convert to_insert_hw_breakpoint
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25struct objfile;
26struct ui_file;
27struct mem_attrib;
28struct target_ops;
29struct bp_location;
30struct bp_target_info;
31struct regcache;
32struct target_section_table;
33struct trace_state_variable;
34struct trace_status;
35struct uploaded_tsv;
36struct uploaded_tp;
37struct static_tracepoint_marker;
38struct traceframe_info;
39struct expression;
40struct dcache_struct;
41
42/* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61#include "target/resume.h"
62#include "target/wait.h"
63#include "target/waitstatus.h"
64#include "bfd.h"
65#include "symtab.h"
66#include "memattr.h"
67#include "vec.h"
68#include "gdb_signals.h"
69#include "btrace.h"
70#include "command.h"
71
72enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88/* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103/* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107/* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109extern char *target_options_to_string (int target_options);
110
111/* Possible types of events that the inferior handler will have to
112 deal with. */
113enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128\f
129/* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132enum target_object
133{
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204};
205
206/* Possible values returned by target_xfer_partial, etc. */
207
208enum target_xfer_status
209{
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226};
227
228#define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230/* Return the string form of ERR. */
231
232extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234/* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247DEF_VEC_P(static_tracepoint_marker_p);
248
249typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259/* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284};
285typedef struct memory_read_result memory_read_result_s;
286DEF_VEC_O(memory_read_result_s);
287
288extern void free_memory_read_result_vector (void *);
289
290extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299/* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339/* See target_ops->to_xfer_partial. */
340extern target_xfer_partial_ftype target_xfer_partial;
341
342/* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354\f
355struct thread_info; /* fwd decl for parameter list below: */
356
357/* The type of the callback to the to_async method. */
358
359typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362/* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381#define TARGET_DEFAULT_IGNORE()
382#define TARGET_DEFAULT_NORETURN(ARG)
383#define TARGET_DEFAULT_RETURN(ARG)
384#define TARGET_DEFAULT_FUNC(ARG)
385
386struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *);
466
467 /* Documentation of what the two routines below are expected to do is
468 provided with the corresponding target_* macros. */
469 int (*to_remove_watchpoint) (struct target_ops *,
470 CORE_ADDR, int, int, struct expression *);
471 int (*to_insert_watchpoint) (struct target_ops *,
472 CORE_ADDR, int, int, struct expression *);
473
474 int (*to_insert_mask_watchpoint) (struct target_ops *,
475 CORE_ADDR, CORE_ADDR, int);
476 int (*to_remove_mask_watchpoint) (struct target_ops *,
477 CORE_ADDR, CORE_ADDR, int);
478 int (*to_stopped_by_watchpoint) (struct target_ops *)
479 TARGET_DEFAULT_RETURN (0);
480 int to_have_steppable_watchpoint;
481 int to_have_continuable_watchpoint;
482 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
483 TARGET_DEFAULT_RETURN (0);
484 int (*to_watchpoint_addr_within_range) (struct target_ops *,
485 CORE_ADDR, CORE_ADDR, int);
486
487 /* Documentation of this routine is provided with the corresponding
488 target_* macro. */
489 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
490 CORE_ADDR, int);
491
492 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
493 CORE_ADDR, int, int,
494 struct expression *);
495 int (*to_masked_watch_num_registers) (struct target_ops *,
496 CORE_ADDR, CORE_ADDR);
497 void (*to_terminal_init) (struct target_ops *);
498 void (*to_terminal_inferior) (struct target_ops *);
499 void (*to_terminal_ours_for_output) (struct target_ops *);
500 void (*to_terminal_ours) (struct target_ops *);
501 void (*to_terminal_save_ours) (struct target_ops *);
502 void (*to_terminal_info) (struct target_ops *, const char *, int);
503 void (*to_kill) (struct target_ops *);
504 void (*to_load) (struct target_ops *, char *, int);
505 void (*to_create_inferior) (struct target_ops *,
506 char *, char *, char **, int);
507 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
508 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
509 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
510 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
511 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
512 int (*to_follow_fork) (struct target_ops *, int, int);
513 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
514 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
515 int (*to_set_syscall_catchpoint) (struct target_ops *,
516 int, int, int, int, int *);
517 int (*to_has_exited) (struct target_ops *, int, int, int *);
518 void (*to_mourn_inferior) (struct target_ops *);
519 int (*to_can_run) (struct target_ops *);
520
521 /* Documentation of this routine is provided with the corresponding
522 target_* macro. */
523 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
524
525 /* Documentation of this routine is provided with the
526 corresponding target_* function. */
527 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
528
529 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
530 void (*to_find_new_threads) (struct target_ops *);
531 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
532 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
533 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
534 void (*to_stop) (struct target_ops *, ptid_t);
535 void (*to_rcmd) (struct target_ops *,
536 char *command, struct ui_file *output)
537 TARGET_DEFAULT_FUNC (default_rcmd);
538 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
539 void (*to_log_command) (struct target_ops *, const char *);
540 struct target_section_table *(*to_get_section_table) (struct target_ops *);
541 enum strata to_stratum;
542 int (*to_has_all_memory) (struct target_ops *);
543 int (*to_has_memory) (struct target_ops *);
544 int (*to_has_stack) (struct target_ops *);
545 int (*to_has_registers) (struct target_ops *);
546 int (*to_has_execution) (struct target_ops *, ptid_t);
547 int to_has_thread_control; /* control thread execution */
548 int to_attach_no_wait;
549 /* ASYNC target controls */
550 int (*to_can_async_p) (struct target_ops *)
551 TARGET_DEFAULT_FUNC (find_default_can_async_p);
552 int (*to_is_async_p) (struct target_ops *)
553 TARGET_DEFAULT_FUNC (find_default_is_async_p);
554 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
555 TARGET_DEFAULT_NORETURN (tcomplain ());
556 int (*to_supports_non_stop) (struct target_ops *);
557 /* find_memory_regions support method for gcore */
558 int (*to_find_memory_regions) (struct target_ops *,
559 find_memory_region_ftype func, void *data);
560 /* make_corefile_notes support method for gcore */
561 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
562 /* get_bookmark support method for bookmarks */
563 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
564 /* goto_bookmark support method for bookmarks */
565 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
566 /* Return the thread-local address at OFFSET in the
567 thread-local storage for the thread PTID and the shared library
568 or executable file given by OBJFILE. If that block of
569 thread-local storage hasn't been allocated yet, this function
570 may return an error. */
571 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
572 ptid_t ptid,
573 CORE_ADDR load_module_addr,
574 CORE_ADDR offset);
575
576 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
577 OBJECT. The OFFSET, for a seekable object, specifies the
578 starting point. The ANNEX can be used to provide additional
579 data-specific information to the target.
580
581 Return the transferred status, error or OK (an
582 'enum target_xfer_status' value). Save the number of bytes
583 actually transferred in *XFERED_LEN if transfer is successful
584 (TARGET_XFER_OK) or the number unavailable bytes if the requested
585 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
586 smaller than LEN does not indicate the end of the object, only
587 the end of the transfer; higher level code should continue
588 transferring if desired. This is handled in target.c.
589
590 The interface does not support a "retry" mechanism. Instead it
591 assumes that at least one byte will be transfered on each
592 successful call.
593
594 NOTE: cagney/2003-10-17: The current interface can lead to
595 fragmented transfers. Lower target levels should not implement
596 hacks, such as enlarging the transfer, in an attempt to
597 compensate for this. Instead, the target stack should be
598 extended so that it implements supply/collect methods and a
599 look-aside object cache. With that available, the lowest
600 target can safely and freely "push" data up the stack.
601
602 See target_read and target_write for more information. One,
603 and only one, of readbuf or writebuf must be non-NULL. */
604
605 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
606 enum target_object object,
607 const char *annex,
608 gdb_byte *readbuf,
609 const gdb_byte *writebuf,
610 ULONGEST offset, ULONGEST len,
611 ULONGEST *xfered_len)
612 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
613
614 /* Returns the memory map for the target. A return value of NULL
615 means that no memory map is available. If a memory address
616 does not fall within any returned regions, it's assumed to be
617 RAM. The returned memory regions should not overlap.
618
619 The order of regions does not matter; target_memory_map will
620 sort regions by starting address. For that reason, this
621 function should not be called directly except via
622 target_memory_map.
623
624 This method should not cache data; if the memory map could
625 change unexpectedly, it should be invalidated, and higher
626 layers will re-fetch it. */
627 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
628
629 /* Erases the region of flash memory starting at ADDRESS, of
630 length LENGTH.
631
632 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
633 on flash block boundaries, as reported by 'to_memory_map'. */
634 void (*to_flash_erase) (struct target_ops *,
635 ULONGEST address, LONGEST length);
636
637 /* Finishes a flash memory write sequence. After this operation
638 all flash memory should be available for writing and the result
639 of reading from areas written by 'to_flash_write' should be
640 equal to what was written. */
641 void (*to_flash_done) (struct target_ops *);
642
643 /* Describe the architecture-specific features of this target.
644 Returns the description found, or NULL if no description
645 was available. */
646 const struct target_desc *(*to_read_description) (struct target_ops *ops);
647
648 /* Build the PTID of the thread on which a given task is running,
649 based on LWP and THREAD. These values are extracted from the
650 task Private_Data section of the Ada Task Control Block, and
651 their interpretation depends on the target. */
652 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
653 long lwp, long thread);
654
655 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
656 Return 0 if *READPTR is already at the end of the buffer.
657 Return -1 if there is insufficient buffer for a whole entry.
658 Return 1 if an entry was read into *TYPEP and *VALP. */
659 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
660 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
661
662 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
663 sequence of bytes in PATTERN with length PATTERN_LEN.
664
665 The result is 1 if found, 0 if not found, and -1 if there was an error
666 requiring halting of the search (e.g. memory read error).
667 If the pattern is found the address is recorded in FOUND_ADDRP. */
668 int (*to_search_memory) (struct target_ops *ops,
669 CORE_ADDR start_addr, ULONGEST search_space_len,
670 const gdb_byte *pattern, ULONGEST pattern_len,
671 CORE_ADDR *found_addrp);
672
673 /* Can target execute in reverse? */
674 int (*to_can_execute_reverse) (struct target_ops *);
675
676 /* The direction the target is currently executing. Must be
677 implemented on targets that support reverse execution and async
678 mode. The default simply returns forward execution. */
679 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
680
681 /* Does this target support debugging multiple processes
682 simultaneously? */
683 int (*to_supports_multi_process) (struct target_ops *);
684
685 /* Does this target support enabling and disabling tracepoints while a trace
686 experiment is running? */
687 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
688
689 /* Does this target support disabling address space randomization? */
690 int (*to_supports_disable_randomization) (struct target_ops *);
691
692 /* Does this target support the tracenz bytecode for string collection? */
693 int (*to_supports_string_tracing) (struct target_ops *);
694
695 /* Does this target support evaluation of breakpoint conditions on its
696 end? */
697 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
698
699 /* Does this target support evaluation of breakpoint commands on its
700 end? */
701 int (*to_can_run_breakpoint_commands) (struct target_ops *);
702
703 /* Determine current architecture of thread PTID.
704
705 The target is supposed to determine the architecture of the code where
706 the target is currently stopped at (on Cell, if a target is in spu_run,
707 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
708 This is architecture used to perform decr_pc_after_break adjustment,
709 and also determines the frame architecture of the innermost frame.
710 ptrace operations need to operate according to target_gdbarch ().
711
712 The default implementation always returns target_gdbarch (). */
713 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
714
715 /* Determine current address space of thread PTID.
716
717 The default implementation always returns the inferior's
718 address space. */
719 struct address_space *(*to_thread_address_space) (struct target_ops *,
720 ptid_t);
721
722 /* Target file operations. */
723
724 /* Open FILENAME on the target, using FLAGS and MODE. Return a
725 target file descriptor, or -1 if an error occurs (and set
726 *TARGET_ERRNO). */
727 int (*to_fileio_open) (struct target_ops *,
728 const char *filename, int flags, int mode,
729 int *target_errno);
730
731 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
732 Return the number of bytes written, or -1 if an error occurs
733 (and set *TARGET_ERRNO). */
734 int (*to_fileio_pwrite) (struct target_ops *,
735 int fd, const gdb_byte *write_buf, int len,
736 ULONGEST offset, int *target_errno);
737
738 /* Read up to LEN bytes FD on the target into READ_BUF.
739 Return the number of bytes read, or -1 if an error occurs
740 (and set *TARGET_ERRNO). */
741 int (*to_fileio_pread) (struct target_ops *,
742 int fd, gdb_byte *read_buf, int len,
743 ULONGEST offset, int *target_errno);
744
745 /* Close FD on the target. Return 0, or -1 if an error occurs
746 (and set *TARGET_ERRNO). */
747 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
748
749 /* Unlink FILENAME on the target. Return 0, or -1 if an error
750 occurs (and set *TARGET_ERRNO). */
751 int (*to_fileio_unlink) (struct target_ops *,
752 const char *filename, int *target_errno);
753
754 /* Read value of symbolic link FILENAME on the target. Return a
755 null-terminated string allocated via xmalloc, or NULL if an error
756 occurs (and set *TARGET_ERRNO). */
757 char *(*to_fileio_readlink) (struct target_ops *,
758 const char *filename, int *target_errno);
759
760
761 /* Implement the "info proc" command. */
762 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
763
764 /* Tracepoint-related operations. */
765
766 /* Prepare the target for a tracing run. */
767 void (*to_trace_init) (struct target_ops *);
768
769 /* Send full details of a tracepoint location to the target. */
770 void (*to_download_tracepoint) (struct target_ops *,
771 struct bp_location *location);
772
773 /* Is the target able to download tracepoint locations in current
774 state? */
775 int (*to_can_download_tracepoint) (struct target_ops *);
776
777 /* Send full details of a trace state variable to the target. */
778 void (*to_download_trace_state_variable) (struct target_ops *,
779 struct trace_state_variable *tsv);
780
781 /* Enable a tracepoint on the target. */
782 void (*to_enable_tracepoint) (struct target_ops *,
783 struct bp_location *location);
784
785 /* Disable a tracepoint on the target. */
786 void (*to_disable_tracepoint) (struct target_ops *,
787 struct bp_location *location);
788
789 /* Inform the target info of memory regions that are readonly
790 (such as text sections), and so it should return data from
791 those rather than look in the trace buffer. */
792 void (*to_trace_set_readonly_regions) (struct target_ops *);
793
794 /* Start a trace run. */
795 void (*to_trace_start) (struct target_ops *);
796
797 /* Get the current status of a tracing run. */
798 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
799
800 void (*to_get_tracepoint_status) (struct target_ops *,
801 struct breakpoint *tp,
802 struct uploaded_tp *utp);
803
804 /* Stop a trace run. */
805 void (*to_trace_stop) (struct target_ops *);
806
807 /* Ask the target to find a trace frame of the given type TYPE,
808 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
809 number of the trace frame, and also the tracepoint number at
810 TPP. If no trace frame matches, return -1. May throw if the
811 operation fails. */
812 int (*to_trace_find) (struct target_ops *,
813 enum trace_find_type type, int num,
814 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
815
816 /* Get the value of the trace state variable number TSV, returning
817 1 if the value is known and writing the value itself into the
818 location pointed to by VAL, else returning 0. */
819 int (*to_get_trace_state_variable_value) (struct target_ops *,
820 int tsv, LONGEST *val);
821
822 int (*to_save_trace_data) (struct target_ops *, const char *filename);
823
824 int (*to_upload_tracepoints) (struct target_ops *,
825 struct uploaded_tp **utpp);
826
827 int (*to_upload_trace_state_variables) (struct target_ops *,
828 struct uploaded_tsv **utsvp);
829
830 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
831 ULONGEST offset, LONGEST len);
832
833 /* Get the minimum length of instruction on which a fast tracepoint
834 may be set on the target. If this operation is unsupported,
835 return -1. If for some reason the minimum length cannot be
836 determined, return 0. */
837 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
838
839 /* Set the target's tracing behavior in response to unexpected
840 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
841 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
842 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
843 /* Set the size of trace buffer in the target. */
844 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
845
846 /* Add/change textual notes about the trace run, returning 1 if
847 successful, 0 otherwise. */
848 int (*to_set_trace_notes) (struct target_ops *,
849 const char *user, const char *notes,
850 const char *stopnotes);
851
852 /* Return the processor core that thread PTID was last seen on.
853 This information is updated only when:
854 - update_thread_list is called
855 - thread stops
856 If the core cannot be determined -- either for the specified
857 thread, or right now, or in this debug session, or for this
858 target -- return -1. */
859 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
860
861 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
862 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
863 a match, 0 if there's a mismatch, and -1 if an error is
864 encountered while reading memory. */
865 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
866 CORE_ADDR memaddr, ULONGEST size);
867
868 /* Return the address of the start of the Thread Information Block
869 a Windows OS specific feature. */
870 int (*to_get_tib_address) (struct target_ops *,
871 ptid_t ptid, CORE_ADDR *addr);
872
873 /* Send the new settings of write permission variables. */
874 void (*to_set_permissions) (struct target_ops *);
875
876 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
877 with its details. Return 1 on success, 0 on failure. */
878 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
879 struct static_tracepoint_marker *marker);
880
881 /* Return a vector of all tracepoints markers string id ID, or all
882 markers if ID is NULL. */
883 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
884 (struct target_ops *, const char *id);
885
886 /* Return a traceframe info object describing the current
887 traceframe's contents. If the target doesn't support
888 traceframe info, return NULL. If the current traceframe is not
889 selected (the current traceframe number is -1), the target can
890 choose to return either NULL or an empty traceframe info. If
891 NULL is returned, for example in remote target, GDB will read
892 from the live inferior. If an empty traceframe info is
893 returned, for example in tfile target, which means the
894 traceframe info is available, but the requested memory is not
895 available in it. GDB will try to see if the requested memory
896 is available in the read-only sections. This method should not
897 cache data; higher layers take care of caching, invalidating,
898 and re-fetching when necessary. */
899 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
900
901 /* Ask the target to use or not to use agent according to USE. Return 1
902 successful, 0 otherwise. */
903 int (*to_use_agent) (struct target_ops *, int use);
904
905 /* Is the target able to use agent in current state? */
906 int (*to_can_use_agent) (struct target_ops *);
907
908 /* Check whether the target supports branch tracing. */
909 int (*to_supports_btrace) (struct target_ops *)
910 TARGET_DEFAULT_RETURN (0);
911
912 /* Enable branch tracing for PTID and allocate a branch trace target
913 information struct for reading and for disabling branch trace. */
914 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
915 ptid_t ptid);
916
917 /* Disable branch tracing and deallocate TINFO. */
918 void (*to_disable_btrace) (struct target_ops *,
919 struct btrace_target_info *tinfo);
920
921 /* Disable branch tracing and deallocate TINFO. This function is similar
922 to to_disable_btrace, except that it is called during teardown and is
923 only allowed to perform actions that are safe. A counter-example would
924 be attempting to talk to a remote target. */
925 void (*to_teardown_btrace) (struct target_ops *,
926 struct btrace_target_info *tinfo);
927
928 /* Read branch trace data for the thread indicated by BTINFO into DATA.
929 DATA is cleared before new trace is added.
930 The branch trace will start with the most recent block and continue
931 towards older blocks. */
932 enum btrace_error (*to_read_btrace) (struct target_ops *self,
933 VEC (btrace_block_s) **data,
934 struct btrace_target_info *btinfo,
935 enum btrace_read_type type);
936
937 /* Stop trace recording. */
938 void (*to_stop_recording) (struct target_ops *);
939
940 /* Print information about the recording. */
941 void (*to_info_record) (struct target_ops *);
942
943 /* Save the recorded execution trace into a file. */
944 void (*to_save_record) (struct target_ops *, const char *filename);
945
946 /* Delete the recorded execution trace from the current position onwards. */
947 void (*to_delete_record) (struct target_ops *);
948
949 /* Query if the record target is currently replaying. */
950 int (*to_record_is_replaying) (struct target_ops *);
951
952 /* Go to the begin of the execution trace. */
953 void (*to_goto_record_begin) (struct target_ops *);
954
955 /* Go to the end of the execution trace. */
956 void (*to_goto_record_end) (struct target_ops *);
957
958 /* Go to a specific location in the recorded execution trace. */
959 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
960
961 /* Disassemble SIZE instructions in the recorded execution trace from
962 the current position.
963 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
964 disassemble SIZE succeeding instructions. */
965 void (*to_insn_history) (struct target_ops *, int size, int flags);
966
967 /* Disassemble SIZE instructions in the recorded execution trace around
968 FROM.
969 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
970 disassemble SIZE instructions after FROM. */
971 void (*to_insn_history_from) (struct target_ops *,
972 ULONGEST from, int size, int flags);
973
974 /* Disassemble a section of the recorded execution trace from instruction
975 BEGIN (inclusive) to instruction END (inclusive). */
976 void (*to_insn_history_range) (struct target_ops *,
977 ULONGEST begin, ULONGEST end, int flags);
978
979 /* Print a function trace of the recorded execution trace.
980 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
981 succeeding functions. */
982 void (*to_call_history) (struct target_ops *, int size, int flags);
983
984 /* Print a function trace of the recorded execution trace starting
985 at function FROM.
986 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
987 SIZE functions after FROM. */
988 void (*to_call_history_from) (struct target_ops *,
989 ULONGEST begin, int size, int flags);
990
991 /* Print a function trace of an execution trace section from function BEGIN
992 (inclusive) to function END (inclusive). */
993 void (*to_call_history_range) (struct target_ops *,
994 ULONGEST begin, ULONGEST end, int flags);
995
996 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
997 non-empty annex. */
998 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
999
1000 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1001 it is not used. */
1002 const struct frame_unwind *to_get_unwinder;
1003 const struct frame_unwind *to_get_tailcall_unwinder;
1004
1005 /* Return the number of bytes by which the PC needs to be decremented
1006 after executing a breakpoint instruction.
1007 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1008 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1009 struct gdbarch *gdbarch);
1010
1011 int to_magic;
1012 /* Need sub-structure for target machine related rather than comm related?
1013 */
1014 };
1015
1016/* Magic number for checking ops size. If a struct doesn't end with this
1017 number, somebody changed the declaration but didn't change all the
1018 places that initialize one. */
1019
1020#define OPS_MAGIC 3840
1021
1022/* The ops structure for our "current" target process. This should
1023 never be NULL. If there is no target, it points to the dummy_target. */
1024
1025extern struct target_ops current_target;
1026
1027/* Define easy words for doing these operations on our current target. */
1028
1029#define target_shortname (current_target.to_shortname)
1030#define target_longname (current_target.to_longname)
1031
1032/* Does whatever cleanup is required for a target that we are no
1033 longer going to be calling. This routine is automatically always
1034 called after popping the target off the target stack - the target's
1035 own methods are no longer available through the target vector.
1036 Closing file descriptors and freeing all memory allocated memory are
1037 typical things it should do. */
1038
1039void target_close (struct target_ops *targ);
1040
1041/* Attaches to a process on the target side. Arguments are as passed
1042 to the `attach' command by the user. This routine can be called
1043 when the target is not on the target-stack, if the target_can_run
1044 routine returns 1; in that case, it must push itself onto the stack.
1045 Upon exit, the target should be ready for normal operations, and
1046 should be ready to deliver the status of the process immediately
1047 (without waiting) to an upcoming target_wait call. */
1048
1049void target_attach (char *, int);
1050
1051/* Some targets don't generate traps when attaching to the inferior,
1052 or their target_attach implementation takes care of the waiting.
1053 These targets must set to_attach_no_wait. */
1054
1055#define target_attach_no_wait \
1056 (current_target.to_attach_no_wait)
1057
1058/* The target_attach operation places a process under debugger control,
1059 and stops the process.
1060
1061 This operation provides a target-specific hook that allows the
1062 necessary bookkeeping to be performed after an attach completes. */
1063#define target_post_attach(pid) \
1064 (*current_target.to_post_attach) (&current_target, pid)
1065
1066/* Takes a program previously attached to and detaches it.
1067 The program may resume execution (some targets do, some don't) and will
1068 no longer stop on signals, etc. We better not have left any breakpoints
1069 in the program or it'll die when it hits one. ARGS is arguments
1070 typed by the user (e.g. a signal to send the process). FROM_TTY
1071 says whether to be verbose or not. */
1072
1073extern void target_detach (const char *, int);
1074
1075/* Disconnect from the current target without resuming it (leaving it
1076 waiting for a debugger). */
1077
1078extern void target_disconnect (char *, int);
1079
1080/* Resume execution of the target process PTID (or a group of
1081 threads). STEP says whether to single-step or to run free; SIGGNAL
1082 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1083 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1084 PTID means `step/resume only this process id'. A wildcard PTID
1085 (all threads, or all threads of process) means `step/resume
1086 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1087 matches) resume with their 'thread->suspend.stop_signal' signal
1088 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1089 if in "no pass" state. */
1090
1091extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1092
1093/* Wait for process pid to do something. PTID = -1 to wait for any
1094 pid to do something. Return pid of child, or -1 in case of error;
1095 store status through argument pointer STATUS. Note that it is
1096 _NOT_ OK to throw_exception() out of target_wait() without popping
1097 the debugging target from the stack; GDB isn't prepared to get back
1098 to the prompt with a debugging target but without the frame cache,
1099 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1100 options. */
1101
1102extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1103 int options);
1104
1105/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1106
1107extern void target_fetch_registers (struct regcache *regcache, int regno);
1108
1109/* Store at least register REGNO, or all regs if REGNO == -1.
1110 It can store as many registers as it wants to, so target_prepare_to_store
1111 must have been previously called. Calls error() if there are problems. */
1112
1113extern void target_store_registers (struct regcache *regcache, int regs);
1114
1115/* Get ready to modify the registers array. On machines which store
1116 individual registers, this doesn't need to do anything. On machines
1117 which store all the registers in one fell swoop, this makes sure
1118 that REGISTERS contains all the registers from the program being
1119 debugged. */
1120
1121#define target_prepare_to_store(regcache) \
1122 (*current_target.to_prepare_to_store) (&current_target, regcache)
1123
1124/* Determine current address space of thread PTID. */
1125
1126struct address_space *target_thread_address_space (ptid_t);
1127
1128/* Implement the "info proc" command. This returns one if the request
1129 was handled, and zero otherwise. It can also throw an exception if
1130 an error was encountered while attempting to handle the
1131 request. */
1132
1133int target_info_proc (char *, enum info_proc_what);
1134
1135/* Returns true if this target can debug multiple processes
1136 simultaneously. */
1137
1138#define target_supports_multi_process() \
1139 (*current_target.to_supports_multi_process) (&current_target)
1140
1141/* Returns true if this target can disable address space randomization. */
1142
1143int target_supports_disable_randomization (void);
1144
1145/* Returns true if this target can enable and disable tracepoints
1146 while a trace experiment is running. */
1147
1148#define target_supports_enable_disable_tracepoint() \
1149 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1150
1151#define target_supports_string_tracing() \
1152 (*current_target.to_supports_string_tracing) (&current_target)
1153
1154/* Returns true if this target can handle breakpoint conditions
1155 on its end. */
1156
1157#define target_supports_evaluation_of_breakpoint_conditions() \
1158 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1159
1160/* Returns true if this target can handle breakpoint commands
1161 on its end. */
1162
1163#define target_can_run_breakpoint_commands() \
1164 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1165
1166extern int target_read_string (CORE_ADDR, char **, int, int *);
1167
1168extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1169 ssize_t len);
1170
1171extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1172 ssize_t len);
1173
1174extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1175
1176extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1177
1178extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1179 ssize_t len);
1180
1181extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1182 ssize_t len);
1183
1184/* Fetches the target's memory map. If one is found it is sorted
1185 and returned, after some consistency checking. Otherwise, NULL
1186 is returned. */
1187VEC(mem_region_s) *target_memory_map (void);
1188
1189/* Erase the specified flash region. */
1190void target_flash_erase (ULONGEST address, LONGEST length);
1191
1192/* Finish a sequence of flash operations. */
1193void target_flash_done (void);
1194
1195/* Describes a request for a memory write operation. */
1196struct memory_write_request
1197 {
1198 /* Begining address that must be written. */
1199 ULONGEST begin;
1200 /* Past-the-end address. */
1201 ULONGEST end;
1202 /* The data to write. */
1203 gdb_byte *data;
1204 /* A callback baton for progress reporting for this request. */
1205 void *baton;
1206 };
1207typedef struct memory_write_request memory_write_request_s;
1208DEF_VEC_O(memory_write_request_s);
1209
1210/* Enumeration specifying different flash preservation behaviour. */
1211enum flash_preserve_mode
1212 {
1213 flash_preserve,
1214 flash_discard
1215 };
1216
1217/* Write several memory blocks at once. This version can be more
1218 efficient than making several calls to target_write_memory, in
1219 particular because it can optimize accesses to flash memory.
1220
1221 Moreover, this is currently the only memory access function in gdb
1222 that supports writing to flash memory, and it should be used for
1223 all cases where access to flash memory is desirable.
1224
1225 REQUESTS is the vector (see vec.h) of memory_write_request.
1226 PRESERVE_FLASH_P indicates what to do with blocks which must be
1227 erased, but not completely rewritten.
1228 PROGRESS_CB is a function that will be periodically called to provide
1229 feedback to user. It will be called with the baton corresponding
1230 to the request currently being written. It may also be called
1231 with a NULL baton, when preserved flash sectors are being rewritten.
1232
1233 The function returns 0 on success, and error otherwise. */
1234int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1235 enum flash_preserve_mode preserve_flash_p,
1236 void (*progress_cb) (ULONGEST, void *));
1237
1238/* Print a line about the current target. */
1239
1240#define target_files_info() \
1241 (*current_target.to_files_info) (&current_target)
1242
1243/* Insert a hardware breakpoint at address BP_TGT->placed_address in
1244 the target machine. Returns 0 for success, and returns non-zero or
1245 throws an error (with a detailed failure reason error code and
1246 message) otherwise. */
1247
1248extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1249 struct bp_target_info *bp_tgt);
1250
1251/* Remove a breakpoint at address BP_TGT->placed_address in the target
1252 machine. Result is 0 for success, non-zero for error. */
1253
1254extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1255 struct bp_target_info *bp_tgt);
1256
1257/* Initialize the terminal settings we record for the inferior,
1258 before we actually run the inferior. */
1259
1260#define target_terminal_init() \
1261 (*current_target.to_terminal_init) (&current_target)
1262
1263/* Put the inferior's terminal settings into effect.
1264 This is preparation for starting or resuming the inferior. */
1265
1266extern void target_terminal_inferior (void);
1267
1268/* Put some of our terminal settings into effect,
1269 enough to get proper results from our output,
1270 but do not change into or out of RAW mode
1271 so that no input is discarded.
1272
1273 After doing this, either terminal_ours or terminal_inferior
1274 should be called to get back to a normal state of affairs. */
1275
1276#define target_terminal_ours_for_output() \
1277 (*current_target.to_terminal_ours_for_output) (&current_target)
1278
1279/* Put our terminal settings into effect.
1280 First record the inferior's terminal settings
1281 so they can be restored properly later. */
1282
1283#define target_terminal_ours() \
1284 (*current_target.to_terminal_ours) (&current_target)
1285
1286/* Save our terminal settings.
1287 This is called from TUI after entering or leaving the curses
1288 mode. Since curses modifies our terminal this call is here
1289 to take this change into account. */
1290
1291#define target_terminal_save_ours() \
1292 (*current_target.to_terminal_save_ours) (&current_target)
1293
1294/* Print useful information about our terminal status, if such a thing
1295 exists. */
1296
1297#define target_terminal_info(arg, from_tty) \
1298 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1299
1300/* Kill the inferior process. Make it go away. */
1301
1302extern void target_kill (void);
1303
1304/* Load an executable file into the target process. This is expected
1305 to not only bring new code into the target process, but also to
1306 update GDB's symbol tables to match.
1307
1308 ARG contains command-line arguments, to be broken down with
1309 buildargv (). The first non-switch argument is the filename to
1310 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1311 0)), which is an offset to apply to the load addresses of FILE's
1312 sections. The target may define switches, or other non-switch
1313 arguments, as it pleases. */
1314
1315extern void target_load (char *arg, int from_tty);
1316
1317/* Start an inferior process and set inferior_ptid to its pid.
1318 EXEC_FILE is the file to run.
1319 ALLARGS is a string containing the arguments to the program.
1320 ENV is the environment vector to pass. Errors reported with error().
1321 On VxWorks and various standalone systems, we ignore exec_file. */
1322
1323void target_create_inferior (char *exec_file, char *args,
1324 char **env, int from_tty);
1325
1326/* Some targets (such as ttrace-based HPUX) don't allow us to request
1327 notification of inferior events such as fork and vork immediately
1328 after the inferior is created. (This because of how gdb gets an
1329 inferior created via invoking a shell to do it. In such a scenario,
1330 if the shell init file has commands in it, the shell will fork and
1331 exec for each of those commands, and we will see each such fork
1332 event. Very bad.)
1333
1334 Such targets will supply an appropriate definition for this function. */
1335
1336#define target_post_startup_inferior(ptid) \
1337 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1338
1339/* On some targets, we can catch an inferior fork or vfork event when
1340 it occurs. These functions insert/remove an already-created
1341 catchpoint for such events. They return 0 for success, 1 if the
1342 catchpoint type is not supported and -1 for failure. */
1343
1344#define target_insert_fork_catchpoint(pid) \
1345 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1346
1347#define target_remove_fork_catchpoint(pid) \
1348 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1349
1350#define target_insert_vfork_catchpoint(pid) \
1351 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1352
1353#define target_remove_vfork_catchpoint(pid) \
1354 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1355
1356/* If the inferior forks or vforks, this function will be called at
1357 the next resume in order to perform any bookkeeping and fiddling
1358 necessary to continue debugging either the parent or child, as
1359 requested, and releasing the other. Information about the fork
1360 or vfork event is available via get_last_target_status ().
1361 This function returns 1 if the inferior should not be resumed
1362 (i.e. there is another event pending). */
1363
1364int target_follow_fork (int follow_child, int detach_fork);
1365
1366/* On some targets, we can catch an inferior exec event when it
1367 occurs. These functions insert/remove an already-created
1368 catchpoint for such events. They return 0 for success, 1 if the
1369 catchpoint type is not supported and -1 for failure. */
1370
1371#define target_insert_exec_catchpoint(pid) \
1372 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1373
1374#define target_remove_exec_catchpoint(pid) \
1375 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1376
1377/* Syscall catch.
1378
1379 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1380 If NEEDED is zero, it means the target can disable the mechanism to
1381 catch system calls because there are no more catchpoints of this type.
1382
1383 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1384 being requested. In this case, both TABLE_SIZE and TABLE should
1385 be ignored.
1386
1387 TABLE_SIZE is the number of elements in TABLE. It only matters if
1388 ANY_COUNT is zero.
1389
1390 TABLE is an array of ints, indexed by syscall number. An element in
1391 this array is nonzero if that syscall should be caught. This argument
1392 only matters if ANY_COUNT is zero.
1393
1394 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1395 for failure. */
1396
1397#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1398 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1399 pid, needed, any_count, \
1400 table_size, table)
1401
1402/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1403 exit code of PID, if any. */
1404
1405#define target_has_exited(pid,wait_status,exit_status) \
1406 (*current_target.to_has_exited) (&current_target, \
1407 pid,wait_status,exit_status)
1408
1409/* The debugger has completed a blocking wait() call. There is now
1410 some process event that must be processed. This function should
1411 be defined by those targets that require the debugger to perform
1412 cleanup or internal state changes in response to the process event. */
1413
1414/* The inferior process has died. Do what is right. */
1415
1416void target_mourn_inferior (void);
1417
1418/* Does target have enough data to do a run or attach command? */
1419
1420#define target_can_run(t) \
1421 ((t)->to_can_run) (t)
1422
1423/* Set list of signals to be handled in the target.
1424
1425 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1426 (enum gdb_signal). For every signal whose entry in this array is
1427 non-zero, the target is allowed -but not required- to skip reporting
1428 arrival of the signal to the GDB core by returning from target_wait,
1429 and to pass the signal directly to the inferior instead.
1430
1431 However, if the target is hardware single-stepping a thread that is
1432 about to receive a signal, it needs to be reported in any case, even
1433 if mentioned in a previous target_pass_signals call. */
1434
1435extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1436
1437/* Set list of signals the target may pass to the inferior. This
1438 directly maps to the "handle SIGNAL pass/nopass" setting.
1439
1440 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1441 number (enum gdb_signal). For every signal whose entry in this
1442 array is non-zero, the target is allowed to pass the signal to the
1443 inferior. Signals not present in the array shall be silently
1444 discarded. This does not influence whether to pass signals to the
1445 inferior as a result of a target_resume call. This is useful in
1446 scenarios where the target needs to decide whether to pass or not a
1447 signal to the inferior without GDB core involvement, such as for
1448 example, when detaching (as threads may have been suspended with
1449 pending signals not reported to GDB). */
1450
1451extern void target_program_signals (int nsig, unsigned char *program_signals);
1452
1453/* Check to see if a thread is still alive. */
1454
1455extern int target_thread_alive (ptid_t ptid);
1456
1457/* Query for new threads and add them to the thread list. */
1458
1459extern void target_find_new_threads (void);
1460
1461/* Make target stop in a continuable fashion. (For instance, under
1462 Unix, this should act like SIGSTOP). This function is normally
1463 used by GUIs to implement a stop button. */
1464
1465extern void target_stop (ptid_t ptid);
1466
1467/* Send the specified COMMAND to the target's monitor
1468 (shell,interpreter) for execution. The result of the query is
1469 placed in OUTBUF. */
1470
1471#define target_rcmd(command, outbuf) \
1472 (*current_target.to_rcmd) (&current_target, command, outbuf)
1473
1474
1475/* Does the target include all of memory, or only part of it? This
1476 determines whether we look up the target chain for other parts of
1477 memory if this target can't satisfy a request. */
1478
1479extern int target_has_all_memory_1 (void);
1480#define target_has_all_memory target_has_all_memory_1 ()
1481
1482/* Does the target include memory? (Dummy targets don't.) */
1483
1484extern int target_has_memory_1 (void);
1485#define target_has_memory target_has_memory_1 ()
1486
1487/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1488 we start a process.) */
1489
1490extern int target_has_stack_1 (void);
1491#define target_has_stack target_has_stack_1 ()
1492
1493/* Does the target have registers? (Exec files don't.) */
1494
1495extern int target_has_registers_1 (void);
1496#define target_has_registers target_has_registers_1 ()
1497
1498/* Does the target have execution? Can we make it jump (through
1499 hoops), or pop its stack a few times? This means that the current
1500 target is currently executing; for some targets, that's the same as
1501 whether or not the target is capable of execution, but there are
1502 also targets which can be current while not executing. In that
1503 case this will become true after target_create_inferior or
1504 target_attach. */
1505
1506extern int target_has_execution_1 (ptid_t);
1507
1508/* Like target_has_execution_1, but always passes inferior_ptid. */
1509
1510extern int target_has_execution_current (void);
1511
1512#define target_has_execution target_has_execution_current ()
1513
1514/* Default implementations for process_stratum targets. Return true
1515 if there's a selected inferior, false otherwise. */
1516
1517extern int default_child_has_all_memory (struct target_ops *ops);
1518extern int default_child_has_memory (struct target_ops *ops);
1519extern int default_child_has_stack (struct target_ops *ops);
1520extern int default_child_has_registers (struct target_ops *ops);
1521extern int default_child_has_execution (struct target_ops *ops,
1522 ptid_t the_ptid);
1523
1524/* Can the target support the debugger control of thread execution?
1525 Can it lock the thread scheduler? */
1526
1527#define target_can_lock_scheduler \
1528 (current_target.to_has_thread_control & tc_schedlock)
1529
1530/* Should the target enable async mode if it is supported? Temporary
1531 cludge until async mode is a strict superset of sync mode. */
1532extern int target_async_permitted;
1533
1534/* Can the target support asynchronous execution? */
1535#define target_can_async_p() (current_target.to_can_async_p (&current_target))
1536
1537/* Is the target in asynchronous execution mode? */
1538#define target_is_async_p() (current_target.to_is_async_p (&current_target))
1539
1540int target_supports_non_stop (void);
1541
1542/* Put the target in async mode with the specified callback function. */
1543#define target_async(CALLBACK,CONTEXT) \
1544 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1545
1546#define target_execution_direction() \
1547 (current_target.to_execution_direction (&current_target))
1548
1549/* Converts a process id to a string. Usually, the string just contains
1550 `process xyz', but on some systems it may contain
1551 `process xyz thread abc'. */
1552
1553extern char *target_pid_to_str (ptid_t ptid);
1554
1555extern char *normal_pid_to_str (ptid_t ptid);
1556
1557/* Return a short string describing extra information about PID,
1558 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1559 is okay. */
1560
1561#define target_extra_thread_info(TP) \
1562 (current_target.to_extra_thread_info (&current_target, TP))
1563
1564/* Return the thread's name. A NULL result means that the target
1565 could not determine this thread's name. */
1566
1567extern char *target_thread_name (struct thread_info *);
1568
1569/* Attempts to find the pathname of the executable file
1570 that was run to create a specified process.
1571
1572 The process PID must be stopped when this operation is used.
1573
1574 If the executable file cannot be determined, NULL is returned.
1575
1576 Else, a pointer to a character string containing the pathname
1577 is returned. This string should be copied into a buffer by
1578 the client if the string will not be immediately used, or if
1579 it must persist. */
1580
1581#define target_pid_to_exec_file(pid) \
1582 (current_target.to_pid_to_exec_file) (&current_target, pid)
1583
1584/* See the to_thread_architecture description in struct target_ops. */
1585
1586#define target_thread_architecture(ptid) \
1587 (current_target.to_thread_architecture (&current_target, ptid))
1588
1589/*
1590 * Iterator function for target memory regions.
1591 * Calls a callback function once for each memory region 'mapped'
1592 * in the child process. Defined as a simple macro rather than
1593 * as a function macro so that it can be tested for nullity.
1594 */
1595
1596#define target_find_memory_regions(FUNC, DATA) \
1597 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1598
1599/*
1600 * Compose corefile .note section.
1601 */
1602
1603#define target_make_corefile_notes(BFD, SIZE_P) \
1604 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1605
1606/* Bookmark interfaces. */
1607#define target_get_bookmark(ARGS, FROM_TTY) \
1608 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1609
1610#define target_goto_bookmark(ARG, FROM_TTY) \
1611 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1612
1613/* Hardware watchpoint interfaces. */
1614
1615/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1616 write). Only the INFERIOR_PTID task is being queried. */
1617
1618#define target_stopped_by_watchpoint() \
1619 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1620
1621/* Non-zero if we have steppable watchpoints */
1622
1623#define target_have_steppable_watchpoint \
1624 (current_target.to_have_steppable_watchpoint)
1625
1626/* Non-zero if we have continuable watchpoints */
1627
1628#define target_have_continuable_watchpoint \
1629 (current_target.to_have_continuable_watchpoint)
1630
1631/* Provide defaults for hardware watchpoint functions. */
1632
1633/* If the *_hw_beakpoint functions have not been defined
1634 elsewhere use the definitions in the target vector. */
1635
1636/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1637 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1638 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1639 (including this one?). OTHERTYPE is who knows what... */
1640
1641#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1642 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1643 TYPE, CNT, OTHERTYPE);
1644
1645/* Returns the number of debug registers needed to watch the given
1646 memory region, or zero if not supported. */
1647
1648#define target_region_ok_for_hw_watchpoint(addr, len) \
1649 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1650 addr, len)
1651
1652
1653/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1654 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1655 COND is the expression for its condition, or NULL if there's none.
1656 Returns 0 for success, 1 if the watchpoint type is not supported,
1657 -1 for failure. */
1658
1659#define target_insert_watchpoint(addr, len, type, cond) \
1660 (*current_target.to_insert_watchpoint) (&current_target, \
1661 addr, len, type, cond)
1662
1663#define target_remove_watchpoint(addr, len, type, cond) \
1664 (*current_target.to_remove_watchpoint) (&current_target, \
1665 addr, len, type, cond)
1666
1667/* Insert a new masked watchpoint at ADDR using the mask MASK.
1668 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1669 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1670 masked watchpoints are not supported, -1 for failure. */
1671
1672extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1673
1674/* Remove a masked watchpoint at ADDR with the mask MASK.
1675 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1676 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1677 for failure. */
1678
1679extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1680
1681/* Insert a hardware breakpoint at address BP_TGT->placed_address in
1682 the target machine. Returns 0 for success, and returns non-zero or
1683 throws an error (with a detailed failure reason error code and
1684 message) otherwise. */
1685
1686#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1687 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1688 gdbarch, bp_tgt)
1689
1690#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1691 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1692 gdbarch, bp_tgt)
1693
1694/* Return number of debug registers needed for a ranged breakpoint,
1695 or -1 if ranged breakpoints are not supported. */
1696
1697extern int target_ranged_break_num_registers (void);
1698
1699/* Return non-zero if target knows the data address which triggered this
1700 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1701 INFERIOR_PTID task is being queried. */
1702#define target_stopped_data_address(target, addr_p) \
1703 (*target.to_stopped_data_address) (target, addr_p)
1704
1705/* Return non-zero if ADDR is within the range of a watchpoint spanning
1706 LENGTH bytes beginning at START. */
1707#define target_watchpoint_addr_within_range(target, addr, start, length) \
1708 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1709
1710/* Return non-zero if the target is capable of using hardware to evaluate
1711 the condition expression. In this case, if the condition is false when
1712 the watched memory location changes, execution may continue without the
1713 debugger being notified.
1714
1715 Due to limitations in the hardware implementation, it may be capable of
1716 avoiding triggering the watchpoint in some cases where the condition
1717 expression is false, but may report some false positives as well.
1718 For this reason, GDB will still evaluate the condition expression when
1719 the watchpoint triggers. */
1720#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1721 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1722 addr, len, type, cond)
1723
1724/* Return number of debug registers needed for a masked watchpoint,
1725 -1 if masked watchpoints are not supported or -2 if the given address
1726 and mask combination cannot be used. */
1727
1728extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1729
1730/* Target can execute in reverse? */
1731#define target_can_execute_reverse \
1732 (current_target.to_can_execute_reverse ? \
1733 current_target.to_can_execute_reverse (&current_target) : 0)
1734
1735extern const struct target_desc *target_read_description (struct target_ops *);
1736
1737#define target_get_ada_task_ptid(lwp, tid) \
1738 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1739
1740/* Utility implementation of searching memory. */
1741extern int simple_search_memory (struct target_ops* ops,
1742 CORE_ADDR start_addr,
1743 ULONGEST search_space_len,
1744 const gdb_byte *pattern,
1745 ULONGEST pattern_len,
1746 CORE_ADDR *found_addrp);
1747
1748/* Main entry point for searching memory. */
1749extern int target_search_memory (CORE_ADDR start_addr,
1750 ULONGEST search_space_len,
1751 const gdb_byte *pattern,
1752 ULONGEST pattern_len,
1753 CORE_ADDR *found_addrp);
1754
1755/* Target file operations. */
1756
1757/* Open FILENAME on the target, using FLAGS and MODE. Return a
1758 target file descriptor, or -1 if an error occurs (and set
1759 *TARGET_ERRNO). */
1760extern int target_fileio_open (const char *filename, int flags, int mode,
1761 int *target_errno);
1762
1763/* Write up to LEN bytes from WRITE_BUF to FD on the target.
1764 Return the number of bytes written, or -1 if an error occurs
1765 (and set *TARGET_ERRNO). */
1766extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1767 ULONGEST offset, int *target_errno);
1768
1769/* Read up to LEN bytes FD on the target into READ_BUF.
1770 Return the number of bytes read, or -1 if an error occurs
1771 (and set *TARGET_ERRNO). */
1772extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1773 ULONGEST offset, int *target_errno);
1774
1775/* Close FD on the target. Return 0, or -1 if an error occurs
1776 (and set *TARGET_ERRNO). */
1777extern int target_fileio_close (int fd, int *target_errno);
1778
1779/* Unlink FILENAME on the target. Return 0, or -1 if an error
1780 occurs (and set *TARGET_ERRNO). */
1781extern int target_fileio_unlink (const char *filename, int *target_errno);
1782
1783/* Read value of symbolic link FILENAME on the target. Return a
1784 null-terminated string allocated via xmalloc, or NULL if an error
1785 occurs (and set *TARGET_ERRNO). */
1786extern char *target_fileio_readlink (const char *filename, int *target_errno);
1787
1788/* Read target file FILENAME. The return value will be -1 if the transfer
1789 fails or is not supported; 0 if the object is empty; or the length
1790 of the object otherwise. If a positive value is returned, a
1791 sufficiently large buffer will be allocated using xmalloc and
1792 returned in *BUF_P containing the contents of the object.
1793
1794 This method should be used for objects sufficiently small to store
1795 in a single xmalloc'd buffer, when no fixed bound on the object's
1796 size is known in advance. */
1797extern LONGEST target_fileio_read_alloc (const char *filename,
1798 gdb_byte **buf_p);
1799
1800/* Read target file FILENAME. The result is NUL-terminated and
1801 returned as a string, allocated using xmalloc. If an error occurs
1802 or the transfer is unsupported, NULL is returned. Empty objects
1803 are returned as allocated but empty strings. A warning is issued
1804 if the result contains any embedded NUL bytes. */
1805extern char *target_fileio_read_stralloc (const char *filename);
1806
1807
1808/* Tracepoint-related operations. */
1809
1810#define target_trace_init() \
1811 (*current_target.to_trace_init) (&current_target)
1812
1813#define target_download_tracepoint(t) \
1814 (*current_target.to_download_tracepoint) (&current_target, t)
1815
1816#define target_can_download_tracepoint() \
1817 (*current_target.to_can_download_tracepoint) (&current_target)
1818
1819#define target_download_trace_state_variable(tsv) \
1820 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1821
1822#define target_enable_tracepoint(loc) \
1823 (*current_target.to_enable_tracepoint) (&current_target, loc)
1824
1825#define target_disable_tracepoint(loc) \
1826 (*current_target.to_disable_tracepoint) (&current_target, loc)
1827
1828#define target_trace_start() \
1829 (*current_target.to_trace_start) (&current_target)
1830
1831#define target_trace_set_readonly_regions() \
1832 (*current_target.to_trace_set_readonly_regions) (&current_target)
1833
1834#define target_get_trace_status(ts) \
1835 (*current_target.to_get_trace_status) (&current_target, ts)
1836
1837#define target_get_tracepoint_status(tp,utp) \
1838 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1839
1840#define target_trace_stop() \
1841 (*current_target.to_trace_stop) (&current_target)
1842
1843#define target_trace_find(type,num,addr1,addr2,tpp) \
1844 (*current_target.to_trace_find) (&current_target, \
1845 (type), (num), (addr1), (addr2), (tpp))
1846
1847#define target_get_trace_state_variable_value(tsv,val) \
1848 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1849 (tsv), (val))
1850
1851#define target_save_trace_data(filename) \
1852 (*current_target.to_save_trace_data) (&current_target, filename)
1853
1854#define target_upload_tracepoints(utpp) \
1855 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1856
1857#define target_upload_trace_state_variables(utsvp) \
1858 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1859
1860#define target_get_raw_trace_data(buf,offset,len) \
1861 (*current_target.to_get_raw_trace_data) (&current_target, \
1862 (buf), (offset), (len))
1863
1864#define target_get_min_fast_tracepoint_insn_len() \
1865 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1866
1867#define target_set_disconnected_tracing(val) \
1868 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1869
1870#define target_set_circular_trace_buffer(val) \
1871 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1872
1873#define target_set_trace_buffer_size(val) \
1874 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1875
1876#define target_set_trace_notes(user,notes,stopnotes) \
1877 (*current_target.to_set_trace_notes) (&current_target, \
1878 (user), (notes), (stopnotes))
1879
1880#define target_get_tib_address(ptid, addr) \
1881 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1882
1883#define target_set_permissions() \
1884 (*current_target.to_set_permissions) (&current_target)
1885
1886#define target_static_tracepoint_marker_at(addr, marker) \
1887 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1888 addr, marker)
1889
1890#define target_static_tracepoint_markers_by_strid(marker_id) \
1891 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1892 marker_id)
1893
1894#define target_traceframe_info() \
1895 (*current_target.to_traceframe_info) (&current_target)
1896
1897#define target_use_agent(use) \
1898 (*current_target.to_use_agent) (&current_target, use)
1899
1900#define target_can_use_agent() \
1901 (*current_target.to_can_use_agent) (&current_target)
1902
1903#define target_augmented_libraries_svr4_read() \
1904 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1905
1906/* Command logging facility. */
1907
1908#define target_log_command(p) \
1909 do \
1910 if (current_target.to_log_command) \
1911 (*current_target.to_log_command) (&current_target, \
1912 p); \
1913 while (0)
1914
1915
1916extern int target_core_of_thread (ptid_t ptid);
1917
1918/* See to_get_unwinder in struct target_ops. */
1919extern const struct frame_unwind *target_get_unwinder (void);
1920
1921/* See to_get_tailcall_unwinder in struct target_ops. */
1922extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1923
1924/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1925 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1926 if there's a mismatch, and -1 if an error is encountered while
1927 reading memory. Throws an error if the functionality is found not
1928 to be supported by the current target. */
1929int target_verify_memory (const gdb_byte *data,
1930 CORE_ADDR memaddr, ULONGEST size);
1931
1932/* Routines for maintenance of the target structures...
1933
1934 complete_target_initialization: Finalize a target_ops by filling in
1935 any fields needed by the target implementation.
1936
1937 add_target: Add a target to the list of all possible targets.
1938
1939 push_target: Make this target the top of the stack of currently used
1940 targets, within its particular stratum of the stack. Result
1941 is 0 if now atop the stack, nonzero if not on top (maybe
1942 should warn user).
1943
1944 unpush_target: Remove this from the stack of currently used targets,
1945 no matter where it is on the list. Returns 0 if no
1946 change, 1 if removed from stack. */
1947
1948extern void add_target (struct target_ops *);
1949
1950extern void add_target_with_completer (struct target_ops *t,
1951 completer_ftype *completer);
1952
1953extern void complete_target_initialization (struct target_ops *t);
1954
1955/* Adds a command ALIAS for target T and marks it deprecated. This is useful
1956 for maintaining backwards compatibility when renaming targets. */
1957
1958extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1959
1960extern void push_target (struct target_ops *);
1961
1962extern int unpush_target (struct target_ops *);
1963
1964extern void target_pre_inferior (int);
1965
1966extern void target_preopen (int);
1967
1968/* Does whatever cleanup is required to get rid of all pushed targets. */
1969extern void pop_all_targets (void);
1970
1971/* Like pop_all_targets, but pops only targets whose stratum is
1972 strictly above ABOVE_STRATUM. */
1973extern void pop_all_targets_above (enum strata above_stratum);
1974
1975extern int target_is_pushed (struct target_ops *t);
1976
1977extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1978 CORE_ADDR offset);
1979
1980/* Struct target_section maps address ranges to file sections. It is
1981 mostly used with BFD files, but can be used without (e.g. for handling
1982 raw disks, or files not in formats handled by BFD). */
1983
1984struct target_section
1985 {
1986 CORE_ADDR addr; /* Lowest address in section */
1987 CORE_ADDR endaddr; /* 1+highest address in section */
1988
1989 struct bfd_section *the_bfd_section;
1990
1991 /* The "owner" of the section.
1992 It can be any unique value. It is set by add_target_sections
1993 and used by remove_target_sections.
1994 For example, for executables it is a pointer to exec_bfd and
1995 for shlibs it is the so_list pointer. */
1996 void *owner;
1997 };
1998
1999/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2000
2001struct target_section_table
2002{
2003 struct target_section *sections;
2004 struct target_section *sections_end;
2005};
2006
2007/* Return the "section" containing the specified address. */
2008struct target_section *target_section_by_addr (struct target_ops *target,
2009 CORE_ADDR addr);
2010
2011/* Return the target section table this target (or the targets
2012 beneath) currently manipulate. */
2013
2014extern struct target_section_table *target_get_section_table
2015 (struct target_ops *target);
2016
2017/* From mem-break.c */
2018
2019extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2020 struct bp_target_info *);
2021
2022extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2023 struct bp_target_info *);
2024
2025extern int default_memory_remove_breakpoint (struct gdbarch *,
2026 struct bp_target_info *);
2027
2028extern int default_memory_insert_breakpoint (struct gdbarch *,
2029 struct bp_target_info *);
2030
2031
2032/* From target.c */
2033
2034extern void initialize_targets (void);
2035
2036extern void noprocess (void) ATTRIBUTE_NORETURN;
2037
2038extern void target_require_runnable (void);
2039
2040extern void find_default_attach (struct target_ops *, char *, int);
2041
2042extern void find_default_create_inferior (struct target_ops *,
2043 char *, char *, char **, int);
2044
2045extern struct target_ops *find_target_beneath (struct target_ops *);
2046
2047/* Find the target at STRATUM. If no target is at that stratum,
2048 return NULL. */
2049
2050struct target_ops *find_target_at (enum strata stratum);
2051
2052/* Read OS data object of type TYPE from the target, and return it in
2053 XML format. The result is NUL-terminated and returned as a string,
2054 allocated using xmalloc. If an error occurs or the transfer is
2055 unsupported, NULL is returned. Empty objects are returned as
2056 allocated but empty strings. */
2057
2058extern char *target_get_osdata (const char *type);
2059
2060\f
2061/* Stuff that should be shared among the various remote targets. */
2062
2063/* Debugging level. 0 is off, and non-zero values mean to print some debug
2064 information (higher values, more information). */
2065extern int remote_debug;
2066
2067/* Speed in bits per second, or -1 which means don't mess with the speed. */
2068extern int baud_rate;
2069/* Timeout limit for response from target. */
2070extern int remote_timeout;
2071
2072\f
2073
2074/* Set the show memory breakpoints mode to show, and installs a cleanup
2075 to restore it back to the current value. */
2076extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2077
2078extern int may_write_registers;
2079extern int may_write_memory;
2080extern int may_insert_breakpoints;
2081extern int may_insert_tracepoints;
2082extern int may_insert_fast_tracepoints;
2083extern int may_stop;
2084
2085extern void update_target_permissions (void);
2086
2087\f
2088/* Imported from machine dependent code. */
2089
2090/* Blank target vector entries are initialized to target_ignore. */
2091void target_ignore (void);
2092
2093/* See to_supports_btrace in struct target_ops. */
2094#define target_supports_btrace() \
2095 (current_target.to_supports_btrace (&current_target))
2096
2097/* See to_enable_btrace in struct target_ops. */
2098extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2099
2100/* See to_disable_btrace in struct target_ops. */
2101extern void target_disable_btrace (struct btrace_target_info *btinfo);
2102
2103/* See to_teardown_btrace in struct target_ops. */
2104extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2105
2106/* See to_read_btrace in struct target_ops. */
2107extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2108 struct btrace_target_info *,
2109 enum btrace_read_type);
2110
2111/* See to_stop_recording in struct target_ops. */
2112extern void target_stop_recording (void);
2113
2114/* See to_info_record in struct target_ops. */
2115extern void target_info_record (void);
2116
2117/* See to_save_record in struct target_ops. */
2118extern void target_save_record (const char *filename);
2119
2120/* Query if the target supports deleting the execution log. */
2121extern int target_supports_delete_record (void);
2122
2123/* See to_delete_record in struct target_ops. */
2124extern void target_delete_record (void);
2125
2126/* See to_record_is_replaying in struct target_ops. */
2127extern int target_record_is_replaying (void);
2128
2129/* See to_goto_record_begin in struct target_ops. */
2130extern void target_goto_record_begin (void);
2131
2132/* See to_goto_record_end in struct target_ops. */
2133extern void target_goto_record_end (void);
2134
2135/* See to_goto_record in struct target_ops. */
2136extern void target_goto_record (ULONGEST insn);
2137
2138/* See to_insn_history. */
2139extern void target_insn_history (int size, int flags);
2140
2141/* See to_insn_history_from. */
2142extern void target_insn_history_from (ULONGEST from, int size, int flags);
2143
2144/* See to_insn_history_range. */
2145extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2146
2147/* See to_call_history. */
2148extern void target_call_history (int size, int flags);
2149
2150/* See to_call_history_from. */
2151extern void target_call_history_from (ULONGEST begin, int size, int flags);
2152
2153/* See to_call_history_range. */
2154extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2155
2156/* See to_decr_pc_after_break. Start searching for the target at OPS. */
2157extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2158 struct gdbarch *gdbarch);
2159
2160/* See to_decr_pc_after_break. */
2161extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2162
2163#endif /* !defined (TARGET_H) */
This page took 0.045638 seconds and 4 git commands to generate.