2011-03-07 Yao Qi <yao@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
27struct objfile;
28struct ui_file;
29struct mem_attrib;
30struct target_ops;
31struct bp_target_info;
32struct regcache;
33struct target_section_table;
34struct trace_state_variable;
35struct trace_status;
36struct uploaded_tsv;
37struct uploaded_tp;
38struct static_tracepoint_marker;
39struct traceframe_info;
40struct expression;
41
42/* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61#include "bfd.h"
62#include "symtab.h"
63#include "memattr.h"
64#include "vec.h"
65#include "gdb_signals.h"
66
67enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83/* Stuff for target_wait. */
84
85/* Generally, what has the program done? */
86enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173/* Options that can be passed to target_wait. */
174
175/* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178#define TARGET_WNOHANG 1
179
180/* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195/* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199/* Possible types of events that the inferior handler will have to
200 deal with. */
201enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220\f
221/* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224enum target_object
225{
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Traceframe info, in XML format. */
279 TARGET_OBJECT_TRACEFRAME_INFO,
280 /* Possible future objects: TARGET_OBJECT_FILE, ... */
281};
282
283/* Enumeration of the kinds of traceframe searches that a target may
284 be able to perform. */
285
286enum trace_find_type
287 {
288 tfind_number,
289 tfind_pc,
290 tfind_tp,
291 tfind_range,
292 tfind_outside,
293 };
294
295typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
296DEF_VEC_P(static_tracepoint_marker_p);
297
298/* Request that OPS transfer up to LEN 8-bit bytes of the target's
299 OBJECT. The OFFSET, for a seekable object, specifies the
300 starting point. The ANNEX can be used to provide additional
301 data-specific information to the target.
302
303 Return the number of bytes actually transfered, or -1 if the
304 transfer is not supported or otherwise fails. Return of a positive
305 value less than LEN indicates that no further transfer is possible.
306 Unlike the raw to_xfer_partial interface, callers of these
307 functions do not need to retry partial transfers. */
308
309extern LONGEST target_read (struct target_ops *ops,
310 enum target_object object,
311 const char *annex, gdb_byte *buf,
312 ULONGEST offset, LONGEST len);
313
314struct memory_read_result
315 {
316 /* First address that was read. */
317 ULONGEST begin;
318 /* Past-the-end address. */
319 ULONGEST end;
320 /* The data. */
321 gdb_byte *data;
322};
323typedef struct memory_read_result memory_read_result_s;
324DEF_VEC_O(memory_read_result_s);
325
326extern void free_memory_read_result_vector (void *);
327
328extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
329 ULONGEST offset,
330 LONGEST len);
331
332extern LONGEST target_write (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len);
336
337/* Similar to target_write, except that it also calls PROGRESS with
338 the number of bytes written and the opaque BATON after every
339 successful partial write (and before the first write). This is
340 useful for progress reporting and user interaction while writing
341 data. To abort the transfer, the progress callback can throw an
342 exception. */
343
344LONGEST target_write_with_progress (struct target_ops *ops,
345 enum target_object object,
346 const char *annex, const gdb_byte *buf,
347 ULONGEST offset, LONGEST len,
348 void (*progress) (ULONGEST, void *),
349 void *baton);
350
351/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
352 be read using OPS. The return value will be -1 if the transfer
353 fails or is not supported; 0 if the object is empty; or the length
354 of the object otherwise. If a positive value is returned, a
355 sufficiently large buffer will be allocated using xmalloc and
356 returned in *BUF_P containing the contents of the object.
357
358 This method should be used for objects sufficiently small to store
359 in a single xmalloc'd buffer, when no fixed bound on the object's
360 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
361 through this function. */
362
363extern LONGEST target_read_alloc (struct target_ops *ops,
364 enum target_object object,
365 const char *annex, gdb_byte **buf_p);
366
367/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
368 returned as a string, allocated using xmalloc. If an error occurs
369 or the transfer is unsupported, NULL is returned. Empty objects
370 are returned as allocated but empty strings. A warning is issued
371 if the result contains any embedded NUL bytes. */
372
373extern char *target_read_stralloc (struct target_ops *ops,
374 enum target_object object,
375 const char *annex);
376
377/* Wrappers to target read/write that perform memory transfers. They
378 throw an error if the memory transfer fails.
379
380 NOTE: cagney/2003-10-23: The naming schema is lifted from
381 "frame.h". The parameter order is lifted from get_frame_memory,
382 which in turn lifted it from read_memory. */
383
384extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
385 gdb_byte *buf, LONGEST len);
386extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
387 CORE_ADDR addr, int len,
388 enum bfd_endian byte_order);
389\f
390struct thread_info; /* fwd decl for parameter list below: */
391
392struct target_ops
393 {
394 struct target_ops *beneath; /* To the target under this one. */
395 char *to_shortname; /* Name this target type */
396 char *to_longname; /* Name for printing */
397 char *to_doc; /* Documentation. Does not include trailing
398 newline, and starts with a one-line descrip-
399 tion (probably similar to to_longname). */
400 /* Per-target scratch pad. */
401 void *to_data;
402 /* The open routine takes the rest of the parameters from the
403 command, and (if successful) pushes a new target onto the
404 stack. Targets should supply this routine, if only to provide
405 an error message. */
406 void (*to_open) (char *, int);
407 /* Old targets with a static target vector provide "to_close".
408 New re-entrant targets provide "to_xclose" and that is expected
409 to xfree everything (including the "struct target_ops"). */
410 void (*to_xclose) (struct target_ops *targ, int quitting);
411 void (*to_close) (int);
412 void (*to_attach) (struct target_ops *ops, char *, int);
413 void (*to_post_attach) (int);
414 void (*to_detach) (struct target_ops *ops, char *, int);
415 void (*to_disconnect) (struct target_ops *, char *, int);
416 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
417 ptid_t (*to_wait) (struct target_ops *,
418 ptid_t, struct target_waitstatus *, int);
419 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
421 void (*to_prepare_to_store) (struct regcache *);
422
423 /* Transfer LEN bytes of memory between GDB address MYADDR and
424 target address MEMADDR. If WRITE, transfer them to the target, else
425 transfer them from the target. TARGET is the target from which we
426 get this function.
427
428 Return value, N, is one of the following:
429
430 0 means that we can't handle this. If errno has been set, it is the
431 error which prevented us from doing it (FIXME: What about bfd_error?).
432
433 positive (call it N) means that we have transferred N bytes
434 starting at MEMADDR. We might be able to handle more bytes
435 beyond this length, but no promises.
436
437 negative (call its absolute value N) means that we cannot
438 transfer right at MEMADDR, but we could transfer at least
439 something at MEMADDR + N.
440
441 NOTE: cagney/2004-10-01: This has been entirely superseeded by
442 to_xfer_partial and inferior inheritance. */
443
444 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
445 int len, int write,
446 struct mem_attrib *attrib,
447 struct target_ops *target);
448
449 void (*to_files_info) (struct target_ops *);
450 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
451 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_can_use_hw_breakpoint) (int, int, int);
453 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
454 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
455
456 /* Documentation of what the two routines below are expected to do is
457 provided with the corresponding target_* macros. */
458 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
459 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
460
461 int (*to_stopped_by_watchpoint) (void);
462 int to_have_steppable_watchpoint;
463 int to_have_continuable_watchpoint;
464 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
465 int (*to_watchpoint_addr_within_range) (struct target_ops *,
466 CORE_ADDR, CORE_ADDR, int);
467
468 /* Documentation of this routine is provided with the corresponding
469 target_* macro. */
470 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
471
472 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
473 struct expression *);
474 void (*to_terminal_init) (void);
475 void (*to_terminal_inferior) (void);
476 void (*to_terminal_ours_for_output) (void);
477 void (*to_terminal_ours) (void);
478 void (*to_terminal_save_ours) (void);
479 void (*to_terminal_info) (char *, int);
480 void (*to_kill) (struct target_ops *);
481 void (*to_load) (char *, int);
482 int (*to_lookup_symbol) (char *, CORE_ADDR *);
483 void (*to_create_inferior) (struct target_ops *,
484 char *, char *, char **, int);
485 void (*to_post_startup_inferior) (ptid_t);
486 int (*to_insert_fork_catchpoint) (int);
487 int (*to_remove_fork_catchpoint) (int);
488 int (*to_insert_vfork_catchpoint) (int);
489 int (*to_remove_vfork_catchpoint) (int);
490 int (*to_follow_fork) (struct target_ops *, int);
491 int (*to_insert_exec_catchpoint) (int);
492 int (*to_remove_exec_catchpoint) (int);
493 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
494 int (*to_has_exited) (int, int, int *);
495 void (*to_mourn_inferior) (struct target_ops *);
496 int (*to_can_run) (void);
497 void (*to_notice_signals) (ptid_t ptid);
498 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
499 void (*to_find_new_threads) (struct target_ops *);
500 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
501 char *(*to_extra_thread_info) (struct thread_info *);
502 char *(*to_thread_name) (struct thread_info *);
503 void (*to_stop) (ptid_t);
504 void (*to_rcmd) (char *command, struct ui_file *output);
505 char *(*to_pid_to_exec_file) (int pid);
506 void (*to_log_command) (const char *);
507 struct target_section_table *(*to_get_section_table) (struct target_ops *);
508 enum strata to_stratum;
509 int (*to_has_all_memory) (struct target_ops *);
510 int (*to_has_memory) (struct target_ops *);
511 int (*to_has_stack) (struct target_ops *);
512 int (*to_has_registers) (struct target_ops *);
513 int (*to_has_execution) (struct target_ops *);
514 int to_has_thread_control; /* control thread execution */
515 int to_attach_no_wait;
516 /* ASYNC target controls */
517 int (*to_can_async_p) (void);
518 int (*to_is_async_p) (void);
519 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
520 int (*to_async_mask) (int);
521 int (*to_supports_non_stop) (void);
522 /* find_memory_regions support method for gcore */
523 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
524 /* make_corefile_notes support method for gcore */
525 char * (*to_make_corefile_notes) (bfd *, int *);
526 /* get_bookmark support method for bookmarks */
527 gdb_byte * (*to_get_bookmark) (char *, int);
528 /* goto_bookmark support method for bookmarks */
529 void (*to_goto_bookmark) (gdb_byte *, int);
530 /* Return the thread-local address at OFFSET in the
531 thread-local storage for the thread PTID and the shared library
532 or executable file given by OBJFILE. If that block of
533 thread-local storage hasn't been allocated yet, this function
534 may return an error. */
535 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
536 ptid_t ptid,
537 CORE_ADDR load_module_addr,
538 CORE_ADDR offset);
539
540 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
541 OBJECT. The OFFSET, for a seekable object, specifies the
542 starting point. The ANNEX can be used to provide additional
543 data-specific information to the target.
544
545 Return the number of bytes actually transfered, zero when no
546 further transfer is possible, and -1 when the transfer is not
547 supported. Return of a positive value smaller than LEN does
548 not indicate the end of the object, only the end of the
549 transfer; higher level code should continue transferring if
550 desired. This is handled in target.c.
551
552 The interface does not support a "retry" mechanism. Instead it
553 assumes that at least one byte will be transfered on each
554 successful call.
555
556 NOTE: cagney/2003-10-17: The current interface can lead to
557 fragmented transfers. Lower target levels should not implement
558 hacks, such as enlarging the transfer, in an attempt to
559 compensate for this. Instead, the target stack should be
560 extended so that it implements supply/collect methods and a
561 look-aside object cache. With that available, the lowest
562 target can safely and freely "push" data up the stack.
563
564 See target_read and target_write for more information. One,
565 and only one, of readbuf or writebuf must be non-NULL. */
566
567 LONGEST (*to_xfer_partial) (struct target_ops *ops,
568 enum target_object object, const char *annex,
569 gdb_byte *readbuf, const gdb_byte *writebuf,
570 ULONGEST offset, LONGEST len);
571
572 /* Returns the memory map for the target. A return value of NULL
573 means that no memory map is available. If a memory address
574 does not fall within any returned regions, it's assumed to be
575 RAM. The returned memory regions should not overlap.
576
577 The order of regions does not matter; target_memory_map will
578 sort regions by starting address. For that reason, this
579 function should not be called directly except via
580 target_memory_map.
581
582 This method should not cache data; if the memory map could
583 change unexpectedly, it should be invalidated, and higher
584 layers will re-fetch it. */
585 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
586
587 /* Erases the region of flash memory starting at ADDRESS, of
588 length LENGTH.
589
590 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
591 on flash block boundaries, as reported by 'to_memory_map'. */
592 void (*to_flash_erase) (struct target_ops *,
593 ULONGEST address, LONGEST length);
594
595 /* Finishes a flash memory write sequence. After this operation
596 all flash memory should be available for writing and the result
597 of reading from areas written by 'to_flash_write' should be
598 equal to what was written. */
599 void (*to_flash_done) (struct target_ops *);
600
601 /* Describe the architecture-specific features of this target.
602 Returns the description found, or NULL if no description
603 was available. */
604 const struct target_desc *(*to_read_description) (struct target_ops *ops);
605
606 /* Build the PTID of the thread on which a given task is running,
607 based on LWP and THREAD. These values are extracted from the
608 task Private_Data section of the Ada Task Control Block, and
609 their interpretation depends on the target. */
610 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
611
612 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
613 Return 0 if *READPTR is already at the end of the buffer.
614 Return -1 if there is insufficient buffer for a whole entry.
615 Return 1 if an entry was read into *TYPEP and *VALP. */
616 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
617 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
618
619 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
620 sequence of bytes in PATTERN with length PATTERN_LEN.
621
622 The result is 1 if found, 0 if not found, and -1 if there was an error
623 requiring halting of the search (e.g. memory read error).
624 If the pattern is found the address is recorded in FOUND_ADDRP. */
625 int (*to_search_memory) (struct target_ops *ops,
626 CORE_ADDR start_addr, ULONGEST search_space_len,
627 const gdb_byte *pattern, ULONGEST pattern_len,
628 CORE_ADDR *found_addrp);
629
630 /* Can target execute in reverse? */
631 int (*to_can_execute_reverse) (void);
632
633 /* Does this target support debugging multiple processes
634 simultaneously? */
635 int (*to_supports_multi_process) (void);
636
637 /* Determine current architecture of thread PTID.
638
639 The target is supposed to determine the architecture of the code where
640 the target is currently stopped at (on Cell, if a target is in spu_run,
641 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
642 This is architecture used to perform decr_pc_after_break adjustment,
643 and also determines the frame architecture of the innermost frame.
644 ptrace operations need to operate according to target_gdbarch.
645
646 The default implementation always returns target_gdbarch. */
647 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
648
649 /* Determine current address space of thread PTID.
650
651 The default implementation always returns the inferior's
652 address space. */
653 struct address_space *(*to_thread_address_space) (struct target_ops *,
654 ptid_t);
655
656 /* Tracepoint-related operations. */
657
658 /* Prepare the target for a tracing run. */
659 void (*to_trace_init) (void);
660
661 /* Send full details of a tracepoint to the target. */
662 void (*to_download_tracepoint) (struct breakpoint *t);
663
664 /* Send full details of a trace state variable to the target. */
665 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
666
667 /* Inform the target info of memory regions that are readonly
668 (such as text sections), and so it should return data from
669 those rather than look in the trace buffer. */
670 void (*to_trace_set_readonly_regions) (void);
671
672 /* Start a trace run. */
673 void (*to_trace_start) (void);
674
675 /* Get the current status of a tracing run. */
676 int (*to_get_trace_status) (struct trace_status *ts);
677
678 /* Stop a trace run. */
679 void (*to_trace_stop) (void);
680
681 /* Ask the target to find a trace frame of the given type TYPE,
682 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
683 number of the trace frame, and also the tracepoint number at
684 TPP. If no trace frame matches, return -1. May throw if the
685 operation fails. */
686 int (*to_trace_find) (enum trace_find_type type, int num,
687 ULONGEST addr1, ULONGEST addr2, int *tpp);
688
689 /* Get the value of the trace state variable number TSV, returning
690 1 if the value is known and writing the value itself into the
691 location pointed to by VAL, else returning 0. */
692 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
693
694 int (*to_save_trace_data) (const char *filename);
695
696 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
697
698 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
699
700 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
701 ULONGEST offset, LONGEST len);
702
703 /* Set the target's tracing behavior in response to unexpected
704 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
705 void (*to_set_disconnected_tracing) (int val);
706 void (*to_set_circular_trace_buffer) (int val);
707
708 /* Return the processor core that thread PTID was last seen on.
709 This information is updated only when:
710 - update_thread_list is called
711 - thread stops
712 If the core cannot be determined -- either for the specified
713 thread, or right now, or in this debug session, or for this
714 target -- return -1. */
715 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
716
717 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
718 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
719 a match, 0 if there's a mismatch, and -1 if an error is
720 encountered while reading memory. */
721 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
722 CORE_ADDR memaddr, ULONGEST size);
723
724 /* Return the address of the start of the Thread Information Block
725 a Windows OS specific feature. */
726 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
727
728 /* Send the new settings of write permission variables. */
729 void (*to_set_permissions) (void);
730
731 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
732 with its details. Return 1 on success, 0 on failure. */
733 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
734 struct static_tracepoint_marker *marker);
735
736 /* Return a vector of all tracepoints markers string id ID, or all
737 markers if ID is NULL. */
738 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
739 (const char *id);
740
741 /* Return a traceframe info object describing the current
742 traceframe's contents. This method should not cache data;
743 higher layers take care of caching, invalidating, and
744 re-fetching when necessary. */
745 struct traceframe_info *(*to_traceframe_info) (void);
746
747 int to_magic;
748 /* Need sub-structure for target machine related rather than comm related?
749 */
750 };
751
752/* Magic number for checking ops size. If a struct doesn't end with this
753 number, somebody changed the declaration but didn't change all the
754 places that initialize one. */
755
756#define OPS_MAGIC 3840
757
758/* The ops structure for our "current" target process. This should
759 never be NULL. If there is no target, it points to the dummy_target. */
760
761extern struct target_ops current_target;
762
763/* Define easy words for doing these operations on our current target. */
764
765#define target_shortname (current_target.to_shortname)
766#define target_longname (current_target.to_longname)
767
768/* Does whatever cleanup is required for a target that we are no
769 longer going to be calling. QUITTING indicates that GDB is exiting
770 and should not get hung on an error (otherwise it is important to
771 perform clean termination, even if it takes a while). This routine
772 is automatically always called when popping the target off the
773 target stack (to_beneath is undefined). Closing file descriptors
774 and freeing all memory allocated memory are typical things it
775 should do. */
776
777void target_close (struct target_ops *targ, int quitting);
778
779/* Attaches to a process on the target side. Arguments are as passed
780 to the `attach' command by the user. This routine can be called
781 when the target is not on the target-stack, if the target_can_run
782 routine returns 1; in that case, it must push itself onto the stack.
783 Upon exit, the target should be ready for normal operations, and
784 should be ready to deliver the status of the process immediately
785 (without waiting) to an upcoming target_wait call. */
786
787void target_attach (char *, int);
788
789/* Some targets don't generate traps when attaching to the inferior,
790 or their target_attach implementation takes care of the waiting.
791 These targets must set to_attach_no_wait. */
792
793#define target_attach_no_wait \
794 (current_target.to_attach_no_wait)
795
796/* The target_attach operation places a process under debugger control,
797 and stops the process.
798
799 This operation provides a target-specific hook that allows the
800 necessary bookkeeping to be performed after an attach completes. */
801#define target_post_attach(pid) \
802 (*current_target.to_post_attach) (pid)
803
804/* Takes a program previously attached to and detaches it.
805 The program may resume execution (some targets do, some don't) and will
806 no longer stop on signals, etc. We better not have left any breakpoints
807 in the program or it'll die when it hits one. ARGS is arguments
808 typed by the user (e.g. a signal to send the process). FROM_TTY
809 says whether to be verbose or not. */
810
811extern void target_detach (char *, int);
812
813/* Disconnect from the current target without resuming it (leaving it
814 waiting for a debugger). */
815
816extern void target_disconnect (char *, int);
817
818/* Resume execution of the target process PTID. STEP says whether to
819 single-step or to run free; SIGGNAL is the signal to be given to
820 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
821 pass TARGET_SIGNAL_DEFAULT. */
822
823extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
824
825/* Wait for process pid to do something. PTID = -1 to wait for any
826 pid to do something. Return pid of child, or -1 in case of error;
827 store status through argument pointer STATUS. Note that it is
828 _NOT_ OK to throw_exception() out of target_wait() without popping
829 the debugging target from the stack; GDB isn't prepared to get back
830 to the prompt with a debugging target but without the frame cache,
831 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
832 options. */
833
834extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
835 int options);
836
837/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
838
839extern void target_fetch_registers (struct regcache *regcache, int regno);
840
841/* Store at least register REGNO, or all regs if REGNO == -1.
842 It can store as many registers as it wants to, so target_prepare_to_store
843 must have been previously called. Calls error() if there are problems. */
844
845extern void target_store_registers (struct regcache *regcache, int regs);
846
847/* Get ready to modify the registers array. On machines which store
848 individual registers, this doesn't need to do anything. On machines
849 which store all the registers in one fell swoop, this makes sure
850 that REGISTERS contains all the registers from the program being
851 debugged. */
852
853#define target_prepare_to_store(regcache) \
854 (*current_target.to_prepare_to_store) (regcache)
855
856/* Determine current address space of thread PTID. */
857
858struct address_space *target_thread_address_space (ptid_t);
859
860/* Returns true if this target can debug multiple processes
861 simultaneously. */
862
863#define target_supports_multi_process() \
864 (*current_target.to_supports_multi_process) ()
865
866/* Invalidate all target dcaches. */
867extern void target_dcache_invalidate (void);
868
869extern int target_read_string (CORE_ADDR, char **, int, int *);
870
871extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
872
873extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
874
875extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
876 int len);
877
878/* Fetches the target's memory map. If one is found it is sorted
879 and returned, after some consistency checking. Otherwise, NULL
880 is returned. */
881VEC(mem_region_s) *target_memory_map (void);
882
883/* Erase the specified flash region. */
884void target_flash_erase (ULONGEST address, LONGEST length);
885
886/* Finish a sequence of flash operations. */
887void target_flash_done (void);
888
889/* Describes a request for a memory write operation. */
890struct memory_write_request
891 {
892 /* Begining address that must be written. */
893 ULONGEST begin;
894 /* Past-the-end address. */
895 ULONGEST end;
896 /* The data to write. */
897 gdb_byte *data;
898 /* A callback baton for progress reporting for this request. */
899 void *baton;
900 };
901typedef struct memory_write_request memory_write_request_s;
902DEF_VEC_O(memory_write_request_s);
903
904/* Enumeration specifying different flash preservation behaviour. */
905enum flash_preserve_mode
906 {
907 flash_preserve,
908 flash_discard
909 };
910
911/* Write several memory blocks at once. This version can be more
912 efficient than making several calls to target_write_memory, in
913 particular because it can optimize accesses to flash memory.
914
915 Moreover, this is currently the only memory access function in gdb
916 that supports writing to flash memory, and it should be used for
917 all cases where access to flash memory is desirable.
918
919 REQUESTS is the vector (see vec.h) of memory_write_request.
920 PRESERVE_FLASH_P indicates what to do with blocks which must be
921 erased, but not completely rewritten.
922 PROGRESS_CB is a function that will be periodically called to provide
923 feedback to user. It will be called with the baton corresponding
924 to the request currently being written. It may also be called
925 with a NULL baton, when preserved flash sectors are being rewritten.
926
927 The function returns 0 on success, and error otherwise. */
928int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
929 enum flash_preserve_mode preserve_flash_p,
930 void (*progress_cb) (ULONGEST, void *));
931
932/* From infrun.c. */
933
934extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
935
936extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
937
938extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
939
940extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
941
942/* Print a line about the current target. */
943
944#define target_files_info() \
945 (*current_target.to_files_info) (&current_target)
946
947/* Insert a breakpoint at address BP_TGT->placed_address in the target
948 machine. Result is 0 for success, or an errno value. */
949
950extern int target_insert_breakpoint (struct gdbarch *gdbarch,
951 struct bp_target_info *bp_tgt);
952
953/* Remove a breakpoint at address BP_TGT->placed_address in the target
954 machine. Result is 0 for success, or an errno value. */
955
956extern int target_remove_breakpoint (struct gdbarch *gdbarch,
957 struct bp_target_info *bp_tgt);
958
959/* Initialize the terminal settings we record for the inferior,
960 before we actually run the inferior. */
961
962#define target_terminal_init() \
963 (*current_target.to_terminal_init) ()
964
965/* Put the inferior's terminal settings into effect.
966 This is preparation for starting or resuming the inferior. */
967
968extern void target_terminal_inferior (void);
969
970/* Put some of our terminal settings into effect,
971 enough to get proper results from our output,
972 but do not change into or out of RAW mode
973 so that no input is discarded.
974
975 After doing this, either terminal_ours or terminal_inferior
976 should be called to get back to a normal state of affairs. */
977
978#define target_terminal_ours_for_output() \
979 (*current_target.to_terminal_ours_for_output) ()
980
981/* Put our terminal settings into effect.
982 First record the inferior's terminal settings
983 so they can be restored properly later. */
984
985#define target_terminal_ours() \
986 (*current_target.to_terminal_ours) ()
987
988/* Save our terminal settings.
989 This is called from TUI after entering or leaving the curses
990 mode. Since curses modifies our terminal this call is here
991 to take this change into account. */
992
993#define target_terminal_save_ours() \
994 (*current_target.to_terminal_save_ours) ()
995
996/* Print useful information about our terminal status, if such a thing
997 exists. */
998
999#define target_terminal_info(arg, from_tty) \
1000 (*current_target.to_terminal_info) (arg, from_tty)
1001
1002/* Kill the inferior process. Make it go away. */
1003
1004extern void target_kill (void);
1005
1006/* Load an executable file into the target process. This is expected
1007 to not only bring new code into the target process, but also to
1008 update GDB's symbol tables to match.
1009
1010 ARG contains command-line arguments, to be broken down with
1011 buildargv (). The first non-switch argument is the filename to
1012 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1013 0)), which is an offset to apply to the load addresses of FILE's
1014 sections. The target may define switches, or other non-switch
1015 arguments, as it pleases. */
1016
1017extern void target_load (char *arg, int from_tty);
1018
1019/* Look up a symbol in the target's symbol table. NAME is the symbol
1020 name. ADDRP is a CORE_ADDR * pointing to where the value of the
1021 symbol should be returned. The result is 0 if successful, nonzero
1022 if the symbol does not exist in the target environment. This
1023 function should not call error() if communication with the target
1024 is interrupted, since it is called from symbol reading, but should
1025 return nonzero, possibly doing a complain(). */
1026
1027#define target_lookup_symbol(name, addrp) \
1028 (*current_target.to_lookup_symbol) (name, addrp)
1029
1030/* Start an inferior process and set inferior_ptid to its pid.
1031 EXEC_FILE is the file to run.
1032 ALLARGS is a string containing the arguments to the program.
1033 ENV is the environment vector to pass. Errors reported with error().
1034 On VxWorks and various standalone systems, we ignore exec_file. */
1035
1036void target_create_inferior (char *exec_file, char *args,
1037 char **env, int from_tty);
1038
1039/* Some targets (such as ttrace-based HPUX) don't allow us to request
1040 notification of inferior events such as fork and vork immediately
1041 after the inferior is created. (This because of how gdb gets an
1042 inferior created via invoking a shell to do it. In such a scenario,
1043 if the shell init file has commands in it, the shell will fork and
1044 exec for each of those commands, and we will see each such fork
1045 event. Very bad.)
1046
1047 Such targets will supply an appropriate definition for this function. */
1048
1049#define target_post_startup_inferior(ptid) \
1050 (*current_target.to_post_startup_inferior) (ptid)
1051
1052/* On some targets, we can catch an inferior fork or vfork event when
1053 it occurs. These functions insert/remove an already-created
1054 catchpoint for such events. They return 0 for success, 1 if the
1055 catchpoint type is not supported and -1 for failure. */
1056
1057#define target_insert_fork_catchpoint(pid) \
1058 (*current_target.to_insert_fork_catchpoint) (pid)
1059
1060#define target_remove_fork_catchpoint(pid) \
1061 (*current_target.to_remove_fork_catchpoint) (pid)
1062
1063#define target_insert_vfork_catchpoint(pid) \
1064 (*current_target.to_insert_vfork_catchpoint) (pid)
1065
1066#define target_remove_vfork_catchpoint(pid) \
1067 (*current_target.to_remove_vfork_catchpoint) (pid)
1068
1069/* If the inferior forks or vforks, this function will be called at
1070 the next resume in order to perform any bookkeeping and fiddling
1071 necessary to continue debugging either the parent or child, as
1072 requested, and releasing the other. Information about the fork
1073 or vfork event is available via get_last_target_status ().
1074 This function returns 1 if the inferior should not be resumed
1075 (i.e. there is another event pending). */
1076
1077int target_follow_fork (int follow_child);
1078
1079/* On some targets, we can catch an inferior exec event when it
1080 occurs. These functions insert/remove an already-created
1081 catchpoint for such events. They return 0 for success, 1 if the
1082 catchpoint type is not supported and -1 for failure. */
1083
1084#define target_insert_exec_catchpoint(pid) \
1085 (*current_target.to_insert_exec_catchpoint) (pid)
1086
1087#define target_remove_exec_catchpoint(pid) \
1088 (*current_target.to_remove_exec_catchpoint) (pid)
1089
1090/* Syscall catch.
1091
1092 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1093 If NEEDED is zero, it means the target can disable the mechanism to
1094 catch system calls because there are no more catchpoints of this type.
1095
1096 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1097 being requested. In this case, both TABLE_SIZE and TABLE should
1098 be ignored.
1099
1100 TABLE_SIZE is the number of elements in TABLE. It only matters if
1101 ANY_COUNT is zero.
1102
1103 TABLE is an array of ints, indexed by syscall number. An element in
1104 this array is nonzero if that syscall should be caught. This argument
1105 only matters if ANY_COUNT is zero.
1106
1107 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1108 for failure. */
1109
1110#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1111 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1112 table_size, table)
1113
1114/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1115 exit code of PID, if any. */
1116
1117#define target_has_exited(pid,wait_status,exit_status) \
1118 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1119
1120/* The debugger has completed a blocking wait() call. There is now
1121 some process event that must be processed. This function should
1122 be defined by those targets that require the debugger to perform
1123 cleanup or internal state changes in response to the process event. */
1124
1125/* The inferior process has died. Do what is right. */
1126
1127void target_mourn_inferior (void);
1128
1129/* Does target have enough data to do a run or attach command? */
1130
1131#define target_can_run(t) \
1132 ((t)->to_can_run) ()
1133
1134/* post process changes to signal handling in the inferior. */
1135
1136#define target_notice_signals(ptid) \
1137 (*current_target.to_notice_signals) (ptid)
1138
1139/* Check to see if a thread is still alive. */
1140
1141extern int target_thread_alive (ptid_t ptid);
1142
1143/* Query for new threads and add them to the thread list. */
1144
1145extern void target_find_new_threads (void);
1146
1147/* Make target stop in a continuable fashion. (For instance, under
1148 Unix, this should act like SIGSTOP). This function is normally
1149 used by GUIs to implement a stop button. */
1150
1151extern void target_stop (ptid_t ptid);
1152
1153/* Send the specified COMMAND to the target's monitor
1154 (shell,interpreter) for execution. The result of the query is
1155 placed in OUTBUF. */
1156
1157#define target_rcmd(command, outbuf) \
1158 (*current_target.to_rcmd) (command, outbuf)
1159
1160
1161/* Does the target include all of memory, or only part of it? This
1162 determines whether we look up the target chain for other parts of
1163 memory if this target can't satisfy a request. */
1164
1165extern int target_has_all_memory_1 (void);
1166#define target_has_all_memory target_has_all_memory_1 ()
1167
1168/* Does the target include memory? (Dummy targets don't.) */
1169
1170extern int target_has_memory_1 (void);
1171#define target_has_memory target_has_memory_1 ()
1172
1173/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1174 we start a process.) */
1175
1176extern int target_has_stack_1 (void);
1177#define target_has_stack target_has_stack_1 ()
1178
1179/* Does the target have registers? (Exec files don't.) */
1180
1181extern int target_has_registers_1 (void);
1182#define target_has_registers target_has_registers_1 ()
1183
1184/* Does the target have execution? Can we make it jump (through
1185 hoops), or pop its stack a few times? This means that the current
1186 target is currently executing; for some targets, that's the same as
1187 whether or not the target is capable of execution, but there are
1188 also targets which can be current while not executing. In that
1189 case this will become true after target_create_inferior or
1190 target_attach. */
1191
1192extern int target_has_execution_1 (void);
1193#define target_has_execution target_has_execution_1 ()
1194
1195/* Default implementations for process_stratum targets. Return true
1196 if there's a selected inferior, false otherwise. */
1197
1198extern int default_child_has_all_memory (struct target_ops *ops);
1199extern int default_child_has_memory (struct target_ops *ops);
1200extern int default_child_has_stack (struct target_ops *ops);
1201extern int default_child_has_registers (struct target_ops *ops);
1202extern int default_child_has_execution (struct target_ops *ops);
1203
1204/* Can the target support the debugger control of thread execution?
1205 Can it lock the thread scheduler? */
1206
1207#define target_can_lock_scheduler \
1208 (current_target.to_has_thread_control & tc_schedlock)
1209
1210/* Should the target enable async mode if it is supported? Temporary
1211 cludge until async mode is a strict superset of sync mode. */
1212extern int target_async_permitted;
1213
1214/* Can the target support asynchronous execution? */
1215#define target_can_async_p() (current_target.to_can_async_p ())
1216
1217/* Is the target in asynchronous execution mode? */
1218#define target_is_async_p() (current_target.to_is_async_p ())
1219
1220int target_supports_non_stop (void);
1221
1222/* Put the target in async mode with the specified callback function. */
1223#define target_async(CALLBACK,CONTEXT) \
1224 (current_target.to_async ((CALLBACK), (CONTEXT)))
1225
1226/* This is to be used ONLY within call_function_by_hand(). It provides
1227 a workaround, to have inferior function calls done in sychronous
1228 mode, even though the target is asynchronous. After
1229 target_async_mask(0) is called, calls to target_can_async_p() will
1230 return FALSE , so that target_resume() will not try to start the
1231 target asynchronously. After the inferior stops, we IMMEDIATELY
1232 restore the previous nature of the target, by calling
1233 target_async_mask(1). After that, target_can_async_p() will return
1234 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1235
1236 FIXME ezannoni 1999-12-13: we won't need this once we move
1237 the turning async on and off to the single execution commands,
1238 from where it is done currently, in remote_resume(). */
1239
1240#define target_async_mask(MASK) \
1241 (current_target.to_async_mask (MASK))
1242
1243/* Converts a process id to a string. Usually, the string just contains
1244 `process xyz', but on some systems it may contain
1245 `process xyz thread abc'. */
1246
1247extern char *target_pid_to_str (ptid_t ptid);
1248
1249extern char *normal_pid_to_str (ptid_t ptid);
1250
1251/* Return a short string describing extra information about PID,
1252 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1253 is okay. */
1254
1255#define target_extra_thread_info(TP) \
1256 (current_target.to_extra_thread_info (TP))
1257
1258/* Return the thread's name. A NULL result means that the target
1259 could not determine this thread's name. */
1260
1261extern char *target_thread_name (struct thread_info *);
1262
1263/* Attempts to find the pathname of the executable file
1264 that was run to create a specified process.
1265
1266 The process PID must be stopped when this operation is used.
1267
1268 If the executable file cannot be determined, NULL is returned.
1269
1270 Else, a pointer to a character string containing the pathname
1271 is returned. This string should be copied into a buffer by
1272 the client if the string will not be immediately used, or if
1273 it must persist. */
1274
1275#define target_pid_to_exec_file(pid) \
1276 (current_target.to_pid_to_exec_file) (pid)
1277
1278/* See the to_thread_architecture description in struct target_ops. */
1279
1280#define target_thread_architecture(ptid) \
1281 (current_target.to_thread_architecture (&current_target, ptid))
1282
1283/*
1284 * Iterator function for target memory regions.
1285 * Calls a callback function once for each memory region 'mapped'
1286 * in the child process. Defined as a simple macro rather than
1287 * as a function macro so that it can be tested for nullity.
1288 */
1289
1290#define target_find_memory_regions(FUNC, DATA) \
1291 (current_target.to_find_memory_regions) (FUNC, DATA)
1292
1293/*
1294 * Compose corefile .note section.
1295 */
1296
1297#define target_make_corefile_notes(BFD, SIZE_P) \
1298 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1299
1300/* Bookmark interfaces. */
1301#define target_get_bookmark(ARGS, FROM_TTY) \
1302 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1303
1304#define target_goto_bookmark(ARG, FROM_TTY) \
1305 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1306
1307/* Hardware watchpoint interfaces. */
1308
1309/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1310 write). Only the INFERIOR_PTID task is being queried. */
1311
1312#define target_stopped_by_watchpoint \
1313 (*current_target.to_stopped_by_watchpoint)
1314
1315/* Non-zero if we have steppable watchpoints */
1316
1317#define target_have_steppable_watchpoint \
1318 (current_target.to_have_steppable_watchpoint)
1319
1320/* Non-zero if we have continuable watchpoints */
1321
1322#define target_have_continuable_watchpoint \
1323 (current_target.to_have_continuable_watchpoint)
1324
1325/* Provide defaults for hardware watchpoint functions. */
1326
1327/* If the *_hw_beakpoint functions have not been defined
1328 elsewhere use the definitions in the target vector. */
1329
1330/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1331 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1332 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1333 (including this one?). OTHERTYPE is who knows what... */
1334
1335#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1336 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1337
1338/* Returns the number of debug registers needed to watch the given
1339 memory region, or zero if not supported. */
1340
1341#define target_region_ok_for_hw_watchpoint(addr, len) \
1342 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1343
1344
1345/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1346 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1347 COND is the expression for its condition, or NULL if there's none.
1348 Returns 0 for success, 1 if the watchpoint type is not supported,
1349 -1 for failure. */
1350
1351#define target_insert_watchpoint(addr, len, type, cond) \
1352 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1353
1354#define target_remove_watchpoint(addr, len, type, cond) \
1355 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1356
1357#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1358 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1359
1360#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1361 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1362
1363/* Return non-zero if target knows the data address which triggered this
1364 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1365 INFERIOR_PTID task is being queried. */
1366#define target_stopped_data_address(target, addr_p) \
1367 (*target.to_stopped_data_address) (target, addr_p)
1368
1369#define target_watchpoint_addr_within_range(target, addr, start, length) \
1370 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1371
1372/* Return non-zero if the target is capable of using hardware to evaluate
1373 the condition expression. In this case, if the condition is false when
1374 the watched memory location changes, execution may continue without the
1375 debugger being notified.
1376
1377 Due to limitations in the hardware implementation, it may be capable of
1378 avoiding triggering the watchpoint in some cases where the condition
1379 expression is false, but may report some false positives as well.
1380 For this reason, GDB will still evaluate the condition expression when
1381 the watchpoint triggers. */
1382#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1383 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1384
1385/* Target can execute in reverse? */
1386#define target_can_execute_reverse \
1387 (current_target.to_can_execute_reverse ? \
1388 current_target.to_can_execute_reverse () : 0)
1389
1390extern const struct target_desc *target_read_description (struct target_ops *);
1391
1392#define target_get_ada_task_ptid(lwp, tid) \
1393 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1394
1395/* Utility implementation of searching memory. */
1396extern int simple_search_memory (struct target_ops* ops,
1397 CORE_ADDR start_addr,
1398 ULONGEST search_space_len,
1399 const gdb_byte *pattern,
1400 ULONGEST pattern_len,
1401 CORE_ADDR *found_addrp);
1402
1403/* Main entry point for searching memory. */
1404extern int target_search_memory (CORE_ADDR start_addr,
1405 ULONGEST search_space_len,
1406 const gdb_byte *pattern,
1407 ULONGEST pattern_len,
1408 CORE_ADDR *found_addrp);
1409
1410/* Tracepoint-related operations. */
1411
1412#define target_trace_init() \
1413 (*current_target.to_trace_init) ()
1414
1415#define target_download_tracepoint(t) \
1416 (*current_target.to_download_tracepoint) (t)
1417
1418#define target_download_trace_state_variable(tsv) \
1419 (*current_target.to_download_trace_state_variable) (tsv)
1420
1421#define target_trace_start() \
1422 (*current_target.to_trace_start) ()
1423
1424#define target_trace_set_readonly_regions() \
1425 (*current_target.to_trace_set_readonly_regions) ()
1426
1427#define target_get_trace_status(ts) \
1428 (*current_target.to_get_trace_status) (ts)
1429
1430#define target_trace_stop() \
1431 (*current_target.to_trace_stop) ()
1432
1433#define target_trace_find(type,num,addr1,addr2,tpp) \
1434 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1435
1436#define target_get_trace_state_variable_value(tsv,val) \
1437 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1438
1439#define target_save_trace_data(filename) \
1440 (*current_target.to_save_trace_data) (filename)
1441
1442#define target_upload_tracepoints(utpp) \
1443 (*current_target.to_upload_tracepoints) (utpp)
1444
1445#define target_upload_trace_state_variables(utsvp) \
1446 (*current_target.to_upload_trace_state_variables) (utsvp)
1447
1448#define target_get_raw_trace_data(buf,offset,len) \
1449 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1450
1451#define target_set_disconnected_tracing(val) \
1452 (*current_target.to_set_disconnected_tracing) (val)
1453
1454#define target_set_circular_trace_buffer(val) \
1455 (*current_target.to_set_circular_trace_buffer) (val)
1456
1457#define target_get_tib_address(ptid, addr) \
1458 (*current_target.to_get_tib_address) ((ptid), (addr))
1459
1460#define target_set_permissions() \
1461 (*current_target.to_set_permissions) ()
1462
1463#define target_static_tracepoint_marker_at(addr, marker) \
1464 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1465
1466#define target_static_tracepoint_markers_by_strid(marker_id) \
1467 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1468
1469#define target_traceframe_info() \
1470 (*current_target.to_traceframe_info) ()
1471
1472/* Command logging facility. */
1473
1474#define target_log_command(p) \
1475 do \
1476 if (current_target.to_log_command) \
1477 (*current_target.to_log_command) (p); \
1478 while (0)
1479
1480
1481extern int target_core_of_thread (ptid_t ptid);
1482
1483/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1484 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1485 if there's a mismatch, and -1 if an error is encountered while
1486 reading memory. Throws an error if the functionality is found not
1487 to be supported by the current target. */
1488int target_verify_memory (const gdb_byte *data,
1489 CORE_ADDR memaddr, ULONGEST size);
1490
1491/* Routines for maintenance of the target structures...
1492
1493 add_target: Add a target to the list of all possible targets.
1494
1495 push_target: Make this target the top of the stack of currently used
1496 targets, within its particular stratum of the stack. Result
1497 is 0 if now atop the stack, nonzero if not on top (maybe
1498 should warn user).
1499
1500 unpush_target: Remove this from the stack of currently used targets,
1501 no matter where it is on the list. Returns 0 if no
1502 change, 1 if removed from stack.
1503
1504 pop_target: Remove the top thing on the stack of current targets. */
1505
1506extern void add_target (struct target_ops *);
1507
1508extern void push_target (struct target_ops *);
1509
1510extern int unpush_target (struct target_ops *);
1511
1512extern void target_pre_inferior (int);
1513
1514extern void target_preopen (int);
1515
1516extern void pop_target (void);
1517
1518/* Does whatever cleanup is required to get rid of all pushed targets.
1519 QUITTING is propagated to target_close; it indicates that GDB is
1520 exiting and should not get hung on an error (otherwise it is
1521 important to perform clean termination, even if it takes a
1522 while). */
1523extern void pop_all_targets (int quitting);
1524
1525/* Like pop_all_targets, but pops only targets whose stratum is
1526 strictly above ABOVE_STRATUM. */
1527extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1528
1529extern int target_is_pushed (struct target_ops *t);
1530
1531extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1532 CORE_ADDR offset);
1533
1534/* Struct target_section maps address ranges to file sections. It is
1535 mostly used with BFD files, but can be used without (e.g. for handling
1536 raw disks, or files not in formats handled by BFD). */
1537
1538struct target_section
1539 {
1540 CORE_ADDR addr; /* Lowest address in section */
1541 CORE_ADDR endaddr; /* 1+highest address in section */
1542
1543 struct bfd_section *the_bfd_section;
1544
1545 bfd *bfd; /* BFD file pointer */
1546 };
1547
1548/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1549
1550struct target_section_table
1551{
1552 struct target_section *sections;
1553 struct target_section *sections_end;
1554};
1555
1556/* Return the "section" containing the specified address. */
1557struct target_section *target_section_by_addr (struct target_ops *target,
1558 CORE_ADDR addr);
1559
1560/* Return the target section table this target (or the targets
1561 beneath) currently manipulate. */
1562
1563extern struct target_section_table *target_get_section_table
1564 (struct target_ops *target);
1565
1566/* From mem-break.c */
1567
1568extern int memory_remove_breakpoint (struct gdbarch *,
1569 struct bp_target_info *);
1570
1571extern int memory_insert_breakpoint (struct gdbarch *,
1572 struct bp_target_info *);
1573
1574extern int default_memory_remove_breakpoint (struct gdbarch *,
1575 struct bp_target_info *);
1576
1577extern int default_memory_insert_breakpoint (struct gdbarch *,
1578 struct bp_target_info *);
1579
1580
1581/* From target.c */
1582
1583extern void initialize_targets (void);
1584
1585extern void noprocess (void) ATTRIBUTE_NORETURN;
1586
1587extern void target_require_runnable (void);
1588
1589extern void find_default_attach (struct target_ops *, char *, int);
1590
1591extern void find_default_create_inferior (struct target_ops *,
1592 char *, char *, char **, int);
1593
1594extern struct target_ops *find_run_target (void);
1595
1596extern struct target_ops *find_target_beneath (struct target_ops *);
1597
1598/* Read OS data object of type TYPE from the target, and return it in
1599 XML format. The result is NUL-terminated and returned as a string,
1600 allocated using xmalloc. If an error occurs or the transfer is
1601 unsupported, NULL is returned. Empty objects are returned as
1602 allocated but empty strings. */
1603
1604extern char *target_get_osdata (const char *type);
1605
1606\f
1607/* Stuff that should be shared among the various remote targets. */
1608
1609/* Debugging level. 0 is off, and non-zero values mean to print some debug
1610 information (higher values, more information). */
1611extern int remote_debug;
1612
1613/* Speed in bits per second, or -1 which means don't mess with the speed. */
1614extern int baud_rate;
1615/* Timeout limit for response from target. */
1616extern int remote_timeout;
1617
1618\f
1619/* Functions for helping to write a native target. */
1620
1621/* This is for native targets which use a unix/POSIX-style waitstatus. */
1622extern void store_waitstatus (struct target_waitstatus *, int);
1623
1624/* These are in common/signals.c, but they're only used by gdb. */
1625extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1626 int);
1627extern int default_target_signal_to_host (struct gdbarch *,
1628 enum target_signal);
1629
1630/* Convert from a number used in a GDB command to an enum target_signal. */
1631extern enum target_signal target_signal_from_command (int);
1632/* End of files in common/signals.c. */
1633
1634/* Set the show memory breakpoints mode to show, and installs a cleanup
1635 to restore it back to the current value. */
1636extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1637
1638extern int may_write_registers;
1639extern int may_write_memory;
1640extern int may_insert_breakpoints;
1641extern int may_insert_tracepoints;
1642extern int may_insert_fast_tracepoints;
1643extern int may_stop;
1644
1645extern void update_target_permissions (void);
1646
1647\f
1648/* Imported from machine dependent code. */
1649
1650/* Blank target vector entries are initialized to target_ignore. */
1651void target_ignore (void);
1652
1653#endif /* !defined (TARGET_H) */
This page took 0.02815 seconds and 4 git commands to generate.