Add self to MAINTAINERS.
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
26/* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45#include "bfd.h"
46#include "symtab.h"
47#include "dcache.h"
48#include "memattr.h"
49
50enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67/* Stuff for target_wait. */
68
69/* Generally, what has the program done? */
70enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143/* Possible types of events that the inferior handler will have to
144 deal with. */
145enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165/* Return the string for a signal. */
166extern char *target_signal_to_string (enum target_signal);
167
168/* Return the name (SIGHUP, etc.) for a signal. */
169extern char *target_signal_to_name (enum target_signal);
170
171/* Given a name (SIGHUP, etc.), return its signal. */
172enum target_signal target_signal_from_name (char *);
173\f
174
175/* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179extern int target_activity_fd;
180/* Returns zero to leave the inferior alone, one to interrupt it. */
181extern int (*target_activity_function) (void);
182\f
183struct thread_info; /* fwd decl for parameter list below: */
184
185struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
228
229#if 0
230 /* Enable this after 4.12. */
231
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
238
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
246
247#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
250#endif /* 0 */
251
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
255 int (*to_can_use_hw_breakpoint) (int, int, int);
256 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
258 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
259 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
260 int (*to_stopped_by_watchpoint) (void);
261 CORE_ADDR (*to_stopped_data_address) (void);
262 int (*to_region_size_ok_for_hw_watchpoint) (int);
263 void (*to_terminal_init) (void);
264 void (*to_terminal_inferior) (void);
265 void (*to_terminal_ours_for_output) (void);
266 void (*to_terminal_ours) (void);
267 void (*to_terminal_info) (char *, int);
268 void (*to_kill) (void);
269 void (*to_load) (char *, int);
270 int (*to_lookup_symbol) (char *, CORE_ADDR *);
271 void (*to_create_inferior) (char *, char *, char **);
272 void (*to_post_startup_inferior) (ptid_t);
273 void (*to_acknowledge_created_inferior) (int);
274 void (*to_clone_and_follow_inferior) (int, int *);
275 void (*to_post_follow_inferior_by_clone) (void);
276 int (*to_insert_fork_catchpoint) (int);
277 int (*to_remove_fork_catchpoint) (int);
278 int (*to_insert_vfork_catchpoint) (int);
279 int (*to_remove_vfork_catchpoint) (int);
280 int (*to_has_forked) (int, int *);
281 int (*to_has_vforked) (int, int *);
282 int (*to_can_follow_vfork_prior_to_exec) (void);
283 void (*to_post_follow_vfork) (int, int, int, int);
284 int (*to_insert_exec_catchpoint) (int);
285 int (*to_remove_exec_catchpoint) (int);
286 int (*to_has_execd) (int, char **);
287 int (*to_reported_exec_events_per_exec_call) (void);
288 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
289 int (*to_has_exited) (int, int, int *);
290 void (*to_mourn_inferior) (void);
291 int (*to_can_run) (void);
292 void (*to_notice_signals) (ptid_t ptid);
293 int (*to_thread_alive) (ptid_t ptid);
294 void (*to_find_new_threads) (void);
295 char *(*to_pid_to_str) (ptid_t);
296 char *(*to_extra_thread_info) (struct thread_info *);
297 void (*to_stop) (void);
298 int (*to_query) (int /*char */ , char *, char *, int *);
299 void (*to_rcmd) (char *command, struct ui_file *output);
300 struct symtab_and_line *(*to_enable_exception_callback) (enum
301 exception_event_kind,
302 int);
303 struct exception_event_record *(*to_get_current_exception_event) (void);
304 char *(*to_pid_to_exec_file) (int pid);
305 enum strata to_stratum;
306 struct target_ops
307 *DONT_USE; /* formerly to_next */
308 int to_has_all_memory;
309 int to_has_memory;
310 int to_has_stack;
311 int to_has_registers;
312 int to_has_execution;
313 int to_has_thread_control; /* control thread execution */
314 struct section_table
315 *to_sections;
316 struct section_table
317 *to_sections_end;
318 /* ASYNC target controls */
319 int (*to_can_async_p) (void);
320 int (*to_is_async_p) (void);
321 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
322 void *context);
323 int to_async_mask_value;
324 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
325 unsigned long,
326 int, int, int,
327 void *),
328 void *);
329 char * (*to_make_corefile_notes) (bfd *, int *);
330 int to_magic;
331 /* Need sub-structure for target machine related rather than comm related?
332 */
333 };
334
335/* Magic number for checking ops size. If a struct doesn't end with this
336 number, somebody changed the declaration but didn't change all the
337 places that initialize one. */
338
339#define OPS_MAGIC 3840
340
341/* The ops structure for our "current" target process. This should
342 never be NULL. If there is no target, it points to the dummy_target. */
343
344extern struct target_ops current_target;
345
346/* An item on the target stack. */
347
348struct target_stack_item
349 {
350 struct target_stack_item *next;
351 struct target_ops *target_ops;
352 };
353
354/* The target stack. */
355
356extern struct target_stack_item *target_stack;
357
358/* Define easy words for doing these operations on our current target. */
359
360#define target_shortname (current_target.to_shortname)
361#define target_longname (current_target.to_longname)
362
363/* The open routine takes the rest of the parameters from the command,
364 and (if successful) pushes a new target onto the stack.
365 Targets should supply this routine, if only to provide an error message. */
366
367#define target_open(name, from_tty) \
368 do { \
369 dcache_invalidate (target_dcache); \
370 (*current_target.to_open) (name, from_tty); \
371 } while (0)
372
373/* Does whatever cleanup is required for a target that we are no longer
374 going to be calling. Argument says whether we are quitting gdb and
375 should not get hung in case of errors, or whether we want a clean
376 termination even if it takes a while. This routine is automatically
377 always called just before a routine is popped off the target stack.
378 Closing file descriptors and freeing memory are typical things it should
379 do. */
380
381#define target_close(quitting) \
382 (*current_target.to_close) (quitting)
383
384/* Attaches to a process on the target side. Arguments are as passed
385 to the `attach' command by the user. This routine can be called
386 when the target is not on the target-stack, if the target_can_run
387 routine returns 1; in that case, it must push itself onto the stack.
388 Upon exit, the target should be ready for normal operations, and
389 should be ready to deliver the status of the process immediately
390 (without waiting) to an upcoming target_wait call. */
391
392#define target_attach(args, from_tty) \
393 (*current_target.to_attach) (args, from_tty)
394
395/* The target_attach operation places a process under debugger control,
396 and stops the process.
397
398 This operation provides a target-specific hook that allows the
399 necessary bookkeeping to be performed after an attach completes. */
400#define target_post_attach(pid) \
401 (*current_target.to_post_attach) (pid)
402
403/* Attaches to a process on the target side, if not already attached.
404 (If already attached, takes no action.)
405
406 This operation can be used to follow the child process of a fork.
407 On some targets, such child processes of an original inferior process
408 are automatically under debugger control, and thus do not require an
409 actual attach operation. */
410
411#define target_require_attach(args, from_tty) \
412 (*current_target.to_require_attach) (args, from_tty)
413
414/* Takes a program previously attached to and detaches it.
415 The program may resume execution (some targets do, some don't) and will
416 no longer stop on signals, etc. We better not have left any breakpoints
417 in the program or it'll die when it hits one. ARGS is arguments
418 typed by the user (e.g. a signal to send the process). FROM_TTY
419 says whether to be verbose or not. */
420
421extern void target_detach (char *, int);
422
423/* Detaches from a process on the target side, if not already dettached.
424 (If already detached, takes no action.)
425
426 This operation can be used to follow the parent process of a fork.
427 On some targets, such child processes of an original inferior process
428 are automatically under debugger control, and thus do require an actual
429 detach operation.
430
431 PID is the process id of the child to detach from.
432 ARGS is arguments typed by the user (e.g. a signal to send the process).
433 FROM_TTY says whether to be verbose or not. */
434
435#define target_require_detach(pid, args, from_tty) \
436 (*current_target.to_require_detach) (pid, args, from_tty)
437
438/* Resume execution of the target process PTID. STEP says whether to
439 single-step or to run free; SIGGNAL is the signal to be given to
440 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
441 pass TARGET_SIGNAL_DEFAULT. */
442
443#define target_resume(ptid, step, siggnal) \
444 do { \
445 dcache_invalidate(target_dcache); \
446 (*current_target.to_resume) (ptid, step, siggnal); \
447 } while (0)
448
449/* Wait for process pid to do something. PTID = -1 to wait for any
450 pid to do something. Return pid of child, or -1 in case of error;
451 store status through argument pointer STATUS. Note that it is
452 _NOT_ OK to throw_exception() out of target_wait() without popping
453 the debugging target from the stack; GDB isn't prepared to get back
454 to the prompt with a debugging target but without the frame cache,
455 stop_pc, etc., set up. */
456
457#define target_wait(ptid, status) \
458 (*current_target.to_wait) (ptid, status)
459
460/* The target_wait operation waits for a process event to occur, and
461 thereby stop the process.
462
463 On some targets, certain events may happen in sequences. gdb's
464 correct response to any single event of such a sequence may require
465 knowledge of what earlier events in the sequence have been seen.
466
467 This operation provides a target-specific hook that allows the
468 necessary bookkeeping to be performed to track such sequences. */
469
470#define target_post_wait(ptid, status) \
471 (*current_target.to_post_wait) (ptid, status)
472
473/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
474
475#define target_fetch_registers(regno) \
476 (*current_target.to_fetch_registers) (regno)
477
478/* Store at least register REGNO, or all regs if REGNO == -1.
479 It can store as many registers as it wants to, so target_prepare_to_store
480 must have been previously called. Calls error() if there are problems. */
481
482#define target_store_registers(regs) \
483 (*current_target.to_store_registers) (regs)
484
485/* Get ready to modify the registers array. On machines which store
486 individual registers, this doesn't need to do anything. On machines
487 which store all the registers in one fell swoop, this makes sure
488 that REGISTERS contains all the registers from the program being
489 debugged. */
490
491#define target_prepare_to_store() \
492 (*current_target.to_prepare_to_store) ()
493
494extern DCACHE *target_dcache;
495
496extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
497 struct mem_attrib *attrib);
498
499extern int target_read_string (CORE_ADDR, char **, int, int *);
500
501extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
502
503extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
504
505extern int xfer_memory (CORE_ADDR, char *, int, int,
506 struct mem_attrib *, struct target_ops *);
507
508extern int child_xfer_memory (CORE_ADDR, char *, int, int,
509 struct mem_attrib *, struct target_ops *);
510
511/* Make a single attempt at transfering LEN bytes. On a successful
512 transfer, the number of bytes actually transfered is returned and
513 ERR is set to 0. When a transfer fails, -1 is returned (the number
514 of bytes actually transfered is not defined) and ERR is set to a
515 non-zero error indication. */
516
517extern int
518target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
519
520extern int
521target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
522
523extern char *child_pid_to_exec_file (int);
524
525extern char *child_core_file_to_sym_file (char *);
526
527#if defined(CHILD_POST_ATTACH)
528extern void child_post_attach (int);
529#endif
530
531extern void child_post_wait (ptid_t, int);
532
533extern void child_post_startup_inferior (ptid_t);
534
535extern void child_acknowledge_created_inferior (int);
536
537extern void child_clone_and_follow_inferior (int, int *);
538
539extern void child_post_follow_inferior_by_clone (void);
540
541extern int child_insert_fork_catchpoint (int);
542
543extern int child_remove_fork_catchpoint (int);
544
545extern int child_insert_vfork_catchpoint (int);
546
547extern int child_remove_vfork_catchpoint (int);
548
549extern int child_has_forked (int, int *);
550
551extern int child_has_vforked (int, int *);
552
553extern void child_acknowledge_created_inferior (int);
554
555extern int child_can_follow_vfork_prior_to_exec (void);
556
557extern void child_post_follow_vfork (int, int, int, int);
558
559extern int child_insert_exec_catchpoint (int);
560
561extern int child_remove_exec_catchpoint (int);
562
563extern int child_has_execd (int, char **);
564
565extern int child_reported_exec_events_per_exec_call (void);
566
567extern int child_has_syscall_event (int, enum target_waitkind *, int *);
568
569extern int child_has_exited (int, int, int *);
570
571extern int child_thread_alive (ptid_t);
572
573/* From exec.c */
574
575extern void print_section_info (struct target_ops *, bfd *);
576
577/* Print a line about the current target. */
578
579#define target_files_info() \
580 (*current_target.to_files_info) (&current_target)
581
582/* Insert a breakpoint at address ADDR in the target machine.
583 SAVE is a pointer to memory allocated for saving the
584 target contents. It is guaranteed by the caller to be long enough
585 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
586 an errno value. */
587
588#define target_insert_breakpoint(addr, save) \
589 (*current_target.to_insert_breakpoint) (addr, save)
590
591/* Remove a breakpoint at address ADDR in the target machine.
592 SAVE is a pointer to the same save area
593 that was previously passed to target_insert_breakpoint.
594 Result is 0 for success, or an errno value. */
595
596#define target_remove_breakpoint(addr, save) \
597 (*current_target.to_remove_breakpoint) (addr, save)
598
599/* Initialize the terminal settings we record for the inferior,
600 before we actually run the inferior. */
601
602#define target_terminal_init() \
603 (*current_target.to_terminal_init) ()
604
605/* Put the inferior's terminal settings into effect.
606 This is preparation for starting or resuming the inferior. */
607
608#define target_terminal_inferior() \
609 (*current_target.to_terminal_inferior) ()
610
611/* Put some of our terminal settings into effect,
612 enough to get proper results from our output,
613 but do not change into or out of RAW mode
614 so that no input is discarded.
615
616 After doing this, either terminal_ours or terminal_inferior
617 should be called to get back to a normal state of affairs. */
618
619#define target_terminal_ours_for_output() \
620 (*current_target.to_terminal_ours_for_output) ()
621
622/* Put our terminal settings into effect.
623 First record the inferior's terminal settings
624 so they can be restored properly later. */
625
626#define target_terminal_ours() \
627 (*current_target.to_terminal_ours) ()
628
629/* Print useful information about our terminal status, if such a thing
630 exists. */
631
632#define target_terminal_info(arg, from_tty) \
633 (*current_target.to_terminal_info) (arg, from_tty)
634
635/* Kill the inferior process. Make it go away. */
636
637#define target_kill() \
638 (*current_target.to_kill) ()
639
640/* Load an executable file into the target process. This is expected
641 to not only bring new code into the target process, but also to
642 update GDB's symbol tables to match. */
643
644extern void target_load (char *arg, int from_tty);
645
646/* Look up a symbol in the target's symbol table. NAME is the symbol
647 name. ADDRP is a CORE_ADDR * pointing to where the value of the
648 symbol should be returned. The result is 0 if successful, nonzero
649 if the symbol does not exist in the target environment. This
650 function should not call error() if communication with the target
651 is interrupted, since it is called from symbol reading, but should
652 return nonzero, possibly doing a complain(). */
653
654#define target_lookup_symbol(name, addrp) \
655 (*current_target.to_lookup_symbol) (name, addrp)
656
657/* Start an inferior process and set inferior_ptid to its pid.
658 EXEC_FILE is the file to run.
659 ALLARGS is a string containing the arguments to the program.
660 ENV is the environment vector to pass. Errors reported with error().
661 On VxWorks and various standalone systems, we ignore exec_file. */
662
663#define target_create_inferior(exec_file, args, env) \
664 (*current_target.to_create_inferior) (exec_file, args, env)
665
666
667/* Some targets (such as ttrace-based HPUX) don't allow us to request
668 notification of inferior events such as fork and vork immediately
669 after the inferior is created. (This because of how gdb gets an
670 inferior created via invoking a shell to do it. In such a scenario,
671 if the shell init file has commands in it, the shell will fork and
672 exec for each of those commands, and we will see each such fork
673 event. Very bad.)
674
675 Such targets will supply an appropriate definition for this function. */
676
677#define target_post_startup_inferior(ptid) \
678 (*current_target.to_post_startup_inferior) (ptid)
679
680/* On some targets, the sequence of starting up an inferior requires
681 some synchronization between gdb and the new inferior process, PID. */
682
683#define target_acknowledge_created_inferior(pid) \
684 (*current_target.to_acknowledge_created_inferior) (pid)
685
686/* An inferior process has been created via a fork() or similar
687 system call. This function will clone the debugger, then ensure
688 that CHILD_PID is attached to by that debugger.
689
690 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
691 and FALSE otherwise. (The original and clone debuggers can use this
692 to determine which they are, if need be.)
693
694 (This is not a terribly useful feature without a GUI to prevent
695 the two debuggers from competing for shell input.) */
696
697#define target_clone_and_follow_inferior(child_pid,followed_child) \
698 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
699
700/* This operation is intended to be used as the last in a sequence of
701 steps taken when following both parent and child of a fork. This
702 is used by a clone of the debugger, which will follow the child.
703
704 The original debugger has detached from this process, and the
705 clone has attached to it.
706
707 On some targets, this requires a bit of cleanup to make it work
708 correctly. */
709
710#define target_post_follow_inferior_by_clone() \
711 (*current_target.to_post_follow_inferior_by_clone) ()
712
713/* On some targets, we can catch an inferior fork or vfork event when
714 it occurs. These functions insert/remove an already-created
715 catchpoint for such events. */
716
717#define target_insert_fork_catchpoint(pid) \
718 (*current_target.to_insert_fork_catchpoint) (pid)
719
720#define target_remove_fork_catchpoint(pid) \
721 (*current_target.to_remove_fork_catchpoint) (pid)
722
723#define target_insert_vfork_catchpoint(pid) \
724 (*current_target.to_insert_vfork_catchpoint) (pid)
725
726#define target_remove_vfork_catchpoint(pid) \
727 (*current_target.to_remove_vfork_catchpoint) (pid)
728
729/* Returns TRUE if PID has invoked the fork() system call. And,
730 also sets CHILD_PID to the process id of the other ("child")
731 inferior process that was created by that call. */
732
733#define target_has_forked(pid,child_pid) \
734 (*current_target.to_has_forked) (pid,child_pid)
735
736/* Returns TRUE if PID has invoked the vfork() system call. And,
737 also sets CHILD_PID to the process id of the other ("child")
738 inferior process that was created by that call. */
739
740#define target_has_vforked(pid,child_pid) \
741 (*current_target.to_has_vforked) (pid,child_pid)
742
743/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
744 anything to a vforked child before it subsequently calls exec().
745 On such platforms, we say that the debugger cannot "follow" the
746 child until it has vforked.
747
748 This function should be defined to return 1 by those targets
749 which can allow the debugger to immediately follow a vforked
750 child, and 0 if they cannot. */
751
752#define target_can_follow_vfork_prior_to_exec() \
753 (*current_target.to_can_follow_vfork_prior_to_exec) ()
754
755/* An inferior process has been created via a vfork() system call.
756 The debugger has followed the parent, the child, or both. The
757 process of setting up for that follow may have required some
758 target-specific trickery to track the sequence of reported events.
759 If so, this function should be defined by those targets that
760 require the debugger to perform cleanup or initialization after
761 the vfork follow. */
762
763#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
764 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
765
766/* On some targets, we can catch an inferior exec event when it
767 occurs. These functions insert/remove an already-created
768 catchpoint for such events. */
769
770#define target_insert_exec_catchpoint(pid) \
771 (*current_target.to_insert_exec_catchpoint) (pid)
772
773#define target_remove_exec_catchpoint(pid) \
774 (*current_target.to_remove_exec_catchpoint) (pid)
775
776/* Returns TRUE if PID has invoked a flavor of the exec() system call.
777 And, also sets EXECD_PATHNAME to the pathname of the executable
778 file that was passed to exec(), and is now being executed. */
779
780#define target_has_execd(pid,execd_pathname) \
781 (*current_target.to_has_execd) (pid,execd_pathname)
782
783/* Returns the number of exec events that are reported when a process
784 invokes a flavor of the exec() system call on this target, if exec
785 events are being reported. */
786
787#define target_reported_exec_events_per_exec_call() \
788 (*current_target.to_reported_exec_events_per_exec_call) ()
789
790/* Returns TRUE if PID has reported a syscall event. And, also sets
791 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
792 the unique integer ID of the syscall. */
793
794#define target_has_syscall_event(pid,kind,syscall_id) \
795 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
796
797/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
798 exit code of PID, if any. */
799
800#define target_has_exited(pid,wait_status,exit_status) \
801 (*current_target.to_has_exited) (pid,wait_status,exit_status)
802
803/* The debugger has completed a blocking wait() call. There is now
804 some process event that must be processed. This function should
805 be defined by those targets that require the debugger to perform
806 cleanup or internal state changes in response to the process event. */
807
808/* The inferior process has died. Do what is right. */
809
810#define target_mourn_inferior() \
811 (*current_target.to_mourn_inferior) ()
812
813/* Does target have enough data to do a run or attach command? */
814
815#define target_can_run(t) \
816 ((t)->to_can_run) ()
817
818/* post process changes to signal handling in the inferior. */
819
820#define target_notice_signals(ptid) \
821 (*current_target.to_notice_signals) (ptid)
822
823/* Check to see if a thread is still alive. */
824
825#define target_thread_alive(ptid) \
826 (*current_target.to_thread_alive) (ptid)
827
828/* Query for new threads and add them to the thread list. */
829
830#define target_find_new_threads() \
831 (*current_target.to_find_new_threads) (); \
832
833/* Make target stop in a continuable fashion. (For instance, under
834 Unix, this should act like SIGSTOP). This function is normally
835 used by GUIs to implement a stop button. */
836
837#define target_stop current_target.to_stop
838
839/* Queries the target side for some information. The first argument is a
840 letter specifying the type of the query, which is used to determine who
841 should process it. The second argument is a string that specifies which
842 information is desired and the third is a buffer that carries back the
843 response from the target side. The fourth parameter is the size of the
844 output buffer supplied. */
845
846#define target_query(query_type, query, resp_buffer, bufffer_size) \
847 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
848
849/* Send the specified COMMAND to the target's monitor
850 (shell,interpreter) for execution. The result of the query is
851 placed in OUTBUF. */
852
853#define target_rcmd(command, outbuf) \
854 (*current_target.to_rcmd) (command, outbuf)
855
856
857/* Get the symbol information for a breakpointable routine called when
858 an exception event occurs.
859 Intended mainly for C++, and for those
860 platforms/implementations where such a callback mechanism is available,
861 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
862 different mechanisms for debugging exceptions. */
863
864#define target_enable_exception_callback(kind, enable) \
865 (*current_target.to_enable_exception_callback) (kind, enable)
866
867/* Get the current exception event kind -- throw or catch, etc. */
868
869#define target_get_current_exception_event() \
870 (*current_target.to_get_current_exception_event) ()
871
872/* Pointer to next target in the chain, e.g. a core file and an exec file. */
873
874#define target_next \
875 (current_target.to_next)
876
877/* Does the target include all of memory, or only part of it? This
878 determines whether we look up the target chain for other parts of
879 memory if this target can't satisfy a request. */
880
881#define target_has_all_memory \
882 (current_target.to_has_all_memory)
883
884/* Does the target include memory? (Dummy targets don't.) */
885
886#define target_has_memory \
887 (current_target.to_has_memory)
888
889/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
890 we start a process.) */
891
892#define target_has_stack \
893 (current_target.to_has_stack)
894
895/* Does the target have registers? (Exec files don't.) */
896
897#define target_has_registers \
898 (current_target.to_has_registers)
899
900/* Does the target have execution? Can we make it jump (through
901 hoops), or pop its stack a few times? FIXME: If this is to work that
902 way, it needs to check whether an inferior actually exists.
903 remote-udi.c and probably other targets can be the current target
904 when the inferior doesn't actually exist at the moment. Right now
905 this just tells us whether this target is *capable* of execution. */
906
907#define target_has_execution \
908 (current_target.to_has_execution)
909
910/* Can the target support the debugger control of thread execution?
911 a) Can it lock the thread scheduler?
912 b) Can it switch the currently running thread? */
913
914#define target_can_lock_scheduler \
915 (current_target.to_has_thread_control & tc_schedlock)
916
917#define target_can_switch_threads \
918 (current_target.to_has_thread_control & tc_switch)
919
920/* Can the target support asynchronous execution? */
921#define target_can_async_p() (current_target.to_can_async_p ())
922
923/* Is the target in asynchronous execution mode? */
924#define target_is_async_p() (current_target.to_is_async_p())
925
926/* Put the target in async mode with the specified callback function. */
927#define target_async(CALLBACK,CONTEXT) \
928 (current_target.to_async((CALLBACK), (CONTEXT)))
929
930/* This is to be used ONLY within run_stack_dummy(). It
931 provides a workaround, to have inferior function calls done in
932 sychronous mode, even though the target is asynchronous. After
933 target_async_mask(0) is called, calls to target_can_async_p() will
934 return FALSE , so that target_resume() will not try to start the
935 target asynchronously. After the inferior stops, we IMMEDIATELY
936 restore the previous nature of the target, by calling
937 target_async_mask(1). After that, target_can_async_p() will return
938 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
939
940 FIXME ezannoni 1999-12-13: we won't need this once we move
941 the turning async on and off to the single execution commands,
942 from where it is done currently, in remote_resume(). */
943
944#define target_async_mask_value \
945 (current_target.to_async_mask_value)
946
947extern int target_async_mask (int mask);
948
949extern void target_link (char *, CORE_ADDR *);
950
951/* Converts a process id to a string. Usually, the string just contains
952 `process xyz', but on some systems it may contain
953 `process xyz thread abc'. */
954
955#undef target_pid_to_str
956#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
957
958#ifndef target_tid_to_str
959#define target_tid_to_str(PID) \
960 target_pid_to_str (PID)
961extern char *normal_pid_to_str (ptid_t ptid);
962#endif
963
964/* Return a short string describing extra information about PID,
965 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
966 is okay. */
967
968#define target_extra_thread_info(TP) \
969 (current_target.to_extra_thread_info (TP))
970
971/*
972 * New Objfile Event Hook:
973 *
974 * Sometimes a GDB component wants to get notified whenever a new
975 * objfile is loaded. Mainly this is used by thread-debugging
976 * implementations that need to know when symbols for the target
977 * thread implemenation are available.
978 *
979 * The old way of doing this is to define a macro 'target_new_objfile'
980 * that points to the function that you want to be called on every
981 * objfile/shlib load.
982 *
983 * The new way is to grab the function pointer, 'target_new_objfile_hook',
984 * and point it to the function that you want to be called on every
985 * objfile/shlib load.
986 *
987 * If multiple clients are willing to be cooperative, they can each
988 * save a pointer to the previous value of target_new_objfile_hook
989 * before modifying it, and arrange for their function to call the
990 * previous function in the chain. In that way, multiple clients
991 * can receive this notification (something like with signal handlers).
992 */
993
994extern void (*target_new_objfile_hook) (struct objfile *);
995
996#ifndef target_pid_or_tid_to_str
997#define target_pid_or_tid_to_str(ID) \
998 target_pid_to_str (ID)
999#endif
1000
1001/* Attempts to find the pathname of the executable file
1002 that was run to create a specified process.
1003
1004 The process PID must be stopped when this operation is used.
1005
1006 If the executable file cannot be determined, NULL is returned.
1007
1008 Else, a pointer to a character string containing the pathname
1009 is returned. This string should be copied into a buffer by
1010 the client if the string will not be immediately used, or if
1011 it must persist. */
1012
1013#define target_pid_to_exec_file(pid) \
1014 (current_target.to_pid_to_exec_file) (pid)
1015
1016/*
1017 * Iterator function for target memory regions.
1018 * Calls a callback function once for each memory region 'mapped'
1019 * in the child process. Defined as a simple macro rather than
1020 * as a function macro so that it can be tested for nullity.
1021 */
1022
1023#define target_find_memory_regions(FUNC, DATA) \
1024 (current_target.to_find_memory_regions) (FUNC, DATA)
1025
1026/*
1027 * Compose corefile .note section.
1028 */
1029
1030#define target_make_corefile_notes(BFD, SIZE_P) \
1031 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1032
1033/* Hook to call target-dependent code after reading in a new symbol table. */
1034
1035#ifndef TARGET_SYMFILE_POSTREAD
1036#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1037#endif
1038
1039/* Hook to call target dependent code just after inferior target process has
1040 started. */
1041
1042#ifndef TARGET_CREATE_INFERIOR_HOOK
1043#define TARGET_CREATE_INFERIOR_HOOK(PID)
1044#endif
1045
1046/* Hardware watchpoint interfaces. */
1047
1048/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1049 write). */
1050
1051#ifndef STOPPED_BY_WATCHPOINT
1052#define STOPPED_BY_WATCHPOINT(w) \
1053 (*current_target.to_stopped_by_watchpoint) ()
1054#endif
1055
1056/* HP-UX supplies these operations, which respectively disable and enable
1057 the memory page-protections that are used to implement hardware watchpoints
1058 on that platform. See wait_for_inferior's use of these. */
1059
1060#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1061#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1062#endif
1063
1064#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1065#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1066#endif
1067
1068/* Provide defaults for hardware watchpoint functions. */
1069
1070/* If the *_hw_beakpoint functions have not been defined
1071 elsewhere use the definitions in the target vector. */
1072
1073/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1074 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1075 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1076 (including this one?). OTHERTYPE is who knows what... */
1077
1078#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1079#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1080 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1081#endif
1082
1083#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1084#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1085 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1086#endif
1087
1088
1089/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1090 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1091 success, non-zero for failure. */
1092
1093#ifndef target_insert_watchpoint
1094#define target_insert_watchpoint(addr, len, type) \
1095 (*current_target.to_insert_watchpoint) (addr, len, type)
1096
1097#define target_remove_watchpoint(addr, len, type) \
1098 (*current_target.to_remove_watchpoint) (addr, len, type)
1099#endif
1100
1101#ifndef target_insert_hw_breakpoint
1102#define target_insert_hw_breakpoint(addr, save) \
1103 (*current_target.to_insert_hw_breakpoint) (addr, save)
1104
1105#define target_remove_hw_breakpoint(addr, save) \
1106 (*current_target.to_remove_hw_breakpoint) (addr, save)
1107#endif
1108
1109#ifndef target_stopped_data_address
1110#define target_stopped_data_address() \
1111 (*current_target.to_stopped_data_address) ()
1112#endif
1113
1114/* If defined, then we need to decr pc by this much after a hardware break-
1115 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1116
1117#ifndef DECR_PC_AFTER_HW_BREAK
1118#define DECR_PC_AFTER_HW_BREAK 0
1119#endif
1120
1121/* Sometimes gdb may pick up what appears to be a valid target address
1122 from a minimal symbol, but the value really means, essentially,
1123 "This is an index into a table which is populated when the inferior
1124 is run. Therefore, do not attempt to use this as a PC." */
1125
1126#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1127#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1128#endif
1129
1130/* This will only be defined by a target that supports catching vfork events,
1131 such as HP-UX.
1132
1133 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1134 child process after it has exec'd, causes the parent process to resume as
1135 well. To prevent the parent from running spontaneously, such targets should
1136 define this to a function that prevents that from happening. */
1137#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1138#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1139#endif
1140
1141/* This will only be defined by a target that supports catching vfork events,
1142 such as HP-UX.
1143
1144 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1145 process must be resumed when it delivers its exec event, before the parent
1146 vfork event will be delivered to us. */
1147
1148#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1149#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1150#endif
1151
1152/* Routines for maintenance of the target structures...
1153
1154 add_target: Add a target to the list of all possible targets.
1155
1156 push_target: Make this target the top of the stack of currently used
1157 targets, within its particular stratum of the stack. Result
1158 is 0 if now atop the stack, nonzero if not on top (maybe
1159 should warn user).
1160
1161 unpush_target: Remove this from the stack of currently used targets,
1162 no matter where it is on the list. Returns 0 if no
1163 change, 1 if removed from stack.
1164
1165 pop_target: Remove the top thing on the stack of current targets. */
1166
1167extern void add_target (struct target_ops *);
1168
1169extern int push_target (struct target_ops *);
1170
1171extern int unpush_target (struct target_ops *);
1172
1173extern void target_preopen (int);
1174
1175extern void pop_target (void);
1176
1177/* Struct section_table maps address ranges to file sections. It is
1178 mostly used with BFD files, but can be used without (e.g. for handling
1179 raw disks, or files not in formats handled by BFD). */
1180
1181struct section_table
1182 {
1183 CORE_ADDR addr; /* Lowest address in section */
1184 CORE_ADDR endaddr; /* 1+highest address in section */
1185
1186 sec_ptr the_bfd_section;
1187
1188 bfd *bfd; /* BFD file pointer */
1189 };
1190
1191/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1192 Returns 0 if OK, 1 on error. */
1193
1194extern int
1195build_section_table (bfd *, struct section_table **, struct section_table **);
1196
1197/* From mem-break.c */
1198
1199extern int memory_remove_breakpoint (CORE_ADDR, char *);
1200
1201extern int memory_insert_breakpoint (CORE_ADDR, char *);
1202
1203extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1204
1205extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1206
1207extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1208 int *lenptr);
1209
1210
1211/* From target.c */
1212
1213extern void initialize_targets (void);
1214
1215extern void noprocess (void);
1216
1217extern void find_default_attach (char *, int);
1218
1219extern void find_default_require_attach (char *, int);
1220
1221extern void find_default_require_detach (int, char *, int);
1222
1223extern void find_default_create_inferior (char *, char *, char **);
1224
1225extern void find_default_clone_and_follow_inferior (int, int *);
1226
1227extern struct target_ops *find_run_target (void);
1228
1229extern struct target_ops *find_core_target (void);
1230
1231extern struct target_ops *find_target_beneath (struct target_ops *);
1232
1233extern int
1234target_resize_to_sections (struct target_ops *target, int num_added);
1235
1236extern void remove_target_sections (bfd *abfd);
1237
1238\f
1239/* Stuff that should be shared among the various remote targets. */
1240
1241/* Debugging level. 0 is off, and non-zero values mean to print some debug
1242 information (higher values, more information). */
1243extern int remote_debug;
1244
1245/* Speed in bits per second, or -1 which means don't mess with the speed. */
1246extern int baud_rate;
1247/* Timeout limit for response from target. */
1248extern int remote_timeout;
1249
1250\f
1251/* Functions for helping to write a native target. */
1252
1253/* This is for native targets which use a unix/POSIX-style waitstatus. */
1254extern void store_waitstatus (struct target_waitstatus *, int);
1255
1256/* Predicate to target_signal_to_host(). Return non-zero if the enum
1257 targ_signal SIGNO has an equivalent ``host'' representation. */
1258/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1259 to the shorter target_signal_p() because it is far less ambigious.
1260 In this context ``target_signal'' refers to GDB's internal
1261 representation of the target's set of signals while ``host signal''
1262 refers to the target operating system's signal. Confused? */
1263
1264extern int target_signal_to_host_p (enum target_signal signo);
1265
1266/* Convert between host signal numbers and enum target_signal's.
1267 target_signal_to_host() returns 0 and prints a warning() on GDB's
1268 console if SIGNO has no equivalent host representation. */
1269/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1270 refering to the target operating system's signal numbering.
1271 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1272 gdb_signal'' would probably be better as it is refering to GDB's
1273 internal representation of a target operating system's signal. */
1274
1275extern enum target_signal target_signal_from_host (int);
1276extern int target_signal_to_host (enum target_signal);
1277
1278/* Convert from a number used in a GDB command to an enum target_signal. */
1279extern enum target_signal target_signal_from_command (int);
1280
1281/* Any target can call this to switch to remote protocol (in remote.c). */
1282extern void push_remote_target (char *name, int from_tty);
1283\f
1284/* Imported from machine dependent code */
1285
1286/* Blank target vector entries are initialized to target_ignore. */
1287void target_ignore (void);
1288
1289#endif /* !defined (TARGET_H) */
This page took 0.043917 seconds and 4 git commands to generate.