* minsyms.h (struct bound_minimal_symbol): New.
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "gdb_regex.h"
31#include "expression.h"
32#include "language.h"
33#include "demangle.h"
34#include "inferior.h"
35#include "source.h"
36#include "filenames.h" /* for FILENAME_CMP */
37#include "objc-lang.h"
38#include "d-lang.h"
39#include "ada-lang.h"
40#include "go-lang.h"
41#include "p-lang.h"
42#include "addrmap.h"
43#include "cli/cli-utils.h"
44
45#include "hashtab.h"
46
47#include "gdb_obstack.h"
48#include "block.h"
49#include "dictionary.h"
50
51#include <sys/types.h>
52#include <fcntl.h>
53#include "gdb_string.h"
54#include "gdb_stat.h"
55#include <ctype.h>
56#include "cp-abi.h"
57#include "cp-support.h"
58#include "observer.h"
59#include "gdb_assert.h"
60#include "solist.h"
61#include "macrotab.h"
62#include "macroscope.h"
63
64#include "psymtab.h"
65#include "parser-defs.h"
66
67/* Prototypes for local functions */
68
69static void rbreak_command (char *, int);
70
71static void types_info (char *, int);
72
73static void functions_info (char *, int);
74
75static void variables_info (char *, int);
76
77static void sources_info (char *, int);
78
79static int find_line_common (struct linetable *, int, int *, int);
80
81static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87static
88struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93static
94struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98static
99struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104static void print_msymbol_info (struct minimal_symbol *);
105
106void _initialize_symtab (void);
107
108/* */
109
110/* When non-zero, print debugging messages related to symtab creation. */
111int symtab_create_debug = 0;
112
113/* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116int basenames_may_differ = 0;
117
118/* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122const char multiple_symbols_ask[] = "ask";
123const char multiple_symbols_all[] = "all";
124const char multiple_symbols_cancel[] = "cancel";
125static const char *const multiple_symbols_modes[] =
126{
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131};
132static const char *multiple_symbols_mode = multiple_symbols_all;
133
134/* Read-only accessor to AUTO_SELECT_MODE. */
135
136const char *
137multiple_symbols_select_mode (void)
138{
139 return multiple_symbols_mode;
140}
141
142/* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146const struct block *block_found;
147
148/* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
151 otherwise. */
152
153int
154compare_filenames_for_search (const char *filename, const char *search_name)
155{
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator.
169
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
174
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
184}
185
186/* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
188
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
192
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
196
197int
198iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
201 void *data),
202 void *data,
203 struct symtab *first,
204 struct symtab *after_last)
205{
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
208
209 for (s = first; s != NULL && s != after_last; s = s->next)
210 {
211 if (compare_filenames_for_search (s->filename, name))
212 {
213 if (callback (s, data))
214 return 1;
215 continue;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 if (compare_filenames_for_search (symtab_to_fullname (s), name))
225 {
226 if (callback (s, data))
227 return 1;
228 continue;
229 }
230
231 /* If the user gave us an absolute path, try to find the file in
232 this symtab and use its absolute path. */
233
234 if (real_path != NULL)
235 {
236 const char *fullname = symtab_to_fullname (s);
237
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
241 {
242 if (callback (s, data))
243 return 1;
244 continue;
245 }
246 }
247 }
248
249 return 0;
250}
251
252/* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
255
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
258
259void
260iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data)
264{
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
276 }
277
278 ALL_OBJFILES (objfile)
279 {
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
282 {
283 do_cleanups (cleanups);
284 return;
285 }
286 }
287
288 /* Same search rules as above apply here, but now we look thru the
289 psymtabs. */
290
291 ALL_OBJFILES (objfile)
292 {
293 if (objfile->sf
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
295 name,
296 real_path,
297 callback,
298 data))
299 {
300 do_cleanups (cleanups);
301 return;
302 }
303 }
304
305 do_cleanups (cleanups);
306}
307
308/* The callback function used by lookup_symtab. */
309
310static int
311lookup_symtab_callback (struct symtab *symtab, void *data)
312{
313 struct symtab **result_ptr = data;
314
315 *result_ptr = symtab;
316 return 1;
317}
318
319/* A wrapper for iterate_over_symtabs that returns the first matching
320 symtab, or NULL. */
321
322struct symtab *
323lookup_symtab (const char *name)
324{
325 struct symtab *result = NULL;
326
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
328 return result;
329}
330
331\f
332/* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
336
337char *
338gdb_mangle_name (struct type *type, int method_id, int signature_id)
339{
340 int mangled_name_len;
341 char *mangled_name;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
347
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
351
352 int is_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
357 char buf[20];
358 int len = (newname == NULL ? 0 : strlen (newname));
359
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
365
366 is_full_physname_constructor = is_constructor_name (physname);
367
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
370
371 if (!is_destructor)
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
373
374 if (is_destructor || is_full_physname_constructor)
375 {
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
378 return mangled_name;
379 }
380
381 if (len == 0)
382 {
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
384 }
385 else if (physname[0] == 't' || physname[0] == 'Q')
386 {
387 /* The physname for template and qualified methods already includes
388 the class name. */
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
390 newname = NULL;
391 len = 0;
392 }
393 else
394 {
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
397 }
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
400
401 mangled_name = (char *) xmalloc (mangled_name_len);
402 if (is_constructor)
403 mangled_name[0] = '\0';
404 else
405 strcpy (mangled_name, field_name);
406
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
411 if (newname != NULL)
412 strcat (mangled_name, newname);
413
414 strcat (mangled_name, physname);
415 return (mangled_name);
416}
417
418/* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
420
421static void
422symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct obstack *obstack)
424{
425 /* A language_specific structure should not have been previously
426 initialized. */
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (obstack != NULL);
429
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (obstack, struct cplus_specific);
432}
433
434/* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
438
439void
440symbol_set_demangled_name (struct general_symbol_info *gsymbol,
441 const char *name,
442 struct obstack *obstack)
443{
444 if (gsymbol->language == language_cplus)
445 {
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, obstack);
448
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
450 }
451 else if (gsymbol->language == language_ada)
452 {
453 if (name == NULL)
454 {
455 gsymbol->ada_mangled = 0;
456 gsymbol->language_specific.obstack = obstack;
457 }
458 else
459 {
460 gsymbol->ada_mangled = 1;
461 gsymbol->language_specific.mangled_lang.demangled_name = name;
462 }
463 }
464 else
465 gsymbol->language_specific.mangled_lang.demangled_name = name;
466}
467
468/* Return the demangled name of GSYMBOL. */
469
470const char *
471symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
472{
473 if (gsymbol->language == language_cplus)
474 {
475 if (gsymbol->language_specific.cplus_specific != NULL)
476 return gsymbol->language_specific.cplus_specific->demangled_name;
477 else
478 return NULL;
479 }
480 else if (gsymbol->language == language_ada)
481 {
482 if (!gsymbol->ada_mangled)
483 return NULL;
484 /* Fall through. */
485 }
486
487 return gsymbol->language_specific.mangled_lang.demangled_name;
488}
489
490\f
491/* Initialize the language dependent portion of a symbol
492 depending upon the language for the symbol. */
493
494void
495symbol_set_language (struct general_symbol_info *gsymbol,
496 enum language language,
497 struct obstack *obstack)
498{
499 gsymbol->language = language;
500 if (gsymbol->language == language_d
501 || gsymbol->language == language_go
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
505 {
506 symbol_set_demangled_name (gsymbol, NULL, obstack);
507 }
508 else if (gsymbol->language == language_ada)
509 {
510 gdb_assert (gsymbol->ada_mangled == 0);
511 gsymbol->language_specific.obstack = obstack;
512 }
513 else if (gsymbol->language == language_cplus)
514 gsymbol->language_specific.cplus_specific = NULL;
515 else
516 {
517 memset (&gsymbol->language_specific, 0,
518 sizeof (gsymbol->language_specific));
519 }
520}
521
522/* Functions to initialize a symbol's mangled name. */
523
524/* Objects of this type are stored in the demangled name hash table. */
525struct demangled_name_entry
526{
527 const char *mangled;
528 char demangled[1];
529};
530
531/* Hash function for the demangled name hash. */
532
533static hashval_t
534hash_demangled_name_entry (const void *data)
535{
536 const struct demangled_name_entry *e = data;
537
538 return htab_hash_string (e->mangled);
539}
540
541/* Equality function for the demangled name hash. */
542
543static int
544eq_demangled_name_entry (const void *a, const void *b)
545{
546 const struct demangled_name_entry *da = a;
547 const struct demangled_name_entry *db = b;
548
549 return strcmp (da->mangled, db->mangled) == 0;
550}
551
552/* Create the hash table used for demangled names. Each hash entry is
553 a pair of strings; one for the mangled name and one for the demangled
554 name. The entry is hashed via just the mangled name. */
555
556static void
557create_demangled_names_hash (struct objfile *objfile)
558{
559 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
560 The hash table code will round this up to the next prime number.
561 Choosing a much larger table size wastes memory, and saves only about
562 1% in symbol reading. */
563
564 objfile->demangled_names_hash = htab_create_alloc
565 (256, hash_demangled_name_entry, eq_demangled_name_entry,
566 NULL, xcalloc, xfree);
567}
568
569/* Try to determine the demangled name for a symbol, based on the
570 language of that symbol. If the language is set to language_auto,
571 it will attempt to find any demangling algorithm that works and
572 then set the language appropriately. The returned name is allocated
573 by the demangler and should be xfree'd. */
574
575static char *
576symbol_find_demangled_name (struct general_symbol_info *gsymbol,
577 const char *mangled)
578{
579 char *demangled = NULL;
580
581 if (gsymbol->language == language_unknown)
582 gsymbol->language = language_auto;
583
584 if (gsymbol->language == language_objc
585 || gsymbol->language == language_auto)
586 {
587 demangled =
588 objc_demangle (mangled, 0);
589 if (demangled != NULL)
590 {
591 gsymbol->language = language_objc;
592 return demangled;
593 }
594 }
595 if (gsymbol->language == language_cplus
596 || gsymbol->language == language_auto)
597 {
598 demangled =
599 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
600 if (demangled != NULL)
601 {
602 gsymbol->language = language_cplus;
603 return demangled;
604 }
605 }
606 if (gsymbol->language == language_java)
607 {
608 demangled =
609 cplus_demangle (mangled,
610 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_java;
614 return demangled;
615 }
616 }
617 if (gsymbol->language == language_d
618 || gsymbol->language == language_auto)
619 {
620 demangled = d_demangle(mangled, 0);
621 if (demangled != NULL)
622 {
623 gsymbol->language = language_d;
624 return demangled;
625 }
626 }
627 /* FIXME(dje): Continually adding languages here is clumsy.
628 Better to just call la_demangle if !auto, and if auto then call
629 a utility routine that tries successive languages in turn and reports
630 which one it finds. I realize the la_demangle options may be different
631 for different languages but there's already a FIXME for that. */
632 if (gsymbol->language == language_go
633 || gsymbol->language == language_auto)
634 {
635 demangled = go_demangle (mangled, 0);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_go;
639 return demangled;
640 }
641 }
642
643 /* We could support `gsymbol->language == language_fortran' here to provide
644 module namespaces also for inferiors with only minimal symbol table (ELF
645 symbols). Just the mangling standard is not standardized across compilers
646 and there is no DW_AT_producer available for inferiors with only the ELF
647 symbols to check the mangling kind. */
648 return NULL;
649}
650
651/* Set both the mangled and demangled (if any) names for GSYMBOL based
652 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
653 objfile's obstack; but if COPY_NAME is 0 and if NAME is
654 NUL-terminated, then this function assumes that NAME is already
655 correctly saved (either permanently or with a lifetime tied to the
656 objfile), and it will not be copied.
657
658 The hash table corresponding to OBJFILE is used, and the memory
659 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
660 so the pointer can be discarded after calling this function. */
661
662/* We have to be careful when dealing with Java names: when we run
663 into a Java minimal symbol, we don't know it's a Java symbol, so it
664 gets demangled as a C++ name. This is unfortunate, but there's not
665 much we can do about it: but when demangling partial symbols and
666 regular symbols, we'd better not reuse the wrong demangled name.
667 (See PR gdb/1039.) We solve this by putting a distinctive prefix
668 on Java names when storing them in the hash table. */
669
670/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
671 don't mind the Java prefix so much: different languages have
672 different demangling requirements, so it's only natural that we
673 need to keep language data around in our demangling cache. But
674 it's not good that the minimal symbol has the wrong demangled name.
675 Unfortunately, I can't think of any easy solution to that
676 problem. */
677
678#define JAVA_PREFIX "##JAVA$$"
679#define JAVA_PREFIX_LEN 8
680
681void
682symbol_set_names (struct general_symbol_info *gsymbol,
683 const char *linkage_name, int len, int copy_name,
684 struct objfile *objfile)
685{
686 struct demangled_name_entry **slot;
687 /* A 0-terminated copy of the linkage name. */
688 const char *linkage_name_copy;
689 /* A copy of the linkage name that might have a special Java prefix
690 added to it, for use when looking names up in the hash table. */
691 const char *lookup_name;
692 /* The length of lookup_name. */
693 int lookup_len;
694 struct demangled_name_entry entry;
695
696 if (gsymbol->language == language_ada)
697 {
698 /* In Ada, we do the symbol lookups using the mangled name, so
699 we can save some space by not storing the demangled name.
700
701 As a side note, we have also observed some overlap between
702 the C++ mangling and Ada mangling, similarly to what has
703 been observed with Java. Because we don't store the demangled
704 name with the symbol, we don't need to use the same trick
705 as Java. */
706 if (!copy_name)
707 gsymbol->name = linkage_name;
708 else
709 {
710 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
711
712 memcpy (name, linkage_name, len);
713 name[len] = '\0';
714 gsymbol->name = name;
715 }
716 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
717
718 return;
719 }
720
721 if (objfile->demangled_names_hash == NULL)
722 create_demangled_names_hash (objfile);
723
724 /* The stabs reader generally provides names that are not
725 NUL-terminated; most of the other readers don't do this, so we
726 can just use the given copy, unless we're in the Java case. */
727 if (gsymbol->language == language_java)
728 {
729 char *alloc_name;
730
731 lookup_len = len + JAVA_PREFIX_LEN;
732 alloc_name = alloca (lookup_len + 1);
733 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
734 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
735 alloc_name[lookup_len] = '\0';
736
737 lookup_name = alloc_name;
738 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
739 }
740 else if (linkage_name[len] != '\0')
741 {
742 char *alloc_name;
743
744 lookup_len = len;
745 alloc_name = alloca (lookup_len + 1);
746 memcpy (alloc_name, linkage_name, len);
747 alloc_name[lookup_len] = '\0';
748
749 lookup_name = alloc_name;
750 linkage_name_copy = alloc_name;
751 }
752 else
753 {
754 lookup_len = len;
755 lookup_name = linkage_name;
756 linkage_name_copy = linkage_name;
757 }
758
759 entry.mangled = lookup_name;
760 slot = ((struct demangled_name_entry **)
761 htab_find_slot (objfile->demangled_names_hash,
762 &entry, INSERT));
763
764 /* If this name is not in the hash table, add it. */
765 if (*slot == NULL
766 /* A C version of the symbol may have already snuck into the table.
767 This happens to, e.g., main.init (__go_init_main). Cope. */
768 || (gsymbol->language == language_go
769 && (*slot)->demangled[0] == '\0'))
770 {
771 char *demangled_name = symbol_find_demangled_name (gsymbol,
772 linkage_name_copy);
773 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
774
775 /* Suppose we have demangled_name==NULL, copy_name==0, and
776 lookup_name==linkage_name. In this case, we already have the
777 mangled name saved, and we don't have a demangled name. So,
778 you might think we could save a little space by not recording
779 this in the hash table at all.
780
781 It turns out that it is actually important to still save such
782 an entry in the hash table, because storing this name gives
783 us better bcache hit rates for partial symbols. */
784 if (!copy_name && lookup_name == linkage_name)
785 {
786 *slot = obstack_alloc (&objfile->objfile_obstack,
787 offsetof (struct demangled_name_entry,
788 demangled)
789 + demangled_len + 1);
790 (*slot)->mangled = lookup_name;
791 }
792 else
793 {
794 char *mangled_ptr;
795
796 /* If we must copy the mangled name, put it directly after
797 the demangled name so we can have a single
798 allocation. */
799 *slot = obstack_alloc (&objfile->objfile_obstack,
800 offsetof (struct demangled_name_entry,
801 demangled)
802 + lookup_len + demangled_len + 2);
803 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
804 strcpy (mangled_ptr, lookup_name);
805 (*slot)->mangled = mangled_ptr;
806 }
807
808 if (demangled_name != NULL)
809 {
810 strcpy ((*slot)->demangled, demangled_name);
811 xfree (demangled_name);
812 }
813 else
814 (*slot)->demangled[0] = '\0';
815 }
816
817 gsymbol->name = (*slot)->mangled + lookup_len - len;
818 if ((*slot)->demangled[0] != '\0')
819 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
820 &objfile->objfile_obstack);
821 else
822 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
823}
824
825/* Return the source code name of a symbol. In languages where
826 demangling is necessary, this is the demangled name. */
827
828const char *
829symbol_natural_name (const struct general_symbol_info *gsymbol)
830{
831 switch (gsymbol->language)
832 {
833 case language_cplus:
834 case language_d:
835 case language_go:
836 case language_java:
837 case language_objc:
838 case language_fortran:
839 if (symbol_get_demangled_name (gsymbol) != NULL)
840 return symbol_get_demangled_name (gsymbol);
841 break;
842 case language_ada:
843 return ada_decode_symbol (gsymbol);
844 default:
845 break;
846 }
847 return gsymbol->name;
848}
849
850/* Return the demangled name for a symbol based on the language for
851 that symbol. If no demangled name exists, return NULL. */
852
853const char *
854symbol_demangled_name (const struct general_symbol_info *gsymbol)
855{
856 const char *dem_name = NULL;
857
858 switch (gsymbol->language)
859 {
860 case language_cplus:
861 case language_d:
862 case language_go:
863 case language_java:
864 case language_objc:
865 case language_fortran:
866 dem_name = symbol_get_demangled_name (gsymbol);
867 break;
868 case language_ada:
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875}
876
877/* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882const char *
883symbol_search_name (const struct general_symbol_info *gsymbol)
884{
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889}
890
891/* Initialize the structure fields to zero values. */
892
893void
894init_sal (struct symtab_and_line *sal)
895{
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905}
906\f
907
908/* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912int
913matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915{
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971}
972
973struct symtab *
974find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975{
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003}
1004\f
1005/* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008void
1009fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011{
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079}
1080
1081struct symbol *
1082fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083{
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121}
1122
1123/* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141struct cleanup *
1142demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144{
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204}
1205
1206/* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215/* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225struct symbol *
1226lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 struct field_of_this_result *is_a_field_of_this)
1229{
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239}
1240
1241/* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244struct symbol *
1245lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain,
1247 struct field_of_this_result *is_a_field_of_this)
1248{
1249 return lookup_symbol_in_language (name, block, domain,
1250 current_language->la_language,
1251 is_a_field_of_this);
1252}
1253
1254/* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1255 found, or NULL if not found. */
1256
1257struct symbol *
1258lookup_language_this (const struct language_defn *lang,
1259 const struct block *block)
1260{
1261 if (lang->la_name_of_this == NULL || block == NULL)
1262 return NULL;
1263
1264 while (block)
1265 {
1266 struct symbol *sym;
1267
1268 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1269 if (sym != NULL)
1270 {
1271 block_found = block;
1272 return sym;
1273 }
1274 if (BLOCK_FUNCTION (block))
1275 break;
1276 block = BLOCK_SUPERBLOCK (block);
1277 }
1278
1279 return NULL;
1280}
1281
1282/* Given TYPE, a structure/union,
1283 return 1 if the component named NAME from the ultimate target
1284 structure/union is defined, otherwise, return 0. */
1285
1286static int
1287check_field (struct type *type, const char *name,
1288 struct field_of_this_result *is_a_field_of_this)
1289{
1290 int i;
1291
1292 /* The type may be a stub. */
1293 CHECK_TYPEDEF (type);
1294
1295 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1296 {
1297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1298
1299 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1300 {
1301 is_a_field_of_this->type = type;
1302 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1303 return 1;
1304 }
1305 }
1306
1307 /* C++: If it was not found as a data field, then try to return it
1308 as a pointer to a method. */
1309
1310 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1311 {
1312 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1313 {
1314 is_a_field_of_this->type = type;
1315 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1316 return 1;
1317 }
1318 }
1319
1320 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1321 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1322 return 1;
1323
1324 return 0;
1325}
1326
1327/* Behave like lookup_symbol except that NAME is the natural name
1328 (e.g., demangled name) of the symbol that we're looking for. */
1329
1330static struct symbol *
1331lookup_symbol_aux (const char *name, const struct block *block,
1332 const domain_enum domain, enum language language,
1333 struct field_of_this_result *is_a_field_of_this)
1334{
1335 struct symbol *sym;
1336 const struct language_defn *langdef;
1337
1338 /* Make sure we do something sensible with is_a_field_of_this, since
1339 the callers that set this parameter to some non-null value will
1340 certainly use it later. If we don't set it, the contents of
1341 is_a_field_of_this are undefined. */
1342 if (is_a_field_of_this != NULL)
1343 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1344
1345 /* Search specified block and its superiors. Don't search
1346 STATIC_BLOCK or GLOBAL_BLOCK. */
1347
1348 sym = lookup_symbol_aux_local (name, block, domain, language);
1349 if (sym != NULL)
1350 return sym;
1351
1352 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1353 check to see if NAME is a field of `this'. */
1354
1355 langdef = language_def (language);
1356
1357 /* Don't do this check if we are searching for a struct. It will
1358 not be found by check_field, but will be found by other
1359 means. */
1360 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1361 {
1362 struct symbol *sym = lookup_language_this (langdef, block);
1363
1364 if (sym)
1365 {
1366 struct type *t = sym->type;
1367
1368 /* I'm not really sure that type of this can ever
1369 be typedefed; just be safe. */
1370 CHECK_TYPEDEF (t);
1371 if (TYPE_CODE (t) == TYPE_CODE_PTR
1372 || TYPE_CODE (t) == TYPE_CODE_REF)
1373 t = TYPE_TARGET_TYPE (t);
1374
1375 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1376 && TYPE_CODE (t) != TYPE_CODE_UNION)
1377 error (_("Internal error: `%s' is not an aggregate"),
1378 langdef->la_name_of_this);
1379
1380 if (check_field (t, name, is_a_field_of_this))
1381 return NULL;
1382 }
1383 }
1384
1385 /* Now do whatever is appropriate for LANGUAGE to look
1386 up static and global variables. */
1387
1388 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1389 if (sym != NULL)
1390 return sym;
1391
1392 /* Now search all static file-level symbols. Not strictly correct,
1393 but more useful than an error. */
1394
1395 return lookup_static_symbol_aux (name, domain);
1396}
1397
1398/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1399 first, then check the psymtabs. If a psymtab indicates the existence of the
1400 desired name as a file-level static, then do psymtab-to-symtab conversion on
1401 the fly and return the found symbol. */
1402
1403struct symbol *
1404lookup_static_symbol_aux (const char *name, const domain_enum domain)
1405{
1406 struct objfile *objfile;
1407 struct symbol *sym;
1408
1409 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1410 if (sym != NULL)
1411 return sym;
1412
1413 ALL_OBJFILES (objfile)
1414 {
1415 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1416 if (sym != NULL)
1417 return sym;
1418 }
1419
1420 return NULL;
1421}
1422
1423/* Check to see if the symbol is defined in BLOCK or its superiors.
1424 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1425
1426static struct symbol *
1427lookup_symbol_aux_local (const char *name, const struct block *block,
1428 const domain_enum domain,
1429 enum language language)
1430{
1431 struct symbol *sym;
1432 const struct block *static_block = block_static_block (block);
1433 const char *scope = block_scope (block);
1434
1435 /* Check if either no block is specified or it's a global block. */
1436
1437 if (static_block == NULL)
1438 return NULL;
1439
1440 while (block != static_block)
1441 {
1442 sym = lookup_symbol_aux_block (name, block, domain);
1443 if (sym != NULL)
1444 return sym;
1445
1446 if (language == language_cplus || language == language_fortran)
1447 {
1448 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1449 domain);
1450 if (sym != NULL)
1451 return sym;
1452 }
1453
1454 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1455 break;
1456 block = BLOCK_SUPERBLOCK (block);
1457 }
1458
1459 /* We've reached the edge of the function without finding a result. */
1460
1461 return NULL;
1462}
1463
1464/* Look up OBJFILE to BLOCK. */
1465
1466struct objfile *
1467lookup_objfile_from_block (const struct block *block)
1468{
1469 struct objfile *obj;
1470 struct symtab *s;
1471
1472 if (block == NULL)
1473 return NULL;
1474
1475 block = block_global_block (block);
1476 /* Go through SYMTABS. */
1477 ALL_SYMTABS (obj, s)
1478 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1479 {
1480 if (obj->separate_debug_objfile_backlink)
1481 obj = obj->separate_debug_objfile_backlink;
1482
1483 return obj;
1484 }
1485
1486 return NULL;
1487}
1488
1489/* Look up a symbol in a block; if found, fixup the symbol, and set
1490 block_found appropriately. */
1491
1492struct symbol *
1493lookup_symbol_aux_block (const char *name, const struct block *block,
1494 const domain_enum domain)
1495{
1496 struct symbol *sym;
1497
1498 sym = lookup_block_symbol (block, name, domain);
1499 if (sym)
1500 {
1501 block_found = block;
1502 return fixup_symbol_section (sym, NULL);
1503 }
1504
1505 return NULL;
1506}
1507
1508/* Check all global symbols in OBJFILE in symtabs and
1509 psymtabs. */
1510
1511struct symbol *
1512lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1513 const char *name,
1514 const domain_enum domain)
1515{
1516 const struct objfile *objfile;
1517 struct symbol *sym;
1518 struct blockvector *bv;
1519 const struct block *block;
1520 struct symtab *s;
1521
1522 for (objfile = main_objfile;
1523 objfile;
1524 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1525 {
1526 /* Go through symtabs. */
1527 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1528 {
1529 bv = BLOCKVECTOR (s);
1530 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1531 sym = lookup_block_symbol (block, name, domain);
1532 if (sym)
1533 {
1534 block_found = block;
1535 return fixup_symbol_section (sym, (struct objfile *)objfile);
1536 }
1537 }
1538
1539 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1540 name, domain);
1541 if (sym)
1542 return sym;
1543 }
1544
1545 return NULL;
1546}
1547
1548/* Check to see if the symbol is defined in one of the OBJFILE's
1549 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1550 depending on whether or not we want to search global symbols or
1551 static symbols. */
1552
1553static struct symbol *
1554lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1555 const char *name, const domain_enum domain)
1556{
1557 struct symbol *sym = NULL;
1558 struct blockvector *bv;
1559 const struct block *block;
1560 struct symtab *s;
1561
1562 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1563 {
1564 bv = BLOCKVECTOR (s);
1565 block = BLOCKVECTOR_BLOCK (bv, block_index);
1566 sym = lookup_block_symbol (block, name, domain);
1567 if (sym)
1568 {
1569 block_found = block;
1570 return fixup_symbol_section (sym, objfile);
1571 }
1572 }
1573
1574 return NULL;
1575}
1576
1577/* Same as lookup_symbol_aux_objfile, except that it searches all
1578 objfiles. Return the first match found. */
1579
1580static struct symbol *
1581lookup_symbol_aux_symtabs (int block_index, const char *name,
1582 const domain_enum domain)
1583{
1584 struct symbol *sym;
1585 struct objfile *objfile;
1586
1587 ALL_OBJFILES (objfile)
1588 {
1589 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1590 if (sym)
1591 return sym;
1592 }
1593
1594 return NULL;
1595}
1596
1597/* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1598 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1599 and all related objfiles. */
1600
1601static struct symbol *
1602lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1603 const char *linkage_name,
1604 domain_enum domain)
1605{
1606 enum language lang = current_language->la_language;
1607 const char *modified_name;
1608 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1609 &modified_name);
1610 struct objfile *main_objfile, *cur_objfile;
1611
1612 if (objfile->separate_debug_objfile_backlink)
1613 main_objfile = objfile->separate_debug_objfile_backlink;
1614 else
1615 main_objfile = objfile;
1616
1617 for (cur_objfile = main_objfile;
1618 cur_objfile;
1619 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1620 {
1621 struct symbol *sym;
1622
1623 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1624 modified_name, domain);
1625 if (sym == NULL)
1626 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1627 modified_name, domain);
1628 if (sym != NULL)
1629 {
1630 do_cleanups (cleanup);
1631 return sym;
1632 }
1633 }
1634
1635 do_cleanups (cleanup);
1636 return NULL;
1637}
1638
1639/* A helper function that throws an exception when a symbol was found
1640 in a psymtab but not in a symtab. */
1641
1642static void ATTRIBUTE_NORETURN
1643error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1644{
1645 error (_("\
1646Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1647%s may be an inlined function, or may be a template function\n \
1648(if a template, try specifying an instantiation: %s<type>)."),
1649 kind == GLOBAL_BLOCK ? "global" : "static",
1650 name, symtab_to_filename_for_display (symtab), name, name);
1651}
1652
1653/* A helper function for lookup_symbol_aux that interfaces with the
1654 "quick" symbol table functions. */
1655
1656static struct symbol *
1657lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1658 const char *name, const domain_enum domain)
1659{
1660 struct symtab *symtab;
1661 struct blockvector *bv;
1662 const struct block *block;
1663 struct symbol *sym;
1664
1665 if (!objfile->sf)
1666 return NULL;
1667 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1668 if (!symtab)
1669 return NULL;
1670
1671 bv = BLOCKVECTOR (symtab);
1672 block = BLOCKVECTOR_BLOCK (bv, kind);
1673 sym = lookup_block_symbol (block, name, domain);
1674 if (!sym)
1675 error_in_psymtab_expansion (kind, name, symtab);
1676 return fixup_symbol_section (sym, objfile);
1677}
1678
1679/* A default version of lookup_symbol_nonlocal for use by languages
1680 that can't think of anything better to do. This implements the C
1681 lookup rules. */
1682
1683struct symbol *
1684basic_lookup_symbol_nonlocal (const char *name,
1685 const struct block *block,
1686 const domain_enum domain)
1687{
1688 struct symbol *sym;
1689
1690 /* NOTE: carlton/2003-05-19: The comments below were written when
1691 this (or what turned into this) was part of lookup_symbol_aux;
1692 I'm much less worried about these questions now, since these
1693 decisions have turned out well, but I leave these comments here
1694 for posterity. */
1695
1696 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1697 not it would be appropriate to search the current global block
1698 here as well. (That's what this code used to do before the
1699 is_a_field_of_this check was moved up.) On the one hand, it's
1700 redundant with the lookup_symbol_aux_symtabs search that happens
1701 next. On the other hand, if decode_line_1 is passed an argument
1702 like filename:var, then the user presumably wants 'var' to be
1703 searched for in filename. On the third hand, there shouldn't be
1704 multiple global variables all of which are named 'var', and it's
1705 not like decode_line_1 has ever restricted its search to only
1706 global variables in a single filename. All in all, only
1707 searching the static block here seems best: it's correct and it's
1708 cleanest. */
1709
1710 /* NOTE: carlton/2002-12-05: There's also a possible performance
1711 issue here: if you usually search for global symbols in the
1712 current file, then it would be slightly better to search the
1713 current global block before searching all the symtabs. But there
1714 are other factors that have a much greater effect on performance
1715 than that one, so I don't think we should worry about that for
1716 now. */
1717
1718 sym = lookup_symbol_static (name, block, domain);
1719 if (sym != NULL)
1720 return sym;
1721
1722 return lookup_symbol_global (name, block, domain);
1723}
1724
1725/* Lookup a symbol in the static block associated to BLOCK, if there
1726 is one; do nothing if BLOCK is NULL or a global block. */
1727
1728struct symbol *
1729lookup_symbol_static (const char *name,
1730 const struct block *block,
1731 const domain_enum domain)
1732{
1733 const struct block *static_block = block_static_block (block);
1734
1735 if (static_block != NULL)
1736 return lookup_symbol_aux_block (name, static_block, domain);
1737 else
1738 return NULL;
1739}
1740
1741/* Private data to be used with lookup_symbol_global_iterator_cb. */
1742
1743struct global_sym_lookup_data
1744{
1745 /* The name of the symbol we are searching for. */
1746 const char *name;
1747
1748 /* The domain to use for our search. */
1749 domain_enum domain;
1750
1751 /* The field where the callback should store the symbol if found.
1752 It should be initialized to NULL before the search is started. */
1753 struct symbol *result;
1754};
1755
1756/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1757 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1758 OBJFILE. The arguments for the search are passed via CB_DATA,
1759 which in reality is a pointer to struct global_sym_lookup_data. */
1760
1761static int
1762lookup_symbol_global_iterator_cb (struct objfile *objfile,
1763 void *cb_data)
1764{
1765 struct global_sym_lookup_data *data =
1766 (struct global_sym_lookup_data *) cb_data;
1767
1768 gdb_assert (data->result == NULL);
1769
1770 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1771 data->name, data->domain);
1772 if (data->result == NULL)
1773 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1774 data->name, data->domain);
1775
1776 /* If we found a match, tell the iterator to stop. Otherwise,
1777 keep going. */
1778 return (data->result != NULL);
1779}
1780
1781/* Lookup a symbol in all files' global blocks (searching psymtabs if
1782 necessary). */
1783
1784struct symbol *
1785lookup_symbol_global (const char *name,
1786 const struct block *block,
1787 const domain_enum domain)
1788{
1789 struct symbol *sym = NULL;
1790 struct objfile *objfile = NULL;
1791 struct global_sym_lookup_data lookup_data;
1792
1793 /* Call library-specific lookup procedure. */
1794 objfile = lookup_objfile_from_block (block);
1795 if (objfile != NULL)
1796 sym = solib_global_lookup (objfile, name, domain);
1797 if (sym != NULL)
1798 return sym;
1799
1800 memset (&lookup_data, 0, sizeof (lookup_data));
1801 lookup_data.name = name;
1802 lookup_data.domain = domain;
1803 gdbarch_iterate_over_objfiles_in_search_order
1804 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1805 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1806
1807 return lookup_data.result;
1808}
1809
1810int
1811symbol_matches_domain (enum language symbol_language,
1812 domain_enum symbol_domain,
1813 domain_enum domain)
1814{
1815 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1816 A Java class declaration also defines a typedef for the class.
1817 Similarly, any Ada type declaration implicitly defines a typedef. */
1818 if (symbol_language == language_cplus
1819 || symbol_language == language_d
1820 || symbol_language == language_java
1821 || symbol_language == language_ada)
1822 {
1823 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1824 && symbol_domain == STRUCT_DOMAIN)
1825 return 1;
1826 }
1827 /* For all other languages, strict match is required. */
1828 return (symbol_domain == domain);
1829}
1830
1831/* Look up a type named NAME in the struct_domain. The type returned
1832 must not be opaque -- i.e., must have at least one field
1833 defined. */
1834
1835struct type *
1836lookup_transparent_type (const char *name)
1837{
1838 return current_language->la_lookup_transparent_type (name);
1839}
1840
1841/* A helper for basic_lookup_transparent_type that interfaces with the
1842 "quick" symbol table functions. */
1843
1844static struct type *
1845basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1846 const char *name)
1847{
1848 struct symtab *symtab;
1849 struct blockvector *bv;
1850 struct block *block;
1851 struct symbol *sym;
1852
1853 if (!objfile->sf)
1854 return NULL;
1855 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1856 if (!symtab)
1857 return NULL;
1858
1859 bv = BLOCKVECTOR (symtab);
1860 block = BLOCKVECTOR_BLOCK (bv, kind);
1861 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1862 if (!sym)
1863 error_in_psymtab_expansion (kind, name, symtab);
1864
1865 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1866 return SYMBOL_TYPE (sym);
1867
1868 return NULL;
1869}
1870
1871/* The standard implementation of lookup_transparent_type. This code
1872 was modeled on lookup_symbol -- the parts not relevant to looking
1873 up types were just left out. In particular it's assumed here that
1874 types are available in struct_domain and only at file-static or
1875 global blocks. */
1876
1877struct type *
1878basic_lookup_transparent_type (const char *name)
1879{
1880 struct symbol *sym;
1881 struct symtab *s = NULL;
1882 struct blockvector *bv;
1883 struct objfile *objfile;
1884 struct block *block;
1885 struct type *t;
1886
1887 /* Now search all the global symbols. Do the symtab's first, then
1888 check the psymtab's. If a psymtab indicates the existence
1889 of the desired name as a global, then do psymtab-to-symtab
1890 conversion on the fly and return the found symbol. */
1891
1892 ALL_OBJFILES (objfile)
1893 {
1894 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1895 {
1896 bv = BLOCKVECTOR (s);
1897 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1898 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1899 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1900 {
1901 return SYMBOL_TYPE (sym);
1902 }
1903 }
1904 }
1905
1906 ALL_OBJFILES (objfile)
1907 {
1908 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1909 if (t)
1910 return t;
1911 }
1912
1913 /* Now search the static file-level symbols.
1914 Not strictly correct, but more useful than an error.
1915 Do the symtab's first, then
1916 check the psymtab's. If a psymtab indicates the existence
1917 of the desired name as a file-level static, then do psymtab-to-symtab
1918 conversion on the fly and return the found symbol. */
1919
1920 ALL_OBJFILES (objfile)
1921 {
1922 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1923 {
1924 bv = BLOCKVECTOR (s);
1925 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1926 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1927 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1928 {
1929 return SYMBOL_TYPE (sym);
1930 }
1931 }
1932 }
1933
1934 ALL_OBJFILES (objfile)
1935 {
1936 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1937 if (t)
1938 return t;
1939 }
1940
1941 return (struct type *) 0;
1942}
1943
1944/* Find the name of the file containing main(). */
1945/* FIXME: What about languages without main() or specially linked
1946 executables that have no main() ? */
1947
1948const char *
1949find_main_filename (void)
1950{
1951 struct objfile *objfile;
1952 char *name = main_name ();
1953
1954 ALL_OBJFILES (objfile)
1955 {
1956 const char *result;
1957
1958 if (!objfile->sf)
1959 continue;
1960 result = objfile->sf->qf->find_symbol_file (objfile, name);
1961 if (result)
1962 return result;
1963 }
1964 return (NULL);
1965}
1966
1967/* Search BLOCK for symbol NAME in DOMAIN.
1968
1969 Note that if NAME is the demangled form of a C++ symbol, we will fail
1970 to find a match during the binary search of the non-encoded names, but
1971 for now we don't worry about the slight inefficiency of looking for
1972 a match we'll never find, since it will go pretty quick. Once the
1973 binary search terminates, we drop through and do a straight linear
1974 search on the symbols. Each symbol which is marked as being a ObjC/C++
1975 symbol (language_cplus or language_objc set) has both the encoded and
1976 non-encoded names tested for a match. */
1977
1978struct symbol *
1979lookup_block_symbol (const struct block *block, const char *name,
1980 const domain_enum domain)
1981{
1982 struct block_iterator iter;
1983 struct symbol *sym;
1984
1985 if (!BLOCK_FUNCTION (block))
1986 {
1987 for (sym = block_iter_name_first (block, name, &iter);
1988 sym != NULL;
1989 sym = block_iter_name_next (name, &iter))
1990 {
1991 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1992 SYMBOL_DOMAIN (sym), domain))
1993 return sym;
1994 }
1995 return NULL;
1996 }
1997 else
1998 {
1999 /* Note that parameter symbols do not always show up last in the
2000 list; this loop makes sure to take anything else other than
2001 parameter symbols first; it only uses parameter symbols as a
2002 last resort. Note that this only takes up extra computation
2003 time on a match. */
2004
2005 struct symbol *sym_found = NULL;
2006
2007 for (sym = block_iter_name_first (block, name, &iter);
2008 sym != NULL;
2009 sym = block_iter_name_next (name, &iter))
2010 {
2011 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2012 SYMBOL_DOMAIN (sym), domain))
2013 {
2014 sym_found = sym;
2015 if (!SYMBOL_IS_ARGUMENT (sym))
2016 {
2017 break;
2018 }
2019 }
2020 }
2021 return (sym_found); /* Will be NULL if not found. */
2022 }
2023}
2024
2025/* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2026
2027 For each symbol that matches, CALLBACK is called. The symbol and
2028 DATA are passed to the callback.
2029
2030 If CALLBACK returns zero, the iteration ends. Otherwise, the
2031 search continues. */
2032
2033void
2034iterate_over_symbols (const struct block *block, const char *name,
2035 const domain_enum domain,
2036 symbol_found_callback_ftype *callback,
2037 void *data)
2038{
2039 struct block_iterator iter;
2040 struct symbol *sym;
2041
2042 for (sym = block_iter_name_first (block, name, &iter);
2043 sym != NULL;
2044 sym = block_iter_name_next (name, &iter))
2045 {
2046 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2047 SYMBOL_DOMAIN (sym), domain))
2048 {
2049 if (!callback (sym, data))
2050 return;
2051 }
2052 }
2053}
2054
2055/* Find the symtab associated with PC and SECTION. Look through the
2056 psymtabs and read in another symtab if necessary. */
2057
2058struct symtab *
2059find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2060{
2061 struct block *b;
2062 struct blockvector *bv;
2063 struct symtab *s = NULL;
2064 struct symtab *best_s = NULL;
2065 struct objfile *objfile;
2066 CORE_ADDR distance = 0;
2067 struct minimal_symbol *msymbol;
2068
2069 /* If we know that this is not a text address, return failure. This is
2070 necessary because we loop based on the block's high and low code
2071 addresses, which do not include the data ranges, and because
2072 we call find_pc_sect_psymtab which has a similar restriction based
2073 on the partial_symtab's texthigh and textlow. */
2074 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2075 if (msymbol
2076 && (MSYMBOL_TYPE (msymbol) == mst_data
2077 || MSYMBOL_TYPE (msymbol) == mst_bss
2078 || MSYMBOL_TYPE (msymbol) == mst_abs
2079 || MSYMBOL_TYPE (msymbol) == mst_file_data
2080 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2081 return NULL;
2082
2083 /* Search all symtabs for the one whose file contains our address, and which
2084 is the smallest of all the ones containing the address. This is designed
2085 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2086 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2087 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2088
2089 This happens for native ecoff format, where code from included files
2090 gets its own symtab. The symtab for the included file should have
2091 been read in already via the dependency mechanism.
2092 It might be swifter to create several symtabs with the same name
2093 like xcoff does (I'm not sure).
2094
2095 It also happens for objfiles that have their functions reordered.
2096 For these, the symtab we are looking for is not necessarily read in. */
2097
2098 ALL_PRIMARY_SYMTABS (objfile, s)
2099 {
2100 bv = BLOCKVECTOR (s);
2101 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2102
2103 if (BLOCK_START (b) <= pc
2104 && BLOCK_END (b) > pc
2105 && (distance == 0
2106 || BLOCK_END (b) - BLOCK_START (b) < distance))
2107 {
2108 /* For an objfile that has its functions reordered,
2109 find_pc_psymtab will find the proper partial symbol table
2110 and we simply return its corresponding symtab. */
2111 /* In order to better support objfiles that contain both
2112 stabs and coff debugging info, we continue on if a psymtab
2113 can't be found. */
2114 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2115 {
2116 struct symtab *result;
2117
2118 result
2119 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2120 msymbol,
2121 pc, section,
2122 0);
2123 if (result)
2124 return result;
2125 }
2126 if (section != 0)
2127 {
2128 struct block_iterator iter;
2129 struct symbol *sym = NULL;
2130
2131 ALL_BLOCK_SYMBOLS (b, iter, sym)
2132 {
2133 fixup_symbol_section (sym, objfile);
2134 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2135 break;
2136 }
2137 if (sym == NULL)
2138 continue; /* No symbol in this symtab matches
2139 section. */
2140 }
2141 distance = BLOCK_END (b) - BLOCK_START (b);
2142 best_s = s;
2143 }
2144 }
2145
2146 if (best_s != NULL)
2147 return (best_s);
2148
2149 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2150
2151 ALL_OBJFILES (objfile)
2152 {
2153 struct symtab *result;
2154
2155 if (!objfile->sf)
2156 continue;
2157 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2158 msymbol,
2159 pc, section,
2160 1);
2161 if (result)
2162 return result;
2163 }
2164
2165 return NULL;
2166}
2167
2168/* Find the symtab associated with PC. Look through the psymtabs and read
2169 in another symtab if necessary. Backward compatibility, no section. */
2170
2171struct symtab *
2172find_pc_symtab (CORE_ADDR pc)
2173{
2174 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2175}
2176\f
2177
2178/* Find the source file and line number for a given PC value and SECTION.
2179 Return a structure containing a symtab pointer, a line number,
2180 and a pc range for the entire source line.
2181 The value's .pc field is NOT the specified pc.
2182 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2183 use the line that ends there. Otherwise, in that case, the line
2184 that begins there is used. */
2185
2186/* The big complication here is that a line may start in one file, and end just
2187 before the start of another file. This usually occurs when you #include
2188 code in the middle of a subroutine. To properly find the end of a line's PC
2189 range, we must search all symtabs associated with this compilation unit, and
2190 find the one whose first PC is closer than that of the next line in this
2191 symtab. */
2192
2193/* If it's worth the effort, we could be using a binary search. */
2194
2195struct symtab_and_line
2196find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2197{
2198 struct symtab *s;
2199 struct linetable *l;
2200 int len;
2201 int i;
2202 struct linetable_entry *item;
2203 struct symtab_and_line val;
2204 struct blockvector *bv;
2205 struct bound_minimal_symbol msymbol;
2206 struct minimal_symbol *mfunsym;
2207 struct objfile *objfile;
2208
2209 /* Info on best line seen so far, and where it starts, and its file. */
2210
2211 struct linetable_entry *best = NULL;
2212 CORE_ADDR best_end = 0;
2213 struct symtab *best_symtab = 0;
2214
2215 /* Store here the first line number
2216 of a file which contains the line at the smallest pc after PC.
2217 If we don't find a line whose range contains PC,
2218 we will use a line one less than this,
2219 with a range from the start of that file to the first line's pc. */
2220 struct linetable_entry *alt = NULL;
2221
2222 /* Info on best line seen in this file. */
2223
2224 struct linetable_entry *prev;
2225
2226 /* If this pc is not from the current frame,
2227 it is the address of the end of a call instruction.
2228 Quite likely that is the start of the following statement.
2229 But what we want is the statement containing the instruction.
2230 Fudge the pc to make sure we get that. */
2231
2232 init_sal (&val); /* initialize to zeroes */
2233
2234 val.pspace = current_program_space;
2235
2236 /* It's tempting to assume that, if we can't find debugging info for
2237 any function enclosing PC, that we shouldn't search for line
2238 number info, either. However, GAS can emit line number info for
2239 assembly files --- very helpful when debugging hand-written
2240 assembly code. In such a case, we'd have no debug info for the
2241 function, but we would have line info. */
2242
2243 if (notcurrent)
2244 pc -= 1;
2245
2246 /* elz: added this because this function returned the wrong
2247 information if the pc belongs to a stub (import/export)
2248 to call a shlib function. This stub would be anywhere between
2249 two functions in the target, and the line info was erroneously
2250 taken to be the one of the line before the pc. */
2251
2252 /* RT: Further explanation:
2253
2254 * We have stubs (trampolines) inserted between procedures.
2255 *
2256 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2257 * exists in the main image.
2258 *
2259 * In the minimal symbol table, we have a bunch of symbols
2260 * sorted by start address. The stubs are marked as "trampoline",
2261 * the others appear as text. E.g.:
2262 *
2263 * Minimal symbol table for main image
2264 * main: code for main (text symbol)
2265 * shr1: stub (trampoline symbol)
2266 * foo: code for foo (text symbol)
2267 * ...
2268 * Minimal symbol table for "shr1" image:
2269 * ...
2270 * shr1: code for shr1 (text symbol)
2271 * ...
2272 *
2273 * So the code below is trying to detect if we are in the stub
2274 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2275 * and if found, do the symbolization from the real-code address
2276 * rather than the stub address.
2277 *
2278 * Assumptions being made about the minimal symbol table:
2279 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2280 * if we're really in the trampoline.s If we're beyond it (say
2281 * we're in "foo" in the above example), it'll have a closer
2282 * symbol (the "foo" text symbol for example) and will not
2283 * return the trampoline.
2284 * 2. lookup_minimal_symbol_text() will find a real text symbol
2285 * corresponding to the trampoline, and whose address will
2286 * be different than the trampoline address. I put in a sanity
2287 * check for the address being the same, to avoid an
2288 * infinite recursion.
2289 */
2290 msymbol = lookup_minimal_symbol_by_pc (pc);
2291 if (msymbol.minsym != NULL)
2292 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2293 {
2294 mfunsym
2295 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2296 NULL);
2297 if (mfunsym == NULL)
2298 /* I eliminated this warning since it is coming out
2299 * in the following situation:
2300 * gdb shmain // test program with shared libraries
2301 * (gdb) break shr1 // function in shared lib
2302 * Warning: In stub for ...
2303 * In the above situation, the shared lib is not loaded yet,
2304 * so of course we can't find the real func/line info,
2305 * but the "break" still works, and the warning is annoying.
2306 * So I commented out the warning. RT */
2307 /* warning ("In stub for %s; unable to find real function/line info",
2308 SYMBOL_LINKAGE_NAME (msymbol)); */
2309 ;
2310 /* fall through */
2311 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2312 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2313 /* Avoid infinite recursion */
2314 /* See above comment about why warning is commented out. */
2315 /* warning ("In stub for %s; unable to find real function/line info",
2316 SYMBOL_LINKAGE_NAME (msymbol)); */
2317 ;
2318 /* fall through */
2319 else
2320 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2321 }
2322
2323
2324 s = find_pc_sect_symtab (pc, section);
2325 if (!s)
2326 {
2327 /* If no symbol information, return previous pc. */
2328 if (notcurrent)
2329 pc++;
2330 val.pc = pc;
2331 return val;
2332 }
2333
2334 bv = BLOCKVECTOR (s);
2335 objfile = s->objfile;
2336
2337 /* Look at all the symtabs that share this blockvector.
2338 They all have the same apriori range, that we found was right;
2339 but they have different line tables. */
2340
2341 ALL_OBJFILE_SYMTABS (objfile, s)
2342 {
2343 if (BLOCKVECTOR (s) != bv)
2344 continue;
2345
2346 /* Find the best line in this symtab. */
2347 l = LINETABLE (s);
2348 if (!l)
2349 continue;
2350 len = l->nitems;
2351 if (len <= 0)
2352 {
2353 /* I think len can be zero if the symtab lacks line numbers
2354 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2355 I'm not sure which, and maybe it depends on the symbol
2356 reader). */
2357 continue;
2358 }
2359
2360 prev = NULL;
2361 item = l->item; /* Get first line info. */
2362
2363 /* Is this file's first line closer than the first lines of other files?
2364 If so, record this file, and its first line, as best alternate. */
2365 if (item->pc > pc && (!alt || item->pc < alt->pc))
2366 alt = item;
2367
2368 for (i = 0; i < len; i++, item++)
2369 {
2370 /* Leave prev pointing to the linetable entry for the last line
2371 that started at or before PC. */
2372 if (item->pc > pc)
2373 break;
2374
2375 prev = item;
2376 }
2377
2378 /* At this point, prev points at the line whose start addr is <= pc, and
2379 item points at the next line. If we ran off the end of the linetable
2380 (pc >= start of the last line), then prev == item. If pc < start of
2381 the first line, prev will not be set. */
2382
2383 /* Is this file's best line closer than the best in the other files?
2384 If so, record this file, and its best line, as best so far. Don't
2385 save prev if it represents the end of a function (i.e. line number
2386 0) instead of a real line. */
2387
2388 if (prev && prev->line && (!best || prev->pc > best->pc))
2389 {
2390 best = prev;
2391 best_symtab = s;
2392
2393 /* Discard BEST_END if it's before the PC of the current BEST. */
2394 if (best_end <= best->pc)
2395 best_end = 0;
2396 }
2397
2398 /* If another line (denoted by ITEM) is in the linetable and its
2399 PC is after BEST's PC, but before the current BEST_END, then
2400 use ITEM's PC as the new best_end. */
2401 if (best && i < len && item->pc > best->pc
2402 && (best_end == 0 || best_end > item->pc))
2403 best_end = item->pc;
2404 }
2405
2406 if (!best_symtab)
2407 {
2408 /* If we didn't find any line number info, just return zeros.
2409 We used to return alt->line - 1 here, but that could be
2410 anywhere; if we don't have line number info for this PC,
2411 don't make some up. */
2412 val.pc = pc;
2413 }
2414 else if (best->line == 0)
2415 {
2416 /* If our best fit is in a range of PC's for which no line
2417 number info is available (line number is zero) then we didn't
2418 find any valid line information. */
2419 val.pc = pc;
2420 }
2421 else
2422 {
2423 val.symtab = best_symtab;
2424 val.line = best->line;
2425 val.pc = best->pc;
2426 if (best_end && (!alt || best_end < alt->pc))
2427 val.end = best_end;
2428 else if (alt)
2429 val.end = alt->pc;
2430 else
2431 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2432 }
2433 val.section = section;
2434 return val;
2435}
2436
2437/* Backward compatibility (no section). */
2438
2439struct symtab_and_line
2440find_pc_line (CORE_ADDR pc, int notcurrent)
2441{
2442 struct obj_section *section;
2443
2444 section = find_pc_overlay (pc);
2445 if (pc_in_unmapped_range (pc, section))
2446 pc = overlay_mapped_address (pc, section);
2447 return find_pc_sect_line (pc, section, notcurrent);
2448}
2449\f
2450/* Find line number LINE in any symtab whose name is the same as
2451 SYMTAB.
2452
2453 If found, return the symtab that contains the linetable in which it was
2454 found, set *INDEX to the index in the linetable of the best entry
2455 found, and set *EXACT_MATCH nonzero if the value returned is an
2456 exact match.
2457
2458 If not found, return NULL. */
2459
2460struct symtab *
2461find_line_symtab (struct symtab *symtab, int line,
2462 int *index, int *exact_match)
2463{
2464 int exact = 0; /* Initialized here to avoid a compiler warning. */
2465
2466 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2467 so far seen. */
2468
2469 int best_index;
2470 struct linetable *best_linetable;
2471 struct symtab *best_symtab;
2472
2473 /* First try looking it up in the given symtab. */
2474 best_linetable = LINETABLE (symtab);
2475 best_symtab = symtab;
2476 best_index = find_line_common (best_linetable, line, &exact, 0);
2477 if (best_index < 0 || !exact)
2478 {
2479 /* Didn't find an exact match. So we better keep looking for
2480 another symtab with the same name. In the case of xcoff,
2481 multiple csects for one source file (produced by IBM's FORTRAN
2482 compiler) produce multiple symtabs (this is unavoidable
2483 assuming csects can be at arbitrary places in memory and that
2484 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2485
2486 /* BEST is the smallest linenumber > LINE so far seen,
2487 or 0 if none has been seen so far.
2488 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2489 int best;
2490
2491 struct objfile *objfile;
2492 struct symtab *s;
2493
2494 if (best_index >= 0)
2495 best = best_linetable->item[best_index].line;
2496 else
2497 best = 0;
2498
2499 ALL_OBJFILES (objfile)
2500 {
2501 if (objfile->sf)
2502 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2503 symtab_to_fullname (symtab));
2504 }
2505
2506 ALL_SYMTABS (objfile, s)
2507 {
2508 struct linetable *l;
2509 int ind;
2510
2511 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2512 continue;
2513 if (FILENAME_CMP (symtab_to_fullname (symtab),
2514 symtab_to_fullname (s)) != 0)
2515 continue;
2516 l = LINETABLE (s);
2517 ind = find_line_common (l, line, &exact, 0);
2518 if (ind >= 0)
2519 {
2520 if (exact)
2521 {
2522 best_index = ind;
2523 best_linetable = l;
2524 best_symtab = s;
2525 goto done;
2526 }
2527 if (best == 0 || l->item[ind].line < best)
2528 {
2529 best = l->item[ind].line;
2530 best_index = ind;
2531 best_linetable = l;
2532 best_symtab = s;
2533 }
2534 }
2535 }
2536 }
2537done:
2538 if (best_index < 0)
2539 return NULL;
2540
2541 if (index)
2542 *index = best_index;
2543 if (exact_match)
2544 *exact_match = exact;
2545
2546 return best_symtab;
2547}
2548
2549/* Given SYMTAB, returns all the PCs function in the symtab that
2550 exactly match LINE. Returns NULL if there are no exact matches,
2551 but updates BEST_ITEM in this case. */
2552
2553VEC (CORE_ADDR) *
2554find_pcs_for_symtab_line (struct symtab *symtab, int line,
2555 struct linetable_entry **best_item)
2556{
2557 int start = 0;
2558 VEC (CORE_ADDR) *result = NULL;
2559
2560 /* First, collect all the PCs that are at this line. */
2561 while (1)
2562 {
2563 int was_exact;
2564 int idx;
2565
2566 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2567 if (idx < 0)
2568 break;
2569
2570 if (!was_exact)
2571 {
2572 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2573
2574 if (*best_item == NULL || item->line < (*best_item)->line)
2575 *best_item = item;
2576
2577 break;
2578 }
2579
2580 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2581 start = idx + 1;
2582 }
2583
2584 return result;
2585}
2586
2587\f
2588/* Set the PC value for a given source file and line number and return true.
2589 Returns zero for invalid line number (and sets the PC to 0).
2590 The source file is specified with a struct symtab. */
2591
2592int
2593find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2594{
2595 struct linetable *l;
2596 int ind;
2597
2598 *pc = 0;
2599 if (symtab == 0)
2600 return 0;
2601
2602 symtab = find_line_symtab (symtab, line, &ind, NULL);
2603 if (symtab != NULL)
2604 {
2605 l = LINETABLE (symtab);
2606 *pc = l->item[ind].pc;
2607 return 1;
2608 }
2609 else
2610 return 0;
2611}
2612
2613/* Find the range of pc values in a line.
2614 Store the starting pc of the line into *STARTPTR
2615 and the ending pc (start of next line) into *ENDPTR.
2616 Returns 1 to indicate success.
2617 Returns 0 if could not find the specified line. */
2618
2619int
2620find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2621 CORE_ADDR *endptr)
2622{
2623 CORE_ADDR startaddr;
2624 struct symtab_and_line found_sal;
2625
2626 startaddr = sal.pc;
2627 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2628 return 0;
2629
2630 /* This whole function is based on address. For example, if line 10 has
2631 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2632 "info line *0x123" should say the line goes from 0x100 to 0x200
2633 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2634 This also insures that we never give a range like "starts at 0x134
2635 and ends at 0x12c". */
2636
2637 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2638 if (found_sal.line != sal.line)
2639 {
2640 /* The specified line (sal) has zero bytes. */
2641 *startptr = found_sal.pc;
2642 *endptr = found_sal.pc;
2643 }
2644 else
2645 {
2646 *startptr = found_sal.pc;
2647 *endptr = found_sal.end;
2648 }
2649 return 1;
2650}
2651
2652/* Given a line table and a line number, return the index into the line
2653 table for the pc of the nearest line whose number is >= the specified one.
2654 Return -1 if none is found. The value is >= 0 if it is an index.
2655 START is the index at which to start searching the line table.
2656
2657 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2658
2659static int
2660find_line_common (struct linetable *l, int lineno,
2661 int *exact_match, int start)
2662{
2663 int i;
2664 int len;
2665
2666 /* BEST is the smallest linenumber > LINENO so far seen,
2667 or 0 if none has been seen so far.
2668 BEST_INDEX identifies the item for it. */
2669
2670 int best_index = -1;
2671 int best = 0;
2672
2673 *exact_match = 0;
2674
2675 if (lineno <= 0)
2676 return -1;
2677 if (l == 0)
2678 return -1;
2679
2680 len = l->nitems;
2681 for (i = start; i < len; i++)
2682 {
2683 struct linetable_entry *item = &(l->item[i]);
2684
2685 if (item->line == lineno)
2686 {
2687 /* Return the first (lowest address) entry which matches. */
2688 *exact_match = 1;
2689 return i;
2690 }
2691
2692 if (item->line > lineno && (best == 0 || item->line < best))
2693 {
2694 best = item->line;
2695 best_index = i;
2696 }
2697 }
2698
2699 /* If we got here, we didn't get an exact match. */
2700 return best_index;
2701}
2702
2703int
2704find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2705{
2706 struct symtab_and_line sal;
2707
2708 sal = find_pc_line (pc, 0);
2709 *startptr = sal.pc;
2710 *endptr = sal.end;
2711 return sal.symtab != 0;
2712}
2713
2714/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2715 address for that function that has an entry in SYMTAB's line info
2716 table. If such an entry cannot be found, return FUNC_ADDR
2717 unaltered. */
2718
2719static CORE_ADDR
2720skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2721{
2722 CORE_ADDR func_start, func_end;
2723 struct linetable *l;
2724 int i;
2725
2726 /* Give up if this symbol has no lineinfo table. */
2727 l = LINETABLE (symtab);
2728 if (l == NULL)
2729 return func_addr;
2730
2731 /* Get the range for the function's PC values, or give up if we
2732 cannot, for some reason. */
2733 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2734 return func_addr;
2735
2736 /* Linetable entries are ordered by PC values, see the commentary in
2737 symtab.h where `struct linetable' is defined. Thus, the first
2738 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2739 address we are looking for. */
2740 for (i = 0; i < l->nitems; i++)
2741 {
2742 struct linetable_entry *item = &(l->item[i]);
2743
2744 /* Don't use line numbers of zero, they mark special entries in
2745 the table. See the commentary on symtab.h before the
2746 definition of struct linetable. */
2747 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2748 return item->pc;
2749 }
2750
2751 return func_addr;
2752}
2753
2754/* Given a function symbol SYM, find the symtab and line for the start
2755 of the function.
2756 If the argument FUNFIRSTLINE is nonzero, we want the first line
2757 of real code inside the function. */
2758
2759struct symtab_and_line
2760find_function_start_sal (struct symbol *sym, int funfirstline)
2761{
2762 struct symtab_and_line sal;
2763
2764 fixup_symbol_section (sym, NULL);
2765 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2766 SYMBOL_OBJ_SECTION (sym), 0);
2767
2768 /* We always should have a line for the function start address.
2769 If we don't, something is odd. Create a plain SAL refering
2770 just the PC and hope that skip_prologue_sal (if requested)
2771 can find a line number for after the prologue. */
2772 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2773 {
2774 init_sal (&sal);
2775 sal.pspace = current_program_space;
2776 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2777 sal.section = SYMBOL_OBJ_SECTION (sym);
2778 }
2779
2780 if (funfirstline)
2781 skip_prologue_sal (&sal);
2782
2783 return sal;
2784}
2785
2786/* Adjust SAL to the first instruction past the function prologue.
2787 If the PC was explicitly specified, the SAL is not changed.
2788 If the line number was explicitly specified, at most the SAL's PC
2789 is updated. If SAL is already past the prologue, then do nothing. */
2790
2791void
2792skip_prologue_sal (struct symtab_and_line *sal)
2793{
2794 struct symbol *sym;
2795 struct symtab_and_line start_sal;
2796 struct cleanup *old_chain;
2797 CORE_ADDR pc, saved_pc;
2798 struct obj_section *section;
2799 const char *name;
2800 struct objfile *objfile;
2801 struct gdbarch *gdbarch;
2802 struct block *b, *function_block;
2803 int force_skip, skip;
2804
2805 /* Do not change the SAL if PC was specified explicitly. */
2806 if (sal->explicit_pc)
2807 return;
2808
2809 old_chain = save_current_space_and_thread ();
2810 switch_to_program_space_and_thread (sal->pspace);
2811
2812 sym = find_pc_sect_function (sal->pc, sal->section);
2813 if (sym != NULL)
2814 {
2815 fixup_symbol_section (sym, NULL);
2816
2817 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2818 section = SYMBOL_OBJ_SECTION (sym);
2819 name = SYMBOL_LINKAGE_NAME (sym);
2820 objfile = SYMBOL_SYMTAB (sym)->objfile;
2821 }
2822 else
2823 {
2824 struct minimal_symbol *msymbol
2825 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section).minsym;
2826
2827 if (msymbol == NULL)
2828 {
2829 do_cleanups (old_chain);
2830 return;
2831 }
2832
2833 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2834 section = SYMBOL_OBJ_SECTION (msymbol);
2835 name = SYMBOL_LINKAGE_NAME (msymbol);
2836 objfile = msymbol_objfile (msymbol);
2837 }
2838
2839 gdbarch = get_objfile_arch (objfile);
2840
2841 /* Process the prologue in two passes. In the first pass try to skip the
2842 prologue (SKIP is true) and verify there is a real need for it (indicated
2843 by FORCE_SKIP). If no such reason was found run a second pass where the
2844 prologue is not skipped (SKIP is false). */
2845
2846 skip = 1;
2847 force_skip = 1;
2848
2849 /* Be conservative - allow direct PC (without skipping prologue) only if we
2850 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2851 have to be set by the caller so we use SYM instead. */
2852 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2853 force_skip = 0;
2854
2855 saved_pc = pc;
2856 do
2857 {
2858 pc = saved_pc;
2859
2860 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2861 so that gdbarch_skip_prologue has something unique to work on. */
2862 if (section_is_overlay (section) && !section_is_mapped (section))
2863 pc = overlay_unmapped_address (pc, section);
2864
2865 /* Skip "first line" of function (which is actually its prologue). */
2866 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2867 if (skip)
2868 pc = gdbarch_skip_prologue (gdbarch, pc);
2869
2870 /* For overlays, map pc back into its mapped VMA range. */
2871 pc = overlay_mapped_address (pc, section);
2872
2873 /* Calculate line number. */
2874 start_sal = find_pc_sect_line (pc, section, 0);
2875
2876 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2877 line is still part of the same function. */
2878 if (skip && start_sal.pc != pc
2879 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2880 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2881 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2882 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2883 {
2884 /* First pc of next line */
2885 pc = start_sal.end;
2886 /* Recalculate the line number (might not be N+1). */
2887 start_sal = find_pc_sect_line (pc, section, 0);
2888 }
2889
2890 /* On targets with executable formats that don't have a concept of
2891 constructors (ELF with .init has, PE doesn't), gcc emits a call
2892 to `__main' in `main' between the prologue and before user
2893 code. */
2894 if (gdbarch_skip_main_prologue_p (gdbarch)
2895 && name && strcmp_iw (name, "main") == 0)
2896 {
2897 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2898 /* Recalculate the line number (might not be N+1). */
2899 start_sal = find_pc_sect_line (pc, section, 0);
2900 force_skip = 1;
2901 }
2902 }
2903 while (!force_skip && skip--);
2904
2905 /* If we still don't have a valid source line, try to find the first
2906 PC in the lineinfo table that belongs to the same function. This
2907 happens with COFF debug info, which does not seem to have an
2908 entry in lineinfo table for the code after the prologue which has
2909 no direct relation to source. For example, this was found to be
2910 the case with the DJGPP target using "gcc -gcoff" when the
2911 compiler inserted code after the prologue to make sure the stack
2912 is aligned. */
2913 if (!force_skip && sym && start_sal.symtab == NULL)
2914 {
2915 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2916 /* Recalculate the line number. */
2917 start_sal = find_pc_sect_line (pc, section, 0);
2918 }
2919
2920 do_cleanups (old_chain);
2921
2922 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2923 forward SAL to the end of the prologue. */
2924 if (sal->pc >= pc)
2925 return;
2926
2927 sal->pc = pc;
2928 sal->section = section;
2929
2930 /* Unless the explicit_line flag was set, update the SAL line
2931 and symtab to correspond to the modified PC location. */
2932 if (sal->explicit_line)
2933 return;
2934
2935 sal->symtab = start_sal.symtab;
2936 sal->line = start_sal.line;
2937 sal->end = start_sal.end;
2938
2939 /* Check if we are now inside an inlined function. If we can,
2940 use the call site of the function instead. */
2941 b = block_for_pc_sect (sal->pc, sal->section);
2942 function_block = NULL;
2943 while (b != NULL)
2944 {
2945 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2946 function_block = b;
2947 else if (BLOCK_FUNCTION (b) != NULL)
2948 break;
2949 b = BLOCK_SUPERBLOCK (b);
2950 }
2951 if (function_block != NULL
2952 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2953 {
2954 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2955 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2956 }
2957}
2958
2959/* If P is of the form "operator[ \t]+..." where `...' is
2960 some legitimate operator text, return a pointer to the
2961 beginning of the substring of the operator text.
2962 Otherwise, return "". */
2963
2964static char *
2965operator_chars (char *p, char **end)
2966{
2967 *end = "";
2968 if (strncmp (p, "operator", 8))
2969 return *end;
2970 p += 8;
2971
2972 /* Don't get faked out by `operator' being part of a longer
2973 identifier. */
2974 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2975 return *end;
2976
2977 /* Allow some whitespace between `operator' and the operator symbol. */
2978 while (*p == ' ' || *p == '\t')
2979 p++;
2980
2981 /* Recognize 'operator TYPENAME'. */
2982
2983 if (isalpha (*p) || *p == '_' || *p == '$')
2984 {
2985 char *q = p + 1;
2986
2987 while (isalnum (*q) || *q == '_' || *q == '$')
2988 q++;
2989 *end = q;
2990 return p;
2991 }
2992
2993 while (*p)
2994 switch (*p)
2995 {
2996 case '\\': /* regexp quoting */
2997 if (p[1] == '*')
2998 {
2999 if (p[2] == '=') /* 'operator\*=' */
3000 *end = p + 3;
3001 else /* 'operator\*' */
3002 *end = p + 2;
3003 return p;
3004 }
3005 else if (p[1] == '[')
3006 {
3007 if (p[2] == ']')
3008 error (_("mismatched quoting on brackets, "
3009 "try 'operator\\[\\]'"));
3010 else if (p[2] == '\\' && p[3] == ']')
3011 {
3012 *end = p + 4; /* 'operator\[\]' */
3013 return p;
3014 }
3015 else
3016 error (_("nothing is allowed between '[' and ']'"));
3017 }
3018 else
3019 {
3020 /* Gratuitous qoute: skip it and move on. */
3021 p++;
3022 continue;
3023 }
3024 break;
3025 case '!':
3026 case '=':
3027 case '*':
3028 case '/':
3029 case '%':
3030 case '^':
3031 if (p[1] == '=')
3032 *end = p + 2;
3033 else
3034 *end = p + 1;
3035 return p;
3036 case '<':
3037 case '>':
3038 case '+':
3039 case '-':
3040 case '&':
3041 case '|':
3042 if (p[0] == '-' && p[1] == '>')
3043 {
3044 /* Struct pointer member operator 'operator->'. */
3045 if (p[2] == '*')
3046 {
3047 *end = p + 3; /* 'operator->*' */
3048 return p;
3049 }
3050 else if (p[2] == '\\')
3051 {
3052 *end = p + 4; /* Hopefully 'operator->\*' */
3053 return p;
3054 }
3055 else
3056 {
3057 *end = p + 2; /* 'operator->' */
3058 return p;
3059 }
3060 }
3061 if (p[1] == '=' || p[1] == p[0])
3062 *end = p + 2;
3063 else
3064 *end = p + 1;
3065 return p;
3066 case '~':
3067 case ',':
3068 *end = p + 1;
3069 return p;
3070 case '(':
3071 if (p[1] != ')')
3072 error (_("`operator ()' must be specified "
3073 "without whitespace in `()'"));
3074 *end = p + 2;
3075 return p;
3076 case '?':
3077 if (p[1] != ':')
3078 error (_("`operator ?:' must be specified "
3079 "without whitespace in `?:'"));
3080 *end = p + 2;
3081 return p;
3082 case '[':
3083 if (p[1] != ']')
3084 error (_("`operator []' must be specified "
3085 "without whitespace in `[]'"));
3086 *end = p + 2;
3087 return p;
3088 default:
3089 error (_("`operator %s' not supported"), p);
3090 break;
3091 }
3092
3093 *end = "";
3094 return *end;
3095}
3096\f
3097
3098/* Cache to watch for file names already seen by filename_seen. */
3099
3100struct filename_seen_cache
3101{
3102 /* Table of files seen so far. */
3103 htab_t tab;
3104 /* Initial size of the table. It automagically grows from here. */
3105#define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3106};
3107
3108/* filename_seen_cache constructor. */
3109
3110static struct filename_seen_cache *
3111create_filename_seen_cache (void)
3112{
3113 struct filename_seen_cache *cache;
3114
3115 cache = XNEW (struct filename_seen_cache);
3116 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3117 filename_hash, filename_eq,
3118 NULL, xcalloc, xfree);
3119
3120 return cache;
3121}
3122
3123/* Empty the cache, but do not delete it. */
3124
3125static void
3126clear_filename_seen_cache (struct filename_seen_cache *cache)
3127{
3128 htab_empty (cache->tab);
3129}
3130
3131/* filename_seen_cache destructor.
3132 This takes a void * argument as it is generally used as a cleanup. */
3133
3134static void
3135delete_filename_seen_cache (void *ptr)
3136{
3137 struct filename_seen_cache *cache = ptr;
3138
3139 htab_delete (cache->tab);
3140 xfree (cache);
3141}
3142
3143/* If FILE is not already in the table of files in CACHE, return zero;
3144 otherwise return non-zero. Optionally add FILE to the table if ADD
3145 is non-zero.
3146
3147 NOTE: We don't manage space for FILE, we assume FILE lives as long
3148 as the caller needs. */
3149
3150static int
3151filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3152{
3153 void **slot;
3154
3155 /* Is FILE in tab? */
3156 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3157 if (*slot != NULL)
3158 return 1;
3159
3160 /* No; maybe add it to tab. */
3161 if (add)
3162 *slot = (char *) file;
3163
3164 return 0;
3165}
3166
3167/* Data structure to maintain printing state for output_source_filename. */
3168
3169struct output_source_filename_data
3170{
3171 /* Cache of what we've seen so far. */
3172 struct filename_seen_cache *filename_seen_cache;
3173
3174 /* Flag of whether we're printing the first one. */
3175 int first;
3176};
3177
3178/* Slave routine for sources_info. Force line breaks at ,'s.
3179 NAME is the name to print.
3180 DATA contains the state for printing and watching for duplicates. */
3181
3182static void
3183output_source_filename (const char *name,
3184 struct output_source_filename_data *data)
3185{
3186 /* Since a single source file can result in several partial symbol
3187 tables, we need to avoid printing it more than once. Note: if
3188 some of the psymtabs are read in and some are not, it gets
3189 printed both under "Source files for which symbols have been
3190 read" and "Source files for which symbols will be read in on
3191 demand". I consider this a reasonable way to deal with the
3192 situation. I'm not sure whether this can also happen for
3193 symtabs; it doesn't hurt to check. */
3194
3195 /* Was NAME already seen? */
3196 if (filename_seen (data->filename_seen_cache, name, 1))
3197 {
3198 /* Yes; don't print it again. */
3199 return;
3200 }
3201
3202 /* No; print it and reset *FIRST. */
3203 if (! data->first)
3204 printf_filtered (", ");
3205 data->first = 0;
3206
3207 wrap_here ("");
3208 fputs_filtered (name, gdb_stdout);
3209}
3210
3211/* A callback for map_partial_symbol_filenames. */
3212
3213static void
3214output_partial_symbol_filename (const char *filename, const char *fullname,
3215 void *data)
3216{
3217 output_source_filename (fullname ? fullname : filename, data);
3218}
3219
3220static void
3221sources_info (char *ignore, int from_tty)
3222{
3223 struct symtab *s;
3224 struct objfile *objfile;
3225 struct output_source_filename_data data;
3226 struct cleanup *cleanups;
3227
3228 if (!have_full_symbols () && !have_partial_symbols ())
3229 {
3230 error (_("No symbol table is loaded. Use the \"file\" command."));
3231 }
3232
3233 data.filename_seen_cache = create_filename_seen_cache ();
3234 cleanups = make_cleanup (delete_filename_seen_cache,
3235 data.filename_seen_cache);
3236
3237 printf_filtered ("Source files for which symbols have been read in:\n\n");
3238
3239 data.first = 1;
3240 ALL_SYMTABS (objfile, s)
3241 {
3242 const char *fullname = symtab_to_fullname (s);
3243
3244 output_source_filename (fullname, &data);
3245 }
3246 printf_filtered ("\n\n");
3247
3248 printf_filtered ("Source files for which symbols "
3249 "will be read in on demand:\n\n");
3250
3251 clear_filename_seen_cache (data.filename_seen_cache);
3252 data.first = 1;
3253 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3254 1 /*need_fullname*/);
3255 printf_filtered ("\n");
3256
3257 do_cleanups (cleanups);
3258}
3259
3260/* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3261 non-zero compare only lbasename of FILES. */
3262
3263static int
3264file_matches (const char *file, char *files[], int nfiles, int basenames)
3265{
3266 int i;
3267
3268 if (file != NULL && nfiles != 0)
3269 {
3270 for (i = 0; i < nfiles; i++)
3271 {
3272 if (compare_filenames_for_search (file, (basenames
3273 ? lbasename (files[i])
3274 : files[i])))
3275 return 1;
3276 }
3277 }
3278 else if (nfiles == 0)
3279 return 1;
3280 return 0;
3281}
3282
3283/* Free any memory associated with a search. */
3284
3285void
3286free_search_symbols (struct symbol_search *symbols)
3287{
3288 struct symbol_search *p;
3289 struct symbol_search *next;
3290
3291 for (p = symbols; p != NULL; p = next)
3292 {
3293 next = p->next;
3294 xfree (p);
3295 }
3296}
3297
3298static void
3299do_free_search_symbols_cleanup (void *symbols)
3300{
3301 free_search_symbols (symbols);
3302}
3303
3304struct cleanup *
3305make_cleanup_free_search_symbols (struct symbol_search *symbols)
3306{
3307 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3308}
3309
3310/* Helper function for sort_search_symbols and qsort. Can only
3311 sort symbols, not minimal symbols. */
3312
3313static int
3314compare_search_syms (const void *sa, const void *sb)
3315{
3316 struct symbol_search **sym_a = (struct symbol_search **) sa;
3317 struct symbol_search **sym_b = (struct symbol_search **) sb;
3318
3319 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3320 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3321}
3322
3323/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3324 prevtail where it is, but update its next pointer to point to
3325 the first of the sorted symbols. */
3326
3327static struct symbol_search *
3328sort_search_symbols (struct symbol_search *prevtail, int nfound)
3329{
3330 struct symbol_search **symbols, *symp, *old_next;
3331 int i;
3332
3333 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3334 * nfound);
3335 symp = prevtail->next;
3336 for (i = 0; i < nfound; i++)
3337 {
3338 symbols[i] = symp;
3339 symp = symp->next;
3340 }
3341 /* Generally NULL. */
3342 old_next = symp;
3343
3344 qsort (symbols, nfound, sizeof (struct symbol_search *),
3345 compare_search_syms);
3346
3347 symp = prevtail;
3348 for (i = 0; i < nfound; i++)
3349 {
3350 symp->next = symbols[i];
3351 symp = symp->next;
3352 }
3353 symp->next = old_next;
3354
3355 xfree (symbols);
3356 return symp;
3357}
3358
3359/* An object of this type is passed as the user_data to the
3360 expand_symtabs_matching method. */
3361struct search_symbols_data
3362{
3363 int nfiles;
3364 char **files;
3365
3366 /* It is true if PREG contains valid data, false otherwise. */
3367 unsigned preg_p : 1;
3368 regex_t preg;
3369};
3370
3371/* A callback for expand_symtabs_matching. */
3372
3373static int
3374search_symbols_file_matches (const char *filename, void *user_data,
3375 int basenames)
3376{
3377 struct search_symbols_data *data = user_data;
3378
3379 return file_matches (filename, data->files, data->nfiles, basenames);
3380}
3381
3382/* A callback for expand_symtabs_matching. */
3383
3384static int
3385search_symbols_name_matches (const char *symname, void *user_data)
3386{
3387 struct search_symbols_data *data = user_data;
3388
3389 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3390}
3391
3392/* Search the symbol table for matches to the regular expression REGEXP,
3393 returning the results in *MATCHES.
3394
3395 Only symbols of KIND are searched:
3396 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3397 and constants (enums)
3398 FUNCTIONS_DOMAIN - search all functions
3399 TYPES_DOMAIN - search all type names
3400 ALL_DOMAIN - an internal error for this function
3401
3402 free_search_symbols should be called when *MATCHES is no longer needed.
3403
3404 The results are sorted locally; each symtab's global and static blocks are
3405 separately alphabetized. */
3406
3407void
3408search_symbols (char *regexp, enum search_domain kind,
3409 int nfiles, char *files[],
3410 struct symbol_search **matches)
3411{
3412 struct symtab *s;
3413 struct blockvector *bv;
3414 struct block *b;
3415 int i = 0;
3416 struct block_iterator iter;
3417 struct symbol *sym;
3418 struct objfile *objfile;
3419 struct minimal_symbol *msymbol;
3420 int found_misc = 0;
3421 static const enum minimal_symbol_type types[]
3422 = {mst_data, mst_text, mst_abs};
3423 static const enum minimal_symbol_type types2[]
3424 = {mst_bss, mst_file_text, mst_abs};
3425 static const enum minimal_symbol_type types3[]
3426 = {mst_file_data, mst_solib_trampoline, mst_abs};
3427 static const enum minimal_symbol_type types4[]
3428 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3429 enum minimal_symbol_type ourtype;
3430 enum minimal_symbol_type ourtype2;
3431 enum minimal_symbol_type ourtype3;
3432 enum minimal_symbol_type ourtype4;
3433 struct symbol_search *sr;
3434 struct symbol_search *psr;
3435 struct symbol_search *tail;
3436 struct search_symbols_data datum;
3437
3438 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3439 CLEANUP_CHAIN is freed only in the case of an error. */
3440 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3441 struct cleanup *retval_chain;
3442
3443 gdb_assert (kind <= TYPES_DOMAIN);
3444
3445 ourtype = types[kind];
3446 ourtype2 = types2[kind];
3447 ourtype3 = types3[kind];
3448 ourtype4 = types4[kind];
3449
3450 sr = *matches = NULL;
3451 tail = NULL;
3452 datum.preg_p = 0;
3453
3454 if (regexp != NULL)
3455 {
3456 /* Make sure spacing is right for C++ operators.
3457 This is just a courtesy to make the matching less sensitive
3458 to how many spaces the user leaves between 'operator'
3459 and <TYPENAME> or <OPERATOR>. */
3460 char *opend;
3461 char *opname = operator_chars (regexp, &opend);
3462 int errcode;
3463
3464 if (*opname)
3465 {
3466 int fix = -1; /* -1 means ok; otherwise number of
3467 spaces needed. */
3468
3469 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3470 {
3471 /* There should 1 space between 'operator' and 'TYPENAME'. */
3472 if (opname[-1] != ' ' || opname[-2] == ' ')
3473 fix = 1;
3474 }
3475 else
3476 {
3477 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3478 if (opname[-1] == ' ')
3479 fix = 0;
3480 }
3481 /* If wrong number of spaces, fix it. */
3482 if (fix >= 0)
3483 {
3484 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3485
3486 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3487 regexp = tmp;
3488 }
3489 }
3490
3491 errcode = regcomp (&datum.preg, regexp,
3492 REG_NOSUB | (case_sensitivity == case_sensitive_off
3493 ? REG_ICASE : 0));
3494 if (errcode != 0)
3495 {
3496 char *err = get_regcomp_error (errcode, &datum.preg);
3497
3498 make_cleanup (xfree, err);
3499 error (_("Invalid regexp (%s): %s"), err, regexp);
3500 }
3501 datum.preg_p = 1;
3502 make_regfree_cleanup (&datum.preg);
3503 }
3504
3505 /* Search through the partial symtabs *first* for all symbols
3506 matching the regexp. That way we don't have to reproduce all of
3507 the machinery below. */
3508
3509 datum.nfiles = nfiles;
3510 datum.files = files;
3511 ALL_OBJFILES (objfile)
3512 {
3513 if (objfile->sf)
3514 objfile->sf->qf->expand_symtabs_matching (objfile,
3515 (nfiles == 0
3516 ? NULL
3517 : search_symbols_file_matches),
3518 search_symbols_name_matches,
3519 kind,
3520 &datum);
3521 }
3522
3523 retval_chain = old_chain;
3524
3525 /* Here, we search through the minimal symbol tables for functions
3526 and variables that match, and force their symbols to be read.
3527 This is in particular necessary for demangled variable names,
3528 which are no longer put into the partial symbol tables.
3529 The symbol will then be found during the scan of symtabs below.
3530
3531 For functions, find_pc_symtab should succeed if we have debug info
3532 for the function, for variables we have to call
3533 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3534 has debug info.
3535 If the lookup fails, set found_misc so that we will rescan to print
3536 any matching symbols without debug info.
3537 We only search the objfile the msymbol came from, we no longer search
3538 all objfiles. In large programs (1000s of shared libs) searching all
3539 objfiles is not worth the pain. */
3540
3541 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3542 {
3543 ALL_MSYMBOLS (objfile, msymbol)
3544 {
3545 QUIT;
3546
3547 if (msymbol->created_by_gdb)
3548 continue;
3549
3550 if (MSYMBOL_TYPE (msymbol) == ourtype
3551 || MSYMBOL_TYPE (msymbol) == ourtype2
3552 || MSYMBOL_TYPE (msymbol) == ourtype3
3553 || MSYMBOL_TYPE (msymbol) == ourtype4)
3554 {
3555 if (!datum.preg_p
3556 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3557 NULL, 0) == 0)
3558 {
3559 /* Note: An important side-effect of these lookup functions
3560 is to expand the symbol table if msymbol is found, for the
3561 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3562 if (kind == FUNCTIONS_DOMAIN
3563 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3564 : (lookup_symbol_in_objfile_from_linkage_name
3565 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3566 == NULL))
3567 found_misc = 1;
3568 }
3569 }
3570 }
3571 }
3572
3573 ALL_PRIMARY_SYMTABS (objfile, s)
3574 {
3575 bv = BLOCKVECTOR (s);
3576 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3577 {
3578 struct symbol_search *prevtail = tail;
3579 int nfound = 0;
3580
3581 b = BLOCKVECTOR_BLOCK (bv, i);
3582 ALL_BLOCK_SYMBOLS (b, iter, sym)
3583 {
3584 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3585
3586 QUIT;
3587
3588 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3589 a substring of symtab_to_fullname as it may contain "./" etc. */
3590 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3591 || ((basenames_may_differ
3592 || file_matches (lbasename (real_symtab->filename),
3593 files, nfiles, 1))
3594 && file_matches (symtab_to_fullname (real_symtab),
3595 files, nfiles, 0)))
3596 && ((!datum.preg_p
3597 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3598 NULL, 0) == 0)
3599 && ((kind == VARIABLES_DOMAIN
3600 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3601 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3602 && SYMBOL_CLASS (sym) != LOC_BLOCK
3603 /* LOC_CONST can be used for more than just enums,
3604 e.g., c++ static const members.
3605 We only want to skip enums here. */
3606 && !(SYMBOL_CLASS (sym) == LOC_CONST
3607 && TYPE_CODE (SYMBOL_TYPE (sym))
3608 == TYPE_CODE_ENUM))
3609 || (kind == FUNCTIONS_DOMAIN
3610 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3611 || (kind == TYPES_DOMAIN
3612 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3613 {
3614 /* match */
3615 psr = (struct symbol_search *)
3616 xmalloc (sizeof (struct symbol_search));
3617 psr->block = i;
3618 psr->symtab = real_symtab;
3619 psr->symbol = sym;
3620 psr->msymbol = NULL;
3621 psr->next = NULL;
3622 if (tail == NULL)
3623 sr = psr;
3624 else
3625 tail->next = psr;
3626 tail = psr;
3627 nfound ++;
3628 }
3629 }
3630 if (nfound > 0)
3631 {
3632 if (prevtail == NULL)
3633 {
3634 struct symbol_search dummy;
3635
3636 dummy.next = sr;
3637 tail = sort_search_symbols (&dummy, nfound);
3638 sr = dummy.next;
3639
3640 make_cleanup_free_search_symbols (sr);
3641 }
3642 else
3643 tail = sort_search_symbols (prevtail, nfound);
3644 }
3645 }
3646 }
3647
3648 /* If there are no eyes, avoid all contact. I mean, if there are
3649 no debug symbols, then print directly from the msymbol_vector. */
3650
3651 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3652 {
3653 ALL_MSYMBOLS (objfile, msymbol)
3654 {
3655 QUIT;
3656
3657 if (msymbol->created_by_gdb)
3658 continue;
3659
3660 if (MSYMBOL_TYPE (msymbol) == ourtype
3661 || MSYMBOL_TYPE (msymbol) == ourtype2
3662 || MSYMBOL_TYPE (msymbol) == ourtype3
3663 || MSYMBOL_TYPE (msymbol) == ourtype4)
3664 {
3665 if (!datum.preg_p
3666 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3667 NULL, 0) == 0)
3668 {
3669 /* For functions we can do a quick check of whether the
3670 symbol might be found via find_pc_symtab. */
3671 if (kind != FUNCTIONS_DOMAIN
3672 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3673 {
3674 if (lookup_symbol_in_objfile_from_linkage_name
3675 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3676 == NULL)
3677 {
3678 /* match */
3679 psr = (struct symbol_search *)
3680 xmalloc (sizeof (struct symbol_search));
3681 psr->block = i;
3682 psr->msymbol = msymbol;
3683 psr->symtab = NULL;
3684 psr->symbol = NULL;
3685 psr->next = NULL;
3686 if (tail == NULL)
3687 {
3688 sr = psr;
3689 make_cleanup_free_search_symbols (sr);
3690 }
3691 else
3692 tail->next = psr;
3693 tail = psr;
3694 }
3695 }
3696 }
3697 }
3698 }
3699 }
3700
3701 discard_cleanups (retval_chain);
3702 do_cleanups (old_chain);
3703 *matches = sr;
3704}
3705
3706/* Helper function for symtab_symbol_info, this function uses
3707 the data returned from search_symbols() to print information
3708 regarding the match to gdb_stdout. */
3709
3710static void
3711print_symbol_info (enum search_domain kind,
3712 struct symtab *s, struct symbol *sym,
3713 int block, const char *last)
3714{
3715 const char *s_filename = symtab_to_filename_for_display (s);
3716
3717 if (last == NULL || filename_cmp (last, s_filename) != 0)
3718 {
3719 fputs_filtered ("\nFile ", gdb_stdout);
3720 fputs_filtered (s_filename, gdb_stdout);
3721 fputs_filtered (":\n", gdb_stdout);
3722 }
3723
3724 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3725 printf_filtered ("static ");
3726
3727 /* Typedef that is not a C++ class. */
3728 if (kind == TYPES_DOMAIN
3729 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3730 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3731 /* variable, func, or typedef-that-is-c++-class. */
3732 else if (kind < TYPES_DOMAIN
3733 || (kind == TYPES_DOMAIN
3734 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3735 {
3736 type_print (SYMBOL_TYPE (sym),
3737 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3738 ? "" : SYMBOL_PRINT_NAME (sym)),
3739 gdb_stdout, 0);
3740
3741 printf_filtered (";\n");
3742 }
3743}
3744
3745/* This help function for symtab_symbol_info() prints information
3746 for non-debugging symbols to gdb_stdout. */
3747
3748static void
3749print_msymbol_info (struct minimal_symbol *msymbol)
3750{
3751 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3752 char *tmp;
3753
3754 if (gdbarch_addr_bit (gdbarch) <= 32)
3755 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3756 & (CORE_ADDR) 0xffffffff,
3757 8);
3758 else
3759 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3760 16);
3761 printf_filtered ("%s %s\n",
3762 tmp, SYMBOL_PRINT_NAME (msymbol));
3763}
3764
3765/* This is the guts of the commands "info functions", "info types", and
3766 "info variables". It calls search_symbols to find all matches and then
3767 print_[m]symbol_info to print out some useful information about the
3768 matches. */
3769
3770static void
3771symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3772{
3773 static const char * const classnames[] =
3774 {"variable", "function", "type"};
3775 struct symbol_search *symbols;
3776 struct symbol_search *p;
3777 struct cleanup *old_chain;
3778 const char *last_filename = NULL;
3779 int first = 1;
3780
3781 gdb_assert (kind <= TYPES_DOMAIN);
3782
3783 /* Must make sure that if we're interrupted, symbols gets freed. */
3784 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3785 old_chain = make_cleanup_free_search_symbols (symbols);
3786
3787 if (regexp != NULL)
3788 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3789 classnames[kind], regexp);
3790 else
3791 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3792
3793 for (p = symbols; p != NULL; p = p->next)
3794 {
3795 QUIT;
3796
3797 if (p->msymbol != NULL)
3798 {
3799 if (first)
3800 {
3801 printf_filtered (_("\nNon-debugging symbols:\n"));
3802 first = 0;
3803 }
3804 print_msymbol_info (p->msymbol);
3805 }
3806 else
3807 {
3808 print_symbol_info (kind,
3809 p->symtab,
3810 p->symbol,
3811 p->block,
3812 last_filename);
3813 last_filename = symtab_to_filename_for_display (p->symtab);
3814 }
3815 }
3816
3817 do_cleanups (old_chain);
3818}
3819
3820static void
3821variables_info (char *regexp, int from_tty)
3822{
3823 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3824}
3825
3826static void
3827functions_info (char *regexp, int from_tty)
3828{
3829 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3830}
3831
3832
3833static void
3834types_info (char *regexp, int from_tty)
3835{
3836 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3837}
3838
3839/* Breakpoint all functions matching regular expression. */
3840
3841void
3842rbreak_command_wrapper (char *regexp, int from_tty)
3843{
3844 rbreak_command (regexp, from_tty);
3845}
3846
3847/* A cleanup function that calls end_rbreak_breakpoints. */
3848
3849static void
3850do_end_rbreak_breakpoints (void *ignore)
3851{
3852 end_rbreak_breakpoints ();
3853}
3854
3855static void
3856rbreak_command (char *regexp, int from_tty)
3857{
3858 struct symbol_search *ss;
3859 struct symbol_search *p;
3860 struct cleanup *old_chain;
3861 char *string = NULL;
3862 int len = 0;
3863 char **files = NULL, *file_name;
3864 int nfiles = 0;
3865
3866 if (regexp)
3867 {
3868 char *colon = strchr (regexp, ':');
3869
3870 if (colon && *(colon + 1) != ':')
3871 {
3872 int colon_index;
3873
3874 colon_index = colon - regexp;
3875 file_name = alloca (colon_index + 1);
3876 memcpy (file_name, regexp, colon_index);
3877 file_name[colon_index--] = 0;
3878 while (isspace (file_name[colon_index]))
3879 file_name[colon_index--] = 0;
3880 files = &file_name;
3881 nfiles = 1;
3882 regexp = skip_spaces (colon + 1);
3883 }
3884 }
3885
3886 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3887 old_chain = make_cleanup_free_search_symbols (ss);
3888 make_cleanup (free_current_contents, &string);
3889
3890 start_rbreak_breakpoints ();
3891 make_cleanup (do_end_rbreak_breakpoints, NULL);
3892 for (p = ss; p != NULL; p = p->next)
3893 {
3894 if (p->msymbol == NULL)
3895 {
3896 const char *fullname = symtab_to_fullname (p->symtab);
3897
3898 int newlen = (strlen (fullname)
3899 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3900 + 4);
3901
3902 if (newlen > len)
3903 {
3904 string = xrealloc (string, newlen);
3905 len = newlen;
3906 }
3907 strcpy (string, fullname);
3908 strcat (string, ":'");
3909 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3910 strcat (string, "'");
3911 break_command (string, from_tty);
3912 print_symbol_info (FUNCTIONS_DOMAIN,
3913 p->symtab,
3914 p->symbol,
3915 p->block,
3916 symtab_to_filename_for_display (p->symtab));
3917 }
3918 else
3919 {
3920 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3921
3922 if (newlen > len)
3923 {
3924 string = xrealloc (string, newlen);
3925 len = newlen;
3926 }
3927 strcpy (string, "'");
3928 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3929 strcat (string, "'");
3930
3931 break_command (string, from_tty);
3932 printf_filtered ("<function, no debug info> %s;\n",
3933 SYMBOL_PRINT_NAME (p->msymbol));
3934 }
3935 }
3936
3937 do_cleanups (old_chain);
3938}
3939\f
3940
3941/* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3942
3943 Either sym_text[sym_text_len] != '(' and then we search for any
3944 symbol starting with SYM_TEXT text.
3945
3946 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3947 be terminated at that point. Partial symbol tables do not have parameters
3948 information. */
3949
3950static int
3951compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3952{
3953 int (*ncmp) (const char *, const char *, size_t);
3954
3955 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3956
3957 if (ncmp (name, sym_text, sym_text_len) != 0)
3958 return 0;
3959
3960 if (sym_text[sym_text_len] == '(')
3961 {
3962 /* User searches for `name(someth...'. Require NAME to be terminated.
3963 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3964 present but accept even parameters presence. In this case this
3965 function is in fact strcmp_iw but whitespace skipping is not supported
3966 for tab completion. */
3967
3968 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3969 return 0;
3970 }
3971
3972 return 1;
3973}
3974
3975/* Free any memory associated with a completion list. */
3976
3977static void
3978free_completion_list (VEC (char_ptr) **list_ptr)
3979{
3980 int i;
3981 char *p;
3982
3983 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3984 xfree (p);
3985 VEC_free (char_ptr, *list_ptr);
3986}
3987
3988/* Callback for make_cleanup. */
3989
3990static void
3991do_free_completion_list (void *list)
3992{
3993 free_completion_list (list);
3994}
3995
3996/* Helper routine for make_symbol_completion_list. */
3997
3998static VEC (char_ptr) *return_val;
3999
4000#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4001 completion_list_add_name \
4002 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4003
4004/* Test to see if the symbol specified by SYMNAME (which is already
4005 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4006 characters. If so, add it to the current completion list. */
4007
4008static void
4009completion_list_add_name (const char *symname,
4010 const char *sym_text, int sym_text_len,
4011 const char *text, const char *word)
4012{
4013 /* Clip symbols that cannot match. */
4014 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4015 return;
4016
4017 /* We have a match for a completion, so add SYMNAME to the current list
4018 of matches. Note that the name is moved to freshly malloc'd space. */
4019
4020 {
4021 char *new;
4022
4023 if (word == sym_text)
4024 {
4025 new = xmalloc (strlen (symname) + 5);
4026 strcpy (new, symname);
4027 }
4028 else if (word > sym_text)
4029 {
4030 /* Return some portion of symname. */
4031 new = xmalloc (strlen (symname) + 5);
4032 strcpy (new, symname + (word - sym_text));
4033 }
4034 else
4035 {
4036 /* Return some of SYM_TEXT plus symname. */
4037 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4038 strncpy (new, word, sym_text - word);
4039 new[sym_text - word] = '\0';
4040 strcat (new, symname);
4041 }
4042
4043 VEC_safe_push (char_ptr, return_val, new);
4044 }
4045}
4046
4047/* ObjC: In case we are completing on a selector, look as the msymbol
4048 again and feed all the selectors into the mill. */
4049
4050static void
4051completion_list_objc_symbol (struct minimal_symbol *msymbol,
4052 const char *sym_text, int sym_text_len,
4053 const char *text, const char *word)
4054{
4055 static char *tmp = NULL;
4056 static unsigned int tmplen = 0;
4057
4058 const char *method, *category, *selector;
4059 char *tmp2 = NULL;
4060
4061 method = SYMBOL_NATURAL_NAME (msymbol);
4062
4063 /* Is it a method? */
4064 if ((method[0] != '-') && (method[0] != '+'))
4065 return;
4066
4067 if (sym_text[0] == '[')
4068 /* Complete on shortened method method. */
4069 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4070
4071 while ((strlen (method) + 1) >= tmplen)
4072 {
4073 if (tmplen == 0)
4074 tmplen = 1024;
4075 else
4076 tmplen *= 2;
4077 tmp = xrealloc (tmp, tmplen);
4078 }
4079 selector = strchr (method, ' ');
4080 if (selector != NULL)
4081 selector++;
4082
4083 category = strchr (method, '(');
4084
4085 if ((category != NULL) && (selector != NULL))
4086 {
4087 memcpy (tmp, method, (category - method));
4088 tmp[category - method] = ' ';
4089 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4090 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4091 if (sym_text[0] == '[')
4092 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4093 }
4094
4095 if (selector != NULL)
4096 {
4097 /* Complete on selector only. */
4098 strcpy (tmp, selector);
4099 tmp2 = strchr (tmp, ']');
4100 if (tmp2 != NULL)
4101 *tmp2 = '\0';
4102
4103 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4104 }
4105}
4106
4107/* Break the non-quoted text based on the characters which are in
4108 symbols. FIXME: This should probably be language-specific. */
4109
4110static const char *
4111language_search_unquoted_string (const char *text, const char *p)
4112{
4113 for (; p > text; --p)
4114 {
4115 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4116 continue;
4117 else
4118 {
4119 if ((current_language->la_language == language_objc))
4120 {
4121 if (p[-1] == ':') /* Might be part of a method name. */
4122 continue;
4123 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4124 p -= 2; /* Beginning of a method name. */
4125 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4126 { /* Might be part of a method name. */
4127 const char *t = p;
4128
4129 /* Seeing a ' ' or a '(' is not conclusive evidence
4130 that we are in the middle of a method name. However,
4131 finding "-[" or "+[" should be pretty un-ambiguous.
4132 Unfortunately we have to find it now to decide. */
4133
4134 while (t > text)
4135 if (isalnum (t[-1]) || t[-1] == '_' ||
4136 t[-1] == ' ' || t[-1] == ':' ||
4137 t[-1] == '(' || t[-1] == ')')
4138 --t;
4139 else
4140 break;
4141
4142 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4143 p = t - 2; /* Method name detected. */
4144 /* Else we leave with p unchanged. */
4145 }
4146 }
4147 break;
4148 }
4149 }
4150 return p;
4151}
4152
4153static void
4154completion_list_add_fields (struct symbol *sym, const char *sym_text,
4155 int sym_text_len, const char *text,
4156 const char *word)
4157{
4158 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4159 {
4160 struct type *t = SYMBOL_TYPE (sym);
4161 enum type_code c = TYPE_CODE (t);
4162 int j;
4163
4164 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4165 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4166 if (TYPE_FIELD_NAME (t, j))
4167 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4168 sym_text, sym_text_len, text, word);
4169 }
4170}
4171
4172/* Type of the user_data argument passed to add_macro_name or
4173 expand_partial_symbol_name. The contents are simply whatever is
4174 needed by completion_list_add_name. */
4175struct add_name_data
4176{
4177 const char *sym_text;
4178 int sym_text_len;
4179 const char *text;
4180 const char *word;
4181};
4182
4183/* A callback used with macro_for_each and macro_for_each_in_scope.
4184 This adds a macro's name to the current completion list. */
4185
4186static void
4187add_macro_name (const char *name, const struct macro_definition *ignore,
4188 struct macro_source_file *ignore2, int ignore3,
4189 void *user_data)
4190{
4191 struct add_name_data *datum = (struct add_name_data *) user_data;
4192
4193 completion_list_add_name ((char *) name,
4194 datum->sym_text, datum->sym_text_len,
4195 datum->text, datum->word);
4196}
4197
4198/* A callback for expand_partial_symbol_names. */
4199
4200static int
4201expand_partial_symbol_name (const char *name, void *user_data)
4202{
4203 struct add_name_data *datum = (struct add_name_data *) user_data;
4204
4205 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4206}
4207
4208VEC (char_ptr) *
4209default_make_symbol_completion_list_break_on (const char *text,
4210 const char *word,
4211 const char *break_on,
4212 enum type_code code)
4213{
4214 /* Problem: All of the symbols have to be copied because readline
4215 frees them. I'm not going to worry about this; hopefully there
4216 won't be that many. */
4217
4218 struct symbol *sym;
4219 struct symtab *s;
4220 struct minimal_symbol *msymbol;
4221 struct objfile *objfile;
4222 struct block *b;
4223 const struct block *surrounding_static_block, *surrounding_global_block;
4224 struct block_iterator iter;
4225 /* The symbol we are completing on. Points in same buffer as text. */
4226 const char *sym_text;
4227 /* Length of sym_text. */
4228 int sym_text_len;
4229 struct add_name_data datum;
4230 struct cleanup *back_to;
4231
4232 /* Now look for the symbol we are supposed to complete on. */
4233 {
4234 const char *p;
4235 char quote_found;
4236 const char *quote_pos = NULL;
4237
4238 /* First see if this is a quoted string. */
4239 quote_found = '\0';
4240 for (p = text; *p != '\0'; ++p)
4241 {
4242 if (quote_found != '\0')
4243 {
4244 if (*p == quote_found)
4245 /* Found close quote. */
4246 quote_found = '\0';
4247 else if (*p == '\\' && p[1] == quote_found)
4248 /* A backslash followed by the quote character
4249 doesn't end the string. */
4250 ++p;
4251 }
4252 else if (*p == '\'' || *p == '"')
4253 {
4254 quote_found = *p;
4255 quote_pos = p;
4256 }
4257 }
4258 if (quote_found == '\'')
4259 /* A string within single quotes can be a symbol, so complete on it. */
4260 sym_text = quote_pos + 1;
4261 else if (quote_found == '"')
4262 /* A double-quoted string is never a symbol, nor does it make sense
4263 to complete it any other way. */
4264 {
4265 return NULL;
4266 }
4267 else
4268 {
4269 /* It is not a quoted string. Break it based on the characters
4270 which are in symbols. */
4271 while (p > text)
4272 {
4273 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4274 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4275 --p;
4276 else
4277 break;
4278 }
4279 sym_text = p;
4280 }
4281 }
4282
4283 sym_text_len = strlen (sym_text);
4284
4285 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4286
4287 if (current_language->la_language == language_cplus
4288 || current_language->la_language == language_java
4289 || current_language->la_language == language_fortran)
4290 {
4291 /* These languages may have parameters entered by user but they are never
4292 present in the partial symbol tables. */
4293
4294 const char *cs = memchr (sym_text, '(', sym_text_len);
4295
4296 if (cs)
4297 sym_text_len = cs - sym_text;
4298 }
4299 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4300
4301 return_val = NULL;
4302 back_to = make_cleanup (do_free_completion_list, &return_val);
4303
4304 datum.sym_text = sym_text;
4305 datum.sym_text_len = sym_text_len;
4306 datum.text = text;
4307 datum.word = word;
4308
4309 /* Look through the partial symtabs for all symbols which begin
4310 by matching SYM_TEXT. Expand all CUs that you find to the list.
4311 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4312 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4313
4314 /* At this point scan through the misc symbol vectors and add each
4315 symbol you find to the list. Eventually we want to ignore
4316 anything that isn't a text symbol (everything else will be
4317 handled by the psymtab code above). */
4318
4319 if (code == TYPE_CODE_UNDEF)
4320 {
4321 ALL_MSYMBOLS (objfile, msymbol)
4322 {
4323 QUIT;
4324 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4325 word);
4326
4327 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4328 word);
4329 }
4330 }
4331
4332 /* Search upwards from currently selected frame (so that we can
4333 complete on local vars). Also catch fields of types defined in
4334 this places which match our text string. Only complete on types
4335 visible from current context. */
4336
4337 b = get_selected_block (0);
4338 surrounding_static_block = block_static_block (b);
4339 surrounding_global_block = block_global_block (b);
4340 if (surrounding_static_block != NULL)
4341 while (b != surrounding_static_block)
4342 {
4343 QUIT;
4344
4345 ALL_BLOCK_SYMBOLS (b, iter, sym)
4346 {
4347 if (code == TYPE_CODE_UNDEF)
4348 {
4349 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4350 word);
4351 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4352 word);
4353 }
4354 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4355 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4356 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4357 word);
4358 }
4359
4360 /* Stop when we encounter an enclosing function. Do not stop for
4361 non-inlined functions - the locals of the enclosing function
4362 are in scope for a nested function. */
4363 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4364 break;
4365 b = BLOCK_SUPERBLOCK (b);
4366 }
4367
4368 /* Add fields from the file's types; symbols will be added below. */
4369
4370 if (code == TYPE_CODE_UNDEF)
4371 {
4372 if (surrounding_static_block != NULL)
4373 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4374 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4375
4376 if (surrounding_global_block != NULL)
4377 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4378 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4379 }
4380
4381 /* Go through the symtabs and check the externs and statics for
4382 symbols which match. */
4383
4384 ALL_PRIMARY_SYMTABS (objfile, s)
4385 {
4386 QUIT;
4387 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4388 ALL_BLOCK_SYMBOLS (b, iter, sym)
4389 {
4390 if (code == TYPE_CODE_UNDEF
4391 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4392 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4393 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4394 }
4395 }
4396
4397 ALL_PRIMARY_SYMTABS (objfile, s)
4398 {
4399 QUIT;
4400 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4401 ALL_BLOCK_SYMBOLS (b, iter, sym)
4402 {
4403 if (code == TYPE_CODE_UNDEF
4404 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4405 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4406 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4407 }
4408 }
4409
4410 /* Skip macros if we are completing a struct tag -- arguable but
4411 usually what is expected. */
4412 if (current_language->la_macro_expansion == macro_expansion_c
4413 && code == TYPE_CODE_UNDEF)
4414 {
4415 struct macro_scope *scope;
4416
4417 /* Add any macros visible in the default scope. Note that this
4418 may yield the occasional wrong result, because an expression
4419 might be evaluated in a scope other than the default. For
4420 example, if the user types "break file:line if <TAB>", the
4421 resulting expression will be evaluated at "file:line" -- but
4422 at there does not seem to be a way to detect this at
4423 completion time. */
4424 scope = default_macro_scope ();
4425 if (scope)
4426 {
4427 macro_for_each_in_scope (scope->file, scope->line,
4428 add_macro_name, &datum);
4429 xfree (scope);
4430 }
4431
4432 /* User-defined macros are always visible. */
4433 macro_for_each (macro_user_macros, add_macro_name, &datum);
4434 }
4435
4436 discard_cleanups (back_to);
4437 return (return_val);
4438}
4439
4440VEC (char_ptr) *
4441default_make_symbol_completion_list (const char *text, const char *word,
4442 enum type_code code)
4443{
4444 return default_make_symbol_completion_list_break_on (text, word, "", code);
4445}
4446
4447/* Return a vector of all symbols (regardless of class) which begin by
4448 matching TEXT. If the answer is no symbols, then the return value
4449 is NULL. */
4450
4451VEC (char_ptr) *
4452make_symbol_completion_list (const char *text, const char *word)
4453{
4454 return current_language->la_make_symbol_completion_list (text, word,
4455 TYPE_CODE_UNDEF);
4456}
4457
4458/* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4459 symbols whose type code is CODE. */
4460
4461VEC (char_ptr) *
4462make_symbol_completion_type (const char *text, const char *word,
4463 enum type_code code)
4464{
4465 gdb_assert (code == TYPE_CODE_UNION
4466 || code == TYPE_CODE_STRUCT
4467 || code == TYPE_CODE_CLASS
4468 || code == TYPE_CODE_ENUM);
4469 return current_language->la_make_symbol_completion_list (text, word, code);
4470}
4471
4472/* Like make_symbol_completion_list, but suitable for use as a
4473 completion function. */
4474
4475VEC (char_ptr) *
4476make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4477 const char *text, const char *word)
4478{
4479 return make_symbol_completion_list (text, word);
4480}
4481
4482/* Like make_symbol_completion_list, but returns a list of symbols
4483 defined in a source file FILE. */
4484
4485VEC (char_ptr) *
4486make_file_symbol_completion_list (const char *text, const char *word,
4487 const char *srcfile)
4488{
4489 struct symbol *sym;
4490 struct symtab *s;
4491 struct block *b;
4492 struct block_iterator iter;
4493 /* The symbol we are completing on. Points in same buffer as text. */
4494 const char *sym_text;
4495 /* Length of sym_text. */
4496 int sym_text_len;
4497
4498 /* Now look for the symbol we are supposed to complete on.
4499 FIXME: This should be language-specific. */
4500 {
4501 const char *p;
4502 char quote_found;
4503 const char *quote_pos = NULL;
4504
4505 /* First see if this is a quoted string. */
4506 quote_found = '\0';
4507 for (p = text; *p != '\0'; ++p)
4508 {
4509 if (quote_found != '\0')
4510 {
4511 if (*p == quote_found)
4512 /* Found close quote. */
4513 quote_found = '\0';
4514 else if (*p == '\\' && p[1] == quote_found)
4515 /* A backslash followed by the quote character
4516 doesn't end the string. */
4517 ++p;
4518 }
4519 else if (*p == '\'' || *p == '"')
4520 {
4521 quote_found = *p;
4522 quote_pos = p;
4523 }
4524 }
4525 if (quote_found == '\'')
4526 /* A string within single quotes can be a symbol, so complete on it. */
4527 sym_text = quote_pos + 1;
4528 else if (quote_found == '"')
4529 /* A double-quoted string is never a symbol, nor does it make sense
4530 to complete it any other way. */
4531 {
4532 return NULL;
4533 }
4534 else
4535 {
4536 /* Not a quoted string. */
4537 sym_text = language_search_unquoted_string (text, p);
4538 }
4539 }
4540
4541 sym_text_len = strlen (sym_text);
4542
4543 return_val = NULL;
4544
4545 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4546 in). */
4547 s = lookup_symtab (srcfile);
4548 if (s == NULL)
4549 {
4550 /* Maybe they typed the file with leading directories, while the
4551 symbol tables record only its basename. */
4552 const char *tail = lbasename (srcfile);
4553
4554 if (tail > srcfile)
4555 s = lookup_symtab (tail);
4556 }
4557
4558 /* If we have no symtab for that file, return an empty list. */
4559 if (s == NULL)
4560 return (return_val);
4561
4562 /* Go through this symtab and check the externs and statics for
4563 symbols which match. */
4564
4565 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4566 ALL_BLOCK_SYMBOLS (b, iter, sym)
4567 {
4568 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4569 }
4570
4571 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4572 ALL_BLOCK_SYMBOLS (b, iter, sym)
4573 {
4574 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4575 }
4576
4577 return (return_val);
4578}
4579
4580/* A helper function for make_source_files_completion_list. It adds
4581 another file name to a list of possible completions, growing the
4582 list as necessary. */
4583
4584static void
4585add_filename_to_list (const char *fname, const char *text, const char *word,
4586 VEC (char_ptr) **list)
4587{
4588 char *new;
4589 size_t fnlen = strlen (fname);
4590
4591 if (word == text)
4592 {
4593 /* Return exactly fname. */
4594 new = xmalloc (fnlen + 5);
4595 strcpy (new, fname);
4596 }
4597 else if (word > text)
4598 {
4599 /* Return some portion of fname. */
4600 new = xmalloc (fnlen + 5);
4601 strcpy (new, fname + (word - text));
4602 }
4603 else
4604 {
4605 /* Return some of TEXT plus fname. */
4606 new = xmalloc (fnlen + (text - word) + 5);
4607 strncpy (new, word, text - word);
4608 new[text - word] = '\0';
4609 strcat (new, fname);
4610 }
4611 VEC_safe_push (char_ptr, *list, new);
4612}
4613
4614static int
4615not_interesting_fname (const char *fname)
4616{
4617 static const char *illegal_aliens[] = {
4618 "_globals_", /* inserted by coff_symtab_read */
4619 NULL
4620 };
4621 int i;
4622
4623 for (i = 0; illegal_aliens[i]; i++)
4624 {
4625 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4626 return 1;
4627 }
4628 return 0;
4629}
4630
4631/* An object of this type is passed as the user_data argument to
4632 map_partial_symbol_filenames. */
4633struct add_partial_filename_data
4634{
4635 struct filename_seen_cache *filename_seen_cache;
4636 const char *text;
4637 const char *word;
4638 int text_len;
4639 VEC (char_ptr) **list;
4640};
4641
4642/* A callback for map_partial_symbol_filenames. */
4643
4644static void
4645maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4646 void *user_data)
4647{
4648 struct add_partial_filename_data *data = user_data;
4649
4650 if (not_interesting_fname (filename))
4651 return;
4652 if (!filename_seen (data->filename_seen_cache, filename, 1)
4653 && filename_ncmp (filename, data->text, data->text_len) == 0)
4654 {
4655 /* This file matches for a completion; add it to the
4656 current list of matches. */
4657 add_filename_to_list (filename, data->text, data->word, data->list);
4658 }
4659 else
4660 {
4661 const char *base_name = lbasename (filename);
4662
4663 if (base_name != filename
4664 && !filename_seen (data->filename_seen_cache, base_name, 1)
4665 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4666 add_filename_to_list (base_name, data->text, data->word, data->list);
4667 }
4668}
4669
4670/* Return a vector of all source files whose names begin with matching
4671 TEXT. The file names are looked up in the symbol tables of this
4672 program. If the answer is no matchess, then the return value is
4673 NULL. */
4674
4675VEC (char_ptr) *
4676make_source_files_completion_list (const char *text, const char *word)
4677{
4678 struct symtab *s;
4679 struct objfile *objfile;
4680 size_t text_len = strlen (text);
4681 VEC (char_ptr) *list = NULL;
4682 const char *base_name;
4683 struct add_partial_filename_data datum;
4684 struct filename_seen_cache *filename_seen_cache;
4685 struct cleanup *back_to, *cache_cleanup;
4686
4687 if (!have_full_symbols () && !have_partial_symbols ())
4688 return list;
4689
4690 back_to = make_cleanup (do_free_completion_list, &list);
4691
4692 filename_seen_cache = create_filename_seen_cache ();
4693 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4694 filename_seen_cache);
4695
4696 ALL_SYMTABS (objfile, s)
4697 {
4698 if (not_interesting_fname (s->filename))
4699 continue;
4700 if (!filename_seen (filename_seen_cache, s->filename, 1)
4701 && filename_ncmp (s->filename, text, text_len) == 0)
4702 {
4703 /* This file matches for a completion; add it to the current
4704 list of matches. */
4705 add_filename_to_list (s->filename, text, word, &list);
4706 }
4707 else
4708 {
4709 /* NOTE: We allow the user to type a base name when the
4710 debug info records leading directories, but not the other
4711 way around. This is what subroutines of breakpoint
4712 command do when they parse file names. */
4713 base_name = lbasename (s->filename);
4714 if (base_name != s->filename
4715 && !filename_seen (filename_seen_cache, base_name, 1)
4716 && filename_ncmp (base_name, text, text_len) == 0)
4717 add_filename_to_list (base_name, text, word, &list);
4718 }
4719 }
4720
4721 datum.filename_seen_cache = filename_seen_cache;
4722 datum.text = text;
4723 datum.word = word;
4724 datum.text_len = text_len;
4725 datum.list = &list;
4726 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4727 0 /*need_fullname*/);
4728
4729 do_cleanups (cache_cleanup);
4730 discard_cleanups (back_to);
4731
4732 return list;
4733}
4734
4735/* Determine if PC is in the prologue of a function. The prologue is the area
4736 between the first instruction of a function, and the first executable line.
4737 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4738
4739 If non-zero, func_start is where we think the prologue starts, possibly
4740 by previous examination of symbol table information. */
4741
4742int
4743in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4744{
4745 struct symtab_and_line sal;
4746 CORE_ADDR func_addr, func_end;
4747
4748 /* We have several sources of information we can consult to figure
4749 this out.
4750 - Compilers usually emit line number info that marks the prologue
4751 as its own "source line". So the ending address of that "line"
4752 is the end of the prologue. If available, this is the most
4753 reliable method.
4754 - The minimal symbols and partial symbols, which can usually tell
4755 us the starting and ending addresses of a function.
4756 - If we know the function's start address, we can call the
4757 architecture-defined gdbarch_skip_prologue function to analyze the
4758 instruction stream and guess where the prologue ends.
4759 - Our `func_start' argument; if non-zero, this is the caller's
4760 best guess as to the function's entry point. At the time of
4761 this writing, handle_inferior_event doesn't get this right, so
4762 it should be our last resort. */
4763
4764 /* Consult the partial symbol table, to find which function
4765 the PC is in. */
4766 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4767 {
4768 CORE_ADDR prologue_end;
4769
4770 /* We don't even have minsym information, so fall back to using
4771 func_start, if given. */
4772 if (! func_start)
4773 return 1; /* We *might* be in a prologue. */
4774
4775 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4776
4777 return func_start <= pc && pc < prologue_end;
4778 }
4779
4780 /* If we have line number information for the function, that's
4781 usually pretty reliable. */
4782 sal = find_pc_line (func_addr, 0);
4783
4784 /* Now sal describes the source line at the function's entry point,
4785 which (by convention) is the prologue. The end of that "line",
4786 sal.end, is the end of the prologue.
4787
4788 Note that, for functions whose source code is all on a single
4789 line, the line number information doesn't always end up this way.
4790 So we must verify that our purported end-of-prologue address is
4791 *within* the function, not at its start or end. */
4792 if (sal.line == 0
4793 || sal.end <= func_addr
4794 || func_end <= sal.end)
4795 {
4796 /* We don't have any good line number info, so use the minsym
4797 information, together with the architecture-specific prologue
4798 scanning code. */
4799 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4800
4801 return func_addr <= pc && pc < prologue_end;
4802 }
4803
4804 /* We have line number info, and it looks good. */
4805 return func_addr <= pc && pc < sal.end;
4806}
4807
4808/* Given PC at the function's start address, attempt to find the
4809 prologue end using SAL information. Return zero if the skip fails.
4810
4811 A non-optimized prologue traditionally has one SAL for the function
4812 and a second for the function body. A single line function has
4813 them both pointing at the same line.
4814
4815 An optimized prologue is similar but the prologue may contain
4816 instructions (SALs) from the instruction body. Need to skip those
4817 while not getting into the function body.
4818
4819 The functions end point and an increasing SAL line are used as
4820 indicators of the prologue's endpoint.
4821
4822 This code is based on the function refine_prologue_limit
4823 (found in ia64). */
4824
4825CORE_ADDR
4826skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4827{
4828 struct symtab_and_line prologue_sal;
4829 CORE_ADDR start_pc;
4830 CORE_ADDR end_pc;
4831 struct block *bl;
4832
4833 /* Get an initial range for the function. */
4834 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4835 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4836
4837 prologue_sal = find_pc_line (start_pc, 0);
4838 if (prologue_sal.line != 0)
4839 {
4840 /* For languages other than assembly, treat two consecutive line
4841 entries at the same address as a zero-instruction prologue.
4842 The GNU assembler emits separate line notes for each instruction
4843 in a multi-instruction macro, but compilers generally will not
4844 do this. */
4845 if (prologue_sal.symtab->language != language_asm)
4846 {
4847 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4848 int idx = 0;
4849
4850 /* Skip any earlier lines, and any end-of-sequence marker
4851 from a previous function. */
4852 while (linetable->item[idx].pc != prologue_sal.pc
4853 || linetable->item[idx].line == 0)
4854 idx++;
4855
4856 if (idx+1 < linetable->nitems
4857 && linetable->item[idx+1].line != 0
4858 && linetable->item[idx+1].pc == start_pc)
4859 return start_pc;
4860 }
4861
4862 /* If there is only one sal that covers the entire function,
4863 then it is probably a single line function, like
4864 "foo(){}". */
4865 if (prologue_sal.end >= end_pc)
4866 return 0;
4867
4868 while (prologue_sal.end < end_pc)
4869 {
4870 struct symtab_and_line sal;
4871
4872 sal = find_pc_line (prologue_sal.end, 0);
4873 if (sal.line == 0)
4874 break;
4875 /* Assume that a consecutive SAL for the same (or larger)
4876 line mark the prologue -> body transition. */
4877 if (sal.line >= prologue_sal.line)
4878 break;
4879 /* Likewise if we are in a different symtab altogether
4880 (e.g. within a file included via #include).  */
4881 if (sal.symtab != prologue_sal.symtab)
4882 break;
4883
4884 /* The line number is smaller. Check that it's from the
4885 same function, not something inlined. If it's inlined,
4886 then there is no point comparing the line numbers. */
4887 bl = block_for_pc (prologue_sal.end);
4888 while (bl)
4889 {
4890 if (block_inlined_p (bl))
4891 break;
4892 if (BLOCK_FUNCTION (bl))
4893 {
4894 bl = NULL;
4895 break;
4896 }
4897 bl = BLOCK_SUPERBLOCK (bl);
4898 }
4899 if (bl != NULL)
4900 break;
4901
4902 /* The case in which compiler's optimizer/scheduler has
4903 moved instructions into the prologue. We look ahead in
4904 the function looking for address ranges whose
4905 corresponding line number is less the first one that we
4906 found for the function. This is more conservative then
4907 refine_prologue_limit which scans a large number of SALs
4908 looking for any in the prologue. */
4909 prologue_sal = sal;
4910 }
4911 }
4912
4913 if (prologue_sal.end < end_pc)
4914 /* Return the end of this line, or zero if we could not find a
4915 line. */
4916 return prologue_sal.end;
4917 else
4918 /* Don't return END_PC, which is past the end of the function. */
4919 return prologue_sal.pc;
4920}
4921\f
4922/* Track MAIN */
4923static char *name_of_main;
4924enum language language_of_main = language_unknown;
4925
4926void
4927set_main_name (const char *name)
4928{
4929 if (name_of_main != NULL)
4930 {
4931 xfree (name_of_main);
4932 name_of_main = NULL;
4933 language_of_main = language_unknown;
4934 }
4935 if (name != NULL)
4936 {
4937 name_of_main = xstrdup (name);
4938 language_of_main = language_unknown;
4939 }
4940}
4941
4942/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4943 accordingly. */
4944
4945static void
4946find_main_name (void)
4947{
4948 const char *new_main_name;
4949
4950 /* Try to see if the main procedure is in Ada. */
4951 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4952 be to add a new method in the language vector, and call this
4953 method for each language until one of them returns a non-empty
4954 name. This would allow us to remove this hard-coded call to
4955 an Ada function. It is not clear that this is a better approach
4956 at this point, because all methods need to be written in a way
4957 such that false positives never be returned. For instance, it is
4958 important that a method does not return a wrong name for the main
4959 procedure if the main procedure is actually written in a different
4960 language. It is easy to guaranty this with Ada, since we use a
4961 special symbol generated only when the main in Ada to find the name
4962 of the main procedure. It is difficult however to see how this can
4963 be guarantied for languages such as C, for instance. This suggests
4964 that order of call for these methods becomes important, which means
4965 a more complicated approach. */
4966 new_main_name = ada_main_name ();
4967 if (new_main_name != NULL)
4968 {
4969 set_main_name (new_main_name);
4970 return;
4971 }
4972
4973 new_main_name = go_main_name ();
4974 if (new_main_name != NULL)
4975 {
4976 set_main_name (new_main_name);
4977 return;
4978 }
4979
4980 new_main_name = pascal_main_name ();
4981 if (new_main_name != NULL)
4982 {
4983 set_main_name (new_main_name);
4984 return;
4985 }
4986
4987 /* The languages above didn't identify the name of the main procedure.
4988 Fallback to "main". */
4989 set_main_name ("main");
4990}
4991
4992char *
4993main_name (void)
4994{
4995 if (name_of_main == NULL)
4996 find_main_name ();
4997
4998 return name_of_main;
4999}
5000
5001/* Handle ``executable_changed'' events for the symtab module. */
5002
5003static void
5004symtab_observer_executable_changed (void)
5005{
5006 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5007 set_main_name (NULL);
5008}
5009
5010/* Return 1 if the supplied producer string matches the ARM RealView
5011 compiler (armcc). */
5012
5013int
5014producer_is_realview (const char *producer)
5015{
5016 static const char *const arm_idents[] = {
5017 "ARM C Compiler, ADS",
5018 "Thumb C Compiler, ADS",
5019 "ARM C++ Compiler, ADS",
5020 "Thumb C++ Compiler, ADS",
5021 "ARM/Thumb C/C++ Compiler, RVCT",
5022 "ARM C/C++ Compiler, RVCT"
5023 };
5024 int i;
5025
5026 if (producer == NULL)
5027 return 0;
5028
5029 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5030 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5031 return 1;
5032
5033 return 0;
5034}
5035
5036\f
5037
5038/* The next index to hand out in response to a registration request. */
5039
5040static int next_aclass_value = LOC_FINAL_VALUE;
5041
5042/* The maximum number of "aclass" registrations we support. This is
5043 constant for convenience. */
5044#define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5045
5046/* The objects representing the various "aclass" values. The elements
5047 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5048 elements are those registered at gdb initialization time. */
5049
5050static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5051
5052/* The globally visible pointer. This is separate from 'symbol_impl'
5053 so that it can be const. */
5054
5055const struct symbol_impl *symbol_impls = &symbol_impl[0];
5056
5057/* Make sure we saved enough room in struct symbol. */
5058
5059gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5060
5061/* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5062 is the ops vector associated with this index. This returns the new
5063 index, which should be used as the aclass_index field for symbols
5064 of this type. */
5065
5066int
5067register_symbol_computed_impl (enum address_class aclass,
5068 const struct symbol_computed_ops *ops)
5069{
5070 int result = next_aclass_value++;
5071
5072 gdb_assert (aclass == LOC_COMPUTED);
5073 gdb_assert (result < MAX_SYMBOL_IMPLS);
5074 symbol_impl[result].aclass = aclass;
5075 symbol_impl[result].ops_computed = ops;
5076
5077 /* Sanity check OPS. */
5078 gdb_assert (ops != NULL);
5079 gdb_assert (ops->tracepoint_var_ref != NULL);
5080 gdb_assert (ops->describe_location != NULL);
5081 gdb_assert (ops->read_needs_frame != NULL);
5082 gdb_assert (ops->read_variable != NULL);
5083
5084 return result;
5085}
5086
5087/* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5088 OPS is the ops vector associated with this index. This returns the
5089 new index, which should be used as the aclass_index field for symbols
5090 of this type. */
5091
5092int
5093register_symbol_block_impl (enum address_class aclass,
5094 const struct symbol_block_ops *ops)
5095{
5096 int result = next_aclass_value++;
5097
5098 gdb_assert (aclass == LOC_BLOCK);
5099 gdb_assert (result < MAX_SYMBOL_IMPLS);
5100 symbol_impl[result].aclass = aclass;
5101 symbol_impl[result].ops_block = ops;
5102
5103 /* Sanity check OPS. */
5104 gdb_assert (ops != NULL);
5105 gdb_assert (ops->find_frame_base_location != NULL);
5106
5107 return result;
5108}
5109
5110/* Register a register symbol type. ACLASS must be LOC_REGISTER or
5111 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5112 this index. This returns the new index, which should be used as
5113 the aclass_index field for symbols of this type. */
5114
5115int
5116register_symbol_register_impl (enum address_class aclass,
5117 const struct symbol_register_ops *ops)
5118{
5119 int result = next_aclass_value++;
5120
5121 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5122 gdb_assert (result < MAX_SYMBOL_IMPLS);
5123 symbol_impl[result].aclass = aclass;
5124 symbol_impl[result].ops_register = ops;
5125
5126 return result;
5127}
5128
5129/* Initialize elements of 'symbol_impl' for the constants in enum
5130 address_class. */
5131
5132static void
5133initialize_ordinary_address_classes (void)
5134{
5135 int i;
5136
5137 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5138 symbol_impl[i].aclass = i;
5139}
5140
5141\f
5142
5143/* Initialize the symbol SYM. */
5144
5145void
5146initialize_symbol (struct symbol *sym)
5147{
5148 memset (sym, 0, sizeof (*sym));
5149}
5150
5151/* Allocate and initialize a new 'struct symbol' on OBJFILE's
5152 obstack. */
5153
5154struct symbol *
5155allocate_symbol (struct objfile *objfile)
5156{
5157 struct symbol *result;
5158
5159 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5160
5161 return result;
5162}
5163
5164/* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5165 obstack. */
5166
5167struct template_symbol *
5168allocate_template_symbol (struct objfile *objfile)
5169{
5170 struct template_symbol *result;
5171
5172 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5173
5174 return result;
5175}
5176
5177\f
5178
5179void
5180_initialize_symtab (void)
5181{
5182 initialize_ordinary_address_classes ();
5183
5184 add_info ("variables", variables_info, _("\
5185All global and static variable names, or those matching REGEXP."));
5186 if (dbx_commands)
5187 add_com ("whereis", class_info, variables_info, _("\
5188All global and static variable names, or those matching REGEXP."));
5189
5190 add_info ("functions", functions_info,
5191 _("All function names, or those matching REGEXP."));
5192
5193 /* FIXME: This command has at least the following problems:
5194 1. It prints builtin types (in a very strange and confusing fashion).
5195 2. It doesn't print right, e.g. with
5196 typedef struct foo *FOO
5197 type_print prints "FOO" when we want to make it (in this situation)
5198 print "struct foo *".
5199 I also think "ptype" or "whatis" is more likely to be useful (but if
5200 there is much disagreement "info types" can be fixed). */
5201 add_info ("types", types_info,
5202 _("All type names, or those matching REGEXP."));
5203
5204 add_info ("sources", sources_info,
5205 _("Source files in the program."));
5206
5207 add_com ("rbreak", class_breakpoint, rbreak_command,
5208 _("Set a breakpoint for all functions matching REGEXP."));
5209
5210 if (xdb_commands)
5211 {
5212 add_com ("lf", class_info, sources_info,
5213 _("Source files in the program"));
5214 add_com ("lg", class_info, variables_info, _("\
5215All global and static variable names, or those matching REGEXP."));
5216 }
5217
5218 add_setshow_enum_cmd ("multiple-symbols", no_class,
5219 multiple_symbols_modes, &multiple_symbols_mode,
5220 _("\
5221Set the debugger behavior when more than one symbol are possible matches\n\
5222in an expression."), _("\
5223Show how the debugger handles ambiguities in expressions."), _("\
5224Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5225 NULL, NULL, &setlist, &showlist);
5226
5227 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5228 &basenames_may_differ, _("\
5229Set whether a source file may have multiple base names."), _("\
5230Show whether a source file may have multiple base names."), _("\
5231(A \"base name\" is the name of a file with the directory part removed.\n\
5232Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5233If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5234before comparing them. Canonicalization is an expensive operation,\n\
5235but it allows the same file be known by more than one base name.\n\
5236If not set (the default), all source files are assumed to have just\n\
5237one base name, and gdb will do file name comparisons more efficiently."),
5238 NULL, NULL,
5239 &setlist, &showlist);
5240
5241 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5242 _("Set debugging of symbol table creation."),
5243 _("Show debugging of symbol table creation."), _("\
5244When enabled, debugging messages are printed when building symbol tables."),
5245 NULL,
5246 NULL,
5247 &setdebuglist, &showdebuglist);
5248
5249 observer_attach_executable_changed (symtab_observer_executable_changed);
5250}
This page took 0.039529 seconds and 4 git commands to generate.