gdb
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
33#include "gdb_regex.h"
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
38#include "linespec.h"
39#include "source.h"
40#include "filenames.h" /* for FILENAME_CMP */
41#include "objc-lang.h"
42#include "d-lang.h"
43#include "ada-lang.h"
44#include "p-lang.h"
45#include "addrmap.h"
46
47#include "hashtab.h"
48
49#include "gdb_obstack.h"
50#include "block.h"
51#include "dictionary.h"
52
53#include <sys/types.h>
54#include <fcntl.h>
55#include "gdb_string.h"
56#include "gdb_stat.h"
57#include <ctype.h>
58#include "cp-abi.h"
59#include "cp-support.h"
60#include "observer.h"
61#include "gdb_assert.h"
62#include "solist.h"
63#include "macrotab.h"
64#include "macroscope.h"
65
66#include "psymtab.h"
67
68/* Prototypes for local functions */
69
70static void completion_list_add_name (char *, char *, int, char *, char *);
71
72static void rbreak_command (char *, int);
73
74static void types_info (char *, int);
75
76static void functions_info (char *, int);
77
78static void variables_info (char *, int);
79
80static void sources_info (char *, int);
81
82static void output_source_filename (const char *, int *);
83
84static int find_line_common (struct linetable *, int, int *);
85
86/* This one is used by linespec.c */
87
88char *operator_chars (char *p, char **end);
89
90static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96static
97struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102static
103struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107static
108struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113static void print_msymbol_info (struct minimal_symbol *);
114
115void _initialize_symtab (void);
116
117/* */
118
119/* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
121 a symbol lookup. */
122
123const char multiple_symbols_ask[] = "ask";
124const char multiple_symbols_all[] = "all";
125const char multiple_symbols_cancel[] = "cancel";
126static const char *multiple_symbols_modes[] =
127{
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
131 NULL
132};
133static const char *multiple_symbols_mode = multiple_symbols_all;
134
135/* Read-only accessor to AUTO_SELECT_MODE. */
136
137const char *
138multiple_symbols_select_mode (void)
139{
140 return multiple_symbols_mode;
141}
142
143/* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
145 value_of_this. */
146
147const struct block *block_found;
148
149/* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
152
153struct symtab *
154lookup_symtab (const char *name)
155{
156 int found;
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
161
162 /* Here we are interested in canonicalizing an absolute path, not
163 absolutizing a relative path. */
164 if (IS_ABSOLUTE_PATH (name))
165 {
166 full_path = xfullpath (name);
167 make_cleanup (xfree, full_path);
168 real_path = gdb_realpath (name);
169 make_cleanup (xfree, real_path);
170 }
171
172got_symtab:
173
174 /* First, search for an exact match. */
175
176 ALL_SYMTABS (objfile, s)
177 {
178 if (FILENAME_CMP (name, s->filename) == 0)
179 {
180 return s;
181 }
182
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
185
186 if (full_path != NULL)
187 {
188 const char *fp = symtab_to_fullname (s);
189
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
191 {
192 return s;
193 }
194 }
195
196 if (real_path != NULL)
197 {
198 char *fullname = symtab_to_fullname (s);
199
200 if (fullname != NULL)
201 {
202 char *rp = gdb_realpath (fullname);
203
204 make_cleanup (xfree, rp);
205 if (FILENAME_CMP (real_path, rp) == 0)
206 {
207 return s;
208 }
209 }
210 }
211 }
212
213 /* Now, search for a matching tail (only if name doesn't have any dirs). */
214
215 if (lbasename (name) == name)
216 ALL_SYMTABS (objfile, s)
217 {
218 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
219 return s;
220 }
221
222 /* Same search rules as above apply here, but now we look thru the
223 psymtabs. */
224
225 found = 0;
226 ALL_OBJFILES (objfile)
227 {
228 if (objfile->sf
229 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
230 &s))
231 {
232 found = 1;
233 break;
234 }
235 }
236
237 if (s != NULL)
238 return s;
239 if (!found)
240 return NULL;
241
242 /* At this point, we have located the psymtab for this file, but
243 the conversion to a symtab has failed. This usually happens
244 when we are looking up an include file. In this case,
245 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
246 been created. So, we need to run through the symtabs again in
247 order to find the file.
248 XXX - This is a crock, and should be fixed inside of the
249 symbol parsing routines. */
250 goto got_symtab;
251}
252\f
253/* Mangle a GDB method stub type. This actually reassembles the pieces of the
254 full method name, which consist of the class name (from T), the unadorned
255 method name from METHOD_ID, and the signature for the specific overload,
256 specified by SIGNATURE_ID. Note that this function is g++ specific. */
257
258char *
259gdb_mangle_name (struct type *type, int method_id, int signature_id)
260{
261 int mangled_name_len;
262 char *mangled_name;
263 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
264 struct fn_field *method = &f[signature_id];
265 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
266 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
267 char *newname = type_name_no_tag (type);
268
269 /* Does the form of physname indicate that it is the full mangled name
270 of a constructor (not just the args)? */
271 int is_full_physname_constructor;
272
273 int is_constructor;
274 int is_destructor = is_destructor_name (physname);
275 /* Need a new type prefix. */
276 char *const_prefix = method->is_const ? "C" : "";
277 char *volatile_prefix = method->is_volatile ? "V" : "";
278 char buf[20];
279 int len = (newname == NULL ? 0 : strlen (newname));
280
281 /* Nothing to do if physname already contains a fully mangled v3 abi name
282 or an operator name. */
283 if ((physname[0] == '_' && physname[1] == 'Z')
284 || is_operator_name (field_name))
285 return xstrdup (physname);
286
287 is_full_physname_constructor = is_constructor_name (physname);
288
289 is_constructor = is_full_physname_constructor
290 || (newname && strcmp (field_name, newname) == 0);
291
292 if (!is_destructor)
293 is_destructor = (strncmp (physname, "__dt", 4) == 0);
294
295 if (is_destructor || is_full_physname_constructor)
296 {
297 mangled_name = (char *) xmalloc (strlen (physname) + 1);
298 strcpy (mangled_name, physname);
299 return mangled_name;
300 }
301
302 if (len == 0)
303 {
304 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
305 }
306 else if (physname[0] == 't' || physname[0] == 'Q')
307 {
308 /* The physname for template and qualified methods already includes
309 the class name. */
310 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
311 newname = NULL;
312 len = 0;
313 }
314 else
315 {
316 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
317 }
318 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
319 + strlen (buf) + len + strlen (physname) + 1);
320
321 mangled_name = (char *) xmalloc (mangled_name_len);
322 if (is_constructor)
323 mangled_name[0] = '\0';
324 else
325 strcpy (mangled_name, field_name);
326
327 strcat (mangled_name, buf);
328 /* If the class doesn't have a name, i.e. newname NULL, then we just
329 mangle it using 0 for the length of the class. Thus it gets mangled
330 as something starting with `::' rather than `classname::'. */
331 if (newname != NULL)
332 strcat (mangled_name, newname);
333
334 strcat (mangled_name, physname);
335 return (mangled_name);
336}
337
338/* Initialize the cplus_specific structure. 'cplus_specific' should
339 only be allocated for use with cplus symbols. */
340
341static void
342symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
343 struct objfile *objfile)
344{
345 /* A language_specific structure should not have been previously
346 initialized. */
347 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
348 gdb_assert (objfile != NULL);
349
350 gsymbol->language_specific.cplus_specific =
351 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
352}
353
354/* Set the demangled name of GSYMBOL to NAME. NAME must be already
355 correctly allocated. For C++ symbols a cplus_specific struct is
356 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
357 OBJFILE can be NULL. */
358void
359symbol_set_demangled_name (struct general_symbol_info *gsymbol,
360 char *name,
361 struct objfile *objfile)
362{
363 if (gsymbol->language == language_cplus)
364 {
365 if (gsymbol->language_specific.cplus_specific == NULL)
366 symbol_init_cplus_specific (gsymbol, objfile);
367
368 gsymbol->language_specific.cplus_specific->demangled_name = name;
369 }
370 else
371 gsymbol->language_specific.mangled_lang.demangled_name = name;
372}
373
374/* Return the demangled name of GSYMBOL. */
375char *
376symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
377{
378 if (gsymbol->language == language_cplus)
379 {
380 if (gsymbol->language_specific.cplus_specific != NULL)
381 return gsymbol->language_specific.cplus_specific->demangled_name;
382 else
383 return NULL;
384 }
385 else
386 return gsymbol->language_specific.mangled_lang.demangled_name;
387}
388
389\f
390/* Initialize the language dependent portion of a symbol
391 depending upon the language for the symbol. */
392void
393symbol_set_language (struct general_symbol_info *gsymbol,
394 enum language language)
395{
396 gsymbol->language = language;
397 if (gsymbol->language == language_d
398 || gsymbol->language == language_java
399 || gsymbol->language == language_objc
400 || gsymbol->language == language_fortran)
401 {
402 symbol_set_demangled_name (gsymbol, NULL, NULL);
403 }
404 else if (gsymbol->language == language_cplus)
405 gsymbol->language_specific.cplus_specific = NULL;
406 else
407 {
408 memset (&gsymbol->language_specific, 0,
409 sizeof (gsymbol->language_specific));
410 }
411}
412
413/* Functions to initialize a symbol's mangled name. */
414
415/* Objects of this type are stored in the demangled name hash table. */
416struct demangled_name_entry
417{
418 char *mangled;
419 char demangled[1];
420};
421
422/* Hash function for the demangled name hash. */
423static hashval_t
424hash_demangled_name_entry (const void *data)
425{
426 const struct demangled_name_entry *e = data;
427
428 return htab_hash_string (e->mangled);
429}
430
431/* Equality function for the demangled name hash. */
432static int
433eq_demangled_name_entry (const void *a, const void *b)
434{
435 const struct demangled_name_entry *da = a;
436 const struct demangled_name_entry *db = b;
437
438 return strcmp (da->mangled, db->mangled) == 0;
439}
440
441/* Create the hash table used for demangled names. Each hash entry is
442 a pair of strings; one for the mangled name and one for the demangled
443 name. The entry is hashed via just the mangled name. */
444
445static void
446create_demangled_names_hash (struct objfile *objfile)
447{
448 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
449 The hash table code will round this up to the next prime number.
450 Choosing a much larger table size wastes memory, and saves only about
451 1% in symbol reading. */
452
453 objfile->demangled_names_hash = htab_create_alloc
454 (256, hash_demangled_name_entry, eq_demangled_name_entry,
455 NULL, xcalloc, xfree);
456}
457
458/* Try to determine the demangled name for a symbol, based on the
459 language of that symbol. If the language is set to language_auto,
460 it will attempt to find any demangling algorithm that works and
461 then set the language appropriately. The returned name is allocated
462 by the demangler and should be xfree'd. */
463
464static char *
465symbol_find_demangled_name (struct general_symbol_info *gsymbol,
466 const char *mangled)
467{
468 char *demangled = NULL;
469
470 if (gsymbol->language == language_unknown)
471 gsymbol->language = language_auto;
472
473 if (gsymbol->language == language_objc
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 objc_demangle (mangled, 0);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_objc;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_cplus
485 || gsymbol->language == language_auto)
486 {
487 demangled =
488 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_cplus;
492 return demangled;
493 }
494 }
495 if (gsymbol->language == language_java)
496 {
497 demangled =
498 cplus_demangle (mangled,
499 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
500 if (demangled != NULL)
501 {
502 gsymbol->language = language_java;
503 return demangled;
504 }
505 }
506 if (gsymbol->language == language_d
507 || gsymbol->language == language_auto)
508 {
509 demangled = d_demangle(mangled, 0);
510 if (demangled != NULL)
511 {
512 gsymbol->language = language_d;
513 return demangled;
514 }
515 }
516 /* We could support `gsymbol->language == language_fortran' here to provide
517 module namespaces also for inferiors with only minimal symbol table (ELF
518 symbols). Just the mangling standard is not standardized across compilers
519 and there is no DW_AT_producer available for inferiors with only the ELF
520 symbols to check the mangling kind. */
521 return NULL;
522}
523
524/* Set both the mangled and demangled (if any) names for GSYMBOL based
525 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
526 objfile's obstack; but if COPY_NAME is 0 and if NAME is
527 NUL-terminated, then this function assumes that NAME is already
528 correctly saved (either permanently or with a lifetime tied to the
529 objfile), and it will not be copied.
530
531 The hash table corresponding to OBJFILE is used, and the memory
532 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
533 so the pointer can be discarded after calling this function. */
534
535/* We have to be careful when dealing with Java names: when we run
536 into a Java minimal symbol, we don't know it's a Java symbol, so it
537 gets demangled as a C++ name. This is unfortunate, but there's not
538 much we can do about it: but when demangling partial symbols and
539 regular symbols, we'd better not reuse the wrong demangled name.
540 (See PR gdb/1039.) We solve this by putting a distinctive prefix
541 on Java names when storing them in the hash table. */
542
543/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
544 don't mind the Java prefix so much: different languages have
545 different demangling requirements, so it's only natural that we
546 need to keep language data around in our demangling cache. But
547 it's not good that the minimal symbol has the wrong demangled name.
548 Unfortunately, I can't think of any easy solution to that
549 problem. */
550
551#define JAVA_PREFIX "##JAVA$$"
552#define JAVA_PREFIX_LEN 8
553
554void
555symbol_set_names (struct general_symbol_info *gsymbol,
556 const char *linkage_name, int len, int copy_name,
557 struct objfile *objfile)
558{
559 struct demangled_name_entry **slot;
560 /* A 0-terminated copy of the linkage name. */
561 const char *linkage_name_copy;
562 /* A copy of the linkage name that might have a special Java prefix
563 added to it, for use when looking names up in the hash table. */
564 const char *lookup_name;
565 /* The length of lookup_name. */
566 int lookup_len;
567 struct demangled_name_entry entry;
568
569 if (gsymbol->language == language_ada)
570 {
571 /* In Ada, we do the symbol lookups using the mangled name, so
572 we can save some space by not storing the demangled name.
573
574 As a side note, we have also observed some overlap between
575 the C++ mangling and Ada mangling, similarly to what has
576 been observed with Java. Because we don't store the demangled
577 name with the symbol, we don't need to use the same trick
578 as Java. */
579 if (!copy_name)
580 gsymbol->name = (char *) linkage_name;
581 else
582 {
583 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
584 memcpy (gsymbol->name, linkage_name, len);
585 gsymbol->name[len] = '\0';
586 }
587 symbol_set_demangled_name (gsymbol, NULL, NULL);
588
589 return;
590 }
591
592 if (objfile->demangled_names_hash == NULL)
593 create_demangled_names_hash (objfile);
594
595 /* The stabs reader generally provides names that are not
596 NUL-terminated; most of the other readers don't do this, so we
597 can just use the given copy, unless we're in the Java case. */
598 if (gsymbol->language == language_java)
599 {
600 char *alloc_name;
601
602 lookup_len = len + JAVA_PREFIX_LEN;
603 alloc_name = alloca (lookup_len + 1);
604 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
605 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
606 alloc_name[lookup_len] = '\0';
607
608 lookup_name = alloc_name;
609 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
610 }
611 else if (linkage_name[len] != '\0')
612 {
613 char *alloc_name;
614
615 lookup_len = len;
616 alloc_name = alloca (lookup_len + 1);
617 memcpy (alloc_name, linkage_name, len);
618 alloc_name[lookup_len] = '\0';
619
620 lookup_name = alloc_name;
621 linkage_name_copy = alloc_name;
622 }
623 else
624 {
625 lookup_len = len;
626 lookup_name = linkage_name;
627 linkage_name_copy = linkage_name;
628 }
629
630 entry.mangled = (char *) lookup_name;
631 slot = ((struct demangled_name_entry **)
632 htab_find_slot (objfile->demangled_names_hash,
633 &entry, INSERT));
634
635 /* If this name is not in the hash table, add it. */
636 if (*slot == NULL)
637 {
638 char *demangled_name = symbol_find_demangled_name (gsymbol,
639 linkage_name_copy);
640 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
641
642 /* Suppose we have demangled_name==NULL, copy_name==0, and
643 lookup_name==linkage_name. In this case, we already have the
644 mangled name saved, and we don't have a demangled name. So,
645 you might think we could save a little space by not recording
646 this in the hash table at all.
647
648 It turns out that it is actually important to still save such
649 an entry in the hash table, because storing this name gives
650 us better bcache hit rates for partial symbols. */
651 if (!copy_name && lookup_name == linkage_name)
652 {
653 *slot = obstack_alloc (&objfile->objfile_obstack,
654 offsetof (struct demangled_name_entry,
655 demangled)
656 + demangled_len + 1);
657 (*slot)->mangled = (char *) lookup_name;
658 }
659 else
660 {
661 /* If we must copy the mangled name, put it directly after
662 the demangled name so we can have a single
663 allocation. */
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
666 demangled)
667 + lookup_len + demangled_len + 2);
668 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
669 strcpy ((*slot)->mangled, lookup_name);
670 }
671
672 if (demangled_name != NULL)
673 {
674 strcpy ((*slot)->demangled, demangled_name);
675 xfree (demangled_name);
676 }
677 else
678 (*slot)->demangled[0] = '\0';
679 }
680
681 gsymbol->name = (*slot)->mangled + lookup_len - len;
682 if ((*slot)->demangled[0] != '\0')
683 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
684 else
685 symbol_set_demangled_name (gsymbol, NULL, objfile);
686}
687
688/* Return the source code name of a symbol. In languages where
689 demangling is necessary, this is the demangled name. */
690
691char *
692symbol_natural_name (const struct general_symbol_info *gsymbol)
693{
694 switch (gsymbol->language)
695 {
696 case language_cplus:
697 case language_d:
698 case language_java:
699 case language_objc:
700 case language_fortran:
701 if (symbol_get_demangled_name (gsymbol) != NULL)
702 return symbol_get_demangled_name (gsymbol);
703 break;
704 case language_ada:
705 if (symbol_get_demangled_name (gsymbol) != NULL)
706 return symbol_get_demangled_name (gsymbol);
707 else
708 return ada_decode_symbol (gsymbol);
709 break;
710 default:
711 break;
712 }
713 return gsymbol->name;
714}
715
716/* Return the demangled name for a symbol based on the language for
717 that symbol. If no demangled name exists, return NULL. */
718char *
719symbol_demangled_name (const struct general_symbol_info *gsymbol)
720{
721 switch (gsymbol->language)
722 {
723 case language_cplus:
724 case language_d:
725 case language_java:
726 case language_objc:
727 case language_fortran:
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
730 break;
731 case language_ada:
732 if (symbol_get_demangled_name (gsymbol) != NULL)
733 return symbol_get_demangled_name (gsymbol);
734 else
735 return ada_decode_symbol (gsymbol);
736 break;
737 default:
738 break;
739 }
740 return NULL;
741}
742
743/* Return the search name of a symbol---generally the demangled or
744 linkage name of the symbol, depending on how it will be searched for.
745 If there is no distinct demangled name, then returns the same value
746 (same pointer) as SYMBOL_LINKAGE_NAME. */
747char *
748symbol_search_name (const struct general_symbol_info *gsymbol)
749{
750 if (gsymbol->language == language_ada)
751 return gsymbol->name;
752 else
753 return symbol_natural_name (gsymbol);
754}
755
756/* Initialize the structure fields to zero values. */
757void
758init_sal (struct symtab_and_line *sal)
759{
760 sal->pspace = NULL;
761 sal->symtab = 0;
762 sal->section = 0;
763 sal->line = 0;
764 sal->pc = 0;
765 sal->end = 0;
766 sal->explicit_pc = 0;
767 sal->explicit_line = 0;
768}
769\f
770
771/* Return 1 if the two sections are the same, or if they could
772 plausibly be copies of each other, one in an original object
773 file and another in a separated debug file. */
774
775int
776matching_obj_sections (struct obj_section *obj_first,
777 struct obj_section *obj_second)
778{
779 asection *first = obj_first? obj_first->the_bfd_section : NULL;
780 asection *second = obj_second? obj_second->the_bfd_section : NULL;
781 struct objfile *obj;
782
783 /* If they're the same section, then they match. */
784 if (first == second)
785 return 1;
786
787 /* If either is NULL, give up. */
788 if (first == NULL || second == NULL)
789 return 0;
790
791 /* This doesn't apply to absolute symbols. */
792 if (first->owner == NULL || second->owner == NULL)
793 return 0;
794
795 /* If they're in the same object file, they must be different sections. */
796 if (first->owner == second->owner)
797 return 0;
798
799 /* Check whether the two sections are potentially corresponding. They must
800 have the same size, address, and name. We can't compare section indexes,
801 which would be more reliable, because some sections may have been
802 stripped. */
803 if (bfd_get_section_size (first) != bfd_get_section_size (second))
804 return 0;
805
806 /* In-memory addresses may start at a different offset, relativize them. */
807 if (bfd_get_section_vma (first->owner, first)
808 - bfd_get_start_address (first->owner)
809 != bfd_get_section_vma (second->owner, second)
810 - bfd_get_start_address (second->owner))
811 return 0;
812
813 if (bfd_get_section_name (first->owner, first) == NULL
814 || bfd_get_section_name (second->owner, second) == NULL
815 || strcmp (bfd_get_section_name (first->owner, first),
816 bfd_get_section_name (second->owner, second)) != 0)
817 return 0;
818
819 /* Otherwise check that they are in corresponding objfiles. */
820
821 ALL_OBJFILES (obj)
822 if (obj->obfd == first->owner)
823 break;
824 gdb_assert (obj != NULL);
825
826 if (obj->separate_debug_objfile != NULL
827 && obj->separate_debug_objfile->obfd == second->owner)
828 return 1;
829 if (obj->separate_debug_objfile_backlink != NULL
830 && obj->separate_debug_objfile_backlink->obfd == second->owner)
831 return 1;
832
833 return 0;
834}
835
836struct symtab *
837find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
838{
839 struct objfile *objfile;
840 struct minimal_symbol *msymbol;
841
842 /* If we know that this is not a text address, return failure. This is
843 necessary because we loop based on texthigh and textlow, which do
844 not include the data ranges. */
845 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
846 if (msymbol
847 && (MSYMBOL_TYPE (msymbol) == mst_data
848 || MSYMBOL_TYPE (msymbol) == mst_bss
849 || MSYMBOL_TYPE (msymbol) == mst_abs
850 || MSYMBOL_TYPE (msymbol) == mst_file_data
851 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
852 return NULL;
853
854 ALL_OBJFILES (objfile)
855 {
856 struct symtab *result = NULL;
857
858 if (objfile->sf)
859 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
860 pc, section, 0);
861 if (result)
862 return result;
863 }
864
865 return NULL;
866}
867\f
868/* Debug symbols usually don't have section information. We need to dig that
869 out of the minimal symbols and stash that in the debug symbol. */
870
871void
872fixup_section (struct general_symbol_info *ginfo,
873 CORE_ADDR addr, struct objfile *objfile)
874{
875 struct minimal_symbol *msym;
876
877 /* First, check whether a minimal symbol with the same name exists
878 and points to the same address. The address check is required
879 e.g. on PowerPC64, where the minimal symbol for a function will
880 point to the function descriptor, while the debug symbol will
881 point to the actual function code. */
882 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
883 if (msym)
884 {
885 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
886 ginfo->section = SYMBOL_SECTION (msym);
887 }
888 else
889 {
890 /* Static, function-local variables do appear in the linker
891 (minimal) symbols, but are frequently given names that won't
892 be found via lookup_minimal_symbol(). E.g., it has been
893 observed in frv-uclinux (ELF) executables that a static,
894 function-local variable named "foo" might appear in the
895 linker symbols as "foo.6" or "foo.3". Thus, there is no
896 point in attempting to extend the lookup-by-name mechanism to
897 handle this case due to the fact that there can be multiple
898 names.
899
900 So, instead, search the section table when lookup by name has
901 failed. The ``addr'' and ``endaddr'' fields may have already
902 been relocated. If so, the relocation offset (i.e. the
903 ANOFFSET value) needs to be subtracted from these values when
904 performing the comparison. We unconditionally subtract it,
905 because, when no relocation has been performed, the ANOFFSET
906 value will simply be zero.
907
908 The address of the symbol whose section we're fixing up HAS
909 NOT BEEN adjusted (relocated) yet. It can't have been since
910 the section isn't yet known and knowing the section is
911 necessary in order to add the correct relocation value. In
912 other words, we wouldn't even be in this function (attempting
913 to compute the section) if it were already known.
914
915 Note that it is possible to search the minimal symbols
916 (subtracting the relocation value if necessary) to find the
917 matching minimal symbol, but this is overkill and much less
918 efficient. It is not necessary to find the matching minimal
919 symbol, only its section.
920
921 Note that this technique (of doing a section table search)
922 can fail when unrelocated section addresses overlap. For
923 this reason, we still attempt a lookup by name prior to doing
924 a search of the section table. */
925
926 struct obj_section *s;
927
928 ALL_OBJFILE_OSECTIONS (objfile, s)
929 {
930 int idx = s->the_bfd_section->index;
931 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
932
933 if (obj_section_addr (s) - offset <= addr
934 && addr < obj_section_endaddr (s) - offset)
935 {
936 ginfo->obj_section = s;
937 ginfo->section = idx;
938 return;
939 }
940 }
941 }
942}
943
944struct symbol *
945fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
946{
947 CORE_ADDR addr;
948
949 if (!sym)
950 return NULL;
951
952 if (SYMBOL_OBJ_SECTION (sym))
953 return sym;
954
955 /* We either have an OBJFILE, or we can get at it from the sym's
956 symtab. Anything else is a bug. */
957 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
958
959 if (objfile == NULL)
960 objfile = SYMBOL_SYMTAB (sym)->objfile;
961
962 /* We should have an objfile by now. */
963 gdb_assert (objfile);
964
965 switch (SYMBOL_CLASS (sym))
966 {
967 case LOC_STATIC:
968 case LOC_LABEL:
969 addr = SYMBOL_VALUE_ADDRESS (sym);
970 break;
971 case LOC_BLOCK:
972 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
973 break;
974
975 default:
976 /* Nothing else will be listed in the minsyms -- no use looking
977 it up. */
978 return sym;
979 }
980
981 fixup_section (&sym->ginfo, addr, objfile);
982
983 return sym;
984}
985
986/* Find the definition for a specified symbol name NAME
987 in domain DOMAIN, visible from lexical block BLOCK.
988 Returns the struct symbol pointer, or zero if no symbol is found.
989 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
990 NAME is a field of the current implied argument `this'. If so set
991 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
992 BLOCK_FOUND is set to the block in which NAME is found (in the case of
993 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
994
995/* This function has a bunch of loops in it and it would seem to be
996 attractive to put in some QUIT's (though I'm not really sure
997 whether it can run long enough to be really important). But there
998 are a few calls for which it would appear to be bad news to quit
999 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1000 that there is C++ code below which can error(), but that probably
1001 doesn't affect these calls since they are looking for a known
1002 variable and thus can probably assume it will never hit the C++
1003 code). */
1004
1005struct symbol *
1006lookup_symbol_in_language (const char *name, const struct block *block,
1007 const domain_enum domain, enum language lang,
1008 int *is_a_field_of_this)
1009{
1010 char *demangled_name = NULL;
1011 const char *modified_name = NULL;
1012 struct symbol *returnval;
1013 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1014
1015 modified_name = name;
1016
1017 /* If we are using C++, D, or Java, demangle the name before doing a
1018 lookup, so we can always binary search. */
1019 if (lang == language_cplus)
1020 {
1021 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1022 if (demangled_name)
1023 {
1024 modified_name = demangled_name;
1025 make_cleanup (xfree, demangled_name);
1026 }
1027 else
1028 {
1029 /* If we were given a non-mangled name, canonicalize it
1030 according to the language (so far only for C++). */
1031 demangled_name = cp_canonicalize_string (name);
1032 if (demangled_name)
1033 {
1034 modified_name = demangled_name;
1035 make_cleanup (xfree, demangled_name);
1036 }
1037 }
1038 }
1039 else if (lang == language_java)
1040 {
1041 demangled_name = cplus_demangle (name,
1042 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1043 if (demangled_name)
1044 {
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1047 }
1048 }
1049 else if (lang == language_d)
1050 {
1051 demangled_name = d_demangle (name, 0);
1052 if (demangled_name)
1053 {
1054 modified_name = demangled_name;
1055 make_cleanup (xfree, demangled_name);
1056 }
1057 }
1058
1059 if (case_sensitivity == case_sensitive_off)
1060 {
1061 char *copy;
1062 int len, i;
1063
1064 len = strlen (name);
1065 copy = (char *) alloca (len + 1);
1066 for (i= 0; i < len; i++)
1067 copy[i] = tolower (name[i]);
1068 copy[len] = 0;
1069 modified_name = copy;
1070 }
1071
1072 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1073 is_a_field_of_this);
1074 do_cleanups (cleanup);
1075
1076 return returnval;
1077}
1078
1079/* Behave like lookup_symbol_in_language, but performed with the
1080 current language. */
1081
1082struct symbol *
1083lookup_symbol (const char *name, const struct block *block,
1084 domain_enum domain, int *is_a_field_of_this)
1085{
1086 return lookup_symbol_in_language (name, block, domain,
1087 current_language->la_language,
1088 is_a_field_of_this);
1089}
1090
1091/* Behave like lookup_symbol except that NAME is the natural name
1092 of the symbol that we're looking for and, if LINKAGE_NAME is
1093 non-NULL, ensure that the symbol's linkage name matches as
1094 well. */
1095
1096static struct symbol *
1097lookup_symbol_aux (const char *name, const struct block *block,
1098 const domain_enum domain, enum language language,
1099 int *is_a_field_of_this)
1100{
1101 struct symbol *sym;
1102 const struct language_defn *langdef;
1103
1104 /* Make sure we do something sensible with is_a_field_of_this, since
1105 the callers that set this parameter to some non-null value will
1106 certainly use it later and expect it to be either 0 or 1.
1107 If we don't set it, the contents of is_a_field_of_this are
1108 undefined. */
1109 if (is_a_field_of_this != NULL)
1110 *is_a_field_of_this = 0;
1111
1112 /* Search specified block and its superiors. Don't search
1113 STATIC_BLOCK or GLOBAL_BLOCK. */
1114
1115 sym = lookup_symbol_aux_local (name, block, domain, language);
1116 if (sym != NULL)
1117 return sym;
1118
1119 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1120 check to see if NAME is a field of `this'. */
1121
1122 langdef = language_def (language);
1123
1124 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1125 && block != NULL)
1126 {
1127 struct symbol *sym = NULL;
1128 const struct block *function_block = block;
1129
1130 /* 'this' is only defined in the function's block, so find the
1131 enclosing function block. */
1132 for (; function_block && !BLOCK_FUNCTION (function_block);
1133 function_block = BLOCK_SUPERBLOCK (function_block));
1134
1135 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1136 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1137 VAR_DOMAIN);
1138 if (sym)
1139 {
1140 struct type *t = sym->type;
1141
1142 /* I'm not really sure that type of this can ever
1143 be typedefed; just be safe. */
1144 CHECK_TYPEDEF (t);
1145 if (TYPE_CODE (t) == TYPE_CODE_PTR
1146 || TYPE_CODE (t) == TYPE_CODE_REF)
1147 t = TYPE_TARGET_TYPE (t);
1148
1149 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1150 && TYPE_CODE (t) != TYPE_CODE_UNION)
1151 error (_("Internal error: `%s' is not an aggregate"),
1152 langdef->la_name_of_this);
1153
1154 if (check_field (t, name))
1155 {
1156 *is_a_field_of_this = 1;
1157 return NULL;
1158 }
1159 }
1160 }
1161
1162 /* Now do whatever is appropriate for LANGUAGE to look
1163 up static and global variables. */
1164
1165 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1166 if (sym != NULL)
1167 return sym;
1168
1169 /* Now search all static file-level symbols. Not strictly correct,
1170 but more useful than an error. */
1171
1172 return lookup_static_symbol_aux (name, domain);
1173}
1174
1175/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1176 first, then check the psymtabs. If a psymtab indicates the existence of the
1177 desired name as a file-level static, then do psymtab-to-symtab conversion on
1178 the fly and return the found symbol. */
1179
1180struct symbol *
1181lookup_static_symbol_aux (const char *name, const domain_enum domain)
1182{
1183 struct objfile *objfile;
1184 struct symbol *sym;
1185
1186 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1187 if (sym != NULL)
1188 return sym;
1189
1190 ALL_OBJFILES (objfile)
1191 {
1192 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1193 if (sym != NULL)
1194 return sym;
1195 }
1196
1197 return NULL;
1198}
1199
1200/* Check to see if the symbol is defined in BLOCK or its superiors.
1201 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1202
1203static struct symbol *
1204lookup_symbol_aux_local (const char *name, const struct block *block,
1205 const domain_enum domain,
1206 enum language language)
1207{
1208 struct symbol *sym;
1209 const struct block *static_block = block_static_block (block);
1210 const char *scope = block_scope (block);
1211
1212 /* Check if either no block is specified or it's a global block. */
1213
1214 if (static_block == NULL)
1215 return NULL;
1216
1217 while (block != static_block)
1218 {
1219 sym = lookup_symbol_aux_block (name, block, domain);
1220 if (sym != NULL)
1221 return sym;
1222
1223 if (language == language_cplus || language == language_fortran)
1224 {
1225 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1226 domain);
1227 if (sym != NULL)
1228 return sym;
1229 }
1230
1231 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1232 break;
1233 block = BLOCK_SUPERBLOCK (block);
1234 }
1235
1236 /* We've reached the edge of the function without finding a result. */
1237
1238 return NULL;
1239}
1240
1241/* Look up OBJFILE to BLOCK. */
1242
1243struct objfile *
1244lookup_objfile_from_block (const struct block *block)
1245{
1246 struct objfile *obj;
1247 struct symtab *s;
1248
1249 if (block == NULL)
1250 return NULL;
1251
1252 block = block_global_block (block);
1253 /* Go through SYMTABS. */
1254 ALL_SYMTABS (obj, s)
1255 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1256 {
1257 if (obj->separate_debug_objfile_backlink)
1258 obj = obj->separate_debug_objfile_backlink;
1259
1260 return obj;
1261 }
1262
1263 return NULL;
1264}
1265
1266/* Look up a symbol in a block; if found, fixup the symbol, and set
1267 block_found appropriately. */
1268
1269struct symbol *
1270lookup_symbol_aux_block (const char *name, const struct block *block,
1271 const domain_enum domain)
1272{
1273 struct symbol *sym;
1274
1275 sym = lookup_block_symbol (block, name, domain);
1276 if (sym)
1277 {
1278 block_found = block;
1279 return fixup_symbol_section (sym, NULL);
1280 }
1281
1282 return NULL;
1283}
1284
1285/* Check all global symbols in OBJFILE in symtabs and
1286 psymtabs. */
1287
1288struct symbol *
1289lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1290 const char *name,
1291 const domain_enum domain)
1292{
1293 const struct objfile *objfile;
1294 struct symbol *sym;
1295 struct blockvector *bv;
1296 const struct block *block;
1297 struct symtab *s;
1298
1299 for (objfile = main_objfile;
1300 objfile;
1301 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1302 {
1303 /* Go through symtabs. */
1304 ALL_OBJFILE_SYMTABS (objfile, s)
1305 {
1306 bv = BLOCKVECTOR (s);
1307 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1308 sym = lookup_block_symbol (block, name, domain);
1309 if (sym)
1310 {
1311 block_found = block;
1312 return fixup_symbol_section (sym, (struct objfile *)objfile);
1313 }
1314 }
1315
1316 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1317 name, domain);
1318 if (sym)
1319 return sym;
1320 }
1321
1322 return NULL;
1323}
1324
1325/* Check to see if the symbol is defined in one of the symtabs.
1326 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1327 depending on whether or not we want to search global symbols or
1328 static symbols. */
1329
1330static struct symbol *
1331lookup_symbol_aux_symtabs (int block_index, const char *name,
1332 const domain_enum domain)
1333{
1334 struct symbol *sym;
1335 struct objfile *objfile;
1336 struct blockvector *bv;
1337 const struct block *block;
1338 struct symtab *s;
1339
1340 ALL_OBJFILES (objfile)
1341 {
1342 if (objfile->sf)
1343 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1344 block_index,
1345 name, domain);
1346
1347 ALL_OBJFILE_SYMTABS (objfile, s)
1348 if (s->primary)
1349 {
1350 bv = BLOCKVECTOR (s);
1351 block = BLOCKVECTOR_BLOCK (bv, block_index);
1352 sym = lookup_block_symbol (block, name, domain);
1353 if (sym)
1354 {
1355 block_found = block;
1356 return fixup_symbol_section (sym, objfile);
1357 }
1358 }
1359 }
1360
1361 return NULL;
1362}
1363
1364/* A helper function for lookup_symbol_aux that interfaces with the
1365 "quick" symbol table functions. */
1366
1367static struct symbol *
1368lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1369 const char *name, const domain_enum domain)
1370{
1371 struct symtab *symtab;
1372 struct blockvector *bv;
1373 const struct block *block;
1374 struct symbol *sym;
1375
1376 if (!objfile->sf)
1377 return NULL;
1378 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1379 if (!symtab)
1380 return NULL;
1381
1382 bv = BLOCKVECTOR (symtab);
1383 block = BLOCKVECTOR_BLOCK (bv, kind);
1384 sym = lookup_block_symbol (block, name, domain);
1385 if (!sym)
1386 {
1387 /* This shouldn't be necessary, but as a last resort try
1388 looking in the statics even though the psymtab claimed
1389 the symbol was global, or vice-versa. It's possible
1390 that the psymtab gets it wrong in some cases. */
1391
1392 /* FIXME: carlton/2002-09-30: Should we really do that?
1393 If that happens, isn't it likely to be a GDB error, in
1394 which case we should fix the GDB error rather than
1395 silently dealing with it here? So I'd vote for
1396 removing the check for the symbol in the other
1397 block. */
1398 block = BLOCKVECTOR_BLOCK (bv,
1399 kind == GLOBAL_BLOCK ?
1400 STATIC_BLOCK : GLOBAL_BLOCK);
1401 sym = lookup_block_symbol (block, name, domain);
1402 if (!sym)
1403 error (_("\
1404Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1405%s may be an inlined function, or may be a template function\n\
1406(if a template, try specifying an instantiation: %s<type>)."),
1407 kind == GLOBAL_BLOCK ? "global" : "static",
1408 name, symtab->filename, name, name);
1409 }
1410 return fixup_symbol_section (sym, objfile);
1411}
1412
1413/* A default version of lookup_symbol_nonlocal for use by languages
1414 that can't think of anything better to do. This implements the C
1415 lookup rules. */
1416
1417struct symbol *
1418basic_lookup_symbol_nonlocal (const char *name,
1419 const struct block *block,
1420 const domain_enum domain)
1421{
1422 struct symbol *sym;
1423
1424 /* NOTE: carlton/2003-05-19: The comments below were written when
1425 this (or what turned into this) was part of lookup_symbol_aux;
1426 I'm much less worried about these questions now, since these
1427 decisions have turned out well, but I leave these comments here
1428 for posterity. */
1429
1430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1431 not it would be appropriate to search the current global block
1432 here as well. (That's what this code used to do before the
1433 is_a_field_of_this check was moved up.) On the one hand, it's
1434 redundant with the lookup_symbol_aux_symtabs search that happens
1435 next. On the other hand, if decode_line_1 is passed an argument
1436 like filename:var, then the user presumably wants 'var' to be
1437 searched for in filename. On the third hand, there shouldn't be
1438 multiple global variables all of which are named 'var', and it's
1439 not like decode_line_1 has ever restricted its search to only
1440 global variables in a single filename. All in all, only
1441 searching the static block here seems best: it's correct and it's
1442 cleanest. */
1443
1444 /* NOTE: carlton/2002-12-05: There's also a possible performance
1445 issue here: if you usually search for global symbols in the
1446 current file, then it would be slightly better to search the
1447 current global block before searching all the symtabs. But there
1448 are other factors that have a much greater effect on performance
1449 than that one, so I don't think we should worry about that for
1450 now. */
1451
1452 sym = lookup_symbol_static (name, block, domain);
1453 if (sym != NULL)
1454 return sym;
1455
1456 return lookup_symbol_global (name, block, domain);
1457}
1458
1459/* Lookup a symbol in the static block associated to BLOCK, if there
1460 is one; do nothing if BLOCK is NULL or a global block. */
1461
1462struct symbol *
1463lookup_symbol_static (const char *name,
1464 const struct block *block,
1465 const domain_enum domain)
1466{
1467 const struct block *static_block = block_static_block (block);
1468
1469 if (static_block != NULL)
1470 return lookup_symbol_aux_block (name, static_block, domain);
1471 else
1472 return NULL;
1473}
1474
1475/* Lookup a symbol in all files' global blocks (searching psymtabs if
1476 necessary). */
1477
1478struct symbol *
1479lookup_symbol_global (const char *name,
1480 const struct block *block,
1481 const domain_enum domain)
1482{
1483 struct symbol *sym = NULL;
1484 struct objfile *objfile = NULL;
1485
1486 /* Call library-specific lookup procedure. */
1487 objfile = lookup_objfile_from_block (block);
1488 if (objfile != NULL)
1489 sym = solib_global_lookup (objfile, name, domain);
1490 if (sym != NULL)
1491 return sym;
1492
1493 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1494 if (sym != NULL)
1495 return sym;
1496
1497 ALL_OBJFILES (objfile)
1498 {
1499 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1500 if (sym)
1501 return sym;
1502 }
1503
1504 return NULL;
1505}
1506
1507int
1508symbol_matches_domain (enum language symbol_language,
1509 domain_enum symbol_domain,
1510 domain_enum domain)
1511{
1512 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1513 A Java class declaration also defines a typedef for the class.
1514 Similarly, any Ada type declaration implicitly defines a typedef. */
1515 if (symbol_language == language_cplus
1516 || symbol_language == language_d
1517 || symbol_language == language_java
1518 || symbol_language == language_ada)
1519 {
1520 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1521 && symbol_domain == STRUCT_DOMAIN)
1522 return 1;
1523 }
1524 /* For all other languages, strict match is required. */
1525 return (symbol_domain == domain);
1526}
1527
1528/* Look up a type named NAME in the struct_domain. The type returned
1529 must not be opaque -- i.e., must have at least one field
1530 defined. */
1531
1532struct type *
1533lookup_transparent_type (const char *name)
1534{
1535 return current_language->la_lookup_transparent_type (name);
1536}
1537
1538/* A helper for basic_lookup_transparent_type that interfaces with the
1539 "quick" symbol table functions. */
1540
1541static struct type *
1542basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1543 const char *name)
1544{
1545 struct symtab *symtab;
1546 struct blockvector *bv;
1547 struct block *block;
1548 struct symbol *sym;
1549
1550 if (!objfile->sf)
1551 return NULL;
1552 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1553 if (!symtab)
1554 return NULL;
1555
1556 bv = BLOCKVECTOR (symtab);
1557 block = BLOCKVECTOR_BLOCK (bv, kind);
1558 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1559 if (!sym)
1560 {
1561 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1562
1563 /* This shouldn't be necessary, but as a last resort
1564 * try looking in the 'other kind' even though the psymtab
1565 * claimed the symbol was one thing. It's possible that
1566 * the psymtab gets it wrong in some cases.
1567 */
1568 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1569 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1570 if (!sym)
1571 /* FIXME; error is wrong in one case. */
1572 error (_("\
1573Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1574%s may be an inlined function, or may be a template function\n\
1575(if a template, try specifying an instantiation: %s<type>)."),
1576 name, symtab->filename, name, name);
1577 }
1578 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1579 return SYMBOL_TYPE (sym);
1580
1581 return NULL;
1582}
1583
1584/* The standard implementation of lookup_transparent_type. This code
1585 was modeled on lookup_symbol -- the parts not relevant to looking
1586 up types were just left out. In particular it's assumed here that
1587 types are available in struct_domain and only at file-static or
1588 global blocks. */
1589
1590struct type *
1591basic_lookup_transparent_type (const char *name)
1592{
1593 struct symbol *sym;
1594 struct symtab *s = NULL;
1595 struct blockvector *bv;
1596 struct objfile *objfile;
1597 struct block *block;
1598 struct type *t;
1599
1600 /* Now search all the global symbols. Do the symtab's first, then
1601 check the psymtab's. If a psymtab indicates the existence
1602 of the desired name as a global, then do psymtab-to-symtab
1603 conversion on the fly and return the found symbol. */
1604
1605 ALL_OBJFILES (objfile)
1606 {
1607 if (objfile->sf)
1608 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1609 GLOBAL_BLOCK,
1610 name, STRUCT_DOMAIN);
1611
1612 ALL_OBJFILE_SYMTABS (objfile, s)
1613 if (s->primary)
1614 {
1615 bv = BLOCKVECTOR (s);
1616 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1617 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1618 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1619 {
1620 return SYMBOL_TYPE (sym);
1621 }
1622 }
1623 }
1624
1625 ALL_OBJFILES (objfile)
1626 {
1627 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1628 if (t)
1629 return t;
1630 }
1631
1632 /* Now search the static file-level symbols.
1633 Not strictly correct, but more useful than an error.
1634 Do the symtab's first, then
1635 check the psymtab's. If a psymtab indicates the existence
1636 of the desired name as a file-level static, then do psymtab-to-symtab
1637 conversion on the fly and return the found symbol. */
1638
1639 ALL_OBJFILES (objfile)
1640 {
1641 if (objfile->sf)
1642 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1643 name, STRUCT_DOMAIN);
1644
1645 ALL_OBJFILE_SYMTABS (objfile, s)
1646 {
1647 bv = BLOCKVECTOR (s);
1648 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1649 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1650 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1651 {
1652 return SYMBOL_TYPE (sym);
1653 }
1654 }
1655 }
1656
1657 ALL_OBJFILES (objfile)
1658 {
1659 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1660 if (t)
1661 return t;
1662 }
1663
1664 return (struct type *) 0;
1665}
1666
1667
1668/* Find the name of the file containing main(). */
1669/* FIXME: What about languages without main() or specially linked
1670 executables that have no main() ? */
1671
1672const char *
1673find_main_filename (void)
1674{
1675 struct objfile *objfile;
1676 char *name = main_name ();
1677
1678 ALL_OBJFILES (objfile)
1679 {
1680 const char *result;
1681
1682 if (!objfile->sf)
1683 continue;
1684 result = objfile->sf->qf->find_symbol_file (objfile, name);
1685 if (result)
1686 return result;
1687 }
1688 return (NULL);
1689}
1690
1691/* Search BLOCK for symbol NAME in DOMAIN.
1692
1693 Note that if NAME is the demangled form of a C++ symbol, we will fail
1694 to find a match during the binary search of the non-encoded names, but
1695 for now we don't worry about the slight inefficiency of looking for
1696 a match we'll never find, since it will go pretty quick. Once the
1697 binary search terminates, we drop through and do a straight linear
1698 search on the symbols. Each symbol which is marked as being a ObjC/C++
1699 symbol (language_cplus or language_objc set) has both the encoded and
1700 non-encoded names tested for a match. */
1701
1702struct symbol *
1703lookup_block_symbol (const struct block *block, const char *name,
1704 const domain_enum domain)
1705{
1706 struct dict_iterator iter;
1707 struct symbol *sym;
1708
1709 if (!BLOCK_FUNCTION (block))
1710 {
1711 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1712 sym != NULL;
1713 sym = dict_iter_name_next (name, &iter))
1714 {
1715 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1716 SYMBOL_DOMAIN (sym), domain))
1717 return sym;
1718 }
1719 return NULL;
1720 }
1721 else
1722 {
1723 /* Note that parameter symbols do not always show up last in the
1724 list; this loop makes sure to take anything else other than
1725 parameter symbols first; it only uses parameter symbols as a
1726 last resort. Note that this only takes up extra computation
1727 time on a match. */
1728
1729 struct symbol *sym_found = NULL;
1730
1731 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1732 sym != NULL;
1733 sym = dict_iter_name_next (name, &iter))
1734 {
1735 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1736 SYMBOL_DOMAIN (sym), domain))
1737 {
1738 sym_found = sym;
1739 if (!SYMBOL_IS_ARGUMENT (sym))
1740 {
1741 break;
1742 }
1743 }
1744 }
1745 return (sym_found); /* Will be NULL if not found. */
1746 }
1747}
1748
1749/* Find the symtab associated with PC and SECTION. Look through the
1750 psymtabs and read in another symtab if necessary. */
1751
1752struct symtab *
1753find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1754{
1755 struct block *b;
1756 struct blockvector *bv;
1757 struct symtab *s = NULL;
1758 struct symtab *best_s = NULL;
1759 struct objfile *objfile;
1760 struct program_space *pspace;
1761 CORE_ADDR distance = 0;
1762 struct minimal_symbol *msymbol;
1763
1764 pspace = current_program_space;
1765
1766 /* If we know that this is not a text address, return failure. This is
1767 necessary because we loop based on the block's high and low code
1768 addresses, which do not include the data ranges, and because
1769 we call find_pc_sect_psymtab which has a similar restriction based
1770 on the partial_symtab's texthigh and textlow. */
1771 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1772 if (msymbol
1773 && (MSYMBOL_TYPE (msymbol) == mst_data
1774 || MSYMBOL_TYPE (msymbol) == mst_bss
1775 || MSYMBOL_TYPE (msymbol) == mst_abs
1776 || MSYMBOL_TYPE (msymbol) == mst_file_data
1777 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1778 return NULL;
1779
1780 /* Search all symtabs for the one whose file contains our address, and which
1781 is the smallest of all the ones containing the address. This is designed
1782 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1783 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1784 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1785
1786 This happens for native ecoff format, where code from included files
1787 gets its own symtab. The symtab for the included file should have
1788 been read in already via the dependency mechanism.
1789 It might be swifter to create several symtabs with the same name
1790 like xcoff does (I'm not sure).
1791
1792 It also happens for objfiles that have their functions reordered.
1793 For these, the symtab we are looking for is not necessarily read in. */
1794
1795 ALL_PRIMARY_SYMTABS (objfile, s)
1796 {
1797 bv = BLOCKVECTOR (s);
1798 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1799
1800 if (BLOCK_START (b) <= pc
1801 && BLOCK_END (b) > pc
1802 && (distance == 0
1803 || BLOCK_END (b) - BLOCK_START (b) < distance))
1804 {
1805 /* For an objfile that has its functions reordered,
1806 find_pc_psymtab will find the proper partial symbol table
1807 and we simply return its corresponding symtab. */
1808 /* In order to better support objfiles that contain both
1809 stabs and coff debugging info, we continue on if a psymtab
1810 can't be found. */
1811 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1812 {
1813 struct symtab *result;
1814
1815 result
1816 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1817 msymbol,
1818 pc, section,
1819 0);
1820 if (result)
1821 return result;
1822 }
1823 if (section != 0)
1824 {
1825 struct dict_iterator iter;
1826 struct symbol *sym = NULL;
1827
1828 ALL_BLOCK_SYMBOLS (b, iter, sym)
1829 {
1830 fixup_symbol_section (sym, objfile);
1831 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1832 break;
1833 }
1834 if (sym == NULL)
1835 continue; /* No symbol in this symtab matches
1836 section. */
1837 }
1838 distance = BLOCK_END (b) - BLOCK_START (b);
1839 best_s = s;
1840 }
1841 }
1842
1843 if (best_s != NULL)
1844 return (best_s);
1845
1846 ALL_OBJFILES (objfile)
1847 {
1848 struct symtab *result;
1849
1850 if (!objfile->sf)
1851 continue;
1852 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1853 msymbol,
1854 pc, section,
1855 1);
1856 if (result)
1857 return result;
1858 }
1859
1860 return NULL;
1861}
1862
1863/* Find the symtab associated with PC. Look through the psymtabs and read
1864 in another symtab if necessary. Backward compatibility, no section. */
1865
1866struct symtab *
1867find_pc_symtab (CORE_ADDR pc)
1868{
1869 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1870}
1871\f
1872
1873/* Find the source file and line number for a given PC value and SECTION.
1874 Return a structure containing a symtab pointer, a line number,
1875 and a pc range for the entire source line.
1876 The value's .pc field is NOT the specified pc.
1877 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1878 use the line that ends there. Otherwise, in that case, the line
1879 that begins there is used. */
1880
1881/* The big complication here is that a line may start in one file, and end just
1882 before the start of another file. This usually occurs when you #include
1883 code in the middle of a subroutine. To properly find the end of a line's PC
1884 range, we must search all symtabs associated with this compilation unit, and
1885 find the one whose first PC is closer than that of the next line in this
1886 symtab. */
1887
1888/* If it's worth the effort, we could be using a binary search. */
1889
1890struct symtab_and_line
1891find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1892{
1893 struct symtab *s;
1894 struct linetable *l;
1895 int len;
1896 int i;
1897 struct linetable_entry *item;
1898 struct symtab_and_line val;
1899 struct blockvector *bv;
1900 struct minimal_symbol *msymbol;
1901 struct minimal_symbol *mfunsym;
1902 struct objfile *objfile;
1903
1904 /* Info on best line seen so far, and where it starts, and its file. */
1905
1906 struct linetable_entry *best = NULL;
1907 CORE_ADDR best_end = 0;
1908 struct symtab *best_symtab = 0;
1909
1910 /* Store here the first line number
1911 of a file which contains the line at the smallest pc after PC.
1912 If we don't find a line whose range contains PC,
1913 we will use a line one less than this,
1914 with a range from the start of that file to the first line's pc. */
1915 struct linetable_entry *alt = NULL;
1916 struct symtab *alt_symtab = 0;
1917
1918 /* Info on best line seen in this file. */
1919
1920 struct linetable_entry *prev;
1921
1922 /* If this pc is not from the current frame,
1923 it is the address of the end of a call instruction.
1924 Quite likely that is the start of the following statement.
1925 But what we want is the statement containing the instruction.
1926 Fudge the pc to make sure we get that. */
1927
1928 init_sal (&val); /* initialize to zeroes */
1929
1930 val.pspace = current_program_space;
1931
1932 /* It's tempting to assume that, if we can't find debugging info for
1933 any function enclosing PC, that we shouldn't search for line
1934 number info, either. However, GAS can emit line number info for
1935 assembly files --- very helpful when debugging hand-written
1936 assembly code. In such a case, we'd have no debug info for the
1937 function, but we would have line info. */
1938
1939 if (notcurrent)
1940 pc -= 1;
1941
1942 /* elz: added this because this function returned the wrong
1943 information if the pc belongs to a stub (import/export)
1944 to call a shlib function. This stub would be anywhere between
1945 two functions in the target, and the line info was erroneously
1946 taken to be the one of the line before the pc. */
1947
1948 /* RT: Further explanation:
1949
1950 * We have stubs (trampolines) inserted between procedures.
1951 *
1952 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1953 * exists in the main image.
1954 *
1955 * In the minimal symbol table, we have a bunch of symbols
1956 * sorted by start address. The stubs are marked as "trampoline",
1957 * the others appear as text. E.g.:
1958 *
1959 * Minimal symbol table for main image
1960 * main: code for main (text symbol)
1961 * shr1: stub (trampoline symbol)
1962 * foo: code for foo (text symbol)
1963 * ...
1964 * Minimal symbol table for "shr1" image:
1965 * ...
1966 * shr1: code for shr1 (text symbol)
1967 * ...
1968 *
1969 * So the code below is trying to detect if we are in the stub
1970 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1971 * and if found, do the symbolization from the real-code address
1972 * rather than the stub address.
1973 *
1974 * Assumptions being made about the minimal symbol table:
1975 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1976 * if we're really in the trampoline.s If we're beyond it (say
1977 * we're in "foo" in the above example), it'll have a closer
1978 * symbol (the "foo" text symbol for example) and will not
1979 * return the trampoline.
1980 * 2. lookup_minimal_symbol_text() will find a real text symbol
1981 * corresponding to the trampoline, and whose address will
1982 * be different than the trampoline address. I put in a sanity
1983 * check for the address being the same, to avoid an
1984 * infinite recursion.
1985 */
1986 msymbol = lookup_minimal_symbol_by_pc (pc);
1987 if (msymbol != NULL)
1988 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1989 {
1990 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1991 NULL);
1992 if (mfunsym == NULL)
1993 /* I eliminated this warning since it is coming out
1994 * in the following situation:
1995 * gdb shmain // test program with shared libraries
1996 * (gdb) break shr1 // function in shared lib
1997 * Warning: In stub for ...
1998 * In the above situation, the shared lib is not loaded yet,
1999 * so of course we can't find the real func/line info,
2000 * but the "break" still works, and the warning is annoying.
2001 * So I commented out the warning. RT */
2002 /* warning ("In stub for %s; unable to find real function/line info",
2003 SYMBOL_LINKAGE_NAME (msymbol)); */
2004 ;
2005 /* fall through */
2006 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2007 == SYMBOL_VALUE_ADDRESS (msymbol))
2008 /* Avoid infinite recursion */
2009 /* See above comment about why warning is commented out. */
2010 /* warning ("In stub for %s; unable to find real function/line info",
2011 SYMBOL_LINKAGE_NAME (msymbol)); */
2012 ;
2013 /* fall through */
2014 else
2015 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2016 }
2017
2018
2019 s = find_pc_sect_symtab (pc, section);
2020 if (!s)
2021 {
2022 /* If no symbol information, return previous pc. */
2023 if (notcurrent)
2024 pc++;
2025 val.pc = pc;
2026 return val;
2027 }
2028
2029 bv = BLOCKVECTOR (s);
2030 objfile = s->objfile;
2031
2032 /* Look at all the symtabs that share this blockvector.
2033 They all have the same apriori range, that we found was right;
2034 but they have different line tables. */
2035
2036 ALL_OBJFILE_SYMTABS (objfile, s)
2037 {
2038 if (BLOCKVECTOR (s) != bv)
2039 continue;
2040
2041 /* Find the best line in this symtab. */
2042 l = LINETABLE (s);
2043 if (!l)
2044 continue;
2045 len = l->nitems;
2046 if (len <= 0)
2047 {
2048 /* I think len can be zero if the symtab lacks line numbers
2049 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2050 I'm not sure which, and maybe it depends on the symbol
2051 reader). */
2052 continue;
2053 }
2054
2055 prev = NULL;
2056 item = l->item; /* Get first line info. */
2057
2058 /* Is this file's first line closer than the first lines of other files?
2059 If so, record this file, and its first line, as best alternate. */
2060 if (item->pc > pc && (!alt || item->pc < alt->pc))
2061 {
2062 alt = item;
2063 alt_symtab = s;
2064 }
2065
2066 for (i = 0; i < len; i++, item++)
2067 {
2068 /* Leave prev pointing to the linetable entry for the last line
2069 that started at or before PC. */
2070 if (item->pc > pc)
2071 break;
2072
2073 prev = item;
2074 }
2075
2076 /* At this point, prev points at the line whose start addr is <= pc, and
2077 item points at the next line. If we ran off the end of the linetable
2078 (pc >= start of the last line), then prev == item. If pc < start of
2079 the first line, prev will not be set. */
2080
2081 /* Is this file's best line closer than the best in the other files?
2082 If so, record this file, and its best line, as best so far. Don't
2083 save prev if it represents the end of a function (i.e. line number
2084 0) instead of a real line. */
2085
2086 if (prev && prev->line && (!best || prev->pc > best->pc))
2087 {
2088 best = prev;
2089 best_symtab = s;
2090
2091 /* Discard BEST_END if it's before the PC of the current BEST. */
2092 if (best_end <= best->pc)
2093 best_end = 0;
2094 }
2095
2096 /* If another line (denoted by ITEM) is in the linetable and its
2097 PC is after BEST's PC, but before the current BEST_END, then
2098 use ITEM's PC as the new best_end. */
2099 if (best && i < len && item->pc > best->pc
2100 && (best_end == 0 || best_end > item->pc))
2101 best_end = item->pc;
2102 }
2103
2104 if (!best_symtab)
2105 {
2106 /* If we didn't find any line number info, just return zeros.
2107 We used to return alt->line - 1 here, but that could be
2108 anywhere; if we don't have line number info for this PC,
2109 don't make some up. */
2110 val.pc = pc;
2111 }
2112 else if (best->line == 0)
2113 {
2114 /* If our best fit is in a range of PC's for which no line
2115 number info is available (line number is zero) then we didn't
2116 find any valid line information. */
2117 val.pc = pc;
2118 }
2119 else
2120 {
2121 val.symtab = best_symtab;
2122 val.line = best->line;
2123 val.pc = best->pc;
2124 if (best_end && (!alt || best_end < alt->pc))
2125 val.end = best_end;
2126 else if (alt)
2127 val.end = alt->pc;
2128 else
2129 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2130 }
2131 val.section = section;
2132 return val;
2133}
2134
2135/* Backward compatibility (no section). */
2136
2137struct symtab_and_line
2138find_pc_line (CORE_ADDR pc, int notcurrent)
2139{
2140 struct obj_section *section;
2141
2142 section = find_pc_overlay (pc);
2143 if (pc_in_unmapped_range (pc, section))
2144 pc = overlay_mapped_address (pc, section);
2145 return find_pc_sect_line (pc, section, notcurrent);
2146}
2147\f
2148/* Find line number LINE in any symtab whose name is the same as
2149 SYMTAB.
2150
2151 If found, return the symtab that contains the linetable in which it was
2152 found, set *INDEX to the index in the linetable of the best entry
2153 found, and set *EXACT_MATCH nonzero if the value returned is an
2154 exact match.
2155
2156 If not found, return NULL. */
2157
2158struct symtab *
2159find_line_symtab (struct symtab *symtab, int line,
2160 int *index, int *exact_match)
2161{
2162 int exact = 0; /* Initialized here to avoid a compiler warning. */
2163
2164 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2165 so far seen. */
2166
2167 int best_index;
2168 struct linetable *best_linetable;
2169 struct symtab *best_symtab;
2170
2171 /* First try looking it up in the given symtab. */
2172 best_linetable = LINETABLE (symtab);
2173 best_symtab = symtab;
2174 best_index = find_line_common (best_linetable, line, &exact);
2175 if (best_index < 0 || !exact)
2176 {
2177 /* Didn't find an exact match. So we better keep looking for
2178 another symtab with the same name. In the case of xcoff,
2179 multiple csects for one source file (produced by IBM's FORTRAN
2180 compiler) produce multiple symtabs (this is unavoidable
2181 assuming csects can be at arbitrary places in memory and that
2182 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2183
2184 /* BEST is the smallest linenumber > LINE so far seen,
2185 or 0 if none has been seen so far.
2186 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2187 int best;
2188
2189 struct objfile *objfile;
2190 struct symtab *s;
2191
2192 if (best_index >= 0)
2193 best = best_linetable->item[best_index].line;
2194 else
2195 best = 0;
2196
2197 ALL_OBJFILES (objfile)
2198 {
2199 if (objfile->sf)
2200 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2201 symtab->filename);
2202 }
2203
2204 /* Get symbol full file name if possible. */
2205 symtab_to_fullname (symtab);
2206
2207 ALL_SYMTABS (objfile, s)
2208 {
2209 struct linetable *l;
2210 int ind;
2211
2212 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2213 continue;
2214 if (symtab->fullname != NULL
2215 && symtab_to_fullname (s) != NULL
2216 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2217 continue;
2218 l = LINETABLE (s);
2219 ind = find_line_common (l, line, &exact);
2220 if (ind >= 0)
2221 {
2222 if (exact)
2223 {
2224 best_index = ind;
2225 best_linetable = l;
2226 best_symtab = s;
2227 goto done;
2228 }
2229 if (best == 0 || l->item[ind].line < best)
2230 {
2231 best = l->item[ind].line;
2232 best_index = ind;
2233 best_linetable = l;
2234 best_symtab = s;
2235 }
2236 }
2237 }
2238 }
2239done:
2240 if (best_index < 0)
2241 return NULL;
2242
2243 if (index)
2244 *index = best_index;
2245 if (exact_match)
2246 *exact_match = exact;
2247
2248 return best_symtab;
2249}
2250\f
2251/* Set the PC value for a given source file and line number and return true.
2252 Returns zero for invalid line number (and sets the PC to 0).
2253 The source file is specified with a struct symtab. */
2254
2255int
2256find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2257{
2258 struct linetable *l;
2259 int ind;
2260
2261 *pc = 0;
2262 if (symtab == 0)
2263 return 0;
2264
2265 symtab = find_line_symtab (symtab, line, &ind, NULL);
2266 if (symtab != NULL)
2267 {
2268 l = LINETABLE (symtab);
2269 *pc = l->item[ind].pc;
2270 return 1;
2271 }
2272 else
2273 return 0;
2274}
2275
2276/* Find the range of pc values in a line.
2277 Store the starting pc of the line into *STARTPTR
2278 and the ending pc (start of next line) into *ENDPTR.
2279 Returns 1 to indicate success.
2280 Returns 0 if could not find the specified line. */
2281
2282int
2283find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2284 CORE_ADDR *endptr)
2285{
2286 CORE_ADDR startaddr;
2287 struct symtab_and_line found_sal;
2288
2289 startaddr = sal.pc;
2290 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2291 return 0;
2292
2293 /* This whole function is based on address. For example, if line 10 has
2294 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2295 "info line *0x123" should say the line goes from 0x100 to 0x200
2296 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2297 This also insures that we never give a range like "starts at 0x134
2298 and ends at 0x12c". */
2299
2300 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2301 if (found_sal.line != sal.line)
2302 {
2303 /* The specified line (sal) has zero bytes. */
2304 *startptr = found_sal.pc;
2305 *endptr = found_sal.pc;
2306 }
2307 else
2308 {
2309 *startptr = found_sal.pc;
2310 *endptr = found_sal.end;
2311 }
2312 return 1;
2313}
2314
2315/* Given a line table and a line number, return the index into the line
2316 table for the pc of the nearest line whose number is >= the specified one.
2317 Return -1 if none is found. The value is >= 0 if it is an index.
2318
2319 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2320
2321static int
2322find_line_common (struct linetable *l, int lineno,
2323 int *exact_match)
2324{
2325 int i;
2326 int len;
2327
2328 /* BEST is the smallest linenumber > LINENO so far seen,
2329 or 0 if none has been seen so far.
2330 BEST_INDEX identifies the item for it. */
2331
2332 int best_index = -1;
2333 int best = 0;
2334
2335 *exact_match = 0;
2336
2337 if (lineno <= 0)
2338 return -1;
2339 if (l == 0)
2340 return -1;
2341
2342 len = l->nitems;
2343 for (i = 0; i < len; i++)
2344 {
2345 struct linetable_entry *item = &(l->item[i]);
2346
2347 if (item->line == lineno)
2348 {
2349 /* Return the first (lowest address) entry which matches. */
2350 *exact_match = 1;
2351 return i;
2352 }
2353
2354 if (item->line > lineno && (best == 0 || item->line < best))
2355 {
2356 best = item->line;
2357 best_index = i;
2358 }
2359 }
2360
2361 /* If we got here, we didn't get an exact match. */
2362 return best_index;
2363}
2364
2365int
2366find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2367{
2368 struct symtab_and_line sal;
2369
2370 sal = find_pc_line (pc, 0);
2371 *startptr = sal.pc;
2372 *endptr = sal.end;
2373 return sal.symtab != 0;
2374}
2375
2376/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2377 address for that function that has an entry in SYMTAB's line info
2378 table. If such an entry cannot be found, return FUNC_ADDR
2379 unaltered. */
2380CORE_ADDR
2381skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2382{
2383 CORE_ADDR func_start, func_end;
2384 struct linetable *l;
2385 int i;
2386
2387 /* Give up if this symbol has no lineinfo table. */
2388 l = LINETABLE (symtab);
2389 if (l == NULL)
2390 return func_addr;
2391
2392 /* Get the range for the function's PC values, or give up if we
2393 cannot, for some reason. */
2394 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2395 return func_addr;
2396
2397 /* Linetable entries are ordered by PC values, see the commentary in
2398 symtab.h where `struct linetable' is defined. Thus, the first
2399 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2400 address we are looking for. */
2401 for (i = 0; i < l->nitems; i++)
2402 {
2403 struct linetable_entry *item = &(l->item[i]);
2404
2405 /* Don't use line numbers of zero, they mark special entries in
2406 the table. See the commentary on symtab.h before the
2407 definition of struct linetable. */
2408 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2409 return item->pc;
2410 }
2411
2412 return func_addr;
2413}
2414
2415/* Given a function symbol SYM, find the symtab and line for the start
2416 of the function.
2417 If the argument FUNFIRSTLINE is nonzero, we want the first line
2418 of real code inside the function. */
2419
2420struct symtab_and_line
2421find_function_start_sal (struct symbol *sym, int funfirstline)
2422{
2423 struct symtab_and_line sal;
2424
2425 fixup_symbol_section (sym, NULL);
2426 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2427 SYMBOL_OBJ_SECTION (sym), 0);
2428
2429 /* We always should have a line for the function start address.
2430 If we don't, something is odd. Create a plain SAL refering
2431 just the PC and hope that skip_prologue_sal (if requested)
2432 can find a line number for after the prologue. */
2433 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2434 {
2435 init_sal (&sal);
2436 sal.pspace = current_program_space;
2437 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2438 sal.section = SYMBOL_OBJ_SECTION (sym);
2439 }
2440
2441 if (funfirstline)
2442 skip_prologue_sal (&sal);
2443
2444 return sal;
2445}
2446
2447/* Adjust SAL to the first instruction past the function prologue.
2448 If the PC was explicitly specified, the SAL is not changed.
2449 If the line number was explicitly specified, at most the SAL's PC
2450 is updated. If SAL is already past the prologue, then do nothing. */
2451void
2452skip_prologue_sal (struct symtab_and_line *sal)
2453{
2454 struct symbol *sym;
2455 struct symtab_and_line start_sal;
2456 struct cleanup *old_chain;
2457 CORE_ADDR pc;
2458 struct obj_section *section;
2459 const char *name;
2460 struct objfile *objfile;
2461 struct gdbarch *gdbarch;
2462 struct block *b, *function_block;
2463
2464 /* Do not change the SAL is PC was specified explicitly. */
2465 if (sal->explicit_pc)
2466 return;
2467
2468 old_chain = save_current_space_and_thread ();
2469 switch_to_program_space_and_thread (sal->pspace);
2470
2471 sym = find_pc_sect_function (sal->pc, sal->section);
2472 if (sym != NULL)
2473 {
2474 fixup_symbol_section (sym, NULL);
2475
2476 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2477 section = SYMBOL_OBJ_SECTION (sym);
2478 name = SYMBOL_LINKAGE_NAME (sym);
2479 objfile = SYMBOL_SYMTAB (sym)->objfile;
2480 }
2481 else
2482 {
2483 struct minimal_symbol *msymbol
2484 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2485
2486 if (msymbol == NULL)
2487 {
2488 do_cleanups (old_chain);
2489 return;
2490 }
2491
2492 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2493 section = SYMBOL_OBJ_SECTION (msymbol);
2494 name = SYMBOL_LINKAGE_NAME (msymbol);
2495 objfile = msymbol_objfile (msymbol);
2496 }
2497
2498 gdbarch = get_objfile_arch (objfile);
2499
2500 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2501 so that gdbarch_skip_prologue has something unique to work on. */
2502 if (section_is_overlay (section) && !section_is_mapped (section))
2503 pc = overlay_unmapped_address (pc, section);
2504
2505 /* Skip "first line" of function (which is actually its prologue). */
2506 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2507 pc = gdbarch_skip_prologue (gdbarch, pc);
2508
2509 /* For overlays, map pc back into its mapped VMA range. */
2510 pc = overlay_mapped_address (pc, section);
2511
2512 /* Calculate line number. */
2513 start_sal = find_pc_sect_line (pc, section, 0);
2514
2515 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2516 line is still part of the same function. */
2517 if (start_sal.pc != pc
2518 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2519 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2520 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2521 == lookup_minimal_symbol_by_pc_section (pc, section))))
2522 {
2523 /* First pc of next line */
2524 pc = start_sal.end;
2525 /* Recalculate the line number (might not be N+1). */
2526 start_sal = find_pc_sect_line (pc, section, 0);
2527 }
2528
2529 /* On targets with executable formats that don't have a concept of
2530 constructors (ELF with .init has, PE doesn't), gcc emits a call
2531 to `__main' in `main' between the prologue and before user
2532 code. */
2533 if (gdbarch_skip_main_prologue_p (gdbarch)
2534 && name && strcmp (name, "main") == 0)
2535 {
2536 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2537 /* Recalculate the line number (might not be N+1). */
2538 start_sal = find_pc_sect_line (pc, section, 0);
2539 }
2540
2541 /* If we still don't have a valid source line, try to find the first
2542 PC in the lineinfo table that belongs to the same function. This
2543 happens with COFF debug info, which does not seem to have an
2544 entry in lineinfo table for the code after the prologue which has
2545 no direct relation to source. For example, this was found to be
2546 the case with the DJGPP target using "gcc -gcoff" when the
2547 compiler inserted code after the prologue to make sure the stack
2548 is aligned. */
2549 if (sym && start_sal.symtab == NULL)
2550 {
2551 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2552 /* Recalculate the line number. */
2553 start_sal = find_pc_sect_line (pc, section, 0);
2554 }
2555
2556 do_cleanups (old_chain);
2557
2558 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2559 forward SAL to the end of the prologue. */
2560 if (sal->pc >= pc)
2561 return;
2562
2563 sal->pc = pc;
2564 sal->section = section;
2565
2566 /* Unless the explicit_line flag was set, update the SAL line
2567 and symtab to correspond to the modified PC location. */
2568 if (sal->explicit_line)
2569 return;
2570
2571 sal->symtab = start_sal.symtab;
2572 sal->line = start_sal.line;
2573 sal->end = start_sal.end;
2574
2575 /* Check if we are now inside an inlined function. If we can,
2576 use the call site of the function instead. */
2577 b = block_for_pc_sect (sal->pc, sal->section);
2578 function_block = NULL;
2579 while (b != NULL)
2580 {
2581 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2582 function_block = b;
2583 else if (BLOCK_FUNCTION (b) != NULL)
2584 break;
2585 b = BLOCK_SUPERBLOCK (b);
2586 }
2587 if (function_block != NULL
2588 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2589 {
2590 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2591 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2592 }
2593}
2594
2595/* If P is of the form "operator[ \t]+..." where `...' is
2596 some legitimate operator text, return a pointer to the
2597 beginning of the substring of the operator text.
2598 Otherwise, return "". */
2599char *
2600operator_chars (char *p, char **end)
2601{
2602 *end = "";
2603 if (strncmp (p, "operator", 8))
2604 return *end;
2605 p += 8;
2606
2607 /* Don't get faked out by `operator' being part of a longer
2608 identifier. */
2609 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2610 return *end;
2611
2612 /* Allow some whitespace between `operator' and the operator symbol. */
2613 while (*p == ' ' || *p == '\t')
2614 p++;
2615
2616 /* Recognize 'operator TYPENAME'. */
2617
2618 if (isalpha (*p) || *p == '_' || *p == '$')
2619 {
2620 char *q = p + 1;
2621
2622 while (isalnum (*q) || *q == '_' || *q == '$')
2623 q++;
2624 *end = q;
2625 return p;
2626 }
2627
2628 while (*p)
2629 switch (*p)
2630 {
2631 case '\\': /* regexp quoting */
2632 if (p[1] == '*')
2633 {
2634 if (p[2] == '=') /* 'operator\*=' */
2635 *end = p + 3;
2636 else /* 'operator\*' */
2637 *end = p + 2;
2638 return p;
2639 }
2640 else if (p[1] == '[')
2641 {
2642 if (p[2] == ']')
2643 error (_("mismatched quoting on brackets, "
2644 "try 'operator\\[\\]'"));
2645 else if (p[2] == '\\' && p[3] == ']')
2646 {
2647 *end = p + 4; /* 'operator\[\]' */
2648 return p;
2649 }
2650 else
2651 error (_("nothing is allowed between '[' and ']'"));
2652 }
2653 else
2654 {
2655 /* Gratuitous qoute: skip it and move on. */
2656 p++;
2657 continue;
2658 }
2659 break;
2660 case '!':
2661 case '=':
2662 case '*':
2663 case '/':
2664 case '%':
2665 case '^':
2666 if (p[1] == '=')
2667 *end = p + 2;
2668 else
2669 *end = p + 1;
2670 return p;
2671 case '<':
2672 case '>':
2673 case '+':
2674 case '-':
2675 case '&':
2676 case '|':
2677 if (p[0] == '-' && p[1] == '>')
2678 {
2679 /* Struct pointer member operator 'operator->'. */
2680 if (p[2] == '*')
2681 {
2682 *end = p + 3; /* 'operator->*' */
2683 return p;
2684 }
2685 else if (p[2] == '\\')
2686 {
2687 *end = p + 4; /* Hopefully 'operator->\*' */
2688 return p;
2689 }
2690 else
2691 {
2692 *end = p + 2; /* 'operator->' */
2693 return p;
2694 }
2695 }
2696 if (p[1] == '=' || p[1] == p[0])
2697 *end = p + 2;
2698 else
2699 *end = p + 1;
2700 return p;
2701 case '~':
2702 case ',':
2703 *end = p + 1;
2704 return p;
2705 case '(':
2706 if (p[1] != ')')
2707 error (_("`operator ()' must be specified "
2708 "without whitespace in `()'"));
2709 *end = p + 2;
2710 return p;
2711 case '?':
2712 if (p[1] != ':')
2713 error (_("`operator ?:' must be specified "
2714 "without whitespace in `?:'"));
2715 *end = p + 2;
2716 return p;
2717 case '[':
2718 if (p[1] != ']')
2719 error (_("`operator []' must be specified "
2720 "without whitespace in `[]'"));
2721 *end = p + 2;
2722 return p;
2723 default:
2724 error (_("`operator %s' not supported"), p);
2725 break;
2726 }
2727
2728 *end = "";
2729 return *end;
2730}
2731\f
2732
2733/* If FILE is not already in the table of files, return zero;
2734 otherwise return non-zero. Optionally add FILE to the table if ADD
2735 is non-zero. If *FIRST is non-zero, forget the old table
2736 contents. */
2737static int
2738filename_seen (const char *file, int add, int *first)
2739{
2740 /* Table of files seen so far. */
2741 static const char **tab = NULL;
2742 /* Allocated size of tab in elements.
2743 Start with one 256-byte block (when using GNU malloc.c).
2744 24 is the malloc overhead when range checking is in effect. */
2745 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2746 /* Current size of tab in elements. */
2747 static int tab_cur_size;
2748 const char **p;
2749
2750 if (*first)
2751 {
2752 if (tab == NULL)
2753 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2754 tab_cur_size = 0;
2755 }
2756
2757 /* Is FILE in tab? */
2758 for (p = tab; p < tab + tab_cur_size; p++)
2759 if (filename_cmp (*p, file) == 0)
2760 return 1;
2761
2762 /* No; maybe add it to tab. */
2763 if (add)
2764 {
2765 if (tab_cur_size == tab_alloc_size)
2766 {
2767 tab_alloc_size *= 2;
2768 tab = (const char **) xrealloc ((char *) tab,
2769 tab_alloc_size * sizeof (*tab));
2770 }
2771 tab[tab_cur_size++] = file;
2772 }
2773
2774 return 0;
2775}
2776
2777/* Slave routine for sources_info. Force line breaks at ,'s.
2778 NAME is the name to print and *FIRST is nonzero if this is the first
2779 name printed. Set *FIRST to zero. */
2780static void
2781output_source_filename (const char *name, int *first)
2782{
2783 /* Since a single source file can result in several partial symbol
2784 tables, we need to avoid printing it more than once. Note: if
2785 some of the psymtabs are read in and some are not, it gets
2786 printed both under "Source files for which symbols have been
2787 read" and "Source files for which symbols will be read in on
2788 demand". I consider this a reasonable way to deal with the
2789 situation. I'm not sure whether this can also happen for
2790 symtabs; it doesn't hurt to check. */
2791
2792 /* Was NAME already seen? */
2793 if (filename_seen (name, 1, first))
2794 {
2795 /* Yes; don't print it again. */
2796 return;
2797 }
2798 /* No; print it and reset *FIRST. */
2799 if (*first)
2800 {
2801 *first = 0;
2802 }
2803 else
2804 {
2805 printf_filtered (", ");
2806 }
2807
2808 wrap_here ("");
2809 fputs_filtered (name, gdb_stdout);
2810}
2811
2812/* A callback for map_partial_symbol_filenames. */
2813static void
2814output_partial_symbol_filename (const char *fullname, const char *filename,
2815 void *data)
2816{
2817 output_source_filename (fullname ? fullname : filename, data);
2818}
2819
2820static void
2821sources_info (char *ignore, int from_tty)
2822{
2823 struct symtab *s;
2824 struct objfile *objfile;
2825 int first;
2826
2827 if (!have_full_symbols () && !have_partial_symbols ())
2828 {
2829 error (_("No symbol table is loaded. Use the \"file\" command."));
2830 }
2831
2832 printf_filtered ("Source files for which symbols have been read in:\n\n");
2833
2834 first = 1;
2835 ALL_SYMTABS (objfile, s)
2836 {
2837 const char *fullname = symtab_to_fullname (s);
2838
2839 output_source_filename (fullname ? fullname : s->filename, &first);
2840 }
2841 printf_filtered ("\n\n");
2842
2843 printf_filtered ("Source files for which symbols "
2844 "will be read in on demand:\n\n");
2845
2846 first = 1;
2847 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2848 printf_filtered ("\n");
2849}
2850
2851static int
2852file_matches (const char *file, char *files[], int nfiles)
2853{
2854 int i;
2855
2856 if (file != NULL && nfiles != 0)
2857 {
2858 for (i = 0; i < nfiles; i++)
2859 {
2860 if (filename_cmp (files[i], lbasename (file)) == 0)
2861 return 1;
2862 }
2863 }
2864 else if (nfiles == 0)
2865 return 1;
2866 return 0;
2867}
2868
2869/* Free any memory associated with a search. */
2870void
2871free_search_symbols (struct symbol_search *symbols)
2872{
2873 struct symbol_search *p;
2874 struct symbol_search *next;
2875
2876 for (p = symbols; p != NULL; p = next)
2877 {
2878 next = p->next;
2879 xfree (p);
2880 }
2881}
2882
2883static void
2884do_free_search_symbols_cleanup (void *symbols)
2885{
2886 free_search_symbols (symbols);
2887}
2888
2889struct cleanup *
2890make_cleanup_free_search_symbols (struct symbol_search *symbols)
2891{
2892 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2893}
2894
2895/* Helper function for sort_search_symbols and qsort. Can only
2896 sort symbols, not minimal symbols. */
2897static int
2898compare_search_syms (const void *sa, const void *sb)
2899{
2900 struct symbol_search **sym_a = (struct symbol_search **) sa;
2901 struct symbol_search **sym_b = (struct symbol_search **) sb;
2902
2903 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2904 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2905}
2906
2907/* Sort the ``nfound'' symbols in the list after prevtail. Leave
2908 prevtail where it is, but update its next pointer to point to
2909 the first of the sorted symbols. */
2910static struct symbol_search *
2911sort_search_symbols (struct symbol_search *prevtail, int nfound)
2912{
2913 struct symbol_search **symbols, *symp, *old_next;
2914 int i;
2915
2916 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2917 * nfound);
2918 symp = prevtail->next;
2919 for (i = 0; i < nfound; i++)
2920 {
2921 symbols[i] = symp;
2922 symp = symp->next;
2923 }
2924 /* Generally NULL. */
2925 old_next = symp;
2926
2927 qsort (symbols, nfound, sizeof (struct symbol_search *),
2928 compare_search_syms);
2929
2930 symp = prevtail;
2931 for (i = 0; i < nfound; i++)
2932 {
2933 symp->next = symbols[i];
2934 symp = symp->next;
2935 }
2936 symp->next = old_next;
2937
2938 xfree (symbols);
2939 return symp;
2940}
2941
2942/* An object of this type is passed as the user_data to the
2943 expand_symtabs_matching method. */
2944struct search_symbols_data
2945{
2946 int nfiles;
2947 char **files;
2948 char *regexp;
2949};
2950
2951/* A callback for expand_symtabs_matching. */
2952static int
2953search_symbols_file_matches (const char *filename, void *user_data)
2954{
2955 struct search_symbols_data *data = user_data;
2956
2957 return file_matches (filename, data->files, data->nfiles);
2958}
2959
2960/* A callback for expand_symtabs_matching. */
2961static int
2962search_symbols_name_matches (const char *symname, void *user_data)
2963{
2964 struct search_symbols_data *data = user_data;
2965
2966 return data->regexp == NULL || re_exec (symname);
2967}
2968
2969/* Search the symbol table for matches to the regular expression REGEXP,
2970 returning the results in *MATCHES.
2971
2972 Only symbols of KIND are searched:
2973 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2974 and constants (enums)
2975 FUNCTIONS_DOMAIN - search all functions
2976 TYPES_DOMAIN - search all type names
2977
2978 free_search_symbols should be called when *MATCHES is no longer needed.
2979
2980 The results are sorted locally; each symtab's global and static blocks are
2981 separately alphabetized. */
2982
2983void
2984search_symbols (char *regexp, enum search_domain kind,
2985 int nfiles, char *files[],
2986 struct symbol_search **matches)
2987{
2988 struct symtab *s;
2989 struct blockvector *bv;
2990 struct block *b;
2991 int i = 0;
2992 struct dict_iterator iter;
2993 struct symbol *sym;
2994 struct objfile *objfile;
2995 struct minimal_symbol *msymbol;
2996 char *val;
2997 int found_misc = 0;
2998 static const enum minimal_symbol_type types[]
2999 = {mst_data, mst_text, mst_abs};
3000 static const enum minimal_symbol_type types2[]
3001 = {mst_bss, mst_file_text, mst_abs};
3002 static const enum minimal_symbol_type types3[]
3003 = {mst_file_data, mst_solib_trampoline, mst_abs};
3004 static const enum minimal_symbol_type types4[]
3005 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3006 enum minimal_symbol_type ourtype;
3007 enum minimal_symbol_type ourtype2;
3008 enum minimal_symbol_type ourtype3;
3009 enum minimal_symbol_type ourtype4;
3010 struct symbol_search *sr;
3011 struct symbol_search *psr;
3012 struct symbol_search *tail;
3013 struct cleanup *old_chain = NULL;
3014 struct search_symbols_data datum;
3015
3016 gdb_assert (kind <= TYPES_DOMAIN);
3017
3018 ourtype = types[kind];
3019 ourtype2 = types2[kind];
3020 ourtype3 = types3[kind];
3021 ourtype4 = types4[kind];
3022
3023 sr = *matches = NULL;
3024 tail = NULL;
3025
3026 if (regexp != NULL)
3027 {
3028 /* Make sure spacing is right for C++ operators.
3029 This is just a courtesy to make the matching less sensitive
3030 to how many spaces the user leaves between 'operator'
3031 and <TYPENAME> or <OPERATOR>. */
3032 char *opend;
3033 char *opname = operator_chars (regexp, &opend);
3034
3035 if (*opname)
3036 {
3037 int fix = -1; /* -1 means ok; otherwise number of
3038 spaces needed. */
3039
3040 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3041 {
3042 /* There should 1 space between 'operator' and 'TYPENAME'. */
3043 if (opname[-1] != ' ' || opname[-2] == ' ')
3044 fix = 1;
3045 }
3046 else
3047 {
3048 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3049 if (opname[-1] == ' ')
3050 fix = 0;
3051 }
3052 /* If wrong number of spaces, fix it. */
3053 if (fix >= 0)
3054 {
3055 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3056
3057 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3058 regexp = tmp;
3059 }
3060 }
3061
3062 if (0 != (val = re_comp (regexp)))
3063 error (_("Invalid regexp (%s): %s"), val, regexp);
3064 }
3065
3066 /* Search through the partial symtabs *first* for all symbols
3067 matching the regexp. That way we don't have to reproduce all of
3068 the machinery below. */
3069
3070 datum.nfiles = nfiles;
3071 datum.files = files;
3072 datum.regexp = regexp;
3073 ALL_OBJFILES (objfile)
3074 {
3075 if (objfile->sf)
3076 objfile->sf->qf->expand_symtabs_matching (objfile,
3077 search_symbols_file_matches,
3078 search_symbols_name_matches,
3079 kind,
3080 &datum);
3081 }
3082
3083 /* Here, we search through the minimal symbol tables for functions
3084 and variables that match, and force their symbols to be read.
3085 This is in particular necessary for demangled variable names,
3086 which are no longer put into the partial symbol tables.
3087 The symbol will then be found during the scan of symtabs below.
3088
3089 For functions, find_pc_symtab should succeed if we have debug info
3090 for the function, for variables we have to call lookup_symbol
3091 to determine if the variable has debug info.
3092 If the lookup fails, set found_misc so that we will rescan to print
3093 any matching symbols without debug info. */
3094
3095 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3096 {
3097 ALL_MSYMBOLS (objfile, msymbol)
3098 {
3099 QUIT;
3100
3101 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3102 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3103 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3104 MSYMBOL_TYPE (msymbol) == ourtype4)
3105 {
3106 if (regexp == NULL
3107 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3108 {
3109 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3110 {
3111 /* FIXME: carlton/2003-02-04: Given that the
3112 semantics of lookup_symbol keeps on changing
3113 slightly, it would be a nice idea if we had a
3114 function lookup_symbol_minsym that found the
3115 symbol associated to a given minimal symbol (if
3116 any). */
3117 if (kind == FUNCTIONS_DOMAIN
3118 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3119 (struct block *) NULL,
3120 VAR_DOMAIN, 0)
3121 == NULL)
3122 found_misc = 1;
3123 }
3124 }
3125 }
3126 }
3127 }
3128
3129 ALL_PRIMARY_SYMTABS (objfile, s)
3130 {
3131 bv = BLOCKVECTOR (s);
3132 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3133 {
3134 struct symbol_search *prevtail = tail;
3135 int nfound = 0;
3136
3137 b = BLOCKVECTOR_BLOCK (bv, i);
3138 ALL_BLOCK_SYMBOLS (b, iter, sym)
3139 {
3140 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3141
3142 QUIT;
3143
3144 if (file_matches (real_symtab->filename, files, nfiles)
3145 && ((regexp == NULL
3146 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3147 && ((kind == VARIABLES_DOMAIN
3148 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3149 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3150 && SYMBOL_CLASS (sym) != LOC_BLOCK
3151 /* LOC_CONST can be used for more than just enums,
3152 e.g., c++ static const members.
3153 We only want to skip enums here. */
3154 && !(SYMBOL_CLASS (sym) == LOC_CONST
3155 && TYPE_CODE (SYMBOL_TYPE (sym))
3156 == TYPE_CODE_ENUM))
3157 || (kind == FUNCTIONS_DOMAIN
3158 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3159 || (kind == TYPES_DOMAIN
3160 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3161 {
3162 /* match */
3163 psr = (struct symbol_search *)
3164 xmalloc (sizeof (struct symbol_search));
3165 psr->block = i;
3166 psr->symtab = real_symtab;
3167 psr->symbol = sym;
3168 psr->msymbol = NULL;
3169 psr->next = NULL;
3170 if (tail == NULL)
3171 sr = psr;
3172 else
3173 tail->next = psr;
3174 tail = psr;
3175 nfound ++;
3176 }
3177 }
3178 if (nfound > 0)
3179 {
3180 if (prevtail == NULL)
3181 {
3182 struct symbol_search dummy;
3183
3184 dummy.next = sr;
3185 tail = sort_search_symbols (&dummy, nfound);
3186 sr = dummy.next;
3187
3188 old_chain = make_cleanup_free_search_symbols (sr);
3189 }
3190 else
3191 tail = sort_search_symbols (prevtail, nfound);
3192 }
3193 }
3194 }
3195
3196 /* If there are no eyes, avoid all contact. I mean, if there are
3197 no debug symbols, then print directly from the msymbol_vector. */
3198
3199 if (found_misc || kind != FUNCTIONS_DOMAIN)
3200 {
3201 ALL_MSYMBOLS (objfile, msymbol)
3202 {
3203 QUIT;
3204
3205 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3206 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3207 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3208 MSYMBOL_TYPE (msymbol) == ourtype4)
3209 {
3210 if (regexp == NULL
3211 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3212 {
3213 /* Functions: Look up by address. */
3214 if (kind != FUNCTIONS_DOMAIN ||
3215 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3216 {
3217 /* Variables/Absolutes: Look up by name. */
3218 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3219 (struct block *) NULL, VAR_DOMAIN, 0)
3220 == NULL)
3221 {
3222 /* match */
3223 psr = (struct symbol_search *)
3224 xmalloc (sizeof (struct symbol_search));
3225 psr->block = i;
3226 psr->msymbol = msymbol;
3227 psr->symtab = NULL;
3228 psr->symbol = NULL;
3229 psr->next = NULL;
3230 if (tail == NULL)
3231 {
3232 sr = psr;
3233 old_chain = make_cleanup_free_search_symbols (sr);
3234 }
3235 else
3236 tail->next = psr;
3237 tail = psr;
3238 }
3239 }
3240 }
3241 }
3242 }
3243 }
3244
3245 *matches = sr;
3246 if (sr != NULL)
3247 discard_cleanups (old_chain);
3248}
3249
3250/* Helper function for symtab_symbol_info, this function uses
3251 the data returned from search_symbols() to print information
3252 regarding the match to gdb_stdout. */
3253
3254static void
3255print_symbol_info (enum search_domain kind,
3256 struct symtab *s, struct symbol *sym,
3257 int block, char *last)
3258{
3259 if (last == NULL || filename_cmp (last, s->filename) != 0)
3260 {
3261 fputs_filtered ("\nFile ", gdb_stdout);
3262 fputs_filtered (s->filename, gdb_stdout);
3263 fputs_filtered (":\n", gdb_stdout);
3264 }
3265
3266 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3267 printf_filtered ("static ");
3268
3269 /* Typedef that is not a C++ class. */
3270 if (kind == TYPES_DOMAIN
3271 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3272 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3273 /* variable, func, or typedef-that-is-c++-class. */
3274 else if (kind < TYPES_DOMAIN ||
3275 (kind == TYPES_DOMAIN &&
3276 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3277 {
3278 type_print (SYMBOL_TYPE (sym),
3279 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3280 ? "" : SYMBOL_PRINT_NAME (sym)),
3281 gdb_stdout, 0);
3282
3283 printf_filtered (";\n");
3284 }
3285}
3286
3287/* This help function for symtab_symbol_info() prints information
3288 for non-debugging symbols to gdb_stdout. */
3289
3290static void
3291print_msymbol_info (struct minimal_symbol *msymbol)
3292{
3293 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3294 char *tmp;
3295
3296 if (gdbarch_addr_bit (gdbarch) <= 32)
3297 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3298 & (CORE_ADDR) 0xffffffff,
3299 8);
3300 else
3301 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3302 16);
3303 printf_filtered ("%s %s\n",
3304 tmp, SYMBOL_PRINT_NAME (msymbol));
3305}
3306
3307/* This is the guts of the commands "info functions", "info types", and
3308 "info variables". It calls search_symbols to find all matches and then
3309 print_[m]symbol_info to print out some useful information about the
3310 matches. */
3311
3312static void
3313symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3314{
3315 static const char * const classnames[] =
3316 {"variable", "function", "type"};
3317 struct symbol_search *symbols;
3318 struct symbol_search *p;
3319 struct cleanup *old_chain;
3320 char *last_filename = NULL;
3321 int first = 1;
3322
3323 gdb_assert (kind <= TYPES_DOMAIN);
3324
3325 /* Must make sure that if we're interrupted, symbols gets freed. */
3326 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3327 old_chain = make_cleanup_free_search_symbols (symbols);
3328
3329 printf_filtered (regexp
3330 ? "All %ss matching regular expression \"%s\":\n"
3331 : "All defined %ss:\n",
3332 classnames[kind], regexp);
3333
3334 for (p = symbols; p != NULL; p = p->next)
3335 {
3336 QUIT;
3337
3338 if (p->msymbol != NULL)
3339 {
3340 if (first)
3341 {
3342 printf_filtered ("\nNon-debugging symbols:\n");
3343 first = 0;
3344 }
3345 print_msymbol_info (p->msymbol);
3346 }
3347 else
3348 {
3349 print_symbol_info (kind,
3350 p->symtab,
3351 p->symbol,
3352 p->block,
3353 last_filename);
3354 last_filename = p->symtab->filename;
3355 }
3356 }
3357
3358 do_cleanups (old_chain);
3359}
3360
3361static void
3362variables_info (char *regexp, int from_tty)
3363{
3364 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3365}
3366
3367static void
3368functions_info (char *regexp, int from_tty)
3369{
3370 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3371}
3372
3373
3374static void
3375types_info (char *regexp, int from_tty)
3376{
3377 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3378}
3379
3380/* Breakpoint all functions matching regular expression. */
3381
3382void
3383rbreak_command_wrapper (char *regexp, int from_tty)
3384{
3385 rbreak_command (regexp, from_tty);
3386}
3387
3388/* A cleanup function that calls end_rbreak_breakpoints. */
3389
3390static void
3391do_end_rbreak_breakpoints (void *ignore)
3392{
3393 end_rbreak_breakpoints ();
3394}
3395
3396static void
3397rbreak_command (char *regexp, int from_tty)
3398{
3399 struct symbol_search *ss;
3400 struct symbol_search *p;
3401 struct cleanup *old_chain;
3402 char *string = NULL;
3403 int len = 0;
3404 char **files = NULL, *file_name;
3405 int nfiles = 0;
3406
3407 if (regexp)
3408 {
3409 char *colon = strchr (regexp, ':');
3410
3411 if (colon && *(colon + 1) != ':')
3412 {
3413 int colon_index;
3414
3415 colon_index = colon - regexp;
3416 file_name = alloca (colon_index + 1);
3417 memcpy (file_name, regexp, colon_index);
3418 file_name[colon_index--] = 0;
3419 while (isspace (file_name[colon_index]))
3420 file_name[colon_index--] = 0;
3421 files = &file_name;
3422 nfiles = 1;
3423 regexp = colon + 1;
3424 while (isspace (*regexp)) regexp++;
3425 }
3426 }
3427
3428 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3429 old_chain = make_cleanup_free_search_symbols (ss);
3430 make_cleanup (free_current_contents, &string);
3431
3432 start_rbreak_breakpoints ();
3433 make_cleanup (do_end_rbreak_breakpoints, NULL);
3434 for (p = ss; p != NULL; p = p->next)
3435 {
3436 if (p->msymbol == NULL)
3437 {
3438 int newlen = (strlen (p->symtab->filename)
3439 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3440 + 4);
3441
3442 if (newlen > len)
3443 {
3444 string = xrealloc (string, newlen);
3445 len = newlen;
3446 }
3447 strcpy (string, p->symtab->filename);
3448 strcat (string, ":'");
3449 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3450 strcat (string, "'");
3451 break_command (string, from_tty);
3452 print_symbol_info (FUNCTIONS_DOMAIN,
3453 p->symtab,
3454 p->symbol,
3455 p->block,
3456 p->symtab->filename);
3457 }
3458 else
3459 {
3460 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3461
3462 if (newlen > len)
3463 {
3464 string = xrealloc (string, newlen);
3465 len = newlen;
3466 }
3467 strcpy (string, "'");
3468 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3469 strcat (string, "'");
3470
3471 break_command (string, from_tty);
3472 printf_filtered ("<function, no debug info> %s;\n",
3473 SYMBOL_PRINT_NAME (p->msymbol));
3474 }
3475 }
3476
3477 do_cleanups (old_chain);
3478}
3479\f
3480
3481/* Helper routine for make_symbol_completion_list. */
3482
3483static int return_val_size;
3484static int return_val_index;
3485static char **return_val;
3486
3487#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3488 completion_list_add_name \
3489 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3490
3491/* Test to see if the symbol specified by SYMNAME (which is already
3492 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3493 characters. If so, add it to the current completion list. */
3494
3495static void
3496completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3497 char *text, char *word)
3498{
3499 int newsize;
3500
3501 /* Clip symbols that cannot match. */
3502
3503 if (strncmp (symname, sym_text, sym_text_len) != 0)
3504 {
3505 return;
3506 }
3507
3508 /* We have a match for a completion, so add SYMNAME to the current list
3509 of matches. Note that the name is moved to freshly malloc'd space. */
3510
3511 {
3512 char *new;
3513
3514 if (word == sym_text)
3515 {
3516 new = xmalloc (strlen (symname) + 5);
3517 strcpy (new, symname);
3518 }
3519 else if (word > sym_text)
3520 {
3521 /* Return some portion of symname. */
3522 new = xmalloc (strlen (symname) + 5);
3523 strcpy (new, symname + (word - sym_text));
3524 }
3525 else
3526 {
3527 /* Return some of SYM_TEXT plus symname. */
3528 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3529 strncpy (new, word, sym_text - word);
3530 new[sym_text - word] = '\0';
3531 strcat (new, symname);
3532 }
3533
3534 if (return_val_index + 3 > return_val_size)
3535 {
3536 newsize = (return_val_size *= 2) * sizeof (char *);
3537 return_val = (char **) xrealloc ((char *) return_val, newsize);
3538 }
3539 return_val[return_val_index++] = new;
3540 return_val[return_val_index] = NULL;
3541 }
3542}
3543
3544/* ObjC: In case we are completing on a selector, look as the msymbol
3545 again and feed all the selectors into the mill. */
3546
3547static void
3548completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3549 int sym_text_len, char *text, char *word)
3550{
3551 static char *tmp = NULL;
3552 static unsigned int tmplen = 0;
3553
3554 char *method, *category, *selector;
3555 char *tmp2 = NULL;
3556
3557 method = SYMBOL_NATURAL_NAME (msymbol);
3558
3559 /* Is it a method? */
3560 if ((method[0] != '-') && (method[0] != '+'))
3561 return;
3562
3563 if (sym_text[0] == '[')
3564 /* Complete on shortened method method. */
3565 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3566
3567 while ((strlen (method) + 1) >= tmplen)
3568 {
3569 if (tmplen == 0)
3570 tmplen = 1024;
3571 else
3572 tmplen *= 2;
3573 tmp = xrealloc (tmp, tmplen);
3574 }
3575 selector = strchr (method, ' ');
3576 if (selector != NULL)
3577 selector++;
3578
3579 category = strchr (method, '(');
3580
3581 if ((category != NULL) && (selector != NULL))
3582 {
3583 memcpy (tmp, method, (category - method));
3584 tmp[category - method] = ' ';
3585 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3586 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3587 if (sym_text[0] == '[')
3588 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3589 }
3590
3591 if (selector != NULL)
3592 {
3593 /* Complete on selector only. */
3594 strcpy (tmp, selector);
3595 tmp2 = strchr (tmp, ']');
3596 if (tmp2 != NULL)
3597 *tmp2 = '\0';
3598
3599 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3600 }
3601}
3602
3603/* Break the non-quoted text based on the characters which are in
3604 symbols. FIXME: This should probably be language-specific. */
3605
3606static char *
3607language_search_unquoted_string (char *text, char *p)
3608{
3609 for (; p > text; --p)
3610 {
3611 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3612 continue;
3613 else
3614 {
3615 if ((current_language->la_language == language_objc))
3616 {
3617 if (p[-1] == ':') /* Might be part of a method name. */
3618 continue;
3619 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3620 p -= 2; /* Beginning of a method name. */
3621 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3622 { /* Might be part of a method name. */
3623 char *t = p;
3624
3625 /* Seeing a ' ' or a '(' is not conclusive evidence
3626 that we are in the middle of a method name. However,
3627 finding "-[" or "+[" should be pretty un-ambiguous.
3628 Unfortunately we have to find it now to decide. */
3629
3630 while (t > text)
3631 if (isalnum (t[-1]) || t[-1] == '_' ||
3632 t[-1] == ' ' || t[-1] == ':' ||
3633 t[-1] == '(' || t[-1] == ')')
3634 --t;
3635 else
3636 break;
3637
3638 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3639 p = t - 2; /* Method name detected. */
3640 /* Else we leave with p unchanged. */
3641 }
3642 }
3643 break;
3644 }
3645 }
3646 return p;
3647}
3648
3649static void
3650completion_list_add_fields (struct symbol *sym, char *sym_text,
3651 int sym_text_len, char *text, char *word)
3652{
3653 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3654 {
3655 struct type *t = SYMBOL_TYPE (sym);
3656 enum type_code c = TYPE_CODE (t);
3657 int j;
3658
3659 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3660 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3661 if (TYPE_FIELD_NAME (t, j))
3662 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3663 sym_text, sym_text_len, text, word);
3664 }
3665}
3666
3667/* Type of the user_data argument passed to add_macro_name or
3668 add_partial_symbol_name. The contents are simply whatever is
3669 needed by completion_list_add_name. */
3670struct add_name_data
3671{
3672 char *sym_text;
3673 int sym_text_len;
3674 char *text;
3675 char *word;
3676};
3677
3678/* A callback used with macro_for_each and macro_for_each_in_scope.
3679 This adds a macro's name to the current completion list. */
3680static void
3681add_macro_name (const char *name, const struct macro_definition *ignore,
3682 void *user_data)
3683{
3684 struct add_name_data *datum = (struct add_name_data *) user_data;
3685
3686 completion_list_add_name ((char *) name,
3687 datum->sym_text, datum->sym_text_len,
3688 datum->text, datum->word);
3689}
3690
3691/* A callback for map_partial_symbol_names. */
3692static void
3693add_partial_symbol_name (const char *name, void *user_data)
3694{
3695 struct add_name_data *datum = (struct add_name_data *) user_data;
3696
3697 completion_list_add_name ((char *) name,
3698 datum->sym_text, datum->sym_text_len,
3699 datum->text, datum->word);
3700}
3701
3702char **
3703default_make_symbol_completion_list_break_on (char *text, char *word,
3704 const char *break_on)
3705{
3706 /* Problem: All of the symbols have to be copied because readline
3707 frees them. I'm not going to worry about this; hopefully there
3708 won't be that many. */
3709
3710 struct symbol *sym;
3711 struct symtab *s;
3712 struct minimal_symbol *msymbol;
3713 struct objfile *objfile;
3714 struct block *b;
3715 const struct block *surrounding_static_block, *surrounding_global_block;
3716 struct dict_iterator iter;
3717 /* The symbol we are completing on. Points in same buffer as text. */
3718 char *sym_text;
3719 /* Length of sym_text. */
3720 int sym_text_len;
3721 struct add_name_data datum;
3722
3723 /* Now look for the symbol we are supposed to complete on. */
3724 {
3725 char *p;
3726 char quote_found;
3727 char *quote_pos = NULL;
3728
3729 /* First see if this is a quoted string. */
3730 quote_found = '\0';
3731 for (p = text; *p != '\0'; ++p)
3732 {
3733 if (quote_found != '\0')
3734 {
3735 if (*p == quote_found)
3736 /* Found close quote. */
3737 quote_found = '\0';
3738 else if (*p == '\\' && p[1] == quote_found)
3739 /* A backslash followed by the quote character
3740 doesn't end the string. */
3741 ++p;
3742 }
3743 else if (*p == '\'' || *p == '"')
3744 {
3745 quote_found = *p;
3746 quote_pos = p;
3747 }
3748 }
3749 if (quote_found == '\'')
3750 /* A string within single quotes can be a symbol, so complete on it. */
3751 sym_text = quote_pos + 1;
3752 else if (quote_found == '"')
3753 /* A double-quoted string is never a symbol, nor does it make sense
3754 to complete it any other way. */
3755 {
3756 return_val = (char **) xmalloc (sizeof (char *));
3757 return_val[0] = NULL;
3758 return return_val;
3759 }
3760 else
3761 {
3762 /* It is not a quoted string. Break it based on the characters
3763 which are in symbols. */
3764 while (p > text)
3765 {
3766 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3767 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3768 --p;
3769 else
3770 break;
3771 }
3772 sym_text = p;
3773 }
3774 }
3775
3776 sym_text_len = strlen (sym_text);
3777
3778 return_val_size = 100;
3779 return_val_index = 0;
3780 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3781 return_val[0] = NULL;
3782
3783 datum.sym_text = sym_text;
3784 datum.sym_text_len = sym_text_len;
3785 datum.text = text;
3786 datum.word = word;
3787
3788 /* Look through the partial symtabs for all symbols which begin
3789 by matching SYM_TEXT. Add each one that you find to the list. */
3790 map_partial_symbol_names (add_partial_symbol_name, &datum);
3791
3792 /* At this point scan through the misc symbol vectors and add each
3793 symbol you find to the list. Eventually we want to ignore
3794 anything that isn't a text symbol (everything else will be
3795 handled by the psymtab code above). */
3796
3797 ALL_MSYMBOLS (objfile, msymbol)
3798 {
3799 QUIT;
3800 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3801
3802 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3803 }
3804
3805 /* Search upwards from currently selected frame (so that we can
3806 complete on local vars). Also catch fields of types defined in
3807 this places which match our text string. Only complete on types
3808 visible from current context. */
3809
3810 b = get_selected_block (0);
3811 surrounding_static_block = block_static_block (b);
3812 surrounding_global_block = block_global_block (b);
3813 if (surrounding_static_block != NULL)
3814 while (b != surrounding_static_block)
3815 {
3816 QUIT;
3817
3818 ALL_BLOCK_SYMBOLS (b, iter, sym)
3819 {
3820 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3821 word);
3822 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3823 word);
3824 }
3825
3826 /* Stop when we encounter an enclosing function. Do not stop for
3827 non-inlined functions - the locals of the enclosing function
3828 are in scope for a nested function. */
3829 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3830 break;
3831 b = BLOCK_SUPERBLOCK (b);
3832 }
3833
3834 /* Add fields from the file's types; symbols will be added below. */
3835
3836 if (surrounding_static_block != NULL)
3837 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3838 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3839
3840 if (surrounding_global_block != NULL)
3841 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3842 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3843
3844 /* Go through the symtabs and check the externs and statics for
3845 symbols which match. */
3846
3847 ALL_PRIMARY_SYMTABS (objfile, s)
3848 {
3849 QUIT;
3850 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3851 ALL_BLOCK_SYMBOLS (b, iter, sym)
3852 {
3853 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3854 }
3855 }
3856
3857 ALL_PRIMARY_SYMTABS (objfile, s)
3858 {
3859 QUIT;
3860 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3861 ALL_BLOCK_SYMBOLS (b, iter, sym)
3862 {
3863 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3864 }
3865 }
3866
3867 if (current_language->la_macro_expansion == macro_expansion_c)
3868 {
3869 struct macro_scope *scope;
3870
3871 /* Add any macros visible in the default scope. Note that this
3872 may yield the occasional wrong result, because an expression
3873 might be evaluated in a scope other than the default. For
3874 example, if the user types "break file:line if <TAB>", the
3875 resulting expression will be evaluated at "file:line" -- but
3876 at there does not seem to be a way to detect this at
3877 completion time. */
3878 scope = default_macro_scope ();
3879 if (scope)
3880 {
3881 macro_for_each_in_scope (scope->file, scope->line,
3882 add_macro_name, &datum);
3883 xfree (scope);
3884 }
3885
3886 /* User-defined macros are always visible. */
3887 macro_for_each (macro_user_macros, add_macro_name, &datum);
3888 }
3889
3890 return (return_val);
3891}
3892
3893char **
3894default_make_symbol_completion_list (char *text, char *word)
3895{
3896 return default_make_symbol_completion_list_break_on (text, word, "");
3897}
3898
3899/* Return a NULL terminated array of all symbols (regardless of class)
3900 which begin by matching TEXT. If the answer is no symbols, then
3901 the return value is an array which contains only a NULL pointer. */
3902
3903char **
3904make_symbol_completion_list (char *text, char *word)
3905{
3906 return current_language->la_make_symbol_completion_list (text, word);
3907}
3908
3909/* Like make_symbol_completion_list, but suitable for use as a
3910 completion function. */
3911
3912char **
3913make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3914 char *text, char *word)
3915{
3916 return make_symbol_completion_list (text, word);
3917}
3918
3919/* Like make_symbol_completion_list, but returns a list of symbols
3920 defined in a source file FILE. */
3921
3922char **
3923make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3924{
3925 struct symbol *sym;
3926 struct symtab *s;
3927 struct block *b;
3928 struct dict_iterator iter;
3929 /* The symbol we are completing on. Points in same buffer as text. */
3930 char *sym_text;
3931 /* Length of sym_text. */
3932 int sym_text_len;
3933
3934 /* Now look for the symbol we are supposed to complete on.
3935 FIXME: This should be language-specific. */
3936 {
3937 char *p;
3938 char quote_found;
3939 char *quote_pos = NULL;
3940
3941 /* First see if this is a quoted string. */
3942 quote_found = '\0';
3943 for (p = text; *p != '\0'; ++p)
3944 {
3945 if (quote_found != '\0')
3946 {
3947 if (*p == quote_found)
3948 /* Found close quote. */
3949 quote_found = '\0';
3950 else if (*p == '\\' && p[1] == quote_found)
3951 /* A backslash followed by the quote character
3952 doesn't end the string. */
3953 ++p;
3954 }
3955 else if (*p == '\'' || *p == '"')
3956 {
3957 quote_found = *p;
3958 quote_pos = p;
3959 }
3960 }
3961 if (quote_found == '\'')
3962 /* A string within single quotes can be a symbol, so complete on it. */
3963 sym_text = quote_pos + 1;
3964 else if (quote_found == '"')
3965 /* A double-quoted string is never a symbol, nor does it make sense
3966 to complete it any other way. */
3967 {
3968 return_val = (char **) xmalloc (sizeof (char *));
3969 return_val[0] = NULL;
3970 return return_val;
3971 }
3972 else
3973 {
3974 /* Not a quoted string. */
3975 sym_text = language_search_unquoted_string (text, p);
3976 }
3977 }
3978
3979 sym_text_len = strlen (sym_text);
3980
3981 return_val_size = 10;
3982 return_val_index = 0;
3983 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3984 return_val[0] = NULL;
3985
3986 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3987 in). */
3988 s = lookup_symtab (srcfile);
3989 if (s == NULL)
3990 {
3991 /* Maybe they typed the file with leading directories, while the
3992 symbol tables record only its basename. */
3993 const char *tail = lbasename (srcfile);
3994
3995 if (tail > srcfile)
3996 s = lookup_symtab (tail);
3997 }
3998
3999 /* If we have no symtab for that file, return an empty list. */
4000 if (s == NULL)
4001 return (return_val);
4002
4003 /* Go through this symtab and check the externs and statics for
4004 symbols which match. */
4005
4006 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4007 ALL_BLOCK_SYMBOLS (b, iter, sym)
4008 {
4009 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4010 }
4011
4012 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4013 ALL_BLOCK_SYMBOLS (b, iter, sym)
4014 {
4015 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4016 }
4017
4018 return (return_val);
4019}
4020
4021/* A helper function for make_source_files_completion_list. It adds
4022 another file name to a list of possible completions, growing the
4023 list as necessary. */
4024
4025static void
4026add_filename_to_list (const char *fname, char *text, char *word,
4027 char ***list, int *list_used, int *list_alloced)
4028{
4029 char *new;
4030 size_t fnlen = strlen (fname);
4031
4032 if (*list_used + 1 >= *list_alloced)
4033 {
4034 *list_alloced *= 2;
4035 *list = (char **) xrealloc ((char *) *list,
4036 *list_alloced * sizeof (char *));
4037 }
4038
4039 if (word == text)
4040 {
4041 /* Return exactly fname. */
4042 new = xmalloc (fnlen + 5);
4043 strcpy (new, fname);
4044 }
4045 else if (word > text)
4046 {
4047 /* Return some portion of fname. */
4048 new = xmalloc (fnlen + 5);
4049 strcpy (new, fname + (word - text));
4050 }
4051 else
4052 {
4053 /* Return some of TEXT plus fname. */
4054 new = xmalloc (fnlen + (text - word) + 5);
4055 strncpy (new, word, text - word);
4056 new[text - word] = '\0';
4057 strcat (new, fname);
4058 }
4059 (*list)[*list_used] = new;
4060 (*list)[++*list_used] = NULL;
4061}
4062
4063static int
4064not_interesting_fname (const char *fname)
4065{
4066 static const char *illegal_aliens[] = {
4067 "_globals_", /* inserted by coff_symtab_read */
4068 NULL
4069 };
4070 int i;
4071
4072 for (i = 0; illegal_aliens[i]; i++)
4073 {
4074 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4075 return 1;
4076 }
4077 return 0;
4078}
4079
4080/* An object of this type is passed as the user_data argument to
4081 map_partial_symbol_filenames. */
4082struct add_partial_filename_data
4083{
4084 int *first;
4085 char *text;
4086 char *word;
4087 int text_len;
4088 char ***list;
4089 int *list_used;
4090 int *list_alloced;
4091};
4092
4093/* A callback for map_partial_symbol_filenames. */
4094static void
4095maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4096 void *user_data)
4097{
4098 struct add_partial_filename_data *data = user_data;
4099
4100 if (not_interesting_fname (filename))
4101 return;
4102 if (!filename_seen (filename, 1, data->first)
4103 && filename_ncmp (filename, data->text, data->text_len) == 0)
4104 {
4105 /* This file matches for a completion; add it to the
4106 current list of matches. */
4107 add_filename_to_list (filename, data->text, data->word,
4108 data->list, data->list_used, data->list_alloced);
4109 }
4110 else
4111 {
4112 const char *base_name = lbasename (filename);
4113
4114 if (base_name != filename
4115 && !filename_seen (base_name, 1, data->first)
4116 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4117 add_filename_to_list (base_name, data->text, data->word,
4118 data->list, data->list_used, data->list_alloced);
4119 }
4120}
4121
4122/* Return a NULL terminated array of all source files whose names
4123 begin with matching TEXT. The file names are looked up in the
4124 symbol tables of this program. If the answer is no matchess, then
4125 the return value is an array which contains only a NULL pointer. */
4126
4127char **
4128make_source_files_completion_list (char *text, char *word)
4129{
4130 struct symtab *s;
4131 struct objfile *objfile;
4132 int first = 1;
4133 int list_alloced = 1;
4134 int list_used = 0;
4135 size_t text_len = strlen (text);
4136 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4137 const char *base_name;
4138 struct add_partial_filename_data datum;
4139
4140 list[0] = NULL;
4141
4142 if (!have_full_symbols () && !have_partial_symbols ())
4143 return list;
4144
4145 ALL_SYMTABS (objfile, s)
4146 {
4147 if (not_interesting_fname (s->filename))
4148 continue;
4149 if (!filename_seen (s->filename, 1, &first)
4150 && filename_ncmp (s->filename, text, text_len) == 0)
4151 {
4152 /* This file matches for a completion; add it to the current
4153 list of matches. */
4154 add_filename_to_list (s->filename, text, word,
4155 &list, &list_used, &list_alloced);
4156 }
4157 else
4158 {
4159 /* NOTE: We allow the user to type a base name when the
4160 debug info records leading directories, but not the other
4161 way around. This is what subroutines of breakpoint
4162 command do when they parse file names. */
4163 base_name = lbasename (s->filename);
4164 if (base_name != s->filename
4165 && !filename_seen (base_name, 1, &first)
4166 && filename_ncmp (base_name, text, text_len) == 0)
4167 add_filename_to_list (base_name, text, word,
4168 &list, &list_used, &list_alloced);
4169 }
4170 }
4171
4172 datum.first = &first;
4173 datum.text = text;
4174 datum.word = word;
4175 datum.text_len = text_len;
4176 datum.list = &list;
4177 datum.list_used = &list_used;
4178 datum.list_alloced = &list_alloced;
4179 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4180
4181 return list;
4182}
4183
4184/* Determine if PC is in the prologue of a function. The prologue is the area
4185 between the first instruction of a function, and the first executable line.
4186 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4187
4188 If non-zero, func_start is where we think the prologue starts, possibly
4189 by previous examination of symbol table information. */
4190
4191int
4192in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4193{
4194 struct symtab_and_line sal;
4195 CORE_ADDR func_addr, func_end;
4196
4197 /* We have several sources of information we can consult to figure
4198 this out.
4199 - Compilers usually emit line number info that marks the prologue
4200 as its own "source line". So the ending address of that "line"
4201 is the end of the prologue. If available, this is the most
4202 reliable method.
4203 - The minimal symbols and partial symbols, which can usually tell
4204 us the starting and ending addresses of a function.
4205 - If we know the function's start address, we can call the
4206 architecture-defined gdbarch_skip_prologue function to analyze the
4207 instruction stream and guess where the prologue ends.
4208 - Our `func_start' argument; if non-zero, this is the caller's
4209 best guess as to the function's entry point. At the time of
4210 this writing, handle_inferior_event doesn't get this right, so
4211 it should be our last resort. */
4212
4213 /* Consult the partial symbol table, to find which function
4214 the PC is in. */
4215 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4216 {
4217 CORE_ADDR prologue_end;
4218
4219 /* We don't even have minsym information, so fall back to using
4220 func_start, if given. */
4221 if (! func_start)
4222 return 1; /* We *might* be in a prologue. */
4223
4224 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4225
4226 return func_start <= pc && pc < prologue_end;
4227 }
4228
4229 /* If we have line number information for the function, that's
4230 usually pretty reliable. */
4231 sal = find_pc_line (func_addr, 0);
4232
4233 /* Now sal describes the source line at the function's entry point,
4234 which (by convention) is the prologue. The end of that "line",
4235 sal.end, is the end of the prologue.
4236
4237 Note that, for functions whose source code is all on a single
4238 line, the line number information doesn't always end up this way.
4239 So we must verify that our purported end-of-prologue address is
4240 *within* the function, not at its start or end. */
4241 if (sal.line == 0
4242 || sal.end <= func_addr
4243 || func_end <= sal.end)
4244 {
4245 /* We don't have any good line number info, so use the minsym
4246 information, together with the architecture-specific prologue
4247 scanning code. */
4248 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4249
4250 return func_addr <= pc && pc < prologue_end;
4251 }
4252
4253 /* We have line number info, and it looks good. */
4254 return func_addr <= pc && pc < sal.end;
4255}
4256
4257/* Given PC at the function's start address, attempt to find the
4258 prologue end using SAL information. Return zero if the skip fails.
4259
4260 A non-optimized prologue traditionally has one SAL for the function
4261 and a second for the function body. A single line function has
4262 them both pointing at the same line.
4263
4264 An optimized prologue is similar but the prologue may contain
4265 instructions (SALs) from the instruction body. Need to skip those
4266 while not getting into the function body.
4267
4268 The functions end point and an increasing SAL line are used as
4269 indicators of the prologue's endpoint.
4270
4271 This code is based on the function refine_prologue_limit (versions
4272 found in both ia64 and ppc). */
4273
4274CORE_ADDR
4275skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4276{
4277 struct symtab_and_line prologue_sal;
4278 CORE_ADDR start_pc;
4279 CORE_ADDR end_pc;
4280 struct block *bl;
4281
4282 /* Get an initial range for the function. */
4283 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4284 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4285
4286 prologue_sal = find_pc_line (start_pc, 0);
4287 if (prologue_sal.line != 0)
4288 {
4289 /* For langauges other than assembly, treat two consecutive line
4290 entries at the same address as a zero-instruction prologue.
4291 The GNU assembler emits separate line notes for each instruction
4292 in a multi-instruction macro, but compilers generally will not
4293 do this. */
4294 if (prologue_sal.symtab->language != language_asm)
4295 {
4296 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4297 int idx = 0;
4298
4299 /* Skip any earlier lines, and any end-of-sequence marker
4300 from a previous function. */
4301 while (linetable->item[idx].pc != prologue_sal.pc
4302 || linetable->item[idx].line == 0)
4303 idx++;
4304
4305 if (idx+1 < linetable->nitems
4306 && linetable->item[idx+1].line != 0
4307 && linetable->item[idx+1].pc == start_pc)
4308 return start_pc;
4309 }
4310
4311 /* If there is only one sal that covers the entire function,
4312 then it is probably a single line function, like
4313 "foo(){}". */
4314 if (prologue_sal.end >= end_pc)
4315 return 0;
4316
4317 while (prologue_sal.end < end_pc)
4318 {
4319 struct symtab_and_line sal;
4320
4321 sal = find_pc_line (prologue_sal.end, 0);
4322 if (sal.line == 0)
4323 break;
4324 /* Assume that a consecutive SAL for the same (or larger)
4325 line mark the prologue -> body transition. */
4326 if (sal.line >= prologue_sal.line)
4327 break;
4328
4329 /* The line number is smaller. Check that it's from the
4330 same function, not something inlined. If it's inlined,
4331 then there is no point comparing the line numbers. */
4332 bl = block_for_pc (prologue_sal.end);
4333 while (bl)
4334 {
4335 if (block_inlined_p (bl))
4336 break;
4337 if (BLOCK_FUNCTION (bl))
4338 {
4339 bl = NULL;
4340 break;
4341 }
4342 bl = BLOCK_SUPERBLOCK (bl);
4343 }
4344 if (bl != NULL)
4345 break;
4346
4347 /* The case in which compiler's optimizer/scheduler has
4348 moved instructions into the prologue. We look ahead in
4349 the function looking for address ranges whose
4350 corresponding line number is less the first one that we
4351 found for the function. This is more conservative then
4352 refine_prologue_limit which scans a large number of SALs
4353 looking for any in the prologue. */
4354 prologue_sal = sal;
4355 }
4356 }
4357
4358 if (prologue_sal.end < end_pc)
4359 /* Return the end of this line, or zero if we could not find a
4360 line. */
4361 return prologue_sal.end;
4362 else
4363 /* Don't return END_PC, which is past the end of the function. */
4364 return prologue_sal.pc;
4365}
4366\f
4367struct symtabs_and_lines
4368decode_line_spec (char *string, int funfirstline)
4369{
4370 struct symtabs_and_lines sals;
4371 struct symtab_and_line cursal;
4372
4373 if (string == 0)
4374 error (_("Empty line specification."));
4375
4376 /* We use whatever is set as the current source line. We do not try
4377 and get a default or it will recursively call us! */
4378 cursal = get_current_source_symtab_and_line ();
4379
4380 sals = decode_line_1 (&string, funfirstline,
4381 cursal.symtab, cursal.line,
4382 NULL);
4383
4384 if (*string)
4385 error (_("Junk at end of line specification: %s"), string);
4386 return sals;
4387}
4388
4389/* Track MAIN */
4390static char *name_of_main;
4391enum language language_of_main = language_unknown;
4392
4393void
4394set_main_name (const char *name)
4395{
4396 if (name_of_main != NULL)
4397 {
4398 xfree (name_of_main);
4399 name_of_main = NULL;
4400 language_of_main = language_unknown;
4401 }
4402 if (name != NULL)
4403 {
4404 name_of_main = xstrdup (name);
4405 language_of_main = language_unknown;
4406 }
4407}
4408
4409/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4410 accordingly. */
4411
4412static void
4413find_main_name (void)
4414{
4415 const char *new_main_name;
4416
4417 /* Try to see if the main procedure is in Ada. */
4418 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4419 be to add a new method in the language vector, and call this
4420 method for each language until one of them returns a non-empty
4421 name. This would allow us to remove this hard-coded call to
4422 an Ada function. It is not clear that this is a better approach
4423 at this point, because all methods need to be written in a way
4424 such that false positives never be returned. For instance, it is
4425 important that a method does not return a wrong name for the main
4426 procedure if the main procedure is actually written in a different
4427 language. It is easy to guaranty this with Ada, since we use a
4428 special symbol generated only when the main in Ada to find the name
4429 of the main procedure. It is difficult however to see how this can
4430 be guarantied for languages such as C, for instance. This suggests
4431 that order of call for these methods becomes important, which means
4432 a more complicated approach. */
4433 new_main_name = ada_main_name ();
4434 if (new_main_name != NULL)
4435 {
4436 set_main_name (new_main_name);
4437 return;
4438 }
4439
4440 new_main_name = pascal_main_name ();
4441 if (new_main_name != NULL)
4442 {
4443 set_main_name (new_main_name);
4444 return;
4445 }
4446
4447 /* The languages above didn't identify the name of the main procedure.
4448 Fallback to "main". */
4449 set_main_name ("main");
4450}
4451
4452char *
4453main_name (void)
4454{
4455 if (name_of_main == NULL)
4456 find_main_name ();
4457
4458 return name_of_main;
4459}
4460
4461/* Handle ``executable_changed'' events for the symtab module. */
4462
4463static void
4464symtab_observer_executable_changed (void)
4465{
4466 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4467 set_main_name (NULL);
4468}
4469
4470/* Helper to expand_line_sal below. Appends new sal to SAL,
4471 initializing it from SYMTAB, LINENO and PC. */
4472static void
4473append_expanded_sal (struct symtabs_and_lines *sal,
4474 struct program_space *pspace,
4475 struct symtab *symtab,
4476 int lineno, CORE_ADDR pc)
4477{
4478 sal->sals = xrealloc (sal->sals,
4479 sizeof (sal->sals[0])
4480 * (sal->nelts + 1));
4481 init_sal (sal->sals + sal->nelts);
4482 sal->sals[sal->nelts].pspace = pspace;
4483 sal->sals[sal->nelts].symtab = symtab;
4484 sal->sals[sal->nelts].section = NULL;
4485 sal->sals[sal->nelts].end = 0;
4486 sal->sals[sal->nelts].line = lineno;
4487 sal->sals[sal->nelts].pc = pc;
4488 ++sal->nelts;
4489}
4490
4491/* Helper to expand_line_sal below. Search in the symtabs for any
4492 linetable entry that exactly matches FULLNAME and LINENO and append
4493 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4494 use FILENAME and LINENO instead. If there is at least one match,
4495 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4496 and BEST_SYMTAB. */
4497
4498static int
4499append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4500 struct symtabs_and_lines *ret,
4501 struct linetable_entry **best_item,
4502 struct symtab **best_symtab)
4503{
4504 struct program_space *pspace;
4505 struct objfile *objfile;
4506 struct symtab *symtab;
4507 int exact = 0;
4508 int j;
4509 *best_item = 0;
4510 *best_symtab = 0;
4511
4512 ALL_PSPACES (pspace)
4513 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4514 {
4515 if (FILENAME_CMP (filename, symtab->filename) == 0)
4516 {
4517 struct linetable *l;
4518 int len;
4519
4520 if (fullname != NULL
4521 && symtab_to_fullname (symtab) != NULL
4522 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4523 continue;
4524 l = LINETABLE (symtab);
4525 if (!l)
4526 continue;
4527 len = l->nitems;
4528
4529 for (j = 0; j < len; j++)
4530 {
4531 struct linetable_entry *item = &(l->item[j]);
4532
4533 if (item->line == lineno)
4534 {
4535 exact = 1;
4536 append_expanded_sal (ret, objfile->pspace,
4537 symtab, lineno, item->pc);
4538 }
4539 else if (!exact && item->line > lineno
4540 && (*best_item == NULL
4541 || item->line < (*best_item)->line))
4542 {
4543 *best_item = item;
4544 *best_symtab = symtab;
4545 }
4546 }
4547 }
4548 }
4549 return exact;
4550}
4551
4552/* Compute a set of all sals in all program spaces that correspond to
4553 same file and line as SAL and return those. If there are several
4554 sals that belong to the same block, only one sal for the block is
4555 included in results. */
4556
4557struct symtabs_and_lines
4558expand_line_sal (struct symtab_and_line sal)
4559{
4560 struct symtabs_and_lines ret;
4561 int i, j;
4562 struct objfile *objfile;
4563 int lineno;
4564 int deleted = 0;
4565 struct block **blocks = NULL;
4566 int *filter;
4567 struct cleanup *old_chain;
4568
4569 ret.nelts = 0;
4570 ret.sals = NULL;
4571
4572 /* Only expand sals that represent file.c:line. */
4573 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4574 {
4575 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4576 ret.sals[0] = sal;
4577 ret.nelts = 1;
4578 return ret;
4579 }
4580 else
4581 {
4582 struct program_space *pspace;
4583 struct linetable_entry *best_item = 0;
4584 struct symtab *best_symtab = 0;
4585 int exact = 0;
4586 char *match_filename;
4587
4588 lineno = sal.line;
4589 match_filename = sal.symtab->filename;
4590
4591 /* We need to find all symtabs for a file which name
4592 is described by sal. We cannot just directly
4593 iterate over symtabs, since a symtab might not be
4594 yet created. We also cannot iterate over psymtabs,
4595 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4596 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4597 corresponding to an included file. Therefore, we do
4598 first pass over psymtabs, reading in those with
4599 the right name. Then, we iterate over symtabs, knowing
4600 that all symtabs we're interested in are loaded. */
4601
4602 old_chain = save_current_program_space ();
4603 ALL_PSPACES (pspace)
4604 {
4605 set_current_program_space (pspace);
4606 ALL_PSPACE_OBJFILES (pspace, objfile)
4607 {
4608 if (objfile->sf)
4609 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4610 sal.symtab->filename);
4611 }
4612 }
4613 do_cleanups (old_chain);
4614
4615 /* Now search the symtab for exact matches and append them. If
4616 none is found, append the best_item and all its exact
4617 matches. */
4618 symtab_to_fullname (sal.symtab);
4619 exact = append_exact_match_to_sals (sal.symtab->filename,
4620 sal.symtab->fullname, lineno,
4621 &ret, &best_item, &best_symtab);
4622 if (!exact && best_item)
4623 append_exact_match_to_sals (best_symtab->filename,
4624 best_symtab->fullname, best_item->line,
4625 &ret, &best_item, &best_symtab);
4626 }
4627
4628 /* For optimized code, compiler can scatter one source line accross
4629 disjoint ranges of PC values, even when no duplicate functions
4630 or inline functions are involved. For example, 'for (;;)' inside
4631 non-template non-inline non-ctor-or-dtor function can result
4632 in two PC ranges. In this case, we don't want to set breakpoint
4633 on first PC of each range. To filter such cases, we use containing
4634 blocks -- for each PC found above we see if there are other PCs
4635 that are in the same block. If yes, the other PCs are filtered out. */
4636
4637 old_chain = save_current_program_space ();
4638 filter = alloca (ret.nelts * sizeof (int));
4639 blocks = alloca (ret.nelts * sizeof (struct block *));
4640 for (i = 0; i < ret.nelts; ++i)
4641 {
4642 set_current_program_space (ret.sals[i].pspace);
4643
4644 filter[i] = 1;
4645 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4646
4647 }
4648 do_cleanups (old_chain);
4649
4650 for (i = 0; i < ret.nelts; ++i)
4651 if (blocks[i] != NULL)
4652 for (j = i+1; j < ret.nelts; ++j)
4653 if (blocks[j] == blocks[i])
4654 {
4655 filter[j] = 0;
4656 ++deleted;
4657 break;
4658 }
4659
4660 {
4661 struct symtab_and_line *final =
4662 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4663
4664 for (i = 0, j = 0; i < ret.nelts; ++i)
4665 if (filter[i])
4666 final[j++] = ret.sals[i];
4667
4668 ret.nelts -= deleted;
4669 xfree (ret.sals);
4670 ret.sals = final;
4671 }
4672
4673 return ret;
4674}
4675
4676/* Return 1 if the supplied producer string matches the ARM RealView
4677 compiler (armcc). */
4678
4679int
4680producer_is_realview (const char *producer)
4681{
4682 static const char *const arm_idents[] = {
4683 "ARM C Compiler, ADS",
4684 "Thumb C Compiler, ADS",
4685 "ARM C++ Compiler, ADS",
4686 "Thumb C++ Compiler, ADS",
4687 "ARM/Thumb C/C++ Compiler, RVCT",
4688 "ARM C/C++ Compiler, RVCT"
4689 };
4690 int i;
4691
4692 if (producer == NULL)
4693 return 0;
4694
4695 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4696 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4697 return 1;
4698
4699 return 0;
4700}
4701
4702void
4703_initialize_symtab (void)
4704{
4705 add_info ("variables", variables_info, _("\
4706All global and static variable names, or those matching REGEXP."));
4707 if (dbx_commands)
4708 add_com ("whereis", class_info, variables_info, _("\
4709All global and static variable names, or those matching REGEXP."));
4710
4711 add_info ("functions", functions_info,
4712 _("All function names, or those matching REGEXP."));
4713
4714 /* FIXME: This command has at least the following problems:
4715 1. It prints builtin types (in a very strange and confusing fashion).
4716 2. It doesn't print right, e.g. with
4717 typedef struct foo *FOO
4718 type_print prints "FOO" when we want to make it (in this situation)
4719 print "struct foo *".
4720 I also think "ptype" or "whatis" is more likely to be useful (but if
4721 there is much disagreement "info types" can be fixed). */
4722 add_info ("types", types_info,
4723 _("All type names, or those matching REGEXP."));
4724
4725 add_info ("sources", sources_info,
4726 _("Source files in the program."));
4727
4728 add_com ("rbreak", class_breakpoint, rbreak_command,
4729 _("Set a breakpoint for all functions matching REGEXP."));
4730
4731 if (xdb_commands)
4732 {
4733 add_com ("lf", class_info, sources_info,
4734 _("Source files in the program"));
4735 add_com ("lg", class_info, variables_info, _("\
4736All global and static variable names, or those matching REGEXP."));
4737 }
4738
4739 add_setshow_enum_cmd ("multiple-symbols", no_class,
4740 multiple_symbols_modes, &multiple_symbols_mode,
4741 _("\
4742Set the debugger behavior when more than one symbol are possible matches\n\
4743in an expression."), _("\
4744Show how the debugger handles ambiguities in expressions."), _("\
4745Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4746 NULL, NULL, &setlist, &showlist);
4747
4748 observer_attach_executable_changed (symtab_observer_executable_changed);
4749}
This page took 0.041168 seconds and 4 git commands to generate.