[AArch64] Reject invalid immediate operands to MSR PAN
[deliverable/binutils-gdb.git] / gdb / target.c
... / ...
CommitLineData
1/* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "target.h"
24#include "target-dcache.h"
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
28#include "infrun.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "dcache.h"
33#include <signal.h>
34#include "regcache.h"
35#include "gdbcore.h"
36#include "target-descriptions.h"
37#include "gdbthread.h"
38#include "solib.h"
39#include "exec.h"
40#include "inline-frame.h"
41#include "tracepoint.h"
42#include "gdb/fileio.h"
43#include "agent.h"
44#include "auxv.h"
45#include "target-debug.h"
46
47static void target_info (char *, int);
48
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51static void default_terminal_info (struct target_ops *, const char *, int);
52
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67static void default_mourn_inferior (struct target_ops *self);
68
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89static void target_command (char *, int);
90
91static struct target_ops *find_default_run_target (char *);
92
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108static struct target_ops debug_target;
109
110#include "target-delegates.c"
111
112static void init_dummy_target (void);
113
114static void update_current_target (void);
115
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
128static struct target_ops *target_stack;
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
165/* Non-zero if we want to see trace of target level stuff. */
166
167static unsigned int targetdebug = 0;
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
181
182static void setup_target_debug (void);
183
184/* The user just typed 'target' without the name of a target. */
185
186static void
187target_command (char *arg, int from_tty)
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
296target_has_execution_1 (ptid_t the_ptid)
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305}
306
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316void
317complete_target_initialization (struct target_ops *t)
318{
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343}
344
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
383`help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
398}
399
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
417/* Stub functions */
418
419void
420target_kill (void)
421{
422 current_target.to_kill (&current_target);
423}
424
425void
426target_load (const char *arg, int from_tty)
427{
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430}
431
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447static enum terminal_state terminal_state = terminal_is_ours;
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
469void
470target_terminal_inferior (void)
471{
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
478
479 if (terminal_state == terminal_is_inferior)
480 return;
481
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
486}
487
488/* See target.h. */
489
490void
491target_terminal_ours (void)
492{
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498}
499
500/* See target.h. */
501
502void
503target_terminal_ours_for_output (void)
504{
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
509}
510
511/* See target.h. */
512
513int
514target_supports_terminal_ours (void)
515{
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526}
527
528/* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531static void
532cleanup_restore_target_terminal (void *arg)
533{
534 enum terminal_state *previous_state = (enum terminal_state *) arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548}
549
550/* See target.h. */
551
552struct cleanup *
553make_cleanup_restore_target_terminal (void)
554{
555 enum terminal_state *ts = XNEW (enum terminal_state);
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560}
561
562static void
563tcomplain (void)
564{
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
567}
568
569void
570noprocess (void)
571{
572 error (_("You can't do that without a process to debug."));
573}
574
575static void
576default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577{
578 printf_unfiltered (_("No saved terminal information.\n"));
579}
580
581/* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
587static ptid_t
588default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589{
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591}
592
593static enum exec_direction_kind
594default_execution_direction (struct target_ops *self)
595{
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602to_execution_direction must be implemented for reverse async");
603}
604
605/* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
616
617static void
618update_current_target (void)
619{
620 struct target_ops *t;
621
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
624
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
628 current_target.to_stratum = target_stack->to_stratum;
629
630#define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
644 }
645#undef INHERIT
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654}
655
656/* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
663void
664push_target (struct target_ops *t)
665{
666 struct target_ops **cur;
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 }
678
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681 {
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
684 }
685
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
694
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
698 }
699
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
703
704 update_current_target ();
705}
706
707/* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710int
711unpush_target (struct target_ops *t)
712{
713 struct target_ops **cur;
714 struct target_ops *tmp;
715
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
719
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
722
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
728
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
733
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
738
739 update_current_target ();
740
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
745
746 return 1;
747}
748
749void
750pop_all_targets_above (enum strata above_stratum)
751{
752 while ((int) (current_target.to_stratum) > (int) above_stratum)
753 {
754 if (!unpush_target (target_stack))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target_stack->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 break;
762 }
763 }
764}
765
766void
767pop_all_targets (void)
768{
769 pop_all_targets_above (dummy_stratum);
770}
771
772/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
773
774int
775target_is_pushed (struct target_ops *t)
776{
777 struct target_ops *cur;
778
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
782 {
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
788 }
789
790 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 if (cur == t)
792 return 1;
793
794 return 0;
795}
796
797/* Default implementation of to_get_thread_local_address. */
798
799static void
800generic_tls_error (void)
801{
802 throw_error (TLS_GENERIC_ERROR,
803 _("Cannot find thread-local variables on this target"));
804}
805
806/* Using the objfile specified in OBJFILE, find the address for the
807 current thread's thread-local storage with offset OFFSET. */
808CORE_ADDR
809target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
810{
811 volatile CORE_ADDR addr = 0;
812 struct target_ops *target = &current_target;
813
814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
815 {
816 ptid_t ptid = inferior_ptid;
817
818 TRY
819 {
820 CORE_ADDR lm_addr;
821
822 /* Fetch the load module address for this objfile. */
823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
824 objfile);
825
826 addr = target->to_get_thread_local_address (target, ptid,
827 lm_addr, offset);
828 }
829 /* If an error occurred, print TLS related messages here. Otherwise,
830 throw the error to some higher catcher. */
831 CATCH (ex, RETURN_MASK_ALL)
832 {
833 int objfile_is_library = (objfile->flags & OBJF_SHARED);
834
835 switch (ex.error)
836 {
837 case TLS_NO_LIBRARY_SUPPORT_ERROR:
838 error (_("Cannot find thread-local variables "
839 "in this thread library."));
840 break;
841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 if (objfile_is_library)
843 error (_("Cannot find shared library `%s' in dynamic"
844 " linker's load module list"), objfile_name (objfile));
845 else
846 error (_("Cannot find executable file `%s' in dynamic"
847 " linker's load module list"), objfile_name (objfile));
848 break;
849 case TLS_NOT_ALLOCATED_YET_ERROR:
850 if (objfile_is_library)
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the shared library `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 else
857 error (_("The inferior has not yet allocated storage for"
858 " thread-local variables in\n"
859 "the executable `%s'\n"
860 "for %s"),
861 objfile_name (objfile), target_pid_to_str (ptid));
862 break;
863 case TLS_GENERIC_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find thread-local storage for %s, "
866 "shared library %s:\n%s"),
867 target_pid_to_str (ptid),
868 objfile_name (objfile), ex.message);
869 else
870 error (_("Cannot find thread-local storage for %s, "
871 "executable file %s:\n%s"),
872 target_pid_to_str (ptid),
873 objfile_name (objfile), ex.message);
874 break;
875 default:
876 throw_exception (ex);
877 break;
878 }
879 }
880 END_CATCH
881 }
882 /* It wouldn't be wrong here to try a gdbarch method, too; finding
883 TLS is an ABI-specific thing. But we don't do that yet. */
884 else
885 error (_("Cannot find thread-local variables on this target"));
886
887 return addr;
888}
889
890const char *
891target_xfer_status_to_string (enum target_xfer_status status)
892{
893#define CASE(X) case X: return #X
894 switch (status)
895 {
896 CASE(TARGET_XFER_E_IO);
897 CASE(TARGET_XFER_UNAVAILABLE);
898 default:
899 return "<unknown>";
900 }
901#undef CASE
902};
903
904
905#undef MIN
906#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
907
908/* target_read_string -- read a null terminated string, up to LEN bytes,
909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
910 Set *STRING to a pointer to malloc'd memory containing the data; the caller
911 is responsible for freeing it. Return the number of bytes successfully
912 read. */
913
914int
915target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
916{
917 int tlen, offset, i;
918 gdb_byte buf[4];
919 int errcode = 0;
920 char *buffer;
921 int buffer_allocated;
922 char *bufptr;
923 unsigned int nbytes_read = 0;
924
925 gdb_assert (string);
926
927 /* Small for testing. */
928 buffer_allocated = 4;
929 buffer = (char *) xmalloc (buffer_allocated);
930 bufptr = buffer;
931
932 while (len > 0)
933 {
934 tlen = MIN (len, 4 - (memaddr & 3));
935 offset = memaddr & 3;
936
937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
938 if (errcode != 0)
939 {
940 /* The transfer request might have crossed the boundary to an
941 unallocated region of memory. Retry the transfer, requesting
942 a single byte. */
943 tlen = 1;
944 offset = 0;
945 errcode = target_read_memory (memaddr, buf, 1);
946 if (errcode != 0)
947 goto done;
948 }
949
950 if (bufptr - buffer + tlen > buffer_allocated)
951 {
952 unsigned int bytes;
953
954 bytes = bufptr - buffer;
955 buffer_allocated *= 2;
956 buffer = (char *) xrealloc (buffer, buffer_allocated);
957 bufptr = buffer + bytes;
958 }
959
960 for (i = 0; i < tlen; i++)
961 {
962 *bufptr++ = buf[i + offset];
963 if (buf[i + offset] == '\000')
964 {
965 nbytes_read += i + 1;
966 goto done;
967 }
968 }
969
970 memaddr += tlen;
971 len -= tlen;
972 nbytes_read += tlen;
973 }
974done:
975 *string = buffer;
976 if (errnop != NULL)
977 *errnop = errcode;
978 return nbytes_read;
979}
980
981struct target_section_table *
982target_get_section_table (struct target_ops *target)
983{
984 return (*target->to_get_section_table) (target);
985}
986
987/* Find a section containing ADDR. */
988
989struct target_section *
990target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
991{
992 struct target_section_table *table = target_get_section_table (target);
993 struct target_section *secp;
994
995 if (table == NULL)
996 return NULL;
997
998 for (secp = table->sections; secp < table->sections_end; secp++)
999 {
1000 if (addr >= secp->addr && addr < secp->endaddr)
1001 return secp;
1002 }
1003 return NULL;
1004}
1005
1006
1007/* Helper for the memory xfer routines. Checks the attributes of the
1008 memory region of MEMADDR against the read or write being attempted.
1009 If the access is permitted returns true, otherwise returns false.
1010 REGION_P is an optional output parameter. If not-NULL, it is
1011 filled with a pointer to the memory region of MEMADDR. REG_LEN
1012 returns LEN trimmed to the end of the region. This is how much the
1013 caller can continue requesting, if the access is permitted. A
1014 single xfer request must not straddle memory region boundaries. */
1015
1016static int
1017memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 struct mem_region **region_p)
1020{
1021 struct mem_region *region;
1022
1023 region = lookup_mem_region (memaddr);
1024
1025 if (region_p != NULL)
1026 *region_p = region;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return 0;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return 0;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return 0;
1048 }
1049
1050 /* region->hi == 0 means there's no upper bound. */
1051 if (memaddr + len < region->hi || region->hi == 0)
1052 *reg_len = len;
1053 else
1054 *reg_len = region->hi - memaddr;
1055
1056 return 1;
1057}
1058
1059/* Read memory from more than one valid target. A core file, for
1060 instance, could have some of memory but delegate other bits to
1061 the target below it. So, we must manually try all targets. */
1062
1063enum target_xfer_status
1064raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 ULONGEST *xfered_len)
1067{
1068 enum target_xfer_status res;
1069
1070 do
1071 {
1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1073 readbuf, writebuf, memaddr, len,
1074 xfered_len);
1075 if (res == TARGET_XFER_OK)
1076 break;
1077
1078 /* Stop if the target reports that the memory is not available. */
1079 if (res == TARGET_XFER_UNAVAILABLE)
1080 break;
1081
1082 /* We want to continue past core files to executables, but not
1083 past a running target's memory. */
1084 if (ops->to_has_all_memory (ops))
1085 break;
1086
1087 ops = ops->beneath;
1088 }
1089 while (ops != NULL);
1090
1091 /* The cache works at the raw memory level. Make sure the cache
1092 gets updated with raw contents no matter what kind of memory
1093 object was originally being written. Note we do write-through
1094 first, so that if it fails, we don't write to the cache contents
1095 that never made it to the target. */
1096 if (writebuf != NULL
1097 && !ptid_equal (inferior_ptid, null_ptid)
1098 && target_dcache_init_p ()
1099 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1100 {
1101 DCACHE *dcache = target_dcache_get ();
1102
1103 /* Note that writing to an area of memory which wasn't present
1104 in the cache doesn't cause it to be loaded in. */
1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1106 }
1107
1108 return res;
1109}
1110
1111/* Perform a partial memory transfer.
1112 For docs see target.h, to_xfer_partial. */
1113
1114static enum target_xfer_status
1115memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1117 ULONGEST len, ULONGEST *xfered_len)
1118{
1119 enum target_xfer_status res;
1120 ULONGEST reg_len;
1121 struct mem_region *region;
1122 struct inferior *inf;
1123
1124 /* For accesses to unmapped overlay sections, read directly from
1125 files. Must do this first, as MEMADDR may need adjustment. */
1126 if (readbuf != NULL && overlay_debugging)
1127 {
1128 struct obj_section *section = find_pc_overlay (memaddr);
1129
1130 if (pc_in_unmapped_range (memaddr, section))
1131 {
1132 struct target_section_table *table
1133 = target_get_section_table (ops);
1134 const char *section_name = section->the_bfd_section->name;
1135
1136 memaddr = overlay_mapped_address (memaddr, section);
1137 return section_table_xfer_memory_partial (readbuf, writebuf,
1138 memaddr, len, xfered_len,
1139 table->sections,
1140 table->sections_end,
1141 section_name);
1142 }
1143 }
1144
1145 /* Try the executable files, if "trust-readonly-sections" is set. */
1146 if (readbuf != NULL && trust_readonly)
1147 {
1148 struct target_section *secp;
1149 struct target_section_table *table;
1150
1151 secp = target_section_by_addr (ops, memaddr);
1152 if (secp != NULL
1153 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 secp->the_bfd_section)
1155 & SEC_READONLY))
1156 {
1157 table = target_get_section_table (ops);
1158 return section_table_xfer_memory_partial (readbuf, writebuf,
1159 memaddr, len, xfered_len,
1160 table->sections,
1161 table->sections_end,
1162 NULL);
1163 }
1164 }
1165
1166 /* Try GDB's internal data cache. */
1167
1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 &region))
1170 return TARGET_XFER_E_IO;
1171
1172 if (!ptid_equal (inferior_ptid, null_ptid))
1173 inf = find_inferior_ptid (inferior_ptid);
1174 else
1175 inf = NULL;
1176
1177 if (inf != NULL
1178 && readbuf != NULL
1179 /* The dcache reads whole cache lines; that doesn't play well
1180 with reading from a trace buffer, because reading outside of
1181 the collected memory range fails. */
1182 && get_traceframe_number () == -1
1183 && (region->attrib.cache
1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1186 {
1187 DCACHE *dcache = target_dcache_get_or_init ();
1188
1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 reg_len, xfered_len);
1191 }
1192
1193 /* If none of those methods found the memory we wanted, fall back
1194 to a target partial transfer. Normally a single call to
1195 to_xfer_partial is enough; if it doesn't recognize an object
1196 it will call the to_xfer_partial of the next target down.
1197 But for memory this won't do. Memory is the only target
1198 object which can be read from more than one valid target.
1199 A core file, for instance, could have some of memory but
1200 delegate other bits to the target below it. So, we must
1201 manually try all targets. */
1202
1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 xfered_len);
1205
1206 /* If we still haven't got anything, return the last error. We
1207 give up. */
1208 return res;
1209}
1210
1211/* Perform a partial memory transfer. For docs see target.h,
1212 to_xfer_partial. */
1213
1214static enum target_xfer_status
1215memory_xfer_partial (struct target_ops *ops, enum target_object object,
1216 gdb_byte *readbuf, const gdb_byte *writebuf,
1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1218{
1219 enum target_xfer_status res;
1220
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
1223 return TARGET_XFER_EOF;
1224
1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226 breakpoint insns, thus hiding out from higher layers whether
1227 there are software breakpoints inserted in the code stream. */
1228 if (readbuf != NULL)
1229 {
1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 xfered_len);
1232
1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1235 }
1236 else
1237 {
1238 gdb_byte *buf;
1239 struct cleanup *old_chain;
1240
1241 /* A large write request is likely to be partially satisfied
1242 by memory_xfer_partial_1. We will continually malloc
1243 and free a copy of the entire write request for breakpoint
1244 shadow handling even though we only end up writing a small
1245 subset of it. Cap writes to 4KB to mitigate this. */
1246 len = min (4096, len);
1247
1248 buf = (gdb_byte *) xmalloc (len);
1249 old_chain = make_cleanup (xfree, buf);
1250 memcpy (buf, writebuf, len);
1251
1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 xfered_len);
1255
1256 do_cleanups (old_chain);
1257 }
1258
1259 return res;
1260}
1261
1262static void
1263restore_show_memory_breakpoints (void *arg)
1264{
1265 show_memory_breakpoints = (uintptr_t) arg;
1266}
1267
1268struct cleanup *
1269make_show_memory_breakpoints_cleanup (int show)
1270{
1271 int current = show_memory_breakpoints;
1272
1273 show_memory_breakpoints = show;
1274 return make_cleanup (restore_show_memory_breakpoints,
1275 (void *) (uintptr_t) current);
1276}
1277
1278/* For docs see target.h, to_xfer_partial. */
1279
1280enum target_xfer_status
1281target_xfer_partial (struct target_ops *ops,
1282 enum target_object object, const char *annex,
1283 gdb_byte *readbuf, const gdb_byte *writebuf,
1284 ULONGEST offset, ULONGEST len,
1285 ULONGEST *xfered_len)
1286{
1287 enum target_xfer_status retval;
1288
1289 gdb_assert (ops->to_xfer_partial != NULL);
1290
1291 /* Transfer is done when LEN is zero. */
1292 if (len == 0)
1293 return TARGET_XFER_EOF;
1294
1295 if (writebuf && !may_write_memory)
1296 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 core_addr_to_string_nz (offset), plongest (len));
1298
1299 *xfered_len = 0;
1300
1301 /* If this is a memory transfer, let the memory-specific code
1302 have a look at it instead. Memory transfers are more
1303 complicated. */
1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305 || object == TARGET_OBJECT_CODE_MEMORY)
1306 retval = memory_xfer_partial (ops, object, readbuf,
1307 writebuf, offset, len, xfered_len);
1308 else if (object == TARGET_OBJECT_RAW_MEMORY)
1309 {
1310 /* Skip/avoid accessing the target if the memory region
1311 attributes block the access. Check this here instead of in
1312 raw_memory_xfer_partial as otherwise we'd end up checking
1313 this twice in the case of the memory_xfer_partial path is
1314 taken; once before checking the dcache, and another in the
1315 tail call to raw_memory_xfer_partial. */
1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 NULL))
1318 return TARGET_XFER_E_IO;
1319
1320 /* Request the normal memory object from other layers. */
1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 xfered_len);
1323 }
1324 else
1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1326 writebuf, offset, len, xfered_len);
1327
1328 if (targetdebug)
1329 {
1330 const unsigned char *myaddr = NULL;
1331
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s:target_xfer_partial "
1334 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1335 ops->to_shortname,
1336 (int) object,
1337 (annex ? annex : "(null)"),
1338 host_address_to_string (readbuf),
1339 host_address_to_string (writebuf),
1340 core_addr_to_string_nz (offset),
1341 pulongest (len), retval,
1342 pulongest (*xfered_len));
1343
1344 if (readbuf)
1345 myaddr = readbuf;
1346 if (writebuf)
1347 myaddr = writebuf;
1348 if (retval == TARGET_XFER_OK && myaddr != NULL)
1349 {
1350 int i;
1351
1352 fputs_unfiltered (", bytes =", gdb_stdlog);
1353 for (i = 0; i < *xfered_len; i++)
1354 {
1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1356 {
1357 if (targetdebug < 2 && i > 0)
1358 {
1359 fprintf_unfiltered (gdb_stdlog, " ...");
1360 break;
1361 }
1362 fprintf_unfiltered (gdb_stdlog, "\n");
1363 }
1364
1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1366 }
1367 }
1368
1369 fputc_unfiltered ('\n', gdb_stdlog);
1370 }
1371
1372 /* Check implementations of to_xfer_partial update *XFERED_LEN
1373 properly. Do assertion after printing debug messages, so that we
1374 can find more clues on assertion failure from debugging messages. */
1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1376 gdb_assert (*xfered_len > 0);
1377
1378 return retval;
1379}
1380
1381/* Read LEN bytes of target memory at address MEMADDR, placing the
1382 results in GDB's memory at MYADDR. Returns either 0 for success or
1383 -1 if any error occurs.
1384
1385 If an error occurs, no guarantee is made about the contents of the data at
1386 MYADDR. In particular, the caller should not depend upon partial reads
1387 filling the buffer with good data. There is no way for the caller to know
1388 how much good data might have been transfered anyway. Callers that can
1389 deal with partial reads should call target_read (which will retry until
1390 it makes no progress, and then return how much was transferred). */
1391
1392int
1393target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1394{
1395 /* Dispatch to the topmost target, not the flattened current_target.
1396 Memory accesses check target->to_has_(all_)memory, and the
1397 flattened target doesn't inherit those. */
1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1399 myaddr, memaddr, len) == len)
1400 return 0;
1401 else
1402 return -1;
1403}
1404
1405/* See target/target.h. */
1406
1407int
1408target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1409{
1410 gdb_byte buf[4];
1411 int r;
1412
1413 r = target_read_memory (memaddr, buf, sizeof buf);
1414 if (r != 0)
1415 return r;
1416 *result = extract_unsigned_integer (buf, sizeof buf,
1417 gdbarch_byte_order (target_gdbarch ()));
1418 return 0;
1419}
1420
1421/* Like target_read_memory, but specify explicitly that this is a read
1422 from the target's raw memory. That is, this read bypasses the
1423 dcache, breakpoint shadowing, etc. */
1424
1425int
1426target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427{
1428 /* See comment in target_read_memory about why the request starts at
1429 current_target.beneath. */
1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 myaddr, memaddr, len) == len)
1432 return 0;
1433 else
1434 return -1;
1435}
1436
1437/* Like target_read_memory, but specify explicitly that this is a read from
1438 the target's stack. This may trigger different cache behavior. */
1439
1440int
1441target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1442{
1443 /* See comment in target_read_memory about why the request starts at
1444 current_target.beneath. */
1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 myaddr, memaddr, len) == len)
1447 return 0;
1448 else
1449 return -1;
1450}
1451
1452/* Like target_read_memory, but specify explicitly that this is a read from
1453 the target's code. This may trigger different cache behavior. */
1454
1455int
1456target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1457{
1458 /* See comment in target_read_memory about why the request starts at
1459 current_target.beneath. */
1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 myaddr, memaddr, len) == len)
1462 return 0;
1463 else
1464 return -1;
1465}
1466
1467/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1468 Returns either 0 for success or -1 if any error occurs. If an
1469 error occurs, no guarantee is made about how much data got written.
1470 Callers that can deal with partial writes should call
1471 target_write. */
1472
1473int
1474target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1475{
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1479 myaddr, memaddr, len) == len)
1480 return 0;
1481 else
1482 return -1;
1483}
1484
1485/* Write LEN bytes from MYADDR to target raw memory at address
1486 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1487 If an error occurs, no guarantee is made about how much data got
1488 written. Callers that can deal with partial writes should call
1489 target_write. */
1490
1491int
1492target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1493{
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return -1;
1501}
1502
1503/* Fetch the target's memory map. */
1504
1505VEC(mem_region_s) *
1506target_memory_map (void)
1507{
1508 VEC(mem_region_s) *result;
1509 struct mem_region *last_one, *this_one;
1510 int ix;
1511 struct target_ops *t;
1512
1513 result = current_target.to_memory_map (&current_target);
1514 if (result == NULL)
1515 return NULL;
1516
1517 qsort (VEC_address (mem_region_s, result),
1518 VEC_length (mem_region_s, result),
1519 sizeof (struct mem_region), mem_region_cmp);
1520
1521 /* Check that regions do not overlap. Simultaneously assign
1522 a numbering for the "mem" commands to use to refer to
1523 each region. */
1524 last_one = NULL;
1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1526 {
1527 this_one->number = ix;
1528
1529 if (last_one && last_one->hi > this_one->lo)
1530 {
1531 warning (_("Overlapping regions in memory map: ignoring"));
1532 VEC_free (mem_region_s, result);
1533 return NULL;
1534 }
1535 last_one = this_one;
1536 }
1537
1538 return result;
1539}
1540
1541void
1542target_flash_erase (ULONGEST address, LONGEST length)
1543{
1544 current_target.to_flash_erase (&current_target, address, length);
1545}
1546
1547void
1548target_flash_done (void)
1549{
1550 current_target.to_flash_done (&current_target);
1551}
1552
1553static void
1554show_trust_readonly (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c, const char *value)
1556{
1557 fprintf_filtered (file,
1558 _("Mode for reading from readonly sections is %s.\n"),
1559 value);
1560}
1561
1562/* Target vector read/write partial wrapper functions. */
1563
1564static enum target_xfer_status
1565target_read_partial (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, ULONGEST len,
1569 ULONGEST *xfered_len)
1570{
1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 xfered_len);
1573}
1574
1575static enum target_xfer_status
1576target_write_partial (struct target_ops *ops,
1577 enum target_object object,
1578 const char *annex, const gdb_byte *buf,
1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1580{
1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 xfered_len);
1583}
1584
1585/* Wrappers to perform the full transfer. */
1586
1587/* For docs on target_read see target.h. */
1588
1589LONGEST
1590target_read (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, gdb_byte *buf,
1593 ULONGEST offset, LONGEST len)
1594{
1595 LONGEST xfered_total = 0;
1596 int unit_size = 1;
1597
1598 /* If we are reading from a memory object, find the length of an addressable
1599 unit for that architecture. */
1600 if (object == TARGET_OBJECT_MEMORY
1601 || object == TARGET_OBJECT_STACK_MEMORY
1602 || object == TARGET_OBJECT_CODE_MEMORY
1603 || object == TARGET_OBJECT_RAW_MEMORY)
1604 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1605
1606 while (xfered_total < len)
1607 {
1608 ULONGEST xfered_partial;
1609 enum target_xfer_status status;
1610
1611 status = target_read_partial (ops, object, annex,
1612 buf + xfered_total * unit_size,
1613 offset + xfered_total, len - xfered_total,
1614 &xfered_partial);
1615
1616 /* Call an observer, notifying them of the xfer progress? */
1617 if (status == TARGET_XFER_EOF)
1618 return xfered_total;
1619 else if (status == TARGET_XFER_OK)
1620 {
1621 xfered_total += xfered_partial;
1622 QUIT;
1623 }
1624 else
1625 return TARGET_XFER_E_IO;
1626
1627 }
1628 return len;
1629}
1630
1631/* Assuming that the entire [begin, end) range of memory cannot be
1632 read, try to read whatever subrange is possible to read.
1633
1634 The function returns, in RESULT, either zero or one memory block.
1635 If there's a readable subrange at the beginning, it is completely
1636 read and returned. Any further readable subrange will not be read.
1637 Otherwise, if there's a readable subrange at the end, it will be
1638 completely read and returned. Any readable subranges before it
1639 (obviously, not starting at the beginning), will be ignored. In
1640 other cases -- either no readable subrange, or readable subrange(s)
1641 that is neither at the beginning, or end, nothing is returned.
1642
1643 The purpose of this function is to handle a read across a boundary
1644 of accessible memory in a case when memory map is not available.
1645 The above restrictions are fine for this case, but will give
1646 incorrect results if the memory is 'patchy'. However, supporting
1647 'patchy' memory would require trying to read every single byte,
1648 and it seems unacceptable solution. Explicit memory map is
1649 recommended for this case -- and target_read_memory_robust will
1650 take care of reading multiple ranges then. */
1651
1652static void
1653read_whatever_is_readable (struct target_ops *ops,
1654 const ULONGEST begin, const ULONGEST end,
1655 int unit_size,
1656 VEC(memory_read_result_s) **result)
1657{
1658 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1659 ULONGEST current_begin = begin;
1660 ULONGEST current_end = end;
1661 int forward;
1662 memory_read_result_s r;
1663 ULONGEST xfered_len;
1664
1665 /* If we previously failed to read 1 byte, nothing can be done here. */
1666 if (end - begin <= 1)
1667 {
1668 xfree (buf);
1669 return;
1670 }
1671
1672 /* Check that either first or the last byte is readable, and give up
1673 if not. This heuristic is meant to permit reading accessible memory
1674 at the boundary of accessible region. */
1675 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1676 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1677 {
1678 forward = 1;
1679 ++current_begin;
1680 }
1681 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1682 buf + (end - begin) - 1, end - 1, 1,
1683 &xfered_len) == TARGET_XFER_OK)
1684 {
1685 forward = 0;
1686 --current_end;
1687 }
1688 else
1689 {
1690 xfree (buf);
1691 return;
1692 }
1693
1694 /* Loop invariant is that the [current_begin, current_end) was previously
1695 found to be not readable as a whole.
1696
1697 Note loop condition -- if the range has 1 byte, we can't divide the range
1698 so there's no point trying further. */
1699 while (current_end - current_begin > 1)
1700 {
1701 ULONGEST first_half_begin, first_half_end;
1702 ULONGEST second_half_begin, second_half_end;
1703 LONGEST xfer;
1704 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1705
1706 if (forward)
1707 {
1708 first_half_begin = current_begin;
1709 first_half_end = middle;
1710 second_half_begin = middle;
1711 second_half_end = current_end;
1712 }
1713 else
1714 {
1715 first_half_begin = middle;
1716 first_half_end = current_end;
1717 second_half_begin = current_begin;
1718 second_half_end = middle;
1719 }
1720
1721 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1722 buf + (first_half_begin - begin) * unit_size,
1723 first_half_begin,
1724 first_half_end - first_half_begin);
1725
1726 if (xfer == first_half_end - first_half_begin)
1727 {
1728 /* This half reads up fine. So, the error must be in the
1729 other half. */
1730 current_begin = second_half_begin;
1731 current_end = second_half_end;
1732 }
1733 else
1734 {
1735 /* This half is not readable. Because we've tried one byte, we
1736 know some part of this half if actually readable. Go to the next
1737 iteration to divide again and try to read.
1738
1739 We don't handle the other half, because this function only tries
1740 to read a single readable subrange. */
1741 current_begin = first_half_begin;
1742 current_end = first_half_end;
1743 }
1744 }
1745
1746 if (forward)
1747 {
1748 /* The [begin, current_begin) range has been read. */
1749 r.begin = begin;
1750 r.end = current_begin;
1751 r.data = buf;
1752 }
1753 else
1754 {
1755 /* The [current_end, end) range has been read. */
1756 LONGEST region_len = end - current_end;
1757
1758 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1759 memcpy (r.data, buf + (current_end - begin) * unit_size,
1760 region_len * unit_size);
1761 r.begin = current_end;
1762 r.end = end;
1763 xfree (buf);
1764 }
1765 VEC_safe_push(memory_read_result_s, (*result), &r);
1766}
1767
1768void
1769free_memory_read_result_vector (void *x)
1770{
1771 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1772 memory_read_result_s *current;
1773 int ix;
1774
1775 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1776 {
1777 xfree (current->data);
1778 }
1779 VEC_free (memory_read_result_s, v);
1780}
1781
1782VEC(memory_read_result_s) *
1783read_memory_robust (struct target_ops *ops,
1784 const ULONGEST offset, const LONGEST len)
1785{
1786 VEC(memory_read_result_s) *result = 0;
1787 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1788
1789 LONGEST xfered_total = 0;
1790 while (xfered_total < len)
1791 {
1792 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1793 LONGEST region_len;
1794
1795 /* If there is no explicit region, a fake one should be created. */
1796 gdb_assert (region);
1797
1798 if (region->hi == 0)
1799 region_len = len - xfered_total;
1800 else
1801 region_len = region->hi - offset;
1802
1803 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1804 {
1805 /* Cannot read this region. Note that we can end up here only
1806 if the region is explicitly marked inaccessible, or
1807 'inaccessible-by-default' is in effect. */
1808 xfered_total += region_len;
1809 }
1810 else
1811 {
1812 LONGEST to_read = min (len - xfered_total, region_len);
1813 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1814
1815 LONGEST xfered_partial =
1816 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1817 (gdb_byte *) buffer,
1818 offset + xfered_total, to_read);
1819 /* Call an observer, notifying them of the xfer progress? */
1820 if (xfered_partial <= 0)
1821 {
1822 /* Got an error reading full chunk. See if maybe we can read
1823 some subrange. */
1824 xfree (buffer);
1825 read_whatever_is_readable (ops, offset + xfered_total, unit_size,
1826 offset + xfered_total + to_read, &result);
1827 xfered_total += to_read;
1828 }
1829 else
1830 {
1831 struct memory_read_result r;
1832 r.data = buffer;
1833 r.begin = offset + xfered_total;
1834 r.end = r.begin + xfered_partial;
1835 VEC_safe_push (memory_read_result_s, result, &r);
1836 xfered_total += xfered_partial;
1837 }
1838 QUIT;
1839 }
1840 }
1841 return result;
1842}
1843
1844
1845/* An alternative to target_write with progress callbacks. */
1846
1847LONGEST
1848target_write_with_progress (struct target_ops *ops,
1849 enum target_object object,
1850 const char *annex, const gdb_byte *buf,
1851 ULONGEST offset, LONGEST len,
1852 void (*progress) (ULONGEST, void *), void *baton)
1853{
1854 LONGEST xfered_total = 0;
1855 int unit_size = 1;
1856
1857 /* If we are writing to a memory object, find the length of an addressable
1858 unit for that architecture. */
1859 if (object == TARGET_OBJECT_MEMORY
1860 || object == TARGET_OBJECT_STACK_MEMORY
1861 || object == TARGET_OBJECT_CODE_MEMORY
1862 || object == TARGET_OBJECT_RAW_MEMORY)
1863 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1864
1865 /* Give the progress callback a chance to set up. */
1866 if (progress)
1867 (*progress) (0, baton);
1868
1869 while (xfered_total < len)
1870 {
1871 ULONGEST xfered_partial;
1872 enum target_xfer_status status;
1873
1874 status = target_write_partial (ops, object, annex,
1875 buf + xfered_total * unit_size,
1876 offset + xfered_total, len - xfered_total,
1877 &xfered_partial);
1878
1879 if (status != TARGET_XFER_OK)
1880 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1881
1882 if (progress)
1883 (*progress) (xfered_partial, baton);
1884
1885 xfered_total += xfered_partial;
1886 QUIT;
1887 }
1888 return len;
1889}
1890
1891/* For docs on target_write see target.h. */
1892
1893LONGEST
1894target_write (struct target_ops *ops,
1895 enum target_object object,
1896 const char *annex, const gdb_byte *buf,
1897 ULONGEST offset, LONGEST len)
1898{
1899 return target_write_with_progress (ops, object, annex, buf, offset, len,
1900 NULL, NULL);
1901}
1902
1903/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1904 the size of the transferred data. PADDING additional bytes are
1905 available in *BUF_P. This is a helper function for
1906 target_read_alloc; see the declaration of that function for more
1907 information. */
1908
1909static LONGEST
1910target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1911 const char *annex, gdb_byte **buf_p, int padding)
1912{
1913 size_t buf_alloc, buf_pos;
1914 gdb_byte *buf;
1915
1916 /* This function does not have a length parameter; it reads the
1917 entire OBJECT). Also, it doesn't support objects fetched partly
1918 from one target and partly from another (in a different stratum,
1919 e.g. a core file and an executable). Both reasons make it
1920 unsuitable for reading memory. */
1921 gdb_assert (object != TARGET_OBJECT_MEMORY);
1922
1923 /* Start by reading up to 4K at a time. The target will throttle
1924 this number down if necessary. */
1925 buf_alloc = 4096;
1926 buf = (gdb_byte *) xmalloc (buf_alloc);
1927 buf_pos = 0;
1928 while (1)
1929 {
1930 ULONGEST xfered_len;
1931 enum target_xfer_status status;
1932
1933 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1934 buf_pos, buf_alloc - buf_pos - padding,
1935 &xfered_len);
1936
1937 if (status == TARGET_XFER_EOF)
1938 {
1939 /* Read all there was. */
1940 if (buf_pos == 0)
1941 xfree (buf);
1942 else
1943 *buf_p = buf;
1944 return buf_pos;
1945 }
1946 else if (status != TARGET_XFER_OK)
1947 {
1948 /* An error occurred. */
1949 xfree (buf);
1950 return TARGET_XFER_E_IO;
1951 }
1952
1953 buf_pos += xfered_len;
1954
1955 /* If the buffer is filling up, expand it. */
1956 if (buf_alloc < buf_pos * 2)
1957 {
1958 buf_alloc *= 2;
1959 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1960 }
1961
1962 QUIT;
1963 }
1964}
1965
1966/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1967 the size of the transferred data. See the declaration in "target.h"
1968 function for more information about the return value. */
1969
1970LONGEST
1971target_read_alloc (struct target_ops *ops, enum target_object object,
1972 const char *annex, gdb_byte **buf_p)
1973{
1974 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1975}
1976
1977/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1978 returned as a string, allocated using xmalloc. If an error occurs
1979 or the transfer is unsupported, NULL is returned. Empty objects
1980 are returned as allocated but empty strings. A warning is issued
1981 if the result contains any embedded NUL bytes. */
1982
1983char *
1984target_read_stralloc (struct target_ops *ops, enum target_object object,
1985 const char *annex)
1986{
1987 gdb_byte *buffer;
1988 char *bufstr;
1989 LONGEST i, transferred;
1990
1991 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1992 bufstr = (char *) buffer;
1993
1994 if (transferred < 0)
1995 return NULL;
1996
1997 if (transferred == 0)
1998 return xstrdup ("");
1999
2000 bufstr[transferred] = 0;
2001
2002 /* Check for embedded NUL bytes; but allow trailing NULs. */
2003 for (i = strlen (bufstr); i < transferred; i++)
2004 if (bufstr[i] != 0)
2005 {
2006 warning (_("target object %d, annex %s, "
2007 "contained unexpected null characters"),
2008 (int) object, annex ? annex : "(none)");
2009 break;
2010 }
2011
2012 return bufstr;
2013}
2014
2015/* Memory transfer methods. */
2016
2017void
2018get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2019 LONGEST len)
2020{
2021 /* This method is used to read from an alternate, non-current
2022 target. This read must bypass the overlay support (as symbols
2023 don't match this target), and GDB's internal cache (wrong cache
2024 for this target). */
2025 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2026 != len)
2027 memory_error (TARGET_XFER_E_IO, addr);
2028}
2029
2030ULONGEST
2031get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2032 int len, enum bfd_endian byte_order)
2033{
2034 gdb_byte buf[sizeof (ULONGEST)];
2035
2036 gdb_assert (len <= sizeof (buf));
2037 get_target_memory (ops, addr, buf, len);
2038 return extract_unsigned_integer (buf, len, byte_order);
2039}
2040
2041/* See target.h. */
2042
2043int
2044target_insert_breakpoint (struct gdbarch *gdbarch,
2045 struct bp_target_info *bp_tgt)
2046{
2047 if (!may_insert_breakpoints)
2048 {
2049 warning (_("May not insert breakpoints"));
2050 return 1;
2051 }
2052
2053 return current_target.to_insert_breakpoint (&current_target,
2054 gdbarch, bp_tgt);
2055}
2056
2057/* See target.h. */
2058
2059int
2060target_remove_breakpoint (struct gdbarch *gdbarch,
2061 struct bp_target_info *bp_tgt)
2062{
2063 /* This is kind of a weird case to handle, but the permission might
2064 have been changed after breakpoints were inserted - in which case
2065 we should just take the user literally and assume that any
2066 breakpoints should be left in place. */
2067 if (!may_insert_breakpoints)
2068 {
2069 warning (_("May not remove breakpoints"));
2070 return 1;
2071 }
2072
2073 return current_target.to_remove_breakpoint (&current_target,
2074 gdbarch, bp_tgt);
2075}
2076
2077static void
2078target_info (char *args, int from_tty)
2079{
2080 struct target_ops *t;
2081 int has_all_mem = 0;
2082
2083 if (symfile_objfile != NULL)
2084 printf_unfiltered (_("Symbols from \"%s\".\n"),
2085 objfile_name (symfile_objfile));
2086
2087 for (t = target_stack; t != NULL; t = t->beneath)
2088 {
2089 if (!(*t->to_has_memory) (t))
2090 continue;
2091
2092 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2093 continue;
2094 if (has_all_mem)
2095 printf_unfiltered (_("\tWhile running this, "
2096 "GDB does not access memory from...\n"));
2097 printf_unfiltered ("%s:\n", t->to_longname);
2098 (t->to_files_info) (t);
2099 has_all_mem = (*t->to_has_all_memory) (t);
2100 }
2101}
2102
2103/* This function is called before any new inferior is created, e.g.
2104 by running a program, attaching, or connecting to a target.
2105 It cleans up any state from previous invocations which might
2106 change between runs. This is a subset of what target_preopen
2107 resets (things which might change between targets). */
2108
2109void
2110target_pre_inferior (int from_tty)
2111{
2112 /* Clear out solib state. Otherwise the solib state of the previous
2113 inferior might have survived and is entirely wrong for the new
2114 target. This has been observed on GNU/Linux using glibc 2.3. How
2115 to reproduce:
2116
2117 bash$ ./foo&
2118 [1] 4711
2119 bash$ ./foo&
2120 [1] 4712
2121 bash$ gdb ./foo
2122 [...]
2123 (gdb) attach 4711
2124 (gdb) detach
2125 (gdb) attach 4712
2126 Cannot access memory at address 0xdeadbeef
2127 */
2128
2129 /* In some OSs, the shared library list is the same/global/shared
2130 across inferiors. If code is shared between processes, so are
2131 memory regions and features. */
2132 if (!gdbarch_has_global_solist (target_gdbarch ()))
2133 {
2134 no_shared_libraries (NULL, from_tty);
2135
2136 invalidate_target_mem_regions ();
2137
2138 target_clear_description ();
2139 }
2140
2141 /* attach_flag may be set if the previous process associated with
2142 the inferior was attached to. */
2143 current_inferior ()->attach_flag = 0;
2144
2145 agent_capability_invalidate ();
2146}
2147
2148/* Callback for iterate_over_inferiors. Gets rid of the given
2149 inferior. */
2150
2151static int
2152dispose_inferior (struct inferior *inf, void *args)
2153{
2154 struct thread_info *thread;
2155
2156 thread = any_thread_of_process (inf->pid);
2157 if (thread)
2158 {
2159 switch_to_thread (thread->ptid);
2160
2161 /* Core inferiors actually should be detached, not killed. */
2162 if (target_has_execution)
2163 target_kill ();
2164 else
2165 target_detach (NULL, 0);
2166 }
2167
2168 return 0;
2169}
2170
2171/* This is to be called by the open routine before it does
2172 anything. */
2173
2174void
2175target_preopen (int from_tty)
2176{
2177 dont_repeat ();
2178
2179 if (have_inferiors ())
2180 {
2181 if (!from_tty
2182 || !have_live_inferiors ()
2183 || query (_("A program is being debugged already. Kill it? ")))
2184 iterate_over_inferiors (dispose_inferior, NULL);
2185 else
2186 error (_("Program not killed."));
2187 }
2188
2189 /* Calling target_kill may remove the target from the stack. But if
2190 it doesn't (which seems like a win for UDI), remove it now. */
2191 /* Leave the exec target, though. The user may be switching from a
2192 live process to a core of the same program. */
2193 pop_all_targets_above (file_stratum);
2194
2195 target_pre_inferior (from_tty);
2196}
2197
2198/* Detach a target after doing deferred register stores. */
2199
2200void
2201target_detach (const char *args, int from_tty)
2202{
2203 struct target_ops* t;
2204
2205 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2206 /* Don't remove global breakpoints here. They're removed on
2207 disconnection from the target. */
2208 ;
2209 else
2210 /* If we're in breakpoints-always-inserted mode, have to remove
2211 them before detaching. */
2212 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2213
2214 prepare_for_detach ();
2215
2216 current_target.to_detach (&current_target, args, from_tty);
2217}
2218
2219void
2220target_disconnect (const char *args, int from_tty)
2221{
2222 /* If we're in breakpoints-always-inserted mode or if breakpoints
2223 are global across processes, we have to remove them before
2224 disconnecting. */
2225 remove_breakpoints ();
2226
2227 current_target.to_disconnect (&current_target, args, from_tty);
2228}
2229
2230ptid_t
2231target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2232{
2233 return (current_target.to_wait) (&current_target, ptid, status, options);
2234}
2235
2236/* See target.h. */
2237
2238ptid_t
2239default_target_wait (struct target_ops *ops,
2240 ptid_t ptid, struct target_waitstatus *status,
2241 int options)
2242{
2243 status->kind = TARGET_WAITKIND_IGNORE;
2244 return minus_one_ptid;
2245}
2246
2247char *
2248target_pid_to_str (ptid_t ptid)
2249{
2250 return (*current_target.to_pid_to_str) (&current_target, ptid);
2251}
2252
2253char *
2254target_thread_name (struct thread_info *info)
2255{
2256 return current_target.to_thread_name (&current_target, info);
2257}
2258
2259void
2260target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2261{
2262 struct target_ops *t;
2263
2264 target_dcache_invalidate ();
2265
2266 current_target.to_resume (&current_target, ptid, step, signal);
2267
2268 registers_changed_ptid (ptid);
2269 /* We only set the internal executing state here. The user/frontend
2270 running state is set at a higher level. */
2271 set_executing (ptid, 1);
2272 clear_inline_frame_state (ptid);
2273}
2274
2275void
2276target_pass_signals (int numsigs, unsigned char *pass_signals)
2277{
2278 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2279}
2280
2281void
2282target_program_signals (int numsigs, unsigned char *program_signals)
2283{
2284 (*current_target.to_program_signals) (&current_target,
2285 numsigs, program_signals);
2286}
2287
2288static int
2289default_follow_fork (struct target_ops *self, int follow_child,
2290 int detach_fork)
2291{
2292 /* Some target returned a fork event, but did not know how to follow it. */
2293 internal_error (__FILE__, __LINE__,
2294 _("could not find a target to follow fork"));
2295}
2296
2297/* Look through the list of possible targets for a target that can
2298 follow forks. */
2299
2300int
2301target_follow_fork (int follow_child, int detach_fork)
2302{
2303 return current_target.to_follow_fork (&current_target,
2304 follow_child, detach_fork);
2305}
2306
2307/* Target wrapper for follow exec hook. */
2308
2309void
2310target_follow_exec (struct inferior *inf, char *execd_pathname)
2311{
2312 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2313}
2314
2315static void
2316default_mourn_inferior (struct target_ops *self)
2317{
2318 internal_error (__FILE__, __LINE__,
2319 _("could not find a target to follow mourn inferior"));
2320}
2321
2322void
2323target_mourn_inferior (void)
2324{
2325 current_target.to_mourn_inferior (&current_target);
2326
2327 /* We no longer need to keep handles on any of the object files.
2328 Make sure to release them to avoid unnecessarily locking any
2329 of them while we're not actually debugging. */
2330 bfd_cache_close_all ();
2331}
2332
2333/* Look for a target which can describe architectural features, starting
2334 from TARGET. If we find one, return its description. */
2335
2336const struct target_desc *
2337target_read_description (struct target_ops *target)
2338{
2339 return target->to_read_description (target);
2340}
2341
2342/* This implements a basic search of memory, reading target memory and
2343 performing the search here (as opposed to performing the search in on the
2344 target side with, for example, gdbserver). */
2345
2346int
2347simple_search_memory (struct target_ops *ops,
2348 CORE_ADDR start_addr, ULONGEST search_space_len,
2349 const gdb_byte *pattern, ULONGEST pattern_len,
2350 CORE_ADDR *found_addrp)
2351{
2352 /* NOTE: also defined in find.c testcase. */
2353#define SEARCH_CHUNK_SIZE 16000
2354 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2355 /* Buffer to hold memory contents for searching. */
2356 gdb_byte *search_buf;
2357 unsigned search_buf_size;
2358 struct cleanup *old_cleanups;
2359
2360 search_buf_size = chunk_size + pattern_len - 1;
2361
2362 /* No point in trying to allocate a buffer larger than the search space. */
2363 if (search_space_len < search_buf_size)
2364 search_buf_size = search_space_len;
2365
2366 search_buf = (gdb_byte *) malloc (search_buf_size);
2367 if (search_buf == NULL)
2368 error (_("Unable to allocate memory to perform the search."));
2369 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2370
2371 /* Prime the search buffer. */
2372
2373 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2374 search_buf, start_addr, search_buf_size) != search_buf_size)
2375 {
2376 warning (_("Unable to access %s bytes of target "
2377 "memory at %s, halting search."),
2378 pulongest (search_buf_size), hex_string (start_addr));
2379 do_cleanups (old_cleanups);
2380 return -1;
2381 }
2382
2383 /* Perform the search.
2384
2385 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2386 When we've scanned N bytes we copy the trailing bytes to the start and
2387 read in another N bytes. */
2388
2389 while (search_space_len >= pattern_len)
2390 {
2391 gdb_byte *found_ptr;
2392 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2393
2394 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2395 pattern, pattern_len);
2396
2397 if (found_ptr != NULL)
2398 {
2399 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2400
2401 *found_addrp = found_addr;
2402 do_cleanups (old_cleanups);
2403 return 1;
2404 }
2405
2406 /* Not found in this chunk, skip to next chunk. */
2407
2408 /* Don't let search_space_len wrap here, it's unsigned. */
2409 if (search_space_len >= chunk_size)
2410 search_space_len -= chunk_size;
2411 else
2412 search_space_len = 0;
2413
2414 if (search_space_len >= pattern_len)
2415 {
2416 unsigned keep_len = search_buf_size - chunk_size;
2417 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2418 int nr_to_read;
2419
2420 /* Copy the trailing part of the previous iteration to the front
2421 of the buffer for the next iteration. */
2422 gdb_assert (keep_len == pattern_len - 1);
2423 memcpy (search_buf, search_buf + chunk_size, keep_len);
2424
2425 nr_to_read = min (search_space_len - keep_len, chunk_size);
2426
2427 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2428 search_buf + keep_len, read_addr,
2429 nr_to_read) != nr_to_read)
2430 {
2431 warning (_("Unable to access %s bytes of target "
2432 "memory at %s, halting search."),
2433 plongest (nr_to_read),
2434 hex_string (read_addr));
2435 do_cleanups (old_cleanups);
2436 return -1;
2437 }
2438
2439 start_addr += chunk_size;
2440 }
2441 }
2442
2443 /* Not found. */
2444
2445 do_cleanups (old_cleanups);
2446 return 0;
2447}
2448
2449/* Default implementation of memory-searching. */
2450
2451static int
2452default_search_memory (struct target_ops *self,
2453 CORE_ADDR start_addr, ULONGEST search_space_len,
2454 const gdb_byte *pattern, ULONGEST pattern_len,
2455 CORE_ADDR *found_addrp)
2456{
2457 /* Start over from the top of the target stack. */
2458 return simple_search_memory (current_target.beneath,
2459 start_addr, search_space_len,
2460 pattern, pattern_len, found_addrp);
2461}
2462
2463/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2464 sequence of bytes in PATTERN with length PATTERN_LEN.
2465
2466 The result is 1 if found, 0 if not found, and -1 if there was an error
2467 requiring halting of the search (e.g. memory read error).
2468 If the pattern is found the address is recorded in FOUND_ADDRP. */
2469
2470int
2471target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2472 const gdb_byte *pattern, ULONGEST pattern_len,
2473 CORE_ADDR *found_addrp)
2474{
2475 return current_target.to_search_memory (&current_target, start_addr,
2476 search_space_len,
2477 pattern, pattern_len, found_addrp);
2478}
2479
2480/* Look through the currently pushed targets. If none of them will
2481 be able to restart the currently running process, issue an error
2482 message. */
2483
2484void
2485target_require_runnable (void)
2486{
2487 struct target_ops *t;
2488
2489 for (t = target_stack; t != NULL; t = t->beneath)
2490 {
2491 /* If this target knows how to create a new program, then
2492 assume we will still be able to after killing the current
2493 one. Either killing and mourning will not pop T, or else
2494 find_default_run_target will find it again. */
2495 if (t->to_create_inferior != NULL)
2496 return;
2497
2498 /* Do not worry about targets at certain strata that can not
2499 create inferiors. Assume they will be pushed again if
2500 necessary, and continue to the process_stratum. */
2501 if (t->to_stratum == thread_stratum
2502 || t->to_stratum == record_stratum
2503 || t->to_stratum == arch_stratum)
2504 continue;
2505
2506 error (_("The \"%s\" target does not support \"run\". "
2507 "Try \"help target\" or \"continue\"."),
2508 t->to_shortname);
2509 }
2510
2511 /* This function is only called if the target is running. In that
2512 case there should have been a process_stratum target and it
2513 should either know how to create inferiors, or not... */
2514 internal_error (__FILE__, __LINE__, _("No targets found"));
2515}
2516
2517/* Whether GDB is allowed to fall back to the default run target for
2518 "run", "attach", etc. when no target is connected yet. */
2519static int auto_connect_native_target = 1;
2520
2521static void
2522show_auto_connect_native_target (struct ui_file *file, int from_tty,
2523 struct cmd_list_element *c, const char *value)
2524{
2525 fprintf_filtered (file,
2526 _("Whether GDB may automatically connect to the "
2527 "native target is %s.\n"),
2528 value);
2529}
2530
2531/* Look through the list of possible targets for a target that can
2532 execute a run or attach command without any other data. This is
2533 used to locate the default process stratum.
2534
2535 If DO_MESG is not NULL, the result is always valid (error() is
2536 called for errors); else, return NULL on error. */
2537
2538static struct target_ops *
2539find_default_run_target (char *do_mesg)
2540{
2541 struct target_ops *runable = NULL;
2542
2543 if (auto_connect_native_target)
2544 {
2545 struct target_ops *t;
2546 int count = 0;
2547 int i;
2548
2549 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2550 {
2551 if (t->to_can_run != delegate_can_run && target_can_run (t))
2552 {
2553 runable = t;
2554 ++count;
2555 }
2556 }
2557
2558 if (count != 1)
2559 runable = NULL;
2560 }
2561
2562 if (runable == NULL)
2563 {
2564 if (do_mesg)
2565 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2566 else
2567 return NULL;
2568 }
2569
2570 return runable;
2571}
2572
2573/* See target.h. */
2574
2575struct target_ops *
2576find_attach_target (void)
2577{
2578 struct target_ops *t;
2579
2580 /* If a target on the current stack can attach, use it. */
2581 for (t = current_target.beneath; t != NULL; t = t->beneath)
2582 {
2583 if (t->to_attach != NULL)
2584 break;
2585 }
2586
2587 /* Otherwise, use the default run target for attaching. */
2588 if (t == NULL)
2589 t = find_default_run_target ("attach");
2590
2591 return t;
2592}
2593
2594/* See target.h. */
2595
2596struct target_ops *
2597find_run_target (void)
2598{
2599 struct target_ops *t;
2600
2601 /* If a target on the current stack can attach, use it. */
2602 for (t = current_target.beneath; t != NULL; t = t->beneath)
2603 {
2604 if (t->to_create_inferior != NULL)
2605 break;
2606 }
2607
2608 /* Otherwise, use the default run target. */
2609 if (t == NULL)
2610 t = find_default_run_target ("run");
2611
2612 return t;
2613}
2614
2615/* Implement the "info proc" command. */
2616
2617int
2618target_info_proc (const char *args, enum info_proc_what what)
2619{
2620 struct target_ops *t;
2621
2622 /* If we're already connected to something that can get us OS
2623 related data, use it. Otherwise, try using the native
2624 target. */
2625 if (current_target.to_stratum >= process_stratum)
2626 t = current_target.beneath;
2627 else
2628 t = find_default_run_target (NULL);
2629
2630 for (; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_info_proc != NULL)
2633 {
2634 t->to_info_proc (t, args, what);
2635
2636 if (targetdebug)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "target_info_proc (\"%s\", %d)\n", args, what);
2639
2640 return 1;
2641 }
2642 }
2643
2644 return 0;
2645}
2646
2647static int
2648find_default_supports_disable_randomization (struct target_ops *self)
2649{
2650 struct target_ops *t;
2651
2652 t = find_default_run_target (NULL);
2653 if (t && t->to_supports_disable_randomization)
2654 return (t->to_supports_disable_randomization) (t);
2655 return 0;
2656}
2657
2658int
2659target_supports_disable_randomization (void)
2660{
2661 struct target_ops *t;
2662
2663 for (t = &current_target; t != NULL; t = t->beneath)
2664 if (t->to_supports_disable_randomization)
2665 return t->to_supports_disable_randomization (t);
2666
2667 return 0;
2668}
2669
2670char *
2671target_get_osdata (const char *type)
2672{
2673 struct target_ops *t;
2674
2675 /* If we're already connected to something that can get us OS
2676 related data, use it. Otherwise, try using the native
2677 target. */
2678 if (current_target.to_stratum >= process_stratum)
2679 t = current_target.beneath;
2680 else
2681 t = find_default_run_target ("get OS data");
2682
2683 if (!t)
2684 return NULL;
2685
2686 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2687}
2688
2689static struct address_space *
2690default_thread_address_space (struct target_ops *self, ptid_t ptid)
2691{
2692 struct inferior *inf;
2693
2694 /* Fall-back to the "main" address space of the inferior. */
2695 inf = find_inferior_ptid (ptid);
2696
2697 if (inf == NULL || inf->aspace == NULL)
2698 internal_error (__FILE__, __LINE__,
2699 _("Can't determine the current "
2700 "address space of thread %s\n"),
2701 target_pid_to_str (ptid));
2702
2703 return inf->aspace;
2704}
2705
2706/* Determine the current address space of thread PTID. */
2707
2708struct address_space *
2709target_thread_address_space (ptid_t ptid)
2710{
2711 struct address_space *aspace;
2712
2713 aspace = current_target.to_thread_address_space (&current_target, ptid);
2714 gdb_assert (aspace != NULL);
2715
2716 return aspace;
2717}
2718
2719
2720/* Target file operations. */
2721
2722static struct target_ops *
2723default_fileio_target (void)
2724{
2725 /* If we're already connected to something that can perform
2726 file I/O, use it. Otherwise, try using the native target. */
2727 if (current_target.to_stratum >= process_stratum)
2728 return current_target.beneath;
2729 else
2730 return find_default_run_target ("file I/O");
2731}
2732
2733/* File handle for target file operations. */
2734
2735typedef struct
2736{
2737 /* The target on which this file is open. */
2738 struct target_ops *t;
2739
2740 /* The file descriptor on the target. */
2741 int fd;
2742} fileio_fh_t;
2743
2744DEF_VEC_O (fileio_fh_t);
2745
2746/* Vector of currently open file handles. The value returned by
2747 target_fileio_open and passed as the FD argument to other
2748 target_fileio_* functions is an index into this vector. This
2749 vector's entries are never freed; instead, files are marked as
2750 closed, and the handle becomes available for reuse. */
2751static VEC (fileio_fh_t) *fileio_fhandles;
2752
2753/* Macro to check whether a fileio_fh_t represents a closed file. */
2754#define is_closed_fileio_fh(fd) ((fd) < 0)
2755
2756/* Index into fileio_fhandles of the lowest handle that might be
2757 closed. This permits handle reuse without searching the whole
2758 list each time a new file is opened. */
2759static int lowest_closed_fd;
2760
2761/* Acquire a target fileio file descriptor. */
2762
2763static int
2764acquire_fileio_fd (struct target_ops *t, int fd)
2765{
2766 fileio_fh_t *fh, buf;
2767
2768 gdb_assert (!is_closed_fileio_fh (fd));
2769
2770 /* Search for closed handles to reuse. */
2771 for (;
2772 VEC_iterate (fileio_fh_t, fileio_fhandles,
2773 lowest_closed_fd, fh);
2774 lowest_closed_fd++)
2775 if (is_closed_fileio_fh (fh->fd))
2776 break;
2777
2778 /* Push a new handle if no closed handles were found. */
2779 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2780 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2781
2782 /* Fill in the handle. */
2783 fh->t = t;
2784 fh->fd = fd;
2785
2786 /* Return its index, and start the next lookup at
2787 the next index. */
2788 return lowest_closed_fd++;
2789}
2790
2791/* Release a target fileio file descriptor. */
2792
2793static void
2794release_fileio_fd (int fd, fileio_fh_t *fh)
2795{
2796 fh->fd = -1;
2797 lowest_closed_fd = min (lowest_closed_fd, fd);
2798}
2799
2800/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2801
2802#define fileio_fd_to_fh(fd) \
2803 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2804
2805/* Helper for target_fileio_open and
2806 target_fileio_open_warn_if_slow. */
2807
2808static int
2809target_fileio_open_1 (struct inferior *inf, const char *filename,
2810 int flags, int mode, int warn_if_slow,
2811 int *target_errno)
2812{
2813 struct target_ops *t;
2814
2815 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2816 {
2817 if (t->to_fileio_open != NULL)
2818 {
2819 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2820 warn_if_slow, target_errno);
2821
2822 if (fd < 0)
2823 fd = -1;
2824 else
2825 fd = acquire_fileio_fd (t, fd);
2826
2827 if (targetdebug)
2828 fprintf_unfiltered (gdb_stdlog,
2829 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2830 " = %d (%d)\n",
2831 inf == NULL ? 0 : inf->num,
2832 filename, flags, mode,
2833 warn_if_slow, fd,
2834 fd != -1 ? 0 : *target_errno);
2835 return fd;
2836 }
2837 }
2838
2839 *target_errno = FILEIO_ENOSYS;
2840 return -1;
2841}
2842
2843/* See target.h. */
2844
2845int
2846target_fileio_open (struct inferior *inf, const char *filename,
2847 int flags, int mode, int *target_errno)
2848{
2849 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2850 target_errno);
2851}
2852
2853/* See target.h. */
2854
2855int
2856target_fileio_open_warn_if_slow (struct inferior *inf,
2857 const char *filename,
2858 int flags, int mode, int *target_errno)
2859{
2860 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2861 target_errno);
2862}
2863
2864/* See target.h. */
2865
2866int
2867target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2868 ULONGEST offset, int *target_errno)
2869{
2870 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2871 int ret = -1;
2872
2873 if (is_closed_fileio_fh (fh->fd))
2874 *target_errno = EBADF;
2875 else
2876 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2877 len, offset, target_errno);
2878
2879 if (targetdebug)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "target_fileio_pwrite (%d,...,%d,%s) "
2882 "= %d (%d)\n",
2883 fd, len, pulongest (offset),
2884 ret, ret != -1 ? 0 : *target_errno);
2885 return ret;
2886}
2887
2888/* See target.h. */
2889
2890int
2891target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2892 ULONGEST offset, int *target_errno)
2893{
2894 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2895 int ret = -1;
2896
2897 if (is_closed_fileio_fh (fh->fd))
2898 *target_errno = EBADF;
2899 else
2900 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2901 len, offset, target_errno);
2902
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "target_fileio_pread (%d,...,%d,%s) "
2906 "= %d (%d)\n",
2907 fd, len, pulongest (offset),
2908 ret, ret != -1 ? 0 : *target_errno);
2909 return ret;
2910}
2911
2912/* See target.h. */
2913
2914int
2915target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2916{
2917 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2918 int ret = -1;
2919
2920 if (is_closed_fileio_fh (fh->fd))
2921 *target_errno = EBADF;
2922 else
2923 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2924
2925 if (targetdebug)
2926 fprintf_unfiltered (gdb_stdlog,
2927 "target_fileio_fstat (%d) = %d (%d)\n",
2928 fd, ret, ret != -1 ? 0 : *target_errno);
2929 return ret;
2930}
2931
2932/* See target.h. */
2933
2934int
2935target_fileio_close (int fd, int *target_errno)
2936{
2937 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2938 int ret = -1;
2939
2940 if (is_closed_fileio_fh (fh->fd))
2941 *target_errno = EBADF;
2942 else
2943 {
2944 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2945 release_fileio_fd (fd, fh);
2946 }
2947
2948 if (targetdebug)
2949 fprintf_unfiltered (gdb_stdlog,
2950 "target_fileio_close (%d) = %d (%d)\n",
2951 fd, ret, ret != -1 ? 0 : *target_errno);
2952 return ret;
2953}
2954
2955/* See target.h. */
2956
2957int
2958target_fileio_unlink (struct inferior *inf, const char *filename,
2959 int *target_errno)
2960{
2961 struct target_ops *t;
2962
2963 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2964 {
2965 if (t->to_fileio_unlink != NULL)
2966 {
2967 int ret = t->to_fileio_unlink (t, inf, filename,
2968 target_errno);
2969
2970 if (targetdebug)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "target_fileio_unlink (%d,%s)"
2973 " = %d (%d)\n",
2974 inf == NULL ? 0 : inf->num, filename,
2975 ret, ret != -1 ? 0 : *target_errno);
2976 return ret;
2977 }
2978 }
2979
2980 *target_errno = FILEIO_ENOSYS;
2981 return -1;
2982}
2983
2984/* See target.h. */
2985
2986char *
2987target_fileio_readlink (struct inferior *inf, const char *filename,
2988 int *target_errno)
2989{
2990 struct target_ops *t;
2991
2992 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2993 {
2994 if (t->to_fileio_readlink != NULL)
2995 {
2996 char *ret = t->to_fileio_readlink (t, inf, filename,
2997 target_errno);
2998
2999 if (targetdebug)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "target_fileio_readlink (%d,%s)"
3002 " = %s (%d)\n",
3003 inf == NULL ? 0 : inf->num,
3004 filename, ret? ret : "(nil)",
3005 ret? 0 : *target_errno);
3006 return ret;
3007 }
3008 }
3009
3010 *target_errno = FILEIO_ENOSYS;
3011 return NULL;
3012}
3013
3014static void
3015target_fileio_close_cleanup (void *opaque)
3016{
3017 int fd = *(int *) opaque;
3018 int target_errno;
3019
3020 target_fileio_close (fd, &target_errno);
3021}
3022
3023/* Read target file FILENAME, in the filesystem as seen by INF. If
3024 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3025 remote targets, the remote stub). Store the result in *BUF_P and
3026 return the size of the transferred data. PADDING additional bytes
3027 are available in *BUF_P. This is a helper function for
3028 target_fileio_read_alloc; see the declaration of that function for
3029 more information. */
3030
3031static LONGEST
3032target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3033 gdb_byte **buf_p, int padding)
3034{
3035 struct cleanup *close_cleanup;
3036 size_t buf_alloc, buf_pos;
3037 gdb_byte *buf;
3038 LONGEST n;
3039 int fd;
3040 int target_errno;
3041
3042 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3043 &target_errno);
3044 if (fd == -1)
3045 return -1;
3046
3047 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3048
3049 /* Start by reading up to 4K at a time. The target will throttle
3050 this number down if necessary. */
3051 buf_alloc = 4096;
3052 buf = (gdb_byte *) xmalloc (buf_alloc);
3053 buf_pos = 0;
3054 while (1)
3055 {
3056 n = target_fileio_pread (fd, &buf[buf_pos],
3057 buf_alloc - buf_pos - padding, buf_pos,
3058 &target_errno);
3059 if (n < 0)
3060 {
3061 /* An error occurred. */
3062 do_cleanups (close_cleanup);
3063 xfree (buf);
3064 return -1;
3065 }
3066 else if (n == 0)
3067 {
3068 /* Read all there was. */
3069 do_cleanups (close_cleanup);
3070 if (buf_pos == 0)
3071 xfree (buf);
3072 else
3073 *buf_p = buf;
3074 return buf_pos;
3075 }
3076
3077 buf_pos += n;
3078
3079 /* If the buffer is filling up, expand it. */
3080 if (buf_alloc < buf_pos * 2)
3081 {
3082 buf_alloc *= 2;
3083 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3084 }
3085
3086 QUIT;
3087 }
3088}
3089
3090/* See target.h. */
3091
3092LONGEST
3093target_fileio_read_alloc (struct inferior *inf, const char *filename,
3094 gdb_byte **buf_p)
3095{
3096 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3097}
3098
3099/* See target.h. */
3100
3101char *
3102target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3103{
3104 gdb_byte *buffer;
3105 char *bufstr;
3106 LONGEST i, transferred;
3107
3108 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3109 bufstr = (char *) buffer;
3110
3111 if (transferred < 0)
3112 return NULL;
3113
3114 if (transferred == 0)
3115 return xstrdup ("");
3116
3117 bufstr[transferred] = 0;
3118
3119 /* Check for embedded NUL bytes; but allow trailing NULs. */
3120 for (i = strlen (bufstr); i < transferred; i++)
3121 if (bufstr[i] != 0)
3122 {
3123 warning (_("target file %s "
3124 "contained unexpected null characters"),
3125 filename);
3126 break;
3127 }
3128
3129 return bufstr;
3130}
3131
3132
3133static int
3134default_region_ok_for_hw_watchpoint (struct target_ops *self,
3135 CORE_ADDR addr, int len)
3136{
3137 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3138}
3139
3140static int
3141default_watchpoint_addr_within_range (struct target_ops *target,
3142 CORE_ADDR addr,
3143 CORE_ADDR start, int length)
3144{
3145 return addr >= start && addr < start + length;
3146}
3147
3148static struct gdbarch *
3149default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3150{
3151 return target_gdbarch ();
3152}
3153
3154static int
3155return_zero (struct target_ops *ignore)
3156{
3157 return 0;
3158}
3159
3160static int
3161return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3162{
3163 return 0;
3164}
3165
3166/*
3167 * Find the next target down the stack from the specified target.
3168 */
3169
3170struct target_ops *
3171find_target_beneath (struct target_ops *t)
3172{
3173 return t->beneath;
3174}
3175
3176/* See target.h. */
3177
3178struct target_ops *
3179find_target_at (enum strata stratum)
3180{
3181 struct target_ops *t;
3182
3183 for (t = current_target.beneath; t != NULL; t = t->beneath)
3184 if (t->to_stratum == stratum)
3185 return t;
3186
3187 return NULL;
3188}
3189
3190\f
3191/* The inferior process has died. Long live the inferior! */
3192
3193void
3194generic_mourn_inferior (void)
3195{
3196 ptid_t ptid;
3197
3198 ptid = inferior_ptid;
3199 inferior_ptid = null_ptid;
3200
3201 /* Mark breakpoints uninserted in case something tries to delete a
3202 breakpoint while we delete the inferior's threads (which would
3203 fail, since the inferior is long gone). */
3204 mark_breakpoints_out ();
3205
3206 if (!ptid_equal (ptid, null_ptid))
3207 {
3208 int pid = ptid_get_pid (ptid);
3209 exit_inferior (pid);
3210 }
3211
3212 /* Note this wipes step-resume breakpoints, so needs to be done
3213 after exit_inferior, which ends up referencing the step-resume
3214 breakpoints through clear_thread_inferior_resources. */
3215 breakpoint_init_inferior (inf_exited);
3216
3217 registers_changed ();
3218
3219 reopen_exec_file ();
3220 reinit_frame_cache ();
3221
3222 if (deprecated_detach_hook)
3223 deprecated_detach_hook ();
3224}
3225\f
3226/* Convert a normal process ID to a string. Returns the string in a
3227 static buffer. */
3228
3229char *
3230normal_pid_to_str (ptid_t ptid)
3231{
3232 static char buf[32];
3233
3234 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3235 return buf;
3236}
3237
3238static char *
3239default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3240{
3241 return normal_pid_to_str (ptid);
3242}
3243
3244/* Error-catcher for target_find_memory_regions. */
3245static int
3246dummy_find_memory_regions (struct target_ops *self,
3247 find_memory_region_ftype ignore1, void *ignore2)
3248{
3249 error (_("Command not implemented for this target."));
3250 return 0;
3251}
3252
3253/* Error-catcher for target_make_corefile_notes. */
3254static char *
3255dummy_make_corefile_notes (struct target_ops *self,
3256 bfd *ignore1, int *ignore2)
3257{
3258 error (_("Command not implemented for this target."));
3259 return NULL;
3260}
3261
3262/* Set up the handful of non-empty slots needed by the dummy target
3263 vector. */
3264
3265static void
3266init_dummy_target (void)
3267{
3268 dummy_target.to_shortname = "None";
3269 dummy_target.to_longname = "None";
3270 dummy_target.to_doc = "";
3271 dummy_target.to_supports_disable_randomization
3272 = find_default_supports_disable_randomization;
3273 dummy_target.to_stratum = dummy_stratum;
3274 dummy_target.to_has_all_memory = return_zero;
3275 dummy_target.to_has_memory = return_zero;
3276 dummy_target.to_has_stack = return_zero;
3277 dummy_target.to_has_registers = return_zero;
3278 dummy_target.to_has_execution = return_zero_has_execution;
3279 dummy_target.to_magic = OPS_MAGIC;
3280
3281 install_dummy_methods (&dummy_target);
3282}
3283\f
3284
3285void
3286target_close (struct target_ops *targ)
3287{
3288 gdb_assert (!target_is_pushed (targ));
3289
3290 if (targ->to_xclose != NULL)
3291 targ->to_xclose (targ);
3292 else if (targ->to_close != NULL)
3293 targ->to_close (targ);
3294
3295 if (targetdebug)
3296 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3297}
3298
3299int
3300target_thread_alive (ptid_t ptid)
3301{
3302 return current_target.to_thread_alive (&current_target, ptid);
3303}
3304
3305void
3306target_update_thread_list (void)
3307{
3308 current_target.to_update_thread_list (&current_target);
3309}
3310
3311void
3312target_stop (ptid_t ptid)
3313{
3314 if (!may_stop)
3315 {
3316 warning (_("May not interrupt or stop the target, ignoring attempt"));
3317 return;
3318 }
3319
3320 (*current_target.to_stop) (&current_target, ptid);
3321}
3322
3323void
3324target_interrupt (ptid_t ptid)
3325{
3326 if (!may_stop)
3327 {
3328 warning (_("May not interrupt or stop the target, ignoring attempt"));
3329 return;
3330 }
3331
3332 (*current_target.to_interrupt) (&current_target, ptid);
3333}
3334
3335/* See target.h. */
3336
3337void
3338target_check_pending_interrupt (void)
3339{
3340 (*current_target.to_check_pending_interrupt) (&current_target);
3341}
3342
3343/* See target/target.h. */
3344
3345void
3346target_stop_and_wait (ptid_t ptid)
3347{
3348 struct target_waitstatus status;
3349 int was_non_stop = non_stop;
3350
3351 non_stop = 1;
3352 target_stop (ptid);
3353
3354 memset (&status, 0, sizeof (status));
3355 target_wait (ptid, &status, 0);
3356
3357 non_stop = was_non_stop;
3358}
3359
3360/* See target/target.h. */
3361
3362void
3363target_continue_no_signal (ptid_t ptid)
3364{
3365 target_resume (ptid, 0, GDB_SIGNAL_0);
3366}
3367
3368/* Concatenate ELEM to LIST, a comma separate list, and return the
3369 result. The LIST incoming argument is released. */
3370
3371static char *
3372str_comma_list_concat_elem (char *list, const char *elem)
3373{
3374 if (list == NULL)
3375 return xstrdup (elem);
3376 else
3377 return reconcat (list, list, ", ", elem, (char *) NULL);
3378}
3379
3380/* Helper for target_options_to_string. If OPT is present in
3381 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3382 Returns the new resulting string. OPT is removed from
3383 TARGET_OPTIONS. */
3384
3385static char *
3386do_option (int *target_options, char *ret,
3387 int opt, char *opt_str)
3388{
3389 if ((*target_options & opt) != 0)
3390 {
3391 ret = str_comma_list_concat_elem (ret, opt_str);
3392 *target_options &= ~opt;
3393 }
3394
3395 return ret;
3396}
3397
3398char *
3399target_options_to_string (int target_options)
3400{
3401 char *ret = NULL;
3402
3403#define DO_TARG_OPTION(OPT) \
3404 ret = do_option (&target_options, ret, OPT, #OPT)
3405
3406 DO_TARG_OPTION (TARGET_WNOHANG);
3407
3408 if (target_options != 0)
3409 ret = str_comma_list_concat_elem (ret, "unknown???");
3410
3411 if (ret == NULL)
3412 ret = xstrdup ("");
3413 return ret;
3414}
3415
3416static void
3417debug_print_register (const char * func,
3418 struct regcache *regcache, int regno)
3419{
3420 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3421
3422 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3423 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3424 && gdbarch_register_name (gdbarch, regno) != NULL
3425 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3426 fprintf_unfiltered (gdb_stdlog, "(%s)",
3427 gdbarch_register_name (gdbarch, regno));
3428 else
3429 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3430 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3431 {
3432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3433 int i, size = register_size (gdbarch, regno);
3434 gdb_byte buf[MAX_REGISTER_SIZE];
3435
3436 regcache_raw_collect (regcache, regno, buf);
3437 fprintf_unfiltered (gdb_stdlog, " = ");
3438 for (i = 0; i < size; i++)
3439 {
3440 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3441 }
3442 if (size <= sizeof (LONGEST))
3443 {
3444 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3445
3446 fprintf_unfiltered (gdb_stdlog, " %s %s",
3447 core_addr_to_string_nz (val), plongest (val));
3448 }
3449 }
3450 fprintf_unfiltered (gdb_stdlog, "\n");
3451}
3452
3453void
3454target_fetch_registers (struct regcache *regcache, int regno)
3455{
3456 current_target.to_fetch_registers (&current_target, regcache, regno);
3457 if (targetdebug)
3458 debug_print_register ("target_fetch_registers", regcache, regno);
3459}
3460
3461void
3462target_store_registers (struct regcache *regcache, int regno)
3463{
3464 struct target_ops *t;
3465
3466 if (!may_write_registers)
3467 error (_("Writing to registers is not allowed (regno %d)"), regno);
3468
3469 current_target.to_store_registers (&current_target, regcache, regno);
3470 if (targetdebug)
3471 {
3472 debug_print_register ("target_store_registers", regcache, regno);
3473 }
3474}
3475
3476int
3477target_core_of_thread (ptid_t ptid)
3478{
3479 return current_target.to_core_of_thread (&current_target, ptid);
3480}
3481
3482int
3483simple_verify_memory (struct target_ops *ops,
3484 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3485{
3486 LONGEST total_xfered = 0;
3487
3488 while (total_xfered < size)
3489 {
3490 ULONGEST xfered_len;
3491 enum target_xfer_status status;
3492 gdb_byte buf[1024];
3493 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3494
3495 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3496 buf, NULL, lma + total_xfered, howmuch,
3497 &xfered_len);
3498 if (status == TARGET_XFER_OK
3499 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3500 {
3501 total_xfered += xfered_len;
3502 QUIT;
3503 }
3504 else
3505 return 0;
3506 }
3507 return 1;
3508}
3509
3510/* Default implementation of memory verification. */
3511
3512static int
3513default_verify_memory (struct target_ops *self,
3514 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3515{
3516 /* Start over from the top of the target stack. */
3517 return simple_verify_memory (current_target.beneath,
3518 data, memaddr, size);
3519}
3520
3521int
3522target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3523{
3524 return current_target.to_verify_memory (&current_target,
3525 data, memaddr, size);
3526}
3527
3528/* The documentation for this function is in its prototype declaration in
3529 target.h. */
3530
3531int
3532target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3533 enum target_hw_bp_type rw)
3534{
3535 return current_target.to_insert_mask_watchpoint (&current_target,
3536 addr, mask, rw);
3537}
3538
3539/* The documentation for this function is in its prototype declaration in
3540 target.h. */
3541
3542int
3543target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3544 enum target_hw_bp_type rw)
3545{
3546 return current_target.to_remove_mask_watchpoint (&current_target,
3547 addr, mask, rw);
3548}
3549
3550/* The documentation for this function is in its prototype declaration
3551 in target.h. */
3552
3553int
3554target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3555{
3556 return current_target.to_masked_watch_num_registers (&current_target,
3557 addr, mask);
3558}
3559
3560/* The documentation for this function is in its prototype declaration
3561 in target.h. */
3562
3563int
3564target_ranged_break_num_registers (void)
3565{
3566 return current_target.to_ranged_break_num_registers (&current_target);
3567}
3568
3569/* See target.h. */
3570
3571int
3572target_supports_btrace (enum btrace_format format)
3573{
3574 return current_target.to_supports_btrace (&current_target, format);
3575}
3576
3577/* See target.h. */
3578
3579struct btrace_target_info *
3580target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3581{
3582 return current_target.to_enable_btrace (&current_target, ptid, conf);
3583}
3584
3585/* See target.h. */
3586
3587void
3588target_disable_btrace (struct btrace_target_info *btinfo)
3589{
3590 current_target.to_disable_btrace (&current_target, btinfo);
3591}
3592
3593/* See target.h. */
3594
3595void
3596target_teardown_btrace (struct btrace_target_info *btinfo)
3597{
3598 current_target.to_teardown_btrace (&current_target, btinfo);
3599}
3600
3601/* See target.h. */
3602
3603enum btrace_error
3604target_read_btrace (struct btrace_data *btrace,
3605 struct btrace_target_info *btinfo,
3606 enum btrace_read_type type)
3607{
3608 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3609}
3610
3611/* See target.h. */
3612
3613const struct btrace_config *
3614target_btrace_conf (const struct btrace_target_info *btinfo)
3615{
3616 return current_target.to_btrace_conf (&current_target, btinfo);
3617}
3618
3619/* See target.h. */
3620
3621void
3622target_stop_recording (void)
3623{
3624 current_target.to_stop_recording (&current_target);
3625}
3626
3627/* See target.h. */
3628
3629void
3630target_save_record (const char *filename)
3631{
3632 current_target.to_save_record (&current_target, filename);
3633}
3634
3635/* See target.h. */
3636
3637int
3638target_supports_delete_record (void)
3639{
3640 struct target_ops *t;
3641
3642 for (t = current_target.beneath; t != NULL; t = t->beneath)
3643 if (t->to_delete_record != delegate_delete_record
3644 && t->to_delete_record != tdefault_delete_record)
3645 return 1;
3646
3647 return 0;
3648}
3649
3650/* See target.h. */
3651
3652void
3653target_delete_record (void)
3654{
3655 current_target.to_delete_record (&current_target);
3656}
3657
3658/* See target.h. */
3659
3660int
3661target_record_is_replaying (ptid_t ptid)
3662{
3663 return current_target.to_record_is_replaying (&current_target, ptid);
3664}
3665
3666/* See target.h. */
3667
3668int
3669target_record_will_replay (ptid_t ptid, int dir)
3670{
3671 return current_target.to_record_will_replay (&current_target, ptid, dir);
3672}
3673
3674/* See target.h. */
3675
3676void
3677target_record_stop_replaying (void)
3678{
3679 current_target.to_record_stop_replaying (&current_target);
3680}
3681
3682/* See target.h. */
3683
3684void
3685target_goto_record_begin (void)
3686{
3687 current_target.to_goto_record_begin (&current_target);
3688}
3689
3690/* See target.h. */
3691
3692void
3693target_goto_record_end (void)
3694{
3695 current_target.to_goto_record_end (&current_target);
3696}
3697
3698/* See target.h. */
3699
3700void
3701target_goto_record (ULONGEST insn)
3702{
3703 current_target.to_goto_record (&current_target, insn);
3704}
3705
3706/* See target.h. */
3707
3708void
3709target_insn_history (int size, int flags)
3710{
3711 current_target.to_insn_history (&current_target, size, flags);
3712}
3713
3714/* See target.h. */
3715
3716void
3717target_insn_history_from (ULONGEST from, int size, int flags)
3718{
3719 current_target.to_insn_history_from (&current_target, from, size, flags);
3720}
3721
3722/* See target.h. */
3723
3724void
3725target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3726{
3727 current_target.to_insn_history_range (&current_target, begin, end, flags);
3728}
3729
3730/* See target.h. */
3731
3732void
3733target_call_history (int size, int flags)
3734{
3735 current_target.to_call_history (&current_target, size, flags);
3736}
3737
3738/* See target.h. */
3739
3740void
3741target_call_history_from (ULONGEST begin, int size, int flags)
3742{
3743 current_target.to_call_history_from (&current_target, begin, size, flags);
3744}
3745
3746/* See target.h. */
3747
3748void
3749target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3750{
3751 current_target.to_call_history_range (&current_target, begin, end, flags);
3752}
3753
3754/* See target.h. */
3755
3756const struct frame_unwind *
3757target_get_unwinder (void)
3758{
3759 return current_target.to_get_unwinder (&current_target);
3760}
3761
3762/* See target.h. */
3763
3764const struct frame_unwind *
3765target_get_tailcall_unwinder (void)
3766{
3767 return current_target.to_get_tailcall_unwinder (&current_target);
3768}
3769
3770/* See target.h. */
3771
3772void
3773target_prepare_to_generate_core (void)
3774{
3775 current_target.to_prepare_to_generate_core (&current_target);
3776}
3777
3778/* See target.h. */
3779
3780void
3781target_done_generating_core (void)
3782{
3783 current_target.to_done_generating_core (&current_target);
3784}
3785
3786static void
3787setup_target_debug (void)
3788{
3789 memcpy (&debug_target, &current_target, sizeof debug_target);
3790
3791 init_debug_target (&current_target);
3792}
3793\f
3794
3795static char targ_desc[] =
3796"Names of targets and files being debugged.\nShows the entire \
3797stack of targets currently in use (including the exec-file,\n\
3798core-file, and process, if any), as well as the symbol file name.";
3799
3800static void
3801default_rcmd (struct target_ops *self, const char *command,
3802 struct ui_file *output)
3803{
3804 error (_("\"monitor\" command not supported by this target."));
3805}
3806
3807static void
3808do_monitor_command (char *cmd,
3809 int from_tty)
3810{
3811 target_rcmd (cmd, gdb_stdtarg);
3812}
3813
3814/* Print the name of each layers of our target stack. */
3815
3816static void
3817maintenance_print_target_stack (char *cmd, int from_tty)
3818{
3819 struct target_ops *t;
3820
3821 printf_filtered (_("The current target stack is:\n"));
3822
3823 for (t = target_stack; t != NULL; t = t->beneath)
3824 {
3825 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3826 }
3827}
3828
3829/* See target.h. */
3830
3831void
3832target_async (int enable)
3833{
3834 infrun_async (enable);
3835 current_target.to_async (&current_target, enable);
3836}
3837
3838/* Controls if targets can report that they can/are async. This is
3839 just for maintainers to use when debugging gdb. */
3840int target_async_permitted = 1;
3841
3842/* The set command writes to this variable. If the inferior is
3843 executing, target_async_permitted is *not* updated. */
3844static int target_async_permitted_1 = 1;
3845
3846static void
3847maint_set_target_async_command (char *args, int from_tty,
3848 struct cmd_list_element *c)
3849{
3850 if (have_live_inferiors ())
3851 {
3852 target_async_permitted_1 = target_async_permitted;
3853 error (_("Cannot change this setting while the inferior is running."));
3854 }
3855
3856 target_async_permitted = target_async_permitted_1;
3857}
3858
3859static void
3860maint_show_target_async_command (struct ui_file *file, int from_tty,
3861 struct cmd_list_element *c,
3862 const char *value)
3863{
3864 fprintf_filtered (file,
3865 _("Controlling the inferior in "
3866 "asynchronous mode is %s.\n"), value);
3867}
3868
3869/* Return true if the target operates in non-stop mode even with "set
3870 non-stop off". */
3871
3872static int
3873target_always_non_stop_p (void)
3874{
3875 return current_target.to_always_non_stop_p (&current_target);
3876}
3877
3878/* See target.h. */
3879
3880int
3881target_is_non_stop_p (void)
3882{
3883 return (non_stop
3884 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3885 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3886 && target_always_non_stop_p ()));
3887}
3888
3889/* Controls if targets can report that they always run in non-stop
3890 mode. This is just for maintainers to use when debugging gdb. */
3891enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3892
3893/* The set command writes to this variable. If the inferior is
3894 executing, target_non_stop_enabled is *not* updated. */
3895static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3896
3897/* Implementation of "maint set target-non-stop". */
3898
3899static void
3900maint_set_target_non_stop_command (char *args, int from_tty,
3901 struct cmd_list_element *c)
3902{
3903 if (have_live_inferiors ())
3904 {
3905 target_non_stop_enabled_1 = target_non_stop_enabled;
3906 error (_("Cannot change this setting while the inferior is running."));
3907 }
3908
3909 target_non_stop_enabled = target_non_stop_enabled_1;
3910}
3911
3912/* Implementation of "maint show target-non-stop". */
3913
3914static void
3915maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3916 struct cmd_list_element *c,
3917 const char *value)
3918{
3919 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3920 fprintf_filtered (file,
3921 _("Whether the target is always in non-stop mode "
3922 "is %s (currently %s).\n"), value,
3923 target_always_non_stop_p () ? "on" : "off");
3924 else
3925 fprintf_filtered (file,
3926 _("Whether the target is always in non-stop mode "
3927 "is %s.\n"), value);
3928}
3929
3930/* Temporary copies of permission settings. */
3931
3932static int may_write_registers_1 = 1;
3933static int may_write_memory_1 = 1;
3934static int may_insert_breakpoints_1 = 1;
3935static int may_insert_tracepoints_1 = 1;
3936static int may_insert_fast_tracepoints_1 = 1;
3937static int may_stop_1 = 1;
3938
3939/* Make the user-set values match the real values again. */
3940
3941void
3942update_target_permissions (void)
3943{
3944 may_write_registers_1 = may_write_registers;
3945 may_write_memory_1 = may_write_memory;
3946 may_insert_breakpoints_1 = may_insert_breakpoints;
3947 may_insert_tracepoints_1 = may_insert_tracepoints;
3948 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3949 may_stop_1 = may_stop;
3950}
3951
3952/* The one function handles (most of) the permission flags in the same
3953 way. */
3954
3955static void
3956set_target_permissions (char *args, int from_tty,
3957 struct cmd_list_element *c)
3958{
3959 if (target_has_execution)
3960 {
3961 update_target_permissions ();
3962 error (_("Cannot change this setting while the inferior is running."));
3963 }
3964
3965 /* Make the real values match the user-changed values. */
3966 may_write_registers = may_write_registers_1;
3967 may_insert_breakpoints = may_insert_breakpoints_1;
3968 may_insert_tracepoints = may_insert_tracepoints_1;
3969 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3970 may_stop = may_stop_1;
3971 update_observer_mode ();
3972}
3973
3974/* Set memory write permission independently of observer mode. */
3975
3976static void
3977set_write_memory_permission (char *args, int from_tty,
3978 struct cmd_list_element *c)
3979{
3980 /* Make the real values match the user-changed values. */
3981 may_write_memory = may_write_memory_1;
3982 update_observer_mode ();
3983}
3984
3985
3986void
3987initialize_targets (void)
3988{
3989 init_dummy_target ();
3990 push_target (&dummy_target);
3991
3992 add_info ("target", target_info, targ_desc);
3993 add_info ("files", target_info, targ_desc);
3994
3995 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3996Set target debugging."), _("\
3997Show target debugging."), _("\
3998When non-zero, target debugging is enabled. Higher numbers are more\n\
3999verbose."),
4000 set_targetdebug,
4001 show_targetdebug,
4002 &setdebuglist, &showdebuglist);
4003
4004 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4005 &trust_readonly, _("\
4006Set mode for reading from readonly sections."), _("\
4007Show mode for reading from readonly sections."), _("\
4008When this mode is on, memory reads from readonly sections (such as .text)\n\
4009will be read from the object file instead of from the target. This will\n\
4010result in significant performance improvement for remote targets."),
4011 NULL,
4012 show_trust_readonly,
4013 &setlist, &showlist);
4014
4015 add_com ("monitor", class_obscure, do_monitor_command,
4016 _("Send a command to the remote monitor (remote targets only)."));
4017
4018 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4019 _("Print the name of each layer of the internal target stack."),
4020 &maintenanceprintlist);
4021
4022 add_setshow_boolean_cmd ("target-async", no_class,
4023 &target_async_permitted_1, _("\
4024Set whether gdb controls the inferior in asynchronous mode."), _("\
4025Show whether gdb controls the inferior in asynchronous mode."), _("\
4026Tells gdb whether to control the inferior in asynchronous mode."),
4027 maint_set_target_async_command,
4028 maint_show_target_async_command,
4029 &maintenance_set_cmdlist,
4030 &maintenance_show_cmdlist);
4031
4032 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4033 &target_non_stop_enabled_1, _("\
4034Set whether gdb always controls the inferior in non-stop mode."), _("\
4035Show whether gdb always controls the inferior in non-stop mode."), _("\
4036Tells gdb whether to control the inferior in non-stop mode."),
4037 maint_set_target_non_stop_command,
4038 maint_show_target_non_stop_command,
4039 &maintenance_set_cmdlist,
4040 &maintenance_show_cmdlist);
4041
4042 add_setshow_boolean_cmd ("may-write-registers", class_support,
4043 &may_write_registers_1, _("\
4044Set permission to write into registers."), _("\
4045Show permission to write into registers."), _("\
4046When this permission is on, GDB may write into the target's registers.\n\
4047Otherwise, any sort of write attempt will result in an error."),
4048 set_target_permissions, NULL,
4049 &setlist, &showlist);
4050
4051 add_setshow_boolean_cmd ("may-write-memory", class_support,
4052 &may_write_memory_1, _("\
4053Set permission to write into target memory."), _("\
4054Show permission to write into target memory."), _("\
4055When this permission is on, GDB may write into the target's memory.\n\
4056Otherwise, any sort of write attempt will result in an error."),
4057 set_write_memory_permission, NULL,
4058 &setlist, &showlist);
4059
4060 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4061 &may_insert_breakpoints_1, _("\
4062Set permission to insert breakpoints in the target."), _("\
4063Show permission to insert breakpoints in the target."), _("\
4064When this permission is on, GDB may insert breakpoints in the program.\n\
4065Otherwise, any sort of insertion attempt will result in an error."),
4066 set_target_permissions, NULL,
4067 &setlist, &showlist);
4068
4069 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4070 &may_insert_tracepoints_1, _("\
4071Set permission to insert tracepoints in the target."), _("\
4072Show permission to insert tracepoints in the target."), _("\
4073When this permission is on, GDB may insert tracepoints in the program.\n\
4074Otherwise, any sort of insertion attempt will result in an error."),
4075 set_target_permissions, NULL,
4076 &setlist, &showlist);
4077
4078 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4079 &may_insert_fast_tracepoints_1, _("\
4080Set permission to insert fast tracepoints in the target."), _("\
4081Show permission to insert fast tracepoints in the target."), _("\
4082When this permission is on, GDB may insert fast tracepoints.\n\
4083Otherwise, any sort of insertion attempt will result in an error."),
4084 set_target_permissions, NULL,
4085 &setlist, &showlist);
4086
4087 add_setshow_boolean_cmd ("may-interrupt", class_support,
4088 &may_stop_1, _("\
4089Set permission to interrupt or signal the target."), _("\
4090Show permission to interrupt or signal the target."), _("\
4091When this permission is on, GDB may interrupt/stop the target's execution.\n\
4092Otherwise, any attempt to interrupt or stop will be ignored."),
4093 set_target_permissions, NULL,
4094 &setlist, &showlist);
4095
4096 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4097 &auto_connect_native_target, _("\
4098Set whether GDB may automatically connect to the native target."), _("\
4099Show whether GDB may automatically connect to the native target."), _("\
4100When on, and GDB is not connected to a target yet, GDB\n\
4101attempts \"run\" and other commands with the native target."),
4102 NULL, show_auto_connect_native_target,
4103 &setlist, &showlist);
4104}
This page took 0.034568 seconds and 4 git commands to generate.