*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
33#include "gdb_regex.h"
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
38#include "linespec.h"
39#include "source.h"
40#include "filenames.h" /* for FILENAME_CMP */
41#include "objc-lang.h"
42#include "ada-lang.h"
43#include "p-lang.h"
44
45#include "hashtab.h"
46
47#include "gdb_obstack.h"
48#include "block.h"
49#include "dictionary.h"
50
51#include <sys/types.h>
52#include <fcntl.h>
53#include "gdb_string.h"
54#include "gdb_stat.h"
55#include <ctype.h>
56#include "cp-abi.h"
57#include "observer.h"
58#include "gdb_assert.h"
59#include "solist.h"
60
61/* Prototypes for local functions */
62
63static void completion_list_add_name (char *, char *, int, char *, char *);
64
65static void rbreak_command (char *, int);
66
67static void types_info (char *, int);
68
69static void functions_info (char *, int);
70
71static void variables_info (char *, int);
72
73static void sources_info (char *, int);
74
75static void output_source_filename (const char *, int *);
76
77static int find_line_common (struct linetable *, int, int *);
78
79/* This one is used by linespec.c */
80
81char *operator_chars (char *p, char **end);
82
83static struct symbol *lookup_symbol_aux (const char *name,
84 const char *linkage_name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this,
89 struct symtab **symtab);
90
91static
92struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain,
96 struct symtab **symtab);
97
98static
99struct symbol *lookup_symbol_aux_symtabs (int block_index,
100 const char *name,
101 const char *linkage_name,
102 const domain_enum domain,
103 struct symtab **symtab);
104
105static
106struct symbol *lookup_symbol_aux_psymtabs (int block_index,
107 const char *name,
108 const char *linkage_name,
109 const domain_enum domain,
110 struct symtab **symtab);
111
112static void fixup_section (struct general_symbol_info *, struct objfile *);
113
114static int file_matches (char *, char **, int);
115
116static void print_symbol_info (domain_enum,
117 struct symtab *, struct symbol *, int, char *);
118
119static void print_msymbol_info (struct minimal_symbol *);
120
121static void symtab_symbol_info (char *, domain_enum, int);
122
123void _initialize_symtab (void);
124
125/* */
126
127/* The single non-language-specific builtin type */
128struct type *builtin_type_error;
129
130/* Block in which the most recently searched-for symbol was found.
131 Might be better to make this a parameter to lookup_symbol and
132 value_of_this. */
133
134const struct block *block_found;
135
136/* Check for a symtab of a specific name; first in symtabs, then in
137 psymtabs. *If* there is no '/' in the name, a match after a '/'
138 in the symtab filename will also work. */
139
140struct symtab *
141lookup_symtab (const char *name)
142{
143 struct symtab *s;
144 struct partial_symtab *ps;
145 struct objfile *objfile;
146 char *real_path = NULL;
147 char *full_path = NULL;
148
149 /* Here we are interested in canonicalizing an absolute path, not
150 absolutizing a relative path. */
151 if (IS_ABSOLUTE_PATH (name))
152 {
153 full_path = xfullpath (name);
154 make_cleanup (xfree, full_path);
155 real_path = gdb_realpath (name);
156 make_cleanup (xfree, real_path);
157 }
158
159got_symtab:
160
161 /* First, search for an exact match */
162
163 ALL_SYMTABS (objfile, s)
164 {
165 if (FILENAME_CMP (name, s->filename) == 0)
166 {
167 return s;
168 }
169
170 /* If the user gave us an absolute path, try to find the file in
171 this symtab and use its absolute path. */
172
173 if (full_path != NULL)
174 {
175 const char *fp = symtab_to_fullname (s);
176 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
177 {
178 return s;
179 }
180 }
181
182 if (real_path != NULL)
183 {
184 char *fullname = symtab_to_fullname (s);
185 if (fullname != NULL)
186 {
187 char *rp = gdb_realpath (fullname);
188 make_cleanup (xfree, rp);
189 if (FILENAME_CMP (real_path, rp) == 0)
190 {
191 return s;
192 }
193 }
194 }
195 }
196
197 /* Now, search for a matching tail (only if name doesn't have any dirs) */
198
199 if (lbasename (name) == name)
200 ALL_SYMTABS (objfile, s)
201 {
202 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
203 return s;
204 }
205
206 /* Same search rules as above apply here, but now we look thru the
207 psymtabs. */
208
209 ps = lookup_partial_symtab (name);
210 if (!ps)
211 return (NULL);
212
213 if (ps->readin)
214 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
215 ps->filename, name);
216
217 s = PSYMTAB_TO_SYMTAB (ps);
218
219 if (s)
220 return s;
221
222 /* At this point, we have located the psymtab for this file, but
223 the conversion to a symtab has failed. This usually happens
224 when we are looking up an include file. In this case,
225 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
226 been created. So, we need to run through the symtabs again in
227 order to find the file.
228 XXX - This is a crock, and should be fixed inside of the the
229 symbol parsing routines. */
230 goto got_symtab;
231}
232
233/* Lookup the partial symbol table of a source file named NAME.
234 *If* there is no '/' in the name, a match after a '/'
235 in the psymtab filename will also work. */
236
237struct partial_symtab *
238lookup_partial_symtab (const char *name)
239{
240 struct partial_symtab *pst;
241 struct objfile *objfile;
242 char *full_path = NULL;
243 char *real_path = NULL;
244
245 /* Here we are interested in canonicalizing an absolute path, not
246 absolutizing a relative path. */
247 if (IS_ABSOLUTE_PATH (name))
248 {
249 full_path = xfullpath (name);
250 make_cleanup (xfree, full_path);
251 real_path = gdb_realpath (name);
252 make_cleanup (xfree, real_path);
253 }
254
255 ALL_PSYMTABS (objfile, pst)
256 {
257 if (FILENAME_CMP (name, pst->filename) == 0)
258 {
259 return (pst);
260 }
261
262 /* If the user gave us an absolute path, try to find the file in
263 this symtab and use its absolute path. */
264 if (full_path != NULL)
265 {
266 psymtab_to_fullname (pst);
267 if (pst->fullname != NULL
268 && FILENAME_CMP (full_path, pst->fullname) == 0)
269 {
270 return pst;
271 }
272 }
273
274 if (real_path != NULL)
275 {
276 char *rp = NULL;
277 psymtab_to_fullname (pst);
278 if (pst->fullname != NULL)
279 {
280 rp = gdb_realpath (pst->fullname);
281 make_cleanup (xfree, rp);
282 }
283 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
284 {
285 return pst;
286 }
287 }
288 }
289
290 /* Now, search for a matching tail (only if name doesn't have any dirs) */
291
292 if (lbasename (name) == name)
293 ALL_PSYMTABS (objfile, pst)
294 {
295 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
296 return (pst);
297 }
298
299 return (NULL);
300}
301\f
302/* Mangle a GDB method stub type. This actually reassembles the pieces of the
303 full method name, which consist of the class name (from T), the unadorned
304 method name from METHOD_ID, and the signature for the specific overload,
305 specified by SIGNATURE_ID. Note that this function is g++ specific. */
306
307char *
308gdb_mangle_name (struct type *type, int method_id, int signature_id)
309{
310 int mangled_name_len;
311 char *mangled_name;
312 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
313 struct fn_field *method = &f[signature_id];
314 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
315 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
316 char *newname = type_name_no_tag (type);
317
318 /* Does the form of physname indicate that it is the full mangled name
319 of a constructor (not just the args)? */
320 int is_full_physname_constructor;
321
322 int is_constructor;
323 int is_destructor = is_destructor_name (physname);
324 /* Need a new type prefix. */
325 char *const_prefix = method->is_const ? "C" : "";
326 char *volatile_prefix = method->is_volatile ? "V" : "";
327 char buf[20];
328 int len = (newname == NULL ? 0 : strlen (newname));
329
330 /* Nothing to do if physname already contains a fully mangled v3 abi name
331 or an operator name. */
332 if ((physname[0] == '_' && physname[1] == 'Z')
333 || is_operator_name (field_name))
334 return xstrdup (physname);
335
336 is_full_physname_constructor = is_constructor_name (physname);
337
338 is_constructor =
339 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
340
341 if (!is_destructor)
342 is_destructor = (strncmp (physname, "__dt", 4) == 0);
343
344 if (is_destructor || is_full_physname_constructor)
345 {
346 mangled_name = (char *) xmalloc (strlen (physname) + 1);
347 strcpy (mangled_name, physname);
348 return mangled_name;
349 }
350
351 if (len == 0)
352 {
353 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
354 }
355 else if (physname[0] == 't' || physname[0] == 'Q')
356 {
357 /* The physname for template and qualified methods already includes
358 the class name. */
359 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
360 newname = NULL;
361 len = 0;
362 }
363 else
364 {
365 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
366 }
367 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
368 + strlen (buf) + len + strlen (physname) + 1);
369
370 {
371 mangled_name = (char *) xmalloc (mangled_name_len);
372 if (is_constructor)
373 mangled_name[0] = '\0';
374 else
375 strcpy (mangled_name, field_name);
376 }
377 strcat (mangled_name, buf);
378 /* If the class doesn't have a name, i.e. newname NULL, then we just
379 mangle it using 0 for the length of the class. Thus it gets mangled
380 as something starting with `::' rather than `classname::'. */
381 if (newname != NULL)
382 strcat (mangled_name, newname);
383
384 strcat (mangled_name, physname);
385 return (mangled_name);
386}
387
388\f
389/* Initialize the language dependent portion of a symbol
390 depending upon the language for the symbol. */
391void
392symbol_init_language_specific (struct general_symbol_info *gsymbol,
393 enum language language)
394{
395 gsymbol->language = language;
396 if (gsymbol->language == language_cplus
397 || gsymbol->language == language_java
398 || gsymbol->language == language_objc)
399 {
400 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
401 }
402 else
403 {
404 memset (&gsymbol->language_specific, 0,
405 sizeof (gsymbol->language_specific));
406 }
407}
408
409/* Functions to initialize a symbol's mangled name. */
410
411/* Create the hash table used for demangled names. Each hash entry is
412 a pair of strings; one for the mangled name and one for the demangled
413 name. The entry is hashed via just the mangled name. */
414
415static void
416create_demangled_names_hash (struct objfile *objfile)
417{
418 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
419 The hash table code will round this up to the next prime number.
420 Choosing a much larger table size wastes memory, and saves only about
421 1% in symbol reading. */
422
423 objfile->demangled_names_hash = htab_create_alloc
424 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
425 NULL, xcalloc, xfree);
426}
427
428/* Try to determine the demangled name for a symbol, based on the
429 language of that symbol. If the language is set to language_auto,
430 it will attempt to find any demangling algorithm that works and
431 then set the language appropriately. The returned name is allocated
432 by the demangler and should be xfree'd. */
433
434static char *
435symbol_find_demangled_name (struct general_symbol_info *gsymbol,
436 const char *mangled)
437{
438 char *demangled = NULL;
439
440 if (gsymbol->language == language_unknown)
441 gsymbol->language = language_auto;
442
443 if (gsymbol->language == language_objc
444 || gsymbol->language == language_auto)
445 {
446 demangled =
447 objc_demangle (mangled, 0);
448 if (demangled != NULL)
449 {
450 gsymbol->language = language_objc;
451 return demangled;
452 }
453 }
454 if (gsymbol->language == language_cplus
455 || gsymbol->language == language_auto)
456 {
457 demangled =
458 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
459 if (demangled != NULL)
460 {
461 gsymbol->language = language_cplus;
462 return demangled;
463 }
464 }
465 if (gsymbol->language == language_java)
466 {
467 demangled =
468 cplus_demangle (mangled,
469 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
470 if (demangled != NULL)
471 {
472 gsymbol->language = language_java;
473 return demangled;
474 }
475 }
476 return NULL;
477}
478
479/* Set both the mangled and demangled (if any) names for GSYMBOL based
480 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
481 is used, and the memory comes from that objfile's objfile_obstack.
482 LINKAGE_NAME is copied, so the pointer can be discarded after
483 calling this function. */
484
485/* We have to be careful when dealing with Java names: when we run
486 into a Java minimal symbol, we don't know it's a Java symbol, so it
487 gets demangled as a C++ name. This is unfortunate, but there's not
488 much we can do about it: but when demangling partial symbols and
489 regular symbols, we'd better not reuse the wrong demangled name.
490 (See PR gdb/1039.) We solve this by putting a distinctive prefix
491 on Java names when storing them in the hash table. */
492
493/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
494 don't mind the Java prefix so much: different languages have
495 different demangling requirements, so it's only natural that we
496 need to keep language data around in our demangling cache. But
497 it's not good that the minimal symbol has the wrong demangled name.
498 Unfortunately, I can't think of any easy solution to that
499 problem. */
500
501#define JAVA_PREFIX "##JAVA$$"
502#define JAVA_PREFIX_LEN 8
503
504void
505symbol_set_names (struct general_symbol_info *gsymbol,
506 const char *linkage_name, int len, struct objfile *objfile)
507{
508 char **slot;
509 /* A 0-terminated copy of the linkage name. */
510 const char *linkage_name_copy;
511 /* A copy of the linkage name that might have a special Java prefix
512 added to it, for use when looking names up in the hash table. */
513 const char *lookup_name;
514 /* The length of lookup_name. */
515 int lookup_len;
516
517 if (objfile->demangled_names_hash == NULL)
518 create_demangled_names_hash (objfile);
519
520 /* The stabs reader generally provides names that are not
521 NUL-terminated; most of the other readers don't do this, so we
522 can just use the given copy, unless we're in the Java case. */
523 if (gsymbol->language == language_java)
524 {
525 char *alloc_name;
526 lookup_len = len + JAVA_PREFIX_LEN;
527
528 alloc_name = alloca (lookup_len + 1);
529 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
530 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
531 alloc_name[lookup_len] = '\0';
532
533 lookup_name = alloc_name;
534 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
535 }
536 else if (linkage_name[len] != '\0')
537 {
538 char *alloc_name;
539 lookup_len = len;
540
541 alloc_name = alloca (lookup_len + 1);
542 memcpy (alloc_name, linkage_name, len);
543 alloc_name[lookup_len] = '\0';
544
545 lookup_name = alloc_name;
546 linkage_name_copy = alloc_name;
547 }
548 else
549 {
550 lookup_len = len;
551 lookup_name = linkage_name;
552 linkage_name_copy = linkage_name;
553 }
554
555 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
556 lookup_name, INSERT);
557
558 /* If this name is not in the hash table, add it. */
559 if (*slot == NULL)
560 {
561 char *demangled_name = symbol_find_demangled_name (gsymbol,
562 linkage_name_copy);
563 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
564
565 /* If there is a demangled name, place it right after the mangled name.
566 Otherwise, just place a second zero byte after the end of the mangled
567 name. */
568 *slot = obstack_alloc (&objfile->objfile_obstack,
569 lookup_len + demangled_len + 2);
570 memcpy (*slot, lookup_name, lookup_len + 1);
571 if (demangled_name != NULL)
572 {
573 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
574 xfree (demangled_name);
575 }
576 else
577 (*slot)[lookup_len + 1] = '\0';
578 }
579
580 gsymbol->name = *slot + lookup_len - len;
581 if ((*slot)[lookup_len + 1] != '\0')
582 gsymbol->language_specific.cplus_specific.demangled_name
583 = &(*slot)[lookup_len + 1];
584 else
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586}
587
588/* Initialize the demangled name of GSYMBOL if possible. Any required space
589 to store the name is obtained from the specified obstack. The function
590 symbol_set_names, above, should be used instead where possible for more
591 efficient memory usage. */
592
593void
594symbol_init_demangled_name (struct general_symbol_info *gsymbol,
595 struct obstack *obstack)
596{
597 char *mangled = gsymbol->name;
598 char *demangled = NULL;
599
600 demangled = symbol_find_demangled_name (gsymbol, mangled);
601 if (gsymbol->language == language_cplus
602 || gsymbol->language == language_java
603 || gsymbol->language == language_objc)
604 {
605 if (demangled)
606 {
607 gsymbol->language_specific.cplus_specific.demangled_name
608 = obsavestring (demangled, strlen (demangled), obstack);
609 xfree (demangled);
610 }
611 else
612 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
613 }
614 else
615 {
616 /* Unknown language; just clean up quietly. */
617 if (demangled)
618 xfree (demangled);
619 }
620}
621
622/* Return the source code name of a symbol. In languages where
623 demangling is necessary, this is the demangled name. */
624
625char *
626symbol_natural_name (const struct general_symbol_info *gsymbol)
627{
628 switch (gsymbol->language)
629 {
630 case language_cplus:
631 case language_java:
632 case language_objc:
633 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
634 return gsymbol->language_specific.cplus_specific.demangled_name;
635 break;
636 case language_ada:
637 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
638 return gsymbol->language_specific.cplus_specific.demangled_name;
639 else
640 return ada_decode_symbol (gsymbol);
641 break;
642 default:
643 break;
644 }
645 return gsymbol->name;
646}
647
648/* Return the demangled name for a symbol based on the language for
649 that symbol. If no demangled name exists, return NULL. */
650char *
651symbol_demangled_name (struct general_symbol_info *gsymbol)
652{
653 switch (gsymbol->language)
654 {
655 case language_cplus:
656 case language_java:
657 case language_objc:
658 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
659 return gsymbol->language_specific.cplus_specific.demangled_name;
660 break;
661 case language_ada:
662 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
663 return gsymbol->language_specific.cplus_specific.demangled_name;
664 else
665 return ada_decode_symbol (gsymbol);
666 break;
667 default:
668 break;
669 }
670 return NULL;
671}
672
673/* Return the search name of a symbol---generally the demangled or
674 linkage name of the symbol, depending on how it will be searched for.
675 If there is no distinct demangled name, then returns the same value
676 (same pointer) as SYMBOL_LINKAGE_NAME. */
677char *
678symbol_search_name (const struct general_symbol_info *gsymbol)
679{
680 if (gsymbol->language == language_ada)
681 return gsymbol->name;
682 else
683 return symbol_natural_name (gsymbol);
684}
685
686/* Initialize the structure fields to zero values. */
687void
688init_sal (struct symtab_and_line *sal)
689{
690 sal->symtab = 0;
691 sal->section = 0;
692 sal->line = 0;
693 sal->pc = 0;
694 sal->end = 0;
695 sal->explicit_pc = 0;
696 sal->explicit_line = 0;
697}
698\f
699
700/* Return 1 if the two sections are the same, or if they could
701 plausibly be copies of each other, one in an original object
702 file and another in a separated debug file. */
703
704int
705matching_bfd_sections (asection *first, asection *second)
706{
707 struct objfile *obj;
708
709 /* If they're the same section, then they match. */
710 if (first == second)
711 return 1;
712
713 /* If either is NULL, give up. */
714 if (first == NULL || second == NULL)
715 return 0;
716
717 /* This doesn't apply to absolute symbols. */
718 if (first->owner == NULL || second->owner == NULL)
719 return 0;
720
721 /* If they're in the same object file, they must be different sections. */
722 if (first->owner == second->owner)
723 return 0;
724
725 /* Check whether the two sections are potentially corresponding. They must
726 have the same size, address, and name. We can't compare section indexes,
727 which would be more reliable, because some sections may have been
728 stripped. */
729 if (bfd_get_section_size (first) != bfd_get_section_size (second))
730 return 0;
731
732 /* In-memory addresses may start at a different offset, relativize them. */
733 if (bfd_get_section_vma (first->owner, first)
734 - bfd_get_start_address (first->owner)
735 != bfd_get_section_vma (second->owner, second)
736 - bfd_get_start_address (second->owner))
737 return 0;
738
739 if (bfd_get_section_name (first->owner, first) == NULL
740 || bfd_get_section_name (second->owner, second) == NULL
741 || strcmp (bfd_get_section_name (first->owner, first),
742 bfd_get_section_name (second->owner, second)) != 0)
743 return 0;
744
745 /* Otherwise check that they are in corresponding objfiles. */
746
747 ALL_OBJFILES (obj)
748 if (obj->obfd == first->owner)
749 break;
750 gdb_assert (obj != NULL);
751
752 if (obj->separate_debug_objfile != NULL
753 && obj->separate_debug_objfile->obfd == second->owner)
754 return 1;
755 if (obj->separate_debug_objfile_backlink != NULL
756 && obj->separate_debug_objfile_backlink->obfd == second->owner)
757 return 1;
758
759 return 0;
760}
761
762/* Find which partial symtab contains PC and SECTION. Return 0 if
763 none. We return the psymtab that contains a symbol whose address
764 exactly matches PC, or, if we cannot find an exact match, the
765 psymtab that contains a symbol whose address is closest to PC. */
766struct partial_symtab *
767find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
768{
769 struct partial_symtab *pst;
770 struct objfile *objfile;
771 struct minimal_symbol *msymbol;
772
773 /* If we know that this is not a text address, return failure. This is
774 necessary because we loop based on texthigh and textlow, which do
775 not include the data ranges. */
776 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
777 if (msymbol
778 && (msymbol->type == mst_data
779 || msymbol->type == mst_bss
780 || msymbol->type == mst_abs
781 || msymbol->type == mst_file_data
782 || msymbol->type == mst_file_bss))
783 return NULL;
784
785 ALL_PSYMTABS (objfile, pst)
786 {
787 if (pc >= pst->textlow && pc < pst->texthigh)
788 {
789 struct partial_symtab *tpst;
790 struct partial_symtab *best_pst = pst;
791 CORE_ADDR best_addr = pst->textlow;
792
793 /* An objfile that has its functions reordered might have
794 many partial symbol tables containing the PC, but
795 we want the partial symbol table that contains the
796 function containing the PC. */
797 if (!(objfile->flags & OBJF_REORDERED) &&
798 section == 0) /* can't validate section this way */
799 return (pst);
800
801 if (msymbol == NULL)
802 return (pst);
803
804 /* The code range of partial symtabs sometimes overlap, so, in
805 the loop below, we need to check all partial symtabs and
806 find the one that fits better for the given PC address. We
807 select the partial symtab that contains a symbol whose
808 address is closest to the PC address. By closest we mean
809 that find_pc_sect_symbol returns the symbol with address
810 that is closest and still less than the given PC. */
811 for (tpst = pst; tpst != NULL; tpst = tpst->next)
812 {
813 if (pc >= tpst->textlow && pc < tpst->texthigh)
814 {
815 struct partial_symbol *p;
816 CORE_ADDR this_addr;
817
818 /* NOTE: This assumes that every psymbol has a
819 corresponding msymbol, which is not necessarily
820 true; the debug info might be much richer than the
821 object's symbol table. */
822 p = find_pc_sect_psymbol (tpst, pc, section);
823 if (p != NULL
824 && SYMBOL_VALUE_ADDRESS (p)
825 == SYMBOL_VALUE_ADDRESS (msymbol))
826 return (tpst);
827
828 /* Also accept the textlow value of a psymtab as a
829 "symbol", to provide some support for partial
830 symbol tables with line information but no debug
831 symbols (e.g. those produced by an assembler). */
832 if (p != NULL)
833 this_addr = SYMBOL_VALUE_ADDRESS (p);
834 else
835 this_addr = tpst->textlow;
836
837 /* Check whether it is closer than our current
838 BEST_ADDR. Since this symbol address is
839 necessarily lower or equal to PC, the symbol closer
840 to PC is the symbol which address is the highest.
841 This way we return the psymtab which contains such
842 best match symbol. This can help in cases where the
843 symbol information/debuginfo is not complete, like
844 for instance on IRIX6 with gcc, where no debug info
845 is emitted for statics. (See also the nodebug.exp
846 testcase.) */
847 if (this_addr > best_addr)
848 {
849 best_addr = this_addr;
850 best_pst = tpst;
851 }
852 }
853 }
854 return (best_pst);
855 }
856 }
857 return (NULL);
858}
859
860/* Find which partial symtab contains PC. Return 0 if none.
861 Backward compatibility, no section */
862
863struct partial_symtab *
864find_pc_psymtab (CORE_ADDR pc)
865{
866 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
867}
868
869/* Find which partial symbol within a psymtab matches PC and SECTION.
870 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
871
872struct partial_symbol *
873find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
874 asection *section)
875{
876 struct partial_symbol *best = NULL, *p, **pp;
877 CORE_ADDR best_pc;
878
879 if (!psymtab)
880 psymtab = find_pc_sect_psymtab (pc, section);
881 if (!psymtab)
882 return 0;
883
884 /* Cope with programs that start at address 0 */
885 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
886
887 /* Search the global symbols as well as the static symbols, so that
888 find_pc_partial_function doesn't use a minimal symbol and thus
889 cache a bad endaddr. */
890 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
891 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
892 < psymtab->n_global_syms);
893 pp++)
894 {
895 p = *pp;
896 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
897 && SYMBOL_CLASS (p) == LOC_BLOCK
898 && pc >= SYMBOL_VALUE_ADDRESS (p)
899 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
900 || (psymtab->textlow == 0
901 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
902 {
903 if (section) /* match on a specific section */
904 {
905 fixup_psymbol_section (p, psymtab->objfile);
906 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
907 continue;
908 }
909 best_pc = SYMBOL_VALUE_ADDRESS (p);
910 best = p;
911 }
912 }
913
914 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
915 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
916 < psymtab->n_static_syms);
917 pp++)
918 {
919 p = *pp;
920 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
921 && SYMBOL_CLASS (p) == LOC_BLOCK
922 && pc >= SYMBOL_VALUE_ADDRESS (p)
923 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
924 || (psymtab->textlow == 0
925 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
926 {
927 if (section) /* match on a specific section */
928 {
929 fixup_psymbol_section (p, psymtab->objfile);
930 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
931 continue;
932 }
933 best_pc = SYMBOL_VALUE_ADDRESS (p);
934 best = p;
935 }
936 }
937
938 return best;
939}
940
941/* Find which partial symbol within a psymtab matches PC. Return 0 if none.
942 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
943
944struct partial_symbol *
945find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
946{
947 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
948}
949\f
950/* Debug symbols usually don't have section information. We need to dig that
951 out of the minimal symbols and stash that in the debug symbol. */
952
953static void
954fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
955{
956 struct minimal_symbol *msym;
957 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
958
959 if (msym)
960 {
961 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
962 ginfo->section = SYMBOL_SECTION (msym);
963 }
964 else if (objfile)
965 {
966 /* Static, function-local variables do appear in the linker
967 (minimal) symbols, but are frequently given names that won't
968 be found via lookup_minimal_symbol(). E.g., it has been
969 observed in frv-uclinux (ELF) executables that a static,
970 function-local variable named "foo" might appear in the
971 linker symbols as "foo.6" or "foo.3". Thus, there is no
972 point in attempting to extend the lookup-by-name mechanism to
973 handle this case due to the fact that there can be multiple
974 names.
975
976 So, instead, search the section table when lookup by name has
977 failed. The ``addr'' and ``endaddr'' fields may have already
978 been relocated. If so, the relocation offset (i.e. the
979 ANOFFSET value) needs to be subtracted from these values when
980 performing the comparison. We unconditionally subtract it,
981 because, when no relocation has been performed, the ANOFFSET
982 value will simply be zero.
983
984 The address of the symbol whose section we're fixing up HAS
985 NOT BEEN adjusted (relocated) yet. It can't have been since
986 the section isn't yet known and knowing the section is
987 necessary in order to add the correct relocation value. In
988 other words, we wouldn't even be in this function (attempting
989 to compute the section) if it were already known.
990
991 Note that it is possible to search the minimal symbols
992 (subtracting the relocation value if necessary) to find the
993 matching minimal symbol, but this is overkill and much less
994 efficient. It is not necessary to find the matching minimal
995 symbol, only its section.
996
997 Note that this technique (of doing a section table search)
998 can fail when unrelocated section addresses overlap. For
999 this reason, we still attempt a lookup by name prior to doing
1000 a search of the section table. */
1001
1002 CORE_ADDR addr;
1003 struct obj_section *s;
1004
1005 addr = ginfo->value.address;
1006
1007 ALL_OBJFILE_OSECTIONS (objfile, s)
1008 {
1009 int idx = s->the_bfd_section->index;
1010 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1011
1012 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1013 {
1014 ginfo->bfd_section = s->the_bfd_section;
1015 ginfo->section = idx;
1016 return;
1017 }
1018 }
1019 }
1020}
1021
1022struct symbol *
1023fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1024{
1025 if (!sym)
1026 return NULL;
1027
1028 if (SYMBOL_BFD_SECTION (sym))
1029 return sym;
1030
1031 fixup_section (&sym->ginfo, objfile);
1032
1033 return sym;
1034}
1035
1036struct partial_symbol *
1037fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1038{
1039 if (!psym)
1040 return NULL;
1041
1042 if (SYMBOL_BFD_SECTION (psym))
1043 return psym;
1044
1045 fixup_section (&psym->ginfo, objfile);
1046
1047 return psym;
1048}
1049
1050/* Find the definition for a specified symbol name NAME
1051 in domain DOMAIN, visible from lexical block BLOCK.
1052 Returns the struct symbol pointer, or zero if no symbol is found.
1053 If SYMTAB is non-NULL, store the symbol table in which the
1054 symbol was found there, or NULL if not found.
1055 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1056 NAME is a field of the current implied argument `this'. If so set
1057 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1058 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1059 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1060
1061/* This function has a bunch of loops in it and it would seem to be
1062 attractive to put in some QUIT's (though I'm not really sure
1063 whether it can run long enough to be really important). But there
1064 are a few calls for which it would appear to be bad news to quit
1065 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1066 that there is C++ code below which can error(), but that probably
1067 doesn't affect these calls since they are looking for a known
1068 variable and thus can probably assume it will never hit the C++
1069 code). */
1070
1071struct symbol *
1072lookup_symbol_in_language (const char *name, const struct block *block,
1073 const domain_enum domain, enum language lang,
1074 int *is_a_field_of_this,
1075 struct symtab **symtab)
1076{
1077 char *demangled_name = NULL;
1078 const char *modified_name = NULL;
1079 const char *mangled_name = NULL;
1080 int needtofreename = 0;
1081 struct symbol *returnval;
1082
1083 modified_name = name;
1084
1085 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1086 we can always binary search. */
1087 if (lang == language_cplus)
1088 {
1089 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1090 if (demangled_name)
1091 {
1092 mangled_name = name;
1093 modified_name = demangled_name;
1094 needtofreename = 1;
1095 }
1096 }
1097 else if (lang == language_java)
1098 {
1099 demangled_name = cplus_demangle (name,
1100 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1101 if (demangled_name)
1102 {
1103 mangled_name = name;
1104 modified_name = demangled_name;
1105 needtofreename = 1;
1106 }
1107 }
1108
1109 if (case_sensitivity == case_sensitive_off)
1110 {
1111 char *copy;
1112 int len, i;
1113
1114 len = strlen (name);
1115 copy = (char *) alloca (len + 1);
1116 for (i= 0; i < len; i++)
1117 copy[i] = tolower (name[i]);
1118 copy[len] = 0;
1119 modified_name = copy;
1120 }
1121
1122 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1123 domain, lang,
1124 is_a_field_of_this, symtab);
1125 if (needtofreename)
1126 xfree (demangled_name);
1127
1128 /* Override the returned symtab with the symbol's specific one. */
1129 if (returnval != NULL && symtab != NULL)
1130 *symtab = SYMBOL_SYMTAB (returnval);
1131
1132 return returnval;
1133}
1134
1135/* Behave like lookup_symbol_in_language, but performed with the
1136 current language. */
1137
1138struct symbol *
1139lookup_symbol (const char *name, const struct block *block,
1140 domain_enum domain, int *is_a_field_of_this,
1141 struct symtab **symtab)
1142{
1143 return lookup_symbol_in_language (name, block, domain,
1144 current_language->la_language,
1145 is_a_field_of_this, symtab);
1146}
1147
1148/* Behave like lookup_symbol except that NAME is the natural name
1149 of the symbol that we're looking for and, if LINKAGE_NAME is
1150 non-NULL, ensure that the symbol's linkage name matches as
1151 well. */
1152
1153static struct symbol *
1154lookup_symbol_aux (const char *name, const char *linkage_name,
1155 const struct block *block, const domain_enum domain,
1156 enum language language,
1157 int *is_a_field_of_this, struct symtab **symtab)
1158{
1159 struct symbol *sym;
1160 const struct language_defn *langdef;
1161
1162 /* Make sure we do something sensible with is_a_field_of_this, since
1163 the callers that set this parameter to some non-null value will
1164 certainly use it later and expect it to be either 0 or 1.
1165 If we don't set it, the contents of is_a_field_of_this are
1166 undefined. */
1167 if (is_a_field_of_this != NULL)
1168 *is_a_field_of_this = 0;
1169
1170 /* Search specified block and its superiors. Don't search
1171 STATIC_BLOCK or GLOBAL_BLOCK. */
1172
1173 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1174 symtab);
1175 if (sym != NULL)
1176 return sym;
1177
1178 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1179 check to see if NAME is a field of `this'. */
1180
1181 langdef = language_def (language);
1182
1183 if (langdef->la_value_of_this != NULL
1184 && is_a_field_of_this != NULL)
1185 {
1186 struct value *v = langdef->la_value_of_this (0);
1187
1188 if (v && check_field (v, name))
1189 {
1190 *is_a_field_of_this = 1;
1191 if (symtab != NULL)
1192 *symtab = NULL;
1193 return NULL;
1194 }
1195 }
1196
1197 /* Now do whatever is appropriate for LANGUAGE to look
1198 up static and global variables. */
1199
1200 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1201 block, domain, symtab);
1202 if (sym != NULL)
1203 return sym;
1204
1205 /* Now search all static file-level symbols. Not strictly correct,
1206 but more useful than an error. Do the symtabs first, then check
1207 the psymtabs. If a psymtab indicates the existence of the
1208 desired name as a file-level static, then do psymtab-to-symtab
1209 conversion on the fly and return the found symbol. */
1210
1211 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1212 domain, symtab);
1213 if (sym != NULL)
1214 return sym;
1215
1216 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1217 domain, symtab);
1218 if (sym != NULL)
1219 return sym;
1220
1221 if (symtab != NULL)
1222 *symtab = NULL;
1223 return NULL;
1224}
1225
1226/* Check to see if the symbol is defined in BLOCK or its superiors.
1227 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1228
1229static struct symbol *
1230lookup_symbol_aux_local (const char *name, const char *linkage_name,
1231 const struct block *block,
1232 const domain_enum domain,
1233 struct symtab **symtab)
1234{
1235 struct symbol *sym;
1236 const struct block *static_block = block_static_block (block);
1237
1238 /* Check if either no block is specified or it's a global block. */
1239
1240 if (static_block == NULL)
1241 return NULL;
1242
1243 while (block != static_block)
1244 {
1245 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1246 symtab);
1247 if (sym != NULL)
1248 return sym;
1249 block = BLOCK_SUPERBLOCK (block);
1250 }
1251
1252 /* We've reached the static block without finding a result. */
1253
1254 return NULL;
1255}
1256
1257/* Look up OBJFILE to BLOCK. */
1258
1259static struct objfile *
1260lookup_objfile_from_block (const struct block *block)
1261{
1262 struct objfile *obj;
1263 struct symtab *s;
1264
1265 if (block == NULL)
1266 return NULL;
1267
1268 block = block_global_block (block);
1269 /* Go through SYMTABS. */
1270 ALL_SYMTABS (obj, s)
1271 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1272 return obj;
1273
1274 return NULL;
1275}
1276
1277/* Look up a symbol in a block; if found, locate its symtab, fixup the
1278 symbol, and set block_found appropriately. */
1279
1280struct symbol *
1281lookup_symbol_aux_block (const char *name, const char *linkage_name,
1282 const struct block *block,
1283 const domain_enum domain,
1284 struct symtab **symtab)
1285{
1286 struct symbol *sym;
1287 struct objfile *objfile = NULL;
1288 struct blockvector *bv;
1289 struct block *b;
1290 struct symtab *s = NULL;
1291
1292 sym = lookup_block_symbol (block, name, linkage_name, domain);
1293 if (sym)
1294 {
1295 block_found = block;
1296 if (symtab != NULL)
1297 {
1298 /* Search the list of symtabs for one which contains the
1299 address of the start of this block. */
1300 ALL_PRIMARY_SYMTABS (objfile, s)
1301 {
1302 bv = BLOCKVECTOR (s);
1303 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1304 if (BLOCK_START (b) <= BLOCK_START (block)
1305 && BLOCK_END (b) > BLOCK_START (block))
1306 goto found;
1307 }
1308 found:
1309 *symtab = s;
1310 }
1311
1312 return fixup_symbol_section (sym, objfile);
1313 }
1314
1315 return NULL;
1316}
1317
1318/* Check all global symbols in OBJFILE in symtabs and
1319 psymtabs. */
1320
1321struct symbol *
1322lookup_global_symbol_from_objfile (const struct objfile *objfile,
1323 const char *name,
1324 const char *linkage_name,
1325 const domain_enum domain,
1326 struct symtab **symtab)
1327{
1328 struct symbol *sym;
1329 struct blockvector *bv;
1330 const struct block *block;
1331 struct symtab *s;
1332 struct partial_symtab *ps;
1333
1334 /* Go through symtabs. */
1335 ALL_OBJFILE_SYMTABS (objfile, s)
1336 {
1337 bv = BLOCKVECTOR (s);
1338 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1339 sym = lookup_block_symbol (block, name, linkage_name, domain);
1340 if (sym)
1341 {
1342 block_found = block;
1343 if (symtab != NULL)
1344 *symtab = s;
1345 return fixup_symbol_section (sym, (struct objfile *)objfile);
1346 }
1347 }
1348
1349 /* Now go through psymtabs. */
1350 ALL_OBJFILE_PSYMTABS (objfile, ps)
1351 {
1352 if (!ps->readin
1353 && lookup_partial_symbol (ps, name, linkage_name,
1354 1, domain))
1355 {
1356 s = PSYMTAB_TO_SYMTAB (ps);
1357 bv = BLOCKVECTOR (s);
1358 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1359 sym = lookup_block_symbol (block, name, linkage_name, domain);
1360 if (symtab != NULL)
1361 *symtab = s;
1362 return fixup_symbol_section (sym, (struct objfile *)objfile);
1363 }
1364 }
1365
1366 return NULL;
1367}
1368
1369/* Check to see if the symbol is defined in one of the symtabs.
1370 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1371 depending on whether or not we want to search global symbols or
1372 static symbols. */
1373
1374static struct symbol *
1375lookup_symbol_aux_symtabs (int block_index,
1376 const char *name, const char *linkage_name,
1377 const domain_enum domain,
1378 struct symtab **symtab)
1379{
1380 struct symbol *sym;
1381 struct objfile *objfile;
1382 struct blockvector *bv;
1383 const struct block *block;
1384 struct symtab *s;
1385
1386 ALL_PRIMARY_SYMTABS (objfile, s)
1387 {
1388 bv = BLOCKVECTOR (s);
1389 block = BLOCKVECTOR_BLOCK (bv, block_index);
1390 sym = lookup_block_symbol (block, name, linkage_name, domain);
1391 if (sym)
1392 {
1393 block_found = block;
1394 if (symtab != NULL)
1395 *symtab = s;
1396 return fixup_symbol_section (sym, objfile);
1397 }
1398 }
1399
1400 return NULL;
1401}
1402
1403/* Check to see if the symbol is defined in one of the partial
1404 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1405 STATIC_BLOCK, depending on whether or not we want to search global
1406 symbols or static symbols. */
1407
1408static struct symbol *
1409lookup_symbol_aux_psymtabs (int block_index, const char *name,
1410 const char *linkage_name,
1411 const domain_enum domain,
1412 struct symtab **symtab)
1413{
1414 struct symbol *sym;
1415 struct objfile *objfile;
1416 struct blockvector *bv;
1417 const struct block *block;
1418 struct partial_symtab *ps;
1419 struct symtab *s;
1420 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1421
1422 ALL_PSYMTABS (objfile, ps)
1423 {
1424 if (!ps->readin
1425 && lookup_partial_symbol (ps, name, linkage_name,
1426 psymtab_index, domain))
1427 {
1428 s = PSYMTAB_TO_SYMTAB (ps);
1429 bv = BLOCKVECTOR (s);
1430 block = BLOCKVECTOR_BLOCK (bv, block_index);
1431 sym = lookup_block_symbol (block, name, linkage_name, domain);
1432 if (!sym)
1433 {
1434 /* This shouldn't be necessary, but as a last resort try
1435 looking in the statics even though the psymtab claimed
1436 the symbol was global, or vice-versa. It's possible
1437 that the psymtab gets it wrong in some cases. */
1438
1439 /* FIXME: carlton/2002-09-30: Should we really do that?
1440 If that happens, isn't it likely to be a GDB error, in
1441 which case we should fix the GDB error rather than
1442 silently dealing with it here? So I'd vote for
1443 removing the check for the symbol in the other
1444 block. */
1445 block = BLOCKVECTOR_BLOCK (bv,
1446 block_index == GLOBAL_BLOCK ?
1447 STATIC_BLOCK : GLOBAL_BLOCK);
1448 sym = lookup_block_symbol (block, name, linkage_name, domain);
1449 if (!sym)
1450 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1451 block_index == GLOBAL_BLOCK ? "global" : "static",
1452 name, ps->filename, name, name);
1453 }
1454 if (symtab != NULL)
1455 *symtab = s;
1456 return fixup_symbol_section (sym, objfile);
1457 }
1458 }
1459
1460 return NULL;
1461}
1462
1463/* A default version of lookup_symbol_nonlocal for use by languages
1464 that can't think of anything better to do. This implements the C
1465 lookup rules. */
1466
1467struct symbol *
1468basic_lookup_symbol_nonlocal (const char *name,
1469 const char *linkage_name,
1470 const struct block *block,
1471 const domain_enum domain,
1472 struct symtab **symtab)
1473{
1474 struct symbol *sym;
1475
1476 /* NOTE: carlton/2003-05-19: The comments below were written when
1477 this (or what turned into this) was part of lookup_symbol_aux;
1478 I'm much less worried about these questions now, since these
1479 decisions have turned out well, but I leave these comments here
1480 for posterity. */
1481
1482 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1483 not it would be appropriate to search the current global block
1484 here as well. (That's what this code used to do before the
1485 is_a_field_of_this check was moved up.) On the one hand, it's
1486 redundant with the lookup_symbol_aux_symtabs search that happens
1487 next. On the other hand, if decode_line_1 is passed an argument
1488 like filename:var, then the user presumably wants 'var' to be
1489 searched for in filename. On the third hand, there shouldn't be
1490 multiple global variables all of which are named 'var', and it's
1491 not like decode_line_1 has ever restricted its search to only
1492 global variables in a single filename. All in all, only
1493 searching the static block here seems best: it's correct and it's
1494 cleanest. */
1495
1496 /* NOTE: carlton/2002-12-05: There's also a possible performance
1497 issue here: if you usually search for global symbols in the
1498 current file, then it would be slightly better to search the
1499 current global block before searching all the symtabs. But there
1500 are other factors that have a much greater effect on performance
1501 than that one, so I don't think we should worry about that for
1502 now. */
1503
1504 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1505 if (sym != NULL)
1506 return sym;
1507
1508 return lookup_symbol_global (name, linkage_name, block, domain, symtab);
1509}
1510
1511/* Lookup a symbol in the static block associated to BLOCK, if there
1512 is one; do nothing if BLOCK is NULL or a global block. */
1513
1514struct symbol *
1515lookup_symbol_static (const char *name,
1516 const char *linkage_name,
1517 const struct block *block,
1518 const domain_enum domain,
1519 struct symtab **symtab)
1520{
1521 const struct block *static_block = block_static_block (block);
1522
1523 if (static_block != NULL)
1524 return lookup_symbol_aux_block (name, linkage_name, static_block,
1525 domain, symtab);
1526 else
1527 return NULL;
1528}
1529
1530/* Lookup a symbol in all files' global blocks (searching psymtabs if
1531 necessary). */
1532
1533struct symbol *
1534lookup_symbol_global (const char *name,
1535 const char *linkage_name,
1536 const struct block *block,
1537 const domain_enum domain,
1538 struct symtab **symtab)
1539{
1540 struct symbol *sym = NULL;
1541 struct objfile *objfile = NULL;
1542
1543 /* Call library-specific lookup procedure. */
1544 objfile = lookup_objfile_from_block (block);
1545 if (objfile != NULL)
1546 sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab);
1547 if (sym != NULL)
1548 return sym;
1549
1550 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1551 domain, symtab);
1552 if (sym != NULL)
1553 return sym;
1554
1555 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1556 domain, symtab);
1557}
1558
1559/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1560 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1561 linkage name matches it. Check the global symbols if GLOBAL, the
1562 static symbols if not */
1563
1564struct partial_symbol *
1565lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1566 const char *linkage_name, int global,
1567 domain_enum domain)
1568{
1569 struct partial_symbol *temp;
1570 struct partial_symbol **start, **psym;
1571 struct partial_symbol **top, **real_top, **bottom, **center;
1572 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1573 int do_linear_search = 1;
1574
1575 if (length == 0)
1576 {
1577 return (NULL);
1578 }
1579 start = (global ?
1580 pst->objfile->global_psymbols.list + pst->globals_offset :
1581 pst->objfile->static_psymbols.list + pst->statics_offset);
1582
1583 if (global) /* This means we can use a binary search. */
1584 {
1585 do_linear_search = 0;
1586
1587 /* Binary search. This search is guaranteed to end with center
1588 pointing at the earliest partial symbol whose name might be
1589 correct. At that point *all* partial symbols with an
1590 appropriate name will be checked against the correct
1591 domain. */
1592
1593 bottom = start;
1594 top = start + length - 1;
1595 real_top = top;
1596 while (top > bottom)
1597 {
1598 center = bottom + (top - bottom) / 2;
1599 if (!(center < top))
1600 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1601 if (!do_linear_search
1602 && (SYMBOL_LANGUAGE (*center) == language_java))
1603 {
1604 do_linear_search = 1;
1605 }
1606 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1607 {
1608 top = center;
1609 }
1610 else
1611 {
1612 bottom = center + 1;
1613 }
1614 }
1615 if (!(top == bottom))
1616 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1617
1618 while (top <= real_top
1619 && (linkage_name != NULL
1620 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1621 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1622 {
1623 if (SYMBOL_DOMAIN (*top) == domain)
1624 {
1625 return (*top);
1626 }
1627 top++;
1628 }
1629 }
1630
1631 /* Can't use a binary search or else we found during the binary search that
1632 we should also do a linear search. */
1633
1634 if (do_linear_search)
1635 {
1636 for (psym = start; psym < start + length; psym++)
1637 {
1638 if (domain == SYMBOL_DOMAIN (*psym))
1639 {
1640 if (linkage_name != NULL
1641 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1642 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1643 {
1644 return (*psym);
1645 }
1646 }
1647 }
1648 }
1649
1650 return (NULL);
1651}
1652
1653/* Look up a type named NAME in the struct_domain. The type returned
1654 must not be opaque -- i.e., must have at least one field
1655 defined. */
1656
1657struct type *
1658lookup_transparent_type (const char *name)
1659{
1660 return current_language->la_lookup_transparent_type (name);
1661}
1662
1663/* The standard implementation of lookup_transparent_type. This code
1664 was modeled on lookup_symbol -- the parts not relevant to looking
1665 up types were just left out. In particular it's assumed here that
1666 types are available in struct_domain and only at file-static or
1667 global blocks. */
1668
1669struct type *
1670basic_lookup_transparent_type (const char *name)
1671{
1672 struct symbol *sym;
1673 struct symtab *s = NULL;
1674 struct partial_symtab *ps;
1675 struct blockvector *bv;
1676 struct objfile *objfile;
1677 struct block *block;
1678
1679 /* Now search all the global symbols. Do the symtab's first, then
1680 check the psymtab's. If a psymtab indicates the existence
1681 of the desired name as a global, then do psymtab-to-symtab
1682 conversion on the fly and return the found symbol. */
1683
1684 ALL_PRIMARY_SYMTABS (objfile, s)
1685 {
1686 bv = BLOCKVECTOR (s);
1687 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1688 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1689 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1690 {
1691 return SYMBOL_TYPE (sym);
1692 }
1693 }
1694
1695 ALL_PSYMTABS (objfile, ps)
1696 {
1697 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1698 1, STRUCT_DOMAIN))
1699 {
1700 s = PSYMTAB_TO_SYMTAB (ps);
1701 bv = BLOCKVECTOR (s);
1702 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1703 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1704 if (!sym)
1705 {
1706 /* This shouldn't be necessary, but as a last resort
1707 * try looking in the statics even though the psymtab
1708 * claimed the symbol was global. It's possible that
1709 * the psymtab gets it wrong in some cases.
1710 */
1711 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1712 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1713 if (!sym)
1714 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1715%s may be an inlined function, or may be a template function\n\
1716(if a template, try specifying an instantiation: %s<type>)."),
1717 name, ps->filename, name, name);
1718 }
1719 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1720 return SYMBOL_TYPE (sym);
1721 }
1722 }
1723
1724 /* Now search the static file-level symbols.
1725 Not strictly correct, but more useful than an error.
1726 Do the symtab's first, then
1727 check the psymtab's. If a psymtab indicates the existence
1728 of the desired name as a file-level static, then do psymtab-to-symtab
1729 conversion on the fly and return the found symbol.
1730 */
1731
1732 ALL_PRIMARY_SYMTABS (objfile, s)
1733 {
1734 bv = BLOCKVECTOR (s);
1735 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1736 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1737 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1738 {
1739 return SYMBOL_TYPE (sym);
1740 }
1741 }
1742
1743 ALL_PSYMTABS (objfile, ps)
1744 {
1745 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1746 {
1747 s = PSYMTAB_TO_SYMTAB (ps);
1748 bv = BLOCKVECTOR (s);
1749 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1750 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1751 if (!sym)
1752 {
1753 /* This shouldn't be necessary, but as a last resort
1754 * try looking in the globals even though the psymtab
1755 * claimed the symbol was static. It's possible that
1756 * the psymtab gets it wrong in some cases.
1757 */
1758 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1759 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1760 if (!sym)
1761 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1762%s may be an inlined function, or may be a template function\n\
1763(if a template, try specifying an instantiation: %s<type>)."),
1764 name, ps->filename, name, name);
1765 }
1766 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1767 return SYMBOL_TYPE (sym);
1768 }
1769 }
1770 return (struct type *) 0;
1771}
1772
1773
1774/* Find the psymtab containing main(). */
1775/* FIXME: What about languages without main() or specially linked
1776 executables that have no main() ? */
1777
1778struct partial_symtab *
1779find_main_psymtab (void)
1780{
1781 struct partial_symtab *pst;
1782 struct objfile *objfile;
1783
1784 ALL_PSYMTABS (objfile, pst)
1785 {
1786 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1787 {
1788 return (pst);
1789 }
1790 }
1791 return (NULL);
1792}
1793
1794/* Search BLOCK for symbol NAME in DOMAIN.
1795
1796 Note that if NAME is the demangled form of a C++ symbol, we will fail
1797 to find a match during the binary search of the non-encoded names, but
1798 for now we don't worry about the slight inefficiency of looking for
1799 a match we'll never find, since it will go pretty quick. Once the
1800 binary search terminates, we drop through and do a straight linear
1801 search on the symbols. Each symbol which is marked as being a ObjC/C++
1802 symbol (language_cplus or language_objc set) has both the encoded and
1803 non-encoded names tested for a match.
1804
1805 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1806 particular mangled name.
1807*/
1808
1809struct symbol *
1810lookup_block_symbol (const struct block *block, const char *name,
1811 const char *linkage_name,
1812 const domain_enum domain)
1813{
1814 struct dict_iterator iter;
1815 struct symbol *sym;
1816
1817 if (!BLOCK_FUNCTION (block))
1818 {
1819 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1820 sym != NULL;
1821 sym = dict_iter_name_next (name, &iter))
1822 {
1823 if (SYMBOL_DOMAIN (sym) == domain
1824 && (linkage_name != NULL
1825 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1826 return sym;
1827 }
1828 return NULL;
1829 }
1830 else
1831 {
1832 /* Note that parameter symbols do not always show up last in the
1833 list; this loop makes sure to take anything else other than
1834 parameter symbols first; it only uses parameter symbols as a
1835 last resort. Note that this only takes up extra computation
1836 time on a match. */
1837
1838 struct symbol *sym_found = NULL;
1839
1840 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1841 sym != NULL;
1842 sym = dict_iter_name_next (name, &iter))
1843 {
1844 if (SYMBOL_DOMAIN (sym) == domain
1845 && (linkage_name != NULL
1846 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1847 {
1848 sym_found = sym;
1849 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1850 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1851 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1852 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1853 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1854 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1855 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1856 {
1857 break;
1858 }
1859 }
1860 }
1861 return (sym_found); /* Will be NULL if not found. */
1862 }
1863}
1864
1865/* Find the symtab associated with PC and SECTION. Look through the
1866 psymtabs and read in another symtab if necessary. */
1867
1868struct symtab *
1869find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1870{
1871 struct block *b;
1872 struct blockvector *bv;
1873 struct symtab *s = NULL;
1874 struct symtab *best_s = NULL;
1875 struct partial_symtab *ps;
1876 struct objfile *objfile;
1877 CORE_ADDR distance = 0;
1878 struct minimal_symbol *msymbol;
1879
1880 /* If we know that this is not a text address, return failure. This is
1881 necessary because we loop based on the block's high and low code
1882 addresses, which do not include the data ranges, and because
1883 we call find_pc_sect_psymtab which has a similar restriction based
1884 on the partial_symtab's texthigh and textlow. */
1885 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1886 if (msymbol
1887 && (msymbol->type == mst_data
1888 || msymbol->type == mst_bss
1889 || msymbol->type == mst_abs
1890 || msymbol->type == mst_file_data
1891 || msymbol->type == mst_file_bss))
1892 return NULL;
1893
1894 /* Search all symtabs for the one whose file contains our address, and which
1895 is the smallest of all the ones containing the address. This is designed
1896 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1897 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1898 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1899
1900 This happens for native ecoff format, where code from included files
1901 gets its own symtab. The symtab for the included file should have
1902 been read in already via the dependency mechanism.
1903 It might be swifter to create several symtabs with the same name
1904 like xcoff does (I'm not sure).
1905
1906 It also happens for objfiles that have their functions reordered.
1907 For these, the symtab we are looking for is not necessarily read in. */
1908
1909 ALL_PRIMARY_SYMTABS (objfile, s)
1910 {
1911 bv = BLOCKVECTOR (s);
1912 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1913
1914 if (BLOCK_START (b) <= pc
1915 && BLOCK_END (b) > pc
1916 && (distance == 0
1917 || BLOCK_END (b) - BLOCK_START (b) < distance))
1918 {
1919 /* For an objfile that has its functions reordered,
1920 find_pc_psymtab will find the proper partial symbol table
1921 and we simply return its corresponding symtab. */
1922 /* In order to better support objfiles that contain both
1923 stabs and coff debugging info, we continue on if a psymtab
1924 can't be found. */
1925 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1926 {
1927 ps = find_pc_sect_psymtab (pc, section);
1928 if (ps)
1929 return PSYMTAB_TO_SYMTAB (ps);
1930 }
1931 if (section != 0)
1932 {
1933 struct dict_iterator iter;
1934 struct symbol *sym = NULL;
1935
1936 ALL_BLOCK_SYMBOLS (b, iter, sym)
1937 {
1938 fixup_symbol_section (sym, objfile);
1939 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
1940 break;
1941 }
1942 if (sym == NULL)
1943 continue; /* no symbol in this symtab matches section */
1944 }
1945 distance = BLOCK_END (b) - BLOCK_START (b);
1946 best_s = s;
1947 }
1948 }
1949
1950 if (best_s != NULL)
1951 return (best_s);
1952
1953 s = NULL;
1954 ps = find_pc_sect_psymtab (pc, section);
1955 if (ps)
1956 {
1957 if (ps->readin)
1958 /* Might want to error() here (in case symtab is corrupt and
1959 will cause a core dump), but maybe we can successfully
1960 continue, so let's not. */
1961 warning (_("\
1962(Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
1963 paddr_nz (pc));
1964 s = PSYMTAB_TO_SYMTAB (ps);
1965 }
1966 return (s);
1967}
1968
1969/* Find the symtab associated with PC. Look through the psymtabs and
1970 read in another symtab if necessary. Backward compatibility, no section */
1971
1972struct symtab *
1973find_pc_symtab (CORE_ADDR pc)
1974{
1975 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1976}
1977\f
1978
1979/* Find the source file and line number for a given PC value and SECTION.
1980 Return a structure containing a symtab pointer, a line number,
1981 and a pc range for the entire source line.
1982 The value's .pc field is NOT the specified pc.
1983 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1984 use the line that ends there. Otherwise, in that case, the line
1985 that begins there is used. */
1986
1987/* The big complication here is that a line may start in one file, and end just
1988 before the start of another file. This usually occurs when you #include
1989 code in the middle of a subroutine. To properly find the end of a line's PC
1990 range, we must search all symtabs associated with this compilation unit, and
1991 find the one whose first PC is closer than that of the next line in this
1992 symtab. */
1993
1994/* If it's worth the effort, we could be using a binary search. */
1995
1996struct symtab_and_line
1997find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
1998{
1999 struct symtab *s;
2000 struct linetable *l;
2001 int len;
2002 int i;
2003 struct linetable_entry *item;
2004 struct symtab_and_line val;
2005 struct blockvector *bv;
2006 struct minimal_symbol *msymbol;
2007 struct minimal_symbol *mfunsym;
2008
2009 /* Info on best line seen so far, and where it starts, and its file. */
2010
2011 struct linetable_entry *best = NULL;
2012 CORE_ADDR best_end = 0;
2013 struct symtab *best_symtab = 0;
2014
2015 /* Store here the first line number
2016 of a file which contains the line at the smallest pc after PC.
2017 If we don't find a line whose range contains PC,
2018 we will use a line one less than this,
2019 with a range from the start of that file to the first line's pc. */
2020 struct linetable_entry *alt = NULL;
2021 struct symtab *alt_symtab = 0;
2022
2023 /* Info on best line seen in this file. */
2024
2025 struct linetable_entry *prev;
2026
2027 /* If this pc is not from the current frame,
2028 it is the address of the end of a call instruction.
2029 Quite likely that is the start of the following statement.
2030 But what we want is the statement containing the instruction.
2031 Fudge the pc to make sure we get that. */
2032
2033 init_sal (&val); /* initialize to zeroes */
2034
2035 /* It's tempting to assume that, if we can't find debugging info for
2036 any function enclosing PC, that we shouldn't search for line
2037 number info, either. However, GAS can emit line number info for
2038 assembly files --- very helpful when debugging hand-written
2039 assembly code. In such a case, we'd have no debug info for the
2040 function, but we would have line info. */
2041
2042 if (notcurrent)
2043 pc -= 1;
2044
2045 /* elz: added this because this function returned the wrong
2046 information if the pc belongs to a stub (import/export)
2047 to call a shlib function. This stub would be anywhere between
2048 two functions in the target, and the line info was erroneously
2049 taken to be the one of the line before the pc.
2050 */
2051 /* RT: Further explanation:
2052
2053 * We have stubs (trampolines) inserted between procedures.
2054 *
2055 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2056 * exists in the main image.
2057 *
2058 * In the minimal symbol table, we have a bunch of symbols
2059 * sorted by start address. The stubs are marked as "trampoline",
2060 * the others appear as text. E.g.:
2061 *
2062 * Minimal symbol table for main image
2063 * main: code for main (text symbol)
2064 * shr1: stub (trampoline symbol)
2065 * foo: code for foo (text symbol)
2066 * ...
2067 * Minimal symbol table for "shr1" image:
2068 * ...
2069 * shr1: code for shr1 (text symbol)
2070 * ...
2071 *
2072 * So the code below is trying to detect if we are in the stub
2073 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2074 * and if found, do the symbolization from the real-code address
2075 * rather than the stub address.
2076 *
2077 * Assumptions being made about the minimal symbol table:
2078 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2079 * if we're really in the trampoline. If we're beyond it (say
2080 * we're in "foo" in the above example), it'll have a closer
2081 * symbol (the "foo" text symbol for example) and will not
2082 * return the trampoline.
2083 * 2. lookup_minimal_symbol_text() will find a real text symbol
2084 * corresponding to the trampoline, and whose address will
2085 * be different than the trampoline address. I put in a sanity
2086 * check for the address being the same, to avoid an
2087 * infinite recursion.
2088 */
2089 msymbol = lookup_minimal_symbol_by_pc (pc);
2090 if (msymbol != NULL)
2091 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2092 {
2093 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2094 NULL);
2095 if (mfunsym == NULL)
2096 /* I eliminated this warning since it is coming out
2097 * in the following situation:
2098 * gdb shmain // test program with shared libraries
2099 * (gdb) break shr1 // function in shared lib
2100 * Warning: In stub for ...
2101 * In the above situation, the shared lib is not loaded yet,
2102 * so of course we can't find the real func/line info,
2103 * but the "break" still works, and the warning is annoying.
2104 * So I commented out the warning. RT */
2105 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2106 /* fall through */
2107 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
2108 /* Avoid infinite recursion */
2109 /* See above comment about why warning is commented out */
2110 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2111 /* fall through */
2112 else
2113 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
2114 }
2115
2116
2117 s = find_pc_sect_symtab (pc, section);
2118 if (!s)
2119 {
2120 /* if no symbol information, return previous pc */
2121 if (notcurrent)
2122 pc++;
2123 val.pc = pc;
2124 return val;
2125 }
2126
2127 bv = BLOCKVECTOR (s);
2128
2129 /* Look at all the symtabs that share this blockvector.
2130 They all have the same apriori range, that we found was right;
2131 but they have different line tables. */
2132
2133 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2134 {
2135 /* Find the best line in this symtab. */
2136 l = LINETABLE (s);
2137 if (!l)
2138 continue;
2139 len = l->nitems;
2140 if (len <= 0)
2141 {
2142 /* I think len can be zero if the symtab lacks line numbers
2143 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2144 I'm not sure which, and maybe it depends on the symbol
2145 reader). */
2146 continue;
2147 }
2148
2149 prev = NULL;
2150 item = l->item; /* Get first line info */
2151
2152 /* Is this file's first line closer than the first lines of other files?
2153 If so, record this file, and its first line, as best alternate. */
2154 if (item->pc > pc && (!alt || item->pc < alt->pc))
2155 {
2156 alt = item;
2157 alt_symtab = s;
2158 }
2159
2160 for (i = 0; i < len; i++, item++)
2161 {
2162 /* Leave prev pointing to the linetable entry for the last line
2163 that started at or before PC. */
2164 if (item->pc > pc)
2165 break;
2166
2167 prev = item;
2168 }
2169
2170 /* At this point, prev points at the line whose start addr is <= pc, and
2171 item points at the next line. If we ran off the end of the linetable
2172 (pc >= start of the last line), then prev == item. If pc < start of
2173 the first line, prev will not be set. */
2174
2175 /* Is this file's best line closer than the best in the other files?
2176 If so, record this file, and its best line, as best so far. Don't
2177 save prev if it represents the end of a function (i.e. line number
2178 0) instead of a real line. */
2179
2180 if (prev && prev->line && (!best || prev->pc > best->pc))
2181 {
2182 best = prev;
2183 best_symtab = s;
2184
2185 /* Discard BEST_END if it's before the PC of the current BEST. */
2186 if (best_end <= best->pc)
2187 best_end = 0;
2188 }
2189
2190 /* If another line (denoted by ITEM) is in the linetable and its
2191 PC is after BEST's PC, but before the current BEST_END, then
2192 use ITEM's PC as the new best_end. */
2193 if (best && i < len && item->pc > best->pc
2194 && (best_end == 0 || best_end > item->pc))
2195 best_end = item->pc;
2196 }
2197
2198 if (!best_symtab)
2199 {
2200 /* If we didn't find any line number info, just return zeros.
2201 We used to return alt->line - 1 here, but that could be
2202 anywhere; if we don't have line number info for this PC,
2203 don't make some up. */
2204 val.pc = pc;
2205 }
2206 else if (best->line == 0)
2207 {
2208 /* If our best fit is in a range of PC's for which no line
2209 number info is available (line number is zero) then we didn't
2210 find any valid line information. */
2211 val.pc = pc;
2212 }
2213 else
2214 {
2215 val.symtab = best_symtab;
2216 val.line = best->line;
2217 val.pc = best->pc;
2218 if (best_end && (!alt || best_end < alt->pc))
2219 val.end = best_end;
2220 else if (alt)
2221 val.end = alt->pc;
2222 else
2223 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2224 }
2225 val.section = section;
2226 return val;
2227}
2228
2229/* Backward compatibility (no section) */
2230
2231struct symtab_and_line
2232find_pc_line (CORE_ADDR pc, int notcurrent)
2233{
2234 asection *section;
2235
2236 section = find_pc_overlay (pc);
2237 if (pc_in_unmapped_range (pc, section))
2238 pc = overlay_mapped_address (pc, section);
2239 return find_pc_sect_line (pc, section, notcurrent);
2240}
2241\f
2242/* Find line number LINE in any symtab whose name is the same as
2243 SYMTAB.
2244
2245 If found, return the symtab that contains the linetable in which it was
2246 found, set *INDEX to the index in the linetable of the best entry
2247 found, and set *EXACT_MATCH nonzero if the value returned is an
2248 exact match.
2249
2250 If not found, return NULL. */
2251
2252struct symtab *
2253find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2254{
2255 int exact;
2256
2257 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2258 so far seen. */
2259
2260 int best_index;
2261 struct linetable *best_linetable;
2262 struct symtab *best_symtab;
2263
2264 /* First try looking it up in the given symtab. */
2265 best_linetable = LINETABLE (symtab);
2266 best_symtab = symtab;
2267 best_index = find_line_common (best_linetable, line, &exact);
2268 if (best_index < 0 || !exact)
2269 {
2270 /* Didn't find an exact match. So we better keep looking for
2271 another symtab with the same name. In the case of xcoff,
2272 multiple csects for one source file (produced by IBM's FORTRAN
2273 compiler) produce multiple symtabs (this is unavoidable
2274 assuming csects can be at arbitrary places in memory and that
2275 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2276
2277 /* BEST is the smallest linenumber > LINE so far seen,
2278 or 0 if none has been seen so far.
2279 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2280 int best;
2281
2282 struct objfile *objfile;
2283 struct symtab *s;
2284 struct partial_symtab *p;
2285
2286 if (best_index >= 0)
2287 best = best_linetable->item[best_index].line;
2288 else
2289 best = 0;
2290
2291 ALL_PSYMTABS (objfile, p)
2292 {
2293 if (strcmp (symtab->filename, p->filename) != 0)
2294 continue;
2295 PSYMTAB_TO_SYMTAB (p);
2296 }
2297
2298 ALL_SYMTABS (objfile, s)
2299 {
2300 struct linetable *l;
2301 int ind;
2302
2303 if (strcmp (symtab->filename, s->filename) != 0)
2304 continue;
2305 l = LINETABLE (s);
2306 ind = find_line_common (l, line, &exact);
2307 if (ind >= 0)
2308 {
2309 if (exact)
2310 {
2311 best_index = ind;
2312 best_linetable = l;
2313 best_symtab = s;
2314 goto done;
2315 }
2316 if (best == 0 || l->item[ind].line < best)
2317 {
2318 best = l->item[ind].line;
2319 best_index = ind;
2320 best_linetable = l;
2321 best_symtab = s;
2322 }
2323 }
2324 }
2325 }
2326done:
2327 if (best_index < 0)
2328 return NULL;
2329
2330 if (index)
2331 *index = best_index;
2332 if (exact_match)
2333 *exact_match = exact;
2334
2335 return best_symtab;
2336}
2337\f
2338/* Set the PC value for a given source file and line number and return true.
2339 Returns zero for invalid line number (and sets the PC to 0).
2340 The source file is specified with a struct symtab. */
2341
2342int
2343find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2344{
2345 struct linetable *l;
2346 int ind;
2347
2348 *pc = 0;
2349 if (symtab == 0)
2350 return 0;
2351
2352 symtab = find_line_symtab (symtab, line, &ind, NULL);
2353 if (symtab != NULL)
2354 {
2355 l = LINETABLE (symtab);
2356 *pc = l->item[ind].pc;
2357 return 1;
2358 }
2359 else
2360 return 0;
2361}
2362
2363/* Find the range of pc values in a line.
2364 Store the starting pc of the line into *STARTPTR
2365 and the ending pc (start of next line) into *ENDPTR.
2366 Returns 1 to indicate success.
2367 Returns 0 if could not find the specified line. */
2368
2369int
2370find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2371 CORE_ADDR *endptr)
2372{
2373 CORE_ADDR startaddr;
2374 struct symtab_and_line found_sal;
2375
2376 startaddr = sal.pc;
2377 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2378 return 0;
2379
2380 /* This whole function is based on address. For example, if line 10 has
2381 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2382 "info line *0x123" should say the line goes from 0x100 to 0x200
2383 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2384 This also insures that we never give a range like "starts at 0x134
2385 and ends at 0x12c". */
2386
2387 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2388 if (found_sal.line != sal.line)
2389 {
2390 /* The specified line (sal) has zero bytes. */
2391 *startptr = found_sal.pc;
2392 *endptr = found_sal.pc;
2393 }
2394 else
2395 {
2396 *startptr = found_sal.pc;
2397 *endptr = found_sal.end;
2398 }
2399 return 1;
2400}
2401
2402/* Given a line table and a line number, return the index into the line
2403 table for the pc of the nearest line whose number is >= the specified one.
2404 Return -1 if none is found. The value is >= 0 if it is an index.
2405
2406 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2407
2408static int
2409find_line_common (struct linetable *l, int lineno,
2410 int *exact_match)
2411{
2412 int i;
2413 int len;
2414
2415 /* BEST is the smallest linenumber > LINENO so far seen,
2416 or 0 if none has been seen so far.
2417 BEST_INDEX identifies the item for it. */
2418
2419 int best_index = -1;
2420 int best = 0;
2421
2422 if (lineno <= 0)
2423 return -1;
2424 if (l == 0)
2425 return -1;
2426
2427 len = l->nitems;
2428 for (i = 0; i < len; i++)
2429 {
2430 struct linetable_entry *item = &(l->item[i]);
2431
2432 if (item->line == lineno)
2433 {
2434 /* Return the first (lowest address) entry which matches. */
2435 *exact_match = 1;
2436 return i;
2437 }
2438
2439 if (item->line > lineno && (best == 0 || item->line < best))
2440 {
2441 best = item->line;
2442 best_index = i;
2443 }
2444 }
2445
2446 /* If we got here, we didn't get an exact match. */
2447
2448 *exact_match = 0;
2449 return best_index;
2450}
2451
2452int
2453find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2454{
2455 struct symtab_and_line sal;
2456 sal = find_pc_line (pc, 0);
2457 *startptr = sal.pc;
2458 *endptr = sal.end;
2459 return sal.symtab != 0;
2460}
2461
2462/* Given a function symbol SYM, find the symtab and line for the start
2463 of the function.
2464 If the argument FUNFIRSTLINE is nonzero, we want the first line
2465 of real code inside the function. */
2466
2467struct symtab_and_line
2468find_function_start_sal (struct symbol *sym, int funfirstline)
2469{
2470 CORE_ADDR pc;
2471 struct symtab_and_line sal;
2472
2473 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2474 fixup_symbol_section (sym, NULL);
2475 if (funfirstline)
2476 { /* skip "first line" of function (which is actually its prologue) */
2477 asection *section = SYMBOL_BFD_SECTION (sym);
2478 /* If function is in an unmapped overlay, use its unmapped LMA
2479 address, so that gdbarch_skip_prologue has something unique to work
2480 on */
2481 if (section_is_overlay (section) &&
2482 !section_is_mapped (section))
2483 pc = overlay_unmapped_address (pc, section);
2484
2485 pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
2486 pc = gdbarch_skip_prologue (current_gdbarch, pc);
2487
2488 /* For overlays, map pc back into its mapped VMA range */
2489 pc = overlay_mapped_address (pc, section);
2490 }
2491 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2492
2493 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2494 line is still part of the same function. */
2495 if (sal.pc != pc
2496 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2497 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2498 {
2499 /* First pc of next line */
2500 pc = sal.end;
2501 /* Recalculate the line number (might not be N+1). */
2502 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2503 }
2504 sal.pc = pc;
2505
2506 return sal;
2507}
2508
2509/* If P is of the form "operator[ \t]+..." where `...' is
2510 some legitimate operator text, return a pointer to the
2511 beginning of the substring of the operator text.
2512 Otherwise, return "". */
2513char *
2514operator_chars (char *p, char **end)
2515{
2516 *end = "";
2517 if (strncmp (p, "operator", 8))
2518 return *end;
2519 p += 8;
2520
2521 /* Don't get faked out by `operator' being part of a longer
2522 identifier. */
2523 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2524 return *end;
2525
2526 /* Allow some whitespace between `operator' and the operator symbol. */
2527 while (*p == ' ' || *p == '\t')
2528 p++;
2529
2530 /* Recognize 'operator TYPENAME'. */
2531
2532 if (isalpha (*p) || *p == '_' || *p == '$')
2533 {
2534 char *q = p + 1;
2535 while (isalnum (*q) || *q == '_' || *q == '$')
2536 q++;
2537 *end = q;
2538 return p;
2539 }
2540
2541 while (*p)
2542 switch (*p)
2543 {
2544 case '\\': /* regexp quoting */
2545 if (p[1] == '*')
2546 {
2547 if (p[2] == '=') /* 'operator\*=' */
2548 *end = p + 3;
2549 else /* 'operator\*' */
2550 *end = p + 2;
2551 return p;
2552 }
2553 else if (p[1] == '[')
2554 {
2555 if (p[2] == ']')
2556 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2557 else if (p[2] == '\\' && p[3] == ']')
2558 {
2559 *end = p + 4; /* 'operator\[\]' */
2560 return p;
2561 }
2562 else
2563 error (_("nothing is allowed between '[' and ']'"));
2564 }
2565 else
2566 {
2567 /* Gratuitous qoute: skip it and move on. */
2568 p++;
2569 continue;
2570 }
2571 break;
2572 case '!':
2573 case '=':
2574 case '*':
2575 case '/':
2576 case '%':
2577 case '^':
2578 if (p[1] == '=')
2579 *end = p + 2;
2580 else
2581 *end = p + 1;
2582 return p;
2583 case '<':
2584 case '>':
2585 case '+':
2586 case '-':
2587 case '&':
2588 case '|':
2589 if (p[0] == '-' && p[1] == '>')
2590 {
2591 /* Struct pointer member operator 'operator->'. */
2592 if (p[2] == '*')
2593 {
2594 *end = p + 3; /* 'operator->*' */
2595 return p;
2596 }
2597 else if (p[2] == '\\')
2598 {
2599 *end = p + 4; /* Hopefully 'operator->\*' */
2600 return p;
2601 }
2602 else
2603 {
2604 *end = p + 2; /* 'operator->' */
2605 return p;
2606 }
2607 }
2608 if (p[1] == '=' || p[1] == p[0])
2609 *end = p + 2;
2610 else
2611 *end = p + 1;
2612 return p;
2613 case '~':
2614 case ',':
2615 *end = p + 1;
2616 return p;
2617 case '(':
2618 if (p[1] != ')')
2619 error (_("`operator ()' must be specified without whitespace in `()'"));
2620 *end = p + 2;
2621 return p;
2622 case '?':
2623 if (p[1] != ':')
2624 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2625 *end = p + 2;
2626 return p;
2627 case '[':
2628 if (p[1] != ']')
2629 error (_("`operator []' must be specified without whitespace in `[]'"));
2630 *end = p + 2;
2631 return p;
2632 default:
2633 error (_("`operator %s' not supported"), p);
2634 break;
2635 }
2636
2637 *end = "";
2638 return *end;
2639}
2640\f
2641
2642/* If FILE is not already in the table of files, return zero;
2643 otherwise return non-zero. Optionally add FILE to the table if ADD
2644 is non-zero. If *FIRST is non-zero, forget the old table
2645 contents. */
2646static int
2647filename_seen (const char *file, int add, int *first)
2648{
2649 /* Table of files seen so far. */
2650 static const char **tab = NULL;
2651 /* Allocated size of tab in elements.
2652 Start with one 256-byte block (when using GNU malloc.c).
2653 24 is the malloc overhead when range checking is in effect. */
2654 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2655 /* Current size of tab in elements. */
2656 static int tab_cur_size;
2657 const char **p;
2658
2659 if (*first)
2660 {
2661 if (tab == NULL)
2662 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2663 tab_cur_size = 0;
2664 }
2665
2666 /* Is FILE in tab? */
2667 for (p = tab; p < tab + tab_cur_size; p++)
2668 if (strcmp (*p, file) == 0)
2669 return 1;
2670
2671 /* No; maybe add it to tab. */
2672 if (add)
2673 {
2674 if (tab_cur_size == tab_alloc_size)
2675 {
2676 tab_alloc_size *= 2;
2677 tab = (const char **) xrealloc ((char *) tab,
2678 tab_alloc_size * sizeof (*tab));
2679 }
2680 tab[tab_cur_size++] = file;
2681 }
2682
2683 return 0;
2684}
2685
2686/* Slave routine for sources_info. Force line breaks at ,'s.
2687 NAME is the name to print and *FIRST is nonzero if this is the first
2688 name printed. Set *FIRST to zero. */
2689static void
2690output_source_filename (const char *name, int *first)
2691{
2692 /* Since a single source file can result in several partial symbol
2693 tables, we need to avoid printing it more than once. Note: if
2694 some of the psymtabs are read in and some are not, it gets
2695 printed both under "Source files for which symbols have been
2696 read" and "Source files for which symbols will be read in on
2697 demand". I consider this a reasonable way to deal with the
2698 situation. I'm not sure whether this can also happen for
2699 symtabs; it doesn't hurt to check. */
2700
2701 /* Was NAME already seen? */
2702 if (filename_seen (name, 1, first))
2703 {
2704 /* Yes; don't print it again. */
2705 return;
2706 }
2707 /* No; print it and reset *FIRST. */
2708 if (*first)
2709 {
2710 *first = 0;
2711 }
2712 else
2713 {
2714 printf_filtered (", ");
2715 }
2716
2717 wrap_here ("");
2718 fputs_filtered (name, gdb_stdout);
2719}
2720
2721static void
2722sources_info (char *ignore, int from_tty)
2723{
2724 struct symtab *s;
2725 struct partial_symtab *ps;
2726 struct objfile *objfile;
2727 int first;
2728
2729 if (!have_full_symbols () && !have_partial_symbols ())
2730 {
2731 error (_("No symbol table is loaded. Use the \"file\" command."));
2732 }
2733
2734 printf_filtered ("Source files for which symbols have been read in:\n\n");
2735
2736 first = 1;
2737 ALL_SYMTABS (objfile, s)
2738 {
2739 const char *fullname = symtab_to_fullname (s);
2740 output_source_filename (fullname ? fullname : s->filename, &first);
2741 }
2742 printf_filtered ("\n\n");
2743
2744 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2745
2746 first = 1;
2747 ALL_PSYMTABS (objfile, ps)
2748 {
2749 if (!ps->readin)
2750 {
2751 const char *fullname = psymtab_to_fullname (ps);
2752 output_source_filename (fullname ? fullname : ps->filename, &first);
2753 }
2754 }
2755 printf_filtered ("\n");
2756}
2757
2758static int
2759file_matches (char *file, char *files[], int nfiles)
2760{
2761 int i;
2762
2763 if (file != NULL && nfiles != 0)
2764 {
2765 for (i = 0; i < nfiles; i++)
2766 {
2767 if (strcmp (files[i], lbasename (file)) == 0)
2768 return 1;
2769 }
2770 }
2771 else if (nfiles == 0)
2772 return 1;
2773 return 0;
2774}
2775
2776/* Free any memory associated with a search. */
2777void
2778free_search_symbols (struct symbol_search *symbols)
2779{
2780 struct symbol_search *p;
2781 struct symbol_search *next;
2782
2783 for (p = symbols; p != NULL; p = next)
2784 {
2785 next = p->next;
2786 xfree (p);
2787 }
2788}
2789
2790static void
2791do_free_search_symbols_cleanup (void *symbols)
2792{
2793 free_search_symbols (symbols);
2794}
2795
2796struct cleanup *
2797make_cleanup_free_search_symbols (struct symbol_search *symbols)
2798{
2799 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2800}
2801
2802/* Helper function for sort_search_symbols and qsort. Can only
2803 sort symbols, not minimal symbols. */
2804static int
2805compare_search_syms (const void *sa, const void *sb)
2806{
2807 struct symbol_search **sym_a = (struct symbol_search **) sa;
2808 struct symbol_search **sym_b = (struct symbol_search **) sb;
2809
2810 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2811 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2812}
2813
2814/* Sort the ``nfound'' symbols in the list after prevtail. Leave
2815 prevtail where it is, but update its next pointer to point to
2816 the first of the sorted symbols. */
2817static struct symbol_search *
2818sort_search_symbols (struct symbol_search *prevtail, int nfound)
2819{
2820 struct symbol_search **symbols, *symp, *old_next;
2821 int i;
2822
2823 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2824 * nfound);
2825 symp = prevtail->next;
2826 for (i = 0; i < nfound; i++)
2827 {
2828 symbols[i] = symp;
2829 symp = symp->next;
2830 }
2831 /* Generally NULL. */
2832 old_next = symp;
2833
2834 qsort (symbols, nfound, sizeof (struct symbol_search *),
2835 compare_search_syms);
2836
2837 symp = prevtail;
2838 for (i = 0; i < nfound; i++)
2839 {
2840 symp->next = symbols[i];
2841 symp = symp->next;
2842 }
2843 symp->next = old_next;
2844
2845 xfree (symbols);
2846 return symp;
2847}
2848
2849/* Search the symbol table for matches to the regular expression REGEXP,
2850 returning the results in *MATCHES.
2851
2852 Only symbols of KIND are searched:
2853 FUNCTIONS_DOMAIN - search all functions
2854 TYPES_DOMAIN - search all type names
2855 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2856 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2857 and constants (enums)
2858
2859 free_search_symbols should be called when *MATCHES is no longer needed.
2860
2861 The results are sorted locally; each symtab's global and static blocks are
2862 separately alphabetized.
2863 */
2864void
2865search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2866 struct symbol_search **matches)
2867{
2868 struct symtab *s;
2869 struct partial_symtab *ps;
2870 struct blockvector *bv;
2871 struct block *b;
2872 int i = 0;
2873 struct dict_iterator iter;
2874 struct symbol *sym;
2875 struct partial_symbol **psym;
2876 struct objfile *objfile;
2877 struct minimal_symbol *msymbol;
2878 char *val;
2879 int found_misc = 0;
2880 static enum minimal_symbol_type types[]
2881 =
2882 {mst_data, mst_text, mst_abs, mst_unknown};
2883 static enum minimal_symbol_type types2[]
2884 =
2885 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2886 static enum minimal_symbol_type types3[]
2887 =
2888 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2889 static enum minimal_symbol_type types4[]
2890 =
2891 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2892 enum minimal_symbol_type ourtype;
2893 enum minimal_symbol_type ourtype2;
2894 enum minimal_symbol_type ourtype3;
2895 enum minimal_symbol_type ourtype4;
2896 struct symbol_search *sr;
2897 struct symbol_search *psr;
2898 struct symbol_search *tail;
2899 struct cleanup *old_chain = NULL;
2900
2901 if (kind < VARIABLES_DOMAIN)
2902 error (_("must search on specific domain"));
2903
2904 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2905 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2906 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2907 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2908
2909 sr = *matches = NULL;
2910 tail = NULL;
2911
2912 if (regexp != NULL)
2913 {
2914 /* Make sure spacing is right for C++ operators.
2915 This is just a courtesy to make the matching less sensitive
2916 to how many spaces the user leaves between 'operator'
2917 and <TYPENAME> or <OPERATOR>. */
2918 char *opend;
2919 char *opname = operator_chars (regexp, &opend);
2920 if (*opname)
2921 {
2922 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2923 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2924 {
2925 /* There should 1 space between 'operator' and 'TYPENAME'. */
2926 if (opname[-1] != ' ' || opname[-2] == ' ')
2927 fix = 1;
2928 }
2929 else
2930 {
2931 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2932 if (opname[-1] == ' ')
2933 fix = 0;
2934 }
2935 /* If wrong number of spaces, fix it. */
2936 if (fix >= 0)
2937 {
2938 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2939 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2940 regexp = tmp;
2941 }
2942 }
2943
2944 if (0 != (val = re_comp (regexp)))
2945 error (_("Invalid regexp (%s): %s"), val, regexp);
2946 }
2947
2948 /* Search through the partial symtabs *first* for all symbols
2949 matching the regexp. That way we don't have to reproduce all of
2950 the machinery below. */
2951
2952 ALL_PSYMTABS (objfile, ps)
2953 {
2954 struct partial_symbol **bound, **gbound, **sbound;
2955 int keep_going = 1;
2956
2957 if (ps->readin)
2958 continue;
2959
2960 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2961 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2962 bound = gbound;
2963
2964 /* Go through all of the symbols stored in a partial
2965 symtab in one loop. */
2966 psym = objfile->global_psymbols.list + ps->globals_offset;
2967 while (keep_going)
2968 {
2969 if (psym >= bound)
2970 {
2971 if (bound == gbound && ps->n_static_syms != 0)
2972 {
2973 psym = objfile->static_psymbols.list + ps->statics_offset;
2974 bound = sbound;
2975 }
2976 else
2977 keep_going = 0;
2978 continue;
2979 }
2980 else
2981 {
2982 QUIT;
2983
2984 /* If it would match (logic taken from loop below)
2985 load the file and go on to the next one. We check the
2986 filename here, but that's a bit bogus: we don't know
2987 what file it really comes from until we have full
2988 symtabs. The symbol might be in a header file included by
2989 this psymtab. This only affects Insight. */
2990 if (file_matches (ps->filename, files, nfiles)
2991 && ((regexp == NULL
2992 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
2993 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
2994 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
2995 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
2996 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
2997 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
2998 {
2999 PSYMTAB_TO_SYMTAB (ps);
3000 keep_going = 0;
3001 }
3002 }
3003 psym++;
3004 }
3005 }
3006
3007 /* Here, we search through the minimal symbol tables for functions
3008 and variables that match, and force their symbols to be read.
3009 This is in particular necessary for demangled variable names,
3010 which are no longer put into the partial symbol tables.
3011 The symbol will then be found during the scan of symtabs below.
3012
3013 For functions, find_pc_symtab should succeed if we have debug info
3014 for the function, for variables we have to call lookup_symbol
3015 to determine if the variable has debug info.
3016 If the lookup fails, set found_misc so that we will rescan to print
3017 any matching symbols without debug info.
3018 */
3019
3020 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3021 {
3022 ALL_MSYMBOLS (objfile, msymbol)
3023 {
3024 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3025 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3026 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3027 MSYMBOL_TYPE (msymbol) == ourtype4)
3028 {
3029 if (regexp == NULL
3030 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3031 {
3032 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3033 {
3034 /* FIXME: carlton/2003-02-04: Given that the
3035 semantics of lookup_symbol keeps on changing
3036 slightly, it would be a nice idea if we had a
3037 function lookup_symbol_minsym that found the
3038 symbol associated to a given minimal symbol (if
3039 any). */
3040 if (kind == FUNCTIONS_DOMAIN
3041 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3042 (struct block *) NULL,
3043 VAR_DOMAIN,
3044 0, (struct symtab **) NULL)
3045 == NULL)
3046 found_misc = 1;
3047 }
3048 }
3049 }
3050 }
3051 }
3052
3053 ALL_PRIMARY_SYMTABS (objfile, s)
3054 {
3055 bv = BLOCKVECTOR (s);
3056 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3057 {
3058 struct symbol_search *prevtail = tail;
3059 int nfound = 0;
3060 b = BLOCKVECTOR_BLOCK (bv, i);
3061 ALL_BLOCK_SYMBOLS (b, iter, sym)
3062 {
3063 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3064 QUIT;
3065
3066 if (file_matches (real_symtab->filename, files, nfiles)
3067 && ((regexp == NULL
3068 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3069 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3070 && SYMBOL_CLASS (sym) != LOC_BLOCK
3071 && SYMBOL_CLASS (sym) != LOC_CONST)
3072 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3073 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3074 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3075 {
3076 /* match */
3077 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3078 psr->block = i;
3079 psr->symtab = real_symtab;
3080 psr->symbol = sym;
3081 psr->msymbol = NULL;
3082 psr->next = NULL;
3083 if (tail == NULL)
3084 sr = psr;
3085 else
3086 tail->next = psr;
3087 tail = psr;
3088 nfound ++;
3089 }
3090 }
3091 if (nfound > 0)
3092 {
3093 if (prevtail == NULL)
3094 {
3095 struct symbol_search dummy;
3096
3097 dummy.next = sr;
3098 tail = sort_search_symbols (&dummy, nfound);
3099 sr = dummy.next;
3100
3101 old_chain = make_cleanup_free_search_symbols (sr);
3102 }
3103 else
3104 tail = sort_search_symbols (prevtail, nfound);
3105 }
3106 }
3107 }
3108
3109 /* If there are no eyes, avoid all contact. I mean, if there are
3110 no debug symbols, then print directly from the msymbol_vector. */
3111
3112 if (found_misc || kind != FUNCTIONS_DOMAIN)
3113 {
3114 ALL_MSYMBOLS (objfile, msymbol)
3115 {
3116 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3117 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3118 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3119 MSYMBOL_TYPE (msymbol) == ourtype4)
3120 {
3121 if (regexp == NULL
3122 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3123 {
3124 /* Functions: Look up by address. */
3125 if (kind != FUNCTIONS_DOMAIN ||
3126 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3127 {
3128 /* Variables/Absolutes: Look up by name */
3129 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3130 (struct block *) NULL, VAR_DOMAIN,
3131 0, (struct symtab **) NULL) == NULL)
3132 {
3133 /* match */
3134 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3135 psr->block = i;
3136 psr->msymbol = msymbol;
3137 psr->symtab = NULL;
3138 psr->symbol = NULL;
3139 psr->next = NULL;
3140 if (tail == NULL)
3141 {
3142 sr = psr;
3143 old_chain = make_cleanup_free_search_symbols (sr);
3144 }
3145 else
3146 tail->next = psr;
3147 tail = psr;
3148 }
3149 }
3150 }
3151 }
3152 }
3153 }
3154
3155 *matches = sr;
3156 if (sr != NULL)
3157 discard_cleanups (old_chain);
3158}
3159
3160/* Helper function for symtab_symbol_info, this function uses
3161 the data returned from search_symbols() to print information
3162 regarding the match to gdb_stdout.
3163 */
3164static void
3165print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3166 int block, char *last)
3167{
3168 if (last == NULL || strcmp (last, s->filename) != 0)
3169 {
3170 fputs_filtered ("\nFile ", gdb_stdout);
3171 fputs_filtered (s->filename, gdb_stdout);
3172 fputs_filtered (":\n", gdb_stdout);
3173 }
3174
3175 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3176 printf_filtered ("static ");
3177
3178 /* Typedef that is not a C++ class */
3179 if (kind == TYPES_DOMAIN
3180 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3181 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3182 /* variable, func, or typedef-that-is-c++-class */
3183 else if (kind < TYPES_DOMAIN ||
3184 (kind == TYPES_DOMAIN &&
3185 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3186 {
3187 type_print (SYMBOL_TYPE (sym),
3188 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3189 ? "" : SYMBOL_PRINT_NAME (sym)),
3190 gdb_stdout, 0);
3191
3192 printf_filtered (";\n");
3193 }
3194}
3195
3196/* This help function for symtab_symbol_info() prints information
3197 for non-debugging symbols to gdb_stdout.
3198 */
3199static void
3200print_msymbol_info (struct minimal_symbol *msymbol)
3201{
3202 char *tmp;
3203
3204 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3205 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3206 & (CORE_ADDR) 0xffffffff,
3207 8);
3208 else
3209 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3210 16);
3211 printf_filtered ("%s %s\n",
3212 tmp, SYMBOL_PRINT_NAME (msymbol));
3213}
3214
3215/* This is the guts of the commands "info functions", "info types", and
3216 "info variables". It calls search_symbols to find all matches and then
3217 print_[m]symbol_info to print out some useful information about the
3218 matches.
3219 */
3220static void
3221symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3222{
3223 static char *classnames[]
3224 =
3225 {"variable", "function", "type", "method"};
3226 struct symbol_search *symbols;
3227 struct symbol_search *p;
3228 struct cleanup *old_chain;
3229 char *last_filename = NULL;
3230 int first = 1;
3231
3232 /* must make sure that if we're interrupted, symbols gets freed */
3233 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3234 old_chain = make_cleanup_free_search_symbols (symbols);
3235
3236 printf_filtered (regexp
3237 ? "All %ss matching regular expression \"%s\":\n"
3238 : "All defined %ss:\n",
3239 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3240
3241 for (p = symbols; p != NULL; p = p->next)
3242 {
3243 QUIT;
3244
3245 if (p->msymbol != NULL)
3246 {
3247 if (first)
3248 {
3249 printf_filtered ("\nNon-debugging symbols:\n");
3250 first = 0;
3251 }
3252 print_msymbol_info (p->msymbol);
3253 }
3254 else
3255 {
3256 print_symbol_info (kind,
3257 p->symtab,
3258 p->symbol,
3259 p->block,
3260 last_filename);
3261 last_filename = p->symtab->filename;
3262 }
3263 }
3264
3265 do_cleanups (old_chain);
3266}
3267
3268static void
3269variables_info (char *regexp, int from_tty)
3270{
3271 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3272}
3273
3274static void
3275functions_info (char *regexp, int from_tty)
3276{
3277 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3278}
3279
3280
3281static void
3282types_info (char *regexp, int from_tty)
3283{
3284 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3285}
3286
3287/* Breakpoint all functions matching regular expression. */
3288
3289void
3290rbreak_command_wrapper (char *regexp, int from_tty)
3291{
3292 rbreak_command (regexp, from_tty);
3293}
3294
3295static void
3296rbreak_command (char *regexp, int from_tty)
3297{
3298 struct symbol_search *ss;
3299 struct symbol_search *p;
3300 struct cleanup *old_chain;
3301
3302 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3303 old_chain = make_cleanup_free_search_symbols (ss);
3304
3305 for (p = ss; p != NULL; p = p->next)
3306 {
3307 if (p->msymbol == NULL)
3308 {
3309 char *string = alloca (strlen (p->symtab->filename)
3310 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3311 + 4);
3312 strcpy (string, p->symtab->filename);
3313 strcat (string, ":'");
3314 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3315 strcat (string, "'");
3316 break_command (string, from_tty);
3317 print_symbol_info (FUNCTIONS_DOMAIN,
3318 p->symtab,
3319 p->symbol,
3320 p->block,
3321 p->symtab->filename);
3322 }
3323 else
3324 {
3325 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3326 printf_filtered ("<function, no debug info> %s;\n",
3327 SYMBOL_PRINT_NAME (p->msymbol));
3328 }
3329 }
3330
3331 do_cleanups (old_chain);
3332}
3333\f
3334
3335/* Helper routine for make_symbol_completion_list. */
3336
3337static int return_val_size;
3338static int return_val_index;
3339static char **return_val;
3340
3341#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3342 completion_list_add_name \
3343 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3344
3345/* Test to see if the symbol specified by SYMNAME (which is already
3346 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3347 characters. If so, add it to the current completion list. */
3348
3349static void
3350completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3351 char *text, char *word)
3352{
3353 int newsize;
3354 int i;
3355
3356 /* clip symbols that cannot match */
3357
3358 if (strncmp (symname, sym_text, sym_text_len) != 0)
3359 {
3360 return;
3361 }
3362
3363 /* We have a match for a completion, so add SYMNAME to the current list
3364 of matches. Note that the name is moved to freshly malloc'd space. */
3365
3366 {
3367 char *new;
3368 if (word == sym_text)
3369 {
3370 new = xmalloc (strlen (symname) + 5);
3371 strcpy (new, symname);
3372 }
3373 else if (word > sym_text)
3374 {
3375 /* Return some portion of symname. */
3376 new = xmalloc (strlen (symname) + 5);
3377 strcpy (new, symname + (word - sym_text));
3378 }
3379 else
3380 {
3381 /* Return some of SYM_TEXT plus symname. */
3382 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3383 strncpy (new, word, sym_text - word);
3384 new[sym_text - word] = '\0';
3385 strcat (new, symname);
3386 }
3387
3388 if (return_val_index + 3 > return_val_size)
3389 {
3390 newsize = (return_val_size *= 2) * sizeof (char *);
3391 return_val = (char **) xrealloc ((char *) return_val, newsize);
3392 }
3393 return_val[return_val_index++] = new;
3394 return_val[return_val_index] = NULL;
3395 }
3396}
3397
3398/* ObjC: In case we are completing on a selector, look as the msymbol
3399 again and feed all the selectors into the mill. */
3400
3401static void
3402completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3403 int sym_text_len, char *text, char *word)
3404{
3405 static char *tmp = NULL;
3406 static unsigned int tmplen = 0;
3407
3408 char *method, *category, *selector;
3409 char *tmp2 = NULL;
3410
3411 method = SYMBOL_NATURAL_NAME (msymbol);
3412
3413 /* Is it a method? */
3414 if ((method[0] != '-') && (method[0] != '+'))
3415 return;
3416
3417 if (sym_text[0] == '[')
3418 /* Complete on shortened method method. */
3419 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3420
3421 while ((strlen (method) + 1) >= tmplen)
3422 {
3423 if (tmplen == 0)
3424 tmplen = 1024;
3425 else
3426 tmplen *= 2;
3427 tmp = xrealloc (tmp, tmplen);
3428 }
3429 selector = strchr (method, ' ');
3430 if (selector != NULL)
3431 selector++;
3432
3433 category = strchr (method, '(');
3434
3435 if ((category != NULL) && (selector != NULL))
3436 {
3437 memcpy (tmp, method, (category - method));
3438 tmp[category - method] = ' ';
3439 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3440 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3441 if (sym_text[0] == '[')
3442 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3443 }
3444
3445 if (selector != NULL)
3446 {
3447 /* Complete on selector only. */
3448 strcpy (tmp, selector);
3449 tmp2 = strchr (tmp, ']');
3450 if (tmp2 != NULL)
3451 *tmp2 = '\0';
3452
3453 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3454 }
3455}
3456
3457/* Break the non-quoted text based on the characters which are in
3458 symbols. FIXME: This should probably be language-specific. */
3459
3460static char *
3461language_search_unquoted_string (char *text, char *p)
3462{
3463 for (; p > text; --p)
3464 {
3465 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3466 continue;
3467 else
3468 {
3469 if ((current_language->la_language == language_objc))
3470 {
3471 if (p[-1] == ':') /* might be part of a method name */
3472 continue;
3473 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3474 p -= 2; /* beginning of a method name */
3475 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3476 { /* might be part of a method name */
3477 char *t = p;
3478
3479 /* Seeing a ' ' or a '(' is not conclusive evidence
3480 that we are in the middle of a method name. However,
3481 finding "-[" or "+[" should be pretty un-ambiguous.
3482 Unfortunately we have to find it now to decide. */
3483
3484 while (t > text)
3485 if (isalnum (t[-1]) || t[-1] == '_' ||
3486 t[-1] == ' ' || t[-1] == ':' ||
3487 t[-1] == '(' || t[-1] == ')')
3488 --t;
3489 else
3490 break;
3491
3492 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3493 p = t - 2; /* method name detected */
3494 /* else we leave with p unchanged */
3495 }
3496 }
3497 break;
3498 }
3499 }
3500 return p;
3501}
3502
3503
3504/* Return a NULL terminated array of all symbols (regardless of class)
3505 which begin by matching TEXT. If the answer is no symbols, then
3506 the return value is an array which contains only a NULL pointer.
3507
3508 Problem: All of the symbols have to be copied because readline frees them.
3509 I'm not going to worry about this; hopefully there won't be that many. */
3510
3511char **
3512make_symbol_completion_list (char *text, char *word)
3513{
3514 struct symbol *sym;
3515 struct symtab *s;
3516 struct partial_symtab *ps;
3517 struct minimal_symbol *msymbol;
3518 struct objfile *objfile;
3519 struct block *b, *surrounding_static_block = 0;
3520 struct dict_iterator iter;
3521 int j;
3522 struct partial_symbol **psym;
3523 /* The symbol we are completing on. Points in same buffer as text. */
3524 char *sym_text;
3525 /* Length of sym_text. */
3526 int sym_text_len;
3527
3528 /* Now look for the symbol we are supposed to complete on.
3529 FIXME: This should be language-specific. */
3530 {
3531 char *p;
3532 char quote_found;
3533 char *quote_pos = NULL;
3534
3535 /* First see if this is a quoted string. */
3536 quote_found = '\0';
3537 for (p = text; *p != '\0'; ++p)
3538 {
3539 if (quote_found != '\0')
3540 {
3541 if (*p == quote_found)
3542 /* Found close quote. */
3543 quote_found = '\0';
3544 else if (*p == '\\' && p[1] == quote_found)
3545 /* A backslash followed by the quote character
3546 doesn't end the string. */
3547 ++p;
3548 }
3549 else if (*p == '\'' || *p == '"')
3550 {
3551 quote_found = *p;
3552 quote_pos = p;
3553 }
3554 }
3555 if (quote_found == '\'')
3556 /* A string within single quotes can be a symbol, so complete on it. */
3557 sym_text = quote_pos + 1;
3558 else if (quote_found == '"')
3559 /* A double-quoted string is never a symbol, nor does it make sense
3560 to complete it any other way. */
3561 {
3562 return_val = (char **) xmalloc (sizeof (char *));
3563 return_val[0] = NULL;
3564 return return_val;
3565 }
3566 else
3567 {
3568 /* It is not a quoted string. Break it based on the characters
3569 which are in symbols. */
3570 while (p > text)
3571 {
3572 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3573 --p;
3574 else
3575 break;
3576 }
3577 sym_text = p;
3578 }
3579 }
3580
3581 sym_text_len = strlen (sym_text);
3582
3583 return_val_size = 100;
3584 return_val_index = 0;
3585 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3586 return_val[0] = NULL;
3587
3588 /* Look through the partial symtabs for all symbols which begin
3589 by matching SYM_TEXT. Add each one that you find to the list. */
3590
3591 ALL_PSYMTABS (objfile, ps)
3592 {
3593 /* If the psymtab's been read in we'll get it when we search
3594 through the blockvector. */
3595 if (ps->readin)
3596 continue;
3597
3598 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3599 psym < (objfile->global_psymbols.list + ps->globals_offset
3600 + ps->n_global_syms);
3601 psym++)
3602 {
3603 /* If interrupted, then quit. */
3604 QUIT;
3605 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3606 }
3607
3608 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3609 psym < (objfile->static_psymbols.list + ps->statics_offset
3610 + ps->n_static_syms);
3611 psym++)
3612 {
3613 QUIT;
3614 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3615 }
3616 }
3617
3618 /* At this point scan through the misc symbol vectors and add each
3619 symbol you find to the list. Eventually we want to ignore
3620 anything that isn't a text symbol (everything else will be
3621 handled by the psymtab code above). */
3622
3623 ALL_MSYMBOLS (objfile, msymbol)
3624 {
3625 QUIT;
3626 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3627
3628 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3629 }
3630
3631 /* Search upwards from currently selected frame (so that we can
3632 complete on local vars. */
3633
3634 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3635 {
3636 if (!BLOCK_SUPERBLOCK (b))
3637 {
3638 surrounding_static_block = b; /* For elmin of dups */
3639 }
3640
3641 /* Also catch fields of types defined in this places which match our
3642 text string. Only complete on types visible from current context. */
3643
3644 ALL_BLOCK_SYMBOLS (b, iter, sym)
3645 {
3646 QUIT;
3647 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3648 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3649 {
3650 struct type *t = SYMBOL_TYPE (sym);
3651 enum type_code c = TYPE_CODE (t);
3652
3653 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3654 {
3655 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3656 {
3657 if (TYPE_FIELD_NAME (t, j))
3658 {
3659 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3660 sym_text, sym_text_len, text, word);
3661 }
3662 }
3663 }
3664 }
3665 }
3666 }
3667
3668 /* Go through the symtabs and check the externs and statics for
3669 symbols which match. */
3670
3671 ALL_PRIMARY_SYMTABS (objfile, s)
3672 {
3673 QUIT;
3674 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3675 ALL_BLOCK_SYMBOLS (b, iter, sym)
3676 {
3677 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3678 }
3679 }
3680
3681 ALL_PRIMARY_SYMTABS (objfile, s)
3682 {
3683 QUIT;
3684 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3685 /* Don't do this block twice. */
3686 if (b == surrounding_static_block)
3687 continue;
3688 ALL_BLOCK_SYMBOLS (b, iter, sym)
3689 {
3690 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3691 }
3692 }
3693
3694 return (return_val);
3695}
3696
3697/* Like make_symbol_completion_list, but returns a list of symbols
3698 defined in a source file FILE. */
3699
3700char **
3701make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3702{
3703 struct symbol *sym;
3704 struct symtab *s;
3705 struct block *b;
3706 struct dict_iterator iter;
3707 /* The symbol we are completing on. Points in same buffer as text. */
3708 char *sym_text;
3709 /* Length of sym_text. */
3710 int sym_text_len;
3711
3712 /* Now look for the symbol we are supposed to complete on.
3713 FIXME: This should be language-specific. */
3714 {
3715 char *p;
3716 char quote_found;
3717 char *quote_pos = NULL;
3718
3719 /* First see if this is a quoted string. */
3720 quote_found = '\0';
3721 for (p = text; *p != '\0'; ++p)
3722 {
3723 if (quote_found != '\0')
3724 {
3725 if (*p == quote_found)
3726 /* Found close quote. */
3727 quote_found = '\0';
3728 else if (*p == '\\' && p[1] == quote_found)
3729 /* A backslash followed by the quote character
3730 doesn't end the string. */
3731 ++p;
3732 }
3733 else if (*p == '\'' || *p == '"')
3734 {
3735 quote_found = *p;
3736 quote_pos = p;
3737 }
3738 }
3739 if (quote_found == '\'')
3740 /* A string within single quotes can be a symbol, so complete on it. */
3741 sym_text = quote_pos + 1;
3742 else if (quote_found == '"')
3743 /* A double-quoted string is never a symbol, nor does it make sense
3744 to complete it any other way. */
3745 {
3746 return_val = (char **) xmalloc (sizeof (char *));
3747 return_val[0] = NULL;
3748 return return_val;
3749 }
3750 else
3751 {
3752 /* Not a quoted string. */
3753 sym_text = language_search_unquoted_string (text, p);
3754 }
3755 }
3756
3757 sym_text_len = strlen (sym_text);
3758
3759 return_val_size = 10;
3760 return_val_index = 0;
3761 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3762 return_val[0] = NULL;
3763
3764 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3765 in). */
3766 s = lookup_symtab (srcfile);
3767 if (s == NULL)
3768 {
3769 /* Maybe they typed the file with leading directories, while the
3770 symbol tables record only its basename. */
3771 const char *tail = lbasename (srcfile);
3772
3773 if (tail > srcfile)
3774 s = lookup_symtab (tail);
3775 }
3776
3777 /* If we have no symtab for that file, return an empty list. */
3778 if (s == NULL)
3779 return (return_val);
3780
3781 /* Go through this symtab and check the externs and statics for
3782 symbols which match. */
3783
3784 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3785 ALL_BLOCK_SYMBOLS (b, iter, sym)
3786 {
3787 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3788 }
3789
3790 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3791 ALL_BLOCK_SYMBOLS (b, iter, sym)
3792 {
3793 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3794 }
3795
3796 return (return_val);
3797}
3798
3799/* A helper function for make_source_files_completion_list. It adds
3800 another file name to a list of possible completions, growing the
3801 list as necessary. */
3802
3803static void
3804add_filename_to_list (const char *fname, char *text, char *word,
3805 char ***list, int *list_used, int *list_alloced)
3806{
3807 char *new;
3808 size_t fnlen = strlen (fname);
3809
3810 if (*list_used + 1 >= *list_alloced)
3811 {
3812 *list_alloced *= 2;
3813 *list = (char **) xrealloc ((char *) *list,
3814 *list_alloced * sizeof (char *));
3815 }
3816
3817 if (word == text)
3818 {
3819 /* Return exactly fname. */
3820 new = xmalloc (fnlen + 5);
3821 strcpy (new, fname);
3822 }
3823 else if (word > text)
3824 {
3825 /* Return some portion of fname. */
3826 new = xmalloc (fnlen + 5);
3827 strcpy (new, fname + (word - text));
3828 }
3829 else
3830 {
3831 /* Return some of TEXT plus fname. */
3832 new = xmalloc (fnlen + (text - word) + 5);
3833 strncpy (new, word, text - word);
3834 new[text - word] = '\0';
3835 strcat (new, fname);
3836 }
3837 (*list)[*list_used] = new;
3838 (*list)[++*list_used] = NULL;
3839}
3840
3841static int
3842not_interesting_fname (const char *fname)
3843{
3844 static const char *illegal_aliens[] = {
3845 "_globals_", /* inserted by coff_symtab_read */
3846 NULL
3847 };
3848 int i;
3849
3850 for (i = 0; illegal_aliens[i]; i++)
3851 {
3852 if (strcmp (fname, illegal_aliens[i]) == 0)
3853 return 1;
3854 }
3855 return 0;
3856}
3857
3858/* Return a NULL terminated array of all source files whose names
3859 begin with matching TEXT. The file names are looked up in the
3860 symbol tables of this program. If the answer is no matchess, then
3861 the return value is an array which contains only a NULL pointer. */
3862
3863char **
3864make_source_files_completion_list (char *text, char *word)
3865{
3866 struct symtab *s;
3867 struct partial_symtab *ps;
3868 struct objfile *objfile;
3869 int first = 1;
3870 int list_alloced = 1;
3871 int list_used = 0;
3872 size_t text_len = strlen (text);
3873 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3874 const char *base_name;
3875
3876 list[0] = NULL;
3877
3878 if (!have_full_symbols () && !have_partial_symbols ())
3879 return list;
3880
3881 ALL_SYMTABS (objfile, s)
3882 {
3883 if (not_interesting_fname (s->filename))
3884 continue;
3885 if (!filename_seen (s->filename, 1, &first)
3886#if HAVE_DOS_BASED_FILE_SYSTEM
3887 && strncasecmp (s->filename, text, text_len) == 0
3888#else
3889 && strncmp (s->filename, text, text_len) == 0
3890#endif
3891 )
3892 {
3893 /* This file matches for a completion; add it to the current
3894 list of matches. */
3895 add_filename_to_list (s->filename, text, word,
3896 &list, &list_used, &list_alloced);
3897 }
3898 else
3899 {
3900 /* NOTE: We allow the user to type a base name when the
3901 debug info records leading directories, but not the other
3902 way around. This is what subroutines of breakpoint
3903 command do when they parse file names. */
3904 base_name = lbasename (s->filename);
3905 if (base_name != s->filename
3906 && !filename_seen (base_name, 1, &first)
3907#if HAVE_DOS_BASED_FILE_SYSTEM
3908 && strncasecmp (base_name, text, text_len) == 0
3909#else
3910 && strncmp (base_name, text, text_len) == 0
3911#endif
3912 )
3913 add_filename_to_list (base_name, text, word,
3914 &list, &list_used, &list_alloced);
3915 }
3916 }
3917
3918 ALL_PSYMTABS (objfile, ps)
3919 {
3920 if (not_interesting_fname (ps->filename))
3921 continue;
3922 if (!ps->readin)
3923 {
3924 if (!filename_seen (ps->filename, 1, &first)
3925#if HAVE_DOS_BASED_FILE_SYSTEM
3926 && strncasecmp (ps->filename, text, text_len) == 0
3927#else
3928 && strncmp (ps->filename, text, text_len) == 0
3929#endif
3930 )
3931 {
3932 /* This file matches for a completion; add it to the
3933 current list of matches. */
3934 add_filename_to_list (ps->filename, text, word,
3935 &list, &list_used, &list_alloced);
3936
3937 }
3938 else
3939 {
3940 base_name = lbasename (ps->filename);
3941 if (base_name != ps->filename
3942 && !filename_seen (base_name, 1, &first)
3943#if HAVE_DOS_BASED_FILE_SYSTEM
3944 && strncasecmp (base_name, text, text_len) == 0
3945#else
3946 && strncmp (base_name, text, text_len) == 0
3947#endif
3948 )
3949 add_filename_to_list (base_name, text, word,
3950 &list, &list_used, &list_alloced);
3951 }
3952 }
3953 }
3954
3955 return list;
3956}
3957
3958/* Determine if PC is in the prologue of a function. The prologue is the area
3959 between the first instruction of a function, and the first executable line.
3960 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3961
3962 If non-zero, func_start is where we think the prologue starts, possibly
3963 by previous examination of symbol table information.
3964 */
3965
3966int
3967in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
3968{
3969 struct symtab_and_line sal;
3970 CORE_ADDR func_addr, func_end;
3971
3972 /* We have several sources of information we can consult to figure
3973 this out.
3974 - Compilers usually emit line number info that marks the prologue
3975 as its own "source line". So the ending address of that "line"
3976 is the end of the prologue. If available, this is the most
3977 reliable method.
3978 - The minimal symbols and partial symbols, which can usually tell
3979 us the starting and ending addresses of a function.
3980 - If we know the function's start address, we can call the
3981 architecture-defined gdbarch_skip_prologue function to analyze the
3982 instruction stream and guess where the prologue ends.
3983 - Our `func_start' argument; if non-zero, this is the caller's
3984 best guess as to the function's entry point. At the time of
3985 this writing, handle_inferior_event doesn't get this right, so
3986 it should be our last resort. */
3987
3988 /* Consult the partial symbol table, to find which function
3989 the PC is in. */
3990 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3991 {
3992 CORE_ADDR prologue_end;
3993
3994 /* We don't even have minsym information, so fall back to using
3995 func_start, if given. */
3996 if (! func_start)
3997 return 1; /* We *might* be in a prologue. */
3998
3999 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4000
4001 return func_start <= pc && pc < prologue_end;
4002 }
4003
4004 /* If we have line number information for the function, that's
4005 usually pretty reliable. */
4006 sal = find_pc_line (func_addr, 0);
4007
4008 /* Now sal describes the source line at the function's entry point,
4009 which (by convention) is the prologue. The end of that "line",
4010 sal.end, is the end of the prologue.
4011
4012 Note that, for functions whose source code is all on a single
4013 line, the line number information doesn't always end up this way.
4014 So we must verify that our purported end-of-prologue address is
4015 *within* the function, not at its start or end. */
4016 if (sal.line == 0
4017 || sal.end <= func_addr
4018 || func_end <= sal.end)
4019 {
4020 /* We don't have any good line number info, so use the minsym
4021 information, together with the architecture-specific prologue
4022 scanning code. */
4023 CORE_ADDR prologue_end = gdbarch_skip_prologue
4024 (current_gdbarch, func_addr);
4025
4026 return func_addr <= pc && pc < prologue_end;
4027 }
4028
4029 /* We have line number info, and it looks good. */
4030 return func_addr <= pc && pc < sal.end;
4031}
4032
4033/* Given PC at the function's start address, attempt to find the
4034 prologue end using SAL information. Return zero if the skip fails.
4035
4036 A non-optimized prologue traditionally has one SAL for the function
4037 and a second for the function body. A single line function has
4038 them both pointing at the same line.
4039
4040 An optimized prologue is similar but the prologue may contain
4041 instructions (SALs) from the instruction body. Need to skip those
4042 while not getting into the function body.
4043
4044 The functions end point and an increasing SAL line are used as
4045 indicators of the prologue's endpoint.
4046
4047 This code is based on the function refine_prologue_limit (versions
4048 found in both ia64 and ppc). */
4049
4050CORE_ADDR
4051skip_prologue_using_sal (CORE_ADDR func_addr)
4052{
4053 struct symtab_and_line prologue_sal;
4054 CORE_ADDR start_pc;
4055 CORE_ADDR end_pc;
4056
4057 /* Get an initial range for the function. */
4058 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4059 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4060
4061 prologue_sal = find_pc_line (start_pc, 0);
4062 if (prologue_sal.line != 0)
4063 {
4064 /* If there is only one sal that covers the entire function,
4065 then it is probably a single line function, like
4066 "foo(){}". */
4067 if (prologue_sal.end >= end_pc)
4068 return 0;
4069 while (prologue_sal.end < end_pc)
4070 {
4071 struct symtab_and_line sal;
4072
4073 sal = find_pc_line (prologue_sal.end, 0);
4074 if (sal.line == 0)
4075 break;
4076 /* Assume that a consecutive SAL for the same (or larger)
4077 line mark the prologue -> body transition. */
4078 if (sal.line >= prologue_sal.line)
4079 break;
4080 /* The case in which compiler's optimizer/scheduler has
4081 moved instructions into the prologue. We look ahead in
4082 the function looking for address ranges whose
4083 corresponding line number is less the first one that we
4084 found for the function. This is more conservative then
4085 refine_prologue_limit which scans a large number of SALs
4086 looking for any in the prologue */
4087 prologue_sal = sal;
4088 }
4089 }
4090 return prologue_sal.end;
4091}
4092\f
4093struct symtabs_and_lines
4094decode_line_spec (char *string, int funfirstline)
4095{
4096 struct symtabs_and_lines sals;
4097 struct symtab_and_line cursal;
4098
4099 if (string == 0)
4100 error (_("Empty line specification."));
4101
4102 /* We use whatever is set as the current source line. We do not try
4103 and get a default or it will recursively call us! */
4104 cursal = get_current_source_symtab_and_line ();
4105
4106 sals = decode_line_1 (&string, funfirstline,
4107 cursal.symtab, cursal.line,
4108 (char ***) NULL, NULL);
4109
4110 if (*string)
4111 error (_("Junk at end of line specification: %s"), string);
4112 return sals;
4113}
4114
4115/* Track MAIN */
4116static char *name_of_main;
4117
4118void
4119set_main_name (const char *name)
4120{
4121 if (name_of_main != NULL)
4122 {
4123 xfree (name_of_main);
4124 name_of_main = NULL;
4125 }
4126 if (name != NULL)
4127 {
4128 name_of_main = xstrdup (name);
4129 }
4130}
4131
4132/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4133 accordingly. */
4134
4135static void
4136find_main_name (void)
4137{
4138 const char *new_main_name;
4139
4140 /* Try to see if the main procedure is in Ada. */
4141 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4142 be to add a new method in the language vector, and call this
4143 method for each language until one of them returns a non-empty
4144 name. This would allow us to remove this hard-coded call to
4145 an Ada function. It is not clear that this is a better approach
4146 at this point, because all methods need to be written in a way
4147 such that false positives never be returned. For instance, it is
4148 important that a method does not return a wrong name for the main
4149 procedure if the main procedure is actually written in a different
4150 language. It is easy to guaranty this with Ada, since we use a
4151 special symbol generated only when the main in Ada to find the name
4152 of the main procedure. It is difficult however to see how this can
4153 be guarantied for languages such as C, for instance. This suggests
4154 that order of call for these methods becomes important, which means
4155 a more complicated approach. */
4156 new_main_name = ada_main_name ();
4157 if (new_main_name != NULL)
4158 {
4159 set_main_name (new_main_name);
4160 return;
4161 }
4162
4163 new_main_name = pascal_main_name ();
4164 if (new_main_name != NULL)
4165 {
4166 set_main_name (new_main_name);
4167 return;
4168 }
4169
4170 /* The languages above didn't identify the name of the main procedure.
4171 Fallback to "main". */
4172 set_main_name ("main");
4173}
4174
4175char *
4176main_name (void)
4177{
4178 if (name_of_main == NULL)
4179 find_main_name ();
4180
4181 return name_of_main;
4182}
4183
4184/* Handle ``executable_changed'' events for the symtab module. */
4185
4186static void
4187symtab_observer_executable_changed (void *unused)
4188{
4189 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4190 set_main_name (NULL);
4191}
4192
4193/* Helper to expand_line_sal below. Appends new sal to SAL,
4194 initializing it from SYMTAB, LINENO and PC. */
4195static void
4196append_expanded_sal (struct symtabs_and_lines *sal,
4197 struct symtab *symtab,
4198 int lineno, CORE_ADDR pc)
4199{
4200 CORE_ADDR func_addr, func_end;
4201
4202 sal->sals = xrealloc (sal->sals,
4203 sizeof (sal->sals[0])
4204 * (sal->nelts + 1));
4205 init_sal (sal->sals + sal->nelts);
4206 sal->sals[sal->nelts].symtab = symtab;
4207 sal->sals[sal->nelts].section = NULL;
4208 sal->sals[sal->nelts].end = 0;
4209 sal->sals[sal->nelts].line = lineno;
4210 sal->sals[sal->nelts].pc = pc;
4211 ++sal->nelts;
4212}
4213
4214/* Compute a set of all sals in
4215 the entire program that correspond to same file
4216 and line as SAL and return those. If there
4217 are several sals that belong to the same block,
4218 only one sal for the block is included in results. */
4219
4220struct symtabs_and_lines
4221expand_line_sal (struct symtab_and_line sal)
4222{
4223 struct symtabs_and_lines ret, this_line;
4224 int i, j;
4225 struct objfile *objfile;
4226 struct partial_symtab *psymtab;
4227 struct symtab *symtab;
4228 int lineno;
4229 int deleted = 0;
4230 struct block **blocks = NULL;
4231 int *filter;
4232
4233 ret.nelts = 0;
4234 ret.sals = NULL;
4235
4236 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4237 {
4238 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4239 ret.sals[0] = sal;
4240 ret.nelts = 1;
4241 return ret;
4242 }
4243 else
4244 {
4245 struct linetable_entry *best_item = 0;
4246 struct symtab *best_symtab = 0;
4247 int exact = 0;
4248
4249 lineno = sal.line;
4250
4251 /* We meed to find all symtabs for a file which name
4252 is described by sal. We cannot just directly
4253 iterate over symtabs, since a symtab might not be
4254 yet created. We also cannot iterate over psymtabs,
4255 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4256 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4257 corresponding to an included file. Therefore, we do
4258 first pass over psymtabs, reading in those with
4259 the right name. Then, we iterate over symtabs, knowing
4260 that all symtabs we're interested in are loaded. */
4261
4262 ALL_PSYMTABS (objfile, psymtab)
4263 {
4264 if (strcmp (sal.symtab->filename,
4265 psymtab->filename) == 0)
4266 PSYMTAB_TO_SYMTAB (psymtab);
4267 }
4268
4269
4270 /* For each symtab, we add all pcs to ret.sals. I'm actually
4271 not sure what to do if we have exact match in one symtab,
4272 and non-exact match on another symtab.
4273 */
4274 ALL_SYMTABS (objfile, symtab)
4275 {
4276 if (strcmp (sal.symtab->filename,
4277 symtab->filename) == 0)
4278 {
4279 struct linetable *l;
4280 int len;
4281 l = LINETABLE (symtab);
4282 if (!l)
4283 continue;
4284 len = l->nitems;
4285
4286 for (j = 0; j < len; j++)
4287 {
4288 struct linetable_entry *item = &(l->item[j]);
4289
4290 if (item->line == lineno)
4291 {
4292 exact = 1;
4293 append_expanded_sal (&ret, symtab, lineno, item->pc);
4294 }
4295 else if (!exact && item->line > lineno
4296 && (best_item == NULL || item->line < best_item->line))
4297
4298 {
4299 best_item = item;
4300 best_symtab = symtab;
4301 }
4302 }
4303 }
4304 }
4305 if (!exact && best_item)
4306 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4307 }
4308
4309 /* For optimized code, compiler can scatter one source line accross
4310 disjoint ranges of PC values, even when no duplicate functions
4311 or inline functions are involved. For example, 'for (;;)' inside
4312 non-template non-inline non-ctor-or-dtor function can result
4313 in two PC ranges. In this case, we don't want to set breakpoint
4314 on first PC of each range. To filter such cases, we use containing
4315 blocks -- for each PC found above we see if there are other PCs
4316 that are in the same block. If yes, the other PCs are filtered out. */
4317
4318 filter = xmalloc (ret.nelts * sizeof (int));
4319 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4320 for (i = 0; i < ret.nelts; ++i)
4321 {
4322 filter[i] = 1;
4323 blocks[i] = block_for_pc (ret.sals[i].pc);
4324 }
4325
4326 for (i = 0; i < ret.nelts; ++i)
4327 if (blocks[i] != NULL)
4328 for (j = i+1; j < ret.nelts; ++j)
4329 if (blocks[j] == blocks[i])
4330 {
4331 filter[j] = 0;
4332 ++deleted;
4333 break;
4334 }
4335
4336 {
4337 struct symtab_and_line *final =
4338 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4339
4340 for (i = 0, j = 0; i < ret.nelts; ++i)
4341 if (filter[i])
4342 final[j++] = ret.sals[i];
4343
4344 ret.nelts -= deleted;
4345 xfree (ret.sals);
4346 ret.sals = final;
4347 }
4348
4349 return ret;
4350}
4351
4352
4353void
4354_initialize_symtab (void)
4355{
4356 add_info ("variables", variables_info, _("\
4357All global and static variable names, or those matching REGEXP."));
4358 if (dbx_commands)
4359 add_com ("whereis", class_info, variables_info, _("\
4360All global and static variable names, or those matching REGEXP."));
4361
4362 add_info ("functions", functions_info,
4363 _("All function names, or those matching REGEXP."));
4364
4365
4366 /* FIXME: This command has at least the following problems:
4367 1. It prints builtin types (in a very strange and confusing fashion).
4368 2. It doesn't print right, e.g. with
4369 typedef struct foo *FOO
4370 type_print prints "FOO" when we want to make it (in this situation)
4371 print "struct foo *".
4372 I also think "ptype" or "whatis" is more likely to be useful (but if
4373 there is much disagreement "info types" can be fixed). */
4374 add_info ("types", types_info,
4375 _("All type names, or those matching REGEXP."));
4376
4377 add_info ("sources", sources_info,
4378 _("Source files in the program."));
4379
4380 add_com ("rbreak", class_breakpoint, rbreak_command,
4381 _("Set a breakpoint for all functions matching REGEXP."));
4382
4383 if (xdb_commands)
4384 {
4385 add_com ("lf", class_info, sources_info,
4386 _("Source files in the program"));
4387 add_com ("lg", class_info, variables_info, _("\
4388All global and static variable names, or those matching REGEXP."));
4389 }
4390
4391 /* Initialize the one built-in type that isn't language dependent... */
4392 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4393 "<unknown type>", (struct objfile *) NULL);
4394
4395 observer_attach_executable_changed (symtab_observer_executable_changed);
4396}
This page took 0.036952 seconds and 4 git commands to generate.