, then try to find a matching entry in the
3503 cached ovly_table and update only OSECT's mapped state.
3504 If a cached entry can't be found or the cache isn't valid, then
3505 re-read the entire cache, and go ahead and update all sections. */
3506
3507static void
3508simple_overlay_update (struct obj_section *osect)
3509{
3510 struct objfile *objfile;
3511
3512 /* Were we given an osect to look up? NULL means do all of them. */
3513 if (osect)
3514 /* Have we got a cached copy of the target's overlay table? */
3515 if (cache_ovly_table != NULL)
3516 /* Does its cached location match what's currently in the symtab? */
3517 if (cache_ovly_table_base ==
3518 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3519 /* Then go ahead and try to look up this single section in the cache */
3520 if (simple_overlay_update_1 (osect))
3521 /* Found it! We're done. */
3522 return;
3523
3524 /* Cached table no good: need to read the entire table anew.
3525 Or else we want all the sections, in which case it's actually
3526 more efficient to read the whole table in one block anyway. */
3527
3528 if (! simple_read_overlay_table ())
3529 return;
3530
3531 /* Now may as well update all sections, even if only one was requested. */
3532 ALL_OBJSECTIONS (objfile, osect)
3533 if (section_is_overlay (osect->the_bfd_section))
3534 {
3535 int i, size;
3536 bfd *obfd = osect->objfile->obfd;
3537 asection *bsect = osect->the_bfd_section;
3538
3539 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3540 for (i = 0; i < cache_novlys; i++)
3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3543 /* && cache_ovly_table[i][SIZE] == size */ )
3544 { /* obj_section matches i'th entry in ovly_table */
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 break; /* finished with inner for loop: break out */
3547 }
3548 }
3549}
3550
3551/* Set the output sections and output offsets for section SECTP in
3552 ABFD. The relocation code in BFD will read these offsets, so we
3553 need to be sure they're initialized. We map each section to itself,
3554 with no offset; this means that SECTP->vma will be honored. */
3555
3556static void
3557symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3558{
3559 sectp->output_section = sectp;
3560 sectp->output_offset = 0;
3561}
3562
3563/* Relocate the contents of a debug section SECTP in ABFD. The
3564 contents are stored in BUF if it is non-NULL, or returned in a
3565 malloc'd buffer otherwise.
3566
3567 For some platforms and debug info formats, shared libraries contain
3568 relocations against the debug sections (particularly for DWARF-2;
3569 one affected platform is PowerPC GNU/Linux, although it depends on
3570 the version of the linker in use). Also, ELF object files naturally
3571 have unresolved relocations for their debug sections. We need to apply
3572 the relocations in order to get the locations of symbols correct. */
3573
3574bfd_byte *
3575symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3576{
3577 /* We're only interested in debugging sections with relocation
3578 information. */
3579 if ((sectp->flags & SEC_RELOC) == 0)
3580 return NULL;
3581 if ((sectp->flags & SEC_DEBUGGING) == 0)
3582 return NULL;
3583
3584 /* We will handle section offsets properly elsewhere, so relocate as if
3585 all sections begin at 0. */
3586 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3587
3588 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3589}
3590
3591void
3592_initialize_symfile (void)
3593{
3594 struct cmd_list_element *c;
3595
3596 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3597 "Load symbol table from executable file FILE.\n\
3598The `file' command can also load symbol tables, as well as setting the file\n\
3599to execute.", &cmdlist);
3600 set_cmd_completer (c, filename_completer);
3601
3602 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3603 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3604Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3605ADDR is the starting address of the file's text.\n\
3606The optional arguments are section-name section-address pairs and\n\
3607should be specified if the data and bss segments are not contiguous\n\
3608with the text. SECT is a section name to be loaded at SECT_ADDR.",
3609 &cmdlist);
3610 set_cmd_completer (c, filename_completer);
3611
3612 c = add_cmd ("add-shared-symbol-files", class_files,
3613 add_shared_symbol_files_command,
3614 "Load the symbols from shared objects in the dynamic linker's link map.",
3615 &cmdlist);
3616 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3617 &cmdlist);
3618
3619 c = add_cmd ("load", class_files, load_command,
3620 "Dynamically load FILE into the running program, and record its symbols\n\
3621for access from GDB.", &cmdlist);
3622 set_cmd_completer (c, filename_completer);
3623
3624 add_show_from_set
3625 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3626 (char *) &symbol_reloading,
3627 "Set dynamic symbol table reloading multiple times in one run.",
3628 &setlist),
3629 &showlist);
3630
3631 add_prefix_cmd ("overlay", class_support, overlay_command,
3632 "Commands for debugging overlays.", &overlaylist,
3633 "overlay ", 0, &cmdlist);
3634
3635 add_com_alias ("ovly", "overlay", class_alias, 1);
3636 add_com_alias ("ov", "overlay", class_alias, 1);
3637
3638 add_cmd ("map-overlay", class_support, map_overlay_command,
3639 "Assert that an overlay section is mapped.", &overlaylist);
3640
3641 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3642 "Assert that an overlay section is unmapped.", &overlaylist);
3643
3644 add_cmd ("list-overlays", class_support, list_overlays_command,
3645 "List mappings of overlay sections.", &overlaylist);
3646
3647 add_cmd ("manual", class_support, overlay_manual_command,
3648 "Enable overlay debugging.", &overlaylist);
3649 add_cmd ("off", class_support, overlay_off_command,
3650 "Disable overlay debugging.", &overlaylist);
3651 add_cmd ("auto", class_support, overlay_auto_command,
3652 "Enable automatic overlay debugging.", &overlaylist);
3653 add_cmd ("load-target", class_support, overlay_load_command,
3654 "Read the overlay mapping state from the target.", &overlaylist);
3655
3656 /* Filename extension to source language lookup table: */
3657 init_filename_language_table ();
3658 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3659 (char *) &ext_args,
3660 "Set mapping between filename extension and source language.\n\
3661Usage: set extension-language .foo bar",
3662 &setlist);
3663 set_cmd_cfunc (c, set_ext_lang_command);
3664
3665 add_info ("extensions", info_ext_lang_command,
3666 "All filename extensions associated with a source language.");
3667
3668 add_show_from_set
3669 (add_set_cmd ("download-write-size", class_obscure,
3670 var_integer, (char *) &download_write_size,
3671 "Set the write size used when downloading a program.\n"
3672 "Only used when downloading a program onto a remote\n"
3673 "target. Specify zero, or a negative value, to disable\n"
3674 "blocked writes. The actual size of each transfer is also\n"
3675 "limited by the size of the target packet and the memory\n"
3676 "cache.\n",
3677 &setlist),
3678 &showlist);
3679
3680 debug_file_directory = xstrdup (DEBUGDIR);
3681 c = (add_set_cmd
3682 ("debug-file-directory", class_support, var_string,
3683 (char *) &debug_file_directory,
3684 "Set the directory where separate debug symbols are searched for.\n"
3685 "Separate debug symbols are first searched for in the same\n"
3686 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3687 "' subdirectory,\n"
3688 "and lastly at the path of the directory of the binary with\n"
3689 "the global debug-file directory prepended\n",
3690 &setlist));
3691 add_show_from_set (c, &showlist);
3692 set_cmd_completer (c, filename_completer);
3693}
This page took 0.033249 seconds and 4 git commands to generate.