gdb: allocate symfile_segment_data with new
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "bfdlink.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "source.h"
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
39#include "inferior.h"
40#include "regcache.h"
41#include "filenames.h" /* for DOSish file names */
42#include "gdb-stabs.h"
43#include "gdb_obstack.h"
44#include "completer.h"
45#include "bcache.h"
46#include "hashtab.h"
47#include "readline/tilde.h"
48#include "block.h"
49#include "observable.h"
50#include "exec.h"
51#include "parser-defs.h"
52#include "varobj.h"
53#include "elf-bfd.h"
54#include "solib.h"
55#include "remote.h"
56#include "stack.h"
57#include "gdb_bfd.h"
58#include "cli/cli-utils.h"
59#include "gdbsupport/byte-vector.h"
60#include "gdbsupport/pathstuff.h"
61#include "gdbsupport/selftest.h"
62#include "cli/cli-style.h"
63#include "gdbsupport/forward-scope-exit.h"
64
65#include <sys/types.h>
66#include <fcntl.h>
67#include <sys/stat.h>
68#include <ctype.h>
69#include <chrono>
70#include <algorithm>
71
72#include "psymtab.h"
73
74int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81void (*deprecated_pre_add_symbol_hook) (const char *);
82void (*deprecated_post_add_symbol_hook) (void);
83
84using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87/* Global variables owned by this file. */
88int readnow_symbol_files; /* Read full symbols immediately. */
89int readnever_symbol_files; /* Never read full symbols. */
90
91/* Functions this file defines. */
92
93static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96static const struct sym_fns *find_sym_fns (bfd *);
97
98static void overlay_invalidate_all (void);
99
100static void simple_free_overlay_table (void);
101
102static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105static int simple_read_overlay_table (void);
106
107static int simple_overlay_update_1 (struct obj_section *);
108
109static void symfile_find_segment_sections (struct objfile *objfile);
110
111/* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115struct registered_sym_fns
116{
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126};
127
128static std::vector<registered_sym_fns> symtab_fns;
129
130/* Values for "set print symbol-loading". */
131
132const char print_symbol_loading_off[] = "off";
133const char print_symbol_loading_brief[] = "brief";
134const char print_symbol_loading_full[] = "full";
135static const char *print_symbol_loading_enums[] =
136{
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141};
142static const char *print_symbol_loading = print_symbol_loading_full;
143
144/* See symfile.h. */
145
146bool auto_solib_add = true;
147\f
148
149/* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157int
158print_symbol_loading_p (int from_tty, int exec, int full)
159{
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172}
173
174/* True if we are reading a symbol table. */
175
176int currently_reading_symtab = 0;
177
178/* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181scoped_restore_tmpl<int>
182increment_reading_symtab (void)
183{
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187}
188
189/* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198void
199find_lowest_section (bfd *abfd, asection *sect, void *obj)
200{
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212}
213
214/* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217section_addr_info
218build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220{
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238}
239
240/* Create a section_addr_info from section offsets in ABFD. */
241
242static section_addr_info
243build_section_addr_info_from_bfd (bfd *abfd)
244{
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255}
256
257/* Create a section_addr_info from section offsets in OBJFILE. */
258
259section_addr_info
260build_section_addr_info_from_objfile (const struct objfile *objfile)
261{
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275}
276
277/* Initialize OBJFILE's sect_index_* members. */
278
279static void
280init_objfile_sect_indices (struct objfile *objfile)
281{
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336}
337
338/* The arguments to place_section. */
339
340struct place_section_arg
341{
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344};
345
346/* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349static void
350place_section (bfd *abfd, asection *sect, void *obj)
351{
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409}
410
411/* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414void
415relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417{
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436}
437
438/* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444static const char *
445addr_section_name (const char *s)
446{
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453}
454
455/* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459static bool
460addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462{
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471}
472
473/* Provide sorted array of pointers to sections of ADDRS. */
474
475static std::vector<const struct other_sections *>
476addrs_section_sort (const section_addr_info &addrs)
477{
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487}
488
489/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493void
494addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495{
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626}
627
628/* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634void
635default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637{
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712}
713
714/* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720symfile_segment_data_up
721default_symfile_segments (bfd *abfd)
722{
723 int num_sections, i;
724 asection *sect;
725 CORE_ADDR low, high;
726
727 /* Relocatable files contain enough information to position each
728 loadable section independently; they should not be relocated
729 in segments. */
730 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
731 return NULL;
732
733 /* Make sure there is at least one loadable section in the file. */
734 for (sect = abfd->sections; sect != NULL; sect = sect->next)
735 {
736 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
737 continue;
738
739 break;
740 }
741 if (sect == NULL)
742 return NULL;
743
744 low = bfd_section_vma (sect);
745 high = low + bfd_section_size (sect);
746
747 symfile_segment_data_up data (new symfile_segment_data);
748 data->num_segments = 1;
749 data->segment_bases = XCNEW (CORE_ADDR);
750 data->segment_sizes = XCNEW (CORE_ADDR);
751
752 num_sections = bfd_count_sections (abfd);
753 data->segment_info = XCNEWVEC (int, num_sections);
754
755 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
756 {
757 CORE_ADDR vma;
758
759 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
760 continue;
761
762 vma = bfd_section_vma (sect);
763 if (vma < low)
764 low = vma;
765 if (vma + bfd_section_size (sect) > high)
766 high = vma + bfd_section_size (sect);
767
768 data->segment_info[i] = 1;
769 }
770
771 data->segment_bases[0] = low;
772 data->segment_sizes[0] = high - low;
773
774 return data;
775}
776
777/* This is a convenience function to call sym_read for OBJFILE and
778 possibly force the partial symbols to be read. */
779
780static void
781read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
782{
783 (*objfile->sf->sym_read) (objfile, add_flags);
784 objfile->per_bfd->minsyms_read = true;
785
786 /* find_separate_debug_file_in_section should be called only if there is
787 single binary with no existing separate debug info file. */
788 if (!objfile_has_partial_symbols (objfile)
789 && objfile->separate_debug_objfile == NULL
790 && objfile->separate_debug_objfile_backlink == NULL)
791 {
792 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
793
794 if (abfd != NULL)
795 {
796 /* find_separate_debug_file_in_section uses the same filename for the
797 virtual section-as-bfd like the bfd filename containing the
798 section. Therefore use also non-canonical name form for the same
799 file containing the section. */
800 symbol_file_add_separate (abfd.get (),
801 bfd_get_filename (abfd.get ()),
802 add_flags | SYMFILE_NOT_FILENAME, objfile);
803 }
804 }
805 if ((add_flags & SYMFILE_NO_READ) == 0)
806 require_partial_symbols (objfile, false);
807}
808
809/* Initialize entry point information for this objfile. */
810
811static void
812init_entry_point_info (struct objfile *objfile)
813{
814 struct entry_info *ei = &objfile->per_bfd->ei;
815
816 if (ei->initialized)
817 return;
818 ei->initialized = 1;
819
820 /* Save startup file's range of PC addresses to help blockframe.c
821 decide where the bottom of the stack is. */
822
823 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
824 {
825 /* Executable file -- record its entry point so we'll recognize
826 the startup file because it contains the entry point. */
827 ei->entry_point = bfd_get_start_address (objfile->obfd);
828 ei->entry_point_p = 1;
829 }
830 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
831 && bfd_get_start_address (objfile->obfd) != 0)
832 {
833 /* Some shared libraries may have entry points set and be
834 runnable. There's no clear way to indicate this, so just check
835 for values other than zero. */
836 ei->entry_point = bfd_get_start_address (objfile->obfd);
837 ei->entry_point_p = 1;
838 }
839 else
840 {
841 /* Examination of non-executable.o files. Short-circuit this stuff. */
842 ei->entry_point_p = 0;
843 }
844
845 if (ei->entry_point_p)
846 {
847 struct obj_section *osect;
848 CORE_ADDR entry_point = ei->entry_point;
849 int found;
850
851 /* Make certain that the address points at real code, and not a
852 function descriptor. */
853 entry_point
854 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
855 entry_point,
856 current_top_target ());
857
858 /* Remove any ISA markers, so that this matches entries in the
859 symbol table. */
860 ei->entry_point
861 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
862
863 found = 0;
864 ALL_OBJFILE_OSECTIONS (objfile, osect)
865 {
866 struct bfd_section *sect = osect->the_bfd_section;
867
868 if (entry_point >= bfd_section_vma (sect)
869 && entry_point < (bfd_section_vma (sect)
870 + bfd_section_size (sect)))
871 {
872 ei->the_bfd_section_index
873 = gdb_bfd_section_index (objfile->obfd, sect);
874 found = 1;
875 break;
876 }
877 }
878
879 if (!found)
880 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
881 }
882}
883
884/* Process a symbol file, as either the main file or as a dynamically
885 loaded file.
886
887 This function does not set the OBJFILE's entry-point info.
888
889 OBJFILE is where the symbols are to be read from.
890
891 ADDRS is the list of section load addresses. If the user has given
892 an 'add-symbol-file' command, then this is the list of offsets and
893 addresses he or she provided as arguments to the command; or, if
894 we're handling a shared library, these are the actual addresses the
895 sections are loaded at, according to the inferior's dynamic linker
896 (as gleaned by GDB's shared library code). We convert each address
897 into an offset from the section VMA's as it appears in the object
898 file, and then call the file's sym_offsets function to convert this
899 into a format-specific offset table --- a `section_offsets'.
900 The sectindex field is used to control the ordering of sections
901 with the same name. Upon return, it is updated to contain the
902 corresponding BFD section index, or -1 if the section was not found.
903
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and whether
906 breakpoint reset should be deferred. */
907
908static void
909syms_from_objfile_1 (struct objfile *objfile,
910 section_addr_info *addrs,
911 symfile_add_flags add_flags)
912{
913 section_addr_info local_addr;
914 const int mainline = add_flags & SYMFILE_MAINLINE;
915
916 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
917
918 if (objfile->sf == NULL)
919 {
920 /* No symbols to load, but we still need to make sure
921 that the section_offsets table is allocated. */
922 int num_sections = gdb_bfd_count_sections (objfile->obfd);
923
924 objfile->section_offsets.assign (num_sections, 0);
925 return;
926 }
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
931
932 objfile_up objfile_holder (objfile);
933
934 /* If ADDRS is NULL, put together a dummy address list.
935 We now establish the convention that an addr of zero means
936 no load address was specified. */
937 if (! addrs)
938 addrs = &local_addr;
939
940 if (mainline)
941 {
942 /* We will modify the main symbol table, make sure that all its users
943 will be cleaned up if an error occurs during symbol reading. */
944 defer_clear_users.emplace ((symfile_add_flag) 0);
945
946 /* Since no error yet, throw away the old symbol table. */
947
948 if (symfile_objfile != NULL)
949 {
950 symfile_objfile->unlink ();
951 gdb_assert (symfile_objfile == NULL);
952 }
953
954 /* Currently we keep symbols from the add-symbol-file command.
955 If the user wants to get rid of them, they should do "symbol-file"
956 without arguments first. Not sure this is the best behavior
957 (PR 2207). */
958
959 (*objfile->sf->sym_new_init) (objfile);
960 }
961
962 /* Convert addr into an offset rather than an absolute address.
963 We find the lowest address of a loaded segment in the objfile,
964 and assume that <addr> is where that got loaded.
965
966 We no longer warn if the lowest section is not a text segment (as
967 happens for the PA64 port. */
968 if (addrs->size () > 0)
969 addr_info_make_relative (addrs, objfile->obfd);
970
971 /* Initialize symbol reading routines for this objfile, allow complaints to
972 appear for this new file, and record how verbose to be, then do the
973 initial symbol reading for this file. */
974
975 (*objfile->sf->sym_init) (objfile);
976 clear_complaints ();
977
978 (*objfile->sf->sym_offsets) (objfile, *addrs);
979
980 read_symbols (objfile, add_flags);
981
982 /* Discard cleanups as symbol reading was successful. */
983
984 objfile_holder.release ();
985 if (defer_clear_users)
986 defer_clear_users->release ();
987}
988
989/* Same as syms_from_objfile_1, but also initializes the objfile
990 entry-point info. */
991
992static void
993syms_from_objfile (struct objfile *objfile,
994 section_addr_info *addrs,
995 symfile_add_flags add_flags)
996{
997 syms_from_objfile_1 (objfile, addrs, add_flags);
998 init_entry_point_info (objfile);
999}
1000
1001/* Perform required actions after either reading in the initial
1002 symbols for a new objfile, or mapping in the symbols from a reusable
1003 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1004
1005static void
1006finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1007{
1008 /* If this is the main symbol file we have to clean up all users of the
1009 old main symbol file. Otherwise it is sufficient to fixup all the
1010 breakpoints that may have been redefined by this symbol file. */
1011 if (add_flags & SYMFILE_MAINLINE)
1012 {
1013 /* OK, make it the "real" symbol file. */
1014 symfile_objfile = objfile;
1015
1016 clear_symtab_users (add_flags);
1017 }
1018 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1019 {
1020 breakpoint_re_set ();
1021 }
1022
1023 /* We're done reading the symbol file; finish off complaints. */
1024 clear_complaints ();
1025}
1026
1027/* Process a symbol file, as either the main file or as a dynamically
1028 loaded file.
1029
1030 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1031 A new reference is acquired by this function.
1032
1033 For NAME description see the objfile constructor.
1034
1035 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1036 extra, such as dynamically loaded code, and what to do with breakpoints.
1037
1038 ADDRS is as described for syms_from_objfile_1, above.
1039 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1040
1041 PARENT is the original objfile if ABFD is a separate debug info file.
1042 Otherwise PARENT is NULL.
1043
1044 Upon success, returns a pointer to the objfile that was added.
1045 Upon failure, jumps back to command level (never returns). */
1046
1047static struct objfile *
1048symbol_file_add_with_addrs (bfd *abfd, const char *name,
1049 symfile_add_flags add_flags,
1050 section_addr_info *addrs,
1051 objfile_flags flags, struct objfile *parent)
1052{
1053 struct objfile *objfile;
1054 const int from_tty = add_flags & SYMFILE_VERBOSE;
1055 const int mainline = add_flags & SYMFILE_MAINLINE;
1056 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1057 && (readnow_symbol_files
1058 || (add_flags & SYMFILE_NO_READ) == 0));
1059
1060 if (readnow_symbol_files)
1061 {
1062 flags |= OBJF_READNOW;
1063 add_flags &= ~SYMFILE_NO_READ;
1064 }
1065 else if (readnever_symbol_files
1066 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1067 {
1068 flags |= OBJF_READNEVER;
1069 add_flags |= SYMFILE_NO_READ;
1070 }
1071 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1072 flags |= OBJF_NOT_FILENAME;
1073
1074 /* Give user a chance to burp if we'd be
1075 interactively wiping out any existing symbols. */
1076
1077 if ((have_full_symbols () || have_partial_symbols ())
1078 && mainline
1079 && from_tty
1080 && !query (_("Load new symbol table from \"%s\"? "), name))
1081 error (_("Not confirmed."));
1082
1083 if (mainline)
1084 flags |= OBJF_MAINLINE;
1085 objfile = objfile::make (abfd, name, flags, parent);
1086
1087 /* We either created a new mapped symbol table, mapped an existing
1088 symbol table file which has not had initial symbol reading
1089 performed, or need to read an unmapped symbol table. */
1090 if (should_print)
1091 {
1092 if (deprecated_pre_add_symbol_hook)
1093 deprecated_pre_add_symbol_hook (name);
1094 else
1095 printf_filtered (_("Reading symbols from %ps...\n"),
1096 styled_string (file_name_style.style (), name));
1097 }
1098 syms_from_objfile (objfile, addrs, add_flags);
1099
1100 /* We now have at least a partial symbol table. Check to see if the
1101 user requested that all symbols be read on initial access via either
1102 the gdb startup command line or on a per symbol file basis. Expand
1103 all partial symbol tables for this objfile if so. */
1104
1105 if ((flags & OBJF_READNOW))
1106 {
1107 if (should_print)
1108 printf_filtered (_("Expanding full symbols from %ps...\n"),
1109 styled_string (file_name_style.style (), name));
1110
1111 if (objfile->sf)
1112 objfile->sf->qf->expand_all_symtabs (objfile);
1113 }
1114
1115 /* Note that we only print a message if we have no symbols and have
1116 no separate debug file. If there is a separate debug file which
1117 does not have symbols, we'll have emitted this message for that
1118 file, and so printing it twice is just redundant. */
1119 if (should_print && !objfile_has_symbols (objfile)
1120 && objfile->separate_debug_objfile == nullptr)
1121 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1122 styled_string (file_name_style.style (), name));
1123
1124 if (should_print)
1125 {
1126 if (deprecated_post_add_symbol_hook)
1127 deprecated_post_add_symbol_hook ();
1128 }
1129
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
1135 if (objfile->sf == NULL)
1136 {
1137 gdb::observers::new_objfile.notify (objfile);
1138 return objfile; /* No symbols. */
1139 }
1140
1141 finish_new_objfile (objfile, add_flags);
1142
1143 gdb::observers::new_objfile.notify (objfile);
1144
1145 bfd_cache_close_all ();
1146 return (objfile);
1147}
1148
1149/* Add BFD as a separate debug file for OBJFILE. For NAME description
1150 see the objfile constructor. */
1151
1152void
1153symbol_file_add_separate (bfd *bfd, const char *name,
1154 symfile_add_flags symfile_flags,
1155 struct objfile *objfile)
1156{
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1161
1162 symbol_file_add_with_addrs
1163 (bfd, name, symfile_flags, &sap,
1164 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1165 | OBJF_USERLOADED | OBJF_MAINLINE),
1166 objfile);
1167}
1168
1169/* Process the symbol file ABFD, as either the main file or as a
1170 dynamically loaded file.
1171 See symbol_file_add_with_addrs's comments for details. */
1172
1173struct objfile *
1174symbol_file_add_from_bfd (bfd *abfd, const char *name,
1175 symfile_add_flags add_flags,
1176 section_addr_info *addrs,
1177 objfile_flags flags, struct objfile *parent)
1178{
1179 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1180 parent);
1181}
1182
1183/* Process a symbol file, as either the main file or as a dynamically
1184 loaded file. See symbol_file_add_with_addrs's comments for details. */
1185
1186struct objfile *
1187symbol_file_add (const char *name, symfile_add_flags add_flags,
1188 section_addr_info *addrs, objfile_flags flags)
1189{
1190 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1191
1192 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1193 flags, NULL);
1194}
1195
1196/* Call symbol_file_add() with default values and update whatever is
1197 affected by the loading of a new main().
1198 Used when the file is supplied in the gdb command line
1199 and by some targets with special loading requirements.
1200 The auxiliary function, symbol_file_add_main_1(), has the flags
1201 argument for the switches that can only be specified in the symbol_file
1202 command itself. */
1203
1204void
1205symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1206{
1207 symbol_file_add_main_1 (args, add_flags, 0, 0);
1208}
1209
1210static void
1211symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1212 objfile_flags flags, CORE_ADDR reloff)
1213{
1214 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1215
1216 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1217 if (reloff != 0)
1218 objfile_rebase (objfile, reloff);
1219
1220 /* Getting new symbols may change our opinion about
1221 what is frameless. */
1222 reinit_frame_cache ();
1223
1224 if ((add_flags & SYMFILE_NO_READ) == 0)
1225 set_initial_language ();
1226}
1227
1228void
1229symbol_file_clear (int from_tty)
1230{
1231 if ((have_full_symbols () || have_partial_symbols ())
1232 && from_tty
1233 && (symfile_objfile
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 objfile_name (symfile_objfile))
1236 : !query (_("Discard symbol table? "))))
1237 error (_("Not confirmed."));
1238
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
1241 no_shared_libraries (NULL, from_tty);
1242
1243 current_program_space->free_all_objfiles ();
1244
1245 clear_symtab_users (0);
1246
1247 gdb_assert (symfile_objfile == NULL);
1248 if (from_tty)
1249 printf_filtered (_("No symbol file now.\n"));
1250}
1251
1252/* See symfile.h. */
1253
1254bool separate_debug_file_debug = false;
1255
1256static int
1257separate_debug_file_exists (const std::string &name, unsigned long crc,
1258 struct objfile *parent_objfile)
1259{
1260 unsigned long file_crc;
1261 int file_crc_p;
1262 struct stat parent_stat, abfd_stat;
1263 int verified_as_different;
1264
1265 /* Find a separate debug info file as if symbols would be present in
1266 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1267 section can contain just the basename of PARENT_OBJFILE without any
1268 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1269 the separate debug infos with the same basename can exist. */
1270
1271 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1272 return 0;
1273
1274 if (separate_debug_file_debug)
1275 {
1276 printf_filtered (_(" Trying %s..."), name.c_str ());
1277 gdb_flush (gdb_stdout);
1278 }
1279
1280 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1281
1282 if (abfd == NULL)
1283 {
1284 if (separate_debug_file_debug)
1285 printf_filtered (_(" no, unable to open.\n"));
1286
1287 return 0;
1288 }
1289
1290 /* Verify symlinks were not the cause of filename_cmp name difference above.
1291
1292 Some operating systems, e.g. Windows, do not provide a meaningful
1293 st_ino; they always set it to zero. (Windows does provide a
1294 meaningful st_dev.) Files accessed from gdbservers that do not
1295 support the vFile:fstat packet will also have st_ino set to zero.
1296 Do not indicate a duplicate library in either case. While there
1297 is no guarantee that a system that provides meaningful inode
1298 numbers will never set st_ino to zero, this is merely an
1299 optimization, so we do not need to worry about false negatives. */
1300
1301 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1302 && abfd_stat.st_ino != 0
1303 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1304 {
1305 if (abfd_stat.st_dev == parent_stat.st_dev
1306 && abfd_stat.st_ino == parent_stat.st_ino)
1307 {
1308 if (separate_debug_file_debug)
1309 printf_filtered (_(" no, same file as the objfile.\n"));
1310
1311 return 0;
1312 }
1313 verified_as_different = 1;
1314 }
1315 else
1316 verified_as_different = 0;
1317
1318 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1319
1320 if (!file_crc_p)
1321 {
1322 if (separate_debug_file_debug)
1323 printf_filtered (_(" no, error computing CRC.\n"));
1324
1325 return 0;
1326 }
1327
1328 if (crc != file_crc)
1329 {
1330 unsigned long parent_crc;
1331
1332 /* If the files could not be verified as different with
1333 bfd_stat then we need to calculate the parent's CRC
1334 to verify whether the files are different or not. */
1335
1336 if (!verified_as_different)
1337 {
1338 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1339 {
1340 if (separate_debug_file_debug)
1341 printf_filtered (_(" no, error computing CRC.\n"));
1342
1343 return 0;
1344 }
1345 }
1346
1347 if (verified_as_different || parent_crc != file_crc)
1348 warning (_("the debug information found in \"%s\""
1349 " does not match \"%s\" (CRC mismatch).\n"),
1350 name.c_str (), objfile_name (parent_objfile));
1351
1352 if (separate_debug_file_debug)
1353 printf_filtered (_(" no, CRC doesn't match.\n"));
1354
1355 return 0;
1356 }
1357
1358 if (separate_debug_file_debug)
1359 printf_filtered (_(" yes!\n"));
1360
1361 return 1;
1362}
1363
1364char *debug_file_directory = NULL;
1365static void
1366show_debug_file_directory (struct ui_file *file, int from_tty,
1367 struct cmd_list_element *c, const char *value)
1368{
1369 fprintf_filtered (file,
1370 _("The directory where separate debug "
1371 "symbols are searched for is \"%s\".\n"),
1372 value);
1373}
1374
1375#if ! defined (DEBUG_SUBDIRECTORY)
1376#define DEBUG_SUBDIRECTORY ".debug"
1377#endif
1378
1379/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1380 where the original file resides (may not be the same as
1381 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1382 looking for. CANON_DIR is the "realpath" form of DIR.
1383 DIR must contain a trailing '/'.
1384 Returns the path of the file with separate debug info, or an empty
1385 string. */
1386
1387static std::string
1388find_separate_debug_file (const char *dir,
1389 const char *canon_dir,
1390 const char *debuglink,
1391 unsigned long crc32, struct objfile *objfile)
1392{
1393 if (separate_debug_file_debug)
1394 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1395 "%s\n"), objfile_name (objfile));
1396
1397 /* First try in the same directory as the original file. */
1398 std::string debugfile = dir;
1399 debugfile += debuglink;
1400
1401 if (separate_debug_file_exists (debugfile, crc32, objfile))
1402 return debugfile;
1403
1404 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1405 debugfile = dir;
1406 debugfile += DEBUG_SUBDIRECTORY;
1407 debugfile += "/";
1408 debugfile += debuglink;
1409
1410 if (separate_debug_file_exists (debugfile, crc32, objfile))
1411 return debugfile;
1412
1413 /* Then try in the global debugfile directories.
1414
1415 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1416 cause "/..." lookups. */
1417
1418 bool target_prefix = startswith (dir, "target:");
1419 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1420 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1421 = dirnames_to_char_ptr_vec (debug_file_directory);
1422 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1423
1424 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1425 convert the drive letter into a one-letter directory, so that the
1426 file name resulting from splicing below will be valid.
1427
1428 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1429 There are various remote-debugging scenarios where such a
1430 transformation of the drive letter might be required when GDB runs
1431 on a Posix host, see
1432
1433 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1434
1435 If some of those scenarios need to be supported, we will need to
1436 use a different condition for HAS_DRIVE_SPEC and a different macro
1437 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1438 std::string drive;
1439 if (HAS_DRIVE_SPEC (dir_notarget))
1440 {
1441 drive = dir_notarget[0];
1442 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1443 }
1444
1445 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1446 {
1447 debugfile = target_prefix ? "target:" : "";
1448 debugfile += debugdir.get ();
1449 debugfile += "/";
1450 debugfile += drive;
1451 debugfile += dir_notarget;
1452 debugfile += debuglink;
1453
1454 if (separate_debug_file_exists (debugfile, crc32, objfile))
1455 return debugfile;
1456
1457 const char *base_path = NULL;
1458 if (canon_dir != NULL)
1459 {
1460 if (canon_sysroot.get () != NULL)
1461 base_path = child_path (canon_sysroot.get (), canon_dir);
1462 else
1463 base_path = child_path (gdb_sysroot, canon_dir);
1464 }
1465 if (base_path != NULL)
1466 {
1467 /* If the file is in the sysroot, try using its base path in
1468 the global debugfile directory. */
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += base_path;
1473 debugfile += "/";
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 /* If the file is in the sysroot, try using its base path in
1480 the sysroot's global debugfile directory. */
1481 debugfile = target_prefix ? "target:" : "";
1482 debugfile += gdb_sysroot;
1483 debugfile += debugdir.get ();
1484 debugfile += "/";
1485 debugfile += base_path;
1486 debugfile += "/";
1487 debugfile += debuglink;
1488
1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1490 return debugfile;
1491 }
1492
1493 }
1494
1495 return std::string ();
1496}
1497
1498/* Modify PATH to contain only "[/]directory/" part of PATH.
1499 If there were no directory separators in PATH, PATH will be empty
1500 string on return. */
1501
1502static void
1503terminate_after_last_dir_separator (char *path)
1504{
1505 int i;
1506
1507 /* Strip off the final filename part, leaving the directory name,
1508 followed by a slash. The directory can be relative or absolute. */
1509 for (i = strlen(path) - 1; i >= 0; i--)
1510 if (IS_DIR_SEPARATOR (path[i]))
1511 break;
1512
1513 /* If I is -1 then no directory is present there and DIR will be "". */
1514 path[i + 1] = '\0';
1515}
1516
1517/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1518 Returns pathname, or an empty string. */
1519
1520std::string
1521find_separate_debug_file_by_debuglink (struct objfile *objfile)
1522{
1523 unsigned long crc32;
1524
1525 gdb::unique_xmalloc_ptr<char> debuglink
1526 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1527
1528 if (debuglink == NULL)
1529 {
1530 /* There's no separate debug info, hence there's no way we could
1531 load it => no warning. */
1532 return std::string ();
1533 }
1534
1535 std::string dir = objfile_name (objfile);
1536 terminate_after_last_dir_separator (&dir[0]);
1537 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1538
1539 std::string debugfile
1540 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1541 debuglink.get (), crc32, objfile);
1542
1543 if (debugfile.empty ())
1544 {
1545 /* For PR gdb/9538, try again with realpath (if different from the
1546 original). */
1547
1548 struct stat st_buf;
1549
1550 if (lstat (objfile_name (objfile), &st_buf) == 0
1551 && S_ISLNK (st_buf.st_mode))
1552 {
1553 gdb::unique_xmalloc_ptr<char> symlink_dir
1554 (lrealpath (objfile_name (objfile)));
1555 if (symlink_dir != NULL)
1556 {
1557 terminate_after_last_dir_separator (symlink_dir.get ());
1558 if (dir != symlink_dir.get ())
1559 {
1560 /* Different directory, so try using it. */
1561 debugfile = find_separate_debug_file (symlink_dir.get (),
1562 symlink_dir.get (),
1563 debuglink.get (),
1564 crc32,
1565 objfile);
1566 }
1567 }
1568 }
1569 }
1570
1571 return debugfile;
1572}
1573
1574/* Make sure that OBJF_{READNOW,READNEVER} are not set
1575 simultaneously. */
1576
1577static void
1578validate_readnow_readnever (objfile_flags flags)
1579{
1580 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1581 error (_("-readnow and -readnever cannot be used simultaneously"));
1582}
1583
1584/* This is the symbol-file command. Read the file, analyze its
1585 symbols, and add a struct symtab to a symtab list. The syntax of
1586 the command is rather bizarre:
1587
1588 1. The function buildargv implements various quoting conventions
1589 which are undocumented and have little or nothing in common with
1590 the way things are quoted (or not quoted) elsewhere in GDB.
1591
1592 2. Options are used, which are not generally used in GDB (perhaps
1593 "set mapped on", "set readnow on" would be better)
1594
1595 3. The order of options matters, which is contrary to GNU
1596 conventions (because it is confusing and inconvenient). */
1597
1598void
1599symbol_file_command (const char *args, int from_tty)
1600{
1601 dont_repeat ();
1602
1603 if (args == NULL)
1604 {
1605 symbol_file_clear (from_tty);
1606 }
1607 else
1608 {
1609 objfile_flags flags = OBJF_USERLOADED;
1610 symfile_add_flags add_flags = 0;
1611 char *name = NULL;
1612 bool stop_processing_options = false;
1613 CORE_ADDR offset = 0;
1614 int idx;
1615 char *arg;
1616
1617 if (from_tty)
1618 add_flags |= SYMFILE_VERBOSE;
1619
1620 gdb_argv built_argv (args);
1621 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1622 {
1623 if (stop_processing_options || *arg != '-')
1624 {
1625 if (name == NULL)
1626 name = arg;
1627 else
1628 error (_("Unrecognized argument \"%s\""), arg);
1629 }
1630 else if (strcmp (arg, "-readnow") == 0)
1631 flags |= OBJF_READNOW;
1632 else if (strcmp (arg, "-readnever") == 0)
1633 flags |= OBJF_READNEVER;
1634 else if (strcmp (arg, "-o") == 0)
1635 {
1636 arg = built_argv[++idx];
1637 if (arg == NULL)
1638 error (_("Missing argument to -o"));
1639
1640 offset = parse_and_eval_address (arg);
1641 }
1642 else if (strcmp (arg, "--") == 0)
1643 stop_processing_options = true;
1644 else
1645 error (_("Unrecognized argument \"%s\""), arg);
1646 }
1647
1648 if (name == NULL)
1649 error (_("no symbol file name was specified"));
1650
1651 validate_readnow_readnever (flags);
1652
1653 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1654 (Position Independent Executable) main symbol file will only be
1655 computed by the solib_create_inferior_hook below. Without it,
1656 breakpoint_re_set would fail to insert the breakpoints with the zero
1657 displacement. */
1658 add_flags |= SYMFILE_DEFER_BP_RESET;
1659
1660 symbol_file_add_main_1 (name, add_flags, flags, offset);
1661
1662 solib_create_inferior_hook (from_tty);
1663
1664 /* Now it's safe to re-add the breakpoints. */
1665 breakpoint_re_set ();
1666 }
1667}
1668
1669/* Set the initial language. */
1670
1671void
1672set_initial_language (void)
1673{
1674 if (language_mode == language_mode_manual)
1675 return;
1676 enum language lang = main_language ();
1677 /* Make C the default language. */
1678 enum language default_lang = language_c;
1679
1680 if (lang == language_unknown)
1681 {
1682 const char *name = main_name ();
1683 struct symbol *sym
1684 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1685 NULL).symbol;
1686
1687 if (sym != NULL)
1688 lang = sym->language ();
1689 }
1690
1691 if (lang == language_unknown)
1692 {
1693 lang = default_lang;
1694 }
1695
1696 set_language (lang);
1697 expected_language = current_language; /* Don't warn the user. */
1698}
1699
1700/* Open the file specified by NAME and hand it off to BFD for
1701 preliminary analysis. Return a newly initialized bfd *, which
1702 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1703 absolute). In case of trouble, error() is called. */
1704
1705gdb_bfd_ref_ptr
1706symfile_bfd_open (const char *name)
1707{
1708 int desc = -1;
1709
1710 gdb::unique_xmalloc_ptr<char> absolute_name;
1711 if (!is_target_filename (name))
1712 {
1713 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1714
1715 /* Look down path for it, allocate 2nd new malloc'd copy. */
1716 desc = openp (getenv ("PATH"),
1717 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1718 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1719#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1720 if (desc < 0)
1721 {
1722 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1723
1724 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1725 desc = openp (getenv ("PATH"),
1726 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1727 exename, O_RDONLY | O_BINARY, &absolute_name);
1728 }
1729#endif
1730 if (desc < 0)
1731 perror_with_name (expanded_name.get ());
1732
1733 name = absolute_name.get ();
1734 }
1735
1736 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1737 if (sym_bfd == NULL)
1738 error (_("`%s': can't open to read symbols: %s."), name,
1739 bfd_errmsg (bfd_get_error ()));
1740
1741 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1742 bfd_set_cacheable (sym_bfd.get (), 1);
1743
1744 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1745 error (_("`%s': can't read symbols: %s."), name,
1746 bfd_errmsg (bfd_get_error ()));
1747
1748 return sym_bfd;
1749}
1750
1751/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1752 the section was not found. */
1753
1754int
1755get_section_index (struct objfile *objfile, const char *section_name)
1756{
1757 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1758
1759 if (sect)
1760 return sect->index;
1761 else
1762 return -1;
1763}
1764
1765/* Link SF into the global symtab_fns list.
1766 FLAVOUR is the file format that SF handles.
1767 Called on startup by the _initialize routine in each object file format
1768 reader, to register information about each format the reader is prepared
1769 to handle. */
1770
1771void
1772add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1773{
1774 symtab_fns.emplace_back (flavour, sf);
1775}
1776
1777/* Initialize OBJFILE to read symbols from its associated BFD. It
1778 either returns or calls error(). The result is an initialized
1779 struct sym_fns in the objfile structure, that contains cached
1780 information about the symbol file. */
1781
1782static const struct sym_fns *
1783find_sym_fns (bfd *abfd)
1784{
1785 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1786
1787 if (our_flavour == bfd_target_srec_flavour
1788 || our_flavour == bfd_target_ihex_flavour
1789 || our_flavour == bfd_target_tekhex_flavour)
1790 return NULL; /* No symbols. */
1791
1792 for (const registered_sym_fns &rsf : symtab_fns)
1793 if (our_flavour == rsf.sym_flavour)
1794 return rsf.sym_fns;
1795
1796 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1797 bfd_get_target (abfd));
1798}
1799\f
1800
1801/* This function runs the load command of our current target. */
1802
1803static void
1804load_command (const char *arg, int from_tty)
1805{
1806 dont_repeat ();
1807
1808 /* The user might be reloading because the binary has changed. Take
1809 this opportunity to check. */
1810 reopen_exec_file ();
1811 reread_symbols ();
1812
1813 std::string temp;
1814 if (arg == NULL)
1815 {
1816 const char *parg, *prev;
1817
1818 arg = get_exec_file (1);
1819
1820 /* We may need to quote this string so buildargv can pull it
1821 apart. */
1822 prev = parg = arg;
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1824 {
1825 temp.append (prev, parg - prev);
1826 prev = parg++;
1827 temp.push_back ('\\');
1828 }
1829 /* If we have not copied anything yet, then we didn't see a
1830 character to quote, and we can just leave ARG unchanged. */
1831 if (!temp.empty ())
1832 {
1833 temp.append (prev);
1834 arg = temp.c_str ();
1835 }
1836 }
1837
1838 target_load (arg, from_tty);
1839
1840 /* After re-loading the executable, we don't really know which
1841 overlays are mapped any more. */
1842 overlay_cache_invalid = 1;
1843}
1844
1845/* This version of "load" should be usable for any target. Currently
1846 it is just used for remote targets, not inftarg.c or core files,
1847 on the theory that only in that case is it useful.
1848
1849 Avoiding xmodem and the like seems like a win (a) because we don't have
1850 to worry about finding it, and (b) On VMS, fork() is very slow and so
1851 we don't want to run a subprocess. On the other hand, I'm not sure how
1852 performance compares. */
1853
1854static int validate_download = 0;
1855
1856/* Callback service function for generic_load (bfd_map_over_sections). */
1857
1858static void
1859add_section_size_callback (bfd *abfd, asection *asec, void *data)
1860{
1861 bfd_size_type *sum = (bfd_size_type *) data;
1862
1863 *sum += bfd_section_size (asec);
1864}
1865
1866/* Opaque data for load_progress. */
1867struct load_progress_data
1868{
1869 /* Cumulative data. */
1870 unsigned long write_count = 0;
1871 unsigned long data_count = 0;
1872 bfd_size_type total_size = 0;
1873};
1874
1875/* Opaque data for load_progress for a single section. */
1876struct load_progress_section_data
1877{
1878 load_progress_section_data (load_progress_data *cumulative_,
1879 const char *section_name_, ULONGEST section_size_,
1880 CORE_ADDR lma_, gdb_byte *buffer_)
1881 : cumulative (cumulative_), section_name (section_name_),
1882 section_size (section_size_), lma (lma_), buffer (buffer_)
1883 {}
1884
1885 struct load_progress_data *cumulative;
1886
1887 /* Per-section data. */
1888 const char *section_name;
1889 ULONGEST section_sent = 0;
1890 ULONGEST section_size;
1891 CORE_ADDR lma;
1892 gdb_byte *buffer;
1893};
1894
1895/* Opaque data for load_section_callback. */
1896struct load_section_data
1897{
1898 load_section_data (load_progress_data *progress_data_)
1899 : progress_data (progress_data_)
1900 {}
1901
1902 ~load_section_data ()
1903 {
1904 for (auto &&request : requests)
1905 {
1906 xfree (request.data);
1907 delete ((load_progress_section_data *) request.baton);
1908 }
1909 }
1910
1911 CORE_ADDR load_offset = 0;
1912 struct load_progress_data *progress_data;
1913 std::vector<struct memory_write_request> requests;
1914};
1915
1916/* Target write callback routine for progress reporting. */
1917
1918static void
1919load_progress (ULONGEST bytes, void *untyped_arg)
1920{
1921 struct load_progress_section_data *args
1922 = (struct load_progress_section_data *) untyped_arg;
1923 struct load_progress_data *totals;
1924
1925 if (args == NULL)
1926 /* Writing padding data. No easy way to get at the cumulative
1927 stats, so just ignore this. */
1928 return;
1929
1930 totals = args->cumulative;
1931
1932 if (bytes == 0 && args->section_sent == 0)
1933 {
1934 /* The write is just starting. Let the user know we've started
1935 this section. */
1936 current_uiout->message ("Loading section %s, size %s lma %s\n",
1937 args->section_name,
1938 hex_string (args->section_size),
1939 paddress (target_gdbarch (), args->lma));
1940 return;
1941 }
1942
1943 if (validate_download)
1944 {
1945 /* Broken memories and broken monitors manifest themselves here
1946 when bring new computers to life. This doubles already slow
1947 downloads. */
1948 /* NOTE: cagney/1999-10-18: A more efficient implementation
1949 might add a verify_memory() method to the target vector and
1950 then use that. remote.c could implement that method using
1951 the ``qCRC'' packet. */
1952 gdb::byte_vector check (bytes);
1953
1954 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1955 error (_("Download verify read failed at %s"),
1956 paddress (target_gdbarch (), args->lma));
1957 if (memcmp (args->buffer, check.data (), bytes) != 0)
1958 error (_("Download verify compare failed at %s"),
1959 paddress (target_gdbarch (), args->lma));
1960 }
1961 totals->data_count += bytes;
1962 args->lma += bytes;
1963 args->buffer += bytes;
1964 totals->write_count += 1;
1965 args->section_sent += bytes;
1966 if (check_quit_flag ()
1967 || (deprecated_ui_load_progress_hook != NULL
1968 && deprecated_ui_load_progress_hook (args->section_name,
1969 args->section_sent)))
1970 error (_("Canceled the download"));
1971
1972 if (deprecated_show_load_progress != NULL)
1973 deprecated_show_load_progress (args->section_name,
1974 args->section_sent,
1975 args->section_size,
1976 totals->data_count,
1977 totals->total_size);
1978}
1979
1980/* Callback service function for generic_load (bfd_map_over_sections). */
1981
1982static void
1983load_section_callback (bfd *abfd, asection *asec, void *data)
1984{
1985 struct load_section_data *args = (struct load_section_data *) data;
1986 bfd_size_type size = bfd_section_size (asec);
1987 const char *sect_name = bfd_section_name (asec);
1988
1989 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1990 return;
1991
1992 if (size == 0)
1993 return;
1994
1995 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1996 ULONGEST end = begin + size;
1997 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1998 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1999
2000 load_progress_section_data *section_data
2001 = new load_progress_section_data (args->progress_data, sect_name, size,
2002 begin, buffer);
2003
2004 args->requests.emplace_back (begin, end, buffer, section_data);
2005}
2006
2007static void print_transfer_performance (struct ui_file *stream,
2008 unsigned long data_count,
2009 unsigned long write_count,
2010 std::chrono::steady_clock::duration d);
2011
2012/* See symfile.h. */
2013
2014void
2015generic_load (const char *args, int from_tty)
2016{
2017 struct load_progress_data total_progress;
2018 struct load_section_data cbdata (&total_progress);
2019 struct ui_out *uiout = current_uiout;
2020
2021 if (args == NULL)
2022 error_no_arg (_("file to load"));
2023
2024 gdb_argv argv (args);
2025
2026 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2027
2028 if (argv[1] != NULL)
2029 {
2030 const char *endptr;
2031
2032 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2033
2034 /* If the last word was not a valid number then
2035 treat it as a file name with spaces in. */
2036 if (argv[1] == endptr)
2037 error (_("Invalid download offset:%s."), argv[1]);
2038
2039 if (argv[2] != NULL)
2040 error (_("Too many parameters."));
2041 }
2042
2043 /* Open the file for loading. */
2044 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2045 if (loadfile_bfd == NULL)
2046 perror_with_name (filename.get ());
2047
2048 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2049 {
2050 error (_("\"%s\" is not an object file: %s"), filename.get (),
2051 bfd_errmsg (bfd_get_error ()));
2052 }
2053
2054 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2055 (void *) &total_progress.total_size);
2056
2057 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2058
2059 using namespace std::chrono;
2060
2061 steady_clock::time_point start_time = steady_clock::now ();
2062
2063 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2064 load_progress) != 0)
2065 error (_("Load failed"));
2066
2067 steady_clock::time_point end_time = steady_clock::now ();
2068
2069 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2070 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2071 uiout->text ("Start address ");
2072 uiout->field_core_addr ("address", target_gdbarch (), entry);
2073 uiout->text (", load size ");
2074 uiout->field_unsigned ("load-size", total_progress.data_count);
2075 uiout->text ("\n");
2076 regcache_write_pc (get_current_regcache (), entry);
2077
2078 /* Reset breakpoints, now that we have changed the load image. For
2079 instance, breakpoints may have been set (or reset, by
2080 post_create_inferior) while connected to the target but before we
2081 loaded the program. In that case, the prologue analyzer could
2082 have read instructions from the target to find the right
2083 breakpoint locations. Loading has changed the contents of that
2084 memory. */
2085
2086 breakpoint_re_set ();
2087
2088 print_transfer_performance (gdb_stdout, total_progress.data_count,
2089 total_progress.write_count,
2090 end_time - start_time);
2091}
2092
2093/* Report on STREAM the performance of a memory transfer operation,
2094 such as 'load'. DATA_COUNT is the number of bytes transferred.
2095 WRITE_COUNT is the number of separate write operations, or 0, if
2096 that information is not available. TIME is how long the operation
2097 lasted. */
2098
2099static void
2100print_transfer_performance (struct ui_file *stream,
2101 unsigned long data_count,
2102 unsigned long write_count,
2103 std::chrono::steady_clock::duration time)
2104{
2105 using namespace std::chrono;
2106 struct ui_out *uiout = current_uiout;
2107
2108 milliseconds ms = duration_cast<milliseconds> (time);
2109
2110 uiout->text ("Transfer rate: ");
2111 if (ms.count () > 0)
2112 {
2113 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2114
2115 if (uiout->is_mi_like_p ())
2116 {
2117 uiout->field_unsigned ("transfer-rate", rate * 8);
2118 uiout->text (" bits/sec");
2119 }
2120 else if (rate < 1024)
2121 {
2122 uiout->field_unsigned ("transfer-rate", rate);
2123 uiout->text (" bytes/sec");
2124 }
2125 else
2126 {
2127 uiout->field_unsigned ("transfer-rate", rate / 1024);
2128 uiout->text (" KB/sec");
2129 }
2130 }
2131 else
2132 {
2133 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2134 uiout->text (" bits in <1 sec");
2135 }
2136 if (write_count > 0)
2137 {
2138 uiout->text (", ");
2139 uiout->field_unsigned ("write-rate", data_count / write_count);
2140 uiout->text (" bytes/write");
2141 }
2142 uiout->text (".\n");
2143}
2144
2145/* Add an OFFSET to the start address of each section in OBJF, except
2146 sections that were specified in ADDRS. */
2147
2148static void
2149set_objfile_default_section_offset (struct objfile *objf,
2150 const section_addr_info &addrs,
2151 CORE_ADDR offset)
2152{
2153 /* Add OFFSET to all sections by default. */
2154 section_offsets offsets (objf->section_offsets.size (), offset);
2155
2156 /* Create sorted lists of all sections in ADDRS as well as all
2157 sections in OBJF. */
2158
2159 std::vector<const struct other_sections *> addrs_sorted
2160 = addrs_section_sort (addrs);
2161
2162 section_addr_info objf_addrs
2163 = build_section_addr_info_from_objfile (objf);
2164 std::vector<const struct other_sections *> objf_addrs_sorted
2165 = addrs_section_sort (objf_addrs);
2166
2167 /* Walk the BFD section list, and if a matching section is found in
2168 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2169 unchanged.
2170
2171 Note that both lists may contain multiple sections with the same
2172 name, and then the sections from ADDRS are matched in BFD order
2173 (thanks to sectindex). */
2174
2175 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2176 = addrs_sorted.begin ();
2177 for (const other_sections *objf_sect : objf_addrs_sorted)
2178 {
2179 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2180 int cmp = -1;
2181
2182 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2183 {
2184 const struct other_sections *sect = *addrs_sorted_iter;
2185 const char *sect_name = addr_section_name (sect->name.c_str ());
2186 cmp = strcmp (sect_name, objf_name);
2187 if (cmp <= 0)
2188 ++addrs_sorted_iter;
2189 }
2190
2191 if (cmp == 0)
2192 offsets[objf_sect->sectindex] = 0;
2193 }
2194
2195 /* Apply the new section offsets. */
2196 objfile_relocate (objf, offsets);
2197}
2198
2199/* This function allows the addition of incrementally linked object files.
2200 It does not modify any state in the target, only in the debugger. */
2201
2202static void
2203add_symbol_file_command (const char *args, int from_tty)
2204{
2205 struct gdbarch *gdbarch = get_current_arch ();
2206 gdb::unique_xmalloc_ptr<char> filename;
2207 char *arg;
2208 int argcnt = 0;
2209 struct objfile *objf;
2210 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2211 symfile_add_flags add_flags = 0;
2212
2213 if (from_tty)
2214 add_flags |= SYMFILE_VERBOSE;
2215
2216 struct sect_opt
2217 {
2218 const char *name;
2219 const char *value;
2220 };
2221
2222 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2223 bool stop_processing_options = false;
2224 CORE_ADDR offset = 0;
2225
2226 dont_repeat ();
2227
2228 if (args == NULL)
2229 error (_("add-symbol-file takes a file name and an address"));
2230
2231 bool seen_addr = false;
2232 bool seen_offset = false;
2233 gdb_argv argv (args);
2234
2235 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2236 {
2237 if (stop_processing_options || *arg != '-')
2238 {
2239 if (filename == NULL)
2240 {
2241 /* First non-option argument is always the filename. */
2242 filename.reset (tilde_expand (arg));
2243 }
2244 else if (!seen_addr)
2245 {
2246 /* The second non-option argument is always the text
2247 address at which to load the program. */
2248 sect_opts[0].value = arg;
2249 seen_addr = true;
2250 }
2251 else
2252 error (_("Unrecognized argument \"%s\""), arg);
2253 }
2254 else if (strcmp (arg, "-readnow") == 0)
2255 flags |= OBJF_READNOW;
2256 else if (strcmp (arg, "-readnever") == 0)
2257 flags |= OBJF_READNEVER;
2258 else if (strcmp (arg, "-s") == 0)
2259 {
2260 if (argv[argcnt + 1] == NULL)
2261 error (_("Missing section name after \"-s\""));
2262 else if (argv[argcnt + 2] == NULL)
2263 error (_("Missing section address after \"-s\""));
2264
2265 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2266
2267 sect_opts.push_back (sect);
2268 argcnt += 2;
2269 }
2270 else if (strcmp (arg, "-o") == 0)
2271 {
2272 arg = argv[++argcnt];
2273 if (arg == NULL)
2274 error (_("Missing argument to -o"));
2275
2276 offset = parse_and_eval_address (arg);
2277 seen_offset = true;
2278 }
2279 else if (strcmp (arg, "--") == 0)
2280 stop_processing_options = true;
2281 else
2282 error (_("Unrecognized argument \"%s\""), arg);
2283 }
2284
2285 if (filename == NULL)
2286 error (_("You must provide a filename to be loaded."));
2287
2288 validate_readnow_readnever (flags);
2289
2290 /* Print the prompt for the query below. And save the arguments into
2291 a sect_addr_info structure to be passed around to other
2292 functions. We have to split this up into separate print
2293 statements because hex_string returns a local static
2294 string. */
2295
2296 printf_unfiltered (_("add symbol table from file \"%s\""),
2297 filename.get ());
2298 section_addr_info section_addrs;
2299 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2300 if (!seen_addr)
2301 ++it;
2302 for (; it != sect_opts.end (); ++it)
2303 {
2304 CORE_ADDR addr;
2305 const char *val = it->value;
2306 const char *sec = it->name;
2307
2308 if (section_addrs.empty ())
2309 printf_unfiltered (_(" at\n"));
2310 addr = parse_and_eval_address (val);
2311
2312 /* Here we store the section offsets in the order they were
2313 entered on the command line. Every array element is
2314 assigned an ascending section index to preserve the above
2315 order over an unstable sorting algorithm. This dummy
2316 index is not used for any other purpose.
2317 */
2318 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2319 printf_filtered ("\t%s_addr = %s\n", sec,
2320 paddress (gdbarch, addr));
2321
2322 /* The object's sections are initialized when a
2323 call is made to build_objfile_section_table (objfile).
2324 This happens in reread_symbols.
2325 At this point, we don't know what file type this is,
2326 so we can't determine what section names are valid. */
2327 }
2328 if (seen_offset)
2329 printf_unfiltered (_("%s offset by %s\n"),
2330 (section_addrs.empty ()
2331 ? _(" with all sections")
2332 : _("with other sections")),
2333 paddress (gdbarch, offset));
2334 else if (section_addrs.empty ())
2335 printf_unfiltered ("\n");
2336
2337 if (from_tty && (!query ("%s", "")))
2338 error (_("Not confirmed."));
2339
2340 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2341 flags);
2342 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2343 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2344 filename.get ());
2345
2346 if (seen_offset)
2347 set_objfile_default_section_offset (objf, section_addrs, offset);
2348
2349 add_target_sections_of_objfile (objf);
2350
2351 /* Getting new symbols may change our opinion about what is
2352 frameless. */
2353 reinit_frame_cache ();
2354}
2355\f
2356
2357/* This function removes a symbol file that was added via add-symbol-file. */
2358
2359static void
2360remove_symbol_file_command (const char *args, int from_tty)
2361{
2362 struct objfile *objf = NULL;
2363 struct program_space *pspace = current_program_space;
2364
2365 dont_repeat ();
2366
2367 if (args == NULL)
2368 error (_("remove-symbol-file: no symbol file provided"));
2369
2370 gdb_argv argv (args);
2371
2372 if (strcmp (argv[0], "-a") == 0)
2373 {
2374 /* Interpret the next argument as an address. */
2375 CORE_ADDR addr;
2376
2377 if (argv[1] == NULL)
2378 error (_("Missing address argument"));
2379
2380 if (argv[2] != NULL)
2381 error (_("Junk after %s"), argv[1]);
2382
2383 addr = parse_and_eval_address (argv[1]);
2384
2385 for (objfile *objfile : current_program_space->objfiles ())
2386 {
2387 if ((objfile->flags & OBJF_USERLOADED) != 0
2388 && (objfile->flags & OBJF_SHARED) != 0
2389 && objfile->pspace == pspace
2390 && is_addr_in_objfile (addr, objfile))
2391 {
2392 objf = objfile;
2393 break;
2394 }
2395 }
2396 }
2397 else if (argv[0] != NULL)
2398 {
2399 /* Interpret the current argument as a file name. */
2400
2401 if (argv[1] != NULL)
2402 error (_("Junk after %s"), argv[0]);
2403
2404 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2405
2406 for (objfile *objfile : current_program_space->objfiles ())
2407 {
2408 if ((objfile->flags & OBJF_USERLOADED) != 0
2409 && (objfile->flags & OBJF_SHARED) != 0
2410 && objfile->pspace == pspace
2411 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2412 {
2413 objf = objfile;
2414 break;
2415 }
2416 }
2417 }
2418
2419 if (objf == NULL)
2420 error (_("No symbol file found"));
2421
2422 if (from_tty
2423 && !query (_("Remove symbol table from file \"%s\"? "),
2424 objfile_name (objf)))
2425 error (_("Not confirmed."));
2426
2427 objf->unlink ();
2428 clear_symtab_users (0);
2429}
2430
2431/* Re-read symbols if a symbol-file has changed. */
2432
2433void
2434reread_symbols (void)
2435{
2436 long new_modtime;
2437 struct stat new_statbuf;
2438 int res;
2439 std::vector<struct objfile *> new_objfiles;
2440
2441 for (objfile *objfile : current_program_space->objfiles ())
2442 {
2443 if (objfile->obfd == NULL)
2444 continue;
2445
2446 /* Separate debug objfiles are handled in the main objfile. */
2447 if (objfile->separate_debug_objfile_backlink)
2448 continue;
2449
2450 /* If this object is from an archive (what you usually create with
2451 `ar', often called a `static library' on most systems, though
2452 a `shared library' on AIX is also an archive), then you should
2453 stat on the archive name, not member name. */
2454 if (objfile->obfd->my_archive)
2455 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2456 else
2457 res = stat (objfile_name (objfile), &new_statbuf);
2458 if (res != 0)
2459 {
2460 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2461 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2462 objfile_name (objfile));
2463 continue;
2464 }
2465 new_modtime = new_statbuf.st_mtime;
2466 if (new_modtime != objfile->mtime)
2467 {
2468 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2469 objfile_name (objfile));
2470
2471 /* There are various functions like symbol_file_add,
2472 symfile_bfd_open, syms_from_objfile, etc., which might
2473 appear to do what we want. But they have various other
2474 effects which we *don't* want. So we just do stuff
2475 ourselves. We don't worry about mapped files (for one thing,
2476 any mapped file will be out of date). */
2477
2478 /* If we get an error, blow away this objfile (not sure if
2479 that is the correct response for things like shared
2480 libraries). */
2481 objfile_up objfile_holder (objfile);
2482
2483 /* We need to do this whenever any symbols go away. */
2484 clear_symtab_users_cleanup defer_clear_users (0);
2485
2486 if (exec_bfd != NULL
2487 && filename_cmp (bfd_get_filename (objfile->obfd),
2488 bfd_get_filename (exec_bfd)) == 0)
2489 {
2490 /* Reload EXEC_BFD without asking anything. */
2491
2492 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2493 }
2494
2495 /* Keep the calls order approx. the same as in free_objfile. */
2496
2497 /* Free the separate debug objfiles. It will be
2498 automatically recreated by sym_read. */
2499 free_objfile_separate_debug (objfile);
2500
2501 /* Clear the stale source cache. */
2502 forget_cached_source_info ();
2503
2504 /* Remove any references to this objfile in the global
2505 value lists. */
2506 preserve_values (objfile);
2507
2508 /* Nuke all the state that we will re-read. Much of the following
2509 code which sets things to NULL really is necessary to tell
2510 other parts of GDB that there is nothing currently there.
2511
2512 Try to keep the freeing order compatible with free_objfile. */
2513
2514 if (objfile->sf != NULL)
2515 {
2516 (*objfile->sf->sym_finish) (objfile);
2517 }
2518
2519 clear_objfile_data (objfile);
2520
2521 /* Clean up any state BFD has sitting around. */
2522 {
2523 gdb_bfd_ref_ptr obfd (objfile->obfd);
2524 const char *obfd_filename;
2525
2526 obfd_filename = bfd_get_filename (objfile->obfd);
2527 /* Open the new BFD before freeing the old one, so that
2528 the filename remains live. */
2529 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2530 objfile->obfd = temp.release ();
2531 if (objfile->obfd == NULL)
2532 error (_("Can't open %s to read symbols."), obfd_filename);
2533 }
2534
2535 std::string original_name = objfile->original_name;
2536
2537 /* bfd_openr sets cacheable to true, which is what we want. */
2538 if (!bfd_check_format (objfile->obfd, bfd_object))
2539 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2540 bfd_errmsg (bfd_get_error ()));
2541
2542 objfile->reset_psymtabs ();
2543
2544 /* NB: after this call to obstack_free, objfiles_changed
2545 will need to be called (see discussion below). */
2546 obstack_free (&objfile->objfile_obstack, 0);
2547 objfile->sections = NULL;
2548 objfile->compunit_symtabs = NULL;
2549 objfile->template_symbols = NULL;
2550 objfile->static_links.reset (nullptr);
2551
2552 /* obstack_init also initializes the obstack so it is
2553 empty. We could use obstack_specify_allocation but
2554 gdb_obstack.h specifies the alloc/dealloc functions. */
2555 obstack_init (&objfile->objfile_obstack);
2556
2557 /* set_objfile_per_bfd potentially allocates the per-bfd
2558 data on the objfile's obstack (if sharing data across
2559 multiple users is not possible), so it's important to
2560 do it *after* the obstack has been initialized. */
2561 set_objfile_per_bfd (objfile);
2562
2563 objfile->original_name
2564 = obstack_strdup (&objfile->objfile_obstack, original_name);
2565
2566 /* Reset the sym_fns pointer. The ELF reader can change it
2567 based on whether .gdb_index is present, and we need it to
2568 start over. PR symtab/15885 */
2569 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2570
2571 build_objfile_section_table (objfile);
2572
2573 /* What the hell is sym_new_init for, anyway? The concept of
2574 distinguishing between the main file and additional files
2575 in this way seems rather dubious. */
2576 if (objfile == symfile_objfile)
2577 {
2578 (*objfile->sf->sym_new_init) (objfile);
2579 }
2580
2581 (*objfile->sf->sym_init) (objfile);
2582 clear_complaints ();
2583
2584 objfile->flags &= ~OBJF_PSYMTABS_READ;
2585
2586 /* We are about to read new symbols and potentially also
2587 DWARF information. Some targets may want to pass addresses
2588 read from DWARF DIE's through an adjustment function before
2589 saving them, like MIPS, which may call into
2590 "find_pc_section". When called, that function will make
2591 use of per-objfile program space data.
2592
2593 Since we discarded our section information above, we have
2594 dangling pointers in the per-objfile program space data
2595 structure. Force GDB to update the section mapping
2596 information by letting it know the objfile has changed,
2597 making the dangling pointers point to correct data
2598 again. */
2599
2600 objfiles_changed ();
2601
2602 read_symbols (objfile, 0);
2603
2604 if (!objfile_has_symbols (objfile))
2605 {
2606 wrap_here ("");
2607 printf_filtered (_("(no debugging symbols found)\n"));
2608 wrap_here ("");
2609 }
2610
2611 /* We're done reading the symbol file; finish off complaints. */
2612 clear_complaints ();
2613
2614 /* Getting new symbols may change our opinion about what is
2615 frameless. */
2616
2617 reinit_frame_cache ();
2618
2619 /* Discard cleanups as symbol reading was successful. */
2620 objfile_holder.release ();
2621 defer_clear_users.release ();
2622
2623 /* If the mtime has changed between the time we set new_modtime
2624 and now, we *want* this to be out of date, so don't call stat
2625 again now. */
2626 objfile->mtime = new_modtime;
2627 init_entry_point_info (objfile);
2628
2629 new_objfiles.push_back (objfile);
2630 }
2631 }
2632
2633 if (!new_objfiles.empty ())
2634 {
2635 clear_symtab_users (0);
2636
2637 /* clear_objfile_data for each objfile was called before freeing it and
2638 gdb::observers::new_objfile.notify (NULL) has been called by
2639 clear_symtab_users above. Notify the new files now. */
2640 for (auto iter : new_objfiles)
2641 gdb::observers::new_objfile.notify (iter);
2642
2643 /* At least one objfile has changed, so we can consider that
2644 the executable we're debugging has changed too. */
2645 gdb::observers::executable_changed.notify ();
2646 }
2647}
2648\f
2649
2650struct filename_language
2651{
2652 filename_language (const std::string &ext_, enum language lang_)
2653 : ext (ext_), lang (lang_)
2654 {}
2655
2656 std::string ext;
2657 enum language lang;
2658};
2659
2660static std::vector<filename_language> filename_language_table;
2661
2662/* See symfile.h. */
2663
2664void
2665add_filename_language (const char *ext, enum language lang)
2666{
2667 filename_language_table.emplace_back (ext, lang);
2668}
2669
2670static char *ext_args;
2671static void
2672show_ext_args (struct ui_file *file, int from_tty,
2673 struct cmd_list_element *c, const char *value)
2674{
2675 fprintf_filtered (file,
2676 _("Mapping between filename extension "
2677 "and source language is \"%s\".\n"),
2678 value);
2679}
2680
2681static void
2682set_ext_lang_command (const char *args,
2683 int from_tty, struct cmd_list_element *e)
2684{
2685 char *cp = ext_args;
2686 enum language lang;
2687
2688 /* First arg is filename extension, starting with '.' */
2689 if (*cp != '.')
2690 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2691
2692 /* Find end of first arg. */
2693 while (*cp && !isspace (*cp))
2694 cp++;
2695
2696 if (*cp == '\0')
2697 error (_("'%s': two arguments required -- "
2698 "filename extension and language"),
2699 ext_args);
2700
2701 /* Null-terminate first arg. */
2702 *cp++ = '\0';
2703
2704 /* Find beginning of second arg, which should be a source language. */
2705 cp = skip_spaces (cp);
2706
2707 if (*cp == '\0')
2708 error (_("'%s': two arguments required -- "
2709 "filename extension and language"),
2710 ext_args);
2711
2712 /* Lookup the language from among those we know. */
2713 lang = language_enum (cp);
2714
2715 auto it = filename_language_table.begin ();
2716 /* Now lookup the filename extension: do we already know it? */
2717 for (; it != filename_language_table.end (); it++)
2718 {
2719 if (it->ext == ext_args)
2720 break;
2721 }
2722
2723 if (it == filename_language_table.end ())
2724 {
2725 /* New file extension. */
2726 add_filename_language (ext_args, lang);
2727 }
2728 else
2729 {
2730 /* Redefining a previously known filename extension. */
2731
2732 /* if (from_tty) */
2733 /* query ("Really make files of type %s '%s'?", */
2734 /* ext_args, language_str (lang)); */
2735
2736 it->lang = lang;
2737 }
2738}
2739
2740static void
2741info_ext_lang_command (const char *args, int from_tty)
2742{
2743 printf_filtered (_("Filename extensions and the languages they represent:"));
2744 printf_filtered ("\n\n");
2745 for (const filename_language &entry : filename_language_table)
2746 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2747 language_str (entry.lang));
2748}
2749
2750enum language
2751deduce_language_from_filename (const char *filename)
2752{
2753 const char *cp;
2754
2755 if (filename != NULL)
2756 if ((cp = strrchr (filename, '.')) != NULL)
2757 {
2758 for (const filename_language &entry : filename_language_table)
2759 if (entry.ext == cp)
2760 return entry.lang;
2761 }
2762
2763 return language_unknown;
2764}
2765\f
2766/* Allocate and initialize a new symbol table.
2767 CUST is from the result of allocate_compunit_symtab. */
2768
2769struct symtab *
2770allocate_symtab (struct compunit_symtab *cust, const char *filename)
2771{
2772 struct objfile *objfile = cust->objfile;
2773 struct symtab *symtab
2774 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2775
2776 symtab->filename = objfile->intern (filename);
2777 symtab->fullname = NULL;
2778 symtab->language = deduce_language_from_filename (filename);
2779
2780 /* This can be very verbose with lots of headers.
2781 Only print at higher debug levels. */
2782 if (symtab_create_debug >= 2)
2783 {
2784 /* Be a bit clever with debugging messages, and don't print objfile
2785 every time, only when it changes. */
2786 static char *last_objfile_name = NULL;
2787
2788 if (last_objfile_name == NULL
2789 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2790 {
2791 xfree (last_objfile_name);
2792 last_objfile_name = xstrdup (objfile_name (objfile));
2793 fprintf_filtered (gdb_stdlog,
2794 "Creating one or more symtabs for objfile %s ...\n",
2795 last_objfile_name);
2796 }
2797 fprintf_filtered (gdb_stdlog,
2798 "Created symtab %s for module %s.\n",
2799 host_address_to_string (symtab), filename);
2800 }
2801
2802 /* Add it to CUST's list of symtabs. */
2803 if (cust->filetabs == NULL)
2804 {
2805 cust->filetabs = symtab;
2806 cust->last_filetab = symtab;
2807 }
2808 else
2809 {
2810 cust->last_filetab->next = symtab;
2811 cust->last_filetab = symtab;
2812 }
2813
2814 /* Backlink to the containing compunit symtab. */
2815 symtab->compunit_symtab = cust;
2816
2817 return symtab;
2818}
2819
2820/* Allocate and initialize a new compunit.
2821 NAME is the name of the main source file, if there is one, or some
2822 descriptive text if there are no source files. */
2823
2824struct compunit_symtab *
2825allocate_compunit_symtab (struct objfile *objfile, const char *name)
2826{
2827 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2828 struct compunit_symtab);
2829 const char *saved_name;
2830
2831 cu->objfile = objfile;
2832
2833 /* The name we record here is only for display/debugging purposes.
2834 Just save the basename to avoid path issues (too long for display,
2835 relative vs absolute, etc.). */
2836 saved_name = lbasename (name);
2837 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2838
2839 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2840
2841 if (symtab_create_debug)
2842 {
2843 fprintf_filtered (gdb_stdlog,
2844 "Created compunit symtab %s for %s.\n",
2845 host_address_to_string (cu),
2846 cu->name);
2847 }
2848
2849 return cu;
2850}
2851
2852/* Hook CU to the objfile it comes from. */
2853
2854void
2855add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2856{
2857 cu->next = cu->objfile->compunit_symtabs;
2858 cu->objfile->compunit_symtabs = cu;
2859}
2860\f
2861
2862/* Reset all data structures in gdb which may contain references to
2863 symbol table data. */
2864
2865void
2866clear_symtab_users (symfile_add_flags add_flags)
2867{
2868 /* Someday, we should do better than this, by only blowing away
2869 the things that really need to be blown. */
2870
2871 /* Clear the "current" symtab first, because it is no longer valid.
2872 breakpoint_re_set may try to access the current symtab. */
2873 clear_current_source_symtab_and_line ();
2874
2875 clear_displays ();
2876 clear_last_displayed_sal ();
2877 clear_pc_function_cache ();
2878 gdb::observers::new_objfile.notify (NULL);
2879
2880 /* Varobj may refer to old symbols, perform a cleanup. */
2881 varobj_invalidate ();
2882
2883 /* Now that the various caches have been cleared, we can re_set
2884 our breakpoints without risking it using stale data. */
2885 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2886 breakpoint_re_set ();
2887}
2888\f
2889/* OVERLAYS:
2890 The following code implements an abstraction for debugging overlay sections.
2891
2892 The target model is as follows:
2893 1) The gnu linker will permit multiple sections to be mapped into the
2894 same VMA, each with its own unique LMA (or load address).
2895 2) It is assumed that some runtime mechanism exists for mapping the
2896 sections, one by one, from the load address into the VMA address.
2897 3) This code provides a mechanism for gdb to keep track of which
2898 sections should be considered to be mapped from the VMA to the LMA.
2899 This information is used for symbol lookup, and memory read/write.
2900 For instance, if a section has been mapped then its contents
2901 should be read from the VMA, otherwise from the LMA.
2902
2903 Two levels of debugger support for overlays are available. One is
2904 "manual", in which the debugger relies on the user to tell it which
2905 overlays are currently mapped. This level of support is
2906 implemented entirely in the core debugger, and the information about
2907 whether a section is mapped is kept in the objfile->obj_section table.
2908
2909 The second level of support is "automatic", and is only available if
2910 the target-specific code provides functionality to read the target's
2911 overlay mapping table, and translate its contents for the debugger
2912 (by updating the mapped state information in the obj_section tables).
2913
2914 The interface is as follows:
2915 User commands:
2916 overlay map <name> -- tell gdb to consider this section mapped
2917 overlay unmap <name> -- tell gdb to consider this section unmapped
2918 overlay list -- list the sections that GDB thinks are mapped
2919 overlay read-target -- get the target's state of what's mapped
2920 overlay off/manual/auto -- set overlay debugging state
2921 Functional interface:
2922 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2923 section, return that section.
2924 find_pc_overlay(pc): find any overlay section that contains
2925 the pc, either in its VMA or its LMA
2926 section_is_mapped(sect): true if overlay is marked as mapped
2927 section_is_overlay(sect): true if section's VMA != LMA
2928 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2929 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2930 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2931 overlay_mapped_address(...): map an address from section's LMA to VMA
2932 overlay_unmapped_address(...): map an address from section's VMA to LMA
2933 symbol_overlayed_address(...): Return a "current" address for symbol:
2934 either in VMA or LMA depending on whether
2935 the symbol's section is currently mapped. */
2936
2937/* Overlay debugging state: */
2938
2939enum overlay_debugging_state overlay_debugging = ovly_off;
2940int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2941
2942/* Function: section_is_overlay (SECTION)
2943 Returns true if SECTION has VMA not equal to LMA, ie.
2944 SECTION is loaded at an address different from where it will "run". */
2945
2946int
2947section_is_overlay (struct obj_section *section)
2948{
2949 if (overlay_debugging && section)
2950 {
2951 asection *bfd_section = section->the_bfd_section;
2952
2953 if (bfd_section_lma (bfd_section) != 0
2954 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2955 return 1;
2956 }
2957
2958 return 0;
2959}
2960
2961/* Function: overlay_invalidate_all (void)
2962 Invalidate the mapped state of all overlay sections (mark it as stale). */
2963
2964static void
2965overlay_invalidate_all (void)
2966{
2967 struct obj_section *sect;
2968
2969 for (objfile *objfile : current_program_space->objfiles ())
2970 ALL_OBJFILE_OSECTIONS (objfile, sect)
2971 if (section_is_overlay (sect))
2972 sect->ovly_mapped = -1;
2973}
2974
2975/* Function: section_is_mapped (SECTION)
2976 Returns true if section is an overlay, and is currently mapped.
2977
2978 Access to the ovly_mapped flag is restricted to this function, so
2979 that we can do automatic update. If the global flag
2980 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2981 overlay_invalidate_all. If the mapped state of the particular
2982 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2983
2984int
2985section_is_mapped (struct obj_section *osect)
2986{
2987 struct gdbarch *gdbarch;
2988
2989 if (osect == 0 || !section_is_overlay (osect))
2990 return 0;
2991
2992 switch (overlay_debugging)
2993 {
2994 default:
2995 case ovly_off:
2996 return 0; /* overlay debugging off */
2997 case ovly_auto: /* overlay debugging automatic */
2998 /* Unles there is a gdbarch_overlay_update function,
2999 there's really nothing useful to do here (can't really go auto). */
3000 gdbarch = osect->objfile->arch ();
3001 if (gdbarch_overlay_update_p (gdbarch))
3002 {
3003 if (overlay_cache_invalid)
3004 {
3005 overlay_invalidate_all ();
3006 overlay_cache_invalid = 0;
3007 }
3008 if (osect->ovly_mapped == -1)
3009 gdbarch_overlay_update (gdbarch, osect);
3010 }
3011 /* fall thru */
3012 case ovly_on: /* overlay debugging manual */
3013 return osect->ovly_mapped == 1;
3014 }
3015}
3016
3017/* Function: pc_in_unmapped_range
3018 If PC falls into the lma range of SECTION, return true, else false. */
3019
3020CORE_ADDR
3021pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3022{
3023 if (section_is_overlay (section))
3024 {
3025 asection *bfd_section = section->the_bfd_section;
3026
3027 /* We assume the LMA is relocated by the same offset as the VMA. */
3028 bfd_vma size = bfd_section_size (bfd_section);
3029 CORE_ADDR offset = obj_section_offset (section);
3030
3031 if (bfd_section_lma (bfd_section) + offset <= pc
3032 && pc < bfd_section_lma (bfd_section) + offset + size)
3033 return 1;
3034 }
3035
3036 return 0;
3037}
3038
3039/* Function: pc_in_mapped_range
3040 If PC falls into the vma range of SECTION, return true, else false. */
3041
3042CORE_ADDR
3043pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3044{
3045 if (section_is_overlay (section))
3046 {
3047 if (obj_section_addr (section) <= pc
3048 && pc < obj_section_endaddr (section))
3049 return 1;
3050 }
3051
3052 return 0;
3053}
3054
3055/* Return true if the mapped ranges of sections A and B overlap, false
3056 otherwise. */
3057
3058static int
3059sections_overlap (struct obj_section *a, struct obj_section *b)
3060{
3061 CORE_ADDR a_start = obj_section_addr (a);
3062 CORE_ADDR a_end = obj_section_endaddr (a);
3063 CORE_ADDR b_start = obj_section_addr (b);
3064 CORE_ADDR b_end = obj_section_endaddr (b);
3065
3066 return (a_start < b_end && b_start < a_end);
3067}
3068
3069/* Function: overlay_unmapped_address (PC, SECTION)
3070 Returns the address corresponding to PC in the unmapped (load) range.
3071 May be the same as PC. */
3072
3073CORE_ADDR
3074overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3075{
3076 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3077 {
3078 asection *bfd_section = section->the_bfd_section;
3079
3080 return (pc + bfd_section_lma (bfd_section)
3081 - bfd_section_vma (bfd_section));
3082 }
3083
3084 return pc;
3085}
3086
3087/* Function: overlay_mapped_address (PC, SECTION)
3088 Returns the address corresponding to PC in the mapped (runtime) range.
3089 May be the same as PC. */
3090
3091CORE_ADDR
3092overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3093{
3094 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3095 {
3096 asection *bfd_section = section->the_bfd_section;
3097
3098 return (pc + bfd_section_vma (bfd_section)
3099 - bfd_section_lma (bfd_section));
3100 }
3101
3102 return pc;
3103}
3104
3105/* Function: symbol_overlayed_address
3106 Return one of two addresses (relative to the VMA or to the LMA),
3107 depending on whether the section is mapped or not. */
3108
3109CORE_ADDR
3110symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3111{
3112 if (overlay_debugging)
3113 {
3114 /* If the symbol has no section, just return its regular address. */
3115 if (section == 0)
3116 return address;
3117 /* If the symbol's section is not an overlay, just return its
3118 address. */
3119 if (!section_is_overlay (section))
3120 return address;
3121 /* If the symbol's section is mapped, just return its address. */
3122 if (section_is_mapped (section))
3123 return address;
3124 /*
3125 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3126 * then return its LOADED address rather than its vma address!!
3127 */
3128 return overlay_unmapped_address (address, section);
3129 }
3130 return address;
3131}
3132
3133/* Function: find_pc_overlay (PC)
3134 Return the best-match overlay section for PC:
3135 If PC matches a mapped overlay section's VMA, return that section.
3136 Else if PC matches an unmapped section's VMA, return that section.
3137 Else if PC matches an unmapped section's LMA, return that section. */
3138
3139struct obj_section *
3140find_pc_overlay (CORE_ADDR pc)
3141{
3142 struct obj_section *osect, *best_match = NULL;
3143
3144 if (overlay_debugging)
3145 {
3146 for (objfile *objfile : current_program_space->objfiles ())
3147 ALL_OBJFILE_OSECTIONS (objfile, osect)
3148 if (section_is_overlay (osect))
3149 {
3150 if (pc_in_mapped_range (pc, osect))
3151 {
3152 if (section_is_mapped (osect))
3153 return osect;
3154 else
3155 best_match = osect;
3156 }
3157 else if (pc_in_unmapped_range (pc, osect))
3158 best_match = osect;
3159 }
3160 }
3161 return best_match;
3162}
3163
3164/* Function: find_pc_mapped_section (PC)
3165 If PC falls into the VMA address range of an overlay section that is
3166 currently marked as MAPPED, return that section. Else return NULL. */
3167
3168struct obj_section *
3169find_pc_mapped_section (CORE_ADDR pc)
3170{
3171 struct obj_section *osect;
3172
3173 if (overlay_debugging)
3174 {
3175 for (objfile *objfile : current_program_space->objfiles ())
3176 ALL_OBJFILE_OSECTIONS (objfile, osect)
3177 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3178 return osect;
3179 }
3180
3181 return NULL;
3182}
3183
3184/* Function: list_overlays_command
3185 Print a list of mapped sections and their PC ranges. */
3186
3187static void
3188list_overlays_command (const char *args, int from_tty)
3189{
3190 int nmapped = 0;
3191 struct obj_section *osect;
3192
3193 if (overlay_debugging)
3194 {
3195 for (objfile *objfile : current_program_space->objfiles ())
3196 ALL_OBJFILE_OSECTIONS (objfile, osect)
3197 if (section_is_mapped (osect))
3198 {
3199 struct gdbarch *gdbarch = objfile->arch ();
3200 const char *name;
3201 bfd_vma lma, vma;
3202 int size;
3203
3204 vma = bfd_section_vma (osect->the_bfd_section);
3205 lma = bfd_section_lma (osect->the_bfd_section);
3206 size = bfd_section_size (osect->the_bfd_section);
3207 name = bfd_section_name (osect->the_bfd_section);
3208
3209 printf_filtered ("Section %s, loaded at ", name);
3210 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3211 puts_filtered (" - ");
3212 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3213 printf_filtered (", mapped at ");
3214 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3215 puts_filtered (" - ");
3216 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3217 puts_filtered ("\n");
3218
3219 nmapped++;
3220 }
3221 }
3222 if (nmapped == 0)
3223 printf_filtered (_("No sections are mapped.\n"));
3224}
3225
3226/* Function: map_overlay_command
3227 Mark the named section as mapped (ie. residing at its VMA address). */
3228
3229static void
3230map_overlay_command (const char *args, int from_tty)
3231{
3232 struct obj_section *sec, *sec2;
3233
3234 if (!overlay_debugging)
3235 error (_("Overlay debugging not enabled. Use "
3236 "either the 'overlay auto' or\n"
3237 "the 'overlay manual' command."));
3238
3239 if (args == 0 || *args == 0)
3240 error (_("Argument required: name of an overlay section"));
3241
3242 /* First, find a section matching the user supplied argument. */
3243 for (objfile *obj_file : current_program_space->objfiles ())
3244 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3245 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3246 {
3247 /* Now, check to see if the section is an overlay. */
3248 if (!section_is_overlay (sec))
3249 continue; /* not an overlay section */
3250
3251 /* Mark the overlay as "mapped". */
3252 sec->ovly_mapped = 1;
3253
3254 /* Next, make a pass and unmap any sections that are
3255 overlapped by this new section: */
3256 for (objfile *objfile2 : current_program_space->objfiles ())
3257 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3258 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3259 sec2))
3260 {
3261 if (info_verbose)
3262 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3263 bfd_section_name (sec2->the_bfd_section));
3264 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3265 }
3266 return;
3267 }
3268 error (_("No overlay section called %s"), args);
3269}
3270
3271/* Function: unmap_overlay_command
3272 Mark the overlay section as unmapped
3273 (ie. resident in its LMA address range, rather than the VMA range). */
3274
3275static void
3276unmap_overlay_command (const char *args, int from_tty)
3277{
3278 struct obj_section *sec = NULL;
3279
3280 if (!overlay_debugging)
3281 error (_("Overlay debugging not enabled. "
3282 "Use either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
3284
3285 if (args == 0 || *args == 0)
3286 error (_("Argument required: name of an overlay section"));
3287
3288 /* First, find a section matching the user supplied argument. */
3289 for (objfile *objfile : current_program_space->objfiles ())
3290 ALL_OBJFILE_OSECTIONS (objfile, sec)
3291 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3292 {
3293 if (!sec->ovly_mapped)
3294 error (_("Section %s is not mapped"), args);
3295 sec->ovly_mapped = 0;
3296 return;
3297 }
3298 error (_("No overlay section called %s"), args);
3299}
3300
3301/* Function: overlay_auto_command
3302 A utility command to turn on overlay debugging.
3303 Possibly this should be done via a set/show command. */
3304
3305static void
3306overlay_auto_command (const char *args, int from_tty)
3307{
3308 overlay_debugging = ovly_auto;
3309 enable_overlay_breakpoints ();
3310 if (info_verbose)
3311 printf_unfiltered (_("Automatic overlay debugging enabled."));
3312}
3313
3314/* Function: overlay_manual_command
3315 A utility command to turn on overlay debugging.
3316 Possibly this should be done via a set/show command. */
3317
3318static void
3319overlay_manual_command (const char *args, int from_tty)
3320{
3321 overlay_debugging = ovly_on;
3322 disable_overlay_breakpoints ();
3323 if (info_verbose)
3324 printf_unfiltered (_("Overlay debugging enabled."));
3325}
3326
3327/* Function: overlay_off_command
3328 A utility command to turn on overlay debugging.
3329 Possibly this should be done via a set/show command. */
3330
3331static void
3332overlay_off_command (const char *args, int from_tty)
3333{
3334 overlay_debugging = ovly_off;
3335 disable_overlay_breakpoints ();
3336 if (info_verbose)
3337 printf_unfiltered (_("Overlay debugging disabled."));
3338}
3339
3340static void
3341overlay_load_command (const char *args, int from_tty)
3342{
3343 struct gdbarch *gdbarch = get_current_arch ();
3344
3345 if (gdbarch_overlay_update_p (gdbarch))
3346 gdbarch_overlay_update (gdbarch, NULL);
3347 else
3348 error (_("This target does not know how to read its overlay state."));
3349}
3350
3351/* Command list chain containing all defined "overlay" subcommands. */
3352static struct cmd_list_element *overlaylist;
3353
3354/* Target Overlays for the "Simplest" overlay manager:
3355
3356 This is GDB's default target overlay layer. It works with the
3357 minimal overlay manager supplied as an example by Cygnus. The
3358 entry point is via a function pointer "gdbarch_overlay_update",
3359 so targets that use a different runtime overlay manager can
3360 substitute their own overlay_update function and take over the
3361 function pointer.
3362
3363 The overlay_update function pokes around in the target's data structures
3364 to see what overlays are mapped, and updates GDB's overlay mapping with
3365 this information.
3366
3367 In this simple implementation, the target data structures are as follows:
3368 unsigned _novlys; /# number of overlay sections #/
3369 unsigned _ovly_table[_novlys][4] = {
3370 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3371 {..., ..., ..., ...},
3372 }
3373 unsigned _novly_regions; /# number of overlay regions #/
3374 unsigned _ovly_region_table[_novly_regions][3] = {
3375 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3376 {..., ..., ...},
3377 }
3378 These functions will attempt to update GDB's mappedness state in the
3379 symbol section table, based on the target's mappedness state.
3380
3381 To do this, we keep a cached copy of the target's _ovly_table, and
3382 attempt to detect when the cached copy is invalidated. The main
3383 entry point is "simple_overlay_update(SECT), which looks up SECT in
3384 the cached table and re-reads only the entry for that section from
3385 the target (whenever possible). */
3386
3387/* Cached, dynamically allocated copies of the target data structures: */
3388static unsigned (*cache_ovly_table)[4] = 0;
3389static unsigned cache_novlys = 0;
3390static CORE_ADDR cache_ovly_table_base = 0;
3391enum ovly_index
3392 {
3393 VMA, OSIZE, LMA, MAPPED
3394 };
3395
3396/* Throw away the cached copy of _ovly_table. */
3397
3398static void
3399simple_free_overlay_table (void)
3400{
3401 if (cache_ovly_table)
3402 xfree (cache_ovly_table);
3403 cache_novlys = 0;
3404 cache_ovly_table = NULL;
3405 cache_ovly_table_base = 0;
3406}
3407
3408/* Read an array of ints of size SIZE from the target into a local buffer.
3409 Convert to host order. int LEN is number of ints. */
3410
3411static void
3412read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3413 int len, int size, enum bfd_endian byte_order)
3414{
3415 /* FIXME (alloca): Not safe if array is very large. */
3416 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3417 int i;
3418
3419 read_memory (memaddr, buf, len * size);
3420 for (i = 0; i < len; i++)
3421 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3422}
3423
3424/* Find and grab a copy of the target _ovly_table
3425 (and _novlys, which is needed for the table's size). */
3426
3427static int
3428simple_read_overlay_table (void)
3429{
3430 struct bound_minimal_symbol novlys_msym;
3431 struct bound_minimal_symbol ovly_table_msym;
3432 struct gdbarch *gdbarch;
3433 int word_size;
3434 enum bfd_endian byte_order;
3435
3436 simple_free_overlay_table ();
3437 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3438 if (! novlys_msym.minsym)
3439 {
3440 error (_("Error reading inferior's overlay table: "
3441 "couldn't find `_novlys' variable\n"
3442 "in inferior. Use `overlay manual' mode."));
3443 return 0;
3444 }
3445
3446 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3447 if (! ovly_table_msym.minsym)
3448 {
3449 error (_("Error reading inferior's overlay table: couldn't find "
3450 "`_ovly_table' array\n"
3451 "in inferior. Use `overlay manual' mode."));
3452 return 0;
3453 }
3454
3455 gdbarch = ovly_table_msym.objfile->arch ();
3456 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3457 byte_order = gdbarch_byte_order (gdbarch);
3458
3459 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3460 4, byte_order);
3461 cache_ovly_table
3462 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3463 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3464 read_target_long_array (cache_ovly_table_base,
3465 (unsigned int *) cache_ovly_table,
3466 cache_novlys * 4, word_size, byte_order);
3467
3468 return 1; /* SUCCESS */
3469}
3470
3471/* Function: simple_overlay_update_1
3472 A helper function for simple_overlay_update. Assuming a cached copy
3473 of _ovly_table exists, look through it to find an entry whose vma,
3474 lma and size match those of OSECT. Re-read the entry and make sure
3475 it still matches OSECT (else the table may no longer be valid).
3476 Set OSECT's mapped state to match the entry. Return: 1 for
3477 success, 0 for failure. */
3478
3479static int
3480simple_overlay_update_1 (struct obj_section *osect)
3481{
3482 int i;
3483 asection *bsect = osect->the_bfd_section;
3484 struct gdbarch *gdbarch = osect->objfile->arch ();
3485 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3486 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3487
3488 for (i = 0; i < cache_novlys; i++)
3489 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3490 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3491 {
3492 read_target_long_array (cache_ovly_table_base + i * word_size,
3493 (unsigned int *) cache_ovly_table[i],
3494 4, word_size, byte_order);
3495 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3496 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3497 {
3498 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3499 return 1;
3500 }
3501 else /* Warning! Warning! Target's ovly table has changed! */
3502 return 0;
3503 }
3504 return 0;
3505}
3506
3507/* Function: simple_overlay_update
3508 If OSECT is NULL, then update all sections' mapped state
3509 (after re-reading the entire target _ovly_table).
3510 If OSECT is non-NULL, then try to find a matching entry in the
3511 cached ovly_table and update only OSECT's mapped state.
3512 If a cached entry can't be found or the cache isn't valid, then
3513 re-read the entire cache, and go ahead and update all sections. */
3514
3515void
3516simple_overlay_update (struct obj_section *osect)
3517{
3518 /* Were we given an osect to look up? NULL means do all of them. */
3519 if (osect)
3520 /* Have we got a cached copy of the target's overlay table? */
3521 if (cache_ovly_table != NULL)
3522 {
3523 /* Does its cached location match what's currently in the
3524 symtab? */
3525 struct bound_minimal_symbol minsym
3526 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3527
3528 if (minsym.minsym == NULL)
3529 error (_("Error reading inferior's overlay table: couldn't "
3530 "find `_ovly_table' array\n"
3531 "in inferior. Use `overlay manual' mode."));
3532
3533 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3534 /* Then go ahead and try to look up this single section in
3535 the cache. */
3536 if (simple_overlay_update_1 (osect))
3537 /* Found it! We're done. */
3538 return;
3539 }
3540
3541 /* Cached table no good: need to read the entire table anew.
3542 Or else we want all the sections, in which case it's actually
3543 more efficient to read the whole table in one block anyway. */
3544
3545 if (! simple_read_overlay_table ())
3546 return;
3547
3548 /* Now may as well update all sections, even if only one was requested. */
3549 for (objfile *objfile : current_program_space->objfiles ())
3550 ALL_OBJFILE_OSECTIONS (objfile, osect)
3551 if (section_is_overlay (osect))
3552 {
3553 int i;
3554 asection *bsect = osect->the_bfd_section;
3555
3556 for (i = 0; i < cache_novlys; i++)
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3559 { /* obj_section matches i'th entry in ovly_table. */
3560 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3561 break; /* finished with inner for loop: break out. */
3562 }
3563 }
3564}
3565
3566/* Set the output sections and output offsets for section SECTP in
3567 ABFD. The relocation code in BFD will read these offsets, so we
3568 need to be sure they're initialized. We map each section to itself,
3569 with no offset; this means that SECTP->vma will be honored. */
3570
3571static void
3572symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3573{
3574 sectp->output_section = sectp;
3575 sectp->output_offset = 0;
3576}
3577
3578/* Default implementation for sym_relocate. */
3579
3580bfd_byte *
3581default_symfile_relocate (struct objfile *objfile, asection *sectp,
3582 bfd_byte *buf)
3583{
3584 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3585 DWO file. */
3586 bfd *abfd = sectp->owner;
3587
3588 /* We're only interested in sections with relocation
3589 information. */
3590 if ((sectp->flags & SEC_RELOC) == 0)
3591 return NULL;
3592
3593 /* We will handle section offsets properly elsewhere, so relocate as if
3594 all sections begin at 0. */
3595 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3596
3597 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3598}
3599
3600/* Relocate the contents of a debug section SECTP in ABFD. The
3601 contents are stored in BUF if it is non-NULL, or returned in a
3602 malloc'd buffer otherwise.
3603
3604 For some platforms and debug info formats, shared libraries contain
3605 relocations against the debug sections (particularly for DWARF-2;
3606 one affected platform is PowerPC GNU/Linux, although it depends on
3607 the version of the linker in use). Also, ELF object files naturally
3608 have unresolved relocations for their debug sections. We need to apply
3609 the relocations in order to get the locations of symbols correct.
3610 Another example that may require relocation processing, is the
3611 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3612 debug section. */
3613
3614bfd_byte *
3615symfile_relocate_debug_section (struct objfile *objfile,
3616 asection *sectp, bfd_byte *buf)
3617{
3618 gdb_assert (objfile->sf->sym_relocate);
3619
3620 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3621}
3622
3623symfile_segment_data_up
3624get_symfile_segment_data (bfd *abfd)
3625{
3626 const struct sym_fns *sf = find_sym_fns (abfd);
3627
3628 if (sf == NULL)
3629 return NULL;
3630
3631 return sf->sym_segments (abfd);
3632}
3633
3634/* Given:
3635 - DATA, containing segment addresses from the object file ABFD, and
3636 the mapping from ABFD's sections onto the segments that own them,
3637 and
3638 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3639 segment addresses reported by the target,
3640 store the appropriate offsets for each section in OFFSETS.
3641
3642 If there are fewer entries in SEGMENT_BASES than there are segments
3643 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3644
3645 If there are more entries, then ignore the extra. The target may
3646 not be able to distinguish between an empty data segment and a
3647 missing data segment; a missing text segment is less plausible. */
3648
3649int
3650symfile_map_offsets_to_segments (bfd *abfd,
3651 const struct symfile_segment_data *data,
3652 section_offsets &offsets,
3653 int num_segment_bases,
3654 const CORE_ADDR *segment_bases)
3655{
3656 int i;
3657 asection *sect;
3658
3659 /* It doesn't make sense to call this function unless you have some
3660 segment base addresses. */
3661 gdb_assert (num_segment_bases > 0);
3662
3663 /* If we do not have segment mappings for the object file, we
3664 can not relocate it by segments. */
3665 gdb_assert (data != NULL);
3666 gdb_assert (data->num_segments > 0);
3667
3668 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3669 {
3670 int which = data->segment_info[i];
3671
3672 gdb_assert (0 <= which && which <= data->num_segments);
3673
3674 /* Don't bother computing offsets for sections that aren't
3675 loaded as part of any segment. */
3676 if (! which)
3677 continue;
3678
3679 /* Use the last SEGMENT_BASES entry as the address of any extra
3680 segments mentioned in DATA->segment_info. */
3681 if (which > num_segment_bases)
3682 which = num_segment_bases;
3683
3684 offsets[i] = segment_bases[which - 1] - data->segment_bases[which - 1];
3685 }
3686
3687 return 1;
3688}
3689
3690static void
3691symfile_find_segment_sections (struct objfile *objfile)
3692{
3693 bfd *abfd = objfile->obfd;
3694 int i;
3695 asection *sect;
3696
3697 symfile_segment_data_up data
3698 = get_symfile_segment_data (objfile->obfd);
3699 if (data == NULL)
3700 return;
3701
3702 if (data->num_segments != 1 && data->num_segments != 2)
3703 return;
3704
3705 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3706 {
3707 int which = data->segment_info[i];
3708
3709 if (which == 1)
3710 {
3711 if (objfile->sect_index_text == -1)
3712 objfile->sect_index_text = sect->index;
3713
3714 if (objfile->sect_index_rodata == -1)
3715 objfile->sect_index_rodata = sect->index;
3716 }
3717 else if (which == 2)
3718 {
3719 if (objfile->sect_index_data == -1)
3720 objfile->sect_index_data = sect->index;
3721
3722 if (objfile->sect_index_bss == -1)
3723 objfile->sect_index_bss = sect->index;
3724 }
3725 }
3726}
3727
3728/* Listen for free_objfile events. */
3729
3730static void
3731symfile_free_objfile (struct objfile *objfile)
3732{
3733 /* Remove the target sections owned by this objfile. */
3734 if (objfile != NULL)
3735 remove_target_sections ((void *) objfile);
3736}
3737
3738/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3739 Expand all symtabs that match the specified criteria.
3740 See quick_symbol_functions.expand_symtabs_matching for details. */
3741
3742void
3743expand_symtabs_matching
3744 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3745 const lookup_name_info &lookup_name,
3746 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3747 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3748 enum search_domain kind)
3749{
3750 for (objfile *objfile : current_program_space->objfiles ())
3751 {
3752 if (objfile->sf)
3753 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3754 &lookup_name,
3755 symbol_matcher,
3756 expansion_notify, kind);
3757 }
3758}
3759
3760/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3761 Map function FUN over every file.
3762 See quick_symbol_functions.map_symbol_filenames for details. */
3763
3764void
3765map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3766 int need_fullname)
3767{
3768 for (objfile *objfile : current_program_space->objfiles ())
3769 {
3770 if (objfile->sf)
3771 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3772 need_fullname);
3773 }
3774}
3775
3776#if GDB_SELF_TEST
3777
3778namespace selftests {
3779namespace filename_language {
3780
3781static void test_filename_language ()
3782{
3783 /* This test messes up the filename_language_table global. */
3784 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3785
3786 /* Test deducing an unknown extension. */
3787 language lang = deduce_language_from_filename ("myfile.blah");
3788 SELF_CHECK (lang == language_unknown);
3789
3790 /* Test deducing a known extension. */
3791 lang = deduce_language_from_filename ("myfile.c");
3792 SELF_CHECK (lang == language_c);
3793
3794 /* Test adding a new extension using the internal API. */
3795 add_filename_language (".blah", language_pascal);
3796 lang = deduce_language_from_filename ("myfile.blah");
3797 SELF_CHECK (lang == language_pascal);
3798}
3799
3800static void
3801test_set_ext_lang_command ()
3802{
3803 /* This test messes up the filename_language_table global. */
3804 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3805
3806 /* Confirm that the .hello extension is not known. */
3807 language lang = deduce_language_from_filename ("cake.hello");
3808 SELF_CHECK (lang == language_unknown);
3809
3810 /* Test adding a new extension using the CLI command. */
3811 auto args_holder = make_unique_xstrdup (".hello rust");
3812 ext_args = args_holder.get ();
3813 set_ext_lang_command (NULL, 1, NULL);
3814
3815 lang = deduce_language_from_filename ("cake.hello");
3816 SELF_CHECK (lang == language_rust);
3817
3818 /* Test overriding an existing extension using the CLI command. */
3819 int size_before = filename_language_table.size ();
3820 args_holder.reset (xstrdup (".hello pascal"));
3821 ext_args = args_holder.get ();
3822 set_ext_lang_command (NULL, 1, NULL);
3823 int size_after = filename_language_table.size ();
3824
3825 lang = deduce_language_from_filename ("cake.hello");
3826 SELF_CHECK (lang == language_pascal);
3827 SELF_CHECK (size_before == size_after);
3828}
3829
3830} /* namespace filename_language */
3831} /* namespace selftests */
3832
3833#endif /* GDB_SELF_TEST */
3834
3835void _initialize_symfile ();
3836void
3837_initialize_symfile ()
3838{
3839 struct cmd_list_element *c;
3840
3841 gdb::observers::free_objfile.attach (symfile_free_objfile);
3842
3843#define READNOW_READNEVER_HELP \
3844 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3845immediately. This makes the command slower, but may make future operations\n\
3846faster.\n\
3847The '-readnever' option will prevent GDB from reading the symbol file's\n\
3848symbolic debug information."
3849
3850 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3851Load symbol table from executable file FILE.\n\
3852Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3853OFF is an optional offset which is added to each section address.\n\
3854The `file' command can also load symbol tables, as well as setting the file\n\
3855to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3856 set_cmd_completer (c, filename_completer);
3857
3858 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3859Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3860Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3861[-s SECT-NAME SECT-ADDR]...\n\
3862ADDR is the starting address of the file's text.\n\
3863Each '-s' argument provides a section name and address, and\n\
3864should be specified if the data and bss segments are not contiguous\n\
3865with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3866OFF is an optional offset which is added to the default load addresses\n\
3867of all sections for which no other address was specified.\n"
3868READNOW_READNEVER_HELP),
3869 &cmdlist);
3870 set_cmd_completer (c, filename_completer);
3871
3872 c = add_cmd ("remove-symbol-file", class_files,
3873 remove_symbol_file_command, _("\
3874Remove a symbol file added via the add-symbol-file command.\n\
3875Usage: remove-symbol-file FILENAME\n\
3876 remove-symbol-file -a ADDRESS\n\
3877The file to remove can be identified by its filename or by an address\n\
3878that lies within the boundaries of this symbol file in memory."),
3879 &cmdlist);
3880
3881 c = add_cmd ("load", class_files, load_command, _("\
3882Dynamically load FILE into the running program.\n\
3883FILE symbols are recorded for access from GDB.\n\
3884Usage: load [FILE] [OFFSET]\n\
3885An optional load OFFSET may also be given as a literal address.\n\
3886When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3887on its own."), &cmdlist);
3888 set_cmd_completer (c, filename_completer);
3889
3890 add_basic_prefix_cmd ("overlay", class_support,
3891 _("Commands for debugging overlays."), &overlaylist,
3892 "overlay ", 0, &cmdlist);
3893
3894 add_com_alias ("ovly", "overlay", class_support, 1);
3895 add_com_alias ("ov", "overlay", class_support, 1);
3896
3897 add_cmd ("map-overlay", class_support, map_overlay_command,
3898 _("Assert that an overlay section is mapped."), &overlaylist);
3899
3900 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3901 _("Assert that an overlay section is unmapped."), &overlaylist);
3902
3903 add_cmd ("list-overlays", class_support, list_overlays_command,
3904 _("List mappings of overlay sections."), &overlaylist);
3905
3906 add_cmd ("manual", class_support, overlay_manual_command,
3907 _("Enable overlay debugging."), &overlaylist);
3908 add_cmd ("off", class_support, overlay_off_command,
3909 _("Disable overlay debugging."), &overlaylist);
3910 add_cmd ("auto", class_support, overlay_auto_command,
3911 _("Enable automatic overlay debugging."), &overlaylist);
3912 add_cmd ("load-target", class_support, overlay_load_command,
3913 _("Read the overlay mapping state from the target."), &overlaylist);
3914
3915 /* Filename extension to source language lookup table: */
3916 add_setshow_string_noescape_cmd ("extension-language", class_files,
3917 &ext_args, _("\
3918Set mapping between filename extension and source language."), _("\
3919Show mapping between filename extension and source language."), _("\
3920Usage: set extension-language .foo bar"),
3921 set_ext_lang_command,
3922 show_ext_args,
3923 &setlist, &showlist);
3924
3925 add_info ("extensions", info_ext_lang_command,
3926 _("All filename extensions associated with a source language."));
3927
3928 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3929 &debug_file_directory, _("\
3930Set the directories where separate debug symbols are searched for."), _("\
3931Show the directories where separate debug symbols are searched for."), _("\
3932Separate debug symbols are first searched for in the same\n\
3933directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3934and lastly at the path of the directory of the binary with\n\
3935each global debug-file-directory component prepended."),
3936 NULL,
3937 show_debug_file_directory,
3938 &setlist, &showlist);
3939
3940 add_setshow_enum_cmd ("symbol-loading", no_class,
3941 print_symbol_loading_enums, &print_symbol_loading,
3942 _("\
3943Set printing of symbol loading messages."), _("\
3944Show printing of symbol loading messages."), _("\
3945off == turn all messages off\n\
3946brief == print messages for the executable,\n\
3947 and brief messages for shared libraries\n\
3948full == print messages for the executable,\n\
3949 and messages for each shared library."),
3950 NULL,
3951 NULL,
3952 &setprintlist, &showprintlist);
3953
3954 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3955 &separate_debug_file_debug, _("\
3956Set printing of separate debug info file search debug."), _("\
3957Show printing of separate debug info file search debug."), _("\
3958When on, GDB prints the searched locations while looking for separate debug \
3959info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3960
3961#if GDB_SELF_TEST
3962 selftests::register_test
3963 ("filename_language", selftests::filename_language::test_filename_language);
3964 selftests::register_test
3965 ("set_ext_lang_command",
3966 selftests::filename_language::test_set_ext_lang_command);
3967#endif
3968}
This page took 0.059323 seconds and 4 git commands to generate.