| 1 | /* Sequent Symmetry host interface, for GDB when running under Unix. |
| 2 | |
| 3 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1999, |
| 4 | 2000, 2001, 2003 Free Software Foundation, Inc. |
| 5 | |
| 6 | This file is part of GDB. |
| 7 | |
| 8 | This program is free software; you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation; either version 2 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | This program is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with this program; if not, write to the Free Software |
| 20 | Foundation, Inc., 59 Temple Place - Suite 330, |
| 21 | Boston, MA 02111-1307, USA. */ |
| 22 | |
| 23 | /* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be |
| 24 | merged back in. */ |
| 25 | |
| 26 | #include "defs.h" |
| 27 | #include "frame.h" |
| 28 | #include "inferior.h" |
| 29 | #include "symtab.h" |
| 30 | #include "target.h" |
| 31 | #include "regcache.h" |
| 32 | |
| 33 | /* FIXME: What is the _INKERNEL define for? */ |
| 34 | #define _INKERNEL |
| 35 | #include <signal.h> |
| 36 | #undef _INKERNEL |
| 37 | #include "gdb_wait.h" |
| 38 | #include <sys/param.h> |
| 39 | #include <sys/user.h> |
| 40 | #include <sys/proc.h> |
| 41 | #include <sys/dir.h> |
| 42 | #include <sys/ioctl.h> |
| 43 | #include "gdb_stat.h" |
| 44 | #ifdef _SEQUENT_ |
| 45 | #include <sys/ptrace.h> |
| 46 | #else |
| 47 | /* Dynix has only machine/ptrace.h, which is already included by sys/user.h */ |
| 48 | /* Dynix has no mptrace call */ |
| 49 | #define mptrace ptrace |
| 50 | #endif |
| 51 | #include "gdbcore.h" |
| 52 | #include <fcntl.h> |
| 53 | #include <sgtty.h> |
| 54 | #define TERMINAL struct sgttyb |
| 55 | |
| 56 | #include "gdbcore.h" |
| 57 | |
| 58 | void |
| 59 | store_inferior_registers (int regno) |
| 60 | { |
| 61 | struct pt_regset regs; |
| 62 | int i; |
| 63 | |
| 64 | /* FIXME: Fetching the registers is a kludge to initialize all elements |
| 65 | in the fpu and fpa status. This works for normal debugging, but |
| 66 | might cause problems when calling functions in the inferior. |
| 67 | At least fpu_control and fpa_pcr (probably more) should be added |
| 68 | to the registers array to solve this properly. */ |
| 69 | mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0); |
| 70 | |
| 71 | regs.pr_eax = *(int *) &deprecated_registers[REGISTER_BYTE (0)]; |
| 72 | regs.pr_ebx = *(int *) &deprecated_registers[REGISTER_BYTE (5)]; |
| 73 | regs.pr_ecx = *(int *) &deprecated_registers[REGISTER_BYTE (2)]; |
| 74 | regs.pr_edx = *(int *) &deprecated_registers[REGISTER_BYTE (1)]; |
| 75 | regs.pr_esi = *(int *) &deprecated_registers[REGISTER_BYTE (6)]; |
| 76 | regs.pr_edi = *(int *) &deprecated_registers[REGISTER_BYTE (7)]; |
| 77 | regs.pr_esp = *(int *) &deprecated_registers[REGISTER_BYTE (14)]; |
| 78 | regs.pr_ebp = *(int *) &deprecated_registers[REGISTER_BYTE (15)]; |
| 79 | regs.pr_eip = *(int *) &deprecated_registers[REGISTER_BYTE (16)]; |
| 80 | regs.pr_flags = *(int *) &deprecated_registers[REGISTER_BYTE (17)]; |
| 81 | for (i = 0; i < 31; i++) |
| 82 | { |
| 83 | regs.pr_fpa.fpa_regs[i] = |
| 84 | *(int *) &deprecated_registers[REGISTER_BYTE (FP1_REGNUM + i)]; |
| 85 | } |
| 86 | memcpy (regs.pr_fpu.fpu_stack[0], &deprecated_registers[REGISTER_BYTE (ST0_REGNUM)], 10); |
| 87 | memcpy (regs.pr_fpu.fpu_stack[1], &deprecated_registers[REGISTER_BYTE (ST1_REGNUM)], 10); |
| 88 | memcpy (regs.pr_fpu.fpu_stack[2], &deprecated_registers[REGISTER_BYTE (ST2_REGNUM)], 10); |
| 89 | memcpy (regs.pr_fpu.fpu_stack[3], &deprecated_registers[REGISTER_BYTE (ST3_REGNUM)], 10); |
| 90 | memcpy (regs.pr_fpu.fpu_stack[4], &deprecated_registers[REGISTER_BYTE (ST4_REGNUM)], 10); |
| 91 | memcpy (regs.pr_fpu.fpu_stack[5], &deprecated_registers[REGISTER_BYTE (ST5_REGNUM)], 10); |
| 92 | memcpy (regs.pr_fpu.fpu_stack[6], &deprecated_registers[REGISTER_BYTE (ST6_REGNUM)], 10); |
| 93 | memcpy (regs.pr_fpu.fpu_stack[7], &deprecated_registers[REGISTER_BYTE (ST7_REGNUM)], 10); |
| 94 | mptrace (XPT_WREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0); |
| 95 | } |
| 96 | |
| 97 | void |
| 98 | fetch_inferior_registers (int regno) |
| 99 | { |
| 100 | int i; |
| 101 | struct pt_regset regs; |
| 102 | |
| 103 | deprecated_registers_fetched (); |
| 104 | |
| 105 | mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0); |
| 106 | *(int *) &deprecated_registers[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax; |
| 107 | *(int *) &rdeprecated_egisters[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx; |
| 108 | *(int *) &deprecated_registers[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx; |
| 109 | *(int *) &deprecated_registers[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx; |
| 110 | *(int *) &deprecated_registers[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi; |
| 111 | *(int *) &deprecated_registers[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi; |
| 112 | *(int *) &deprecated_registers[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp; |
| 113 | *(int *) &deprecated_registers[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp; |
| 114 | *(int *) &deprecated_registers[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip; |
| 115 | *(int *) &deprecated_registers[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags; |
| 116 | for (i = 0; i < FPA_NREGS; i++) |
| 117 | { |
| 118 | *(int *) &deprecated_registers[REGISTER_BYTE (FP1_REGNUM + i)] = |
| 119 | regs.pr_fpa.fpa_regs[i]; |
| 120 | } |
| 121 | memcpy (&deprecated_registers[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10); |
| 122 | memcpy (&deprecated_registers[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10); |
| 123 | memcpy (&deprecated_registers[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10); |
| 124 | memcpy (&deprecated_registers[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10); |
| 125 | memcpy (&deprecated_registers[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10); |
| 126 | memcpy (&deprecated_registers[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10); |
| 127 | memcpy (&deprecated_registers[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10); |
| 128 | memcpy (&deprecated_registers[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10); |
| 129 | } |
| 130 | \f |
| 131 | /* FIXME: This should be merged with i387-tdep.c as well. */ |
| 132 | static |
| 133 | print_fpu_status (struct pt_regset ep) |
| 134 | { |
| 135 | int i; |
| 136 | int bothstatus; |
| 137 | int top; |
| 138 | int fpreg; |
| 139 | unsigned char *p; |
| 140 | |
| 141 | printf_unfiltered ("80387:"); |
| 142 | if (ep.pr_fpu.fpu_ip == 0) |
| 143 | { |
| 144 | printf_unfiltered (" not in use.\n"); |
| 145 | return; |
| 146 | } |
| 147 | else |
| 148 | { |
| 149 | printf_unfiltered ("\n"); |
| 150 | } |
| 151 | if (ep.pr_fpu.fpu_status != 0) |
| 152 | { |
| 153 | print_387_status_word (ep.pr_fpu.fpu_status); |
| 154 | } |
| 155 | print_387_control_word (ep.pr_fpu.fpu_control); |
| 156 | printf_unfiltered ("last exception: "); |
| 157 | printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4); |
| 158 | printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip); |
| 159 | printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel); |
| 160 | |
| 161 | top = (ep.pr_fpu.fpu_status >> 11) & 7; |
| 162 | |
| 163 | printf_unfiltered ("regno tag msb lsb value\n"); |
| 164 | for (fpreg = 7; fpreg >= 0; fpreg--) |
| 165 | { |
| 166 | double val; |
| 167 | |
| 168 | printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg); |
| 169 | |
| 170 | switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3) |
| 171 | { |
| 172 | case 0: |
| 173 | printf_unfiltered ("valid "); |
| 174 | break; |
| 175 | case 1: |
| 176 | printf_unfiltered ("zero "); |
| 177 | break; |
| 178 | case 2: |
| 179 | printf_unfiltered ("trap "); |
| 180 | break; |
| 181 | case 3: |
| 182 | printf_unfiltered ("empty "); |
| 183 | break; |
| 184 | } |
| 185 | for (i = 9; i >= 0; i--) |
| 186 | printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]); |
| 187 | |
| 188 | i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val); |
| 189 | printf_unfiltered (" %g\n", val); |
| 190 | } |
| 191 | if (ep.pr_fpu.fpu_rsvd1) |
| 192 | warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1); |
| 193 | if (ep.pr_fpu.fpu_rsvd2) |
| 194 | warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2); |
| 195 | if (ep.pr_fpu.fpu_rsvd3) |
| 196 | warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3); |
| 197 | if (ep.pr_fpu.fpu_rsvd5) |
| 198 | warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5); |
| 199 | } |
| 200 | |
| 201 | |
| 202 | print_1167_control_word (unsigned int pcr) |
| 203 | { |
| 204 | int pcr_tmp; |
| 205 | |
| 206 | pcr_tmp = pcr & FPA_PCR_MODE; |
| 207 | printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12); |
| 208 | switch (pcr_tmp & 12) |
| 209 | { |
| 210 | case 0: |
| 211 | printf_unfiltered ("RN (Nearest Value)"); |
| 212 | break; |
| 213 | case 1: |
| 214 | printf_unfiltered ("RZ (Zero)"); |
| 215 | break; |
| 216 | case 2: |
| 217 | printf_unfiltered ("RP (Positive Infinity)"); |
| 218 | break; |
| 219 | case 3: |
| 220 | printf_unfiltered ("RM (Negative Infinity)"); |
| 221 | break; |
| 222 | } |
| 223 | printf_unfiltered ("; IRND= %d ", pcr_tmp & 2); |
| 224 | if (0 == pcr_tmp & 2) |
| 225 | { |
| 226 | printf_unfiltered ("(same as RND)\n"); |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | printf_unfiltered ("(toward zero)\n"); |
| 231 | } |
| 232 | pcr_tmp = pcr & FPA_PCR_EM; |
| 233 | printf_unfiltered ("\tEM= %#x", pcr_tmp); |
| 234 | if (pcr_tmp & FPA_PCR_EM_DM) |
| 235 | printf_unfiltered (" DM"); |
| 236 | if (pcr_tmp & FPA_PCR_EM_UOM) |
| 237 | printf_unfiltered (" UOM"); |
| 238 | if (pcr_tmp & FPA_PCR_EM_PM) |
| 239 | printf_unfiltered (" PM"); |
| 240 | if (pcr_tmp & FPA_PCR_EM_UM) |
| 241 | printf_unfiltered (" UM"); |
| 242 | if (pcr_tmp & FPA_PCR_EM_OM) |
| 243 | printf_unfiltered (" OM"); |
| 244 | if (pcr_tmp & FPA_PCR_EM_ZM) |
| 245 | printf_unfiltered (" ZM"); |
| 246 | if (pcr_tmp & FPA_PCR_EM_IM) |
| 247 | printf_unfiltered (" IM"); |
| 248 | printf_unfiltered ("\n"); |
| 249 | pcr_tmp = FPA_PCR_CC; |
| 250 | printf_unfiltered ("\tCC= %#x", pcr_tmp); |
| 251 | if (pcr_tmp & FPA_PCR_20MHZ) |
| 252 | printf_unfiltered (" 20MHZ"); |
| 253 | if (pcr_tmp & FPA_PCR_CC_Z) |
| 254 | printf_unfiltered (" Z"); |
| 255 | if (pcr_tmp & FPA_PCR_CC_C2) |
| 256 | printf_unfiltered (" C2"); |
| 257 | |
| 258 | /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines |
| 259 | FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume |
| 260 | the OS knows what it is doing. */ |
| 261 | #ifdef FPA_PCR_CC_C1 |
| 262 | if (pcr_tmp & FPA_PCR_CC_C1) |
| 263 | printf_unfiltered (" C1"); |
| 264 | #else |
| 265 | if (pcr_tmp & FPA_PCR_CC_C0) |
| 266 | printf_unfiltered (" C0"); |
| 267 | #endif |
| 268 | |
| 269 | switch (pcr_tmp) |
| 270 | { |
| 271 | case FPA_PCR_CC_Z: |
| 272 | printf_unfiltered (" (Equal)"); |
| 273 | break; |
| 274 | #ifdef FPA_PCR_CC_C1 |
| 275 | case FPA_PCR_CC_C1: |
| 276 | #else |
| 277 | case FPA_PCR_CC_C0: |
| 278 | #endif |
| 279 | printf_unfiltered (" (Less than)"); |
| 280 | break; |
| 281 | case 0: |
| 282 | printf_unfiltered (" (Greater than)"); |
| 283 | break; |
| 284 | case FPA_PCR_CC_Z | |
| 285 | #ifdef FPA_PCR_CC_C1 |
| 286 | FPA_PCR_CC_C1 |
| 287 | #else |
| 288 | FPA_PCR_CC_C0 |
| 289 | #endif |
| 290 | | FPA_PCR_CC_C2: |
| 291 | printf_unfiltered (" (Unordered)"); |
| 292 | break; |
| 293 | default: |
| 294 | printf_unfiltered (" (Undefined)"); |
| 295 | break; |
| 296 | } |
| 297 | printf_unfiltered ("\n"); |
| 298 | pcr_tmp = pcr & FPA_PCR_AE; |
| 299 | printf_unfiltered ("\tAE= %#x", pcr_tmp); |
| 300 | if (pcr_tmp & FPA_PCR_AE_DE) |
| 301 | printf_unfiltered (" DE"); |
| 302 | if (pcr_tmp & FPA_PCR_AE_UOE) |
| 303 | printf_unfiltered (" UOE"); |
| 304 | if (pcr_tmp & FPA_PCR_AE_PE) |
| 305 | printf_unfiltered (" PE"); |
| 306 | if (pcr_tmp & FPA_PCR_AE_UE) |
| 307 | printf_unfiltered (" UE"); |
| 308 | if (pcr_tmp & FPA_PCR_AE_OE) |
| 309 | printf_unfiltered (" OE"); |
| 310 | if (pcr_tmp & FPA_PCR_AE_ZE) |
| 311 | printf_unfiltered (" ZE"); |
| 312 | if (pcr_tmp & FPA_PCR_AE_EE) |
| 313 | printf_unfiltered (" EE"); |
| 314 | if (pcr_tmp & FPA_PCR_AE_IE) |
| 315 | printf_unfiltered (" IE"); |
| 316 | printf_unfiltered ("\n"); |
| 317 | } |
| 318 | |
| 319 | print_1167_regs (long regs[FPA_NREGS]) |
| 320 | { |
| 321 | int i; |
| 322 | |
| 323 | union |
| 324 | { |
| 325 | double d; |
| 326 | long l[2]; |
| 327 | } |
| 328 | xd; |
| 329 | union |
| 330 | { |
| 331 | float f; |
| 332 | long l; |
| 333 | } |
| 334 | xf; |
| 335 | |
| 336 | |
| 337 | for (i = 0; i < FPA_NREGS; i++) |
| 338 | { |
| 339 | xf.l = regs[i]; |
| 340 | printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f); |
| 341 | if (!(i & 1)) |
| 342 | { |
| 343 | printf_unfiltered ("\n"); |
| 344 | } |
| 345 | else |
| 346 | { |
| 347 | xd.l[1] = regs[i]; |
| 348 | xd.l[0] = regs[i + 1]; |
| 349 | printf_unfiltered (", double= %f\n", xd.d); |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | print_fpa_status (struct pt_regset ep) |
| 355 | { |
| 356 | |
| 357 | printf_unfiltered ("WTL 1167:"); |
| 358 | if (ep.pr_fpa.fpa_pcr != 0) |
| 359 | { |
| 360 | printf_unfiltered ("\n"); |
| 361 | print_1167_control_word (ep.pr_fpa.fpa_pcr); |
| 362 | print_1167_regs (ep.pr_fpa.fpa_regs); |
| 363 | } |
| 364 | else |
| 365 | { |
| 366 | printf_unfiltered (" not in use.\n"); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | #if 0 /* disabled because it doesn't go through the target vector. */ |
| 371 | i386_float_info (void) |
| 372 | { |
| 373 | char ubuf[UPAGES * NBPG]; |
| 374 | struct pt_regset regset; |
| 375 | |
| 376 | if (have_inferior_p ()) |
| 377 | { |
| 378 | PTRACE_READ_REGS (PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regset); |
| 379 | } |
| 380 | else |
| 381 | { |
| 382 | int corechan = bfd_cache_lookup (core_bfd); |
| 383 | if (lseek (corechan, 0, 0) < 0) |
| 384 | { |
| 385 | perror ("seek on core file"); |
| 386 | } |
| 387 | if (myread (corechan, ubuf, UPAGES * NBPG) < 0) |
| 388 | { |
| 389 | perror ("read on core file"); |
| 390 | } |
| 391 | /* only interested in the floating point registers */ |
| 392 | regset.pr_fpu = ((struct user *) ubuf)->u_fpusave; |
| 393 | regset.pr_fpa = ((struct user *) ubuf)->u_fpasave; |
| 394 | } |
| 395 | print_fpu_status (regset); |
| 396 | print_fpa_status (regset); |
| 397 | } |
| 398 | #endif |
| 399 | |
| 400 | static volatile int got_sigchld; |
| 401 | |
| 402 | /*ARGSUSED */ |
| 403 | /* This will eventually be more interesting. */ |
| 404 | void |
| 405 | sigchld_handler (int signo) |
| 406 | { |
| 407 | got_sigchld++; |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * Signals for which the default action does not cause the process |
| 412 | * to die. See <sys/signal.h> for where this came from (alas, we |
| 413 | * can't use those macros directly) |
| 414 | */ |
| 415 | #ifndef sigmask |
| 416 | #define sigmask(s) (1 << ((s) - 1)) |
| 417 | #endif |
| 418 | #define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \ |
| 419 | sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \ |
| 420 | sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \ |
| 421 | sigmask(SIGURG) | sigmask(SIGPOLL) |
| 422 | |
| 423 | #ifdef ATTACH_DETACH |
| 424 | /* |
| 425 | * Thanks to XPT_MPDEBUGGER, we have to mange child_wait(). |
| 426 | */ |
| 427 | ptid_t |
| 428 | child_wait (ptid_t ptid, struct target_waitstatus *status) |
| 429 | { |
| 430 | int save_errno, rv, xvaloff, saoff, sa_hand; |
| 431 | struct pt_stop pt; |
| 432 | struct user u; |
| 433 | sigset_t set; |
| 434 | /* Host signal number for a signal which the inferior terminates with, or |
| 435 | 0 if it hasn't terminated due to a signal. */ |
| 436 | static int death_by_signal = 0; |
| 437 | #ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */ |
| 438 | prstatus_t pstatus; |
| 439 | #endif |
| 440 | int pid = PIDGET (ptid); |
| 441 | |
| 442 | do |
| 443 | { |
| 444 | set_sigint_trap (); /* Causes SIGINT to be passed on to the |
| 445 | attached process. */ |
| 446 | save_errno = errno; |
| 447 | |
| 448 | got_sigchld = 0; |
| 449 | |
| 450 | sigemptyset (&set); |
| 451 | |
| 452 | while (got_sigchld == 0) |
| 453 | { |
| 454 | sigsuspend (&set); |
| 455 | } |
| 456 | |
| 457 | clear_sigint_trap (); |
| 458 | |
| 459 | rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0); |
| 460 | if (-1 == rv) |
| 461 | { |
| 462 | printf ("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */ |
| 463 | continue; |
| 464 | } |
| 465 | |
| 466 | pid = pt.ps_pid; |
| 467 | |
| 468 | if (pid != PIDGET (inferior_ptid)) |
| 469 | { |
| 470 | /* NOTE: the mystery fork in csh/tcsh needs to be ignored. |
| 471 | * We should not return new children for the initial run |
| 472 | * of a process until it has done the exec. |
| 473 | */ |
| 474 | /* inferior probably forked; send it on its way */ |
| 475 | rv = mptrace (XPT_UNDEBUG, pid, 0, 0); |
| 476 | if (-1 == rv) |
| 477 | { |
| 478 | printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid, |
| 479 | safe_strerror (errno)); |
| 480 | } |
| 481 | continue; |
| 482 | } |
| 483 | /* FIXME: Do we deal with fork notification correctly? */ |
| 484 | switch (pt.ps_reason) |
| 485 | { |
| 486 | case PTS_FORK: |
| 487 | /* multi proc: treat like PTS_EXEC */ |
| 488 | /* |
| 489 | * Pretend this didn't happen, since gdb isn't set up |
| 490 | * to deal with stops on fork. |
| 491 | */ |
| 492 | rv = ptrace (PT_CONTSIG, pid, 1, 0); |
| 493 | if (-1 == rv) |
| 494 | { |
| 495 | printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno); |
| 496 | } |
| 497 | continue; |
| 498 | case PTS_EXEC: |
| 499 | /* |
| 500 | * Pretend this is a SIGTRAP. |
| 501 | */ |
| 502 | status->kind = TARGET_WAITKIND_STOPPED; |
| 503 | status->value.sig = TARGET_SIGNAL_TRAP; |
| 504 | break; |
| 505 | case PTS_EXIT: |
| 506 | /* |
| 507 | * Note: we stop before the exit actually occurs. Extract |
| 508 | * the exit code from the uarea. If we're stopped in the |
| 509 | * exit() system call, the exit code will be in |
| 510 | * u.u_ap[0]. An exit due to an uncaught signal will have |
| 511 | * something else in here, see the comment in the default: |
| 512 | * case, below. Finally,let the process exit. |
| 513 | */ |
| 514 | if (death_by_signal) |
| 515 | { |
| 516 | status->kind = TARGET_WAITKIND_SIGNALED; |
| 517 | status->value.sig = target_signal_from_host (death_by_signal); |
| 518 | death_by_signal = 0; |
| 519 | break; |
| 520 | } |
| 521 | xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u; |
| 522 | errno = 0; |
| 523 | rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0); |
| 524 | status->kind = TARGET_WAITKIND_EXITED; |
| 525 | status->value.integer = rv; |
| 526 | /* |
| 527 | * addr & data to mptrace() don't matter here, since |
| 528 | * the process is already dead. |
| 529 | */ |
| 530 | rv = mptrace (XPT_UNDEBUG, pid, 0, 0); |
| 531 | if (-1 == rv) |
| 532 | { |
| 533 | printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid, |
| 534 | errno); |
| 535 | } |
| 536 | break; |
| 537 | case PTS_WATCHPT_HIT: |
| 538 | internal_error (__FILE__, __LINE__, |
| 539 | "PTS_WATCHPT_HIT\n"); |
| 540 | break; |
| 541 | default: |
| 542 | /* stopped by signal */ |
| 543 | status->kind = TARGET_WAITKIND_STOPPED; |
| 544 | status->value.sig = target_signal_from_host (pt.ps_reason); |
| 545 | death_by_signal = 0; |
| 546 | |
| 547 | if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason))) |
| 548 | { |
| 549 | break; |
| 550 | } |
| 551 | /* else default action of signal is to die */ |
| 552 | #ifdef SVR4_SHARED_LIBS |
| 553 | rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0); |
| 554 | if (-1 == rv) |
| 555 | error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n", |
| 556 | pt.ps_reason, safe_strerror (errno)); |
| 557 | if (pstatus.pr_cursig != pt.ps_reason) |
| 558 | { |
| 559 | printf ("pstatus signal %d, pt signal %d\n", |
| 560 | pstatus.pr_cursig, pt.ps_reason); |
| 561 | } |
| 562 | sa_hand = (int) pstatus.pr_action.sa_handler; |
| 563 | #else |
| 564 | saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u; |
| 565 | saoff += sizeof (struct sigaction) * (pt.ps_reason - 1); |
| 566 | errno = 0; |
| 567 | sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0); |
| 568 | if (errno) |
| 569 | error ("child_wait: signal %d: RUSER: %s\n", |
| 570 | pt.ps_reason, safe_strerror (errno)); |
| 571 | #endif |
| 572 | if ((int) SIG_DFL == sa_hand) |
| 573 | { |
| 574 | /* we will be dying */ |
| 575 | death_by_signal = pt.ps_reason; |
| 576 | } |
| 577 | break; |
| 578 | } |
| 579 | |
| 580 | } |
| 581 | while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */ |
| 582 | |
| 583 | return pid_to_ptid (pid); |
| 584 | } |
| 585 | #else /* !ATTACH_DETACH */ |
| 586 | /* |
| 587 | * Simple child_wait() based on inftarg.c child_wait() for use until |
| 588 | * the MPDEBUGGER child_wait() works properly. This will go away when |
| 589 | * that is fixed. |
| 590 | */ |
| 591 | ptid_t |
| 592 | child_wait (ptid_t ptid, struct target_waitstatus *ourstatus) |
| 593 | { |
| 594 | int save_errno; |
| 595 | int status; |
| 596 | int pid = PIDGET (ptid); |
| 597 | |
| 598 | do |
| 599 | { |
| 600 | pid = wait (&status); |
| 601 | save_errno = errno; |
| 602 | |
| 603 | if (pid == -1) |
| 604 | { |
| 605 | if (save_errno == EINTR) |
| 606 | continue; |
| 607 | fprintf (stderr, "Child process unexpectedly missing: %s.\n", |
| 608 | safe_strerror (save_errno)); |
| 609 | ourstatus->kind = TARGET_WAITKIND_SIGNALLED; |
| 610 | ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN; |
| 611 | return pid_to_ptid (-1); |
| 612 | } |
| 613 | } |
| 614 | while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */ |
| 615 | store_waitstatus (ourstatus, status); |
| 616 | return pid_to_ptid (pid); |
| 617 | } |
| 618 | #endif /* ATTACH_DETACH */ |
| 619 | \f |
| 620 | |
| 621 | |
| 622 | /* This function simply calls ptrace with the given arguments. |
| 623 | It exists so that all calls to ptrace are isolated in this |
| 624 | machine-dependent file. */ |
| 625 | int |
| 626 | call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data) |
| 627 | { |
| 628 | return ptrace (request, pid, addr, data); |
| 629 | } |
| 630 | |
| 631 | int |
| 632 | call_mptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data) |
| 633 | { |
| 634 | return mptrace (request, pid, addr, data); |
| 635 | } |
| 636 | |
| 637 | #if defined (DEBUG_PTRACE) |
| 638 | /* For the rest of the file, use an extra level of indirection */ |
| 639 | /* This lets us breakpoint usefully on call_ptrace. */ |
| 640 | #define ptrace call_ptrace |
| 641 | #define mptrace call_mptrace |
| 642 | #endif |
| 643 | |
| 644 | void |
| 645 | kill_inferior (void) |
| 646 | { |
| 647 | if (ptid_equal (inferior_ptid, null_ptid)) |
| 648 | return; |
| 649 | |
| 650 | /* For MPDEBUGGER, don't use PT_KILL, since the child will stop |
| 651 | again with a PTS_EXIT. Just hit him with SIGKILL (so he stops) |
| 652 | and detach. */ |
| 653 | |
| 654 | kill (PIDGET (inferior_ptid), SIGKILL); |
| 655 | #ifdef ATTACH_DETACH |
| 656 | detach (SIGKILL); |
| 657 | #else /* ATTACH_DETACH */ |
| 658 | ptrace (PT_KILL, PIDGET (inferior_ptid), 0, 0); |
| 659 | wait ((int *) NULL); |
| 660 | #endif /* ATTACH_DETACH */ |
| 661 | target_mourn_inferior (); |
| 662 | } |
| 663 | |
| 664 | /* Resume execution of the inferior process. |
| 665 | If STEP is nonzero, single-step it. |
| 666 | If SIGNAL is nonzero, give it that signal. */ |
| 667 | |
| 668 | void |
| 669 | child_resume (ptid_t ptid, int step, enum target_signal signal) |
| 670 | { |
| 671 | int pid = PIDGET (ptid); |
| 672 | |
| 673 | errno = 0; |
| 674 | |
| 675 | if (pid == -1) |
| 676 | pid = PIDGET (inferior_ptid); |
| 677 | |
| 678 | /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where |
| 679 | it was. (If GDB wanted it to start some other way, we have already |
| 680 | written a new PC value to the child.) |
| 681 | |
| 682 | If this system does not support PT_SSTEP, a higher level function will |
| 683 | have called single_step() to transmute the step request into a |
| 684 | continue request (by setting breakpoints on all possible successor |
| 685 | instructions), so we don't have to worry about that here. */ |
| 686 | |
| 687 | if (step) |
| 688 | ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal); |
| 689 | else |
| 690 | ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal); |
| 691 | |
| 692 | if (errno) |
| 693 | perror_with_name ("ptrace"); |
| 694 | } |
| 695 | \f |
| 696 | #ifdef ATTACH_DETACH |
| 697 | /* Start debugging the process whose number is PID. */ |
| 698 | int |
| 699 | attach (int pid) |
| 700 | { |
| 701 | sigset_t set; |
| 702 | int rv; |
| 703 | |
| 704 | rv = mptrace (XPT_DEBUG, pid, 0, 0); |
| 705 | if (-1 == rv) |
| 706 | { |
| 707 | error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno)); |
| 708 | } |
| 709 | rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP); |
| 710 | if (-1 == rv) |
| 711 | { |
| 712 | error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno)); |
| 713 | } |
| 714 | attach_flag = 1; |
| 715 | return pid; |
| 716 | } |
| 717 | |
| 718 | void |
| 719 | detach (int signo) |
| 720 | { |
| 721 | int rv; |
| 722 | |
| 723 | rv = mptrace (XPT_UNDEBUG, PIDGET (inferior_ptid), 1, signo); |
| 724 | if (-1 == rv) |
| 725 | { |
| 726 | error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno)); |
| 727 | } |
| 728 | attach_flag = 0; |
| 729 | } |
| 730 | |
| 731 | #endif /* ATTACH_DETACH */ |
| 732 | \f |
| 733 | /* Default the type of the ptrace transfer to int. */ |
| 734 | #ifndef PTRACE_XFER_TYPE |
| 735 | #define PTRACE_XFER_TYPE int |
| 736 | #endif |
| 737 | \f |
| 738 | |
| 739 | /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory |
| 740 | in the NEW_SUN_PTRACE case. |
| 741 | It ought to be straightforward. But it appears that writing did |
| 742 | not write the data that I specified. I cannot understand where |
| 743 | it got the data that it actually did write. */ |
| 744 | |
| 745 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR |
| 746 | to debugger memory starting at MYADDR. Copy to inferior if |
| 747 | WRITE is nonzero. TARGET is ignored. |
| 748 | |
| 749 | Returns the length copied, which is either the LEN argument or zero. |
| 750 | This xfer function does not do partial moves, since child_ops |
| 751 | doesn't allow memory operations to cross below us in the target stack |
| 752 | anyway. */ |
| 753 | |
| 754 | int |
| 755 | child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write, |
| 756 | struct mem_attrib *attrib, |
| 757 | struct target_ops *target) |
| 758 | { |
| 759 | register int i; |
| 760 | /* Round starting address down to longword boundary. */ |
| 761 | register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE); |
| 762 | /* Round ending address up; get number of longwords that makes. */ |
| 763 | register int count |
| 764 | = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) |
| 765 | / sizeof (PTRACE_XFER_TYPE); |
| 766 | /* Allocate buffer of that many longwords. */ |
| 767 | /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe |
| 768 | because it uses alloca to allocate a buffer of arbitrary size. |
| 769 | For very large xfers, this could crash GDB's stack. */ |
| 770 | register PTRACE_XFER_TYPE *buffer |
| 771 | = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE)); |
| 772 | |
| 773 | if (write) |
| 774 | { |
| 775 | /* Fill start and end extra bytes of buffer with existing memory data. */ |
| 776 | |
| 777 | if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) |
| 778 | { |
| 779 | /* Need part of initial word -- fetch it. */ |
| 780 | buffer[0] = ptrace (PT_RTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr, |
| 781 | 0); |
| 782 | } |
| 783 | |
| 784 | if (count > 1) /* FIXME, avoid if even boundary */ |
| 785 | { |
| 786 | buffer[count - 1] |
| 787 | = ptrace (PT_RTEXT, PIDGET (inferior_ptid), |
| 788 | ((PTRACE_ARG3_TYPE) |
| 789 | (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), |
| 790 | 0); |
| 791 | } |
| 792 | |
| 793 | /* Copy data to be written over corresponding part of buffer */ |
| 794 | |
| 795 | memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), |
| 796 | myaddr, |
| 797 | len); |
| 798 | |
| 799 | /* Write the entire buffer. */ |
| 800 | |
| 801 | for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) |
| 802 | { |
| 803 | errno = 0; |
| 804 | ptrace (PT_WDATA, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr, |
| 805 | buffer[i]); |
| 806 | if (errno) |
| 807 | { |
| 808 | /* Using the appropriate one (I or D) is necessary for |
| 809 | Gould NP1, at least. */ |
| 810 | errno = 0; |
| 811 | ptrace (PT_WTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr, |
| 812 | buffer[i]); |
| 813 | } |
| 814 | if (errno) |
| 815 | return 0; |
| 816 | } |
| 817 | } |
| 818 | else |
| 819 | { |
| 820 | /* Read all the longwords */ |
| 821 | for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) |
| 822 | { |
| 823 | errno = 0; |
| 824 | buffer[i] = ptrace (PT_RTEXT, PIDGET (inferior_ptid), |
| 825 | (PTRACE_ARG3_TYPE) addr, 0); |
| 826 | if (errno) |
| 827 | return 0; |
| 828 | QUIT; |
| 829 | } |
| 830 | |
| 831 | /* Copy appropriate bytes out of the buffer. */ |
| 832 | memcpy (myaddr, |
| 833 | (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), |
| 834 | len); |
| 835 | } |
| 836 | return len; |
| 837 | } |
| 838 | |
| 839 | |
| 840 | void |
| 841 | _initialize_symm_nat (void) |
| 842 | { |
| 843 | #ifdef ATTACH_DETACH |
| 844 | /* |
| 845 | * the MPDEBUGGER is necessary for process tree debugging and attach |
| 846 | * to work, but it alters the behavior of debugged processes, so other |
| 847 | * things (at least child_wait()) will have to change to accomodate |
| 848 | * that. |
| 849 | * |
| 850 | * Note that attach is not implemented in dynix 3, and not in ptx |
| 851 | * until version 2.1 of the OS. |
| 852 | */ |
| 853 | int rv; |
| 854 | sigset_t set; |
| 855 | struct sigaction sact; |
| 856 | |
| 857 | rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0); |
| 858 | if (-1 == rv) |
| 859 | { |
| 860 | internal_error (__FILE__, __LINE__, |
| 861 | "_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s", |
| 862 | safe_strerror (errno)); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * Under MPDEBUGGER, we get SIGCLHD when a traced process does |
| 867 | * anything of interest. |
| 868 | */ |
| 869 | |
| 870 | /* |
| 871 | * Block SIGCHLD. We leave it blocked all the time, and then |
| 872 | * call sigsuspend() in child_wait() to wait for the child |
| 873 | * to do something. None of these ought to fail, but check anyway. |
| 874 | */ |
| 875 | sigemptyset (&set); |
| 876 | rv = sigaddset (&set, SIGCHLD); |
| 877 | if (-1 == rv) |
| 878 | { |
| 879 | internal_error (__FILE__, __LINE__, |
| 880 | "_initialize_symm_nat(): sigaddset(SIGCHLD): %s", |
| 881 | safe_strerror (errno)); |
| 882 | } |
| 883 | rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL); |
| 884 | if (-1 == rv) |
| 885 | { |
| 886 | internal_error (__FILE__, __LINE__, |
| 887 | "_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s", |
| 888 | safe_strerror (errno)); |
| 889 | } |
| 890 | |
| 891 | sact.sa_handler = sigchld_handler; |
| 892 | sigemptyset (&sact.sa_mask); |
| 893 | sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */ |
| 894 | rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL); |
| 895 | if (-1 == rv) |
| 896 | { |
| 897 | internal_error (__FILE__, __LINE__, |
| 898 | "_initialize_symm_nat(): sigaction(SIGCHLD): %s", |
| 899 | safe_strerror (errno)); |
| 900 | } |
| 901 | #endif |
| 902 | } |