Add ChangeLog entry for the last commit
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "gdb_regex.h"
31#include "expression.h"
32#include "language.h"
33#include "demangle.h"
34#include "inferior.h"
35#include "source.h"
36#include "filenames.h" /* for FILENAME_CMP */
37#include "objc-lang.h"
38#include "d-lang.h"
39#include "ada-lang.h"
40#include "go-lang.h"
41#include "p-lang.h"
42#include "addrmap.h"
43#include "cli/cli-utils.h"
44#include "cli/cli-style.h"
45#include "fnmatch.h"
46#include "hashtab.h"
47#include "typeprint.h"
48
49#include "gdb_obstack.h"
50#include "block.h"
51#include "dictionary.h"
52
53#include <sys/types.h>
54#include <fcntl.h>
55#include <sys/stat.h>
56#include <ctype.h>
57#include "cp-abi.h"
58#include "cp-support.h"
59#include "observable.h"
60#include "solist.h"
61#include "macrotab.h"
62#include "macroscope.h"
63
64#include "parser-defs.h"
65#include "completer.h"
66#include "progspace-and-thread.h"
67#include "gdbsupport/gdb_optional.h"
68#include "filename-seen-cache.h"
69#include "arch-utils.h"
70#include <algorithm>
71#include "gdbsupport/pathstuff.h"
72
73/* Forward declarations for local functions. */
74
75static void rbreak_command (const char *, int);
76
77static int find_line_common (struct linetable *, int, int *, int);
78
79static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87static
88struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99/* Type of the data stored on the program space. */
100
101struct main_info
102{
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117};
118
119/* Program space key for finding name and language of "main". */
120
121static const program_space_key<main_info> main_progspace_key;
122
123/* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128#define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130/* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133#define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135/* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137#define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139#define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141/* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144enum symbol_cache_slot_state
145{
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149};
150
151struct symbol_cache_slot
152{
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182};
183
184/* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187struct block_symbol_cache
188{
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200};
201
202/* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212struct symbol_cache
213{
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224};
225
226/* Program space key for finding its symbol cache. */
227
228static const program_space_key<symbol_cache> symbol_cache_key;
229
230/* When non-zero, print debugging messages related to symtab creation. */
231unsigned int symtab_create_debug = 0;
232
233/* When non-zero, print debugging messages related to symbol lookup. */
234unsigned int symbol_lookup_debug = 0;
235
236/* The size of the cache is staged here. */
237static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239/* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244/* Non-zero if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247int basenames_may_differ = 0;
248
249/* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253const char multiple_symbols_ask[] = "ask";
254const char multiple_symbols_all[] = "all";
255const char multiple_symbols_cancel[] = "cancel";
256static const char *const multiple_symbols_modes[] =
257{
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262};
263static const char *multiple_symbols_mode = multiple_symbols_all;
264
265/* Read-only accessor to AUTO_SELECT_MODE. */
266
267const char *
268multiple_symbols_select_mode (void)
269{
270 return multiple_symbols_mode;
271}
272
273/* Return the name of a domain_enum. */
274
275const char *
276domain_name (domain_enum e)
277{
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288}
289
290/* Return the name of a search_domain . */
291
292const char *
293search_domain_name (enum search_domain e)
294{
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303}
304
305/* See symtab.h. */
306
307struct symtab *
308compunit_primary_filetab (const struct compunit_symtab *cust)
309{
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314}
315
316/* See symtab.h. */
317
318enum language
319compunit_language (const struct compunit_symtab *cust)
320{
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323/* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326}
327
328/* See symtab.h. */
329
330bool
331minimal_symbol::data_p () const
332{
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338}
339
340/* See symtab.h. */
341
342bool
343minimal_symbol::text_p () const
344{
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351}
352
353/* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358int
359compare_filenames_for_search (const char *filename, const char *search_name)
360{
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389}
390
391/* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396int
397compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399{
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423}
424
425/* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439bool
440iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445{
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492}
493
494/* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501void
502iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504{
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535}
536
537/* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540struct symtab *
541lookup_symtab (const char *name)
542{
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552}
553
554\f
555/* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560char *
561gdb_mangle_name (struct type *type, int method_id, int signature_id)
562{
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639}
640
641/* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644void
645symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648{
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664}
665
666/* Return the demangled name of GSYMBOL. */
667
668const char *
669symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670{
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679}
680
681\f
682/* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685void
686symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689{
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709}
710
711/* Functions to initialize a symbol's mangled name. */
712
713/* Objects of this type are stored in the demangled name hash table. */
714struct demangled_name_entry
715{
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719};
720
721/* Hash function for the demangled name hash. */
722
723static hashval_t
724hash_demangled_name_entry (const void *data)
725{
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730}
731
732/* Equality function for the demangled name hash. */
733
734static int
735eq_demangled_name_entry (const void *a, const void *b)
736{
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743}
744
745/* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749static void
750create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751{
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760}
761
762/* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768static char *
769symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771{
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799}
800
801/* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812void
813symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, int copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816{
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926}
927
928/* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931const char *
932symbol_natural_name (const struct general_symbol_info *gsymbol)
933{
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950}
951
952/* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955const char *
956symbol_demangled_name (const struct general_symbol_info *gsymbol)
957{
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976}
977
978/* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983const char *
984symbol_search_name (const struct general_symbol_info *gsymbol)
985{
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990}
991
992/* See symtab.h. */
993
994bool
995symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997{
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001}
1002
1003\f
1004
1005/* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009int
1010matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012{
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_get_section_vma (first->owner, first)
1041 - bfd_get_start_address (first->owner)
1042 != bfd_get_section_vma (second->owner, second)
1043 - bfd_get_start_address (second->owner))
1044 return 0;
1045
1046 if (bfd_get_section_name (first->owner, first) == NULL
1047 || bfd_get_section_name (second->owner, second) == NULL
1048 || strcmp (bfd_get_section_name (first->owner, first),
1049 bfd_get_section_name (second->owner, second)) != 0)
1050 return 0;
1051
1052 /* Otherwise check that they are in corresponding objfiles. */
1053
1054 struct objfile *obj = NULL;
1055 for (objfile *objfile : current_program_space->objfiles ())
1056 if (objfile->obfd == first->owner)
1057 {
1058 obj = objfile;
1059 break;
1060 }
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071}
1072
1073/* See symtab.h. */
1074
1075void
1076expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077{
1078 struct bound_minimal_symbol msymbol;
1079
1080 /* If we know that this is not a text address, return failure. This is
1081 necessary because we loop based on texthigh and textlow, which do
1082 not include the data ranges. */
1083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1084 if (msymbol.minsym && msymbol.minsym->data_p ())
1085 return;
1086
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 {
1089 struct compunit_symtab *cust = NULL;
1090
1091 if (objfile->sf)
1092 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1093 pc, section, 0);
1094 if (cust)
1095 return;
1096 }
1097}
1098\f
1099/* Hash function for the symbol cache. */
1100
1101static unsigned int
1102hash_symbol_entry (const struct objfile *objfile_context,
1103 const char *name, domain_enum domain)
1104{
1105 unsigned int hash = (uintptr_t) objfile_context;
1106
1107 if (name != NULL)
1108 hash += htab_hash_string (name);
1109
1110 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1111 to map to the same slot. */
1112 if (domain == STRUCT_DOMAIN)
1113 hash += VAR_DOMAIN * 7;
1114 else
1115 hash += domain * 7;
1116
1117 return hash;
1118}
1119
1120/* Equality function for the symbol cache. */
1121
1122static int
1123eq_symbol_entry (const struct symbol_cache_slot *slot,
1124 const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126{
1127 const char *slot_name;
1128 domain_enum slot_domain;
1129
1130 if (slot->state == SYMBOL_SLOT_UNUSED)
1131 return 0;
1132
1133 if (slot->objfile_context != objfile_context)
1134 return 0;
1135
1136 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 {
1138 slot_name = slot->value.not_found.name;
1139 slot_domain = slot->value.not_found.domain;
1140 }
1141 else
1142 {
1143 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1144 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1145 }
1146
1147 /* NULL names match. */
1148 if (slot_name == NULL && name == NULL)
1149 {
1150 /* But there's no point in calling symbol_matches_domain in the
1151 SYMBOL_SLOT_FOUND case. */
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else if (slot_name != NULL && name != NULL)
1156 {
1157 /* It's important that we use the same comparison that was done
1158 the first time through. If the slot records a found symbol,
1159 then this means using the symbol name comparison function of
1160 the symbol's language with SYMBOL_SEARCH_NAME. See
1161 dictionary.c. It also means using symbol_matches_domain for
1162 found symbols. See block.c.
1163
1164 If the slot records a not-found symbol, then require a precise match.
1165 We could still be lax with whitespace like strcmp_iw though. */
1166
1167 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 {
1169 if (strcmp (slot_name, name) != 0)
1170 return 0;
1171 if (slot_domain != domain)
1172 return 0;
1173 }
1174 else
1175 {
1176 struct symbol *sym = slot->value.found.symbol;
1177 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178
1179 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1180 return 0;
1181
1182 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1183 slot_domain, domain))
1184 return 0;
1185 }
1186 }
1187 else
1188 {
1189 /* Only one name is NULL. */
1190 return 0;
1191 }
1192
1193 return 1;
1194}
1195
1196/* Given a cache of size SIZE, return the size of the struct (with variable
1197 length array) in bytes. */
1198
1199static size_t
1200symbol_cache_byte_size (unsigned int size)
1201{
1202 return (sizeof (struct block_symbol_cache)
1203 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1204}
1205
1206/* Resize CACHE. */
1207
1208static void
1209resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210{
1211 /* If there's no change in size, don't do anything.
1212 All caches have the same size, so we can just compare with the size
1213 of the global symbols cache. */
1214 if ((cache->global_symbols != NULL
1215 && cache->global_symbols->size == new_size)
1216 || (cache->global_symbols == NULL
1217 && new_size == 0))
1218 return;
1219
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222
1223 if (new_size == 0)
1224 {
1225 cache->global_symbols = NULL;
1226 cache->static_symbols = NULL;
1227 }
1228 else
1229 {
1230 size_t total_size = symbol_cache_byte_size (new_size);
1231
1232 cache->global_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->static_symbols
1235 = (struct block_symbol_cache *) xcalloc (1, total_size);
1236 cache->global_symbols->size = new_size;
1237 cache->static_symbols->size = new_size;
1238 }
1239}
1240
1241/* Return the symbol cache of PSPACE.
1242 Create one if it doesn't exist yet. */
1243
1244static struct symbol_cache *
1245get_symbol_cache (struct program_space *pspace)
1246{
1247 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1248
1249 if (cache == NULL)
1250 {
1251 cache = symbol_cache_key.emplace (pspace);
1252 resize_symbol_cache (cache, symbol_cache_size);
1253 }
1254
1255 return cache;
1256}
1257
1258/* Set the size of the symbol cache in all program spaces. */
1259
1260static void
1261set_symbol_cache_size (unsigned int new_size)
1262{
1263 struct program_space *pspace;
1264
1265 ALL_PSPACES (pspace)
1266 {
1267 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273}
1274
1275/* Called when symbol-cache-size is set. */
1276
1277static void
1278set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280{
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293}
1294
1295/* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1301 set to the cache and slot of the symbol to save the result of a full lookup
1302 attempt. */
1303
1304static struct block_symbol
1305symbol_cache_lookup (struct symbol_cache *cache,
1306 struct objfile *objfile_context, int block,
1307 const char *name, domain_enum domain,
1308 struct block_symbol_cache **bsc_ptr,
1309 struct symbol_cache_slot **slot_ptr)
1310{
1311 struct block_symbol_cache *bsc;
1312 unsigned int hash;
1313 struct symbol_cache_slot *slot;
1314
1315 if (block == GLOBAL_BLOCK)
1316 bsc = cache->global_symbols;
1317 else
1318 bsc = cache->static_symbols;
1319 if (bsc == NULL)
1320 {
1321 *bsc_ptr = NULL;
1322 *slot_ptr = NULL;
1323 return {};
1324 }
1325
1326 hash = hash_symbol_entry (objfile_context, name, domain);
1327 slot = bsc->symbols + hash % bsc->size;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 *bsc_ptr = bsc;
1347 *slot_ptr = slot;
1348
1349 if (symbol_lookup_debug)
1350 {
1351 fprintf_unfiltered (gdb_stdlog,
1352 "%s block symbol cache miss for %s, %s\n",
1353 block == GLOBAL_BLOCK ? "Global" : "Static",
1354 name, domain_name (domain));
1355 }
1356 ++bsc->misses;
1357 return {};
1358}
1359
1360/* Clear out SLOT. */
1361
1362static void
1363symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364{
1365 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1366 xfree (slot->value.not_found.name);
1367 slot->state = SYMBOL_SLOT_UNUSED;
1368}
1369
1370/* Mark SYMBOL as found in SLOT.
1371 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1372 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1373 necessarily the objfile the symbol was found in. */
1374
1375static void
1376symbol_cache_mark_found (struct block_symbol_cache *bsc,
1377 struct symbol_cache_slot *slot,
1378 struct objfile *objfile_context,
1379 struct symbol *symbol,
1380 const struct block *block)
1381{
1382 if (bsc == NULL)
1383 return;
1384 if (slot->state != SYMBOL_SLOT_UNUSED)
1385 {
1386 ++bsc->collisions;
1387 symbol_cache_clear_slot (slot);
1388 }
1389 slot->state = SYMBOL_SLOT_FOUND;
1390 slot->objfile_context = objfile_context;
1391 slot->value.found.symbol = symbol;
1392 slot->value.found.block = block;
1393}
1394
1395/* Mark symbol NAME, DOMAIN as not found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1398
1399static void
1400symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1401 struct symbol_cache_slot *slot,
1402 struct objfile *objfile_context,
1403 const char *name, domain_enum domain)
1404{
1405 if (bsc == NULL)
1406 return;
1407 if (slot->state != SYMBOL_SLOT_UNUSED)
1408 {
1409 ++bsc->collisions;
1410 symbol_cache_clear_slot (slot);
1411 }
1412 slot->state = SYMBOL_SLOT_NOT_FOUND;
1413 slot->objfile_context = objfile_context;
1414 slot->value.not_found.name = xstrdup (name);
1415 slot->value.not_found.domain = domain;
1416}
1417
1418/* Flush the symbol cache of PSPACE. */
1419
1420static void
1421symbol_cache_flush (struct program_space *pspace)
1422{
1423 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1424 int pass;
1425
1426 if (cache == NULL)
1427 return;
1428 if (cache->global_symbols == NULL)
1429 {
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1432 return;
1433 }
1434
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1440 return;
1441
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444
1445 for (pass = 0; pass < 2; ++pass)
1446 {
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 unsigned int i;
1450
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 }
1454
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1461}
1462
1463/* Dump CACHE. */
1464
1465static void
1466symbol_cache_dump (const struct symbol_cache *cache)
1467{
1468 int pass;
1469
1470 if (cache->global_symbols == NULL)
1471 {
1472 printf_filtered (" <disabled>\n");
1473 return;
1474 }
1475
1476 for (pass = 0; pass < 2; ++pass)
1477 {
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1480 unsigned int i;
1481
1482 if (pass == 0)
1483 printf_filtered ("Global symbols:\n");
1484 else
1485 printf_filtered ("Static symbols:\n");
1486
1487 for (i = 0; i < bsc->size; ++i)
1488 {
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1490
1491 QUIT;
1492
1493 switch (slot->state)
1494 {
1495 case SYMBOL_SLOT_UNUSED:
1496 break;
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1502 break;
1503 case SYMBOL_SLOT_FOUND:
1504 {
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1507
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1512 break;
1513 }
1514 }
1515 }
1516 }
1517}
1518
1519/* The "mt print symbol-cache" command. */
1520
1521static void
1522maintenance_print_symbol_cache (const char *args, int from_tty)
1523{
1524 struct program_space *pspace;
1525
1526 ALL_PSPACES (pspace)
1527 {
1528 struct symbol_cache *cache;
1529
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->num,
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1535
1536 /* If the cache hasn't been created yet, avoid creating one. */
1537 cache = symbol_cache_key.get (pspace);
1538 if (cache == NULL)
1539 printf_filtered (" <empty>\n");
1540 else
1541 symbol_cache_dump (cache);
1542 }
1543}
1544
1545/* The "mt flush-symbol-cache" command. */
1546
1547static void
1548maintenance_flush_symbol_cache (const char *args, int from_tty)
1549{
1550 struct program_space *pspace;
1551
1552 ALL_PSPACES (pspace)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556}
1557
1558/* Print usage statistics of CACHE. */
1559
1560static void
1561symbol_cache_stats (struct symbol_cache *cache)
1562{
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588}
1589
1590/* The "mt print symbol-cache-statistics" command. */
1591
1592static void
1593maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594{
1595 struct program_space *pspace;
1596
1597 ALL_PSPACES (pspace)
1598 {
1599 struct symbol_cache *cache;
1600
1601 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->num,
1603 pspace->symfile_object_file != NULL
1604 ? objfile_name (pspace->symfile_object_file)
1605 : "(no object file)");
1606
1607 /* If the cache hasn't been created yet, avoid creating one. */
1608 cache = symbol_cache_key.get (pspace);
1609 if (cache == NULL)
1610 printf_filtered (" empty, no stats available\n");
1611 else
1612 symbol_cache_stats (cache);
1613 }
1614}
1615
1616/* This module's 'new_objfile' observer. */
1617
1618static void
1619symtab_new_objfile_observer (struct objfile *objfile)
1620{
1621 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1622 symbol_cache_flush (current_program_space);
1623}
1624
1625/* This module's 'free_objfile' observer. */
1626
1627static void
1628symtab_free_objfile_observer (struct objfile *objfile)
1629{
1630 symbol_cache_flush (objfile->pspace);
1631}
1632\f
1633/* Debug symbols usually don't have section information. We need to dig that
1634 out of the minimal symbols and stash that in the debug symbol. */
1635
1636void
1637fixup_section (struct general_symbol_info *ginfo,
1638 CORE_ADDR addr, struct objfile *objfile)
1639{
1640 struct minimal_symbol *msym;
1641
1642 /* First, check whether a minimal symbol with the same name exists
1643 and points to the same address. The address check is required
1644 e.g. on PowerPC64, where the minimal symbol for a function will
1645 point to the function descriptor, while the debug symbol will
1646 point to the actual function code. */
1647 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1648 if (msym)
1649 ginfo->section = MSYMBOL_SECTION (msym);
1650 else
1651 {
1652 /* Static, function-local variables do appear in the linker
1653 (minimal) symbols, but are frequently given names that won't
1654 be found via lookup_minimal_symbol(). E.g., it has been
1655 observed in frv-uclinux (ELF) executables that a static,
1656 function-local variable named "foo" might appear in the
1657 linker symbols as "foo.6" or "foo.3". Thus, there is no
1658 point in attempting to extend the lookup-by-name mechanism to
1659 handle this case due to the fact that there can be multiple
1660 names.
1661
1662 So, instead, search the section table when lookup by name has
1663 failed. The ``addr'' and ``endaddr'' fields may have already
1664 been relocated. If so, the relocation offset (i.e. the
1665 ANOFFSET value) needs to be subtracted from these values when
1666 performing the comparison. We unconditionally subtract it,
1667 because, when no relocation has been performed, the ANOFFSET
1668 value will simply be zero.
1669
1670 The address of the symbol whose section we're fixing up HAS
1671 NOT BEEN adjusted (relocated) yet. It can't have been since
1672 the section isn't yet known and knowing the section is
1673 necessary in order to add the correct relocation value. In
1674 other words, we wouldn't even be in this function (attempting
1675 to compute the section) if it were already known.
1676
1677 Note that it is possible to search the minimal symbols
1678 (subtracting the relocation value if necessary) to find the
1679 matching minimal symbol, but this is overkill and much less
1680 efficient. It is not necessary to find the matching minimal
1681 symbol, only its section.
1682
1683 Note that this technique (of doing a section table search)
1684 can fail when unrelocated section addresses overlap. For
1685 this reason, we still attempt a lookup by name prior to doing
1686 a search of the section table. */
1687
1688 struct obj_section *s;
1689 int fallback = -1;
1690
1691 ALL_OBJFILE_OSECTIONS (objfile, s)
1692 {
1693 int idx = s - objfile->sections;
1694 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1695
1696 if (fallback == -1)
1697 fallback = idx;
1698
1699 if (obj_section_addr (s) - offset <= addr
1700 && addr < obj_section_endaddr (s) - offset)
1701 {
1702 ginfo->section = idx;
1703 return;
1704 }
1705 }
1706
1707 /* If we didn't find the section, assume it is in the first
1708 section. If there is no allocated section, then it hardly
1709 matters what we pick, so just pick zero. */
1710 if (fallback == -1)
1711 ginfo->section = 0;
1712 else
1713 ginfo->section = fallback;
1714 }
1715}
1716
1717struct symbol *
1718fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1719{
1720 CORE_ADDR addr;
1721
1722 if (!sym)
1723 return NULL;
1724
1725 if (!SYMBOL_OBJFILE_OWNED (sym))
1726 return sym;
1727
1728 /* We either have an OBJFILE, or we can get at it from the sym's
1729 symtab. Anything else is a bug. */
1730 gdb_assert (objfile || symbol_symtab (sym));
1731
1732 if (objfile == NULL)
1733 objfile = symbol_objfile (sym);
1734
1735 if (SYMBOL_OBJ_SECTION (objfile, sym))
1736 return sym;
1737
1738 /* We should have an objfile by now. */
1739 gdb_assert (objfile);
1740
1741 switch (SYMBOL_CLASS (sym))
1742 {
1743 case LOC_STATIC:
1744 case LOC_LABEL:
1745 addr = SYMBOL_VALUE_ADDRESS (sym);
1746 break;
1747 case LOC_BLOCK:
1748 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1749 break;
1750
1751 default:
1752 /* Nothing else will be listed in the minsyms -- no use looking
1753 it up. */
1754 return sym;
1755 }
1756
1757 fixup_section (&sym->ginfo, addr, objfile);
1758
1759 return sym;
1760}
1761
1762/* See symtab.h. */
1763
1764demangle_for_lookup_info::demangle_for_lookup_info
1765 (const lookup_name_info &lookup_name, language lang)
1766{
1767 demangle_result_storage storage;
1768
1769 if (lookup_name.ignore_parameters () && lang == language_cplus)
1770 {
1771 gdb::unique_xmalloc_ptr<char> without_params
1772 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1773 lookup_name.completion_mode ());
1774
1775 if (without_params != NULL)
1776 {
1777 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1778 m_demangled_name = demangle_for_lookup (without_params.get (),
1779 lang, storage);
1780 return;
1781 }
1782 }
1783
1784 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1785 m_demangled_name = lookup_name.name ();
1786 else
1787 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1788 lang, storage);
1789}
1790
1791/* See symtab.h. */
1792
1793const lookup_name_info &
1794lookup_name_info::match_any ()
1795{
1796 /* Lookup any symbol that "" would complete. I.e., this matches all
1797 symbol names. */
1798 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1799 true);
1800
1801 return lookup_name;
1802}
1803
1804/* Compute the demangled form of NAME as used by the various symbol
1805 lookup functions. The result can either be the input NAME
1806 directly, or a pointer to a buffer owned by the STORAGE object.
1807
1808 For Ada, this function just returns NAME, unmodified.
1809 Normally, Ada symbol lookups are performed using the encoded name
1810 rather than the demangled name, and so it might seem to make sense
1811 for this function to return an encoded version of NAME.
1812 Unfortunately, we cannot do this, because this function is used in
1813 circumstances where it is not appropriate to try to encode NAME.
1814 For instance, when displaying the frame info, we demangle the name
1815 of each parameter, and then perform a symbol lookup inside our
1816 function using that demangled name. In Ada, certain functions
1817 have internally-generated parameters whose name contain uppercase
1818 characters. Encoding those name would result in those uppercase
1819 characters to become lowercase, and thus cause the symbol lookup
1820 to fail. */
1821
1822const char *
1823demangle_for_lookup (const char *name, enum language lang,
1824 demangle_result_storage &storage)
1825{
1826 /* If we are using C++, D, or Go, demangle the name before doing a
1827 lookup, so we can always binary search. */
1828 if (lang == language_cplus)
1829 {
1830 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1831 if (demangled_name != NULL)
1832 return storage.set_malloc_ptr (demangled_name);
1833
1834 /* If we were given a non-mangled name, canonicalize it
1835 according to the language (so far only for C++). */
1836 std::string canon = cp_canonicalize_string (name);
1837 if (!canon.empty ())
1838 return storage.swap_string (canon);
1839 }
1840 else if (lang == language_d)
1841 {
1842 char *demangled_name = d_demangle (name, 0);
1843 if (demangled_name != NULL)
1844 return storage.set_malloc_ptr (demangled_name);
1845 }
1846 else if (lang == language_go)
1847 {
1848 char *demangled_name = go_demangle (name, 0);
1849 if (demangled_name != NULL)
1850 return storage.set_malloc_ptr (demangled_name);
1851 }
1852
1853 return name;
1854}
1855
1856/* See symtab.h. */
1857
1858unsigned int
1859search_name_hash (enum language language, const char *search_name)
1860{
1861 return language_def (language)->la_search_name_hash (search_name);
1862}
1863
1864/* See symtab.h.
1865
1866 This function (or rather its subordinates) have a bunch of loops and
1867 it would seem to be attractive to put in some QUIT's (though I'm not really
1868 sure whether it can run long enough to be really important). But there
1869 are a few calls for which it would appear to be bad news to quit
1870 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1871 that there is C++ code below which can error(), but that probably
1872 doesn't affect these calls since they are looking for a known
1873 variable and thus can probably assume it will never hit the C++
1874 code). */
1875
1876struct block_symbol
1877lookup_symbol_in_language (const char *name, const struct block *block,
1878 const domain_enum domain, enum language lang,
1879 struct field_of_this_result *is_a_field_of_this)
1880{
1881 demangle_result_storage storage;
1882 const char *modified_name = demangle_for_lookup (name, lang, storage);
1883
1884 return lookup_symbol_aux (modified_name,
1885 symbol_name_match_type::FULL,
1886 block, domain, lang,
1887 is_a_field_of_this);
1888}
1889
1890/* See symtab.h. */
1891
1892struct block_symbol
1893lookup_symbol (const char *name, const struct block *block,
1894 domain_enum domain,
1895 struct field_of_this_result *is_a_field_of_this)
1896{
1897 return lookup_symbol_in_language (name, block, domain,
1898 current_language->la_language,
1899 is_a_field_of_this);
1900}
1901
1902/* See symtab.h. */
1903
1904struct block_symbol
1905lookup_symbol_search_name (const char *search_name, const struct block *block,
1906 domain_enum domain)
1907{
1908 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1909 block, domain, language_asm, NULL);
1910}
1911
1912/* See symtab.h. */
1913
1914struct block_symbol
1915lookup_language_this (const struct language_defn *lang,
1916 const struct block *block)
1917{
1918 if (lang->la_name_of_this == NULL || block == NULL)
1919 return {};
1920
1921 if (symbol_lookup_debug > 1)
1922 {
1923 struct objfile *objfile = lookup_objfile_from_block (block);
1924
1925 fprintf_unfiltered (gdb_stdlog,
1926 "lookup_language_this (%s, %s (objfile %s))",
1927 lang->la_name, host_address_to_string (block),
1928 objfile_debug_name (objfile));
1929 }
1930
1931 while (block)
1932 {
1933 struct symbol *sym;
1934
1935 sym = block_lookup_symbol (block, lang->la_name_of_this,
1936 symbol_name_match_type::SEARCH_NAME,
1937 VAR_DOMAIN);
1938 if (sym != NULL)
1939 {
1940 if (symbol_lookup_debug > 1)
1941 {
1942 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1943 SYMBOL_PRINT_NAME (sym),
1944 host_address_to_string (sym),
1945 host_address_to_string (block));
1946 }
1947 return (struct block_symbol) {sym, block};
1948 }
1949 if (BLOCK_FUNCTION (block))
1950 break;
1951 block = BLOCK_SUPERBLOCK (block);
1952 }
1953
1954 if (symbol_lookup_debug > 1)
1955 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1956 return {};
1957}
1958
1959/* Given TYPE, a structure/union,
1960 return 1 if the component named NAME from the ultimate target
1961 structure/union is defined, otherwise, return 0. */
1962
1963static int
1964check_field (struct type *type, const char *name,
1965 struct field_of_this_result *is_a_field_of_this)
1966{
1967 int i;
1968
1969 /* The type may be a stub. */
1970 type = check_typedef (type);
1971
1972 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1973 {
1974 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1975
1976 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1977 {
1978 is_a_field_of_this->type = type;
1979 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1980 return 1;
1981 }
1982 }
1983
1984 /* C++: If it was not found as a data field, then try to return it
1985 as a pointer to a method. */
1986
1987 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1988 {
1989 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1990 {
1991 is_a_field_of_this->type = type;
1992 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1993 return 1;
1994 }
1995 }
1996
1997 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1998 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1999 return 1;
2000
2001 return 0;
2002}
2003
2004/* Behave like lookup_symbol except that NAME is the natural name
2005 (e.g., demangled name) of the symbol that we're looking for. */
2006
2007static struct block_symbol
2008lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2009 const struct block *block,
2010 const domain_enum domain, enum language language,
2011 struct field_of_this_result *is_a_field_of_this)
2012{
2013 struct block_symbol result;
2014 const struct language_defn *langdef;
2015
2016 if (symbol_lookup_debug)
2017 {
2018 struct objfile *objfile = lookup_objfile_from_block (block);
2019
2020 fprintf_unfiltered (gdb_stdlog,
2021 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2022 name, host_address_to_string (block),
2023 objfile != NULL
2024 ? objfile_debug_name (objfile) : "NULL",
2025 domain_name (domain), language_str (language));
2026 }
2027
2028 /* Make sure we do something sensible with is_a_field_of_this, since
2029 the callers that set this parameter to some non-null value will
2030 certainly use it later. If we don't set it, the contents of
2031 is_a_field_of_this are undefined. */
2032 if (is_a_field_of_this != NULL)
2033 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2034
2035 /* Search specified block and its superiors. Don't search
2036 STATIC_BLOCK or GLOBAL_BLOCK. */
2037
2038 result = lookup_local_symbol (name, match_type, block, domain, language);
2039 if (result.symbol != NULL)
2040 {
2041 if (symbol_lookup_debug)
2042 {
2043 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2044 host_address_to_string (result.symbol));
2045 }
2046 return result;
2047 }
2048
2049 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2050 check to see if NAME is a field of `this'. */
2051
2052 langdef = language_def (language);
2053
2054 /* Don't do this check if we are searching for a struct. It will
2055 not be found by check_field, but will be found by other
2056 means. */
2057 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2058 {
2059 result = lookup_language_this (langdef, block);
2060
2061 if (result.symbol)
2062 {
2063 struct type *t = result.symbol->type;
2064
2065 /* I'm not really sure that type of this can ever
2066 be typedefed; just be safe. */
2067 t = check_typedef (t);
2068 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2069 t = TYPE_TARGET_TYPE (t);
2070
2071 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2072 && TYPE_CODE (t) != TYPE_CODE_UNION)
2073 error (_("Internal error: `%s' is not an aggregate"),
2074 langdef->la_name_of_this);
2075
2076 if (check_field (t, name, is_a_field_of_this))
2077 {
2078 if (symbol_lookup_debug)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "lookup_symbol_aux (...) = NULL\n");
2082 }
2083 return {};
2084 }
2085 }
2086 }
2087
2088 /* Now do whatever is appropriate for LANGUAGE to look
2089 up static and global variables. */
2090
2091 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2092 if (result.symbol != NULL)
2093 {
2094 if (symbol_lookup_debug)
2095 {
2096 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2097 host_address_to_string (result.symbol));
2098 }
2099 return result;
2100 }
2101
2102 /* Now search all static file-level symbols. Not strictly correct,
2103 but more useful than an error. */
2104
2105 result = lookup_static_symbol (name, domain);
2106 if (symbol_lookup_debug)
2107 {
2108 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2109 result.symbol != NULL
2110 ? host_address_to_string (result.symbol)
2111 : "NULL");
2112 }
2113 return result;
2114}
2115
2116/* Check to see if the symbol is defined in BLOCK or its superiors.
2117 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2118
2119static struct block_symbol
2120lookup_local_symbol (const char *name,
2121 symbol_name_match_type match_type,
2122 const struct block *block,
2123 const domain_enum domain,
2124 enum language language)
2125{
2126 struct symbol *sym;
2127 const struct block *static_block = block_static_block (block);
2128 const char *scope = block_scope (block);
2129
2130 /* Check if either no block is specified or it's a global block. */
2131
2132 if (static_block == NULL)
2133 return {};
2134
2135 while (block != static_block)
2136 {
2137 sym = lookup_symbol_in_block (name, match_type, block, domain);
2138 if (sym != NULL)
2139 return (struct block_symbol) {sym, block};
2140
2141 if (language == language_cplus || language == language_fortran)
2142 {
2143 struct block_symbol blocksym
2144 = cp_lookup_symbol_imports_or_template (scope, name, block,
2145 domain);
2146
2147 if (blocksym.symbol != NULL)
2148 return blocksym;
2149 }
2150
2151 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2152 break;
2153 block = BLOCK_SUPERBLOCK (block);
2154 }
2155
2156 /* We've reached the end of the function without finding a result. */
2157
2158 return {};
2159}
2160
2161/* See symtab.h. */
2162
2163struct objfile *
2164lookup_objfile_from_block (const struct block *block)
2165{
2166 if (block == NULL)
2167 return NULL;
2168
2169 block = block_global_block (block);
2170 /* Look through all blockvectors. */
2171 for (objfile *obj : current_program_space->objfiles ())
2172 {
2173 for (compunit_symtab *cust : obj->compunits ())
2174 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2175 GLOBAL_BLOCK))
2176 {
2177 if (obj->separate_debug_objfile_backlink)
2178 obj = obj->separate_debug_objfile_backlink;
2179
2180 return obj;
2181 }
2182 }
2183
2184 return NULL;
2185}
2186
2187/* See symtab.h. */
2188
2189struct symbol *
2190lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2191 const struct block *block,
2192 const domain_enum domain)
2193{
2194 struct symbol *sym;
2195
2196 if (symbol_lookup_debug > 1)
2197 {
2198 struct objfile *objfile = lookup_objfile_from_block (block);
2199
2200 fprintf_unfiltered (gdb_stdlog,
2201 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2202 name, host_address_to_string (block),
2203 objfile_debug_name (objfile),
2204 domain_name (domain));
2205 }
2206
2207 sym = block_lookup_symbol (block, name, match_type, domain);
2208 if (sym)
2209 {
2210 if (symbol_lookup_debug > 1)
2211 {
2212 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2213 host_address_to_string (sym));
2214 }
2215 return fixup_symbol_section (sym, NULL);
2216 }
2217
2218 if (symbol_lookup_debug > 1)
2219 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2220 return NULL;
2221}
2222
2223/* See symtab.h. */
2224
2225struct block_symbol
2226lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2227 const char *name,
2228 const domain_enum domain)
2229{
2230 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2231 {
2232 struct block_symbol result
2233 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2234
2235 if (result.symbol != NULL)
2236 return result;
2237 }
2238
2239 return {};
2240}
2241
2242/* Check to see if the symbol is defined in one of the OBJFILE's
2243 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2244 depending on whether or not we want to search global symbols or
2245 static symbols. */
2246
2247static struct block_symbol
2248lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2249 enum block_enum block_index, const char *name,
2250 const domain_enum domain)
2251{
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 if (symbol_lookup_debug > 1)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2258 objfile_debug_name (objfile),
2259 block_index == GLOBAL_BLOCK
2260 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2261 name, domain_name (domain));
2262 }
2263
2264 for (compunit_symtab *cust : objfile->compunits ())
2265 {
2266 const struct blockvector *bv;
2267 const struct block *block;
2268 struct block_symbol result;
2269
2270 bv = COMPUNIT_BLOCKVECTOR (cust);
2271 block = BLOCKVECTOR_BLOCK (bv, block_index);
2272 result.symbol = block_lookup_symbol_primary (block, name, domain);
2273 result.block = block;
2274 if (result.symbol != NULL)
2275 {
2276 if (symbol_lookup_debug > 1)
2277 {
2278 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2279 host_address_to_string (result.symbol),
2280 host_address_to_string (block));
2281 }
2282 result.symbol = fixup_symbol_section (result.symbol, objfile);
2283 return result;
2284
2285 }
2286 }
2287
2288 if (symbol_lookup_debug > 1)
2289 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2290 return {};
2291}
2292
2293/* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2294 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2295 and all associated separate debug objfiles.
2296
2297 Normally we only look in OBJFILE, and not any separate debug objfiles
2298 because the outer loop will cause them to be searched too. This case is
2299 different. Here we're called from search_symbols where it will only
2300 call us for the objfile that contains a matching minsym. */
2301
2302static struct block_symbol
2303lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2304 const char *linkage_name,
2305 domain_enum domain)
2306{
2307 enum language lang = current_language->la_language;
2308 struct objfile *main_objfile;
2309
2310 demangle_result_storage storage;
2311 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2312
2313 if (objfile->separate_debug_objfile_backlink)
2314 main_objfile = objfile->separate_debug_objfile_backlink;
2315 else
2316 main_objfile = objfile;
2317
2318 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2319 {
2320 struct block_symbol result;
2321
2322 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2323 modified_name, domain);
2324 if (result.symbol == NULL)
2325 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2326 modified_name, domain);
2327 if (result.symbol != NULL)
2328 return result;
2329 }
2330
2331 return {};
2332}
2333
2334/* A helper function that throws an exception when a symbol was found
2335 in a psymtab but not in a symtab. */
2336
2337static void ATTRIBUTE_NORETURN
2338error_in_psymtab_expansion (int block_index, const char *name,
2339 struct compunit_symtab *cust)
2340{
2341 error (_("\
2342Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2343%s may be an inlined function, or may be a template function\n \
2344(if a template, try specifying an instantiation: %s<type>)."),
2345 block_index == GLOBAL_BLOCK ? "global" : "static",
2346 name,
2347 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2348 name, name);
2349}
2350
2351/* A helper function for various lookup routines that interfaces with
2352 the "quick" symbol table functions. */
2353
2354static struct block_symbol
2355lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2356 const char *name, const domain_enum domain)
2357{
2358 struct compunit_symtab *cust;
2359 const struct blockvector *bv;
2360 const struct block *block;
2361 struct block_symbol result;
2362
2363 if (!objfile->sf)
2364 return {};
2365
2366 if (symbol_lookup_debug > 1)
2367 {
2368 fprintf_unfiltered (gdb_stdlog,
2369 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2370 objfile_debug_name (objfile),
2371 block_index == GLOBAL_BLOCK
2372 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2373 name, domain_name (domain));
2374 }
2375
2376 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2377 if (cust == NULL)
2378 {
2379 if (symbol_lookup_debug > 1)
2380 {
2381 fprintf_unfiltered (gdb_stdlog,
2382 "lookup_symbol_via_quick_fns (...) = NULL\n");
2383 }
2384 return {};
2385 }
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol (block, name,
2390 symbol_name_match_type::FULL, domain);
2391 if (result.symbol == NULL)
2392 error_in_psymtab_expansion (block_index, name, cust);
2393
2394 if (symbol_lookup_debug > 1)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2398 host_address_to_string (result.symbol),
2399 host_address_to_string (block));
2400 }
2401
2402 result.symbol = fixup_symbol_section (result.symbol, objfile);
2403 result.block = block;
2404 return result;
2405}
2406
2407/* See symtab.h. */
2408
2409struct block_symbol
2410basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2411 const char *name,
2412 const struct block *block,
2413 const domain_enum domain)
2414{
2415 struct block_symbol result;
2416
2417 /* NOTE: carlton/2003-05-19: The comments below were written when
2418 this (or what turned into this) was part of lookup_symbol_aux;
2419 I'm much less worried about these questions now, since these
2420 decisions have turned out well, but I leave these comments here
2421 for posterity. */
2422
2423 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2424 not it would be appropriate to search the current global block
2425 here as well. (That's what this code used to do before the
2426 is_a_field_of_this check was moved up.) On the one hand, it's
2427 redundant with the lookup in all objfiles search that happens
2428 next. On the other hand, if decode_line_1 is passed an argument
2429 like filename:var, then the user presumably wants 'var' to be
2430 searched for in filename. On the third hand, there shouldn't be
2431 multiple global variables all of which are named 'var', and it's
2432 not like decode_line_1 has ever restricted its search to only
2433 global variables in a single filename. All in all, only
2434 searching the static block here seems best: it's correct and it's
2435 cleanest. */
2436
2437 /* NOTE: carlton/2002-12-05: There's also a possible performance
2438 issue here: if you usually search for global symbols in the
2439 current file, then it would be slightly better to search the
2440 current global block before searching all the symtabs. But there
2441 are other factors that have a much greater effect on performance
2442 than that one, so I don't think we should worry about that for
2443 now. */
2444
2445 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2446 the current objfile. Searching the current objfile first is useful
2447 for both matching user expectations as well as performance. */
2448
2449 result = lookup_symbol_in_static_block (name, block, domain);
2450 if (result.symbol != NULL)
2451 return result;
2452
2453 /* If we didn't find a definition for a builtin type in the static block,
2454 search for it now. This is actually the right thing to do and can be
2455 a massive performance win. E.g., when debugging a program with lots of
2456 shared libraries we could search all of them only to find out the
2457 builtin type isn't defined in any of them. This is common for types
2458 like "void". */
2459 if (domain == VAR_DOMAIN)
2460 {
2461 struct gdbarch *gdbarch;
2462
2463 if (block == NULL)
2464 gdbarch = target_gdbarch ();
2465 else
2466 gdbarch = block_gdbarch (block);
2467 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2468 gdbarch, name);
2469 result.block = NULL;
2470 if (result.symbol != NULL)
2471 return result;
2472 }
2473
2474 return lookup_global_symbol (name, block, domain);
2475}
2476
2477/* See symtab.h. */
2478
2479struct block_symbol
2480lookup_symbol_in_static_block (const char *name,
2481 const struct block *block,
2482 const domain_enum domain)
2483{
2484 const struct block *static_block = block_static_block (block);
2485 struct symbol *sym;
2486
2487 if (static_block == NULL)
2488 return {};
2489
2490 if (symbol_lookup_debug)
2491 {
2492 struct objfile *objfile = lookup_objfile_from_block (static_block);
2493
2494 fprintf_unfiltered (gdb_stdlog,
2495 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2496 " %s)\n",
2497 name,
2498 host_address_to_string (block),
2499 objfile_debug_name (objfile),
2500 domain_name (domain));
2501 }
2502
2503 sym = lookup_symbol_in_block (name,
2504 symbol_name_match_type::FULL,
2505 static_block, domain);
2506 if (symbol_lookup_debug)
2507 {
2508 fprintf_unfiltered (gdb_stdlog,
2509 "lookup_symbol_in_static_block (...) = %s\n",
2510 sym != NULL ? host_address_to_string (sym) : "NULL");
2511 }
2512 return (struct block_symbol) {sym, static_block};
2513}
2514
2515/* Perform the standard symbol lookup of NAME in OBJFILE:
2516 1) First search expanded symtabs, and if not found
2517 2) Search the "quick" symtabs (partial or .gdb_index).
2518 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2519
2520static struct block_symbol
2521lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2522 const char *name, const domain_enum domain)
2523{
2524 struct block_symbol result;
2525
2526 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2527
2528 if (symbol_lookup_debug)
2529 {
2530 fprintf_unfiltered (gdb_stdlog,
2531 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2532 objfile_debug_name (objfile),
2533 block_index == GLOBAL_BLOCK
2534 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2535 name, domain_name (domain));
2536 }
2537
2538 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2539 name, domain);
2540 if (result.symbol != NULL)
2541 {
2542 if (symbol_lookup_debug)
2543 {
2544 fprintf_unfiltered (gdb_stdlog,
2545 "lookup_symbol_in_objfile (...) = %s"
2546 " (in symtabs)\n",
2547 host_address_to_string (result.symbol));
2548 }
2549 return result;
2550 }
2551
2552 result = lookup_symbol_via_quick_fns (objfile, block_index,
2553 name, domain);
2554 if (symbol_lookup_debug)
2555 {
2556 fprintf_unfiltered (gdb_stdlog,
2557 "lookup_symbol_in_objfile (...) = %s%s\n",
2558 result.symbol != NULL
2559 ? host_address_to_string (result.symbol)
2560 : "NULL",
2561 result.symbol != NULL ? " (via quick fns)" : "");
2562 }
2563 return result;
2564}
2565
2566/* See symtab.h. */
2567
2568struct block_symbol
2569lookup_static_symbol (const char *name, const domain_enum domain)
2570{
2571 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2572 struct block_symbol result;
2573 struct block_symbol_cache *bsc;
2574 struct symbol_cache_slot *slot;
2575
2576 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2577 NULL for OBJFILE_CONTEXT. */
2578 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2579 &bsc, &slot);
2580 if (result.symbol != NULL)
2581 {
2582 if (SYMBOL_LOOKUP_FAILED_P (result))
2583 return {};
2584 return result;
2585 }
2586
2587 for (objfile *objfile : current_program_space->objfiles ())
2588 {
2589 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2590 if (result.symbol != NULL)
2591 {
2592 /* Still pass NULL for OBJFILE_CONTEXT here. */
2593 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2594 result.block);
2595 return result;
2596 }
2597 }
2598
2599 /* Still pass NULL for OBJFILE_CONTEXT here. */
2600 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2601 return {};
2602}
2603
2604/* Private data to be used with lookup_symbol_global_iterator_cb. */
2605
2606struct global_sym_lookup_data
2607{
2608 /* The name of the symbol we are searching for. */
2609 const char *name;
2610
2611 /* The domain to use for our search. */
2612 domain_enum domain;
2613
2614 /* The field where the callback should store the symbol if found.
2615 It should be initialized to {NULL, NULL} before the search is started. */
2616 struct block_symbol result;
2617};
2618
2619/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2620 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2621 OBJFILE. The arguments for the search are passed via CB_DATA,
2622 which in reality is a pointer to struct global_sym_lookup_data. */
2623
2624static int
2625lookup_symbol_global_iterator_cb (struct objfile *objfile,
2626 void *cb_data)
2627{
2628 struct global_sym_lookup_data *data =
2629 (struct global_sym_lookup_data *) cb_data;
2630
2631 gdb_assert (data->result.symbol == NULL
2632 && data->result.block == NULL);
2633
2634 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2635 data->name, data->domain);
2636
2637 /* If we found a match, tell the iterator to stop. Otherwise,
2638 keep going. */
2639 return (data->result.symbol != NULL);
2640}
2641
2642/* See symtab.h. */
2643
2644struct block_symbol
2645lookup_global_symbol (const char *name,
2646 const struct block *block,
2647 const domain_enum domain)
2648{
2649 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2650 struct block_symbol result;
2651 struct objfile *objfile;
2652 struct global_sym_lookup_data lookup_data;
2653 struct block_symbol_cache *bsc;
2654 struct symbol_cache_slot *slot;
2655
2656 objfile = lookup_objfile_from_block (block);
2657
2658 /* First see if we can find the symbol in the cache.
2659 This works because we use the current objfile to qualify the lookup. */
2660 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2661 &bsc, &slot);
2662 if (result.symbol != NULL)
2663 {
2664 if (SYMBOL_LOOKUP_FAILED_P (result))
2665 return {};
2666 return result;
2667 }
2668
2669 /* Call library-specific lookup procedure. */
2670 if (objfile != NULL)
2671 result = solib_global_lookup (objfile, name, domain);
2672
2673 /* If that didn't work go a global search (of global blocks, heh). */
2674 if (result.symbol == NULL)
2675 {
2676 memset (&lookup_data, 0, sizeof (lookup_data));
2677 lookup_data.name = name;
2678 lookup_data.domain = domain;
2679 gdbarch_iterate_over_objfiles_in_search_order
2680 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2681 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2682 result = lookup_data.result;
2683 }
2684
2685 if (result.symbol != NULL)
2686 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2687 else
2688 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2689
2690 return result;
2691}
2692
2693int
2694symbol_matches_domain (enum language symbol_language,
2695 domain_enum symbol_domain,
2696 domain_enum domain)
2697{
2698 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2699 Similarly, any Ada type declaration implicitly defines a typedef. */
2700 if (symbol_language == language_cplus
2701 || symbol_language == language_d
2702 || symbol_language == language_ada
2703 || symbol_language == language_rust)
2704 {
2705 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2706 && symbol_domain == STRUCT_DOMAIN)
2707 return 1;
2708 }
2709 /* For all other languages, strict match is required. */
2710 return (symbol_domain == domain);
2711}
2712
2713/* See symtab.h. */
2714
2715struct type *
2716lookup_transparent_type (const char *name)
2717{
2718 return current_language->la_lookup_transparent_type (name);
2719}
2720
2721/* A helper for basic_lookup_transparent_type that interfaces with the
2722 "quick" symbol table functions. */
2723
2724static struct type *
2725basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2726 const char *name)
2727{
2728 struct compunit_symtab *cust;
2729 const struct blockvector *bv;
2730 const struct block *block;
2731 struct symbol *sym;
2732
2733 if (!objfile->sf)
2734 return NULL;
2735 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2736 STRUCT_DOMAIN);
2737 if (cust == NULL)
2738 return NULL;
2739
2740 bv = COMPUNIT_BLOCKVECTOR (cust);
2741 block = BLOCKVECTOR_BLOCK (bv, block_index);
2742 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2743 block_find_non_opaque_type, NULL);
2744 if (sym == NULL)
2745 error_in_psymtab_expansion (block_index, name, cust);
2746 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2747 return SYMBOL_TYPE (sym);
2748}
2749
2750/* Subroutine of basic_lookup_transparent_type to simplify it.
2751 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2752 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2753
2754static struct type *
2755basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2756 const char *name)
2757{
2758 const struct blockvector *bv;
2759 const struct block *block;
2760 const struct symbol *sym;
2761
2762 for (compunit_symtab *cust : objfile->compunits ())
2763 {
2764 bv = COMPUNIT_BLOCKVECTOR (cust);
2765 block = BLOCKVECTOR_BLOCK (bv, block_index);
2766 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2767 block_find_non_opaque_type, NULL);
2768 if (sym != NULL)
2769 {
2770 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2771 return SYMBOL_TYPE (sym);
2772 }
2773 }
2774
2775 return NULL;
2776}
2777
2778/* The standard implementation of lookup_transparent_type. This code
2779 was modeled on lookup_symbol -- the parts not relevant to looking
2780 up types were just left out. In particular it's assumed here that
2781 types are available in STRUCT_DOMAIN and only in file-static or
2782 global blocks. */
2783
2784struct type *
2785basic_lookup_transparent_type (const char *name)
2786{
2787 struct type *t;
2788
2789 /* Now search all the global symbols. Do the symtab's first, then
2790 check the psymtab's. If a psymtab indicates the existence
2791 of the desired name as a global, then do psymtab-to-symtab
2792 conversion on the fly and return the found symbol. */
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 for (objfile *objfile : current_program_space->objfiles ())
2802 {
2803 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2804 if (t)
2805 return t;
2806 }
2807
2808 /* Now search the static file-level symbols.
2809 Not strictly correct, but more useful than an error.
2810 Do the symtab's first, then
2811 check the psymtab's. If a psymtab indicates the existence
2812 of the desired name as a file-level static, then do psymtab-to-symtab
2813 conversion on the fly and return the found symbol. */
2814
2815 for (objfile *objfile : current_program_space->objfiles ())
2816 {
2817 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2818 if (t)
2819 return t;
2820 }
2821
2822 for (objfile *objfile : current_program_space->objfiles ())
2823 {
2824 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2825 if (t)
2826 return t;
2827 }
2828
2829 return (struct type *) 0;
2830}
2831
2832/* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2833
2834 For each symbol that matches, CALLBACK is called. The symbol is
2835 passed to the callback.
2836
2837 If CALLBACK returns false, the iteration ends. Otherwise, the
2838 search continues. */
2839
2840void
2841iterate_over_symbols (const struct block *block,
2842 const lookup_name_info &name,
2843 const domain_enum domain,
2844 gdb::function_view<symbol_found_callback_ftype> callback)
2845{
2846 struct block_iterator iter;
2847 struct symbol *sym;
2848
2849 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2850 {
2851 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2852 SYMBOL_DOMAIN (sym), domain))
2853 {
2854 struct block_symbol block_sym = {sym, block};
2855
2856 if (!callback (&block_sym))
2857 return;
2858 }
2859 }
2860}
2861
2862/* Find the compunit symtab associated with PC and SECTION.
2863 This will read in debug info as necessary. */
2864
2865struct compunit_symtab *
2866find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2867{
2868 struct compunit_symtab *best_cust = NULL;
2869 CORE_ADDR distance = 0;
2870 struct bound_minimal_symbol msymbol;
2871
2872 /* If we know that this is not a text address, return failure. This is
2873 necessary because we loop based on the block's high and low code
2874 addresses, which do not include the data ranges, and because
2875 we call find_pc_sect_psymtab which has a similar restriction based
2876 on the partial_symtab's texthigh and textlow. */
2877 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2878 if (msymbol.minsym && msymbol.minsym->data_p ())
2879 return NULL;
2880
2881 /* Search all symtabs for the one whose file contains our address, and which
2882 is the smallest of all the ones containing the address. This is designed
2883 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2884 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2885 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2886
2887 This happens for native ecoff format, where code from included files
2888 gets its own symtab. The symtab for the included file should have
2889 been read in already via the dependency mechanism.
2890 It might be swifter to create several symtabs with the same name
2891 like xcoff does (I'm not sure).
2892
2893 It also happens for objfiles that have their functions reordered.
2894 For these, the symtab we are looking for is not necessarily read in. */
2895
2896 for (objfile *obj_file : current_program_space->objfiles ())
2897 {
2898 for (compunit_symtab *cust : obj_file->compunits ())
2899 {
2900 const struct block *b;
2901 const struct blockvector *bv;
2902
2903 bv = COMPUNIT_BLOCKVECTOR (cust);
2904 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2905
2906 if (BLOCK_START (b) <= pc
2907 && BLOCK_END (b) > pc
2908 && (distance == 0
2909 || BLOCK_END (b) - BLOCK_START (b) < distance))
2910 {
2911 /* For an objfile that has its functions reordered,
2912 find_pc_psymtab will find the proper partial symbol table
2913 and we simply return its corresponding symtab. */
2914 /* In order to better support objfiles that contain both
2915 stabs and coff debugging info, we continue on if a psymtab
2916 can't be found. */
2917 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2918 {
2919 struct compunit_symtab *result;
2920
2921 result
2922 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2923 msymbol,
2924 pc,
2925 section,
2926 0);
2927 if (result != NULL)
2928 return result;
2929 }
2930 if (section != 0)
2931 {
2932 struct block_iterator iter;
2933 struct symbol *sym = NULL;
2934
2935 ALL_BLOCK_SYMBOLS (b, iter, sym)
2936 {
2937 fixup_symbol_section (sym, obj_file);
2938 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2939 sym),
2940 section))
2941 break;
2942 }
2943 if (sym == NULL)
2944 continue; /* No symbol in this symtab matches
2945 section. */
2946 }
2947 distance = BLOCK_END (b) - BLOCK_START (b);
2948 best_cust = cust;
2949 }
2950 }
2951 }
2952
2953 if (best_cust != NULL)
2954 return best_cust;
2955
2956 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2957
2958 for (objfile *objf : current_program_space->objfiles ())
2959 {
2960 struct compunit_symtab *result;
2961
2962 if (!objf->sf)
2963 continue;
2964 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2965 msymbol,
2966 pc, section,
2967 1);
2968 if (result != NULL)
2969 return result;
2970 }
2971
2972 return NULL;
2973}
2974
2975/* Find the compunit symtab associated with PC.
2976 This will read in debug info as necessary.
2977 Backward compatibility, no section. */
2978
2979struct compunit_symtab *
2980find_pc_compunit_symtab (CORE_ADDR pc)
2981{
2982 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2983}
2984
2985/* See symtab.h. */
2986
2987struct symbol *
2988find_symbol_at_address (CORE_ADDR address)
2989{
2990 for (objfile *objfile : current_program_space->objfiles ())
2991 {
2992 if (objfile->sf == NULL
2993 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2994 continue;
2995
2996 struct compunit_symtab *symtab
2997 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2998 if (symtab != NULL)
2999 {
3000 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3001
3002 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3003 {
3004 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3005 struct block_iterator iter;
3006 struct symbol *sym;
3007
3008 ALL_BLOCK_SYMBOLS (b, iter, sym)
3009 {
3010 if (SYMBOL_CLASS (sym) == LOC_STATIC
3011 && SYMBOL_VALUE_ADDRESS (sym) == address)
3012 return sym;
3013 }
3014 }
3015 }
3016 }
3017
3018 return NULL;
3019}
3020
3021\f
3022
3023/* Find the source file and line number for a given PC value and SECTION.
3024 Return a structure containing a symtab pointer, a line number,
3025 and a pc range for the entire source line.
3026 The value's .pc field is NOT the specified pc.
3027 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3028 use the line that ends there. Otherwise, in that case, the line
3029 that begins there is used. */
3030
3031/* The big complication here is that a line may start in one file, and end just
3032 before the start of another file. This usually occurs when you #include
3033 code in the middle of a subroutine. To properly find the end of a line's PC
3034 range, we must search all symtabs associated with this compilation unit, and
3035 find the one whose first PC is closer than that of the next line in this
3036 symtab. */
3037
3038struct symtab_and_line
3039find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3040{
3041 struct compunit_symtab *cust;
3042 struct linetable *l;
3043 int len;
3044 struct linetable_entry *item;
3045 const struct blockvector *bv;
3046 struct bound_minimal_symbol msymbol;
3047
3048 /* Info on best line seen so far, and where it starts, and its file. */
3049
3050 struct linetable_entry *best = NULL;
3051 CORE_ADDR best_end = 0;
3052 struct symtab *best_symtab = 0;
3053
3054 /* Store here the first line number
3055 of a file which contains the line at the smallest pc after PC.
3056 If we don't find a line whose range contains PC,
3057 we will use a line one less than this,
3058 with a range from the start of that file to the first line's pc. */
3059 struct linetable_entry *alt = NULL;
3060
3061 /* Info on best line seen in this file. */
3062
3063 struct linetable_entry *prev;
3064
3065 /* If this pc is not from the current frame,
3066 it is the address of the end of a call instruction.
3067 Quite likely that is the start of the following statement.
3068 But what we want is the statement containing the instruction.
3069 Fudge the pc to make sure we get that. */
3070
3071 /* It's tempting to assume that, if we can't find debugging info for
3072 any function enclosing PC, that we shouldn't search for line
3073 number info, either. However, GAS can emit line number info for
3074 assembly files --- very helpful when debugging hand-written
3075 assembly code. In such a case, we'd have no debug info for the
3076 function, but we would have line info. */
3077
3078 if (notcurrent)
3079 pc -= 1;
3080
3081 /* elz: added this because this function returned the wrong
3082 information if the pc belongs to a stub (import/export)
3083 to call a shlib function. This stub would be anywhere between
3084 two functions in the target, and the line info was erroneously
3085 taken to be the one of the line before the pc. */
3086
3087 /* RT: Further explanation:
3088
3089 * We have stubs (trampolines) inserted between procedures.
3090 *
3091 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3092 * exists in the main image.
3093 *
3094 * In the minimal symbol table, we have a bunch of symbols
3095 * sorted by start address. The stubs are marked as "trampoline",
3096 * the others appear as text. E.g.:
3097 *
3098 * Minimal symbol table for main image
3099 * main: code for main (text symbol)
3100 * shr1: stub (trampoline symbol)
3101 * foo: code for foo (text symbol)
3102 * ...
3103 * Minimal symbol table for "shr1" image:
3104 * ...
3105 * shr1: code for shr1 (text symbol)
3106 * ...
3107 *
3108 * So the code below is trying to detect if we are in the stub
3109 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3110 * and if found, do the symbolization from the real-code address
3111 * rather than the stub address.
3112 *
3113 * Assumptions being made about the minimal symbol table:
3114 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3115 * if we're really in the trampoline.s If we're beyond it (say
3116 * we're in "foo" in the above example), it'll have a closer
3117 * symbol (the "foo" text symbol for example) and will not
3118 * return the trampoline.
3119 * 2. lookup_minimal_symbol_text() will find a real text symbol
3120 * corresponding to the trampoline, and whose address will
3121 * be different than the trampoline address. I put in a sanity
3122 * check for the address being the same, to avoid an
3123 * infinite recursion.
3124 */
3125 msymbol = lookup_minimal_symbol_by_pc (pc);
3126 if (msymbol.minsym != NULL)
3127 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3128 {
3129 struct bound_minimal_symbol mfunsym
3130 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3131 NULL);
3132
3133 if (mfunsym.minsym == NULL)
3134 /* I eliminated this warning since it is coming out
3135 * in the following situation:
3136 * gdb shmain // test program with shared libraries
3137 * (gdb) break shr1 // function in shared lib
3138 * Warning: In stub for ...
3139 * In the above situation, the shared lib is not loaded yet,
3140 * so of course we can't find the real func/line info,
3141 * but the "break" still works, and the warning is annoying.
3142 * So I commented out the warning. RT */
3143 /* warning ("In stub for %s; unable to find real function/line info",
3144 SYMBOL_LINKAGE_NAME (msymbol)); */
3145 ;
3146 /* fall through */
3147 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3148 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3149 /* Avoid infinite recursion */
3150 /* See above comment about why warning is commented out. */
3151 /* warning ("In stub for %s; unable to find real function/line info",
3152 SYMBOL_LINKAGE_NAME (msymbol)); */
3153 ;
3154 /* fall through */
3155 else
3156 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3157 }
3158
3159 symtab_and_line val;
3160 val.pspace = current_program_space;
3161
3162 cust = find_pc_sect_compunit_symtab (pc, section);
3163 if (cust == NULL)
3164 {
3165 /* If no symbol information, return previous pc. */
3166 if (notcurrent)
3167 pc++;
3168 val.pc = pc;
3169 return val;
3170 }
3171
3172 bv = COMPUNIT_BLOCKVECTOR (cust);
3173
3174 /* Look at all the symtabs that share this blockvector.
3175 They all have the same apriori range, that we found was right;
3176 but they have different line tables. */
3177
3178 for (symtab *iter_s : compunit_filetabs (cust))
3179 {
3180 /* Find the best line in this symtab. */
3181 l = SYMTAB_LINETABLE (iter_s);
3182 if (!l)
3183 continue;
3184 len = l->nitems;
3185 if (len <= 0)
3186 {
3187 /* I think len can be zero if the symtab lacks line numbers
3188 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3189 I'm not sure which, and maybe it depends on the symbol
3190 reader). */
3191 continue;
3192 }
3193
3194 prev = NULL;
3195 item = l->item; /* Get first line info. */
3196
3197 /* Is this file's first line closer than the first lines of other files?
3198 If so, record this file, and its first line, as best alternate. */
3199 if (item->pc > pc && (!alt || item->pc < alt->pc))
3200 alt = item;
3201
3202 auto pc_compare = [](const CORE_ADDR & comp_pc,
3203 const struct linetable_entry & lhs)->bool
3204 {
3205 return comp_pc < lhs.pc;
3206 };
3207
3208 struct linetable_entry *first = item;
3209 struct linetable_entry *last = item + len;
3210 item = std::upper_bound (first, last, pc, pc_compare);
3211 if (item != first)
3212 prev = item - 1; /* Found a matching item. */
3213
3214 /* At this point, prev points at the line whose start addr is <= pc, and
3215 item points at the next line. If we ran off the end of the linetable
3216 (pc >= start of the last line), then prev == item. If pc < start of
3217 the first line, prev will not be set. */
3218
3219 /* Is this file's best line closer than the best in the other files?
3220 If so, record this file, and its best line, as best so far. Don't
3221 save prev if it represents the end of a function (i.e. line number
3222 0) instead of a real line. */
3223
3224 if (prev && prev->line && (!best || prev->pc > best->pc))
3225 {
3226 best = prev;
3227 best_symtab = iter_s;
3228
3229 /* Discard BEST_END if it's before the PC of the current BEST. */
3230 if (best_end <= best->pc)
3231 best_end = 0;
3232 }
3233
3234 /* If another line (denoted by ITEM) is in the linetable and its
3235 PC is after BEST's PC, but before the current BEST_END, then
3236 use ITEM's PC as the new best_end. */
3237 if (best && item < last && item->pc > best->pc
3238 && (best_end == 0 || best_end > item->pc))
3239 best_end = item->pc;
3240 }
3241
3242 if (!best_symtab)
3243 {
3244 /* If we didn't find any line number info, just return zeros.
3245 We used to return alt->line - 1 here, but that could be
3246 anywhere; if we don't have line number info for this PC,
3247 don't make some up. */
3248 val.pc = pc;
3249 }
3250 else if (best->line == 0)
3251 {
3252 /* If our best fit is in a range of PC's for which no line
3253 number info is available (line number is zero) then we didn't
3254 find any valid line information. */
3255 val.pc = pc;
3256 }
3257 else
3258 {
3259 val.symtab = best_symtab;
3260 val.line = best->line;
3261 val.pc = best->pc;
3262 if (best_end && (!alt || best_end < alt->pc))
3263 val.end = best_end;
3264 else if (alt)
3265 val.end = alt->pc;
3266 else
3267 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3268 }
3269 val.section = section;
3270 return val;
3271}
3272
3273/* Backward compatibility (no section). */
3274
3275struct symtab_and_line
3276find_pc_line (CORE_ADDR pc, int notcurrent)
3277{
3278 struct obj_section *section;
3279
3280 section = find_pc_overlay (pc);
3281 if (pc_in_unmapped_range (pc, section))
3282 pc = overlay_mapped_address (pc, section);
3283 return find_pc_sect_line (pc, section, notcurrent);
3284}
3285
3286/* See symtab.h. */
3287
3288struct symtab *
3289find_pc_line_symtab (CORE_ADDR pc)
3290{
3291 struct symtab_and_line sal;
3292
3293 /* This always passes zero for NOTCURRENT to find_pc_line.
3294 There are currently no callers that ever pass non-zero. */
3295 sal = find_pc_line (pc, 0);
3296 return sal.symtab;
3297}
3298\f
3299/* Find line number LINE in any symtab whose name is the same as
3300 SYMTAB.
3301
3302 If found, return the symtab that contains the linetable in which it was
3303 found, set *INDEX to the index in the linetable of the best entry
3304 found, and set *EXACT_MATCH nonzero if the value returned is an
3305 exact match.
3306
3307 If not found, return NULL. */
3308
3309struct symtab *
3310find_line_symtab (struct symtab *sym_tab, int line,
3311 int *index, int *exact_match)
3312{
3313 int exact = 0; /* Initialized here to avoid a compiler warning. */
3314
3315 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3316 so far seen. */
3317
3318 int best_index;
3319 struct linetable *best_linetable;
3320 struct symtab *best_symtab;
3321
3322 /* First try looking it up in the given symtab. */
3323 best_linetable = SYMTAB_LINETABLE (sym_tab);
3324 best_symtab = sym_tab;
3325 best_index = find_line_common (best_linetable, line, &exact, 0);
3326 if (best_index < 0 || !exact)
3327 {
3328 /* Didn't find an exact match. So we better keep looking for
3329 another symtab with the same name. In the case of xcoff,
3330 multiple csects for one source file (produced by IBM's FORTRAN
3331 compiler) produce multiple symtabs (this is unavoidable
3332 assuming csects can be at arbitrary places in memory and that
3333 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3334
3335 /* BEST is the smallest linenumber > LINE so far seen,
3336 or 0 if none has been seen so far.
3337 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3338 int best;
3339
3340 if (best_index >= 0)
3341 best = best_linetable->item[best_index].line;
3342 else
3343 best = 0;
3344
3345 for (objfile *objfile : current_program_space->objfiles ())
3346 {
3347 if (objfile->sf)
3348 objfile->sf->qf->expand_symtabs_with_fullname
3349 (objfile, symtab_to_fullname (sym_tab));
3350 }
3351
3352 for (objfile *objfile : current_program_space->objfiles ())
3353 {
3354 for (compunit_symtab *cu : objfile->compunits ())
3355 {
3356 for (symtab *s : compunit_filetabs (cu))
3357 {
3358 struct linetable *l;
3359 int ind;
3360
3361 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3362 continue;
3363 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3364 symtab_to_fullname (s)) != 0)
3365 continue;
3366 l = SYMTAB_LINETABLE (s);
3367 ind = find_line_common (l, line, &exact, 0);
3368 if (ind >= 0)
3369 {
3370 if (exact)
3371 {
3372 best_index = ind;
3373 best_linetable = l;
3374 best_symtab = s;
3375 goto done;
3376 }
3377 if (best == 0 || l->item[ind].line < best)
3378 {
3379 best = l->item[ind].line;
3380 best_index = ind;
3381 best_linetable = l;
3382 best_symtab = s;
3383 }
3384 }
3385 }
3386 }
3387 }
3388 }
3389done:
3390 if (best_index < 0)
3391 return NULL;
3392
3393 if (index)
3394 *index = best_index;
3395 if (exact_match)
3396 *exact_match = exact;
3397
3398 return best_symtab;
3399}
3400
3401/* Given SYMTAB, returns all the PCs function in the symtab that
3402 exactly match LINE. Returns an empty vector if there are no exact
3403 matches, but updates BEST_ITEM in this case. */
3404
3405std::vector<CORE_ADDR>
3406find_pcs_for_symtab_line (struct symtab *symtab, int line,
3407 struct linetable_entry **best_item)
3408{
3409 int start = 0;
3410 std::vector<CORE_ADDR> result;
3411
3412 /* First, collect all the PCs that are at this line. */
3413 while (1)
3414 {
3415 int was_exact;
3416 int idx;
3417
3418 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3419 start);
3420 if (idx < 0)
3421 break;
3422
3423 if (!was_exact)
3424 {
3425 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3426
3427 if (*best_item == NULL || item->line < (*best_item)->line)
3428 *best_item = item;
3429
3430 break;
3431 }
3432
3433 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3434 start = idx + 1;
3435 }
3436
3437 return result;
3438}
3439
3440\f
3441/* Set the PC value for a given source file and line number and return true.
3442 Returns zero for invalid line number (and sets the PC to 0).
3443 The source file is specified with a struct symtab. */
3444
3445int
3446find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3447{
3448 struct linetable *l;
3449 int ind;
3450
3451 *pc = 0;
3452 if (symtab == 0)
3453 return 0;
3454
3455 symtab = find_line_symtab (symtab, line, &ind, NULL);
3456 if (symtab != NULL)
3457 {
3458 l = SYMTAB_LINETABLE (symtab);
3459 *pc = l->item[ind].pc;
3460 return 1;
3461 }
3462 else
3463 return 0;
3464}
3465
3466/* Find the range of pc values in a line.
3467 Store the starting pc of the line into *STARTPTR
3468 and the ending pc (start of next line) into *ENDPTR.
3469 Returns 1 to indicate success.
3470 Returns 0 if could not find the specified line. */
3471
3472int
3473find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3474 CORE_ADDR *endptr)
3475{
3476 CORE_ADDR startaddr;
3477 struct symtab_and_line found_sal;
3478
3479 startaddr = sal.pc;
3480 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3481 return 0;
3482
3483 /* This whole function is based on address. For example, if line 10 has
3484 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3485 "info line *0x123" should say the line goes from 0x100 to 0x200
3486 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3487 This also insures that we never give a range like "starts at 0x134
3488 and ends at 0x12c". */
3489
3490 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3491 if (found_sal.line != sal.line)
3492 {
3493 /* The specified line (sal) has zero bytes. */
3494 *startptr = found_sal.pc;
3495 *endptr = found_sal.pc;
3496 }
3497 else
3498 {
3499 *startptr = found_sal.pc;
3500 *endptr = found_sal.end;
3501 }
3502 return 1;
3503}
3504
3505/* Given a line table and a line number, return the index into the line
3506 table for the pc of the nearest line whose number is >= the specified one.
3507 Return -1 if none is found. The value is >= 0 if it is an index.
3508 START is the index at which to start searching the line table.
3509
3510 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3511
3512static int
3513find_line_common (struct linetable *l, int lineno,
3514 int *exact_match, int start)
3515{
3516 int i;
3517 int len;
3518
3519 /* BEST is the smallest linenumber > LINENO so far seen,
3520 or 0 if none has been seen so far.
3521 BEST_INDEX identifies the item for it. */
3522
3523 int best_index = -1;
3524 int best = 0;
3525
3526 *exact_match = 0;
3527
3528 if (lineno <= 0)
3529 return -1;
3530 if (l == 0)
3531 return -1;
3532
3533 len = l->nitems;
3534 for (i = start; i < len; i++)
3535 {
3536 struct linetable_entry *item = &(l->item[i]);
3537
3538 if (item->line == lineno)
3539 {
3540 /* Return the first (lowest address) entry which matches. */
3541 *exact_match = 1;
3542 return i;
3543 }
3544
3545 if (item->line > lineno && (best == 0 || item->line < best))
3546 {
3547 best = item->line;
3548 best_index = i;
3549 }
3550 }
3551
3552 /* If we got here, we didn't get an exact match. */
3553 return best_index;
3554}
3555
3556int
3557find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3558{
3559 struct symtab_and_line sal;
3560
3561 sal = find_pc_line (pc, 0);
3562 *startptr = sal.pc;
3563 *endptr = sal.end;
3564 return sal.symtab != 0;
3565}
3566
3567/* Helper for find_function_start_sal. Does most of the work, except
3568 setting the sal's symbol. */
3569
3570static symtab_and_line
3571find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3572 bool funfirstline)
3573{
3574 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3575
3576 if (funfirstline && sal.symtab != NULL
3577 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3578 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3579 {
3580 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3581
3582 sal.pc = func_addr;
3583 if (gdbarch_skip_entrypoint_p (gdbarch))
3584 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3585 return sal;
3586 }
3587
3588 /* We always should have a line for the function start address.
3589 If we don't, something is odd. Create a plain SAL referring
3590 just the PC and hope that skip_prologue_sal (if requested)
3591 can find a line number for after the prologue. */
3592 if (sal.pc < func_addr)
3593 {
3594 sal = {};
3595 sal.pspace = current_program_space;
3596 sal.pc = func_addr;
3597 sal.section = section;
3598 }
3599
3600 if (funfirstline)
3601 skip_prologue_sal (&sal);
3602
3603 return sal;
3604}
3605
3606/* See symtab.h. */
3607
3608symtab_and_line
3609find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3610 bool funfirstline)
3611{
3612 symtab_and_line sal
3613 = find_function_start_sal_1 (func_addr, section, funfirstline);
3614
3615 /* find_function_start_sal_1 does a linetable search, so it finds
3616 the symtab and linenumber, but not a symbol. Fill in the
3617 function symbol too. */
3618 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3619
3620 return sal;
3621}
3622
3623/* See symtab.h. */
3624
3625symtab_and_line
3626find_function_start_sal (symbol *sym, bool funfirstline)
3627{
3628 fixup_symbol_section (sym, NULL);
3629 symtab_and_line sal
3630 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3631 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3632 funfirstline);
3633 sal.symbol = sym;
3634 return sal;
3635}
3636
3637
3638/* Given a function start address FUNC_ADDR and SYMTAB, find the first
3639 address for that function that has an entry in SYMTAB's line info
3640 table. If such an entry cannot be found, return FUNC_ADDR
3641 unaltered. */
3642
3643static CORE_ADDR
3644skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3645{
3646 CORE_ADDR func_start, func_end;
3647 struct linetable *l;
3648 int i;
3649
3650 /* Give up if this symbol has no lineinfo table. */
3651 l = SYMTAB_LINETABLE (symtab);
3652 if (l == NULL)
3653 return func_addr;
3654
3655 /* Get the range for the function's PC values, or give up if we
3656 cannot, for some reason. */
3657 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3658 return func_addr;
3659
3660 /* Linetable entries are ordered by PC values, see the commentary in
3661 symtab.h where `struct linetable' is defined. Thus, the first
3662 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3663 address we are looking for. */
3664 for (i = 0; i < l->nitems; i++)
3665 {
3666 struct linetable_entry *item = &(l->item[i]);
3667
3668 /* Don't use line numbers of zero, they mark special entries in
3669 the table. See the commentary on symtab.h before the
3670 definition of struct linetable. */
3671 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3672 return item->pc;
3673 }
3674
3675 return func_addr;
3676}
3677
3678/* Adjust SAL to the first instruction past the function prologue.
3679 If the PC was explicitly specified, the SAL is not changed.
3680 If the line number was explicitly specified then the SAL can still be
3681 updated, unless the language for SAL is assembler, in which case the SAL
3682 will be left unchanged.
3683 If SAL is already past the prologue, then do nothing. */
3684
3685void
3686skip_prologue_sal (struct symtab_and_line *sal)
3687{
3688 struct symbol *sym;
3689 struct symtab_and_line start_sal;
3690 CORE_ADDR pc, saved_pc;
3691 struct obj_section *section;
3692 const char *name;
3693 struct objfile *objfile;
3694 struct gdbarch *gdbarch;
3695 const struct block *b, *function_block;
3696 int force_skip, skip;
3697
3698 /* Do not change the SAL if PC was specified explicitly. */
3699 if (sal->explicit_pc)
3700 return;
3701
3702 /* In assembly code, if the user asks for a specific line then we should
3703 not adjust the SAL. The user already has instruction level
3704 visibility in this case, so selecting a line other than one requested
3705 is likely to be the wrong choice. */
3706 if (sal->symtab != nullptr
3707 && sal->explicit_line
3708 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3709 return;
3710
3711 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3712
3713 switch_to_program_space_and_thread (sal->pspace);
3714
3715 sym = find_pc_sect_function (sal->pc, sal->section);
3716 if (sym != NULL)
3717 {
3718 fixup_symbol_section (sym, NULL);
3719
3720 objfile = symbol_objfile (sym);
3721 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3722 section = SYMBOL_OBJ_SECTION (objfile, sym);
3723 name = SYMBOL_LINKAGE_NAME (sym);
3724 }
3725 else
3726 {
3727 struct bound_minimal_symbol msymbol
3728 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3729
3730 if (msymbol.minsym == NULL)
3731 return;
3732
3733 objfile = msymbol.objfile;
3734 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3735 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3736 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3737 }
3738
3739 gdbarch = get_objfile_arch (objfile);
3740
3741 /* Process the prologue in two passes. In the first pass try to skip the
3742 prologue (SKIP is true) and verify there is a real need for it (indicated
3743 by FORCE_SKIP). If no such reason was found run a second pass where the
3744 prologue is not skipped (SKIP is false). */
3745
3746 skip = 1;
3747 force_skip = 1;
3748
3749 /* Be conservative - allow direct PC (without skipping prologue) only if we
3750 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3751 have to be set by the caller so we use SYM instead. */
3752 if (sym != NULL
3753 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3754 force_skip = 0;
3755
3756 saved_pc = pc;
3757 do
3758 {
3759 pc = saved_pc;
3760
3761 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3762 so that gdbarch_skip_prologue has something unique to work on. */
3763 if (section_is_overlay (section) && !section_is_mapped (section))
3764 pc = overlay_unmapped_address (pc, section);
3765
3766 /* Skip "first line" of function (which is actually its prologue). */
3767 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3768 if (gdbarch_skip_entrypoint_p (gdbarch))
3769 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3770 if (skip)
3771 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3772
3773 /* For overlays, map pc back into its mapped VMA range. */
3774 pc = overlay_mapped_address (pc, section);
3775
3776 /* Calculate line number. */
3777 start_sal = find_pc_sect_line (pc, section, 0);
3778
3779 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3780 line is still part of the same function. */
3781 if (skip && start_sal.pc != pc
3782 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3783 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3784 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3785 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3786 {
3787 /* First pc of next line */
3788 pc = start_sal.end;
3789 /* Recalculate the line number (might not be N+1). */
3790 start_sal = find_pc_sect_line (pc, section, 0);
3791 }
3792
3793 /* On targets with executable formats that don't have a concept of
3794 constructors (ELF with .init has, PE doesn't), gcc emits a call
3795 to `__main' in `main' between the prologue and before user
3796 code. */
3797 if (gdbarch_skip_main_prologue_p (gdbarch)
3798 && name && strcmp_iw (name, "main") == 0)
3799 {
3800 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3801 /* Recalculate the line number (might not be N+1). */
3802 start_sal = find_pc_sect_line (pc, section, 0);
3803 force_skip = 1;
3804 }
3805 }
3806 while (!force_skip && skip--);
3807
3808 /* If we still don't have a valid source line, try to find the first
3809 PC in the lineinfo table that belongs to the same function. This
3810 happens with COFF debug info, which does not seem to have an
3811 entry in lineinfo table for the code after the prologue which has
3812 no direct relation to source. For example, this was found to be
3813 the case with the DJGPP target using "gcc -gcoff" when the
3814 compiler inserted code after the prologue to make sure the stack
3815 is aligned. */
3816 if (!force_skip && sym && start_sal.symtab == NULL)
3817 {
3818 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3819 /* Recalculate the line number. */
3820 start_sal = find_pc_sect_line (pc, section, 0);
3821 }
3822
3823 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3824 forward SAL to the end of the prologue. */
3825 if (sal->pc >= pc)
3826 return;
3827
3828 sal->pc = pc;
3829 sal->section = section;
3830 sal->symtab = start_sal.symtab;
3831 sal->line = start_sal.line;
3832 sal->end = start_sal.end;
3833
3834 /* Check if we are now inside an inlined function. If we can,
3835 use the call site of the function instead. */
3836 b = block_for_pc_sect (sal->pc, sal->section);
3837 function_block = NULL;
3838 while (b != NULL)
3839 {
3840 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3841 function_block = b;
3842 else if (BLOCK_FUNCTION (b) != NULL)
3843 break;
3844 b = BLOCK_SUPERBLOCK (b);
3845 }
3846 if (function_block != NULL
3847 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3848 {
3849 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3850 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3851 }
3852}
3853
3854/* Given PC at the function's start address, attempt to find the
3855 prologue end using SAL information. Return zero if the skip fails.
3856
3857 A non-optimized prologue traditionally has one SAL for the function
3858 and a second for the function body. A single line function has
3859 them both pointing at the same line.
3860
3861 An optimized prologue is similar but the prologue may contain
3862 instructions (SALs) from the instruction body. Need to skip those
3863 while not getting into the function body.
3864
3865 The functions end point and an increasing SAL line are used as
3866 indicators of the prologue's endpoint.
3867
3868 This code is based on the function refine_prologue_limit
3869 (found in ia64). */
3870
3871CORE_ADDR
3872skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3873{
3874 struct symtab_and_line prologue_sal;
3875 CORE_ADDR start_pc;
3876 CORE_ADDR end_pc;
3877 const struct block *bl;
3878
3879 /* Get an initial range for the function. */
3880 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3881 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3882
3883 prologue_sal = find_pc_line (start_pc, 0);
3884 if (prologue_sal.line != 0)
3885 {
3886 /* For languages other than assembly, treat two consecutive line
3887 entries at the same address as a zero-instruction prologue.
3888 The GNU assembler emits separate line notes for each instruction
3889 in a multi-instruction macro, but compilers generally will not
3890 do this. */
3891 if (prologue_sal.symtab->language != language_asm)
3892 {
3893 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3894 int idx = 0;
3895
3896 /* Skip any earlier lines, and any end-of-sequence marker
3897 from a previous function. */
3898 while (linetable->item[idx].pc != prologue_sal.pc
3899 || linetable->item[idx].line == 0)
3900 idx++;
3901
3902 if (idx+1 < linetable->nitems
3903 && linetable->item[idx+1].line != 0
3904 && linetable->item[idx+1].pc == start_pc)
3905 return start_pc;
3906 }
3907
3908 /* If there is only one sal that covers the entire function,
3909 then it is probably a single line function, like
3910 "foo(){}". */
3911 if (prologue_sal.end >= end_pc)
3912 return 0;
3913
3914 while (prologue_sal.end < end_pc)
3915 {
3916 struct symtab_and_line sal;
3917
3918 sal = find_pc_line (prologue_sal.end, 0);
3919 if (sal.line == 0)
3920 break;
3921 /* Assume that a consecutive SAL for the same (or larger)
3922 line mark the prologue -> body transition. */
3923 if (sal.line >= prologue_sal.line)
3924 break;
3925 /* Likewise if we are in a different symtab altogether
3926 (e.g. within a file included via #include).  */
3927 if (sal.symtab != prologue_sal.symtab)
3928 break;
3929
3930 /* The line number is smaller. Check that it's from the
3931 same function, not something inlined. If it's inlined,
3932 then there is no point comparing the line numbers. */
3933 bl = block_for_pc (prologue_sal.end);
3934 while (bl)
3935 {
3936 if (block_inlined_p (bl))
3937 break;
3938 if (BLOCK_FUNCTION (bl))
3939 {
3940 bl = NULL;
3941 break;
3942 }
3943 bl = BLOCK_SUPERBLOCK (bl);
3944 }
3945 if (bl != NULL)
3946 break;
3947
3948 /* The case in which compiler's optimizer/scheduler has
3949 moved instructions into the prologue. We look ahead in
3950 the function looking for address ranges whose
3951 corresponding line number is less the first one that we
3952 found for the function. This is more conservative then
3953 refine_prologue_limit which scans a large number of SALs
3954 looking for any in the prologue. */
3955 prologue_sal = sal;
3956 }
3957 }
3958
3959 if (prologue_sal.end < end_pc)
3960 /* Return the end of this line, or zero if we could not find a
3961 line. */
3962 return prologue_sal.end;
3963 else
3964 /* Don't return END_PC, which is past the end of the function. */
3965 return prologue_sal.pc;
3966}
3967
3968/* See symtab.h. */
3969
3970symbol *
3971find_function_alias_target (bound_minimal_symbol msymbol)
3972{
3973 CORE_ADDR func_addr;
3974 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3975 return NULL;
3976
3977 symbol *sym = find_pc_function (func_addr);
3978 if (sym != NULL
3979 && SYMBOL_CLASS (sym) == LOC_BLOCK
3980 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3981 return sym;
3982
3983 return NULL;
3984}
3985
3986\f
3987/* If P is of the form "operator[ \t]+..." where `...' is
3988 some legitimate operator text, return a pointer to the
3989 beginning of the substring of the operator text.
3990 Otherwise, return "". */
3991
3992static const char *
3993operator_chars (const char *p, const char **end)
3994{
3995 *end = "";
3996 if (!startswith (p, CP_OPERATOR_STR))
3997 return *end;
3998 p += CP_OPERATOR_LEN;
3999
4000 /* Don't get faked out by `operator' being part of a longer
4001 identifier. */
4002 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4003 return *end;
4004
4005 /* Allow some whitespace between `operator' and the operator symbol. */
4006 while (*p == ' ' || *p == '\t')
4007 p++;
4008
4009 /* Recognize 'operator TYPENAME'. */
4010
4011 if (isalpha (*p) || *p == '_' || *p == '$')
4012 {
4013 const char *q = p + 1;
4014
4015 while (isalnum (*q) || *q == '_' || *q == '$')
4016 q++;
4017 *end = q;
4018 return p;
4019 }
4020
4021 while (*p)
4022 switch (*p)
4023 {
4024 case '\\': /* regexp quoting */
4025 if (p[1] == '*')
4026 {
4027 if (p[2] == '=') /* 'operator\*=' */
4028 *end = p + 3;
4029 else /* 'operator\*' */
4030 *end = p + 2;
4031 return p;
4032 }
4033 else if (p[1] == '[')
4034 {
4035 if (p[2] == ']')
4036 error (_("mismatched quoting on brackets, "
4037 "try 'operator\\[\\]'"));
4038 else if (p[2] == '\\' && p[3] == ']')
4039 {
4040 *end = p + 4; /* 'operator\[\]' */
4041 return p;
4042 }
4043 else
4044 error (_("nothing is allowed between '[' and ']'"));
4045 }
4046 else
4047 {
4048 /* Gratuitous qoute: skip it and move on. */
4049 p++;
4050 continue;
4051 }
4052 break;
4053 case '!':
4054 case '=':
4055 case '*':
4056 case '/':
4057 case '%':
4058 case '^':
4059 if (p[1] == '=')
4060 *end = p + 2;
4061 else
4062 *end = p + 1;
4063 return p;
4064 case '<':
4065 case '>':
4066 case '+':
4067 case '-':
4068 case '&':
4069 case '|':
4070 if (p[0] == '-' && p[1] == '>')
4071 {
4072 /* Struct pointer member operator 'operator->'. */
4073 if (p[2] == '*')
4074 {
4075 *end = p + 3; /* 'operator->*' */
4076 return p;
4077 }
4078 else if (p[2] == '\\')
4079 {
4080 *end = p + 4; /* Hopefully 'operator->\*' */
4081 return p;
4082 }
4083 else
4084 {
4085 *end = p + 2; /* 'operator->' */
4086 return p;
4087 }
4088 }
4089 if (p[1] == '=' || p[1] == p[0])
4090 *end = p + 2;
4091 else
4092 *end = p + 1;
4093 return p;
4094 case '~':
4095 case ',':
4096 *end = p + 1;
4097 return p;
4098 case '(':
4099 if (p[1] != ')')
4100 error (_("`operator ()' must be specified "
4101 "without whitespace in `()'"));
4102 *end = p + 2;
4103 return p;
4104 case '?':
4105 if (p[1] != ':')
4106 error (_("`operator ?:' must be specified "
4107 "without whitespace in `?:'"));
4108 *end = p + 2;
4109 return p;
4110 case '[':
4111 if (p[1] != ']')
4112 error (_("`operator []' must be specified "
4113 "without whitespace in `[]'"));
4114 *end = p + 2;
4115 return p;
4116 default:
4117 error (_("`operator %s' not supported"), p);
4118 break;
4119 }
4120
4121 *end = "";
4122 return *end;
4123}
4124\f
4125
4126/* Data structure to maintain printing state for output_source_filename. */
4127
4128struct output_source_filename_data
4129{
4130 /* Cache of what we've seen so far. */
4131 struct filename_seen_cache *filename_seen_cache;
4132
4133 /* Flag of whether we're printing the first one. */
4134 int first;
4135};
4136
4137/* Slave routine for sources_info. Force line breaks at ,'s.
4138 NAME is the name to print.
4139 DATA contains the state for printing and watching for duplicates. */
4140
4141static void
4142output_source_filename (const char *name,
4143 struct output_source_filename_data *data)
4144{
4145 /* Since a single source file can result in several partial symbol
4146 tables, we need to avoid printing it more than once. Note: if
4147 some of the psymtabs are read in and some are not, it gets
4148 printed both under "Source files for which symbols have been
4149 read" and "Source files for which symbols will be read in on
4150 demand". I consider this a reasonable way to deal with the
4151 situation. I'm not sure whether this can also happen for
4152 symtabs; it doesn't hurt to check. */
4153
4154 /* Was NAME already seen? */
4155 if (data->filename_seen_cache->seen (name))
4156 {
4157 /* Yes; don't print it again. */
4158 return;
4159 }
4160
4161 /* No; print it and reset *FIRST. */
4162 if (! data->first)
4163 printf_filtered (", ");
4164 data->first = 0;
4165
4166 wrap_here ("");
4167 fputs_styled (name, file_name_style.style (), gdb_stdout);
4168}
4169
4170/* A callback for map_partial_symbol_filenames. */
4171
4172static void
4173output_partial_symbol_filename (const char *filename, const char *fullname,
4174 void *data)
4175{
4176 output_source_filename (fullname ? fullname : filename,
4177 (struct output_source_filename_data *) data);
4178}
4179
4180static void
4181info_sources_command (const char *ignore, int from_tty)
4182{
4183 struct output_source_filename_data data;
4184
4185 if (!have_full_symbols () && !have_partial_symbols ())
4186 {
4187 error (_("No symbol table is loaded. Use the \"file\" command."));
4188 }
4189
4190 filename_seen_cache filenames_seen;
4191
4192 data.filename_seen_cache = &filenames_seen;
4193
4194 printf_filtered ("Source files for which symbols have been read in:\n\n");
4195
4196 data.first = 1;
4197 for (objfile *objfile : current_program_space->objfiles ())
4198 {
4199 for (compunit_symtab *cu : objfile->compunits ())
4200 {
4201 for (symtab *s : compunit_filetabs (cu))
4202 {
4203 const char *fullname = symtab_to_fullname (s);
4204
4205 output_source_filename (fullname, &data);
4206 }
4207 }
4208 }
4209 printf_filtered ("\n\n");
4210
4211 printf_filtered ("Source files for which symbols "
4212 "will be read in on demand:\n\n");
4213
4214 filenames_seen.clear ();
4215 data.first = 1;
4216 map_symbol_filenames (output_partial_symbol_filename, &data,
4217 1 /*need_fullname*/);
4218 printf_filtered ("\n");
4219}
4220
4221/* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4222 non-zero compare only lbasename of FILES. */
4223
4224static int
4225file_matches (const char *file, const char *files[], int nfiles, int basenames)
4226{
4227 int i;
4228
4229 if (file != NULL && nfiles != 0)
4230 {
4231 for (i = 0; i < nfiles; i++)
4232 {
4233 if (compare_filenames_for_search (file, (basenames
4234 ? lbasename (files[i])
4235 : files[i])))
4236 return 1;
4237 }
4238 }
4239 else if (nfiles == 0)
4240 return 1;
4241 return 0;
4242}
4243
4244/* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4245 sort symbols, not minimal symbols. */
4246
4247int
4248symbol_search::compare_search_syms (const symbol_search &sym_a,
4249 const symbol_search &sym_b)
4250{
4251 int c;
4252
4253 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4254 symbol_symtab (sym_b.symbol)->filename);
4255 if (c != 0)
4256 return c;
4257
4258 if (sym_a.block != sym_b.block)
4259 return sym_a.block - sym_b.block;
4260
4261 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4262 SYMBOL_PRINT_NAME (sym_b.symbol));
4263}
4264
4265/* Returns true if the type_name of symbol_type of SYM matches TREG.
4266 If SYM has no symbol_type or symbol_name, returns false. */
4267
4268bool
4269treg_matches_sym_type_name (const compiled_regex &treg,
4270 const struct symbol *sym)
4271{
4272 struct type *sym_type;
4273 std::string printed_sym_type_name;
4274
4275 if (symbol_lookup_debug > 1)
4276 {
4277 fprintf_unfiltered (gdb_stdlog,
4278 "treg_matches_sym_type_name\n sym %s\n",
4279 SYMBOL_NATURAL_NAME (sym));
4280 }
4281
4282 sym_type = SYMBOL_TYPE (sym);
4283 if (sym_type == NULL)
4284 return false;
4285
4286 {
4287 scoped_switch_to_sym_language_if_auto l (sym);
4288
4289 printed_sym_type_name = type_to_string (sym_type);
4290 }
4291
4292
4293 if (symbol_lookup_debug > 1)
4294 {
4295 fprintf_unfiltered (gdb_stdlog,
4296 " sym_type_name %s\n",
4297 printed_sym_type_name.c_str ());
4298 }
4299
4300
4301 if (printed_sym_type_name.empty ())
4302 return false;
4303
4304 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4305}
4306
4307
4308/* Sort the symbols in RESULT and remove duplicates. */
4309
4310static void
4311sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4312{
4313 std::sort (result->begin (), result->end ());
4314 result->erase (std::unique (result->begin (), result->end ()),
4315 result->end ());
4316}
4317
4318/* Search the symbol table for matches to the regular expression REGEXP,
4319 returning the results.
4320
4321 Only symbols of KIND are searched:
4322 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4323 and constants (enums).
4324 if T_REGEXP is not NULL, only returns var that have
4325 a type matching regular expression T_REGEXP.
4326 FUNCTIONS_DOMAIN - search all functions
4327 TYPES_DOMAIN - search all type names
4328 ALL_DOMAIN - an internal error for this function
4329
4330 Within each file the results are sorted locally; each symtab's global and
4331 static blocks are separately alphabetized.
4332 Duplicate entries are removed. */
4333
4334std::vector<symbol_search>
4335search_symbols (const char *regexp, enum search_domain kind,
4336 const char *t_regexp,
4337 int nfiles, const char *files[])
4338{
4339 const struct blockvector *bv;
4340 const struct block *b;
4341 int i = 0;
4342 struct block_iterator iter;
4343 struct symbol *sym;
4344 int found_misc = 0;
4345 static const enum minimal_symbol_type types[]
4346 = {mst_data, mst_text, mst_abs};
4347 static const enum minimal_symbol_type types2[]
4348 = {mst_bss, mst_file_text, mst_abs};
4349 static const enum minimal_symbol_type types3[]
4350 = {mst_file_data, mst_solib_trampoline, mst_abs};
4351 static const enum minimal_symbol_type types4[]
4352 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4353 enum minimal_symbol_type ourtype;
4354 enum minimal_symbol_type ourtype2;
4355 enum minimal_symbol_type ourtype3;
4356 enum minimal_symbol_type ourtype4;
4357 std::vector<symbol_search> result;
4358 gdb::optional<compiled_regex> preg;
4359 gdb::optional<compiled_regex> treg;
4360
4361 gdb_assert (kind <= TYPES_DOMAIN);
4362
4363 ourtype = types[kind];
4364 ourtype2 = types2[kind];
4365 ourtype3 = types3[kind];
4366 ourtype4 = types4[kind];
4367
4368 if (regexp != NULL)
4369 {
4370 /* Make sure spacing is right for C++ operators.
4371 This is just a courtesy to make the matching less sensitive
4372 to how many spaces the user leaves between 'operator'
4373 and <TYPENAME> or <OPERATOR>. */
4374 const char *opend;
4375 const char *opname = operator_chars (regexp, &opend);
4376
4377 if (*opname)
4378 {
4379 int fix = -1; /* -1 means ok; otherwise number of
4380 spaces needed. */
4381
4382 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4383 {
4384 /* There should 1 space between 'operator' and 'TYPENAME'. */
4385 if (opname[-1] != ' ' || opname[-2] == ' ')
4386 fix = 1;
4387 }
4388 else
4389 {
4390 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4391 if (opname[-1] == ' ')
4392 fix = 0;
4393 }
4394 /* If wrong number of spaces, fix it. */
4395 if (fix >= 0)
4396 {
4397 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4398
4399 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4400 regexp = tmp;
4401 }
4402 }
4403
4404 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4405 ? REG_ICASE : 0);
4406 preg.emplace (regexp, cflags, _("Invalid regexp"));
4407 }
4408
4409 if (t_regexp != NULL)
4410 {
4411 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4412 ? REG_ICASE : 0);
4413 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4414 }
4415
4416 /* Search through the partial symtabs *first* for all symbols
4417 matching the regexp. That way we don't have to reproduce all of
4418 the machinery below. */
4419 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4420 {
4421 return file_matches (filename, files, nfiles,
4422 basenames);
4423 },
4424 lookup_name_info::match_any (),
4425 [&] (const char *symname)
4426 {
4427 return (!preg.has_value ()
4428 || preg->exec (symname,
4429 0, NULL, 0) == 0);
4430 },
4431 NULL,
4432 kind);
4433
4434 /* Here, we search through the minimal symbol tables for functions
4435 and variables that match, and force their symbols to be read.
4436 This is in particular necessary for demangled variable names,
4437 which are no longer put into the partial symbol tables.
4438 The symbol will then be found during the scan of symtabs below.
4439
4440 For functions, find_pc_symtab should succeed if we have debug info
4441 for the function, for variables we have to call
4442 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4443 has debug info.
4444 If the lookup fails, set found_misc so that we will rescan to print
4445 any matching symbols without debug info.
4446 We only search the objfile the msymbol came from, we no longer search
4447 all objfiles. In large programs (1000s of shared libs) searching all
4448 objfiles is not worth the pain. */
4449
4450 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4451 {
4452 for (objfile *objfile : current_program_space->objfiles ())
4453 {
4454 for (minimal_symbol *msymbol : objfile->msymbols ())
4455 {
4456 QUIT;
4457
4458 if (msymbol->created_by_gdb)
4459 continue;
4460
4461 if (MSYMBOL_TYPE (msymbol) == ourtype
4462 || MSYMBOL_TYPE (msymbol) == ourtype2
4463 || MSYMBOL_TYPE (msymbol) == ourtype3
4464 || MSYMBOL_TYPE (msymbol) == ourtype4)
4465 {
4466 if (!preg.has_value ()
4467 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4468 NULL, 0) == 0)
4469 {
4470 /* Note: An important side-effect of these
4471 lookup functions is to expand the symbol
4472 table if msymbol is found, for the benefit of
4473 the next loop on compunits. */
4474 if (kind == FUNCTIONS_DOMAIN
4475 ? (find_pc_compunit_symtab
4476 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4477 == NULL)
4478 : (lookup_symbol_in_objfile_from_linkage_name
4479 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4480 VAR_DOMAIN)
4481 .symbol == NULL))
4482 found_misc = 1;
4483 }
4484 }
4485 }
4486 }
4487 }
4488
4489 for (objfile *objfile : current_program_space->objfiles ())
4490 {
4491 for (compunit_symtab *cust : objfile->compunits ())
4492 {
4493 bv = COMPUNIT_BLOCKVECTOR (cust);
4494 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4495 {
4496 b = BLOCKVECTOR_BLOCK (bv, i);
4497 ALL_BLOCK_SYMBOLS (b, iter, sym)
4498 {
4499 struct symtab *real_symtab = symbol_symtab (sym);
4500
4501 QUIT;
4502
4503 /* Check first sole REAL_SYMTAB->FILENAME. It does
4504 not need to be a substring of symtab_to_fullname as
4505 it may contain "./" etc. */
4506 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4507 || ((basenames_may_differ
4508 || file_matches (lbasename (real_symtab->filename),
4509 files, nfiles, 1))
4510 && file_matches (symtab_to_fullname (real_symtab),
4511 files, nfiles, 0)))
4512 && ((!preg.has_value ()
4513 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4514 NULL, 0) == 0)
4515 && ((kind == VARIABLES_DOMAIN
4516 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4517 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4518 && SYMBOL_CLASS (sym) != LOC_BLOCK
4519 /* LOC_CONST can be used for more than
4520 just enums, e.g., c++ static const
4521 members. We only want to skip enums
4522 here. */
4523 && !(SYMBOL_CLASS (sym) == LOC_CONST
4524 && (TYPE_CODE (SYMBOL_TYPE (sym))
4525 == TYPE_CODE_ENUM))
4526 && (!treg.has_value ()
4527 || treg_matches_sym_type_name (*treg, sym)))
4528 || (kind == FUNCTIONS_DOMAIN
4529 && SYMBOL_CLASS (sym) == LOC_BLOCK
4530 && (!treg.has_value ()
4531 || treg_matches_sym_type_name (*treg,
4532 sym)))
4533 || (kind == TYPES_DOMAIN
4534 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4535 {
4536 /* match */
4537 result.emplace_back (i, sym);
4538 }
4539 }
4540 }
4541 }
4542 }
4543
4544 if (!result.empty ())
4545 sort_search_symbols_remove_dups (&result);
4546
4547 /* If there are no eyes, avoid all contact. I mean, if there are
4548 no debug symbols, then add matching minsyms. But if the user wants
4549 to see symbols matching a type regexp, then never give a minimal symbol,
4550 as we assume that a minimal symbol does not have a type. */
4551
4552 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4553 && !treg.has_value ())
4554 {
4555 for (objfile *objfile : current_program_space->objfiles ())
4556 {
4557 for (minimal_symbol *msymbol : objfile->msymbols ())
4558 {
4559 QUIT;
4560
4561 if (msymbol->created_by_gdb)
4562 continue;
4563
4564 if (MSYMBOL_TYPE (msymbol) == ourtype
4565 || MSYMBOL_TYPE (msymbol) == ourtype2
4566 || MSYMBOL_TYPE (msymbol) == ourtype3
4567 || MSYMBOL_TYPE (msymbol) == ourtype4)
4568 {
4569 if (!preg.has_value ()
4570 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4571 NULL, 0) == 0)
4572 {
4573 /* For functions we can do a quick check of whether the
4574 symbol might be found via find_pc_symtab. */
4575 if (kind != FUNCTIONS_DOMAIN
4576 || (find_pc_compunit_symtab
4577 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4578 == NULL))
4579 {
4580 if (lookup_symbol_in_objfile_from_linkage_name
4581 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4582 VAR_DOMAIN)
4583 .symbol == NULL)
4584 {
4585 /* match */
4586 result.emplace_back (i, msymbol, objfile);
4587 }
4588 }
4589 }
4590 }
4591 }
4592 }
4593 }
4594
4595 return result;
4596}
4597
4598/* Helper function for symtab_symbol_info, this function uses
4599 the data returned from search_symbols() to print information
4600 regarding the match to gdb_stdout. If LAST is not NULL,
4601 print file and line number information for the symbol as
4602 well. Skip printing the filename if it matches LAST. */
4603
4604static void
4605print_symbol_info (enum search_domain kind,
4606 struct symbol *sym,
4607 int block, const char *last)
4608{
4609 scoped_switch_to_sym_language_if_auto l (sym);
4610 struct symtab *s = symbol_symtab (sym);
4611
4612 if (last != NULL)
4613 {
4614 const char *s_filename = symtab_to_filename_for_display (s);
4615
4616 if (filename_cmp (last, s_filename) != 0)
4617 {
4618 fputs_filtered ("\nFile ", gdb_stdout);
4619 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4620 fputs_filtered (":\n", gdb_stdout);
4621 }
4622
4623 if (SYMBOL_LINE (sym) != 0)
4624 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4625 else
4626 puts_filtered ("\t");
4627 }
4628
4629 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4630 printf_filtered ("static ");
4631
4632 /* Typedef that is not a C++ class. */
4633 if (kind == TYPES_DOMAIN
4634 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4635 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4636 /* variable, func, or typedef-that-is-c++-class. */
4637 else if (kind < TYPES_DOMAIN
4638 || (kind == TYPES_DOMAIN
4639 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4640 {
4641 type_print (SYMBOL_TYPE (sym),
4642 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4643 ? "" : SYMBOL_PRINT_NAME (sym)),
4644 gdb_stdout, 0);
4645
4646 printf_filtered (";\n");
4647 }
4648}
4649
4650/* This help function for symtab_symbol_info() prints information
4651 for non-debugging symbols to gdb_stdout. */
4652
4653static void
4654print_msymbol_info (struct bound_minimal_symbol msymbol)
4655{
4656 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4657 char *tmp;
4658
4659 if (gdbarch_addr_bit (gdbarch) <= 32)
4660 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4661 & (CORE_ADDR) 0xffffffff,
4662 8);
4663 else
4664 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4665 16);
4666 fputs_styled (tmp, address_style.style (), gdb_stdout);
4667 fputs_filtered (" ", gdb_stdout);
4668 if (msymbol.minsym->text_p ())
4669 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4670 function_name_style.style (),
4671 gdb_stdout);
4672 else
4673 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4674 fputs_filtered ("\n", gdb_stdout);
4675}
4676
4677/* This is the guts of the commands "info functions", "info types", and
4678 "info variables". It calls search_symbols to find all matches and then
4679 print_[m]symbol_info to print out some useful information about the
4680 matches. */
4681
4682static void
4683symtab_symbol_info (bool quiet,
4684 const char *regexp, enum search_domain kind,
4685 const char *t_regexp, int from_tty)
4686{
4687 static const char * const classnames[] =
4688 {"variable", "function", "type"};
4689 const char *last_filename = "";
4690 int first = 1;
4691
4692 gdb_assert (kind <= TYPES_DOMAIN);
4693
4694 if (regexp != nullptr && *regexp == '\0')
4695 regexp = nullptr;
4696
4697 /* Must make sure that if we're interrupted, symbols gets freed. */
4698 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4699 t_regexp, 0, NULL);
4700
4701 if (!quiet)
4702 {
4703 if (regexp != NULL)
4704 {
4705 if (t_regexp != NULL)
4706 printf_filtered
4707 (_("All %ss matching regular expression \"%s\""
4708 " with type matching regular expression \"%s\":\n"),
4709 classnames[kind], regexp, t_regexp);
4710 else
4711 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4712 classnames[kind], regexp);
4713 }
4714 else
4715 {
4716 if (t_regexp != NULL)
4717 printf_filtered
4718 (_("All defined %ss"
4719 " with type matching regular expression \"%s\" :\n"),
4720 classnames[kind], t_regexp);
4721 else
4722 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4723 }
4724 }
4725
4726 for (const symbol_search &p : symbols)
4727 {
4728 QUIT;
4729
4730 if (p.msymbol.minsym != NULL)
4731 {
4732 if (first)
4733 {
4734 if (!quiet)
4735 printf_filtered (_("\nNon-debugging symbols:\n"));
4736 first = 0;
4737 }
4738 print_msymbol_info (p.msymbol);
4739 }
4740 else
4741 {
4742 print_symbol_info (kind,
4743 p.symbol,
4744 p.block,
4745 last_filename);
4746 last_filename
4747 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4748 }
4749 }
4750}
4751
4752/* Implement the 'info variables' command. */
4753
4754static void
4755info_variables_command (const char *args, int from_tty)
4756{
4757 info_print_options opts;
4758 extract_info_print_options (&opts, &args);
4759
4760 symtab_symbol_info (opts.quiet, args, VARIABLES_DOMAIN,
4761 opts.type_regexp, from_tty);
4762}
4763
4764/* Implement the 'info functions' command. */
4765
4766static void
4767info_functions_command (const char *args, int from_tty)
4768{
4769 info_print_options opts;
4770 extract_info_print_options (&opts, &args);
4771
4772 symtab_symbol_info (opts.quiet, args, FUNCTIONS_DOMAIN,
4773 opts.type_regexp, from_tty);
4774}
4775
4776
4777static void
4778info_types_command (const char *regexp, int from_tty)
4779{
4780 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4781}
4782
4783/* Breakpoint all functions matching regular expression. */
4784
4785void
4786rbreak_command_wrapper (char *regexp, int from_tty)
4787{
4788 rbreak_command (regexp, from_tty);
4789}
4790
4791static void
4792rbreak_command (const char *regexp, int from_tty)
4793{
4794 std::string string;
4795 const char **files = NULL;
4796 const char *file_name;
4797 int nfiles = 0;
4798
4799 if (regexp)
4800 {
4801 const char *colon = strchr (regexp, ':');
4802
4803 if (colon && *(colon + 1) != ':')
4804 {
4805 int colon_index;
4806 char *local_name;
4807
4808 colon_index = colon - regexp;
4809 local_name = (char *) alloca (colon_index + 1);
4810 memcpy (local_name, regexp, colon_index);
4811 local_name[colon_index--] = 0;
4812 while (isspace (local_name[colon_index]))
4813 local_name[colon_index--] = 0;
4814 file_name = local_name;
4815 files = &file_name;
4816 nfiles = 1;
4817 regexp = skip_spaces (colon + 1);
4818 }
4819 }
4820
4821 std::vector<symbol_search> symbols = search_symbols (regexp,
4822 FUNCTIONS_DOMAIN,
4823 NULL,
4824 nfiles, files);
4825
4826 scoped_rbreak_breakpoints finalize;
4827 for (const symbol_search &p : symbols)
4828 {
4829 if (p.msymbol.minsym == NULL)
4830 {
4831 struct symtab *symtab = symbol_symtab (p.symbol);
4832 const char *fullname = symtab_to_fullname (symtab);
4833
4834 string = string_printf ("%s:'%s'", fullname,
4835 SYMBOL_LINKAGE_NAME (p.symbol));
4836 break_command (&string[0], from_tty);
4837 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4838 }
4839 else
4840 {
4841 string = string_printf ("'%s'",
4842 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4843
4844 break_command (&string[0], from_tty);
4845 printf_filtered ("<function, no debug info> %s;\n",
4846 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4847 }
4848 }
4849}
4850\f
4851
4852/* Evaluate if SYMNAME matches LOOKUP_NAME. */
4853
4854static int
4855compare_symbol_name (const char *symbol_name, language symbol_language,
4856 const lookup_name_info &lookup_name,
4857 completion_match_result &match_res)
4858{
4859 const language_defn *lang = language_def (symbol_language);
4860
4861 symbol_name_matcher_ftype *name_match
4862 = get_symbol_name_matcher (lang, lookup_name);
4863
4864 return name_match (symbol_name, lookup_name, &match_res);
4865}
4866
4867/* See symtab.h. */
4868
4869void
4870completion_list_add_name (completion_tracker &tracker,
4871 language symbol_language,
4872 const char *symname,
4873 const lookup_name_info &lookup_name,
4874 const char *text, const char *word)
4875{
4876 completion_match_result &match_res
4877 = tracker.reset_completion_match_result ();
4878
4879 /* Clip symbols that cannot match. */
4880 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4881 return;
4882
4883 /* Refresh SYMNAME from the match string. It's potentially
4884 different depending on language. (E.g., on Ada, the match may be
4885 the encoded symbol name wrapped in "<>"). */
4886 symname = match_res.match.match ();
4887 gdb_assert (symname != NULL);
4888
4889 /* We have a match for a completion, so add SYMNAME to the current list
4890 of matches. Note that the name is moved to freshly malloc'd space. */
4891
4892 {
4893 gdb::unique_xmalloc_ptr<char> completion
4894 = make_completion_match_str (symname, text, word);
4895
4896 /* Here we pass the match-for-lcd object to add_completion. Some
4897 languages match the user text against substrings of symbol
4898 names in some cases. E.g., in C++, "b push_ba" completes to
4899 "std::vector::push_back", "std::string::push_back", etc., and
4900 in this case we want the completion lowest common denominator
4901 to be "push_back" instead of "std::". */
4902 tracker.add_completion (std::move (completion),
4903 &match_res.match_for_lcd, text, word);
4904 }
4905}
4906
4907/* completion_list_add_name wrapper for struct symbol. */
4908
4909static void
4910completion_list_add_symbol (completion_tracker &tracker,
4911 symbol *sym,
4912 const lookup_name_info &lookup_name,
4913 const char *text, const char *word)
4914{
4915 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4916 SYMBOL_NATURAL_NAME (sym),
4917 lookup_name, text, word);
4918}
4919
4920/* completion_list_add_name wrapper for struct minimal_symbol. */
4921
4922static void
4923completion_list_add_msymbol (completion_tracker &tracker,
4924 minimal_symbol *sym,
4925 const lookup_name_info &lookup_name,
4926 const char *text, const char *word)
4927{
4928 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4929 MSYMBOL_NATURAL_NAME (sym),
4930 lookup_name, text, word);
4931}
4932
4933
4934/* ObjC: In case we are completing on a selector, look as the msymbol
4935 again and feed all the selectors into the mill. */
4936
4937static void
4938completion_list_objc_symbol (completion_tracker &tracker,
4939 struct minimal_symbol *msymbol,
4940 const lookup_name_info &lookup_name,
4941 const char *text, const char *word)
4942{
4943 static char *tmp = NULL;
4944 static unsigned int tmplen = 0;
4945
4946 const char *method, *category, *selector;
4947 char *tmp2 = NULL;
4948
4949 method = MSYMBOL_NATURAL_NAME (msymbol);
4950
4951 /* Is it a method? */
4952 if ((method[0] != '-') && (method[0] != '+'))
4953 return;
4954
4955 if (text[0] == '[')
4956 /* Complete on shortened method method. */
4957 completion_list_add_name (tracker, language_objc,
4958 method + 1,
4959 lookup_name,
4960 text, word);
4961
4962 while ((strlen (method) + 1) >= tmplen)
4963 {
4964 if (tmplen == 0)
4965 tmplen = 1024;
4966 else
4967 tmplen *= 2;
4968 tmp = (char *) xrealloc (tmp, tmplen);
4969 }
4970 selector = strchr (method, ' ');
4971 if (selector != NULL)
4972 selector++;
4973
4974 category = strchr (method, '(');
4975
4976 if ((category != NULL) && (selector != NULL))
4977 {
4978 memcpy (tmp, method, (category - method));
4979 tmp[category - method] = ' ';
4980 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4981 completion_list_add_name (tracker, language_objc, tmp,
4982 lookup_name, text, word);
4983 if (text[0] == '[')
4984 completion_list_add_name (tracker, language_objc, tmp + 1,
4985 lookup_name, text, word);
4986 }
4987
4988 if (selector != NULL)
4989 {
4990 /* Complete on selector only. */
4991 strcpy (tmp, selector);
4992 tmp2 = strchr (tmp, ']');
4993 if (tmp2 != NULL)
4994 *tmp2 = '\0';
4995
4996 completion_list_add_name (tracker, language_objc, tmp,
4997 lookup_name, text, word);
4998 }
4999}
5000
5001/* Break the non-quoted text based on the characters which are in
5002 symbols. FIXME: This should probably be language-specific. */
5003
5004static const char *
5005language_search_unquoted_string (const char *text, const char *p)
5006{
5007 for (; p > text; --p)
5008 {
5009 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5010 continue;
5011 else
5012 {
5013 if ((current_language->la_language == language_objc))
5014 {
5015 if (p[-1] == ':') /* Might be part of a method name. */
5016 continue;
5017 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5018 p -= 2; /* Beginning of a method name. */
5019 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5020 { /* Might be part of a method name. */
5021 const char *t = p;
5022
5023 /* Seeing a ' ' or a '(' is not conclusive evidence
5024 that we are in the middle of a method name. However,
5025 finding "-[" or "+[" should be pretty un-ambiguous.
5026 Unfortunately we have to find it now to decide. */
5027
5028 while (t > text)
5029 if (isalnum (t[-1]) || t[-1] == '_' ||
5030 t[-1] == ' ' || t[-1] == ':' ||
5031 t[-1] == '(' || t[-1] == ')')
5032 --t;
5033 else
5034 break;
5035
5036 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5037 p = t - 2; /* Method name detected. */
5038 /* Else we leave with p unchanged. */
5039 }
5040 }
5041 break;
5042 }
5043 }
5044 return p;
5045}
5046
5047static void
5048completion_list_add_fields (completion_tracker &tracker,
5049 struct symbol *sym,
5050 const lookup_name_info &lookup_name,
5051 const char *text, const char *word)
5052{
5053 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5054 {
5055 struct type *t = SYMBOL_TYPE (sym);
5056 enum type_code c = TYPE_CODE (t);
5057 int j;
5058
5059 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5060 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5061 if (TYPE_FIELD_NAME (t, j))
5062 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5063 TYPE_FIELD_NAME (t, j),
5064 lookup_name, text, word);
5065 }
5066}
5067
5068/* See symtab.h. */
5069
5070bool
5071symbol_is_function_or_method (symbol *sym)
5072{
5073 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5074 {
5075 case TYPE_CODE_FUNC:
5076 case TYPE_CODE_METHOD:
5077 return true;
5078 default:
5079 return false;
5080 }
5081}
5082
5083/* See symtab.h. */
5084
5085bool
5086symbol_is_function_or_method (minimal_symbol *msymbol)
5087{
5088 switch (MSYMBOL_TYPE (msymbol))
5089 {
5090 case mst_text:
5091 case mst_text_gnu_ifunc:
5092 case mst_solib_trampoline:
5093 case mst_file_text:
5094 return true;
5095 default:
5096 return false;
5097 }
5098}
5099
5100/* See symtab.h. */
5101
5102bound_minimal_symbol
5103find_gnu_ifunc (const symbol *sym)
5104{
5105 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5106 return {};
5107
5108 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5109 symbol_name_match_type::SEARCH_NAME);
5110 struct objfile *objfile = symbol_objfile (sym);
5111
5112 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5113 minimal_symbol *ifunc = NULL;
5114
5115 iterate_over_minimal_symbols (objfile, lookup_name,
5116 [&] (minimal_symbol *minsym)
5117 {
5118 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5119 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5120 {
5121 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5122 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5123 {
5124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5125 msym_addr
5126 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5127 msym_addr,
5128 current_top_target ());
5129 }
5130 if (msym_addr == address)
5131 {
5132 ifunc = minsym;
5133 return true;
5134 }
5135 }
5136 return false;
5137 });
5138
5139 if (ifunc != NULL)
5140 return {ifunc, objfile};
5141 return {};
5142}
5143
5144/* Add matching symbols from SYMTAB to the current completion list. */
5145
5146static void
5147add_symtab_completions (struct compunit_symtab *cust,
5148 completion_tracker &tracker,
5149 complete_symbol_mode mode,
5150 const lookup_name_info &lookup_name,
5151 const char *text, const char *word,
5152 enum type_code code)
5153{
5154 struct symbol *sym;
5155 const struct block *b;
5156 struct block_iterator iter;
5157 int i;
5158
5159 if (cust == NULL)
5160 return;
5161
5162 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5163 {
5164 QUIT;
5165 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5166 ALL_BLOCK_SYMBOLS (b, iter, sym)
5167 {
5168 if (completion_skip_symbol (mode, sym))
5169 continue;
5170
5171 if (code == TYPE_CODE_UNDEF
5172 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5173 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5174 completion_list_add_symbol (tracker, sym,
5175 lookup_name,
5176 text, word);
5177 }
5178 }
5179}
5180
5181void
5182default_collect_symbol_completion_matches_break_on
5183 (completion_tracker &tracker, complete_symbol_mode mode,
5184 symbol_name_match_type name_match_type,
5185 const char *text, const char *word,
5186 const char *break_on, enum type_code code)
5187{
5188 /* Problem: All of the symbols have to be copied because readline
5189 frees them. I'm not going to worry about this; hopefully there
5190 won't be that many. */
5191
5192 struct symbol *sym;
5193 const struct block *b;
5194 const struct block *surrounding_static_block, *surrounding_global_block;
5195 struct block_iterator iter;
5196 /* The symbol we are completing on. Points in same buffer as text. */
5197 const char *sym_text;
5198
5199 /* Now look for the symbol we are supposed to complete on. */
5200 if (mode == complete_symbol_mode::LINESPEC)
5201 sym_text = text;
5202 else
5203 {
5204 const char *p;
5205 char quote_found;
5206 const char *quote_pos = NULL;
5207
5208 /* First see if this is a quoted string. */
5209 quote_found = '\0';
5210 for (p = text; *p != '\0'; ++p)
5211 {
5212 if (quote_found != '\0')
5213 {
5214 if (*p == quote_found)
5215 /* Found close quote. */
5216 quote_found = '\0';
5217 else if (*p == '\\' && p[1] == quote_found)
5218 /* A backslash followed by the quote character
5219 doesn't end the string. */
5220 ++p;
5221 }
5222 else if (*p == '\'' || *p == '"')
5223 {
5224 quote_found = *p;
5225 quote_pos = p;
5226 }
5227 }
5228 if (quote_found == '\'')
5229 /* A string within single quotes can be a symbol, so complete on it. */
5230 sym_text = quote_pos + 1;
5231 else if (quote_found == '"')
5232 /* A double-quoted string is never a symbol, nor does it make sense
5233 to complete it any other way. */
5234 {
5235 return;
5236 }
5237 else
5238 {
5239 /* It is not a quoted string. Break it based on the characters
5240 which are in symbols. */
5241 while (p > text)
5242 {
5243 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5244 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5245 --p;
5246 else
5247 break;
5248 }
5249 sym_text = p;
5250 }
5251 }
5252
5253 lookup_name_info lookup_name (sym_text, name_match_type, true);
5254
5255 /* At this point scan through the misc symbol vectors and add each
5256 symbol you find to the list. Eventually we want to ignore
5257 anything that isn't a text symbol (everything else will be
5258 handled by the psymtab code below). */
5259
5260 if (code == TYPE_CODE_UNDEF)
5261 {
5262 for (objfile *objfile : current_program_space->objfiles ())
5263 {
5264 for (minimal_symbol *msymbol : objfile->msymbols ())
5265 {
5266 QUIT;
5267
5268 if (completion_skip_symbol (mode, msymbol))
5269 continue;
5270
5271 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5272 sym_text, word);
5273
5274 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5275 sym_text, word);
5276 }
5277 }
5278 }
5279
5280 /* Add completions for all currently loaded symbol tables. */
5281 for (objfile *objfile : current_program_space->objfiles ())
5282 {
5283 for (compunit_symtab *cust : objfile->compunits ())
5284 add_symtab_completions (cust, tracker, mode, lookup_name,
5285 sym_text, word, code);
5286 }
5287
5288 /* Look through the partial symtabs for all symbols which begin by
5289 matching SYM_TEXT. Expand all CUs that you find to the list. */
5290 expand_symtabs_matching (NULL,
5291 lookup_name,
5292 NULL,
5293 [&] (compunit_symtab *symtab) /* expansion notify */
5294 {
5295 add_symtab_completions (symtab,
5296 tracker, mode, lookup_name,
5297 sym_text, word, code);
5298 },
5299 ALL_DOMAIN);
5300
5301 /* Search upwards from currently selected frame (so that we can
5302 complete on local vars). Also catch fields of types defined in
5303 this places which match our text string. Only complete on types
5304 visible from current context. */
5305
5306 b = get_selected_block (0);
5307 surrounding_static_block = block_static_block (b);
5308 surrounding_global_block = block_global_block (b);
5309 if (surrounding_static_block != NULL)
5310 while (b != surrounding_static_block)
5311 {
5312 QUIT;
5313
5314 ALL_BLOCK_SYMBOLS (b, iter, sym)
5315 {
5316 if (code == TYPE_CODE_UNDEF)
5317 {
5318 completion_list_add_symbol (tracker, sym, lookup_name,
5319 sym_text, word);
5320 completion_list_add_fields (tracker, sym, lookup_name,
5321 sym_text, word);
5322 }
5323 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5324 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5325 completion_list_add_symbol (tracker, sym, lookup_name,
5326 sym_text, word);
5327 }
5328
5329 /* Stop when we encounter an enclosing function. Do not stop for
5330 non-inlined functions - the locals of the enclosing function
5331 are in scope for a nested function. */
5332 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5333 break;
5334 b = BLOCK_SUPERBLOCK (b);
5335 }
5336
5337 /* Add fields from the file's types; symbols will be added below. */
5338
5339 if (code == TYPE_CODE_UNDEF)
5340 {
5341 if (surrounding_static_block != NULL)
5342 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5343 completion_list_add_fields (tracker, sym, lookup_name,
5344 sym_text, word);
5345
5346 if (surrounding_global_block != NULL)
5347 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5348 completion_list_add_fields (tracker, sym, lookup_name,
5349 sym_text, word);
5350 }
5351
5352 /* Skip macros if we are completing a struct tag -- arguable but
5353 usually what is expected. */
5354 if (current_language->la_macro_expansion == macro_expansion_c
5355 && code == TYPE_CODE_UNDEF)
5356 {
5357 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5358
5359 /* This adds a macro's name to the current completion list. */
5360 auto add_macro_name = [&] (const char *macro_name,
5361 const macro_definition *,
5362 macro_source_file *,
5363 int)
5364 {
5365 completion_list_add_name (tracker, language_c, macro_name,
5366 lookup_name, sym_text, word);
5367 };
5368
5369 /* Add any macros visible in the default scope. Note that this
5370 may yield the occasional wrong result, because an expression
5371 might be evaluated in a scope other than the default. For
5372 example, if the user types "break file:line if <TAB>", the
5373 resulting expression will be evaluated at "file:line" -- but
5374 at there does not seem to be a way to detect this at
5375 completion time. */
5376 scope = default_macro_scope ();
5377 if (scope)
5378 macro_for_each_in_scope (scope->file, scope->line,
5379 add_macro_name);
5380
5381 /* User-defined macros are always visible. */
5382 macro_for_each (macro_user_macros, add_macro_name);
5383 }
5384}
5385
5386void
5387default_collect_symbol_completion_matches (completion_tracker &tracker,
5388 complete_symbol_mode mode,
5389 symbol_name_match_type name_match_type,
5390 const char *text, const char *word,
5391 enum type_code code)
5392{
5393 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5394 name_match_type,
5395 text, word, "",
5396 code);
5397}
5398
5399/* Collect all symbols (regardless of class) which begin by matching
5400 TEXT. */
5401
5402void
5403collect_symbol_completion_matches (completion_tracker &tracker,
5404 complete_symbol_mode mode,
5405 symbol_name_match_type name_match_type,
5406 const char *text, const char *word)
5407{
5408 current_language->la_collect_symbol_completion_matches (tracker, mode,
5409 name_match_type,
5410 text, word,
5411 TYPE_CODE_UNDEF);
5412}
5413
5414/* Like collect_symbol_completion_matches, but only collect
5415 STRUCT_DOMAIN symbols whose type code is CODE. */
5416
5417void
5418collect_symbol_completion_matches_type (completion_tracker &tracker,
5419 const char *text, const char *word,
5420 enum type_code code)
5421{
5422 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5423 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5424
5425 gdb_assert (code == TYPE_CODE_UNION
5426 || code == TYPE_CODE_STRUCT
5427 || code == TYPE_CODE_ENUM);
5428 current_language->la_collect_symbol_completion_matches (tracker, mode,
5429 name_match_type,
5430 text, word, code);
5431}
5432
5433/* Like collect_symbol_completion_matches, but collects a list of
5434 symbols defined in all source files named SRCFILE. */
5435
5436void
5437collect_file_symbol_completion_matches (completion_tracker &tracker,
5438 complete_symbol_mode mode,
5439 symbol_name_match_type name_match_type,
5440 const char *text, const char *word,
5441 const char *srcfile)
5442{
5443 /* The symbol we are completing on. Points in same buffer as text. */
5444 const char *sym_text;
5445
5446 /* Now look for the symbol we are supposed to complete on.
5447 FIXME: This should be language-specific. */
5448 if (mode == complete_symbol_mode::LINESPEC)
5449 sym_text = text;
5450 else
5451 {
5452 const char *p;
5453 char quote_found;
5454 const char *quote_pos = NULL;
5455
5456 /* First see if this is a quoted string. */
5457 quote_found = '\0';
5458 for (p = text; *p != '\0'; ++p)
5459 {
5460 if (quote_found != '\0')
5461 {
5462 if (*p == quote_found)
5463 /* Found close quote. */
5464 quote_found = '\0';
5465 else if (*p == '\\' && p[1] == quote_found)
5466 /* A backslash followed by the quote character
5467 doesn't end the string. */
5468 ++p;
5469 }
5470 else if (*p == '\'' || *p == '"')
5471 {
5472 quote_found = *p;
5473 quote_pos = p;
5474 }
5475 }
5476 if (quote_found == '\'')
5477 /* A string within single quotes can be a symbol, so complete on it. */
5478 sym_text = quote_pos + 1;
5479 else if (quote_found == '"')
5480 /* A double-quoted string is never a symbol, nor does it make sense
5481 to complete it any other way. */
5482 {
5483 return;
5484 }
5485 else
5486 {
5487 /* Not a quoted string. */
5488 sym_text = language_search_unquoted_string (text, p);
5489 }
5490 }
5491
5492 lookup_name_info lookup_name (sym_text, name_match_type, true);
5493
5494 /* Go through symtabs for SRCFILE and check the externs and statics
5495 for symbols which match. */
5496 iterate_over_symtabs (srcfile, [&] (symtab *s)
5497 {
5498 add_symtab_completions (SYMTAB_COMPUNIT (s),
5499 tracker, mode, lookup_name,
5500 sym_text, word, TYPE_CODE_UNDEF);
5501 return false;
5502 });
5503}
5504
5505/* A helper function for make_source_files_completion_list. It adds
5506 another file name to a list of possible completions, growing the
5507 list as necessary. */
5508
5509static void
5510add_filename_to_list (const char *fname, const char *text, const char *word,
5511 completion_list *list)
5512{
5513 list->emplace_back (make_completion_match_str (fname, text, word));
5514}
5515
5516static int
5517not_interesting_fname (const char *fname)
5518{
5519 static const char *illegal_aliens[] = {
5520 "_globals_", /* inserted by coff_symtab_read */
5521 NULL
5522 };
5523 int i;
5524
5525 for (i = 0; illegal_aliens[i]; i++)
5526 {
5527 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5528 return 1;
5529 }
5530 return 0;
5531}
5532
5533/* An object of this type is passed as the user_data argument to
5534 map_partial_symbol_filenames. */
5535struct add_partial_filename_data
5536{
5537 struct filename_seen_cache *filename_seen_cache;
5538 const char *text;
5539 const char *word;
5540 int text_len;
5541 completion_list *list;
5542};
5543
5544/* A callback for map_partial_symbol_filenames. */
5545
5546static void
5547maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5548 void *user_data)
5549{
5550 struct add_partial_filename_data *data
5551 = (struct add_partial_filename_data *) user_data;
5552
5553 if (not_interesting_fname (filename))
5554 return;
5555 if (!data->filename_seen_cache->seen (filename)
5556 && filename_ncmp (filename, data->text, data->text_len) == 0)
5557 {
5558 /* This file matches for a completion; add it to the
5559 current list of matches. */
5560 add_filename_to_list (filename, data->text, data->word, data->list);
5561 }
5562 else
5563 {
5564 const char *base_name = lbasename (filename);
5565
5566 if (base_name != filename
5567 && !data->filename_seen_cache->seen (base_name)
5568 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5569 add_filename_to_list (base_name, data->text, data->word, data->list);
5570 }
5571}
5572
5573/* Return a list of all source files whose names begin with matching
5574 TEXT. The file names are looked up in the symbol tables of this
5575 program. */
5576
5577completion_list
5578make_source_files_completion_list (const char *text, const char *word)
5579{
5580 size_t text_len = strlen (text);
5581 completion_list list;
5582 const char *base_name;
5583 struct add_partial_filename_data datum;
5584
5585 if (!have_full_symbols () && !have_partial_symbols ())
5586 return list;
5587
5588 filename_seen_cache filenames_seen;
5589
5590 for (objfile *objfile : current_program_space->objfiles ())
5591 {
5592 for (compunit_symtab *cu : objfile->compunits ())
5593 {
5594 for (symtab *s : compunit_filetabs (cu))
5595 {
5596 if (not_interesting_fname (s->filename))
5597 continue;
5598 if (!filenames_seen.seen (s->filename)
5599 && filename_ncmp (s->filename, text, text_len) == 0)
5600 {
5601 /* This file matches for a completion; add it to the current
5602 list of matches. */
5603 add_filename_to_list (s->filename, text, word, &list);
5604 }
5605 else
5606 {
5607 /* NOTE: We allow the user to type a base name when the
5608 debug info records leading directories, but not the other
5609 way around. This is what subroutines of breakpoint
5610 command do when they parse file names. */
5611 base_name = lbasename (s->filename);
5612 if (base_name != s->filename
5613 && !filenames_seen.seen (base_name)
5614 && filename_ncmp (base_name, text, text_len) == 0)
5615 add_filename_to_list (base_name, text, word, &list);
5616 }
5617 }
5618 }
5619 }
5620
5621 datum.filename_seen_cache = &filenames_seen;
5622 datum.text = text;
5623 datum.word = word;
5624 datum.text_len = text_len;
5625 datum.list = &list;
5626 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5627 0 /*need_fullname*/);
5628
5629 return list;
5630}
5631\f
5632/* Track MAIN */
5633
5634/* Return the "main_info" object for the current program space. If
5635 the object has not yet been created, create it and fill in some
5636 default values. */
5637
5638static struct main_info *
5639get_main_info (void)
5640{
5641 struct main_info *info = main_progspace_key.get (current_program_space);
5642
5643 if (info == NULL)
5644 {
5645 /* It may seem strange to store the main name in the progspace
5646 and also in whatever objfile happens to see a main name in
5647 its debug info. The reason for this is mainly historical:
5648 gdb returned "main" as the name even if no function named
5649 "main" was defined the program; and this approach lets us
5650 keep compatibility. */
5651 info = main_progspace_key.emplace (current_program_space);
5652 }
5653
5654 return info;
5655}
5656
5657static void
5658set_main_name (const char *name, enum language lang)
5659{
5660 struct main_info *info = get_main_info ();
5661
5662 if (info->name_of_main != NULL)
5663 {
5664 xfree (info->name_of_main);
5665 info->name_of_main = NULL;
5666 info->language_of_main = language_unknown;
5667 }
5668 if (name != NULL)
5669 {
5670 info->name_of_main = xstrdup (name);
5671 info->language_of_main = lang;
5672 }
5673}
5674
5675/* Deduce the name of the main procedure, and set NAME_OF_MAIN
5676 accordingly. */
5677
5678static void
5679find_main_name (void)
5680{
5681 const char *new_main_name;
5682
5683 /* First check the objfiles to see whether a debuginfo reader has
5684 picked up the appropriate main name. Historically the main name
5685 was found in a more or less random way; this approach instead
5686 relies on the order of objfile creation -- which still isn't
5687 guaranteed to get the correct answer, but is just probably more
5688 accurate. */
5689 for (objfile *objfile : current_program_space->objfiles ())
5690 {
5691 if (objfile->per_bfd->name_of_main != NULL)
5692 {
5693 set_main_name (objfile->per_bfd->name_of_main,
5694 objfile->per_bfd->language_of_main);
5695 return;
5696 }
5697 }
5698
5699 /* Try to see if the main procedure is in Ada. */
5700 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5701 be to add a new method in the language vector, and call this
5702 method for each language until one of them returns a non-empty
5703 name. This would allow us to remove this hard-coded call to
5704 an Ada function. It is not clear that this is a better approach
5705 at this point, because all methods need to be written in a way
5706 such that false positives never be returned. For instance, it is
5707 important that a method does not return a wrong name for the main
5708 procedure if the main procedure is actually written in a different
5709 language. It is easy to guaranty this with Ada, since we use a
5710 special symbol generated only when the main in Ada to find the name
5711 of the main procedure. It is difficult however to see how this can
5712 be guarantied for languages such as C, for instance. This suggests
5713 that order of call for these methods becomes important, which means
5714 a more complicated approach. */
5715 new_main_name = ada_main_name ();
5716 if (new_main_name != NULL)
5717 {
5718 set_main_name (new_main_name, language_ada);
5719 return;
5720 }
5721
5722 new_main_name = d_main_name ();
5723 if (new_main_name != NULL)
5724 {
5725 set_main_name (new_main_name, language_d);
5726 return;
5727 }
5728
5729 new_main_name = go_main_name ();
5730 if (new_main_name != NULL)
5731 {
5732 set_main_name (new_main_name, language_go);
5733 return;
5734 }
5735
5736 new_main_name = pascal_main_name ();
5737 if (new_main_name != NULL)
5738 {
5739 set_main_name (new_main_name, language_pascal);
5740 return;
5741 }
5742
5743 /* The languages above didn't identify the name of the main procedure.
5744 Fallback to "main". */
5745 set_main_name ("main", language_unknown);
5746}
5747
5748/* See symtab.h. */
5749
5750const char *
5751main_name ()
5752{
5753 struct main_info *info = get_main_info ();
5754
5755 if (info->name_of_main == NULL)
5756 find_main_name ();
5757
5758 return info->name_of_main;
5759}
5760
5761/* Return the language of the main function. If it is not known,
5762 return language_unknown. */
5763
5764enum language
5765main_language (void)
5766{
5767 struct main_info *info = get_main_info ();
5768
5769 if (info->name_of_main == NULL)
5770 find_main_name ();
5771
5772 return info->language_of_main;
5773}
5774
5775/* Handle ``executable_changed'' events for the symtab module. */
5776
5777static void
5778symtab_observer_executable_changed (void)
5779{
5780 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5781 set_main_name (NULL, language_unknown);
5782}
5783
5784/* Return 1 if the supplied producer string matches the ARM RealView
5785 compiler (armcc). */
5786
5787int
5788producer_is_realview (const char *producer)
5789{
5790 static const char *const arm_idents[] = {
5791 "ARM C Compiler, ADS",
5792 "Thumb C Compiler, ADS",
5793 "ARM C++ Compiler, ADS",
5794 "Thumb C++ Compiler, ADS",
5795 "ARM/Thumb C/C++ Compiler, RVCT",
5796 "ARM C/C++ Compiler, RVCT"
5797 };
5798 int i;
5799
5800 if (producer == NULL)
5801 return 0;
5802
5803 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5804 if (startswith (producer, arm_idents[i]))
5805 return 1;
5806
5807 return 0;
5808}
5809
5810\f
5811
5812/* The next index to hand out in response to a registration request. */
5813
5814static int next_aclass_value = LOC_FINAL_VALUE;
5815
5816/* The maximum number of "aclass" registrations we support. This is
5817 constant for convenience. */
5818#define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5819
5820/* The objects representing the various "aclass" values. The elements
5821 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5822 elements are those registered at gdb initialization time. */
5823
5824static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5825
5826/* The globally visible pointer. This is separate from 'symbol_impl'
5827 so that it can be const. */
5828
5829const struct symbol_impl *symbol_impls = &symbol_impl[0];
5830
5831/* Make sure we saved enough room in struct symbol. */
5832
5833gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5834
5835/* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5836 is the ops vector associated with this index. This returns the new
5837 index, which should be used as the aclass_index field for symbols
5838 of this type. */
5839
5840int
5841register_symbol_computed_impl (enum address_class aclass,
5842 const struct symbol_computed_ops *ops)
5843{
5844 int result = next_aclass_value++;
5845
5846 gdb_assert (aclass == LOC_COMPUTED);
5847 gdb_assert (result < MAX_SYMBOL_IMPLS);
5848 symbol_impl[result].aclass = aclass;
5849 symbol_impl[result].ops_computed = ops;
5850
5851 /* Sanity check OPS. */
5852 gdb_assert (ops != NULL);
5853 gdb_assert (ops->tracepoint_var_ref != NULL);
5854 gdb_assert (ops->describe_location != NULL);
5855 gdb_assert (ops->get_symbol_read_needs != NULL);
5856 gdb_assert (ops->read_variable != NULL);
5857
5858 return result;
5859}
5860
5861/* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5862 OPS is the ops vector associated with this index. This returns the
5863 new index, which should be used as the aclass_index field for symbols
5864 of this type. */
5865
5866int
5867register_symbol_block_impl (enum address_class aclass,
5868 const struct symbol_block_ops *ops)
5869{
5870 int result = next_aclass_value++;
5871
5872 gdb_assert (aclass == LOC_BLOCK);
5873 gdb_assert (result < MAX_SYMBOL_IMPLS);
5874 symbol_impl[result].aclass = aclass;
5875 symbol_impl[result].ops_block = ops;
5876
5877 /* Sanity check OPS. */
5878 gdb_assert (ops != NULL);
5879 gdb_assert (ops->find_frame_base_location != NULL);
5880
5881 return result;
5882}
5883
5884/* Register a register symbol type. ACLASS must be LOC_REGISTER or
5885 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5886 this index. This returns the new index, which should be used as
5887 the aclass_index field for symbols of this type. */
5888
5889int
5890register_symbol_register_impl (enum address_class aclass,
5891 const struct symbol_register_ops *ops)
5892{
5893 int result = next_aclass_value++;
5894
5895 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5896 gdb_assert (result < MAX_SYMBOL_IMPLS);
5897 symbol_impl[result].aclass = aclass;
5898 symbol_impl[result].ops_register = ops;
5899
5900 return result;
5901}
5902
5903/* Initialize elements of 'symbol_impl' for the constants in enum
5904 address_class. */
5905
5906static void
5907initialize_ordinary_address_classes (void)
5908{
5909 int i;
5910
5911 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5912 symbol_impl[i].aclass = (enum address_class) i;
5913}
5914
5915\f
5916
5917/* Helper function to initialize the fields of an objfile-owned symbol.
5918 It assumed that *SYM is already all zeroes. */
5919
5920static void
5921initialize_objfile_symbol_1 (struct symbol *sym)
5922{
5923 SYMBOL_OBJFILE_OWNED (sym) = 1;
5924 SYMBOL_SECTION (sym) = -1;
5925}
5926
5927/* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5928
5929void
5930initialize_objfile_symbol (struct symbol *sym)
5931{
5932 memset (sym, 0, sizeof (*sym));
5933 initialize_objfile_symbol_1 (sym);
5934}
5935
5936/* Allocate and initialize a new 'struct symbol' on OBJFILE's
5937 obstack. */
5938
5939struct symbol *
5940allocate_symbol (struct objfile *objfile)
5941{
5942 struct symbol *result;
5943
5944 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5945 initialize_objfile_symbol_1 (result);
5946
5947 return result;
5948}
5949
5950/* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5951 obstack. */
5952
5953struct template_symbol *
5954allocate_template_symbol (struct objfile *objfile)
5955{
5956 struct template_symbol *result;
5957
5958 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5959 initialize_objfile_symbol_1 (result);
5960
5961 return result;
5962}
5963
5964/* See symtab.h. */
5965
5966struct objfile *
5967symbol_objfile (const struct symbol *symbol)
5968{
5969 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5970 return SYMTAB_OBJFILE (symbol->owner.symtab);
5971}
5972
5973/* See symtab.h. */
5974
5975struct gdbarch *
5976symbol_arch (const struct symbol *symbol)
5977{
5978 if (!SYMBOL_OBJFILE_OWNED (symbol))
5979 return symbol->owner.arch;
5980 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5981}
5982
5983/* See symtab.h. */
5984
5985struct symtab *
5986symbol_symtab (const struct symbol *symbol)
5987{
5988 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5989 return symbol->owner.symtab;
5990}
5991
5992/* See symtab.h. */
5993
5994void
5995symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5996{
5997 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5998 symbol->owner.symtab = symtab;
5999}
6000
6001\f
6002
6003void
6004_initialize_symtab (void)
6005{
6006 cmd_list_element *c;
6007
6008 initialize_ordinary_address_classes ();
6009
6010 c = add_info ("variables", info_variables_command,
6011 info_print_args_help (_("\
6012All global and static variable names or those matching REGEXPs.\n\
6013Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6014Prints the global and static variables.\n"),
6015 _("global and static variables")));
6016 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6017 if (dbx_commands)
6018 {
6019 c = add_com ("whereis", class_info, info_variables_command,
6020 info_print_args_help (_("\
6021All global and static variable names, or those matching REGEXPs.\n\
6022Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6023Prints the global and static variables.\n"),
6024 _("global and static variables")));
6025 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6026 }
6027
6028 c = add_info ("functions", info_functions_command,
6029 info_print_args_help (_("\
6030All function names or those matching REGEXPs.\n\
6031Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6032Prints the functions.\n"),
6033 _("functions")));
6034 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6035
6036 /* FIXME: This command has at least the following problems:
6037 1. It prints builtin types (in a very strange and confusing fashion).
6038 2. It doesn't print right, e.g. with
6039 typedef struct foo *FOO
6040 type_print prints "FOO" when we want to make it (in this situation)
6041 print "struct foo *".
6042 I also think "ptype" or "whatis" is more likely to be useful (but if
6043 there is much disagreement "info types" can be fixed). */
6044 add_info ("types", info_types_command,
6045 _("All type names, or those matching REGEXP."));
6046
6047 add_info ("sources", info_sources_command,
6048 _("Source files in the program."));
6049
6050 add_com ("rbreak", class_breakpoint, rbreak_command,
6051 _("Set a breakpoint for all functions matching REGEXP."));
6052
6053 add_setshow_enum_cmd ("multiple-symbols", no_class,
6054 multiple_symbols_modes, &multiple_symbols_mode,
6055 _("\
6056Set the debugger behavior when more than one symbol are possible matches\n\
6057in an expression."), _("\
6058Show how the debugger handles ambiguities in expressions."), _("\
6059Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6060 NULL, NULL, &setlist, &showlist);
6061
6062 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6063 &basenames_may_differ, _("\
6064Set whether a source file may have multiple base names."), _("\
6065Show whether a source file may have multiple base names."), _("\
6066(A \"base name\" is the name of a file with the directory part removed.\n\
6067Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6068If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6069before comparing them. Canonicalization is an expensive operation,\n\
6070but it allows the same file be known by more than one base name.\n\
6071If not set (the default), all source files are assumed to have just\n\
6072one base name, and gdb will do file name comparisons more efficiently."),
6073 NULL, NULL,
6074 &setlist, &showlist);
6075
6076 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6077 _("Set debugging of symbol table creation."),
6078 _("Show debugging of symbol table creation."), _("\
6079When enabled (non-zero), debugging messages are printed when building\n\
6080symbol tables. A value of 1 (one) normally provides enough information.\n\
6081A value greater than 1 provides more verbose information."),
6082 NULL,
6083 NULL,
6084 &setdebuglist, &showdebuglist);
6085
6086 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6087 _("\
6088Set debugging of symbol lookup."), _("\
6089Show debugging of symbol lookup."), _("\
6090When enabled (non-zero), symbol lookups are logged."),
6091 NULL, NULL,
6092 &setdebuglist, &showdebuglist);
6093
6094 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6095 &new_symbol_cache_size,
6096 _("Set the size of the symbol cache."),
6097 _("Show the size of the symbol cache."), _("\
6098The size of the symbol cache.\n\
6099If zero then the symbol cache is disabled."),
6100 set_symbol_cache_size_handler, NULL,
6101 &maintenance_set_cmdlist,
6102 &maintenance_show_cmdlist);
6103
6104 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6105 _("Dump the symbol cache for each program space."),
6106 &maintenanceprintlist);
6107
6108 add_cmd ("symbol-cache-statistics", class_maintenance,
6109 maintenance_print_symbol_cache_statistics,
6110 _("Print symbol cache statistics for each program space."),
6111 &maintenanceprintlist);
6112
6113 add_cmd ("flush-symbol-cache", class_maintenance,
6114 maintenance_flush_symbol_cache,
6115 _("Flush the symbol cache for each program space."),
6116 &maintenancelist);
6117
6118 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6119 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6120 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6121}
This page took 0.046977 seconds and 4 git commands to generate.