Really fail inserting software breakpoints on read-only regions
[deliverable/binutils-gdb.git] / gdb / target.c
... / ...
CommitLineData
1/* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "target.h"
24#include "target-dcache.h"
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
28#include "infrun.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "dcache.h"
33#include <signal.h>
34#include "regcache.h"
35#include "gdbcore.h"
36#include "exceptions.h"
37#include "target-descriptions.h"
38#include "gdbthread.h"
39#include "solib.h"
40#include "exec.h"
41#include "inline-frame.h"
42#include "tracepoint.h"
43#include "gdb/fileio.h"
44#include "agent.h"
45#include "auxv.h"
46#include "target-debug.h"
47
48static void target_info (char *, int);
49
50static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51
52static void default_terminal_info (struct target_ops *, const char *, int);
53
54static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
57static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
59
60static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
61
62static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
65static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
68static void default_mourn_inferior (struct target_ops *self);
69
70static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
77static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
81static struct address_space *default_thread_address_space
82 (struct target_ops *self, ptid_t ptid);
83
84static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86static int return_zero (struct target_ops *);
87
88static int return_zero_has_execution (struct target_ops *, ptid_t);
89
90static void target_command (char *, int);
91
92static struct target_ops *find_default_run_target (char *);
93
94static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
97static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
101static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
104static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
106static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
109static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
110 struct gdbarch *gdbarch);
111
112static struct target_ops debug_target;
113
114#include "target-delegates.c"
115
116static void init_dummy_target (void);
117
118static void update_current_target (void);
119
120/* Vector of existing target structures. */
121typedef struct target_ops *target_ops_p;
122DEF_VEC_P (target_ops_p);
123static VEC (target_ops_p) *target_structs;
124
125/* The initial current target, so that there is always a semi-valid
126 current target. */
127
128static struct target_ops dummy_target;
129
130/* Top of target stack. */
131
132static struct target_ops *target_stack;
133
134/* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137struct target_ops current_target;
138
139/* Command list for target. */
140
141static struct cmd_list_element *targetlist = NULL;
142
143/* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146static int trust_readonly = 0;
147
148/* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151static int show_memory_breakpoints = 0;
152
153/* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157int may_write_registers = 1;
158
159int may_write_memory = 1;
160
161int may_insert_breakpoints = 1;
162
163int may_insert_tracepoints = 1;
164
165int may_insert_fast_tracepoints = 1;
166
167int may_stop = 1;
168
169/* Non-zero if we want to see trace of target level stuff. */
170
171static unsigned int targetdebug = 0;
172
173static void
174set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175{
176 update_current_target ();
177}
178
179static void
180show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184}
185
186static void setup_target_debug (void);
187
188/* The user just typed 'target' without the name of a target. */
189
190static void
191target_command (char *arg, int from_tty)
192{
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195}
196
197/* Default target_has_* methods for process_stratum targets. */
198
199int
200default_child_has_all_memory (struct target_ops *ops)
201{
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207}
208
209int
210default_child_has_memory (struct target_ops *ops)
211{
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217}
218
219int
220default_child_has_stack (struct target_ops *ops)
221{
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227}
228
229int
230default_child_has_registers (struct target_ops *ops)
231{
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237}
238
239int
240default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241{
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248}
249
250
251int
252target_has_all_memory_1 (void)
253{
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261}
262
263int
264target_has_memory_1 (void)
265{
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273}
274
275int
276target_has_stack_1 (void)
277{
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285}
286
287int
288target_has_registers_1 (void)
289{
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297}
298
299int
300target_has_execution_1 (ptid_t the_ptid)
301{
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309}
310
311int
312target_has_execution_current (void)
313{
314 return target_has_execution_1 (inferior_ptid);
315}
316
317/* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320void
321complete_target_initialization (struct target_ops *t)
322{
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347}
348
349/* This is used to implement the various target commands. */
350
351static void
352open_target (char *args, int from_tty, struct cmd_list_element *command)
353{
354 struct target_ops *ops = get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365}
366
367/* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371void
372add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374{
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383Connect to a target machine or process.\n\
384The first argument is the type or protocol of the target machine.\n\
385Remaining arguments are interpreted by the target protocol. For more\n\
386information on the arguments for a particular protocol, type\n\
387`help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394}
395
396/* Add a possible target architecture to the list. */
397
398void
399add_target (struct target_ops *t)
400{
401 add_target_with_completer (t, NULL);
402}
403
404/* See target.h. */
405
406void
407add_deprecated_target_alias (struct target_ops *t, char *alias)
408{
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419}
420
421/* Stub functions */
422
423void
424target_kill (void)
425{
426 current_target.to_kill (&current_target);
427}
428
429void
430target_load (const char *arg, int from_tty)
431{
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434}
435
436void
437target_terminal_inferior (void)
438{
439 /* A background resume (``run&'') should leave GDB in control of the
440 terminal. Use target_can_async_p, not target_is_async_p, since at
441 this point the target is not async yet. However, if sync_execution
442 is not set, we know it will become async prior to resume. */
443 if (target_can_async_p () && !sync_execution)
444 return;
445
446 /* If GDB is resuming the inferior in the foreground, install
447 inferior's terminal modes. */
448 (*current_target.to_terminal_inferior) (&current_target);
449}
450
451/* See target.h. */
452
453int
454target_supports_terminal_ours (void)
455{
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 {
460 if (t->to_terminal_ours != delegate_terminal_ours
461 && t->to_terminal_ours != tdefault_terminal_ours)
462 return 1;
463 }
464
465 return 0;
466}
467
468static void
469tcomplain (void)
470{
471 error (_("You can't do that when your target is `%s'"),
472 current_target.to_shortname);
473}
474
475void
476noprocess (void)
477{
478 error (_("You can't do that without a process to debug."));
479}
480
481static void
482default_terminal_info (struct target_ops *self, const char *args, int from_tty)
483{
484 printf_unfiltered (_("No saved terminal information.\n"));
485}
486
487/* A default implementation for the to_get_ada_task_ptid target method.
488
489 This function builds the PTID by using both LWP and TID as part of
490 the PTID lwp and tid elements. The pid used is the pid of the
491 inferior_ptid. */
492
493static ptid_t
494default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
495{
496 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
497}
498
499static enum exec_direction_kind
500default_execution_direction (struct target_ops *self)
501{
502 if (!target_can_execute_reverse)
503 return EXEC_FORWARD;
504 else if (!target_can_async_p ())
505 return EXEC_FORWARD;
506 else
507 gdb_assert_not_reached ("\
508to_execution_direction must be implemented for reverse async");
509}
510
511/* Go through the target stack from top to bottom, copying over zero
512 entries in current_target, then filling in still empty entries. In
513 effect, we are doing class inheritance through the pushed target
514 vectors.
515
516 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
517 is currently implemented, is that it discards any knowledge of
518 which target an inherited method originally belonged to.
519 Consequently, new new target methods should instead explicitly and
520 locally search the target stack for the target that can handle the
521 request. */
522
523static void
524update_current_target (void)
525{
526 struct target_ops *t;
527
528 /* First, reset current's contents. */
529 memset (&current_target, 0, sizeof (current_target));
530
531 /* Install the delegators. */
532 install_delegators (&current_target);
533
534 current_target.to_stratum = target_stack->to_stratum;
535
536#define INHERIT(FIELD, TARGET) \
537 if (!current_target.FIELD) \
538 current_target.FIELD = (TARGET)->FIELD
539
540 /* Do not add any new INHERITs here. Instead, use the delegation
541 mechanism provided by make-target-delegates. */
542 for (t = target_stack; t; t = t->beneath)
543 {
544 INHERIT (to_shortname, t);
545 INHERIT (to_longname, t);
546 INHERIT (to_attach_no_wait, t);
547 INHERIT (to_have_steppable_watchpoint, t);
548 INHERIT (to_have_continuable_watchpoint, t);
549 INHERIT (to_has_thread_control, t);
550 }
551#undef INHERIT
552
553 /* Finally, position the target-stack beneath the squashed
554 "current_target". That way code looking for a non-inherited
555 target method can quickly and simply find it. */
556 current_target.beneath = target_stack;
557
558 if (targetdebug)
559 setup_target_debug ();
560}
561
562/* Push a new target type into the stack of the existing target accessors,
563 possibly superseding some of the existing accessors.
564
565 Rather than allow an empty stack, we always have the dummy target at
566 the bottom stratum, so we can call the function vectors without
567 checking them. */
568
569void
570push_target (struct target_ops *t)
571{
572 struct target_ops **cur;
573
574 /* Check magic number. If wrong, it probably means someone changed
575 the struct definition, but not all the places that initialize one. */
576 if (t->to_magic != OPS_MAGIC)
577 {
578 fprintf_unfiltered (gdb_stderr,
579 "Magic number of %s target struct wrong\n",
580 t->to_shortname);
581 internal_error (__FILE__, __LINE__,
582 _("failed internal consistency check"));
583 }
584
585 /* Find the proper stratum to install this target in. */
586 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
587 {
588 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
589 break;
590 }
591
592 /* If there's already targets at this stratum, remove them. */
593 /* FIXME: cagney/2003-10-15: I think this should be popping all
594 targets to CUR, and not just those at this stratum level. */
595 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
596 {
597 /* There's already something at this stratum level. Close it,
598 and un-hook it from the stack. */
599 struct target_ops *tmp = (*cur);
600
601 (*cur) = (*cur)->beneath;
602 tmp->beneath = NULL;
603 target_close (tmp);
604 }
605
606 /* We have removed all targets in our stratum, now add the new one. */
607 t->beneath = (*cur);
608 (*cur) = t;
609
610 update_current_target ();
611}
612
613/* Remove a target_ops vector from the stack, wherever it may be.
614 Return how many times it was removed (0 or 1). */
615
616int
617unpush_target (struct target_ops *t)
618{
619 struct target_ops **cur;
620 struct target_ops *tmp;
621
622 if (t->to_stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
624 _("Attempt to unpush the dummy target"));
625
626 /* Look for the specified target. Note that we assume that a target
627 can only occur once in the target stack. */
628
629 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
630 {
631 if ((*cur) == t)
632 break;
633 }
634
635 /* If we don't find target_ops, quit. Only open targets should be
636 closed. */
637 if ((*cur) == NULL)
638 return 0;
639
640 /* Unchain the target. */
641 tmp = (*cur);
642 (*cur) = (*cur)->beneath;
643 tmp->beneath = NULL;
644
645 update_current_target ();
646
647 /* Finally close the target. Note we do this after unchaining, so
648 any target method calls from within the target_close
649 implementation don't end up in T anymore. */
650 target_close (t);
651
652 return 1;
653}
654
655void
656pop_all_targets_above (enum strata above_stratum)
657{
658 while ((int) (current_target.to_stratum) > (int) above_stratum)
659 {
660 if (!unpush_target (target_stack))
661 {
662 fprintf_unfiltered (gdb_stderr,
663 "pop_all_targets couldn't find target %s\n",
664 target_stack->to_shortname);
665 internal_error (__FILE__, __LINE__,
666 _("failed internal consistency check"));
667 break;
668 }
669 }
670}
671
672void
673pop_all_targets (void)
674{
675 pop_all_targets_above (dummy_stratum);
676}
677
678/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
679
680int
681target_is_pushed (struct target_ops *t)
682{
683 struct target_ops *cur;
684
685 /* Check magic number. If wrong, it probably means someone changed
686 the struct definition, but not all the places that initialize one. */
687 if (t->to_magic != OPS_MAGIC)
688 {
689 fprintf_unfiltered (gdb_stderr,
690 "Magic number of %s target struct wrong\n",
691 t->to_shortname);
692 internal_error (__FILE__, __LINE__,
693 _("failed internal consistency check"));
694 }
695
696 for (cur = target_stack; cur != NULL; cur = cur->beneath)
697 if (cur == t)
698 return 1;
699
700 return 0;
701}
702
703/* Default implementation of to_get_thread_local_address. */
704
705static void
706generic_tls_error (void)
707{
708 throw_error (TLS_GENERIC_ERROR,
709 _("Cannot find thread-local variables on this target"));
710}
711
712/* Using the objfile specified in OBJFILE, find the address for the
713 current thread's thread-local storage with offset OFFSET. */
714CORE_ADDR
715target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
716{
717 volatile CORE_ADDR addr = 0;
718 struct target_ops *target = &current_target;
719
720 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
721 {
722 ptid_t ptid = inferior_ptid;
723 volatile struct gdb_exception ex;
724
725 TRY_CATCH (ex, RETURN_MASK_ALL)
726 {
727 CORE_ADDR lm_addr;
728
729 /* Fetch the load module address for this objfile. */
730 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
731 objfile);
732
733 addr = target->to_get_thread_local_address (target, ptid,
734 lm_addr, offset);
735 }
736 /* If an error occurred, print TLS related messages here. Otherwise,
737 throw the error to some higher catcher. */
738 if (ex.reason < 0)
739 {
740 int objfile_is_library = (objfile->flags & OBJF_SHARED);
741
742 switch (ex.error)
743 {
744 case TLS_NO_LIBRARY_SUPPORT_ERROR:
745 error (_("Cannot find thread-local variables "
746 "in this thread library."));
747 break;
748 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
749 if (objfile_is_library)
750 error (_("Cannot find shared library `%s' in dynamic"
751 " linker's load module list"), objfile_name (objfile));
752 else
753 error (_("Cannot find executable file `%s' in dynamic"
754 " linker's load module list"), objfile_name (objfile));
755 break;
756 case TLS_NOT_ALLOCATED_YET_ERROR:
757 if (objfile_is_library)
758 error (_("The inferior has not yet allocated storage for"
759 " thread-local variables in\n"
760 "the shared library `%s'\n"
761 "for %s"),
762 objfile_name (objfile), target_pid_to_str (ptid));
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
768 objfile_name (objfile), target_pid_to_str (ptid));
769 break;
770 case TLS_GENERIC_ERROR:
771 if (objfile_is_library)
772 error (_("Cannot find thread-local storage for %s, "
773 "shared library %s:\n%s"),
774 target_pid_to_str (ptid),
775 objfile_name (objfile), ex.message);
776 else
777 error (_("Cannot find thread-local storage for %s, "
778 "executable file %s:\n%s"),
779 target_pid_to_str (ptid),
780 objfile_name (objfile), ex.message);
781 break;
782 default:
783 throw_exception (ex);
784 break;
785 }
786 }
787 }
788 /* It wouldn't be wrong here to try a gdbarch method, too; finding
789 TLS is an ABI-specific thing. But we don't do that yet. */
790 else
791 error (_("Cannot find thread-local variables on this target"));
792
793 return addr;
794}
795
796const char *
797target_xfer_status_to_string (enum target_xfer_status status)
798{
799#define CASE(X) case X: return #X
800 switch (status)
801 {
802 CASE(TARGET_XFER_E_IO);
803 CASE(TARGET_XFER_UNAVAILABLE);
804 default:
805 return "<unknown>";
806 }
807#undef CASE
808};
809
810
811#undef MIN
812#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
813
814/* target_read_string -- read a null terminated string, up to LEN bytes,
815 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
816 Set *STRING to a pointer to malloc'd memory containing the data; the caller
817 is responsible for freeing it. Return the number of bytes successfully
818 read. */
819
820int
821target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
822{
823 int tlen, offset, i;
824 gdb_byte buf[4];
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
831 gdb_assert (string);
832
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = xmalloc (buffer_allocated);
836 bufptr = buffer;
837
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
847 unallocated region of memory. Retry the transfer, requesting
848 a single byte. */
849 tlen = 1;
850 offset = 0;
851 errcode = target_read_memory (memaddr, buf, 1);
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
859
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
880done:
881 *string = buffer;
882 if (errnop != NULL)
883 *errnop = errcode;
884 return nbytes_read;
885}
886
887struct target_section_table *
888target_get_section_table (struct target_ops *target)
889{
890 return (*target->to_get_section_table) (target);
891}
892
893/* Find a section containing ADDR. */
894
895struct target_section *
896target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897{
898 struct target_section_table *table = target_get_section_table (target);
899 struct target_section *secp;
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910}
911
912
913/* Helper for the memory xfer routines. Checks the attributes of the
914 memory region of MEMADDR against the read or write being attempted.
915 If the access is permitted returns true, otherwise returns false.
916 REGION_P is an optional output parameter. If not-NULL, it is
917 filled with a pointer to the memory region of MEMADDR. REG_LEN
918 returns LEN trimmed to the end of the region. This is how much the
919 caller can continue requesting, if the access is permitted. A
920 single xfer request must not straddle memory region boundaries. */
921
922static int
923memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
924 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
925 struct mem_region **region_p)
926{
927 struct mem_region *region;
928
929 region = lookup_mem_region (memaddr);
930
931 if (region_p != NULL)
932 *region_p = region;
933
934 switch (region->attrib.mode)
935 {
936 case MEM_RO:
937 if (writebuf != NULL)
938 return 0;
939 break;
940
941 case MEM_WO:
942 if (readbuf != NULL)
943 return 0;
944 break;
945
946 case MEM_FLASH:
947 /* We only support writing to flash during "load" for now. */
948 if (writebuf != NULL)
949 error (_("Writing to flash memory forbidden in this context"));
950 break;
951
952 case MEM_NONE:
953 return 0;
954 }
955
956 /* region->hi == 0 means there's no upper bound. */
957 if (memaddr + len < region->hi || region->hi == 0)
958 *reg_len = len;
959 else
960 *reg_len = region->hi - memaddr;
961
962 return 1;
963}
964
965/* Read memory from more than one valid target. A core file, for
966 instance, could have some of memory but delegate other bits to
967 the target below it. So, we must manually try all targets. */
968
969static enum target_xfer_status
970raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
971 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
972 ULONGEST *xfered_len)
973{
974 enum target_xfer_status res;
975
976 do
977 {
978 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
979 readbuf, writebuf, memaddr, len,
980 xfered_len);
981 if (res == TARGET_XFER_OK)
982 break;
983
984 /* Stop if the target reports that the memory is not available. */
985 if (res == TARGET_XFER_UNAVAILABLE)
986 break;
987
988 /* We want to continue past core files to executables, but not
989 past a running target's memory. */
990 if (ops->to_has_all_memory (ops))
991 break;
992
993 ops = ops->beneath;
994 }
995 while (ops != NULL);
996
997 /* The cache works at the raw memory level. Make sure the cache
998 gets updated with raw contents no matter what kind of memory
999 object was originally being written. Note we do write-through
1000 first, so that if it fails, we don't write to the cache contents
1001 that never made it to the target. */
1002 if (writebuf != NULL
1003 && !ptid_equal (inferior_ptid, null_ptid)
1004 && target_dcache_init_p ()
1005 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1006 {
1007 DCACHE *dcache = target_dcache_get ();
1008
1009 /* Note that writing to an area of memory which wasn't present
1010 in the cache doesn't cause it to be loaded in. */
1011 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1012 }
1013
1014 return res;
1015}
1016
1017/* Perform a partial memory transfer.
1018 For docs see target.h, to_xfer_partial. */
1019
1020static enum target_xfer_status
1021memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1022 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1023 ULONGEST len, ULONGEST *xfered_len)
1024{
1025 enum target_xfer_status res;
1026 ULONGEST reg_len;
1027 struct mem_region *region;
1028 struct inferior *inf;
1029
1030 /* For accesses to unmapped overlay sections, read directly from
1031 files. Must do this first, as MEMADDR may need adjustment. */
1032 if (readbuf != NULL && overlay_debugging)
1033 {
1034 struct obj_section *section = find_pc_overlay (memaddr);
1035
1036 if (pc_in_unmapped_range (memaddr, section))
1037 {
1038 struct target_section_table *table
1039 = target_get_section_table (ops);
1040 const char *section_name = section->the_bfd_section->name;
1041
1042 memaddr = overlay_mapped_address (memaddr, section);
1043 return section_table_xfer_memory_partial (readbuf, writebuf,
1044 memaddr, len, xfered_len,
1045 table->sections,
1046 table->sections_end,
1047 section_name);
1048 }
1049 }
1050
1051 /* Try the executable files, if "trust-readonly-sections" is set. */
1052 if (readbuf != NULL && trust_readonly)
1053 {
1054 struct target_section *secp;
1055 struct target_section_table *table;
1056
1057 secp = target_section_by_addr (ops, memaddr);
1058 if (secp != NULL
1059 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1060 secp->the_bfd_section)
1061 & SEC_READONLY))
1062 {
1063 table = target_get_section_table (ops);
1064 return section_table_xfer_memory_partial (readbuf, writebuf,
1065 memaddr, len, xfered_len,
1066 table->sections,
1067 table->sections_end,
1068 NULL);
1069 }
1070 }
1071
1072 /* Try GDB's internal data cache. */
1073
1074 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1075 &region))
1076 return TARGET_XFER_E_IO;
1077
1078 if (!ptid_equal (inferior_ptid, null_ptid))
1079 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1080 else
1081 inf = NULL;
1082
1083 if (inf != NULL
1084 && readbuf != NULL
1085 /* The dcache reads whole cache lines; that doesn't play well
1086 with reading from a trace buffer, because reading outside of
1087 the collected memory range fails. */
1088 && get_traceframe_number () == -1
1089 && (region->attrib.cache
1090 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1091 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1092 {
1093 DCACHE *dcache = target_dcache_get_or_init ();
1094
1095 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1096 reg_len, xfered_len);
1097 }
1098
1099 /* If none of those methods found the memory we wanted, fall back
1100 to a target partial transfer. Normally a single call to
1101 to_xfer_partial is enough; if it doesn't recognize an object
1102 it will call the to_xfer_partial of the next target down.
1103 But for memory this won't do. Memory is the only target
1104 object which can be read from more than one valid target.
1105 A core file, for instance, could have some of memory but
1106 delegate other bits to the target below it. So, we must
1107 manually try all targets. */
1108
1109 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1110 xfered_len);
1111
1112 /* If we still haven't got anything, return the last error. We
1113 give up. */
1114 return res;
1115}
1116
1117/* Perform a partial memory transfer. For docs see target.h,
1118 to_xfer_partial. */
1119
1120static enum target_xfer_status
1121memory_xfer_partial (struct target_ops *ops, enum target_object object,
1122 gdb_byte *readbuf, const gdb_byte *writebuf,
1123 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1124{
1125 enum target_xfer_status res;
1126
1127 /* Zero length requests are ok and require no work. */
1128 if (len == 0)
1129 return TARGET_XFER_EOF;
1130
1131 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1132 breakpoint insns, thus hiding out from higher layers whether
1133 there are software breakpoints inserted in the code stream. */
1134 if (readbuf != NULL)
1135 {
1136 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1137 xfered_len);
1138
1139 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1140 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1141 }
1142 else
1143 {
1144 void *buf;
1145 struct cleanup *old_chain;
1146
1147 /* A large write request is likely to be partially satisfied
1148 by memory_xfer_partial_1. We will continually malloc
1149 and free a copy of the entire write request for breakpoint
1150 shadow handling even though we only end up writing a small
1151 subset of it. Cap writes to 4KB to mitigate this. */
1152 len = min (4096, len);
1153
1154 buf = xmalloc (len);
1155 old_chain = make_cleanup (xfree, buf);
1156 memcpy (buf, writebuf, len);
1157
1158 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1159 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1160 xfered_len);
1161
1162 do_cleanups (old_chain);
1163 }
1164
1165 return res;
1166}
1167
1168static void
1169restore_show_memory_breakpoints (void *arg)
1170{
1171 show_memory_breakpoints = (uintptr_t) arg;
1172}
1173
1174struct cleanup *
1175make_show_memory_breakpoints_cleanup (int show)
1176{
1177 int current = show_memory_breakpoints;
1178
1179 show_memory_breakpoints = show;
1180 return make_cleanup (restore_show_memory_breakpoints,
1181 (void *) (uintptr_t) current);
1182}
1183
1184/* For docs see target.h, to_xfer_partial. */
1185
1186enum target_xfer_status
1187target_xfer_partial (struct target_ops *ops,
1188 enum target_object object, const char *annex,
1189 gdb_byte *readbuf, const gdb_byte *writebuf,
1190 ULONGEST offset, ULONGEST len,
1191 ULONGEST *xfered_len)
1192{
1193 enum target_xfer_status retval;
1194
1195 gdb_assert (ops->to_xfer_partial != NULL);
1196
1197 /* Transfer is done when LEN is zero. */
1198 if (len == 0)
1199 return TARGET_XFER_EOF;
1200
1201 if (writebuf && !may_write_memory)
1202 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1203 core_addr_to_string_nz (offset), plongest (len));
1204
1205 *xfered_len = 0;
1206
1207 /* If this is a memory transfer, let the memory-specific code
1208 have a look at it instead. Memory transfers are more
1209 complicated. */
1210 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1211 || object == TARGET_OBJECT_CODE_MEMORY)
1212 retval = memory_xfer_partial (ops, object, readbuf,
1213 writebuf, offset, len, xfered_len);
1214 else if (object == TARGET_OBJECT_RAW_MEMORY)
1215 {
1216 /* Skip/avoid accessing the target if the memory region
1217 attributes block the access. Check this here instead of in
1218 raw_memory_xfer_partial as otherwise we'd end up checking
1219 this twice in the case of the memory_xfer_partial path is
1220 taken; once before checking the dcache, and another in the
1221 tail call to raw_memory_xfer_partial. */
1222 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1223 NULL))
1224 return TARGET_XFER_E_IO;
1225
1226 /* Request the normal memory object from other layers. */
1227 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1228 xfered_len);
1229 }
1230 else
1231 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1232 writebuf, offset, len, xfered_len);
1233
1234 if (targetdebug)
1235 {
1236 const unsigned char *myaddr = NULL;
1237
1238 fprintf_unfiltered (gdb_stdlog,
1239 "%s:target_xfer_partial "
1240 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1241 ops->to_shortname,
1242 (int) object,
1243 (annex ? annex : "(null)"),
1244 host_address_to_string (readbuf),
1245 host_address_to_string (writebuf),
1246 core_addr_to_string_nz (offset),
1247 pulongest (len), retval,
1248 pulongest (*xfered_len));
1249
1250 if (readbuf)
1251 myaddr = readbuf;
1252 if (writebuf)
1253 myaddr = writebuf;
1254 if (retval == TARGET_XFER_OK && myaddr != NULL)
1255 {
1256 int i;
1257
1258 fputs_unfiltered (", bytes =", gdb_stdlog);
1259 for (i = 0; i < *xfered_len; i++)
1260 {
1261 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1262 {
1263 if (targetdebug < 2 && i > 0)
1264 {
1265 fprintf_unfiltered (gdb_stdlog, " ...");
1266 break;
1267 }
1268 fprintf_unfiltered (gdb_stdlog, "\n");
1269 }
1270
1271 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1272 }
1273 }
1274
1275 fputc_unfiltered ('\n', gdb_stdlog);
1276 }
1277
1278 /* Check implementations of to_xfer_partial update *XFERED_LEN
1279 properly. Do assertion after printing debug messages, so that we
1280 can find more clues on assertion failure from debugging messages. */
1281 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1282 gdb_assert (*xfered_len > 0);
1283
1284 return retval;
1285}
1286
1287/* Read LEN bytes of target memory at address MEMADDR, placing the
1288 results in GDB's memory at MYADDR. Returns either 0 for success or
1289 TARGET_XFER_E_IO if any error occurs.
1290
1291 If an error occurs, no guarantee is made about the contents of the data at
1292 MYADDR. In particular, the caller should not depend upon partial reads
1293 filling the buffer with good data. There is no way for the caller to know
1294 how much good data might have been transfered anyway. Callers that can
1295 deal with partial reads should call target_read (which will retry until
1296 it makes no progress, and then return how much was transferred). */
1297
1298int
1299target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1300{
1301 /* Dispatch to the topmost target, not the flattened current_target.
1302 Memory accesses check target->to_has_(all_)memory, and the
1303 flattened target doesn't inherit those. */
1304 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1305 myaddr, memaddr, len) == len)
1306 return 0;
1307 else
1308 return TARGET_XFER_E_IO;
1309}
1310
1311/* See target/target.h. */
1312
1313int
1314target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1315{
1316 gdb_byte buf[4];
1317 int r;
1318
1319 r = target_read_memory (memaddr, buf, sizeof buf);
1320 if (r != 0)
1321 return r;
1322 *result = extract_unsigned_integer (buf, sizeof buf,
1323 gdbarch_byte_order (target_gdbarch ()));
1324 return 0;
1325}
1326
1327/* Like target_read_memory, but specify explicitly that this is a read
1328 from the target's raw memory. That is, this read bypasses the
1329 dcache, breakpoint shadowing, etc. */
1330
1331int
1332target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1333{
1334 /* See comment in target_read_memory about why the request starts at
1335 current_target.beneath. */
1336 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1338 return 0;
1339 else
1340 return TARGET_XFER_E_IO;
1341}
1342
1343/* Like target_read_memory, but specify explicitly that this is a read from
1344 the target's stack. This may trigger different cache behavior. */
1345
1346int
1347target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1348{
1349 /* See comment in target_read_memory about why the request starts at
1350 current_target.beneath. */
1351 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1352 myaddr, memaddr, len) == len)
1353 return 0;
1354 else
1355 return TARGET_XFER_E_IO;
1356}
1357
1358/* Like target_read_memory, but specify explicitly that this is a read from
1359 the target's code. This may trigger different cache behavior. */
1360
1361int
1362target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1363{
1364 /* See comment in target_read_memory about why the request starts at
1365 current_target.beneath. */
1366 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return TARGET_XFER_E_IO;
1371}
1372
1373/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1374 Returns either 0 for success or TARGET_XFER_E_IO if any
1375 error occurs. If an error occurs, no guarantee is made about how
1376 much data got written. Callers that can deal with partial writes
1377 should call target_write. */
1378
1379int
1380target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1381{
1382 /* See comment in target_read_memory about why the request starts at
1383 current_target.beneath. */
1384 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1385 myaddr, memaddr, len) == len)
1386 return 0;
1387 else
1388 return TARGET_XFER_E_IO;
1389}
1390
1391/* Write LEN bytes from MYADDR to target raw memory at address
1392 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1393 if any error occurs. If an error occurs, no guarantee is made
1394 about how much data got written. Callers that can deal with
1395 partial writes should call target_write. */
1396
1397int
1398target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1399{
1400 /* See comment in target_read_memory about why the request starts at
1401 current_target.beneath. */
1402 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1403 myaddr, memaddr, len) == len)
1404 return 0;
1405 else
1406 return TARGET_XFER_E_IO;
1407}
1408
1409/* Fetch the target's memory map. */
1410
1411VEC(mem_region_s) *
1412target_memory_map (void)
1413{
1414 VEC(mem_region_s) *result;
1415 struct mem_region *last_one, *this_one;
1416 int ix;
1417 struct target_ops *t;
1418
1419 result = current_target.to_memory_map (&current_target);
1420 if (result == NULL)
1421 return NULL;
1422
1423 qsort (VEC_address (mem_region_s, result),
1424 VEC_length (mem_region_s, result),
1425 sizeof (struct mem_region), mem_region_cmp);
1426
1427 /* Check that regions do not overlap. Simultaneously assign
1428 a numbering for the "mem" commands to use to refer to
1429 each region. */
1430 last_one = NULL;
1431 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1432 {
1433 this_one->number = ix;
1434
1435 if (last_one && last_one->hi > this_one->lo)
1436 {
1437 warning (_("Overlapping regions in memory map: ignoring"));
1438 VEC_free (mem_region_s, result);
1439 return NULL;
1440 }
1441 last_one = this_one;
1442 }
1443
1444 return result;
1445}
1446
1447void
1448target_flash_erase (ULONGEST address, LONGEST length)
1449{
1450 current_target.to_flash_erase (&current_target, address, length);
1451}
1452
1453void
1454target_flash_done (void)
1455{
1456 current_target.to_flash_done (&current_target);
1457}
1458
1459static void
1460show_trust_readonly (struct ui_file *file, int from_tty,
1461 struct cmd_list_element *c, const char *value)
1462{
1463 fprintf_filtered (file,
1464 _("Mode for reading from readonly sections is %s.\n"),
1465 value);
1466}
1467
1468/* Target vector read/write partial wrapper functions. */
1469
1470static enum target_xfer_status
1471target_read_partial (struct target_ops *ops,
1472 enum target_object object,
1473 const char *annex, gdb_byte *buf,
1474 ULONGEST offset, ULONGEST len,
1475 ULONGEST *xfered_len)
1476{
1477 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1478 xfered_len);
1479}
1480
1481static enum target_xfer_status
1482target_write_partial (struct target_ops *ops,
1483 enum target_object object,
1484 const char *annex, const gdb_byte *buf,
1485 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1486{
1487 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1488 xfered_len);
1489}
1490
1491/* Wrappers to perform the full transfer. */
1492
1493/* For docs on target_read see target.h. */
1494
1495LONGEST
1496target_read (struct target_ops *ops,
1497 enum target_object object,
1498 const char *annex, gdb_byte *buf,
1499 ULONGEST offset, LONGEST len)
1500{
1501 LONGEST xfered = 0;
1502
1503 while (xfered < len)
1504 {
1505 ULONGEST xfered_len;
1506 enum target_xfer_status status;
1507
1508 status = target_read_partial (ops, object, annex,
1509 (gdb_byte *) buf + xfered,
1510 offset + xfered, len - xfered,
1511 &xfered_len);
1512
1513 /* Call an observer, notifying them of the xfer progress? */
1514 if (status == TARGET_XFER_EOF)
1515 return xfered;
1516 else if (status == TARGET_XFER_OK)
1517 {
1518 xfered += xfered_len;
1519 QUIT;
1520 }
1521 else
1522 return -1;
1523
1524 }
1525 return len;
1526}
1527
1528/* Assuming that the entire [begin, end) range of memory cannot be
1529 read, try to read whatever subrange is possible to read.
1530
1531 The function returns, in RESULT, either zero or one memory block.
1532 If there's a readable subrange at the beginning, it is completely
1533 read and returned. Any further readable subrange will not be read.
1534 Otherwise, if there's a readable subrange at the end, it will be
1535 completely read and returned. Any readable subranges before it
1536 (obviously, not starting at the beginning), will be ignored. In
1537 other cases -- either no readable subrange, or readable subrange(s)
1538 that is neither at the beginning, or end, nothing is returned.
1539
1540 The purpose of this function is to handle a read across a boundary
1541 of accessible memory in a case when memory map is not available.
1542 The above restrictions are fine for this case, but will give
1543 incorrect results if the memory is 'patchy'. However, supporting
1544 'patchy' memory would require trying to read every single byte,
1545 and it seems unacceptable solution. Explicit memory map is
1546 recommended for this case -- and target_read_memory_robust will
1547 take care of reading multiple ranges then. */
1548
1549static void
1550read_whatever_is_readable (struct target_ops *ops,
1551 ULONGEST begin, ULONGEST end,
1552 VEC(memory_read_result_s) **result)
1553{
1554 gdb_byte *buf = xmalloc (end - begin);
1555 ULONGEST current_begin = begin;
1556 ULONGEST current_end = end;
1557 int forward;
1558 memory_read_result_s r;
1559 ULONGEST xfered_len;
1560
1561 /* If we previously failed to read 1 byte, nothing can be done here. */
1562 if (end - begin <= 1)
1563 {
1564 xfree (buf);
1565 return;
1566 }
1567
1568 /* Check that either first or the last byte is readable, and give up
1569 if not. This heuristic is meant to permit reading accessible memory
1570 at the boundary of accessible region. */
1571 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1572 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1573 {
1574 forward = 1;
1575 ++current_begin;
1576 }
1577 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1578 buf + (end-begin) - 1, end - 1, 1,
1579 &xfered_len) == TARGET_XFER_OK)
1580 {
1581 forward = 0;
1582 --current_end;
1583 }
1584 else
1585 {
1586 xfree (buf);
1587 return;
1588 }
1589
1590 /* Loop invariant is that the [current_begin, current_end) was previously
1591 found to be not readable as a whole.
1592
1593 Note loop condition -- if the range has 1 byte, we can't divide the range
1594 so there's no point trying further. */
1595 while (current_end - current_begin > 1)
1596 {
1597 ULONGEST first_half_begin, first_half_end;
1598 ULONGEST second_half_begin, second_half_end;
1599 LONGEST xfer;
1600 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1601
1602 if (forward)
1603 {
1604 first_half_begin = current_begin;
1605 first_half_end = middle;
1606 second_half_begin = middle;
1607 second_half_end = current_end;
1608 }
1609 else
1610 {
1611 first_half_begin = middle;
1612 first_half_end = current_end;
1613 second_half_begin = current_begin;
1614 second_half_end = middle;
1615 }
1616
1617 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1618 buf + (first_half_begin - begin),
1619 first_half_begin,
1620 first_half_end - first_half_begin);
1621
1622 if (xfer == first_half_end - first_half_begin)
1623 {
1624 /* This half reads up fine. So, the error must be in the
1625 other half. */
1626 current_begin = second_half_begin;
1627 current_end = second_half_end;
1628 }
1629 else
1630 {
1631 /* This half is not readable. Because we've tried one byte, we
1632 know some part of this half if actually redable. Go to the next
1633 iteration to divide again and try to read.
1634
1635 We don't handle the other half, because this function only tries
1636 to read a single readable subrange. */
1637 current_begin = first_half_begin;
1638 current_end = first_half_end;
1639 }
1640 }
1641
1642 if (forward)
1643 {
1644 /* The [begin, current_begin) range has been read. */
1645 r.begin = begin;
1646 r.end = current_begin;
1647 r.data = buf;
1648 }
1649 else
1650 {
1651 /* The [current_end, end) range has been read. */
1652 LONGEST rlen = end - current_end;
1653
1654 r.data = xmalloc (rlen);
1655 memcpy (r.data, buf + current_end - begin, rlen);
1656 r.begin = current_end;
1657 r.end = end;
1658 xfree (buf);
1659 }
1660 VEC_safe_push(memory_read_result_s, (*result), &r);
1661}
1662
1663void
1664free_memory_read_result_vector (void *x)
1665{
1666 VEC(memory_read_result_s) *v = x;
1667 memory_read_result_s *current;
1668 int ix;
1669
1670 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1671 {
1672 xfree (current->data);
1673 }
1674 VEC_free (memory_read_result_s, v);
1675}
1676
1677VEC(memory_read_result_s) *
1678read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1679{
1680 VEC(memory_read_result_s) *result = 0;
1681
1682 LONGEST xfered = 0;
1683 while (xfered < len)
1684 {
1685 struct mem_region *region = lookup_mem_region (offset + xfered);
1686 LONGEST rlen;
1687
1688 /* If there is no explicit region, a fake one should be created. */
1689 gdb_assert (region);
1690
1691 if (region->hi == 0)
1692 rlen = len - xfered;
1693 else
1694 rlen = region->hi - offset;
1695
1696 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1697 {
1698 /* Cannot read this region. Note that we can end up here only
1699 if the region is explicitly marked inaccessible, or
1700 'inaccessible-by-default' is in effect. */
1701 xfered += rlen;
1702 }
1703 else
1704 {
1705 LONGEST to_read = min (len - xfered, rlen);
1706 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1707
1708 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1709 (gdb_byte *) buffer,
1710 offset + xfered, to_read);
1711 /* Call an observer, notifying them of the xfer progress? */
1712 if (xfer <= 0)
1713 {
1714 /* Got an error reading full chunk. See if maybe we can read
1715 some subrange. */
1716 xfree (buffer);
1717 read_whatever_is_readable (ops, offset + xfered,
1718 offset + xfered + to_read, &result);
1719 xfered += to_read;
1720 }
1721 else
1722 {
1723 struct memory_read_result r;
1724 r.data = buffer;
1725 r.begin = offset + xfered;
1726 r.end = r.begin + xfer;
1727 VEC_safe_push (memory_read_result_s, result, &r);
1728 xfered += xfer;
1729 }
1730 QUIT;
1731 }
1732 }
1733 return result;
1734}
1735
1736
1737/* An alternative to target_write with progress callbacks. */
1738
1739LONGEST
1740target_write_with_progress (struct target_ops *ops,
1741 enum target_object object,
1742 const char *annex, const gdb_byte *buf,
1743 ULONGEST offset, LONGEST len,
1744 void (*progress) (ULONGEST, void *), void *baton)
1745{
1746 LONGEST xfered = 0;
1747
1748 /* Give the progress callback a chance to set up. */
1749 if (progress)
1750 (*progress) (0, baton);
1751
1752 while (xfered < len)
1753 {
1754 ULONGEST xfered_len;
1755 enum target_xfer_status status;
1756
1757 status = target_write_partial (ops, object, annex,
1758 (gdb_byte *) buf + xfered,
1759 offset + xfered, len - xfered,
1760 &xfered_len);
1761
1762 if (status != TARGET_XFER_OK)
1763 return status == TARGET_XFER_EOF ? xfered : -1;
1764
1765 if (progress)
1766 (*progress) (xfered_len, baton);
1767
1768 xfered += xfered_len;
1769 QUIT;
1770 }
1771 return len;
1772}
1773
1774/* For docs on target_write see target.h. */
1775
1776LONGEST
1777target_write (struct target_ops *ops,
1778 enum target_object object,
1779 const char *annex, const gdb_byte *buf,
1780 ULONGEST offset, LONGEST len)
1781{
1782 return target_write_with_progress (ops, object, annex, buf, offset, len,
1783 NULL, NULL);
1784}
1785
1786/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1787 the size of the transferred data. PADDING additional bytes are
1788 available in *BUF_P. This is a helper function for
1789 target_read_alloc; see the declaration of that function for more
1790 information. */
1791
1792static LONGEST
1793target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1794 const char *annex, gdb_byte **buf_p, int padding)
1795{
1796 size_t buf_alloc, buf_pos;
1797 gdb_byte *buf;
1798
1799 /* This function does not have a length parameter; it reads the
1800 entire OBJECT). Also, it doesn't support objects fetched partly
1801 from one target and partly from another (in a different stratum,
1802 e.g. a core file and an executable). Both reasons make it
1803 unsuitable for reading memory. */
1804 gdb_assert (object != TARGET_OBJECT_MEMORY);
1805
1806 /* Start by reading up to 4K at a time. The target will throttle
1807 this number down if necessary. */
1808 buf_alloc = 4096;
1809 buf = xmalloc (buf_alloc);
1810 buf_pos = 0;
1811 while (1)
1812 {
1813 ULONGEST xfered_len;
1814 enum target_xfer_status status;
1815
1816 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1817 buf_pos, buf_alloc - buf_pos - padding,
1818 &xfered_len);
1819
1820 if (status == TARGET_XFER_EOF)
1821 {
1822 /* Read all there was. */
1823 if (buf_pos == 0)
1824 xfree (buf);
1825 else
1826 *buf_p = buf;
1827 return buf_pos;
1828 }
1829 else if (status != TARGET_XFER_OK)
1830 {
1831 /* An error occurred. */
1832 xfree (buf);
1833 return TARGET_XFER_E_IO;
1834 }
1835
1836 buf_pos += xfered_len;
1837
1838 /* If the buffer is filling up, expand it. */
1839 if (buf_alloc < buf_pos * 2)
1840 {
1841 buf_alloc *= 2;
1842 buf = xrealloc (buf, buf_alloc);
1843 }
1844
1845 QUIT;
1846 }
1847}
1848
1849/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1850 the size of the transferred data. See the declaration in "target.h"
1851 function for more information about the return value. */
1852
1853LONGEST
1854target_read_alloc (struct target_ops *ops, enum target_object object,
1855 const char *annex, gdb_byte **buf_p)
1856{
1857 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1858}
1859
1860/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1861 returned as a string, allocated using xmalloc. If an error occurs
1862 or the transfer is unsupported, NULL is returned. Empty objects
1863 are returned as allocated but empty strings. A warning is issued
1864 if the result contains any embedded NUL bytes. */
1865
1866char *
1867target_read_stralloc (struct target_ops *ops, enum target_object object,
1868 const char *annex)
1869{
1870 gdb_byte *buffer;
1871 char *bufstr;
1872 LONGEST i, transferred;
1873
1874 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1875 bufstr = (char *) buffer;
1876
1877 if (transferred < 0)
1878 return NULL;
1879
1880 if (transferred == 0)
1881 return xstrdup ("");
1882
1883 bufstr[transferred] = 0;
1884
1885 /* Check for embedded NUL bytes; but allow trailing NULs. */
1886 for (i = strlen (bufstr); i < transferred; i++)
1887 if (bufstr[i] != 0)
1888 {
1889 warning (_("target object %d, annex %s, "
1890 "contained unexpected null characters"),
1891 (int) object, annex ? annex : "(none)");
1892 break;
1893 }
1894
1895 return bufstr;
1896}
1897
1898/* Memory transfer methods. */
1899
1900void
1901get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1902 LONGEST len)
1903{
1904 /* This method is used to read from an alternate, non-current
1905 target. This read must bypass the overlay support (as symbols
1906 don't match this target), and GDB's internal cache (wrong cache
1907 for this target). */
1908 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1909 != len)
1910 memory_error (TARGET_XFER_E_IO, addr);
1911}
1912
1913ULONGEST
1914get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1915 int len, enum bfd_endian byte_order)
1916{
1917 gdb_byte buf[sizeof (ULONGEST)];
1918
1919 gdb_assert (len <= sizeof (buf));
1920 get_target_memory (ops, addr, buf, len);
1921 return extract_unsigned_integer (buf, len, byte_order);
1922}
1923
1924/* See target.h. */
1925
1926int
1927target_insert_breakpoint (struct gdbarch *gdbarch,
1928 struct bp_target_info *bp_tgt)
1929{
1930 if (!may_insert_breakpoints)
1931 {
1932 warning (_("May not insert breakpoints"));
1933 return 1;
1934 }
1935
1936 return current_target.to_insert_breakpoint (&current_target,
1937 gdbarch, bp_tgt);
1938}
1939
1940/* See target.h. */
1941
1942int
1943target_remove_breakpoint (struct gdbarch *gdbarch,
1944 struct bp_target_info *bp_tgt)
1945{
1946 /* This is kind of a weird case to handle, but the permission might
1947 have been changed after breakpoints were inserted - in which case
1948 we should just take the user literally and assume that any
1949 breakpoints should be left in place. */
1950 if (!may_insert_breakpoints)
1951 {
1952 warning (_("May not remove breakpoints"));
1953 return 1;
1954 }
1955
1956 return current_target.to_remove_breakpoint (&current_target,
1957 gdbarch, bp_tgt);
1958}
1959
1960static void
1961target_info (char *args, int from_tty)
1962{
1963 struct target_ops *t;
1964 int has_all_mem = 0;
1965
1966 if (symfile_objfile != NULL)
1967 printf_unfiltered (_("Symbols from \"%s\".\n"),
1968 objfile_name (symfile_objfile));
1969
1970 for (t = target_stack; t != NULL; t = t->beneath)
1971 {
1972 if (!(*t->to_has_memory) (t))
1973 continue;
1974
1975 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1976 continue;
1977 if (has_all_mem)
1978 printf_unfiltered (_("\tWhile running this, "
1979 "GDB does not access memory from...\n"));
1980 printf_unfiltered ("%s:\n", t->to_longname);
1981 (t->to_files_info) (t);
1982 has_all_mem = (*t->to_has_all_memory) (t);
1983 }
1984}
1985
1986/* This function is called before any new inferior is created, e.g.
1987 by running a program, attaching, or connecting to a target.
1988 It cleans up any state from previous invocations which might
1989 change between runs. This is a subset of what target_preopen
1990 resets (things which might change between targets). */
1991
1992void
1993target_pre_inferior (int from_tty)
1994{
1995 /* Clear out solib state. Otherwise the solib state of the previous
1996 inferior might have survived and is entirely wrong for the new
1997 target. This has been observed on GNU/Linux using glibc 2.3. How
1998 to reproduce:
1999
2000 bash$ ./foo&
2001 [1] 4711
2002 bash$ ./foo&
2003 [1] 4712
2004 bash$ gdb ./foo
2005 [...]
2006 (gdb) attach 4711
2007 (gdb) detach
2008 (gdb) attach 4712
2009 Cannot access memory at address 0xdeadbeef
2010 */
2011
2012 /* In some OSs, the shared library list is the same/global/shared
2013 across inferiors. If code is shared between processes, so are
2014 memory regions and features. */
2015 if (!gdbarch_has_global_solist (target_gdbarch ()))
2016 {
2017 no_shared_libraries (NULL, from_tty);
2018
2019 invalidate_target_mem_regions ();
2020
2021 target_clear_description ();
2022 }
2023
2024 agent_capability_invalidate ();
2025}
2026
2027/* Callback for iterate_over_inferiors. Gets rid of the given
2028 inferior. */
2029
2030static int
2031dispose_inferior (struct inferior *inf, void *args)
2032{
2033 struct thread_info *thread;
2034
2035 thread = any_thread_of_process (inf->pid);
2036 if (thread)
2037 {
2038 switch_to_thread (thread->ptid);
2039
2040 /* Core inferiors actually should be detached, not killed. */
2041 if (target_has_execution)
2042 target_kill ();
2043 else
2044 target_detach (NULL, 0);
2045 }
2046
2047 return 0;
2048}
2049
2050/* This is to be called by the open routine before it does
2051 anything. */
2052
2053void
2054target_preopen (int from_tty)
2055{
2056 dont_repeat ();
2057
2058 if (have_inferiors ())
2059 {
2060 if (!from_tty
2061 || !have_live_inferiors ()
2062 || query (_("A program is being debugged already. Kill it? ")))
2063 iterate_over_inferiors (dispose_inferior, NULL);
2064 else
2065 error (_("Program not killed."));
2066 }
2067
2068 /* Calling target_kill may remove the target from the stack. But if
2069 it doesn't (which seems like a win for UDI), remove it now. */
2070 /* Leave the exec target, though. The user may be switching from a
2071 live process to a core of the same program. */
2072 pop_all_targets_above (file_stratum);
2073
2074 target_pre_inferior (from_tty);
2075}
2076
2077/* Detach a target after doing deferred register stores. */
2078
2079void
2080target_detach (const char *args, int from_tty)
2081{
2082 struct target_ops* t;
2083
2084 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2085 /* Don't remove global breakpoints here. They're removed on
2086 disconnection from the target. */
2087 ;
2088 else
2089 /* If we're in breakpoints-always-inserted mode, have to remove
2090 them before detaching. */
2091 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2092
2093 prepare_for_detach ();
2094
2095 current_target.to_detach (&current_target, args, from_tty);
2096}
2097
2098void
2099target_disconnect (const char *args, int from_tty)
2100{
2101 /* If we're in breakpoints-always-inserted mode or if breakpoints
2102 are global across processes, we have to remove them before
2103 disconnecting. */
2104 remove_breakpoints ();
2105
2106 current_target.to_disconnect (&current_target, args, from_tty);
2107}
2108
2109ptid_t
2110target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2111{
2112 return (current_target.to_wait) (&current_target, ptid, status, options);
2113}
2114
2115char *
2116target_pid_to_str (ptid_t ptid)
2117{
2118 return (*current_target.to_pid_to_str) (&current_target, ptid);
2119}
2120
2121char *
2122target_thread_name (struct thread_info *info)
2123{
2124 return current_target.to_thread_name (&current_target, info);
2125}
2126
2127void
2128target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2129{
2130 struct target_ops *t;
2131
2132 target_dcache_invalidate ();
2133
2134 current_target.to_resume (&current_target, ptid, step, signal);
2135
2136 registers_changed_ptid (ptid);
2137 /* We only set the internal executing state here. The user/frontend
2138 running state is set at a higher level. */
2139 set_executing (ptid, 1);
2140 clear_inline_frame_state (ptid);
2141}
2142
2143void
2144target_pass_signals (int numsigs, unsigned char *pass_signals)
2145{
2146 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2147}
2148
2149void
2150target_program_signals (int numsigs, unsigned char *program_signals)
2151{
2152 (*current_target.to_program_signals) (&current_target,
2153 numsigs, program_signals);
2154}
2155
2156static int
2157default_follow_fork (struct target_ops *self, int follow_child,
2158 int detach_fork)
2159{
2160 /* Some target returned a fork event, but did not know how to follow it. */
2161 internal_error (__FILE__, __LINE__,
2162 _("could not find a target to follow fork"));
2163}
2164
2165/* Look through the list of possible targets for a target that can
2166 follow forks. */
2167
2168int
2169target_follow_fork (int follow_child, int detach_fork)
2170{
2171 return current_target.to_follow_fork (&current_target,
2172 follow_child, detach_fork);
2173}
2174
2175static void
2176default_mourn_inferior (struct target_ops *self)
2177{
2178 internal_error (__FILE__, __LINE__,
2179 _("could not find a target to follow mourn inferior"));
2180}
2181
2182void
2183target_mourn_inferior (void)
2184{
2185 current_target.to_mourn_inferior (&current_target);
2186
2187 /* We no longer need to keep handles on any of the object files.
2188 Make sure to release them to avoid unnecessarily locking any
2189 of them while we're not actually debugging. */
2190 bfd_cache_close_all ();
2191}
2192
2193/* Look for a target which can describe architectural features, starting
2194 from TARGET. If we find one, return its description. */
2195
2196const struct target_desc *
2197target_read_description (struct target_ops *target)
2198{
2199 return target->to_read_description (target);
2200}
2201
2202/* This implements a basic search of memory, reading target memory and
2203 performing the search here (as opposed to performing the search in on the
2204 target side with, for example, gdbserver). */
2205
2206int
2207simple_search_memory (struct target_ops *ops,
2208 CORE_ADDR start_addr, ULONGEST search_space_len,
2209 const gdb_byte *pattern, ULONGEST pattern_len,
2210 CORE_ADDR *found_addrp)
2211{
2212 /* NOTE: also defined in find.c testcase. */
2213#define SEARCH_CHUNK_SIZE 16000
2214 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2215 /* Buffer to hold memory contents for searching. */
2216 gdb_byte *search_buf;
2217 unsigned search_buf_size;
2218 struct cleanup *old_cleanups;
2219
2220 search_buf_size = chunk_size + pattern_len - 1;
2221
2222 /* No point in trying to allocate a buffer larger than the search space. */
2223 if (search_space_len < search_buf_size)
2224 search_buf_size = search_space_len;
2225
2226 search_buf = malloc (search_buf_size);
2227 if (search_buf == NULL)
2228 error (_("Unable to allocate memory to perform the search."));
2229 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2230
2231 /* Prime the search buffer. */
2232
2233 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2234 search_buf, start_addr, search_buf_size) != search_buf_size)
2235 {
2236 warning (_("Unable to access %s bytes of target "
2237 "memory at %s, halting search."),
2238 pulongest (search_buf_size), hex_string (start_addr));
2239 do_cleanups (old_cleanups);
2240 return -1;
2241 }
2242
2243 /* Perform the search.
2244
2245 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2246 When we've scanned N bytes we copy the trailing bytes to the start and
2247 read in another N bytes. */
2248
2249 while (search_space_len >= pattern_len)
2250 {
2251 gdb_byte *found_ptr;
2252 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2253
2254 found_ptr = memmem (search_buf, nr_search_bytes,
2255 pattern, pattern_len);
2256
2257 if (found_ptr != NULL)
2258 {
2259 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2260
2261 *found_addrp = found_addr;
2262 do_cleanups (old_cleanups);
2263 return 1;
2264 }
2265
2266 /* Not found in this chunk, skip to next chunk. */
2267
2268 /* Don't let search_space_len wrap here, it's unsigned. */
2269 if (search_space_len >= chunk_size)
2270 search_space_len -= chunk_size;
2271 else
2272 search_space_len = 0;
2273
2274 if (search_space_len >= pattern_len)
2275 {
2276 unsigned keep_len = search_buf_size - chunk_size;
2277 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2278 int nr_to_read;
2279
2280 /* Copy the trailing part of the previous iteration to the front
2281 of the buffer for the next iteration. */
2282 gdb_assert (keep_len == pattern_len - 1);
2283 memcpy (search_buf, search_buf + chunk_size, keep_len);
2284
2285 nr_to_read = min (search_space_len - keep_len, chunk_size);
2286
2287 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2288 search_buf + keep_len, read_addr,
2289 nr_to_read) != nr_to_read)
2290 {
2291 warning (_("Unable to access %s bytes of target "
2292 "memory at %s, halting search."),
2293 plongest (nr_to_read),
2294 hex_string (read_addr));
2295 do_cleanups (old_cleanups);
2296 return -1;
2297 }
2298
2299 start_addr += chunk_size;
2300 }
2301 }
2302
2303 /* Not found. */
2304
2305 do_cleanups (old_cleanups);
2306 return 0;
2307}
2308
2309/* Default implementation of memory-searching. */
2310
2311static int
2312default_search_memory (struct target_ops *self,
2313 CORE_ADDR start_addr, ULONGEST search_space_len,
2314 const gdb_byte *pattern, ULONGEST pattern_len,
2315 CORE_ADDR *found_addrp)
2316{
2317 /* Start over from the top of the target stack. */
2318 return simple_search_memory (current_target.beneath,
2319 start_addr, search_space_len,
2320 pattern, pattern_len, found_addrp);
2321}
2322
2323/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2324 sequence of bytes in PATTERN with length PATTERN_LEN.
2325
2326 The result is 1 if found, 0 if not found, and -1 if there was an error
2327 requiring halting of the search (e.g. memory read error).
2328 If the pattern is found the address is recorded in FOUND_ADDRP. */
2329
2330int
2331target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2332 const gdb_byte *pattern, ULONGEST pattern_len,
2333 CORE_ADDR *found_addrp)
2334{
2335 return current_target.to_search_memory (&current_target, start_addr,
2336 search_space_len,
2337 pattern, pattern_len, found_addrp);
2338}
2339
2340/* Look through the currently pushed targets. If none of them will
2341 be able to restart the currently running process, issue an error
2342 message. */
2343
2344void
2345target_require_runnable (void)
2346{
2347 struct target_ops *t;
2348
2349 for (t = target_stack; t != NULL; t = t->beneath)
2350 {
2351 /* If this target knows how to create a new program, then
2352 assume we will still be able to after killing the current
2353 one. Either killing and mourning will not pop T, or else
2354 find_default_run_target will find it again. */
2355 if (t->to_create_inferior != NULL)
2356 return;
2357
2358 /* Do not worry about targets at certain strata that can not
2359 create inferiors. Assume they will be pushed again if
2360 necessary, and continue to the process_stratum. */
2361 if (t->to_stratum == thread_stratum
2362 || t->to_stratum == record_stratum
2363 || t->to_stratum == arch_stratum)
2364 continue;
2365
2366 error (_("The \"%s\" target does not support \"run\". "
2367 "Try \"help target\" or \"continue\"."),
2368 t->to_shortname);
2369 }
2370
2371 /* This function is only called if the target is running. In that
2372 case there should have been a process_stratum target and it
2373 should either know how to create inferiors, or not... */
2374 internal_error (__FILE__, __LINE__, _("No targets found"));
2375}
2376
2377/* Whether GDB is allowed to fall back to the default run target for
2378 "run", "attach", etc. when no target is connected yet. */
2379static int auto_connect_native_target = 1;
2380
2381static void
2382show_auto_connect_native_target (struct ui_file *file, int from_tty,
2383 struct cmd_list_element *c, const char *value)
2384{
2385 fprintf_filtered (file,
2386 _("Whether GDB may automatically connect to the "
2387 "native target is %s.\n"),
2388 value);
2389}
2390
2391/* Look through the list of possible targets for a target that can
2392 execute a run or attach command without any other data. This is
2393 used to locate the default process stratum.
2394
2395 If DO_MESG is not NULL, the result is always valid (error() is
2396 called for errors); else, return NULL on error. */
2397
2398static struct target_ops *
2399find_default_run_target (char *do_mesg)
2400{
2401 struct target_ops *runable = NULL;
2402
2403 if (auto_connect_native_target)
2404 {
2405 struct target_ops *t;
2406 int count = 0;
2407 int i;
2408
2409 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2410 {
2411 if (t->to_can_run != delegate_can_run && target_can_run (t))
2412 {
2413 runable = t;
2414 ++count;
2415 }
2416 }
2417
2418 if (count != 1)
2419 runable = NULL;
2420 }
2421
2422 if (runable == NULL)
2423 {
2424 if (do_mesg)
2425 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2426 else
2427 return NULL;
2428 }
2429
2430 return runable;
2431}
2432
2433/* See target.h. */
2434
2435struct target_ops *
2436find_attach_target (void)
2437{
2438 struct target_ops *t;
2439
2440 /* If a target on the current stack can attach, use it. */
2441 for (t = current_target.beneath; t != NULL; t = t->beneath)
2442 {
2443 if (t->to_attach != NULL)
2444 break;
2445 }
2446
2447 /* Otherwise, use the default run target for attaching. */
2448 if (t == NULL)
2449 t = find_default_run_target ("attach");
2450
2451 return t;
2452}
2453
2454/* See target.h. */
2455
2456struct target_ops *
2457find_run_target (void)
2458{
2459 struct target_ops *t;
2460
2461 /* If a target on the current stack can attach, use it. */
2462 for (t = current_target.beneath; t != NULL; t = t->beneath)
2463 {
2464 if (t->to_create_inferior != NULL)
2465 break;
2466 }
2467
2468 /* Otherwise, use the default run target. */
2469 if (t == NULL)
2470 t = find_default_run_target ("run");
2471
2472 return t;
2473}
2474
2475/* Implement the "info proc" command. */
2476
2477int
2478target_info_proc (const char *args, enum info_proc_what what)
2479{
2480 struct target_ops *t;
2481
2482 /* If we're already connected to something that can get us OS
2483 related data, use it. Otherwise, try using the native
2484 target. */
2485 if (current_target.to_stratum >= process_stratum)
2486 t = current_target.beneath;
2487 else
2488 t = find_default_run_target (NULL);
2489
2490 for (; t != NULL; t = t->beneath)
2491 {
2492 if (t->to_info_proc != NULL)
2493 {
2494 t->to_info_proc (t, args, what);
2495
2496 if (targetdebug)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "target_info_proc (\"%s\", %d)\n", args, what);
2499
2500 return 1;
2501 }
2502 }
2503
2504 return 0;
2505}
2506
2507static int
2508find_default_supports_disable_randomization (struct target_ops *self)
2509{
2510 struct target_ops *t;
2511
2512 t = find_default_run_target (NULL);
2513 if (t && t->to_supports_disable_randomization)
2514 return (t->to_supports_disable_randomization) (t);
2515 return 0;
2516}
2517
2518int
2519target_supports_disable_randomization (void)
2520{
2521 struct target_ops *t;
2522
2523 for (t = &current_target; t != NULL; t = t->beneath)
2524 if (t->to_supports_disable_randomization)
2525 return t->to_supports_disable_randomization (t);
2526
2527 return 0;
2528}
2529
2530char *
2531target_get_osdata (const char *type)
2532{
2533 struct target_ops *t;
2534
2535 /* If we're already connected to something that can get us OS
2536 related data, use it. Otherwise, try using the native
2537 target. */
2538 if (current_target.to_stratum >= process_stratum)
2539 t = current_target.beneath;
2540 else
2541 t = find_default_run_target ("get OS data");
2542
2543 if (!t)
2544 return NULL;
2545
2546 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2547}
2548
2549static struct address_space *
2550default_thread_address_space (struct target_ops *self, ptid_t ptid)
2551{
2552 struct inferior *inf;
2553
2554 /* Fall-back to the "main" address space of the inferior. */
2555 inf = find_inferior_pid (ptid_get_pid (ptid));
2556
2557 if (inf == NULL || inf->aspace == NULL)
2558 internal_error (__FILE__, __LINE__,
2559 _("Can't determine the current "
2560 "address space of thread %s\n"),
2561 target_pid_to_str (ptid));
2562
2563 return inf->aspace;
2564}
2565
2566/* Determine the current address space of thread PTID. */
2567
2568struct address_space *
2569target_thread_address_space (ptid_t ptid)
2570{
2571 struct address_space *aspace;
2572
2573 aspace = current_target.to_thread_address_space (&current_target, ptid);
2574 gdb_assert (aspace != NULL);
2575
2576 return aspace;
2577}
2578
2579
2580/* Target file operations. */
2581
2582static struct target_ops *
2583default_fileio_target (void)
2584{
2585 /* If we're already connected to something that can perform
2586 file I/O, use it. Otherwise, try using the native target. */
2587 if (current_target.to_stratum >= process_stratum)
2588 return current_target.beneath;
2589 else
2590 return find_default_run_target ("file I/O");
2591}
2592
2593/* Open FILENAME on the target, using FLAGS and MODE. Return a
2594 target file descriptor, or -1 if an error occurs (and set
2595 *TARGET_ERRNO). */
2596int
2597target_fileio_open (const char *filename, int flags, int mode,
2598 int *target_errno)
2599{
2600 struct target_ops *t;
2601
2602 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2603 {
2604 if (t->to_fileio_open != NULL)
2605 {
2606 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2607
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2611 filename, flags, mode,
2612 fd, fd != -1 ? 0 : *target_errno);
2613 return fd;
2614 }
2615 }
2616
2617 *target_errno = FILEIO_ENOSYS;
2618 return -1;
2619}
2620
2621/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2622 Return the number of bytes written, or -1 if an error occurs
2623 (and set *TARGET_ERRNO). */
2624int
2625target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2626 ULONGEST offset, int *target_errno)
2627{
2628 struct target_ops *t;
2629
2630 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2631 {
2632 if (t->to_fileio_pwrite != NULL)
2633 {
2634 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2635 target_errno);
2636
2637 if (targetdebug)
2638 fprintf_unfiltered (gdb_stdlog,
2639 "target_fileio_pwrite (%d,...,%d,%s) "
2640 "= %d (%d)\n",
2641 fd, len, pulongest (offset),
2642 ret, ret != -1 ? 0 : *target_errno);
2643 return ret;
2644 }
2645 }
2646
2647 *target_errno = FILEIO_ENOSYS;
2648 return -1;
2649}
2650
2651/* Read up to LEN bytes FD on the target into READ_BUF.
2652 Return the number of bytes read, or -1 if an error occurs
2653 (and set *TARGET_ERRNO). */
2654int
2655target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2656 ULONGEST offset, int *target_errno)
2657{
2658 struct target_ops *t;
2659
2660 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2661 {
2662 if (t->to_fileio_pread != NULL)
2663 {
2664 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2665 target_errno);
2666
2667 if (targetdebug)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "target_fileio_pread (%d,...,%d,%s) "
2670 "= %d (%d)\n",
2671 fd, len, pulongest (offset),
2672 ret, ret != -1 ? 0 : *target_errno);
2673 return ret;
2674 }
2675 }
2676
2677 *target_errno = FILEIO_ENOSYS;
2678 return -1;
2679}
2680
2681/* Close FD on the target. Return 0, or -1 if an error occurs
2682 (and set *TARGET_ERRNO). */
2683int
2684target_fileio_close (int fd, int *target_errno)
2685{
2686 struct target_ops *t;
2687
2688 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2689 {
2690 if (t->to_fileio_close != NULL)
2691 {
2692 int ret = t->to_fileio_close (t, fd, target_errno);
2693
2694 if (targetdebug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "target_fileio_close (%d) = %d (%d)\n",
2697 fd, ret, ret != -1 ? 0 : *target_errno);
2698 return ret;
2699 }
2700 }
2701
2702 *target_errno = FILEIO_ENOSYS;
2703 return -1;
2704}
2705
2706/* Unlink FILENAME on the target. Return 0, or -1 if an error
2707 occurs (and set *TARGET_ERRNO). */
2708int
2709target_fileio_unlink (const char *filename, int *target_errno)
2710{
2711 struct target_ops *t;
2712
2713 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2714 {
2715 if (t->to_fileio_unlink != NULL)
2716 {
2717 int ret = t->to_fileio_unlink (t, filename, target_errno);
2718
2719 if (targetdebug)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "target_fileio_unlink (%s) = %d (%d)\n",
2722 filename, ret, ret != -1 ? 0 : *target_errno);
2723 return ret;
2724 }
2725 }
2726
2727 *target_errno = FILEIO_ENOSYS;
2728 return -1;
2729}
2730
2731/* Read value of symbolic link FILENAME on the target. Return a
2732 null-terminated string allocated via xmalloc, or NULL if an error
2733 occurs (and set *TARGET_ERRNO). */
2734char *
2735target_fileio_readlink (const char *filename, int *target_errno)
2736{
2737 struct target_ops *t;
2738
2739 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2740 {
2741 if (t->to_fileio_readlink != NULL)
2742 {
2743 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2744
2745 if (targetdebug)
2746 fprintf_unfiltered (gdb_stdlog,
2747 "target_fileio_readlink (%s) = %s (%d)\n",
2748 filename, ret? ret : "(nil)",
2749 ret? 0 : *target_errno);
2750 return ret;
2751 }
2752 }
2753
2754 *target_errno = FILEIO_ENOSYS;
2755 return NULL;
2756}
2757
2758static void
2759target_fileio_close_cleanup (void *opaque)
2760{
2761 int fd = *(int *) opaque;
2762 int target_errno;
2763
2764 target_fileio_close (fd, &target_errno);
2765}
2766
2767/* Read target file FILENAME. Store the result in *BUF_P and
2768 return the size of the transferred data. PADDING additional bytes are
2769 available in *BUF_P. This is a helper function for
2770 target_fileio_read_alloc; see the declaration of that function for more
2771 information. */
2772
2773static LONGEST
2774target_fileio_read_alloc_1 (const char *filename,
2775 gdb_byte **buf_p, int padding)
2776{
2777 struct cleanup *close_cleanup;
2778 size_t buf_alloc, buf_pos;
2779 gdb_byte *buf;
2780 LONGEST n;
2781 int fd;
2782 int target_errno;
2783
2784 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2785 if (fd == -1)
2786 return -1;
2787
2788 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2789
2790 /* Start by reading up to 4K at a time. The target will throttle
2791 this number down if necessary. */
2792 buf_alloc = 4096;
2793 buf = xmalloc (buf_alloc);
2794 buf_pos = 0;
2795 while (1)
2796 {
2797 n = target_fileio_pread (fd, &buf[buf_pos],
2798 buf_alloc - buf_pos - padding, buf_pos,
2799 &target_errno);
2800 if (n < 0)
2801 {
2802 /* An error occurred. */
2803 do_cleanups (close_cleanup);
2804 xfree (buf);
2805 return -1;
2806 }
2807 else if (n == 0)
2808 {
2809 /* Read all there was. */
2810 do_cleanups (close_cleanup);
2811 if (buf_pos == 0)
2812 xfree (buf);
2813 else
2814 *buf_p = buf;
2815 return buf_pos;
2816 }
2817
2818 buf_pos += n;
2819
2820 /* If the buffer is filling up, expand it. */
2821 if (buf_alloc < buf_pos * 2)
2822 {
2823 buf_alloc *= 2;
2824 buf = xrealloc (buf, buf_alloc);
2825 }
2826
2827 QUIT;
2828 }
2829}
2830
2831/* Read target file FILENAME. Store the result in *BUF_P and return
2832 the size of the transferred data. See the declaration in "target.h"
2833 function for more information about the return value. */
2834
2835LONGEST
2836target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2837{
2838 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2839}
2840
2841/* Read target file FILENAME. The result is NUL-terminated and
2842 returned as a string, allocated using xmalloc. If an error occurs
2843 or the transfer is unsupported, NULL is returned. Empty objects
2844 are returned as allocated but empty strings. A warning is issued
2845 if the result contains any embedded NUL bytes. */
2846
2847char *
2848target_fileio_read_stralloc (const char *filename)
2849{
2850 gdb_byte *buffer;
2851 char *bufstr;
2852 LONGEST i, transferred;
2853
2854 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2855 bufstr = (char *) buffer;
2856
2857 if (transferred < 0)
2858 return NULL;
2859
2860 if (transferred == 0)
2861 return xstrdup ("");
2862
2863 bufstr[transferred] = 0;
2864
2865 /* Check for embedded NUL bytes; but allow trailing NULs. */
2866 for (i = strlen (bufstr); i < transferred; i++)
2867 if (bufstr[i] != 0)
2868 {
2869 warning (_("target file %s "
2870 "contained unexpected null characters"),
2871 filename);
2872 break;
2873 }
2874
2875 return bufstr;
2876}
2877
2878
2879static int
2880default_region_ok_for_hw_watchpoint (struct target_ops *self,
2881 CORE_ADDR addr, int len)
2882{
2883 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2884}
2885
2886static int
2887default_watchpoint_addr_within_range (struct target_ops *target,
2888 CORE_ADDR addr,
2889 CORE_ADDR start, int length)
2890{
2891 return addr >= start && addr < start + length;
2892}
2893
2894static struct gdbarch *
2895default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2896{
2897 return target_gdbarch ();
2898}
2899
2900static int
2901return_zero (struct target_ops *ignore)
2902{
2903 return 0;
2904}
2905
2906static int
2907return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2908{
2909 return 0;
2910}
2911
2912/*
2913 * Find the next target down the stack from the specified target.
2914 */
2915
2916struct target_ops *
2917find_target_beneath (struct target_ops *t)
2918{
2919 return t->beneath;
2920}
2921
2922/* See target.h. */
2923
2924struct target_ops *
2925find_target_at (enum strata stratum)
2926{
2927 struct target_ops *t;
2928
2929 for (t = current_target.beneath; t != NULL; t = t->beneath)
2930 if (t->to_stratum == stratum)
2931 return t;
2932
2933 return NULL;
2934}
2935
2936\f
2937/* The inferior process has died. Long live the inferior! */
2938
2939void
2940generic_mourn_inferior (void)
2941{
2942 ptid_t ptid;
2943
2944 ptid = inferior_ptid;
2945 inferior_ptid = null_ptid;
2946
2947 /* Mark breakpoints uninserted in case something tries to delete a
2948 breakpoint while we delete the inferior's threads (which would
2949 fail, since the inferior is long gone). */
2950 mark_breakpoints_out ();
2951
2952 if (!ptid_equal (ptid, null_ptid))
2953 {
2954 int pid = ptid_get_pid (ptid);
2955 exit_inferior (pid);
2956 }
2957
2958 /* Note this wipes step-resume breakpoints, so needs to be done
2959 after exit_inferior, which ends up referencing the step-resume
2960 breakpoints through clear_thread_inferior_resources. */
2961 breakpoint_init_inferior (inf_exited);
2962
2963 registers_changed ();
2964
2965 reopen_exec_file ();
2966 reinit_frame_cache ();
2967
2968 if (deprecated_detach_hook)
2969 deprecated_detach_hook ();
2970}
2971\f
2972/* Convert a normal process ID to a string. Returns the string in a
2973 static buffer. */
2974
2975char *
2976normal_pid_to_str (ptid_t ptid)
2977{
2978 static char buf[32];
2979
2980 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2981 return buf;
2982}
2983
2984static char *
2985default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2986{
2987 return normal_pid_to_str (ptid);
2988}
2989
2990/* Error-catcher for target_find_memory_regions. */
2991static int
2992dummy_find_memory_regions (struct target_ops *self,
2993 find_memory_region_ftype ignore1, void *ignore2)
2994{
2995 error (_("Command not implemented for this target."));
2996 return 0;
2997}
2998
2999/* Error-catcher for target_make_corefile_notes. */
3000static char *
3001dummy_make_corefile_notes (struct target_ops *self,
3002 bfd *ignore1, int *ignore2)
3003{
3004 error (_("Command not implemented for this target."));
3005 return NULL;
3006}
3007
3008/* Set up the handful of non-empty slots needed by the dummy target
3009 vector. */
3010
3011static void
3012init_dummy_target (void)
3013{
3014 dummy_target.to_shortname = "None";
3015 dummy_target.to_longname = "None";
3016 dummy_target.to_doc = "";
3017 dummy_target.to_supports_disable_randomization
3018 = find_default_supports_disable_randomization;
3019 dummy_target.to_stratum = dummy_stratum;
3020 dummy_target.to_has_all_memory = return_zero;
3021 dummy_target.to_has_memory = return_zero;
3022 dummy_target.to_has_stack = return_zero;
3023 dummy_target.to_has_registers = return_zero;
3024 dummy_target.to_has_execution = return_zero_has_execution;
3025 dummy_target.to_magic = OPS_MAGIC;
3026
3027 install_dummy_methods (&dummy_target);
3028}
3029\f
3030
3031void
3032target_close (struct target_ops *targ)
3033{
3034 gdb_assert (!target_is_pushed (targ));
3035
3036 if (targ->to_xclose != NULL)
3037 targ->to_xclose (targ);
3038 else if (targ->to_close != NULL)
3039 targ->to_close (targ);
3040
3041 if (targetdebug)
3042 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3043}
3044
3045int
3046target_thread_alive (ptid_t ptid)
3047{
3048 return current_target.to_thread_alive (&current_target, ptid);
3049}
3050
3051void
3052target_find_new_threads (void)
3053{
3054 current_target.to_find_new_threads (&current_target);
3055}
3056
3057void
3058target_stop (ptid_t ptid)
3059{
3060 if (!may_stop)
3061 {
3062 warning (_("May not interrupt or stop the target, ignoring attempt"));
3063 return;
3064 }
3065
3066 (*current_target.to_stop) (&current_target, ptid);
3067}
3068
3069/* See target/target.h. */
3070
3071void
3072target_stop_and_wait (ptid_t ptid)
3073{
3074 struct target_waitstatus status;
3075 int was_non_stop = non_stop;
3076
3077 non_stop = 1;
3078 target_stop (ptid);
3079
3080 memset (&status, 0, sizeof (status));
3081 target_wait (ptid, &status, 0);
3082
3083 non_stop = was_non_stop;
3084}
3085
3086/* See target/target.h. */
3087
3088void
3089target_continue_no_signal (ptid_t ptid)
3090{
3091 target_resume (ptid, 0, GDB_SIGNAL_0);
3092}
3093
3094/* Concatenate ELEM to LIST, a comma separate list, and return the
3095 result. The LIST incoming argument is released. */
3096
3097static char *
3098str_comma_list_concat_elem (char *list, const char *elem)
3099{
3100 if (list == NULL)
3101 return xstrdup (elem);
3102 else
3103 return reconcat (list, list, ", ", elem, (char *) NULL);
3104}
3105
3106/* Helper for target_options_to_string. If OPT is present in
3107 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3108 Returns the new resulting string. OPT is removed from
3109 TARGET_OPTIONS. */
3110
3111static char *
3112do_option (int *target_options, char *ret,
3113 int opt, char *opt_str)
3114{
3115 if ((*target_options & opt) != 0)
3116 {
3117 ret = str_comma_list_concat_elem (ret, opt_str);
3118 *target_options &= ~opt;
3119 }
3120
3121 return ret;
3122}
3123
3124char *
3125target_options_to_string (int target_options)
3126{
3127 char *ret = NULL;
3128
3129#define DO_TARG_OPTION(OPT) \
3130 ret = do_option (&target_options, ret, OPT, #OPT)
3131
3132 DO_TARG_OPTION (TARGET_WNOHANG);
3133
3134 if (target_options != 0)
3135 ret = str_comma_list_concat_elem (ret, "unknown???");
3136
3137 if (ret == NULL)
3138 ret = xstrdup ("");
3139 return ret;
3140}
3141
3142static void
3143debug_print_register (const char * func,
3144 struct regcache *regcache, int regno)
3145{
3146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3147
3148 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3149 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3150 && gdbarch_register_name (gdbarch, regno) != NULL
3151 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3152 fprintf_unfiltered (gdb_stdlog, "(%s)",
3153 gdbarch_register_name (gdbarch, regno));
3154 else
3155 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3156 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3157 {
3158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3159 int i, size = register_size (gdbarch, regno);
3160 gdb_byte buf[MAX_REGISTER_SIZE];
3161
3162 regcache_raw_collect (regcache, regno, buf);
3163 fprintf_unfiltered (gdb_stdlog, " = ");
3164 for (i = 0; i < size; i++)
3165 {
3166 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3167 }
3168 if (size <= sizeof (LONGEST))
3169 {
3170 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3171
3172 fprintf_unfiltered (gdb_stdlog, " %s %s",
3173 core_addr_to_string_nz (val), plongest (val));
3174 }
3175 }
3176 fprintf_unfiltered (gdb_stdlog, "\n");
3177}
3178
3179void
3180target_fetch_registers (struct regcache *regcache, int regno)
3181{
3182 current_target.to_fetch_registers (&current_target, regcache, regno);
3183 if (targetdebug)
3184 debug_print_register ("target_fetch_registers", regcache, regno);
3185}
3186
3187void
3188target_store_registers (struct regcache *regcache, int regno)
3189{
3190 struct target_ops *t;
3191
3192 if (!may_write_registers)
3193 error (_("Writing to registers is not allowed (regno %d)"), regno);
3194
3195 current_target.to_store_registers (&current_target, regcache, regno);
3196 if (targetdebug)
3197 {
3198 debug_print_register ("target_store_registers", regcache, regno);
3199 }
3200}
3201
3202int
3203target_core_of_thread (ptid_t ptid)
3204{
3205 return current_target.to_core_of_thread (&current_target, ptid);
3206}
3207
3208int
3209simple_verify_memory (struct target_ops *ops,
3210 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3211{
3212 LONGEST total_xfered = 0;
3213
3214 while (total_xfered < size)
3215 {
3216 ULONGEST xfered_len;
3217 enum target_xfer_status status;
3218 gdb_byte buf[1024];
3219 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3220
3221 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3222 buf, NULL, lma + total_xfered, howmuch,
3223 &xfered_len);
3224 if (status == TARGET_XFER_OK
3225 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3226 {
3227 total_xfered += xfered_len;
3228 QUIT;
3229 }
3230 else
3231 return 0;
3232 }
3233 return 1;
3234}
3235
3236/* Default implementation of memory verification. */
3237
3238static int
3239default_verify_memory (struct target_ops *self,
3240 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3241{
3242 /* Start over from the top of the target stack. */
3243 return simple_verify_memory (current_target.beneath,
3244 data, memaddr, size);
3245}
3246
3247int
3248target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3249{
3250 return current_target.to_verify_memory (&current_target,
3251 data, memaddr, size);
3252}
3253
3254/* The documentation for this function is in its prototype declaration in
3255 target.h. */
3256
3257int
3258target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3259{
3260 return current_target.to_insert_mask_watchpoint (&current_target,
3261 addr, mask, rw);
3262}
3263
3264/* The documentation for this function is in its prototype declaration in
3265 target.h. */
3266
3267int
3268target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3269{
3270 return current_target.to_remove_mask_watchpoint (&current_target,
3271 addr, mask, rw);
3272}
3273
3274/* The documentation for this function is in its prototype declaration
3275 in target.h. */
3276
3277int
3278target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3279{
3280 return current_target.to_masked_watch_num_registers (&current_target,
3281 addr, mask);
3282}
3283
3284/* The documentation for this function is in its prototype declaration
3285 in target.h. */
3286
3287int
3288target_ranged_break_num_registers (void)
3289{
3290 return current_target.to_ranged_break_num_registers (&current_target);
3291}
3292
3293/* See target.h. */
3294
3295struct btrace_target_info *
3296target_enable_btrace (ptid_t ptid)
3297{
3298 return current_target.to_enable_btrace (&current_target, ptid);
3299}
3300
3301/* See target.h. */
3302
3303void
3304target_disable_btrace (struct btrace_target_info *btinfo)
3305{
3306 current_target.to_disable_btrace (&current_target, btinfo);
3307}
3308
3309/* See target.h. */
3310
3311void
3312target_teardown_btrace (struct btrace_target_info *btinfo)
3313{
3314 current_target.to_teardown_btrace (&current_target, btinfo);
3315}
3316
3317/* See target.h. */
3318
3319enum btrace_error
3320target_read_btrace (VEC (btrace_block_s) **btrace,
3321 struct btrace_target_info *btinfo,
3322 enum btrace_read_type type)
3323{
3324 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3325}
3326
3327/* See target.h. */
3328
3329void
3330target_stop_recording (void)
3331{
3332 current_target.to_stop_recording (&current_target);
3333}
3334
3335/* See target.h. */
3336
3337void
3338target_save_record (const char *filename)
3339{
3340 current_target.to_save_record (&current_target, filename);
3341}
3342
3343/* See target.h. */
3344
3345int
3346target_supports_delete_record (void)
3347{
3348 struct target_ops *t;
3349
3350 for (t = current_target.beneath; t != NULL; t = t->beneath)
3351 if (t->to_delete_record != delegate_delete_record
3352 && t->to_delete_record != tdefault_delete_record)
3353 return 1;
3354
3355 return 0;
3356}
3357
3358/* See target.h. */
3359
3360void
3361target_delete_record (void)
3362{
3363 current_target.to_delete_record (&current_target);
3364}
3365
3366/* See target.h. */
3367
3368int
3369target_record_is_replaying (void)
3370{
3371 return current_target.to_record_is_replaying (&current_target);
3372}
3373
3374/* See target.h. */
3375
3376void
3377target_goto_record_begin (void)
3378{
3379 current_target.to_goto_record_begin (&current_target);
3380}
3381
3382/* See target.h. */
3383
3384void
3385target_goto_record_end (void)
3386{
3387 current_target.to_goto_record_end (&current_target);
3388}
3389
3390/* See target.h. */
3391
3392void
3393target_goto_record (ULONGEST insn)
3394{
3395 current_target.to_goto_record (&current_target, insn);
3396}
3397
3398/* See target.h. */
3399
3400void
3401target_insn_history (int size, int flags)
3402{
3403 current_target.to_insn_history (&current_target, size, flags);
3404}
3405
3406/* See target.h. */
3407
3408void
3409target_insn_history_from (ULONGEST from, int size, int flags)
3410{
3411 current_target.to_insn_history_from (&current_target, from, size, flags);
3412}
3413
3414/* See target.h. */
3415
3416void
3417target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3418{
3419 current_target.to_insn_history_range (&current_target, begin, end, flags);
3420}
3421
3422/* See target.h. */
3423
3424void
3425target_call_history (int size, int flags)
3426{
3427 current_target.to_call_history (&current_target, size, flags);
3428}
3429
3430/* See target.h. */
3431
3432void
3433target_call_history_from (ULONGEST begin, int size, int flags)
3434{
3435 current_target.to_call_history_from (&current_target, begin, size, flags);
3436}
3437
3438/* See target.h. */
3439
3440void
3441target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3442{
3443 current_target.to_call_history_range (&current_target, begin, end, flags);
3444}
3445
3446/* See target.h. */
3447
3448const struct frame_unwind *
3449target_get_unwinder (void)
3450{
3451 return current_target.to_get_unwinder (&current_target);
3452}
3453
3454/* See target.h. */
3455
3456const struct frame_unwind *
3457target_get_tailcall_unwinder (void)
3458{
3459 return current_target.to_get_tailcall_unwinder (&current_target);
3460}
3461
3462/* Default implementation of to_decr_pc_after_break. */
3463
3464static CORE_ADDR
3465default_target_decr_pc_after_break (struct target_ops *ops,
3466 struct gdbarch *gdbarch)
3467{
3468 return gdbarch_decr_pc_after_break (gdbarch);
3469}
3470
3471/* See target.h. */
3472
3473CORE_ADDR
3474target_decr_pc_after_break (struct gdbarch *gdbarch)
3475{
3476 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3477}
3478
3479/* See target.h. */
3480
3481void
3482target_prepare_to_generate_core (void)
3483{
3484 current_target.to_prepare_to_generate_core (&current_target);
3485}
3486
3487/* See target.h. */
3488
3489void
3490target_done_generating_core (void)
3491{
3492 current_target.to_done_generating_core (&current_target);
3493}
3494
3495static void
3496setup_target_debug (void)
3497{
3498 memcpy (&debug_target, &current_target, sizeof debug_target);
3499
3500 init_debug_target (&current_target);
3501}
3502\f
3503
3504static char targ_desc[] =
3505"Names of targets and files being debugged.\nShows the entire \
3506stack of targets currently in use (including the exec-file,\n\
3507core-file, and process, if any), as well as the symbol file name.";
3508
3509static void
3510default_rcmd (struct target_ops *self, const char *command,
3511 struct ui_file *output)
3512{
3513 error (_("\"monitor\" command not supported by this target."));
3514}
3515
3516static void
3517do_monitor_command (char *cmd,
3518 int from_tty)
3519{
3520 target_rcmd (cmd, gdb_stdtarg);
3521}
3522
3523/* Print the name of each layers of our target stack. */
3524
3525static void
3526maintenance_print_target_stack (char *cmd, int from_tty)
3527{
3528 struct target_ops *t;
3529
3530 printf_filtered (_("The current target stack is:\n"));
3531
3532 for (t = target_stack; t != NULL; t = t->beneath)
3533 {
3534 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3535 }
3536}
3537
3538/* Controls if targets can report that they can/are async. This is
3539 just for maintainers to use when debugging gdb. */
3540int target_async_permitted = 1;
3541
3542/* The set command writes to this variable. If the inferior is
3543 executing, target_async_permitted is *not* updated. */
3544static int target_async_permitted_1 = 1;
3545
3546static void
3547maint_set_target_async_command (char *args, int from_tty,
3548 struct cmd_list_element *c)
3549{
3550 if (have_live_inferiors ())
3551 {
3552 target_async_permitted_1 = target_async_permitted;
3553 error (_("Cannot change this setting while the inferior is running."));
3554 }
3555
3556 target_async_permitted = target_async_permitted_1;
3557}
3558
3559static void
3560maint_show_target_async_command (struct ui_file *file, int from_tty,
3561 struct cmd_list_element *c,
3562 const char *value)
3563{
3564 fprintf_filtered (file,
3565 _("Controlling the inferior in "
3566 "asynchronous mode is %s.\n"), value);
3567}
3568
3569/* Temporary copies of permission settings. */
3570
3571static int may_write_registers_1 = 1;
3572static int may_write_memory_1 = 1;
3573static int may_insert_breakpoints_1 = 1;
3574static int may_insert_tracepoints_1 = 1;
3575static int may_insert_fast_tracepoints_1 = 1;
3576static int may_stop_1 = 1;
3577
3578/* Make the user-set values match the real values again. */
3579
3580void
3581update_target_permissions (void)
3582{
3583 may_write_registers_1 = may_write_registers;
3584 may_write_memory_1 = may_write_memory;
3585 may_insert_breakpoints_1 = may_insert_breakpoints;
3586 may_insert_tracepoints_1 = may_insert_tracepoints;
3587 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3588 may_stop_1 = may_stop;
3589}
3590
3591/* The one function handles (most of) the permission flags in the same
3592 way. */
3593
3594static void
3595set_target_permissions (char *args, int from_tty,
3596 struct cmd_list_element *c)
3597{
3598 if (target_has_execution)
3599 {
3600 update_target_permissions ();
3601 error (_("Cannot change this setting while the inferior is running."));
3602 }
3603
3604 /* Make the real values match the user-changed values. */
3605 may_write_registers = may_write_registers_1;
3606 may_insert_breakpoints = may_insert_breakpoints_1;
3607 may_insert_tracepoints = may_insert_tracepoints_1;
3608 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3609 may_stop = may_stop_1;
3610 update_observer_mode ();
3611}
3612
3613/* Set memory write permission independently of observer mode. */
3614
3615static void
3616set_write_memory_permission (char *args, int from_tty,
3617 struct cmd_list_element *c)
3618{
3619 /* Make the real values match the user-changed values. */
3620 may_write_memory = may_write_memory_1;
3621 update_observer_mode ();
3622}
3623
3624
3625void
3626initialize_targets (void)
3627{
3628 init_dummy_target ();
3629 push_target (&dummy_target);
3630
3631 add_info ("target", target_info, targ_desc);
3632 add_info ("files", target_info, targ_desc);
3633
3634 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3635Set target debugging."), _("\
3636Show target debugging."), _("\
3637When non-zero, target debugging is enabled. Higher numbers are more\n\
3638verbose."),
3639 set_targetdebug,
3640 show_targetdebug,
3641 &setdebuglist, &showdebuglist);
3642
3643 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3644 &trust_readonly, _("\
3645Set mode for reading from readonly sections."), _("\
3646Show mode for reading from readonly sections."), _("\
3647When this mode is on, memory reads from readonly sections (such as .text)\n\
3648will be read from the object file instead of from the target. This will\n\
3649result in significant performance improvement for remote targets."),
3650 NULL,
3651 show_trust_readonly,
3652 &setlist, &showlist);
3653
3654 add_com ("monitor", class_obscure, do_monitor_command,
3655 _("Send a command to the remote monitor (remote targets only)."));
3656
3657 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3658 _("Print the name of each layer of the internal target stack."),
3659 &maintenanceprintlist);
3660
3661 add_setshow_boolean_cmd ("target-async", no_class,
3662 &target_async_permitted_1, _("\
3663Set whether gdb controls the inferior in asynchronous mode."), _("\
3664Show whether gdb controls the inferior in asynchronous mode."), _("\
3665Tells gdb whether to control the inferior in asynchronous mode."),
3666 maint_set_target_async_command,
3667 maint_show_target_async_command,
3668 &maintenance_set_cmdlist,
3669 &maintenance_show_cmdlist);
3670
3671 add_setshow_boolean_cmd ("may-write-registers", class_support,
3672 &may_write_registers_1, _("\
3673Set permission to write into registers."), _("\
3674Show permission to write into registers."), _("\
3675When this permission is on, GDB may write into the target's registers.\n\
3676Otherwise, any sort of write attempt will result in an error."),
3677 set_target_permissions, NULL,
3678 &setlist, &showlist);
3679
3680 add_setshow_boolean_cmd ("may-write-memory", class_support,
3681 &may_write_memory_1, _("\
3682Set permission to write into target memory."), _("\
3683Show permission to write into target memory."), _("\
3684When this permission is on, GDB may write into the target's memory.\n\
3685Otherwise, any sort of write attempt will result in an error."),
3686 set_write_memory_permission, NULL,
3687 &setlist, &showlist);
3688
3689 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3690 &may_insert_breakpoints_1, _("\
3691Set permission to insert breakpoints in the target."), _("\
3692Show permission to insert breakpoints in the target."), _("\
3693When this permission is on, GDB may insert breakpoints in the program.\n\
3694Otherwise, any sort of insertion attempt will result in an error."),
3695 set_target_permissions, NULL,
3696 &setlist, &showlist);
3697
3698 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3699 &may_insert_tracepoints_1, _("\
3700Set permission to insert tracepoints in the target."), _("\
3701Show permission to insert tracepoints in the target."), _("\
3702When this permission is on, GDB may insert tracepoints in the program.\n\
3703Otherwise, any sort of insertion attempt will result in an error."),
3704 set_target_permissions, NULL,
3705 &setlist, &showlist);
3706
3707 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3708 &may_insert_fast_tracepoints_1, _("\
3709Set permission to insert fast tracepoints in the target."), _("\
3710Show permission to insert fast tracepoints in the target."), _("\
3711When this permission is on, GDB may insert fast tracepoints.\n\
3712Otherwise, any sort of insertion attempt will result in an error."),
3713 set_target_permissions, NULL,
3714 &setlist, &showlist);
3715
3716 add_setshow_boolean_cmd ("may-interrupt", class_support,
3717 &may_stop_1, _("\
3718Set permission to interrupt or signal the target."), _("\
3719Show permission to interrupt or signal the target."), _("\
3720When this permission is on, GDB may interrupt/stop the target's execution.\n\
3721Otherwise, any attempt to interrupt or stop will be ignored."),
3722 set_target_permissions, NULL,
3723 &setlist, &showlist);
3724
3725 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3726 &auto_connect_native_target, _("\
3727Set whether GDB may automatically connect to the native target."), _("\
3728Show whether GDB may automatically connect to the native target."), _("\
3729When on, and GDB is not connected to a target yet, GDB\n\
3730attempts \"run\" and other commands with the native target."),
3731 NULL, show_auto_connect_native_target,
3732 &setlist, &showlist);
3733}
This page took 0.034503 seconds and 4 git commands to generate.