PR gas/5895
[deliverable/binutils-gdb.git] / gdb / target.c
... / ...
CommitLineData
1/* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#include "defs.h"
25#include <errno.h>
26#include "gdb_string.h"
27#include "target.h"
28#include "gdbcmd.h"
29#include "symtab.h"
30#include "inferior.h"
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdb_wait.h"
35#include "dcache.h"
36#include <signal.h>
37#include "regcache.h"
38#include "gdb_assert.h"
39#include "gdbcore.h"
40#include "exceptions.h"
41#include "target-descriptions.h"
42
43static void target_info (char *, int);
44
45static void maybe_kill_then_attach (char *, int);
46
47static void kill_or_be_killed (int);
48
49static void default_terminal_info (char *, int);
50
51static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
52
53static int nosymbol (char *, CORE_ADDR *);
54
55static void tcomplain (void) ATTR_NORETURN;
56
57static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58
59static int return_zero (void);
60
61static int return_one (void);
62
63static int return_minus_one (void);
64
65void target_ignore (void);
66
67static void target_command (char *, int);
68
69static struct target_ops *find_default_run_target (char *);
70
71static void nosupport_runtime (void);
72
73static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91static void init_dummy_target (void);
92
93static struct target_ops debug_target;
94
95static void debug_to_open (char *, int);
96
97static void debug_to_close (int);
98
99static void debug_to_attach (char *, int);
100
101static void debug_to_detach (char *, int);
102
103static void debug_to_resume (ptid_t, int, enum target_signal);
104
105static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
106
107static void debug_to_fetch_registers (struct regcache *, int);
108
109static void debug_to_store_registers (struct regcache *, int);
110
111static void debug_to_prepare_to_store (struct regcache *);
112
113static void debug_to_files_info (struct target_ops *);
114
115static int debug_to_insert_breakpoint (struct bp_target_info *);
116
117static int debug_to_remove_breakpoint (struct bp_target_info *);
118
119static int debug_to_can_use_hw_breakpoint (int, int, int);
120
121static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
122
123static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
124
125static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
126
127static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
128
129static int debug_to_stopped_by_watchpoint (void);
130
131static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
132
133static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135static void debug_to_terminal_init (void);
136
137static void debug_to_terminal_inferior (void);
138
139static void debug_to_terminal_ours_for_output (void);
140
141static void debug_to_terminal_save_ours (void);
142
143static void debug_to_terminal_ours (void);
144
145static void debug_to_terminal_info (char *, int);
146
147static void debug_to_kill (void);
148
149static void debug_to_load (char *, int);
150
151static int debug_to_lookup_symbol (char *, CORE_ADDR *);
152
153static void debug_to_mourn_inferior (void);
154
155static int debug_to_can_run (void);
156
157static void debug_to_notice_signals (ptid_t);
158
159static int debug_to_thread_alive (ptid_t);
160
161static void debug_to_stop (void);
162
163/* NOTE: cagney/2004-09-29: Many targets reference this variable in
164 wierd and mysterious ways. Putting the variable here lets those
165 wierd and mysterious ways keep building while they are being
166 converted to the inferior inheritance structure. */
167struct target_ops deprecated_child_ops;
168
169/* Pointer to array of target architecture structures; the size of the
170 array; the current index into the array; the allocated size of the
171 array. */
172struct target_ops **target_structs;
173unsigned target_struct_size;
174unsigned target_struct_index;
175unsigned target_struct_allocsize;
176#define DEFAULT_ALLOCSIZE 10
177
178/* The initial current target, so that there is always a semi-valid
179 current target. */
180
181static struct target_ops dummy_target;
182
183/* Top of target stack. */
184
185static struct target_ops *target_stack;
186
187/* The target structure we are currently using to talk to a process
188 or file or whatever "inferior" we have. */
189
190struct target_ops current_target;
191
192/* Command list for target. */
193
194static struct cmd_list_element *targetlist = NULL;
195
196/* Nonzero if we are debugging an attached outside process
197 rather than an inferior. */
198
199int attach_flag;
200
201/* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204static int trust_readonly = 0;
205
206/* Non-zero if we want to see trace of target level stuff. */
207
208static int targetdebug = 0;
209static void
210show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212{
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214}
215
216static void setup_target_debug (void);
217
218DCACHE *target_dcache;
219
220/* The user just typed 'target' without the name of a target. */
221
222static void
223target_command (char *arg, int from_tty)
224{
225 fputs_filtered ("Argument required (target name). Try `help target'\n",
226 gdb_stdout);
227}
228
229/* Add a possible target architecture to the list. */
230
231void
232add_target (struct target_ops *t)
233{
234 /* Provide default values for all "must have" methods. */
235 if (t->to_xfer_partial == NULL)
236 t->to_xfer_partial = default_xfer_partial;
237
238 if (!target_structs)
239 {
240 target_struct_allocsize = DEFAULT_ALLOCSIZE;
241 target_structs = (struct target_ops **) xmalloc
242 (target_struct_allocsize * sizeof (*target_structs));
243 }
244 if (target_struct_size >= target_struct_allocsize)
245 {
246 target_struct_allocsize *= 2;
247 target_structs = (struct target_ops **)
248 xrealloc ((char *) target_structs,
249 target_struct_allocsize * sizeof (*target_structs));
250 }
251 target_structs[target_struct_size++] = t;
252
253 if (targetlist == NULL)
254 add_prefix_cmd ("target", class_run, target_command, _("\
255Connect to a target machine or process.\n\
256The first argument is the type or protocol of the target machine.\n\
257Remaining arguments are interpreted by the target protocol. For more\n\
258information on the arguments for a particular protocol, type\n\
259`help target ' followed by the protocol name."),
260 &targetlist, "target ", 0, &cmdlist);
261 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
262}
263
264/* Stub functions */
265
266void
267target_ignore (void)
268{
269}
270
271void
272target_load (char *arg, int from_tty)
273{
274 dcache_invalidate (target_dcache);
275 (*current_target.to_load) (arg, from_tty);
276}
277
278static int
279nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
280 struct target_ops *t)
281{
282 errno = EIO; /* Can't read/write this location */
283 return 0; /* No bytes handled */
284}
285
286static void
287tcomplain (void)
288{
289 error (_("You can't do that when your target is `%s'"),
290 current_target.to_shortname);
291}
292
293void
294noprocess (void)
295{
296 error (_("You can't do that without a process to debug."));
297}
298
299static int
300nosymbol (char *name, CORE_ADDR *addrp)
301{
302 return 1; /* Symbol does not exist in target env */
303}
304
305static void
306nosupport_runtime (void)
307{
308 if (ptid_equal (inferior_ptid, null_ptid))
309 noprocess ();
310 else
311 error (_("No run-time support for this"));
312}
313
314
315static void
316default_terminal_info (char *args, int from_tty)
317{
318 printf_unfiltered (_("No saved terminal information.\n"));
319}
320
321/* This is the default target_create_inferior and target_attach function.
322 If the current target is executing, it asks whether to kill it off.
323 If this function returns without calling error(), it has killed off
324 the target, and the operation should be attempted. */
325
326static void
327kill_or_be_killed (int from_tty)
328{
329 if (target_has_execution)
330 {
331 printf_unfiltered (_("You are already running a program:\n"));
332 target_files_info ();
333 if (query ("Kill it? "))
334 {
335 target_kill ();
336 if (target_has_execution)
337 error (_("Killing the program did not help."));
338 return;
339 }
340 else
341 {
342 error (_("Program not killed."));
343 }
344 }
345 tcomplain ();
346}
347
348static void
349maybe_kill_then_attach (char *args, int from_tty)
350{
351 kill_or_be_killed (from_tty);
352 target_attach (args, from_tty);
353}
354
355static void
356maybe_kill_then_create_inferior (char *exec, char *args, char **env,
357 int from_tty)
358{
359 kill_or_be_killed (0);
360 target_create_inferior (exec, args, env, from_tty);
361}
362
363/* Go through the target stack from top to bottom, copying over zero
364 entries in current_target, then filling in still empty entries. In
365 effect, we are doing class inheritance through the pushed target
366 vectors.
367
368 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
369 is currently implemented, is that it discards any knowledge of
370 which target an inherited method originally belonged to.
371 Consequently, new new target methods should instead explicitly and
372 locally search the target stack for the target that can handle the
373 request. */
374
375static void
376update_current_target (void)
377{
378 struct target_ops *t;
379
380 /* First, reset current's contents. */
381 memset (&current_target, 0, sizeof (current_target));
382
383#define INHERIT(FIELD, TARGET) \
384 if (!current_target.FIELD) \
385 current_target.FIELD = (TARGET)->FIELD
386
387 for (t = target_stack; t; t = t->beneath)
388 {
389 INHERIT (to_shortname, t);
390 INHERIT (to_longname, t);
391 INHERIT (to_doc, t);
392 INHERIT (to_open, t);
393 INHERIT (to_close, t);
394 INHERIT (to_attach, t);
395 INHERIT (to_post_attach, t);
396 INHERIT (to_detach, t);
397 /* Do not inherit to_disconnect. */
398 INHERIT (to_resume, t);
399 INHERIT (to_wait, t);
400 INHERIT (to_fetch_registers, t);
401 INHERIT (to_store_registers, t);
402 INHERIT (to_prepare_to_store, t);
403 INHERIT (deprecated_xfer_memory, t);
404 INHERIT (to_files_info, t);
405 INHERIT (to_insert_breakpoint, t);
406 INHERIT (to_remove_breakpoint, t);
407 INHERIT (to_can_use_hw_breakpoint, t);
408 INHERIT (to_insert_hw_breakpoint, t);
409 INHERIT (to_remove_hw_breakpoint, t);
410 INHERIT (to_insert_watchpoint, t);
411 INHERIT (to_remove_watchpoint, t);
412 INHERIT (to_stopped_data_address, t);
413 INHERIT (to_stopped_by_watchpoint, t);
414 INHERIT (to_have_steppable_watchpoint, t);
415 INHERIT (to_have_continuable_watchpoint, t);
416 INHERIT (to_region_ok_for_hw_watchpoint, t);
417 INHERIT (to_terminal_init, t);
418 INHERIT (to_terminal_inferior, t);
419 INHERIT (to_terminal_ours_for_output, t);
420 INHERIT (to_terminal_ours, t);
421 INHERIT (to_terminal_save_ours, t);
422 INHERIT (to_terminal_info, t);
423 INHERIT (to_kill, t);
424 INHERIT (to_load, t);
425 INHERIT (to_lookup_symbol, t);
426 INHERIT (to_create_inferior, t);
427 INHERIT (to_post_startup_inferior, t);
428 INHERIT (to_acknowledge_created_inferior, t);
429 INHERIT (to_insert_fork_catchpoint, t);
430 INHERIT (to_remove_fork_catchpoint, t);
431 INHERIT (to_insert_vfork_catchpoint, t);
432 INHERIT (to_remove_vfork_catchpoint, t);
433 /* Do not inherit to_follow_fork. */
434 INHERIT (to_insert_exec_catchpoint, t);
435 INHERIT (to_remove_exec_catchpoint, t);
436 INHERIT (to_reported_exec_events_per_exec_call, t);
437 INHERIT (to_has_exited, t);
438 INHERIT (to_mourn_inferior, t);
439 INHERIT (to_can_run, t);
440 INHERIT (to_notice_signals, t);
441 INHERIT (to_thread_alive, t);
442 INHERIT (to_find_new_threads, t);
443 INHERIT (to_pid_to_str, t);
444 INHERIT (to_extra_thread_info, t);
445 INHERIT (to_stop, t);
446 /* Do not inherit to_xfer_partial. */
447 INHERIT (to_rcmd, t);
448 INHERIT (to_pid_to_exec_file, t);
449 INHERIT (to_log_command, t);
450 INHERIT (to_stratum, t);
451 INHERIT (to_has_all_memory, t);
452 INHERIT (to_has_memory, t);
453 INHERIT (to_has_stack, t);
454 INHERIT (to_has_registers, t);
455 INHERIT (to_has_execution, t);
456 INHERIT (to_has_thread_control, t);
457 INHERIT (to_sections, t);
458 INHERIT (to_sections_end, t);
459 INHERIT (to_can_async_p, t);
460 INHERIT (to_is_async_p, t);
461 INHERIT (to_async, t);
462 INHERIT (to_async_mask_value, t);
463 INHERIT (to_find_memory_regions, t);
464 INHERIT (to_make_corefile_notes, t);
465 INHERIT (to_get_thread_local_address, t);
466 /* Do not inherit to_read_description. */
467 INHERIT (to_magic, t);
468 /* Do not inherit to_memory_map. */
469 /* Do not inherit to_flash_erase. */
470 /* Do not inherit to_flash_done. */
471 }
472#undef INHERIT
473
474 /* Clean up a target struct so it no longer has any zero pointers in
475 it. Some entries are defaulted to a method that print an error,
476 others are hard-wired to a standard recursive default. */
477
478#define de_fault(field, value) \
479 if (!current_target.field) \
480 current_target.field = value
481
482 de_fault (to_open,
483 (void (*) (char *, int))
484 tcomplain);
485 de_fault (to_close,
486 (void (*) (int))
487 target_ignore);
488 de_fault (to_attach,
489 maybe_kill_then_attach);
490 de_fault (to_post_attach,
491 (void (*) (int))
492 target_ignore);
493 de_fault (to_detach,
494 (void (*) (char *, int))
495 target_ignore);
496 de_fault (to_resume,
497 (void (*) (ptid_t, int, enum target_signal))
498 noprocess);
499 de_fault (to_wait,
500 (ptid_t (*) (ptid_t, struct target_waitstatus *))
501 noprocess);
502 de_fault (to_fetch_registers,
503 (void (*) (struct regcache *, int))
504 target_ignore);
505 de_fault (to_store_registers,
506 (void (*) (struct regcache *, int))
507 noprocess);
508 de_fault (to_prepare_to_store,
509 (void (*) (struct regcache *))
510 noprocess);
511 de_fault (deprecated_xfer_memory,
512 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
513 nomemory);
514 de_fault (to_files_info,
515 (void (*) (struct target_ops *))
516 target_ignore);
517 de_fault (to_insert_breakpoint,
518 memory_insert_breakpoint);
519 de_fault (to_remove_breakpoint,
520 memory_remove_breakpoint);
521 de_fault (to_can_use_hw_breakpoint,
522 (int (*) (int, int, int))
523 return_zero);
524 de_fault (to_insert_hw_breakpoint,
525 (int (*) (struct bp_target_info *))
526 return_minus_one);
527 de_fault (to_remove_hw_breakpoint,
528 (int (*) (struct bp_target_info *))
529 return_minus_one);
530 de_fault (to_insert_watchpoint,
531 (int (*) (CORE_ADDR, int, int))
532 return_minus_one);
533 de_fault (to_remove_watchpoint,
534 (int (*) (CORE_ADDR, int, int))
535 return_minus_one);
536 de_fault (to_stopped_by_watchpoint,
537 (int (*) (void))
538 return_zero);
539 de_fault (to_stopped_data_address,
540 (int (*) (struct target_ops *, CORE_ADDR *))
541 return_zero);
542 de_fault (to_region_ok_for_hw_watchpoint,
543 default_region_ok_for_hw_watchpoint);
544 de_fault (to_terminal_init,
545 (void (*) (void))
546 target_ignore);
547 de_fault (to_terminal_inferior,
548 (void (*) (void))
549 target_ignore);
550 de_fault (to_terminal_ours_for_output,
551 (void (*) (void))
552 target_ignore);
553 de_fault (to_terminal_ours,
554 (void (*) (void))
555 target_ignore);
556 de_fault (to_terminal_save_ours,
557 (void (*) (void))
558 target_ignore);
559 de_fault (to_terminal_info,
560 default_terminal_info);
561 de_fault (to_kill,
562 (void (*) (void))
563 noprocess);
564 de_fault (to_load,
565 (void (*) (char *, int))
566 tcomplain);
567 de_fault (to_lookup_symbol,
568 (int (*) (char *, CORE_ADDR *))
569 nosymbol);
570 de_fault (to_create_inferior,
571 maybe_kill_then_create_inferior);
572 de_fault (to_post_startup_inferior,
573 (void (*) (ptid_t))
574 target_ignore);
575 de_fault (to_acknowledge_created_inferior,
576 (void (*) (int))
577 target_ignore);
578 de_fault (to_insert_fork_catchpoint,
579 (void (*) (int))
580 tcomplain);
581 de_fault (to_remove_fork_catchpoint,
582 (int (*) (int))
583 tcomplain);
584 de_fault (to_insert_vfork_catchpoint,
585 (void (*) (int))
586 tcomplain);
587 de_fault (to_remove_vfork_catchpoint,
588 (int (*) (int))
589 tcomplain);
590 de_fault (to_insert_exec_catchpoint,
591 (void (*) (int))
592 tcomplain);
593 de_fault (to_remove_exec_catchpoint,
594 (int (*) (int))
595 tcomplain);
596 de_fault (to_reported_exec_events_per_exec_call,
597 (int (*) (void))
598 return_one);
599 de_fault (to_has_exited,
600 (int (*) (int, int, int *))
601 return_zero);
602 de_fault (to_mourn_inferior,
603 (void (*) (void))
604 noprocess);
605 de_fault (to_can_run,
606 return_zero);
607 de_fault (to_notice_signals,
608 (void (*) (ptid_t))
609 target_ignore);
610 de_fault (to_thread_alive,
611 (int (*) (ptid_t))
612 return_zero);
613 de_fault (to_find_new_threads,
614 (void (*) (void))
615 target_ignore);
616 de_fault (to_extra_thread_info,
617 (char *(*) (struct thread_info *))
618 return_zero);
619 de_fault (to_stop,
620 (void (*) (void))
621 target_ignore);
622 current_target.to_xfer_partial = current_xfer_partial;
623 de_fault (to_rcmd,
624 (void (*) (char *, struct ui_file *))
625 tcomplain);
626 de_fault (to_pid_to_exec_file,
627 (char *(*) (int))
628 return_zero);
629 de_fault (to_can_async_p,
630 (int (*) (void))
631 return_zero);
632 de_fault (to_is_async_p,
633 (int (*) (void))
634 return_zero);
635 de_fault (to_async,
636 (void (*) (void (*) (enum inferior_event_type, void*), void*))
637 tcomplain);
638 current_target.to_read_description = NULL;
639#undef de_fault
640
641 /* Finally, position the target-stack beneath the squashed
642 "current_target". That way code looking for a non-inherited
643 target method can quickly and simply find it. */
644 current_target.beneath = target_stack;
645
646 if (targetdebug)
647 setup_target_debug ();
648}
649
650/* Mark OPS as a running target. This reverses the effect
651 of target_mark_exited. */
652
653void
654target_mark_running (struct target_ops *ops)
655{
656 struct target_ops *t;
657
658 for (t = target_stack; t != NULL; t = t->beneath)
659 if (t == ops)
660 break;
661 if (t == NULL)
662 internal_error (__FILE__, __LINE__,
663 "Attempted to mark unpushed target \"%s\" as running",
664 ops->to_shortname);
665
666 ops->to_has_execution = 1;
667 ops->to_has_all_memory = 1;
668 ops->to_has_memory = 1;
669 ops->to_has_stack = 1;
670 ops->to_has_registers = 1;
671
672 update_current_target ();
673}
674
675/* Mark OPS as a non-running target. This reverses the effect
676 of target_mark_running. */
677
678void
679target_mark_exited (struct target_ops *ops)
680{
681 struct target_ops *t;
682
683 for (t = target_stack; t != NULL; t = t->beneath)
684 if (t == ops)
685 break;
686 if (t == NULL)
687 internal_error (__FILE__, __LINE__,
688 "Attempted to mark unpushed target \"%s\" as running",
689 ops->to_shortname);
690
691 ops->to_has_execution = 0;
692 ops->to_has_all_memory = 0;
693 ops->to_has_memory = 0;
694 ops->to_has_stack = 0;
695 ops->to_has_registers = 0;
696
697 update_current_target ();
698}
699
700/* Push a new target type into the stack of the existing target accessors,
701 possibly superseding some of the existing accessors.
702
703 Result is zero if the pushed target ended up on top of the stack,
704 nonzero if at least one target is on top of it.
705
706 Rather than allow an empty stack, we always have the dummy target at
707 the bottom stratum, so we can call the function vectors without
708 checking them. */
709
710int
711push_target (struct target_ops *t)
712{
713 struct target_ops **cur;
714
715 /* Check magic number. If wrong, it probably means someone changed
716 the struct definition, but not all the places that initialize one. */
717 if (t->to_magic != OPS_MAGIC)
718 {
719 fprintf_unfiltered (gdb_stderr,
720 "Magic number of %s target struct wrong\n",
721 t->to_shortname);
722 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
723 }
724
725 /* Find the proper stratum to install this target in. */
726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727 {
728 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
729 break;
730 }
731
732 /* If there's already targets at this stratum, remove them. */
733 /* FIXME: cagney/2003-10-15: I think this should be popping all
734 targets to CUR, and not just those at this stratum level. */
735 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
736 {
737 /* There's already something at this stratum level. Close it,
738 and un-hook it from the stack. */
739 struct target_ops *tmp = (*cur);
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742 target_close (tmp, 0);
743 }
744
745 /* We have removed all targets in our stratum, now add the new one. */
746 t->beneath = (*cur);
747 (*cur) = t;
748
749 update_current_target ();
750
751 /* Not on top? */
752 return (t != target_stack);
753}
754
755/* Remove a target_ops vector from the stack, wherever it may be.
756 Return how many times it was removed (0 or 1). */
757
758int
759unpush_target (struct target_ops *t)
760{
761 struct target_ops **cur;
762 struct target_ops *tmp;
763
764 /* Look for the specified target. Note that we assume that a target
765 can only occur once in the target stack. */
766
767 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
768 {
769 if ((*cur) == t)
770 break;
771 }
772
773 if ((*cur) == NULL)
774 return 0; /* Didn't find target_ops, quit now */
775
776 /* NOTE: cagney/2003-12-06: In '94 the close call was made
777 unconditional by moving it to before the above check that the
778 target was in the target stack (something about "Change the way
779 pushing and popping of targets work to support target overlays
780 and inheritance"). This doesn't make much sense - only open
781 targets should be closed. */
782 target_close (t, 0);
783
784 /* Unchain the target */
785 tmp = (*cur);
786 (*cur) = (*cur)->beneath;
787 tmp->beneath = NULL;
788
789 update_current_target ();
790
791 return 1;
792}
793
794void
795pop_target (void)
796{
797 target_close (&current_target, 0); /* Let it clean up */
798 if (unpush_target (target_stack) == 1)
799 return;
800
801 fprintf_unfiltered (gdb_stderr,
802 "pop_target couldn't find target %s\n",
803 current_target.to_shortname);
804 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
805}
806
807/* Using the objfile specified in OBJFILE, find the address for the
808 current thread's thread-local storage with offset OFFSET. */
809CORE_ADDR
810target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
811{
812 volatile CORE_ADDR addr = 0;
813
814 if (target_get_thread_local_address_p ()
815 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
816 {
817 ptid_t ptid = inferior_ptid;
818 volatile struct gdb_exception ex;
819
820 TRY_CATCH (ex, RETURN_MASK_ALL)
821 {
822 CORE_ADDR lm_addr;
823
824 /* Fetch the load module address for this objfile. */
825 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
826 objfile);
827 /* If it's 0, throw the appropriate exception. */
828 if (lm_addr == 0)
829 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
830 _("TLS load module not found"));
831
832 addr = target_get_thread_local_address (ptid, lm_addr, offset);
833 }
834 /* If an error occurred, print TLS related messages here. Otherwise,
835 throw the error to some higher catcher. */
836 if (ex.reason < 0)
837 {
838 int objfile_is_library = (objfile->flags & OBJF_SHARED);
839
840 switch (ex.error)
841 {
842 case TLS_NO_LIBRARY_SUPPORT_ERROR:
843 error (_("Cannot find thread-local variables in this thread library."));
844 break;
845 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
846 if (objfile_is_library)
847 error (_("Cannot find shared library `%s' in dynamic"
848 " linker's load module list"), objfile->name);
849 else
850 error (_("Cannot find executable file `%s' in dynamic"
851 " linker's load module list"), objfile->name);
852 break;
853 case TLS_NOT_ALLOCATED_YET_ERROR:
854 if (objfile_is_library)
855 error (_("The inferior has not yet allocated storage for"
856 " thread-local variables in\n"
857 "the shared library `%s'\n"
858 "for %s"),
859 objfile->name, target_pid_to_str (ptid));
860 else
861 error (_("The inferior has not yet allocated storage for"
862 " thread-local variables in\n"
863 "the executable `%s'\n"
864 "for %s"),
865 objfile->name, target_pid_to_str (ptid));
866 break;
867 case TLS_GENERIC_ERROR:
868 if (objfile_is_library)
869 error (_("Cannot find thread-local storage for %s, "
870 "shared library %s:\n%s"),
871 target_pid_to_str (ptid),
872 objfile->name, ex.message);
873 else
874 error (_("Cannot find thread-local storage for %s, "
875 "executable file %s:\n%s"),
876 target_pid_to_str (ptid),
877 objfile->name, ex.message);
878 break;
879 default:
880 throw_exception (ex);
881 break;
882 }
883 }
884 }
885 /* It wouldn't be wrong here to try a gdbarch method, too; finding
886 TLS is an ABI-specific thing. But we don't do that yet. */
887 else
888 error (_("Cannot find thread-local variables on this target"));
889
890 return addr;
891}
892
893#undef MIN
894#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
895
896/* target_read_string -- read a null terminated string, up to LEN bytes,
897 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
898 Set *STRING to a pointer to malloc'd memory containing the data; the caller
899 is responsible for freeing it. Return the number of bytes successfully
900 read. */
901
902int
903target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
904{
905 int tlen, origlen, offset, i;
906 gdb_byte buf[4];
907 int errcode = 0;
908 char *buffer;
909 int buffer_allocated;
910 char *bufptr;
911 unsigned int nbytes_read = 0;
912
913 gdb_assert (string);
914
915 /* Small for testing. */
916 buffer_allocated = 4;
917 buffer = xmalloc (buffer_allocated);
918 bufptr = buffer;
919
920 origlen = len;
921
922 while (len > 0)
923 {
924 tlen = MIN (len, 4 - (memaddr & 3));
925 offset = memaddr & 3;
926
927 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
928 if (errcode != 0)
929 {
930 /* The transfer request might have crossed the boundary to an
931 unallocated region of memory. Retry the transfer, requesting
932 a single byte. */
933 tlen = 1;
934 offset = 0;
935 errcode = target_read_memory (memaddr, buf, 1);
936 if (errcode != 0)
937 goto done;
938 }
939
940 if (bufptr - buffer + tlen > buffer_allocated)
941 {
942 unsigned int bytes;
943 bytes = bufptr - buffer;
944 buffer_allocated *= 2;
945 buffer = xrealloc (buffer, buffer_allocated);
946 bufptr = buffer + bytes;
947 }
948
949 for (i = 0; i < tlen; i++)
950 {
951 *bufptr++ = buf[i + offset];
952 if (buf[i + offset] == '\000')
953 {
954 nbytes_read += i + 1;
955 goto done;
956 }
957 }
958
959 memaddr += tlen;
960 len -= tlen;
961 nbytes_read += tlen;
962 }
963done:
964 *string = buffer;
965 if (errnop != NULL)
966 *errnop = errcode;
967 return nbytes_read;
968}
969
970/* Find a section containing ADDR. */
971struct section_table *
972target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
973{
974 struct section_table *secp;
975 for (secp = target->to_sections;
976 secp < target->to_sections_end;
977 secp++)
978 {
979 if (addr >= secp->addr && addr < secp->endaddr)
980 return secp;
981 }
982 return NULL;
983}
984
985/* Perform a partial memory transfer. The arguments and return
986 value are just as for target_xfer_partial. */
987
988static LONGEST
989memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
990 ULONGEST memaddr, LONGEST len)
991{
992 LONGEST res;
993 int reg_len;
994 struct mem_region *region;
995
996 /* Zero length requests are ok and require no work. */
997 if (len == 0)
998 return 0;
999
1000 /* Try the executable file, if "trust-readonly-sections" is set. */
1001 if (readbuf != NULL && trust_readonly)
1002 {
1003 struct section_table *secp;
1004
1005 secp = target_section_by_addr (ops, memaddr);
1006 if (secp != NULL
1007 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1008 & SEC_READONLY))
1009 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1010 }
1011
1012 /* Likewise for accesses to unmapped overlay sections. */
1013 if (readbuf != NULL && overlay_debugging)
1014 {
1015 asection *section = find_pc_overlay (memaddr);
1016 if (pc_in_unmapped_range (memaddr, section))
1017 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1018 }
1019
1020 /* Try GDB's internal data cache. */
1021 region = lookup_mem_region (memaddr);
1022 /* region->hi == 0 means there's no upper bound. */
1023 if (memaddr + len < region->hi || region->hi == 0)
1024 reg_len = len;
1025 else
1026 reg_len = region->hi - memaddr;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return -1;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return -1;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return -1;
1048 }
1049
1050 if (region->attrib.cache)
1051 {
1052 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1053 memory request will start back at current_target. */
1054 if (readbuf != NULL)
1055 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1056 reg_len, 0);
1057 else
1058 /* FIXME drow/2006-08-09: If we're going to preserve const
1059 correctness dcache_xfer_memory should take readbuf and
1060 writebuf. */
1061 res = dcache_xfer_memory (target_dcache, memaddr,
1062 (void *) writebuf,
1063 reg_len, 1);
1064 if (res <= 0)
1065 return -1;
1066 else
1067 return res;
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 do
1081 {
1082 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1083 readbuf, writebuf, memaddr, reg_len);
1084 if (res > 0)
1085 return res;
1086
1087 /* We want to continue past core files to executables, but not
1088 past a running target's memory. */
1089 if (ops->to_has_all_memory)
1090 return res;
1091
1092 ops = ops->beneath;
1093 }
1094 while (ops != NULL);
1095
1096 /* If we still haven't got anything, return the last error. We
1097 give up. */
1098 return res;
1099}
1100
1101static LONGEST
1102target_xfer_partial (struct target_ops *ops,
1103 enum target_object object, const char *annex,
1104 void *readbuf, const void *writebuf,
1105 ULONGEST offset, LONGEST len)
1106{
1107 LONGEST retval;
1108
1109 gdb_assert (ops->to_xfer_partial != NULL);
1110
1111 /* If this is a memory transfer, let the memory-specific code
1112 have a look at it instead. Memory transfers are more
1113 complicated. */
1114 if (object == TARGET_OBJECT_MEMORY)
1115 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1116 else
1117 {
1118 enum target_object raw_object = object;
1119
1120 /* If this is a raw memory transfer, request the normal
1121 memory object from other layers. */
1122 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1123 raw_object = TARGET_OBJECT_MEMORY;
1124
1125 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1126 writebuf, offset, len);
1127 }
1128
1129 if (targetdebug)
1130 {
1131 const unsigned char *myaddr = NULL;
1132
1133 fprintf_unfiltered (gdb_stdlog,
1134 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1135 ops->to_shortname,
1136 (int) object,
1137 (annex ? annex : "(null)"),
1138 (long) readbuf, (long) writebuf,
1139 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1140
1141 if (readbuf)
1142 myaddr = readbuf;
1143 if (writebuf)
1144 myaddr = writebuf;
1145 if (retval > 0 && myaddr != NULL)
1146 {
1147 int i;
1148
1149 fputs_unfiltered (", bytes =", gdb_stdlog);
1150 for (i = 0; i < retval; i++)
1151 {
1152 if ((((long) &(myaddr[i])) & 0xf) == 0)
1153 {
1154 if (targetdebug < 2 && i > 0)
1155 {
1156 fprintf_unfiltered (gdb_stdlog, " ...");
1157 break;
1158 }
1159 fprintf_unfiltered (gdb_stdlog, "\n");
1160 }
1161
1162 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1163 }
1164 }
1165
1166 fputc_unfiltered ('\n', gdb_stdlog);
1167 }
1168 return retval;
1169}
1170
1171/* Read LEN bytes of target memory at address MEMADDR, placing the results in
1172 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1173 if any error occurs.
1174
1175 If an error occurs, no guarantee is made about the contents of the data at
1176 MYADDR. In particular, the caller should not depend upon partial reads
1177 filling the buffer with good data. There is no way for the caller to know
1178 how much good data might have been transfered anyway. Callers that can
1179 deal with partial reads should call target_read (which will retry until
1180 it makes no progress, and then return how much was transferred). */
1181
1182int
1183target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1184{
1185 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1186 myaddr, memaddr, len) == len)
1187 return 0;
1188 else
1189 return EIO;
1190}
1191
1192int
1193target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1194{
1195 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1196 myaddr, memaddr, len) == len)
1197 return 0;
1198 else
1199 return EIO;
1200}
1201
1202/* Fetch the target's memory map. */
1203
1204VEC(mem_region_s) *
1205target_memory_map (void)
1206{
1207 VEC(mem_region_s) *result;
1208 struct mem_region *last_one, *this_one;
1209 int ix;
1210 struct target_ops *t;
1211
1212 if (targetdebug)
1213 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1214
1215 for (t = current_target.beneath; t != NULL; t = t->beneath)
1216 if (t->to_memory_map != NULL)
1217 break;
1218
1219 if (t == NULL)
1220 return NULL;
1221
1222 result = t->to_memory_map (t);
1223 if (result == NULL)
1224 return NULL;
1225
1226 qsort (VEC_address (mem_region_s, result),
1227 VEC_length (mem_region_s, result),
1228 sizeof (struct mem_region), mem_region_cmp);
1229
1230 /* Check that regions do not overlap. Simultaneously assign
1231 a numbering for the "mem" commands to use to refer to
1232 each region. */
1233 last_one = NULL;
1234 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1235 {
1236 this_one->number = ix;
1237
1238 if (last_one && last_one->hi > this_one->lo)
1239 {
1240 warning (_("Overlapping regions in memory map: ignoring"));
1241 VEC_free (mem_region_s, result);
1242 return NULL;
1243 }
1244 last_one = this_one;
1245 }
1246
1247 return result;
1248}
1249
1250void
1251target_flash_erase (ULONGEST address, LONGEST length)
1252{
1253 struct target_ops *t;
1254
1255 for (t = current_target.beneath; t != NULL; t = t->beneath)
1256 if (t->to_flash_erase != NULL)
1257 {
1258 if (targetdebug)
1259 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1260 paddr (address), phex (length, 0));
1261 t->to_flash_erase (t, address, length);
1262 return;
1263 }
1264
1265 tcomplain ();
1266}
1267
1268void
1269target_flash_done (void)
1270{
1271 struct target_ops *t;
1272
1273 for (t = current_target.beneath; t != NULL; t = t->beneath)
1274 if (t->to_flash_done != NULL)
1275 {
1276 if (targetdebug)
1277 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1278 t->to_flash_done (t);
1279 return;
1280 }
1281
1282 tcomplain ();
1283}
1284
1285#ifndef target_stopped_data_address_p
1286int
1287target_stopped_data_address_p (struct target_ops *target)
1288{
1289 if (target->to_stopped_data_address
1290 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1291 return 0;
1292 if (target->to_stopped_data_address == debug_to_stopped_data_address
1293 && (debug_target.to_stopped_data_address
1294 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1295 return 0;
1296 return 1;
1297}
1298#endif
1299
1300static void
1301show_trust_readonly (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c, const char *value)
1303{
1304 fprintf_filtered (file, _("\
1305Mode for reading from readonly sections is %s.\n"),
1306 value);
1307}
1308
1309/* More generic transfers. */
1310
1311static LONGEST
1312default_xfer_partial (struct target_ops *ops, enum target_object object,
1313 const char *annex, gdb_byte *readbuf,
1314 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1315{
1316 if (object == TARGET_OBJECT_MEMORY
1317 && ops->deprecated_xfer_memory != NULL)
1318 /* If available, fall back to the target's
1319 "deprecated_xfer_memory" method. */
1320 {
1321 int xfered = -1;
1322 errno = 0;
1323 if (writebuf != NULL)
1324 {
1325 void *buffer = xmalloc (len);
1326 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1327 memcpy (buffer, writebuf, len);
1328 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1329 1/*write*/, NULL, ops);
1330 do_cleanups (cleanup);
1331 }
1332 if (readbuf != NULL)
1333 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1334 0/*read*/, NULL, ops);
1335 if (xfered > 0)
1336 return xfered;
1337 else if (xfered == 0 && errno == 0)
1338 /* "deprecated_xfer_memory" uses 0, cross checked against
1339 ERRNO as one indication of an error. */
1340 return 0;
1341 else
1342 return -1;
1343 }
1344 else if (ops->beneath != NULL)
1345 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1346 readbuf, writebuf, offset, len);
1347 else
1348 return -1;
1349}
1350
1351/* The xfer_partial handler for the topmost target. Unlike the default,
1352 it does not need to handle memory specially; it just passes all
1353 requests down the stack. */
1354
1355static LONGEST
1356current_xfer_partial (struct target_ops *ops, enum target_object object,
1357 const char *annex, gdb_byte *readbuf,
1358 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1359{
1360 if (ops->beneath != NULL)
1361 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1362 readbuf, writebuf, offset, len);
1363 else
1364 return -1;
1365}
1366
1367/* Target vector read/write partial wrapper functions.
1368
1369 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1370 (inbuf, outbuf)", instead of separate read/write methods, make life
1371 easier. */
1372
1373static LONGEST
1374target_read_partial (struct target_ops *ops,
1375 enum target_object object,
1376 const char *annex, gdb_byte *buf,
1377 ULONGEST offset, LONGEST len)
1378{
1379 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1380}
1381
1382static LONGEST
1383target_write_partial (struct target_ops *ops,
1384 enum target_object object,
1385 const char *annex, const gdb_byte *buf,
1386 ULONGEST offset, LONGEST len)
1387{
1388 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1389}
1390
1391/* Wrappers to perform the full transfer. */
1392LONGEST
1393target_read (struct target_ops *ops,
1394 enum target_object object,
1395 const char *annex, gdb_byte *buf,
1396 ULONGEST offset, LONGEST len)
1397{
1398 LONGEST xfered = 0;
1399 while (xfered < len)
1400 {
1401 LONGEST xfer = target_read_partial (ops, object, annex,
1402 (gdb_byte *) buf + xfered,
1403 offset + xfered, len - xfered);
1404 /* Call an observer, notifying them of the xfer progress? */
1405 if (xfer == 0)
1406 return xfered;
1407 if (xfer < 0)
1408 return -1;
1409 xfered += xfer;
1410 QUIT;
1411 }
1412 return len;
1413}
1414
1415/* An alternative to target_write with progress callbacks. */
1416
1417LONGEST
1418target_write_with_progress (struct target_ops *ops,
1419 enum target_object object,
1420 const char *annex, const gdb_byte *buf,
1421 ULONGEST offset, LONGEST len,
1422 void (*progress) (ULONGEST, void *), void *baton)
1423{
1424 LONGEST xfered = 0;
1425
1426 /* Give the progress callback a chance to set up. */
1427 if (progress)
1428 (*progress) (0, baton);
1429
1430 while (xfered < len)
1431 {
1432 LONGEST xfer = target_write_partial (ops, object, annex,
1433 (gdb_byte *) buf + xfered,
1434 offset + xfered, len - xfered);
1435
1436 if (xfer == 0)
1437 return xfered;
1438 if (xfer < 0)
1439 return -1;
1440
1441 if (progress)
1442 (*progress) (xfer, baton);
1443
1444 xfered += xfer;
1445 QUIT;
1446 }
1447 return len;
1448}
1449
1450LONGEST
1451target_write (struct target_ops *ops,
1452 enum target_object object,
1453 const char *annex, const gdb_byte *buf,
1454 ULONGEST offset, LONGEST len)
1455{
1456 return target_write_with_progress (ops, object, annex, buf, offset, len,
1457 NULL, NULL);
1458}
1459
1460/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1461 the size of the transferred data. PADDING additional bytes are
1462 available in *BUF_P. This is a helper function for
1463 target_read_alloc; see the declaration of that function for more
1464 information. */
1465
1466static LONGEST
1467target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1468 const char *annex, gdb_byte **buf_p, int padding)
1469{
1470 size_t buf_alloc, buf_pos;
1471 gdb_byte *buf;
1472 LONGEST n;
1473
1474 /* This function does not have a length parameter; it reads the
1475 entire OBJECT). Also, it doesn't support objects fetched partly
1476 from one target and partly from another (in a different stratum,
1477 e.g. a core file and an executable). Both reasons make it
1478 unsuitable for reading memory. */
1479 gdb_assert (object != TARGET_OBJECT_MEMORY);
1480
1481 /* Start by reading up to 4K at a time. The target will throttle
1482 this number down if necessary. */
1483 buf_alloc = 4096;
1484 buf = xmalloc (buf_alloc);
1485 buf_pos = 0;
1486 while (1)
1487 {
1488 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1489 buf_pos, buf_alloc - buf_pos - padding);
1490 if (n < 0)
1491 {
1492 /* An error occurred. */
1493 xfree (buf);
1494 return -1;
1495 }
1496 else if (n == 0)
1497 {
1498 /* Read all there was. */
1499 if (buf_pos == 0)
1500 xfree (buf);
1501 else
1502 *buf_p = buf;
1503 return buf_pos;
1504 }
1505
1506 buf_pos += n;
1507
1508 /* If the buffer is filling up, expand it. */
1509 if (buf_alloc < buf_pos * 2)
1510 {
1511 buf_alloc *= 2;
1512 buf = xrealloc (buf, buf_alloc);
1513 }
1514
1515 QUIT;
1516 }
1517}
1518
1519/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1520 the size of the transferred data. See the declaration in "target.h"
1521 function for more information about the return value. */
1522
1523LONGEST
1524target_read_alloc (struct target_ops *ops, enum target_object object,
1525 const char *annex, gdb_byte **buf_p)
1526{
1527 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1528}
1529
1530/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1531 returned as a string, allocated using xmalloc. If an error occurs
1532 or the transfer is unsupported, NULL is returned. Empty objects
1533 are returned as allocated but empty strings. A warning is issued
1534 if the result contains any embedded NUL bytes. */
1535
1536char *
1537target_read_stralloc (struct target_ops *ops, enum target_object object,
1538 const char *annex)
1539{
1540 gdb_byte *buffer;
1541 LONGEST transferred;
1542
1543 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1544
1545 if (transferred < 0)
1546 return NULL;
1547
1548 if (transferred == 0)
1549 return xstrdup ("");
1550
1551 buffer[transferred] = 0;
1552 if (strlen (buffer) < transferred)
1553 warning (_("target object %d, annex %s, "
1554 "contained unexpected null characters"),
1555 (int) object, annex ? annex : "(none)");
1556
1557 return (char *) buffer;
1558}
1559
1560/* Memory transfer methods. */
1561
1562void
1563get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1564 LONGEST len)
1565{
1566 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1567 != len)
1568 memory_error (EIO, addr);
1569}
1570
1571ULONGEST
1572get_target_memory_unsigned (struct target_ops *ops,
1573 CORE_ADDR addr, int len)
1574{
1575 gdb_byte buf[sizeof (ULONGEST)];
1576
1577 gdb_assert (len <= sizeof (buf));
1578 get_target_memory (ops, addr, buf, len);
1579 return extract_unsigned_integer (buf, len);
1580}
1581
1582static void
1583target_info (char *args, int from_tty)
1584{
1585 struct target_ops *t;
1586 int has_all_mem = 0;
1587
1588 if (symfile_objfile != NULL)
1589 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1590
1591 for (t = target_stack; t != NULL; t = t->beneath)
1592 {
1593 if (!t->to_has_memory)
1594 continue;
1595
1596 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1597 continue;
1598 if (has_all_mem)
1599 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1600 printf_unfiltered ("%s:\n", t->to_longname);
1601 (t->to_files_info) (t);
1602 has_all_mem = t->to_has_all_memory;
1603 }
1604}
1605
1606/* This function is called before any new inferior is created, e.g.
1607 by running a program, attaching, or connecting to a target.
1608 It cleans up any state from previous invocations which might
1609 change between runs. This is a subset of what target_preopen
1610 resets (things which might change between targets). */
1611
1612void
1613target_pre_inferior (int from_tty)
1614{
1615 invalidate_target_mem_regions ();
1616
1617 target_clear_description ();
1618}
1619
1620/* This is to be called by the open routine before it does
1621 anything. */
1622
1623void
1624target_preopen (int from_tty)
1625{
1626 dont_repeat ();
1627
1628 if (target_has_execution)
1629 {
1630 if (!from_tty
1631 || query (_("A program is being debugged already. Kill it? ")))
1632 target_kill ();
1633 else
1634 error (_("Program not killed."));
1635 }
1636
1637 /* Calling target_kill may remove the target from the stack. But if
1638 it doesn't (which seems like a win for UDI), remove it now. */
1639
1640 if (target_has_execution)
1641 pop_target ();
1642
1643 target_pre_inferior (from_tty);
1644}
1645
1646/* Detach a target after doing deferred register stores. */
1647
1648void
1649target_detach (char *args, int from_tty)
1650{
1651 (current_target.to_detach) (args, from_tty);
1652}
1653
1654void
1655target_disconnect (char *args, int from_tty)
1656{
1657 struct target_ops *t;
1658
1659 for (t = current_target.beneath; t != NULL; t = t->beneath)
1660 if (t->to_disconnect != NULL)
1661 {
1662 if (targetdebug)
1663 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1664 args, from_tty);
1665 t->to_disconnect (t, args, from_tty);
1666 return;
1667 }
1668
1669 tcomplain ();
1670}
1671
1672int
1673target_async_mask (int mask)
1674{
1675 int saved_async_masked_status = target_async_mask_value;
1676 target_async_mask_value = mask;
1677 return saved_async_masked_status;
1678}
1679
1680/* Look through the list of possible targets for a target that can
1681 follow forks. */
1682
1683int
1684target_follow_fork (int follow_child)
1685{
1686 struct target_ops *t;
1687
1688 for (t = current_target.beneath; t != NULL; t = t->beneath)
1689 {
1690 if (t->to_follow_fork != NULL)
1691 {
1692 int retval = t->to_follow_fork (t, follow_child);
1693 if (targetdebug)
1694 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1695 follow_child, retval);
1696 return retval;
1697 }
1698 }
1699
1700 /* Some target returned a fork event, but did not know how to follow it. */
1701 internal_error (__FILE__, __LINE__,
1702 "could not find a target to follow fork");
1703}
1704
1705/* Look for a target which can describe architectural features, starting
1706 from TARGET. If we find one, return its description. */
1707
1708const struct target_desc *
1709target_read_description (struct target_ops *target)
1710{
1711 struct target_ops *t;
1712
1713 for (t = target; t != NULL; t = t->beneath)
1714 if (t->to_read_description != NULL)
1715 {
1716 const struct target_desc *tdesc;
1717
1718 tdesc = t->to_read_description (t);
1719 if (tdesc)
1720 return tdesc;
1721 }
1722
1723 return NULL;
1724}
1725
1726/* Look through the currently pushed targets. If none of them will
1727 be able to restart the currently running process, issue an error
1728 message. */
1729
1730void
1731target_require_runnable (void)
1732{
1733 struct target_ops *t;
1734
1735 for (t = target_stack; t != NULL; t = t->beneath)
1736 {
1737 /* If this target knows how to create a new program, then
1738 assume we will still be able to after killing the current
1739 one. Either killing and mourning will not pop T, or else
1740 find_default_run_target will find it again. */
1741 if (t->to_create_inferior != NULL)
1742 return;
1743
1744 /* Do not worry about thread_stratum targets that can not
1745 create inferiors. Assume they will be pushed again if
1746 necessary, and continue to the process_stratum. */
1747 if (t->to_stratum == thread_stratum)
1748 continue;
1749
1750 error (_("\
1751The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
1752 t->to_shortname);
1753 }
1754
1755 /* This function is only called if the target is running. In that
1756 case there should have been a process_stratum target and it
1757 should either know how to create inferiors, or not... */
1758 internal_error (__FILE__, __LINE__, "No targets found");
1759}
1760
1761/* Look through the list of possible targets for a target that can
1762 execute a run or attach command without any other data. This is
1763 used to locate the default process stratum.
1764
1765 Result is always valid (error() is called for errors). */
1766
1767static struct target_ops *
1768find_default_run_target (char *do_mesg)
1769{
1770 struct target_ops **t;
1771 struct target_ops *runable = NULL;
1772 int count;
1773
1774 count = 0;
1775
1776 for (t = target_structs; t < target_structs + target_struct_size;
1777 ++t)
1778 {
1779 if ((*t)->to_can_run && target_can_run (*t))
1780 {
1781 runable = *t;
1782 ++count;
1783 }
1784 }
1785
1786 if (count != 1)
1787 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1788
1789 return runable;
1790}
1791
1792void
1793find_default_attach (char *args, int from_tty)
1794{
1795 struct target_ops *t;
1796
1797 t = find_default_run_target ("attach");
1798 (t->to_attach) (args, from_tty);
1799 return;
1800}
1801
1802void
1803find_default_create_inferior (char *exec_file, char *allargs, char **env,
1804 int from_tty)
1805{
1806 struct target_ops *t;
1807
1808 t = find_default_run_target ("run");
1809 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1810 return;
1811}
1812
1813static int
1814default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1815{
1816 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1817}
1818
1819static int
1820return_zero (void)
1821{
1822 return 0;
1823}
1824
1825static int
1826return_one (void)
1827{
1828 return 1;
1829}
1830
1831static int
1832return_minus_one (void)
1833{
1834 return -1;
1835}
1836
1837/*
1838 * Resize the to_sections pointer. Also make sure that anyone that
1839 * was holding on to an old value of it gets updated.
1840 * Returns the old size.
1841 */
1842
1843int
1844target_resize_to_sections (struct target_ops *target, int num_added)
1845{
1846 struct target_ops **t;
1847 struct section_table *old_value;
1848 int old_count;
1849
1850 old_value = target->to_sections;
1851
1852 if (target->to_sections)
1853 {
1854 old_count = target->to_sections_end - target->to_sections;
1855 target->to_sections = (struct section_table *)
1856 xrealloc ((char *) target->to_sections,
1857 (sizeof (struct section_table)) * (num_added + old_count));
1858 }
1859 else
1860 {
1861 old_count = 0;
1862 target->to_sections = (struct section_table *)
1863 xmalloc ((sizeof (struct section_table)) * num_added);
1864 }
1865 target->to_sections_end = target->to_sections + (num_added + old_count);
1866
1867 /* Check to see if anyone else was pointing to this structure.
1868 If old_value was null, then no one was. */
1869
1870 if (old_value)
1871 {
1872 for (t = target_structs; t < target_structs + target_struct_size;
1873 ++t)
1874 {
1875 if ((*t)->to_sections == old_value)
1876 {
1877 (*t)->to_sections = target->to_sections;
1878 (*t)->to_sections_end = target->to_sections_end;
1879 }
1880 }
1881 /* There is a flattened view of the target stack in current_target,
1882 so its to_sections pointer might also need updating. */
1883 if (current_target.to_sections == old_value)
1884 {
1885 current_target.to_sections = target->to_sections;
1886 current_target.to_sections_end = target->to_sections_end;
1887 }
1888 }
1889
1890 return old_count;
1891
1892}
1893
1894/* Remove all target sections taken from ABFD.
1895
1896 Scan the current target stack for targets whose section tables
1897 refer to sections from BFD, and remove those sections. We use this
1898 when we notice that the inferior has unloaded a shared object, for
1899 example. */
1900void
1901remove_target_sections (bfd *abfd)
1902{
1903 struct target_ops **t;
1904
1905 for (t = target_structs; t < target_structs + target_struct_size; t++)
1906 {
1907 struct section_table *src, *dest;
1908
1909 dest = (*t)->to_sections;
1910 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1911 if (src->bfd != abfd)
1912 {
1913 /* Keep this section. */
1914 if (dest < src) *dest = *src;
1915 dest++;
1916 }
1917
1918 /* If we've dropped any sections, resize the section table. */
1919 if (dest < src)
1920 target_resize_to_sections (*t, dest - src);
1921 }
1922}
1923
1924
1925
1926
1927/* Find a single runnable target in the stack and return it. If for
1928 some reason there is more than one, return NULL. */
1929
1930struct target_ops *
1931find_run_target (void)
1932{
1933 struct target_ops **t;
1934 struct target_ops *runable = NULL;
1935 int count;
1936
1937 count = 0;
1938
1939 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1940 {
1941 if ((*t)->to_can_run && target_can_run (*t))
1942 {
1943 runable = *t;
1944 ++count;
1945 }
1946 }
1947
1948 return (count == 1 ? runable : NULL);
1949}
1950
1951/* Find a single core_stratum target in the list of targets and return it.
1952 If for some reason there is more than one, return NULL. */
1953
1954struct target_ops *
1955find_core_target (void)
1956{
1957 struct target_ops **t;
1958 struct target_ops *runable = NULL;
1959 int count;
1960
1961 count = 0;
1962
1963 for (t = target_structs; t < target_structs + target_struct_size;
1964 ++t)
1965 {
1966 if ((*t)->to_stratum == core_stratum)
1967 {
1968 runable = *t;
1969 ++count;
1970 }
1971 }
1972
1973 return (count == 1 ? runable : NULL);
1974}
1975
1976/*
1977 * Find the next target down the stack from the specified target.
1978 */
1979
1980struct target_ops *
1981find_target_beneath (struct target_ops *t)
1982{
1983 return t->beneath;
1984}
1985
1986\f
1987/* The inferior process has died. Long live the inferior! */
1988
1989void
1990generic_mourn_inferior (void)
1991{
1992 extern int show_breakpoint_hit_counts;
1993
1994 inferior_ptid = null_ptid;
1995 attach_flag = 0;
1996 breakpoint_init_inferior (inf_exited);
1997 registers_changed ();
1998
1999 reopen_exec_file ();
2000 reinit_frame_cache ();
2001
2002 /* It is confusing to the user for ignore counts to stick around
2003 from previous runs of the inferior. So clear them. */
2004 /* However, it is more confusing for the ignore counts to disappear when
2005 using hit counts. So don't clear them if we're counting hits. */
2006 if (!show_breakpoint_hit_counts)
2007 breakpoint_clear_ignore_counts ();
2008
2009 if (deprecated_detach_hook)
2010 deprecated_detach_hook ();
2011}
2012\f
2013/* Helper function for child_wait and the derivatives of child_wait.
2014 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2015 translation of that in OURSTATUS. */
2016void
2017store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2018{
2019 if (WIFEXITED (hoststatus))
2020 {
2021 ourstatus->kind = TARGET_WAITKIND_EXITED;
2022 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2023 }
2024 else if (!WIFSTOPPED (hoststatus))
2025 {
2026 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2027 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2028 }
2029 else
2030 {
2031 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2032 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2033 }
2034}
2035\f
2036/* Returns zero to leave the inferior alone, one to interrupt it. */
2037int (*target_activity_function) (void);
2038int target_activity_fd;
2039\f
2040/* Convert a normal process ID to a string. Returns the string in a
2041 static buffer. */
2042
2043char *
2044normal_pid_to_str (ptid_t ptid)
2045{
2046 static char buf[32];
2047
2048 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2049 return buf;
2050}
2051
2052/* Error-catcher for target_find_memory_regions */
2053static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2054{
2055 error (_("No target."));
2056 return 0;
2057}
2058
2059/* Error-catcher for target_make_corefile_notes */
2060static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2061{
2062 error (_("No target."));
2063 return NULL;
2064}
2065
2066/* Set up the handful of non-empty slots needed by the dummy target
2067 vector. */
2068
2069static void
2070init_dummy_target (void)
2071{
2072 dummy_target.to_shortname = "None";
2073 dummy_target.to_longname = "None";
2074 dummy_target.to_doc = "";
2075 dummy_target.to_attach = find_default_attach;
2076 dummy_target.to_create_inferior = find_default_create_inferior;
2077 dummy_target.to_pid_to_str = normal_pid_to_str;
2078 dummy_target.to_stratum = dummy_stratum;
2079 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2080 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2081 dummy_target.to_xfer_partial = default_xfer_partial;
2082 dummy_target.to_magic = OPS_MAGIC;
2083}
2084\f
2085static void
2086debug_to_open (char *args, int from_tty)
2087{
2088 debug_target.to_open (args, from_tty);
2089
2090 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2091}
2092
2093static void
2094debug_to_close (int quitting)
2095{
2096 target_close (&debug_target, quitting);
2097 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2098}
2099
2100void
2101target_close (struct target_ops *targ, int quitting)
2102{
2103 if (targ->to_xclose != NULL)
2104 targ->to_xclose (targ, quitting);
2105 else if (targ->to_close != NULL)
2106 targ->to_close (quitting);
2107}
2108
2109static void
2110debug_to_attach (char *args, int from_tty)
2111{
2112 debug_target.to_attach (args, from_tty);
2113
2114 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2115}
2116
2117
2118static void
2119debug_to_post_attach (int pid)
2120{
2121 debug_target.to_post_attach (pid);
2122
2123 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2124}
2125
2126static void
2127debug_to_detach (char *args, int from_tty)
2128{
2129 debug_target.to_detach (args, from_tty);
2130
2131 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2132}
2133
2134static void
2135debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2136{
2137 debug_target.to_resume (ptid, step, siggnal);
2138
2139 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2140 step ? "step" : "continue",
2141 target_signal_to_name (siggnal));
2142}
2143
2144static ptid_t
2145debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2146{
2147 ptid_t retval;
2148
2149 retval = debug_target.to_wait (ptid, status);
2150
2151 fprintf_unfiltered (gdb_stdlog,
2152 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2153 PIDGET (retval));
2154 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2155 switch (status->kind)
2156 {
2157 case TARGET_WAITKIND_EXITED:
2158 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2159 status->value.integer);
2160 break;
2161 case TARGET_WAITKIND_STOPPED:
2162 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2163 target_signal_to_name (status->value.sig));
2164 break;
2165 case TARGET_WAITKIND_SIGNALLED:
2166 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2167 target_signal_to_name (status->value.sig));
2168 break;
2169 case TARGET_WAITKIND_LOADED:
2170 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2171 break;
2172 case TARGET_WAITKIND_FORKED:
2173 fprintf_unfiltered (gdb_stdlog, "forked\n");
2174 break;
2175 case TARGET_WAITKIND_VFORKED:
2176 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2177 break;
2178 case TARGET_WAITKIND_EXECD:
2179 fprintf_unfiltered (gdb_stdlog, "execd\n");
2180 break;
2181 case TARGET_WAITKIND_SPURIOUS:
2182 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2183 break;
2184 default:
2185 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2186 break;
2187 }
2188
2189 return retval;
2190}
2191
2192static void
2193debug_print_register (const char * func,
2194 struct regcache *regcache, int regno)
2195{
2196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2197 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2198 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2199 + gdbarch_num_pseudo_regs (gdbarch)
2200 && gdbarch_register_name (gdbarch, regno) != NULL
2201 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2202 fprintf_unfiltered (gdb_stdlog, "(%s)",
2203 gdbarch_register_name (gdbarch, regno));
2204 else
2205 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2206 if (regno >= 0)
2207 {
2208 int i, size = register_size (gdbarch, regno);
2209 unsigned char buf[MAX_REGISTER_SIZE];
2210 regcache_cooked_read (regcache, regno, buf);
2211 fprintf_unfiltered (gdb_stdlog, " = ");
2212 for (i = 0; i < size; i++)
2213 {
2214 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2215 }
2216 if (size <= sizeof (LONGEST))
2217 {
2218 ULONGEST val = extract_unsigned_integer (buf, size);
2219 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2220 paddr_nz (val), paddr_d (val));
2221 }
2222 }
2223 fprintf_unfiltered (gdb_stdlog, "\n");
2224}
2225
2226static void
2227debug_to_fetch_registers (struct regcache *regcache, int regno)
2228{
2229 debug_target.to_fetch_registers (regcache, regno);
2230 debug_print_register ("target_fetch_registers", regcache, regno);
2231}
2232
2233static void
2234debug_to_store_registers (struct regcache *regcache, int regno)
2235{
2236 debug_target.to_store_registers (regcache, regno);
2237 debug_print_register ("target_store_registers", regcache, regno);
2238 fprintf_unfiltered (gdb_stdlog, "\n");
2239}
2240
2241static void
2242debug_to_prepare_to_store (struct regcache *regcache)
2243{
2244 debug_target.to_prepare_to_store (regcache);
2245
2246 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2247}
2248
2249static int
2250deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2251 int write, struct mem_attrib *attrib,
2252 struct target_ops *target)
2253{
2254 int retval;
2255
2256 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2257 attrib, target);
2258
2259 fprintf_unfiltered (gdb_stdlog,
2260 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2261 (unsigned int) memaddr, /* possable truncate long long */
2262 len, write ? "write" : "read", retval);
2263
2264 if (retval > 0)
2265 {
2266 int i;
2267
2268 fputs_unfiltered (", bytes =", gdb_stdlog);
2269 for (i = 0; i < retval; i++)
2270 {
2271 if ((((long) &(myaddr[i])) & 0xf) == 0)
2272 {
2273 if (targetdebug < 2 && i > 0)
2274 {
2275 fprintf_unfiltered (gdb_stdlog, " ...");
2276 break;
2277 }
2278 fprintf_unfiltered (gdb_stdlog, "\n");
2279 }
2280
2281 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2282 }
2283 }
2284
2285 fputc_unfiltered ('\n', gdb_stdlog);
2286
2287 return retval;
2288}
2289
2290static void
2291debug_to_files_info (struct target_ops *target)
2292{
2293 debug_target.to_files_info (target);
2294
2295 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2296}
2297
2298static int
2299debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2300{
2301 int retval;
2302
2303 retval = debug_target.to_insert_breakpoint (bp_tgt);
2304
2305 fprintf_unfiltered (gdb_stdlog,
2306 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2307 (unsigned long) bp_tgt->placed_address,
2308 (unsigned long) retval);
2309 return retval;
2310}
2311
2312static int
2313debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2314{
2315 int retval;
2316
2317 retval = debug_target.to_remove_breakpoint (bp_tgt);
2318
2319 fprintf_unfiltered (gdb_stdlog,
2320 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2321 (unsigned long) bp_tgt->placed_address,
2322 (unsigned long) retval);
2323 return retval;
2324}
2325
2326static int
2327debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2328{
2329 int retval;
2330
2331 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2332
2333 fprintf_unfiltered (gdb_stdlog,
2334 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2335 (unsigned long) type,
2336 (unsigned long) cnt,
2337 (unsigned long) from_tty,
2338 (unsigned long) retval);
2339 return retval;
2340}
2341
2342static int
2343debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2344{
2345 CORE_ADDR retval;
2346
2347 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2348
2349 fprintf_unfiltered (gdb_stdlog,
2350 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2351 (unsigned long) addr,
2352 (unsigned long) len,
2353 (unsigned long) retval);
2354 return retval;
2355}
2356
2357static int
2358debug_to_stopped_by_watchpoint (void)
2359{
2360 int retval;
2361
2362 retval = debug_target.to_stopped_by_watchpoint ();
2363
2364 fprintf_unfiltered (gdb_stdlog,
2365 "STOPPED_BY_WATCHPOINT () = %ld\n",
2366 (unsigned long) retval);
2367 return retval;
2368}
2369
2370static int
2371debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2372{
2373 int retval;
2374
2375 retval = debug_target.to_stopped_data_address (target, addr);
2376
2377 fprintf_unfiltered (gdb_stdlog,
2378 "target_stopped_data_address ([0x%lx]) = %ld\n",
2379 (unsigned long)*addr,
2380 (unsigned long)retval);
2381 return retval;
2382}
2383
2384static int
2385debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2386{
2387 int retval;
2388
2389 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2390
2391 fprintf_unfiltered (gdb_stdlog,
2392 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2393 (unsigned long) bp_tgt->placed_address,
2394 (unsigned long) retval);
2395 return retval;
2396}
2397
2398static int
2399debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2400{
2401 int retval;
2402
2403 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2404
2405 fprintf_unfiltered (gdb_stdlog,
2406 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2407 (unsigned long) bp_tgt->placed_address,
2408 (unsigned long) retval);
2409 return retval;
2410}
2411
2412static int
2413debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2414{
2415 int retval;
2416
2417 retval = debug_target.to_insert_watchpoint (addr, len, type);
2418
2419 fprintf_unfiltered (gdb_stdlog,
2420 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2421 (unsigned long) addr, len, type, (unsigned long) retval);
2422 return retval;
2423}
2424
2425static int
2426debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2427{
2428 int retval;
2429
2430 retval = debug_target.to_remove_watchpoint (addr, len, type);
2431
2432 fprintf_unfiltered (gdb_stdlog,
2433 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2434 (unsigned long) addr, len, type, (unsigned long) retval);
2435 return retval;
2436}
2437
2438static void
2439debug_to_terminal_init (void)
2440{
2441 debug_target.to_terminal_init ();
2442
2443 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2444}
2445
2446static void
2447debug_to_terminal_inferior (void)
2448{
2449 debug_target.to_terminal_inferior ();
2450
2451 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2452}
2453
2454static void
2455debug_to_terminal_ours_for_output (void)
2456{
2457 debug_target.to_terminal_ours_for_output ();
2458
2459 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2460}
2461
2462static void
2463debug_to_terminal_ours (void)
2464{
2465 debug_target.to_terminal_ours ();
2466
2467 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2468}
2469
2470static void
2471debug_to_terminal_save_ours (void)
2472{
2473 debug_target.to_terminal_save_ours ();
2474
2475 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2476}
2477
2478static void
2479debug_to_terminal_info (char *arg, int from_tty)
2480{
2481 debug_target.to_terminal_info (arg, from_tty);
2482
2483 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2484 from_tty);
2485}
2486
2487static void
2488debug_to_kill (void)
2489{
2490 debug_target.to_kill ();
2491
2492 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2493}
2494
2495static void
2496debug_to_load (char *args, int from_tty)
2497{
2498 debug_target.to_load (args, from_tty);
2499
2500 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2501}
2502
2503static int
2504debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2505{
2506 int retval;
2507
2508 retval = debug_target.to_lookup_symbol (name, addrp);
2509
2510 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2511
2512 return retval;
2513}
2514
2515static void
2516debug_to_create_inferior (char *exec_file, char *args, char **env,
2517 int from_tty)
2518{
2519 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2520
2521 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2522 exec_file, args, from_tty);
2523}
2524
2525static void
2526debug_to_post_startup_inferior (ptid_t ptid)
2527{
2528 debug_target.to_post_startup_inferior (ptid);
2529
2530 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2531 PIDGET (ptid));
2532}
2533
2534static void
2535debug_to_acknowledge_created_inferior (int pid)
2536{
2537 debug_target.to_acknowledge_created_inferior (pid);
2538
2539 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2540 pid);
2541}
2542
2543static void
2544debug_to_insert_fork_catchpoint (int pid)
2545{
2546 debug_target.to_insert_fork_catchpoint (pid);
2547
2548 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2549 pid);
2550}
2551
2552static int
2553debug_to_remove_fork_catchpoint (int pid)
2554{
2555 int retval;
2556
2557 retval = debug_target.to_remove_fork_catchpoint (pid);
2558
2559 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2560 pid, retval);
2561
2562 return retval;
2563}
2564
2565static void
2566debug_to_insert_vfork_catchpoint (int pid)
2567{
2568 debug_target.to_insert_vfork_catchpoint (pid);
2569
2570 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2571 pid);
2572}
2573
2574static int
2575debug_to_remove_vfork_catchpoint (int pid)
2576{
2577 int retval;
2578
2579 retval = debug_target.to_remove_vfork_catchpoint (pid);
2580
2581 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2582 pid, retval);
2583
2584 return retval;
2585}
2586
2587static void
2588debug_to_insert_exec_catchpoint (int pid)
2589{
2590 debug_target.to_insert_exec_catchpoint (pid);
2591
2592 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2593 pid);
2594}
2595
2596static int
2597debug_to_remove_exec_catchpoint (int pid)
2598{
2599 int retval;
2600
2601 retval = debug_target.to_remove_exec_catchpoint (pid);
2602
2603 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2604 pid, retval);
2605
2606 return retval;
2607}
2608
2609static int
2610debug_to_reported_exec_events_per_exec_call (void)
2611{
2612 int reported_exec_events;
2613
2614 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2615
2616 fprintf_unfiltered (gdb_stdlog,
2617 "target_reported_exec_events_per_exec_call () = %d\n",
2618 reported_exec_events);
2619
2620 return reported_exec_events;
2621}
2622
2623static int
2624debug_to_has_exited (int pid, int wait_status, int *exit_status)
2625{
2626 int has_exited;
2627
2628 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2629
2630 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2631 pid, wait_status, *exit_status, has_exited);
2632
2633 return has_exited;
2634}
2635
2636static void
2637debug_to_mourn_inferior (void)
2638{
2639 debug_target.to_mourn_inferior ();
2640
2641 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2642}
2643
2644static int
2645debug_to_can_run (void)
2646{
2647 int retval;
2648
2649 retval = debug_target.to_can_run ();
2650
2651 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2652
2653 return retval;
2654}
2655
2656static void
2657debug_to_notice_signals (ptid_t ptid)
2658{
2659 debug_target.to_notice_signals (ptid);
2660
2661 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2662 PIDGET (ptid));
2663}
2664
2665static int
2666debug_to_thread_alive (ptid_t ptid)
2667{
2668 int retval;
2669
2670 retval = debug_target.to_thread_alive (ptid);
2671
2672 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2673 PIDGET (ptid), retval);
2674
2675 return retval;
2676}
2677
2678static void
2679debug_to_find_new_threads (void)
2680{
2681 debug_target.to_find_new_threads ();
2682
2683 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2684}
2685
2686static void
2687debug_to_stop (void)
2688{
2689 debug_target.to_stop ();
2690
2691 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2692}
2693
2694static void
2695debug_to_rcmd (char *command,
2696 struct ui_file *outbuf)
2697{
2698 debug_target.to_rcmd (command, outbuf);
2699 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2700}
2701
2702static char *
2703debug_to_pid_to_exec_file (int pid)
2704{
2705 char *exec_file;
2706
2707 exec_file = debug_target.to_pid_to_exec_file (pid);
2708
2709 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2710 pid, exec_file);
2711
2712 return exec_file;
2713}
2714
2715static void
2716setup_target_debug (void)
2717{
2718 memcpy (&debug_target, &current_target, sizeof debug_target);
2719
2720 current_target.to_open = debug_to_open;
2721 current_target.to_close = debug_to_close;
2722 current_target.to_attach = debug_to_attach;
2723 current_target.to_post_attach = debug_to_post_attach;
2724 current_target.to_detach = debug_to_detach;
2725 current_target.to_resume = debug_to_resume;
2726 current_target.to_wait = debug_to_wait;
2727 current_target.to_fetch_registers = debug_to_fetch_registers;
2728 current_target.to_store_registers = debug_to_store_registers;
2729 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2730 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2731 current_target.to_files_info = debug_to_files_info;
2732 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2733 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2734 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2735 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2736 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2737 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2738 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2739 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2740 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2741 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2742 current_target.to_terminal_init = debug_to_terminal_init;
2743 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2744 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2745 current_target.to_terminal_ours = debug_to_terminal_ours;
2746 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2747 current_target.to_terminal_info = debug_to_terminal_info;
2748 current_target.to_kill = debug_to_kill;
2749 current_target.to_load = debug_to_load;
2750 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2751 current_target.to_create_inferior = debug_to_create_inferior;
2752 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2753 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2754 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2755 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2756 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2757 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2758 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2759 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2760 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2761 current_target.to_has_exited = debug_to_has_exited;
2762 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2763 current_target.to_can_run = debug_to_can_run;
2764 current_target.to_notice_signals = debug_to_notice_signals;
2765 current_target.to_thread_alive = debug_to_thread_alive;
2766 current_target.to_find_new_threads = debug_to_find_new_threads;
2767 current_target.to_stop = debug_to_stop;
2768 current_target.to_rcmd = debug_to_rcmd;
2769 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2770}
2771\f
2772
2773static char targ_desc[] =
2774"Names of targets and files being debugged.\n\
2775Shows the entire stack of targets currently in use (including the exec-file,\n\
2776core-file, and process, if any), as well as the symbol file name.";
2777
2778static void
2779do_monitor_command (char *cmd,
2780 int from_tty)
2781{
2782 if ((current_target.to_rcmd
2783 == (void (*) (char *, struct ui_file *)) tcomplain)
2784 || (current_target.to_rcmd == debug_to_rcmd
2785 && (debug_target.to_rcmd
2786 == (void (*) (char *, struct ui_file *)) tcomplain)))
2787 error (_("\"monitor\" command not supported by this target."));
2788 target_rcmd (cmd, gdb_stdtarg);
2789}
2790
2791/* Print the name of each layers of our target stack. */
2792
2793static void
2794maintenance_print_target_stack (char *cmd, int from_tty)
2795{
2796 struct target_ops *t;
2797
2798 printf_filtered (_("The current target stack is:\n"));
2799
2800 for (t = target_stack; t != NULL; t = t->beneath)
2801 {
2802 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2803 }
2804}
2805
2806void
2807initialize_targets (void)
2808{
2809 init_dummy_target ();
2810 push_target (&dummy_target);
2811
2812 add_info ("target", target_info, targ_desc);
2813 add_info ("files", target_info, targ_desc);
2814
2815 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2816Set target debugging."), _("\
2817Show target debugging."), _("\
2818When non-zero, target debugging is enabled. Higher numbers are more\n\
2819verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2820command."),
2821 NULL,
2822 show_targetdebug,
2823 &setdebuglist, &showdebuglist);
2824
2825 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2826 &trust_readonly, _("\
2827Set mode for reading from readonly sections."), _("\
2828Show mode for reading from readonly sections."), _("\
2829When this mode is on, memory reads from readonly sections (such as .text)\n\
2830will be read from the object file instead of from the target. This will\n\
2831result in significant performance improvement for remote targets."),
2832 NULL,
2833 show_trust_readonly,
2834 &setlist, &showlist);
2835
2836 add_com ("monitor", class_obscure, do_monitor_command,
2837 _("Send a command to the remote monitor (remote targets only)."));
2838
2839 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2840 _("Print the name of each layer of the internal target stack."),
2841 &maintenanceprintlist);
2842
2843 target_dcache = dcache_init ();
2844}
This page took 0.031173 seconds and 4 git commands to generate.