* objfiles.h: Delete comments refering to inside_entry_func and
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#if !defined (TARGET_H)
26#define TARGET_H
27
28struct objfile;
29struct ui_file;
30struct mem_attrib;
31struct target_ops;
32
33/* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52#include "bfd.h"
53#include "symtab.h"
54#include "dcache.h"
55#include "memattr.h"
56
57enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150/* Possible types of events that the inferior handler will have to
151 deal with. */
152enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172/* Return the string for a signal. */
173extern char *target_signal_to_string (enum target_signal);
174
175/* Return the name (SIGHUP, etc.) for a signal. */
176extern char *target_signal_to_name (enum target_signal);
177
178/* Given a name (SIGHUP, etc.), return its signal. */
179enum target_signal target_signal_from_name (char *);
180\f
181/* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215 backward compatibility with the "target_query" method that this
216 replaced, when OFFSET and LEN are both zero, return the "minimum"
217 buffer size. See "remote.c" for further information. */
218
219enum target_object
220{
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY,
227 /* Kernel Unwind Table. See "ia64-tdep.c". */
228 TARGET_OBJECT_UNWIND_TABLE,
229 /* Transfer auxilliary vector. */
230 TARGET_OBJECT_AUXV,
231
232 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
233};
234
235extern LONGEST target_read_partial (struct target_ops *ops,
236 enum target_object object,
237 const char *annex, void *buf,
238 ULONGEST offset, LONGEST len);
239
240extern LONGEST target_write_partial (struct target_ops *ops,
241 enum target_object object,
242 const char *annex, const void *buf,
243 ULONGEST offset, LONGEST len);
244
245/* Wrappers to perform the full transfer. */
246extern LONGEST target_read (struct target_ops *ops,
247 enum target_object object,
248 const char *annex, void *buf,
249 ULONGEST offset, LONGEST len);
250
251extern LONGEST target_write (struct target_ops *ops,
252 enum target_object object,
253 const char *annex, const void *buf,
254 ULONGEST offset, LONGEST len);
255
256/* Wrappers to target read/write that perform memory transfers. They
257 throw an error if the memory transfer fails.
258
259 NOTE: cagney/2003-10-23: The naming schema is lifted from
260 "frame.h". The parameter order is lifted from get_frame_memory,
261 which in turn lifted it from read_memory. */
262
263extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
264 void *buf, LONGEST len);
265extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
266 CORE_ADDR addr, int len);
267\f
268
269/* If certain kinds of activity happen, target_wait should perform
270 callbacks. */
271/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
272 on TARGET_ACTIVITY_FD. */
273extern int target_activity_fd;
274/* Returns zero to leave the inferior alone, one to interrupt it. */
275extern int (*target_activity_function) (void);
276\f
277struct thread_info; /* fwd decl for parameter list below: */
278
279struct target_ops
280 {
281 struct target_ops *beneath; /* To the target under this one. */
282 char *to_shortname; /* Name this target type */
283 char *to_longname; /* Name for printing */
284 char *to_doc; /* Documentation. Does not include trailing
285 newline, and starts with a one-line descrip-
286 tion (probably similar to to_longname). */
287 /* Per-target scratch pad. */
288 void *to_data;
289 /* The open routine takes the rest of the parameters from the
290 command, and (if successful) pushes a new target onto the
291 stack. Targets should supply this routine, if only to provide
292 an error message. */
293 void (*to_open) (char *, int);
294 /* Old targets with a static target vector provide "to_close".
295 New re-entrant targets provide "to_xclose" and that is expected
296 to xfree everything (including the "struct target_ops"). */
297 void (*to_xclose) (struct target_ops *targ, int quitting);
298 void (*to_close) (int);
299 void (*to_attach) (char *, int);
300 void (*to_post_attach) (int);
301 void (*to_detach) (char *, int);
302 void (*to_disconnect) (char *, int);
303 void (*to_resume) (ptid_t, int, enum target_signal);
304 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
305 void (*to_post_wait) (ptid_t, int);
306 void (*to_fetch_registers) (int);
307 void (*to_store_registers) (int);
308 void (*to_prepare_to_store) (void);
309
310 /* Transfer LEN bytes of memory between GDB address MYADDR and
311 target address MEMADDR. If WRITE, transfer them to the target, else
312 transfer them from the target. TARGET is the target from which we
313 get this function.
314
315 Return value, N, is one of the following:
316
317 0 means that we can't handle this. If errno has been set, it is the
318 error which prevented us from doing it (FIXME: What about bfd_error?).
319
320 positive (call it N) means that we have transferred N bytes
321 starting at MEMADDR. We might be able to handle more bytes
322 beyond this length, but no promises.
323
324 negative (call its absolute value N) means that we cannot
325 transfer right at MEMADDR, but we could transfer at least
326 something at MEMADDR + N. */
327
328 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
329 int len, int write,
330 struct mem_attrib *attrib,
331 struct target_ops *target);
332
333 void (*to_files_info) (struct target_ops *);
334 int (*to_insert_breakpoint) (CORE_ADDR, char *);
335 int (*to_remove_breakpoint) (CORE_ADDR, char *);
336 int (*to_can_use_hw_breakpoint) (int, int, int);
337 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
338 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
339 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
340 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
341 int (*to_stopped_by_watchpoint) (void);
342 int to_have_continuable_watchpoint;
343 CORE_ADDR (*to_stopped_data_address) (void);
344 int (*to_region_size_ok_for_hw_watchpoint) (int);
345 void (*to_terminal_init) (void);
346 void (*to_terminal_inferior) (void);
347 void (*to_terminal_ours_for_output) (void);
348 void (*to_terminal_ours) (void);
349 void (*to_terminal_save_ours) (void);
350 void (*to_terminal_info) (char *, int);
351 void (*to_kill) (void);
352 void (*to_load) (char *, int);
353 int (*to_lookup_symbol) (char *, CORE_ADDR *);
354 void (*to_create_inferior) (char *, char *, char **);
355 void (*to_post_startup_inferior) (ptid_t);
356 void (*to_acknowledge_created_inferior) (int);
357 int (*to_insert_fork_catchpoint) (int);
358 int (*to_remove_fork_catchpoint) (int);
359 int (*to_insert_vfork_catchpoint) (int);
360 int (*to_remove_vfork_catchpoint) (int);
361 int (*to_follow_fork) (int);
362 int (*to_insert_exec_catchpoint) (int);
363 int (*to_remove_exec_catchpoint) (int);
364 int (*to_reported_exec_events_per_exec_call) (void);
365 int (*to_has_exited) (int, int, int *);
366 void (*to_mourn_inferior) (void);
367 int (*to_can_run) (void);
368 void (*to_notice_signals) (ptid_t ptid);
369 int (*to_thread_alive) (ptid_t ptid);
370 void (*to_find_new_threads) (void);
371 char *(*to_pid_to_str) (ptid_t);
372 char *(*to_extra_thread_info) (struct thread_info *);
373 void (*to_stop) (void);
374 void (*to_rcmd) (char *command, struct ui_file *output);
375 struct symtab_and_line *(*to_enable_exception_callback) (enum
376 exception_event_kind,
377 int);
378 struct exception_event_record *(*to_get_current_exception_event) (void);
379 char *(*to_pid_to_exec_file) (int pid);
380 enum strata to_stratum;
381 int to_has_all_memory;
382 int to_has_memory;
383 int to_has_stack;
384 int to_has_registers;
385 int to_has_execution;
386 int to_has_thread_control; /* control thread execution */
387 struct section_table
388 *to_sections;
389 struct section_table
390 *to_sections_end;
391 /* ASYNC target controls */
392 int (*to_can_async_p) (void);
393 int (*to_is_async_p) (void);
394 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
395 void *context);
396 int to_async_mask_value;
397 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
398 unsigned long,
399 int, int, int,
400 void *),
401 void *);
402 char * (*to_make_corefile_notes) (bfd *, int *);
403
404 /* Return the thread-local address at OFFSET in the
405 thread-local storage for the thread PTID and the shared library
406 or executable file given by OBJFILE. If that block of
407 thread-local storage hasn't been allocated yet, this function
408 may return an error. */
409 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
410 struct objfile *objfile,
411 CORE_ADDR offset);
412
413 /* Perform partial transfers on OBJECT. See target_read_partial
414 and target_write_partial for details of each variant. One, and
415 only one, of readbuf or writebuf must be non-NULL. */
416 LONGEST (*to_xfer_partial) (struct target_ops *ops,
417 enum target_object object, const char *annex,
418 void *readbuf, const void *writebuf,
419 ULONGEST offset, LONGEST len);
420
421 int to_magic;
422 /* Need sub-structure for target machine related rather than comm related?
423 */
424 };
425
426/* Magic number for checking ops size. If a struct doesn't end with this
427 number, somebody changed the declaration but didn't change all the
428 places that initialize one. */
429
430#define OPS_MAGIC 3840
431
432/* The ops structure for our "current" target process. This should
433 never be NULL. If there is no target, it points to the dummy_target. */
434
435extern struct target_ops current_target;
436
437/* Define easy words for doing these operations on our current target. */
438
439#define target_shortname (current_target.to_shortname)
440#define target_longname (current_target.to_longname)
441
442/* Does whatever cleanup is required for a target that we are no
443 longer going to be calling. QUITTING indicates that GDB is exiting
444 and should not get hung on an error (otherwise it is important to
445 perform clean termination, even if it takes a while). This routine
446 is automatically always called when popping the target off the
447 target stack (to_beneath is undefined). Closing file descriptors
448 and freeing all memory allocated memory are typical things it
449 should do. */
450
451void target_close (struct target_ops *targ, int quitting);
452
453/* Attaches to a process on the target side. Arguments are as passed
454 to the `attach' command by the user. This routine can be called
455 when the target is not on the target-stack, if the target_can_run
456 routine returns 1; in that case, it must push itself onto the stack.
457 Upon exit, the target should be ready for normal operations, and
458 should be ready to deliver the status of the process immediately
459 (without waiting) to an upcoming target_wait call. */
460
461#define target_attach(args, from_tty) \
462 (*current_target.to_attach) (args, from_tty)
463
464/* The target_attach operation places a process under debugger control,
465 and stops the process.
466
467 This operation provides a target-specific hook that allows the
468 necessary bookkeeping to be performed after an attach completes. */
469#define target_post_attach(pid) \
470 (*current_target.to_post_attach) (pid)
471
472/* Takes a program previously attached to and detaches it.
473 The program may resume execution (some targets do, some don't) and will
474 no longer stop on signals, etc. We better not have left any breakpoints
475 in the program or it'll die when it hits one. ARGS is arguments
476 typed by the user (e.g. a signal to send the process). FROM_TTY
477 says whether to be verbose or not. */
478
479extern void target_detach (char *, int);
480
481/* Disconnect from the current target without resuming it (leaving it
482 waiting for a debugger). */
483
484extern void target_disconnect (char *, int);
485
486/* Resume execution of the target process PTID. STEP says whether to
487 single-step or to run free; SIGGNAL is the signal to be given to
488 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
489 pass TARGET_SIGNAL_DEFAULT. */
490
491#define target_resume(ptid, step, siggnal) \
492 do { \
493 dcache_invalidate(target_dcache); \
494 (*current_target.to_resume) (ptid, step, siggnal); \
495 } while (0)
496
497/* Wait for process pid to do something. PTID = -1 to wait for any
498 pid to do something. Return pid of child, or -1 in case of error;
499 store status through argument pointer STATUS. Note that it is
500 _NOT_ OK to throw_exception() out of target_wait() without popping
501 the debugging target from the stack; GDB isn't prepared to get back
502 to the prompt with a debugging target but without the frame cache,
503 stop_pc, etc., set up. */
504
505#define target_wait(ptid, status) \
506 (*current_target.to_wait) (ptid, status)
507
508/* The target_wait operation waits for a process event to occur, and
509 thereby stop the process.
510
511 On some targets, certain events may happen in sequences. gdb's
512 correct response to any single event of such a sequence may require
513 knowledge of what earlier events in the sequence have been seen.
514
515 This operation provides a target-specific hook that allows the
516 necessary bookkeeping to be performed to track such sequences. */
517
518#define target_post_wait(ptid, status) \
519 (*current_target.to_post_wait) (ptid, status)
520
521/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
522
523#define target_fetch_registers(regno) \
524 (*current_target.to_fetch_registers) (regno)
525
526/* Store at least register REGNO, or all regs if REGNO == -1.
527 It can store as many registers as it wants to, so target_prepare_to_store
528 must have been previously called. Calls error() if there are problems. */
529
530#define target_store_registers(regs) \
531 (*current_target.to_store_registers) (regs)
532
533/* Get ready to modify the registers array. On machines which store
534 individual registers, this doesn't need to do anything. On machines
535 which store all the registers in one fell swoop, this makes sure
536 that REGISTERS contains all the registers from the program being
537 debugged. */
538
539#define target_prepare_to_store() \
540 (*current_target.to_prepare_to_store) ()
541
542extern DCACHE *target_dcache;
543
544extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
545 struct mem_attrib *attrib);
546
547extern int target_read_string (CORE_ADDR, char **, int, int *);
548
549extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
550
551extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
552
553extern int xfer_memory (CORE_ADDR, char *, int, int,
554 struct mem_attrib *, struct target_ops *);
555
556extern int child_xfer_memory (CORE_ADDR, char *, int, int,
557 struct mem_attrib *, struct target_ops *);
558
559/* Make a single attempt at transfering LEN bytes. On a successful
560 transfer, the number of bytes actually transfered is returned and
561 ERR is set to 0. When a transfer fails, -1 is returned (the number
562 of bytes actually transfered is not defined) and ERR is set to a
563 non-zero error indication. */
564
565extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
566 int *err);
567
568extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
569 int *err);
570
571extern char *child_pid_to_exec_file (int);
572
573extern char *child_core_file_to_sym_file (char *);
574
575#if defined(CHILD_POST_ATTACH)
576extern void child_post_attach (int);
577#endif
578
579extern void child_post_wait (ptid_t, int);
580
581extern void child_post_startup_inferior (ptid_t);
582
583extern void child_acknowledge_created_inferior (int);
584
585extern int child_insert_fork_catchpoint (int);
586
587extern int child_remove_fork_catchpoint (int);
588
589extern int child_insert_vfork_catchpoint (int);
590
591extern int child_remove_vfork_catchpoint (int);
592
593extern void child_acknowledge_created_inferior (int);
594
595extern int child_follow_fork (int);
596
597extern int child_insert_exec_catchpoint (int);
598
599extern int child_remove_exec_catchpoint (int);
600
601extern int child_reported_exec_events_per_exec_call (void);
602
603extern int child_has_exited (int, int, int *);
604
605extern int child_thread_alive (ptid_t);
606
607/* From infrun.c. */
608
609extern int inferior_has_forked (int pid, int *child_pid);
610
611extern int inferior_has_vforked (int pid, int *child_pid);
612
613extern int inferior_has_execd (int pid, char **execd_pathname);
614
615/* From exec.c */
616
617extern void print_section_info (struct target_ops *, bfd *);
618
619/* Print a line about the current target. */
620
621#define target_files_info() \
622 (*current_target.to_files_info) (&current_target)
623
624/* Insert a breakpoint at address ADDR in the target machine. SAVE is
625 a pointer to memory allocated for saving the target contents. It
626 is guaranteed by the caller to be long enough to save the number of
627 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
628 success, or an errno value. */
629
630#define target_insert_breakpoint(addr, save) \
631 (*current_target.to_insert_breakpoint) (addr, save)
632
633/* Remove a breakpoint at address ADDR in the target machine.
634 SAVE is a pointer to the same save area
635 that was previously passed to target_insert_breakpoint.
636 Result is 0 for success, or an errno value. */
637
638#define target_remove_breakpoint(addr, save) \
639 (*current_target.to_remove_breakpoint) (addr, save)
640
641/* Initialize the terminal settings we record for the inferior,
642 before we actually run the inferior. */
643
644#define target_terminal_init() \
645 (*current_target.to_terminal_init) ()
646
647/* Put the inferior's terminal settings into effect.
648 This is preparation for starting or resuming the inferior. */
649
650#define target_terminal_inferior() \
651 (*current_target.to_terminal_inferior) ()
652
653/* Put some of our terminal settings into effect,
654 enough to get proper results from our output,
655 but do not change into or out of RAW mode
656 so that no input is discarded.
657
658 After doing this, either terminal_ours or terminal_inferior
659 should be called to get back to a normal state of affairs. */
660
661#define target_terminal_ours_for_output() \
662 (*current_target.to_terminal_ours_for_output) ()
663
664/* Put our terminal settings into effect.
665 First record the inferior's terminal settings
666 so they can be restored properly later. */
667
668#define target_terminal_ours() \
669 (*current_target.to_terminal_ours) ()
670
671/* Save our terminal settings.
672 This is called from TUI after entering or leaving the curses
673 mode. Since curses modifies our terminal this call is here
674 to take this change into account. */
675
676#define target_terminal_save_ours() \
677 (*current_target.to_terminal_save_ours) ()
678
679/* Print useful information about our terminal status, if such a thing
680 exists. */
681
682#define target_terminal_info(arg, from_tty) \
683 (*current_target.to_terminal_info) (arg, from_tty)
684
685/* Kill the inferior process. Make it go away. */
686
687#define target_kill() \
688 (*current_target.to_kill) ()
689
690/* Load an executable file into the target process. This is expected
691 to not only bring new code into the target process, but also to
692 update GDB's symbol tables to match. */
693
694extern void target_load (char *arg, int from_tty);
695
696/* Look up a symbol in the target's symbol table. NAME is the symbol
697 name. ADDRP is a CORE_ADDR * pointing to where the value of the
698 symbol should be returned. The result is 0 if successful, nonzero
699 if the symbol does not exist in the target environment. This
700 function should not call error() if communication with the target
701 is interrupted, since it is called from symbol reading, but should
702 return nonzero, possibly doing a complain(). */
703
704#define target_lookup_symbol(name, addrp) \
705 (*current_target.to_lookup_symbol) (name, addrp)
706
707/* Start an inferior process and set inferior_ptid to its pid.
708 EXEC_FILE is the file to run.
709 ALLARGS is a string containing the arguments to the program.
710 ENV is the environment vector to pass. Errors reported with error().
711 On VxWorks and various standalone systems, we ignore exec_file. */
712
713#define target_create_inferior(exec_file, args, env) \
714 (*current_target.to_create_inferior) (exec_file, args, env)
715
716
717/* Some targets (such as ttrace-based HPUX) don't allow us to request
718 notification of inferior events such as fork and vork immediately
719 after the inferior is created. (This because of how gdb gets an
720 inferior created via invoking a shell to do it. In such a scenario,
721 if the shell init file has commands in it, the shell will fork and
722 exec for each of those commands, and we will see each such fork
723 event. Very bad.)
724
725 Such targets will supply an appropriate definition for this function. */
726
727#define target_post_startup_inferior(ptid) \
728 (*current_target.to_post_startup_inferior) (ptid)
729
730/* On some targets, the sequence of starting up an inferior requires
731 some synchronization between gdb and the new inferior process, PID. */
732
733#define target_acknowledge_created_inferior(pid) \
734 (*current_target.to_acknowledge_created_inferior) (pid)
735
736/* On some targets, we can catch an inferior fork or vfork event when
737 it occurs. These functions insert/remove an already-created
738 catchpoint for such events. */
739
740#define target_insert_fork_catchpoint(pid) \
741 (*current_target.to_insert_fork_catchpoint) (pid)
742
743#define target_remove_fork_catchpoint(pid) \
744 (*current_target.to_remove_fork_catchpoint) (pid)
745
746#define target_insert_vfork_catchpoint(pid) \
747 (*current_target.to_insert_vfork_catchpoint) (pid)
748
749#define target_remove_vfork_catchpoint(pid) \
750 (*current_target.to_remove_vfork_catchpoint) (pid)
751
752/* If the inferior forks or vforks, this function will be called at
753 the next resume in order to perform any bookkeeping and fiddling
754 necessary to continue debugging either the parent or child, as
755 requested, and releasing the other. Information about the fork
756 or vfork event is available via get_last_target_status ().
757 This function returns 1 if the inferior should not be resumed
758 (i.e. there is another event pending). */
759
760#define target_follow_fork(follow_child) \
761 (*current_target.to_follow_fork) (follow_child)
762
763/* On some targets, we can catch an inferior exec event when it
764 occurs. These functions insert/remove an already-created
765 catchpoint for such events. */
766
767#define target_insert_exec_catchpoint(pid) \
768 (*current_target.to_insert_exec_catchpoint) (pid)
769
770#define target_remove_exec_catchpoint(pid) \
771 (*current_target.to_remove_exec_catchpoint) (pid)
772
773/* Returns the number of exec events that are reported when a process
774 invokes a flavor of the exec() system call on this target, if exec
775 events are being reported. */
776
777#define target_reported_exec_events_per_exec_call() \
778 (*current_target.to_reported_exec_events_per_exec_call) ()
779
780/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
781 exit code of PID, if any. */
782
783#define target_has_exited(pid,wait_status,exit_status) \
784 (*current_target.to_has_exited) (pid,wait_status,exit_status)
785
786/* The debugger has completed a blocking wait() call. There is now
787 some process event that must be processed. This function should
788 be defined by those targets that require the debugger to perform
789 cleanup or internal state changes in response to the process event. */
790
791/* The inferior process has died. Do what is right. */
792
793#define target_mourn_inferior() \
794 (*current_target.to_mourn_inferior) ()
795
796/* Does target have enough data to do a run or attach command? */
797
798#define target_can_run(t) \
799 ((t)->to_can_run) ()
800
801/* post process changes to signal handling in the inferior. */
802
803#define target_notice_signals(ptid) \
804 (*current_target.to_notice_signals) (ptid)
805
806/* Check to see if a thread is still alive. */
807
808#define target_thread_alive(ptid) \
809 (*current_target.to_thread_alive) (ptid)
810
811/* Query for new threads and add them to the thread list. */
812
813#define target_find_new_threads() \
814 (*current_target.to_find_new_threads) (); \
815
816/* Make target stop in a continuable fashion. (For instance, under
817 Unix, this should act like SIGSTOP). This function is normally
818 used by GUIs to implement a stop button. */
819
820#define target_stop current_target.to_stop
821
822/* Send the specified COMMAND to the target's monitor
823 (shell,interpreter) for execution. The result of the query is
824 placed in OUTBUF. */
825
826#define target_rcmd(command, outbuf) \
827 (*current_target.to_rcmd) (command, outbuf)
828
829
830/* Get the symbol information for a breakpointable routine called when
831 an exception event occurs.
832 Intended mainly for C++, and for those
833 platforms/implementations where such a callback mechanism is available,
834 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
835 different mechanisms for debugging exceptions. */
836
837#define target_enable_exception_callback(kind, enable) \
838 (*current_target.to_enable_exception_callback) (kind, enable)
839
840/* Get the current exception event kind -- throw or catch, etc. */
841
842#define target_get_current_exception_event() \
843 (*current_target.to_get_current_exception_event) ()
844
845/* Does the target include all of memory, or only part of it? This
846 determines whether we look up the target chain for other parts of
847 memory if this target can't satisfy a request. */
848
849#define target_has_all_memory \
850 (current_target.to_has_all_memory)
851
852/* Does the target include memory? (Dummy targets don't.) */
853
854#define target_has_memory \
855 (current_target.to_has_memory)
856
857/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
858 we start a process.) */
859
860#define target_has_stack \
861 (current_target.to_has_stack)
862
863/* Does the target have registers? (Exec files don't.) */
864
865#define target_has_registers \
866 (current_target.to_has_registers)
867
868/* Does the target have execution? Can we make it jump (through
869 hoops), or pop its stack a few times? FIXME: If this is to work that
870 way, it needs to check whether an inferior actually exists.
871 remote-udi.c and probably other targets can be the current target
872 when the inferior doesn't actually exist at the moment. Right now
873 this just tells us whether this target is *capable* of execution. */
874
875#define target_has_execution \
876 (current_target.to_has_execution)
877
878/* Can the target support the debugger control of thread execution?
879 a) Can it lock the thread scheduler?
880 b) Can it switch the currently running thread? */
881
882#define target_can_lock_scheduler \
883 (current_target.to_has_thread_control & tc_schedlock)
884
885#define target_can_switch_threads \
886 (current_target.to_has_thread_control & tc_switch)
887
888/* Can the target support asynchronous execution? */
889#define target_can_async_p() (current_target.to_can_async_p ())
890
891/* Is the target in asynchronous execution mode? */
892#define target_is_async_p() (current_target.to_is_async_p())
893
894/* Put the target in async mode with the specified callback function. */
895#define target_async(CALLBACK,CONTEXT) \
896 (current_target.to_async((CALLBACK), (CONTEXT)))
897
898/* This is to be used ONLY within call_function_by_hand(). It provides
899 a workaround, to have inferior function calls done in sychronous
900 mode, even though the target is asynchronous. After
901 target_async_mask(0) is called, calls to target_can_async_p() will
902 return FALSE , so that target_resume() will not try to start the
903 target asynchronously. After the inferior stops, we IMMEDIATELY
904 restore the previous nature of the target, by calling
905 target_async_mask(1). After that, target_can_async_p() will return
906 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
907
908 FIXME ezannoni 1999-12-13: we won't need this once we move
909 the turning async on and off to the single execution commands,
910 from where it is done currently, in remote_resume(). */
911
912#define target_async_mask_value \
913 (current_target.to_async_mask_value)
914
915extern int target_async_mask (int mask);
916
917extern void target_link (char *, CORE_ADDR *);
918
919/* Converts a process id to a string. Usually, the string just contains
920 `process xyz', but on some systems it may contain
921 `process xyz thread abc'. */
922
923#undef target_pid_to_str
924#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
925
926#ifndef target_tid_to_str
927#define target_tid_to_str(PID) \
928 target_pid_to_str (PID)
929extern char *normal_pid_to_str (ptid_t ptid);
930#endif
931
932/* Return a short string describing extra information about PID,
933 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
934 is okay. */
935
936#define target_extra_thread_info(TP) \
937 (current_target.to_extra_thread_info (TP))
938
939/*
940 * New Objfile Event Hook:
941 *
942 * Sometimes a GDB component wants to get notified whenever a new
943 * objfile is loaded. Mainly this is used by thread-debugging
944 * implementations that need to know when symbols for the target
945 * thread implemenation are available.
946 *
947 * The old way of doing this is to define a macro 'target_new_objfile'
948 * that points to the function that you want to be called on every
949 * objfile/shlib load.
950 *
951 * The new way is to grab the function pointer, 'target_new_objfile_hook',
952 * and point it to the function that you want to be called on every
953 * objfile/shlib load.
954 *
955 * If multiple clients are willing to be cooperative, they can each
956 * save a pointer to the previous value of target_new_objfile_hook
957 * before modifying it, and arrange for their function to call the
958 * previous function in the chain. In that way, multiple clients
959 * can receive this notification (something like with signal handlers).
960 */
961
962extern void (*target_new_objfile_hook) (struct objfile *);
963
964#ifndef target_pid_or_tid_to_str
965#define target_pid_or_tid_to_str(ID) \
966 target_pid_to_str (ID)
967#endif
968
969/* Attempts to find the pathname of the executable file
970 that was run to create a specified process.
971
972 The process PID must be stopped when this operation is used.
973
974 If the executable file cannot be determined, NULL is returned.
975
976 Else, a pointer to a character string containing the pathname
977 is returned. This string should be copied into a buffer by
978 the client if the string will not be immediately used, or if
979 it must persist. */
980
981#define target_pid_to_exec_file(pid) \
982 (current_target.to_pid_to_exec_file) (pid)
983
984/*
985 * Iterator function for target memory regions.
986 * Calls a callback function once for each memory region 'mapped'
987 * in the child process. Defined as a simple macro rather than
988 * as a function macro so that it can be tested for nullity.
989 */
990
991#define target_find_memory_regions(FUNC, DATA) \
992 (current_target.to_find_memory_regions) (FUNC, DATA)
993
994/*
995 * Compose corefile .note section.
996 */
997
998#define target_make_corefile_notes(BFD, SIZE_P) \
999 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1000
1001/* Thread-local values. */
1002#define target_get_thread_local_address \
1003 (current_target.to_get_thread_local_address)
1004#define target_get_thread_local_address_p() \
1005 (target_get_thread_local_address != NULL)
1006
1007/* Hook to call target dependent code just after inferior target process has
1008 started. */
1009
1010#ifndef TARGET_CREATE_INFERIOR_HOOK
1011#define TARGET_CREATE_INFERIOR_HOOK(PID)
1012#endif
1013
1014/* Hardware watchpoint interfaces. */
1015
1016/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1017 write). */
1018
1019#ifndef STOPPED_BY_WATCHPOINT
1020#define STOPPED_BY_WATCHPOINT(w) \
1021 (*current_target.to_stopped_by_watchpoint) ()
1022#endif
1023
1024/* Non-zero if we have continuable watchpoints */
1025
1026#ifndef HAVE_CONTINUABLE_WATCHPOINT
1027#define HAVE_CONTINUABLE_WATCHPOINT \
1028 (current_target.to_have_continuable_watchpoint)
1029#endif
1030
1031/* HP-UX supplies these operations, which respectively disable and enable
1032 the memory page-protections that are used to implement hardware watchpoints
1033 on that platform. See wait_for_inferior's use of these. */
1034
1035#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1036#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1037#endif
1038
1039#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1040#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1041#endif
1042
1043/* Provide defaults for hardware watchpoint functions. */
1044
1045/* If the *_hw_beakpoint functions have not been defined
1046 elsewhere use the definitions in the target vector. */
1047
1048/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1049 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1050 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1051 (including this one?). OTHERTYPE is who knows what... */
1052
1053#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1054#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1055 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1056#endif
1057
1058#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1059#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1060 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1061#endif
1062
1063
1064/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1065 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1066 success, non-zero for failure. */
1067
1068#ifndef target_insert_watchpoint
1069#define target_insert_watchpoint(addr, len, type) \
1070 (*current_target.to_insert_watchpoint) (addr, len, type)
1071
1072#define target_remove_watchpoint(addr, len, type) \
1073 (*current_target.to_remove_watchpoint) (addr, len, type)
1074#endif
1075
1076#ifndef target_insert_hw_breakpoint
1077#define target_insert_hw_breakpoint(addr, save) \
1078 (*current_target.to_insert_hw_breakpoint) (addr, save)
1079
1080#define target_remove_hw_breakpoint(addr, save) \
1081 (*current_target.to_remove_hw_breakpoint) (addr, save)
1082#endif
1083
1084#ifndef target_stopped_data_address
1085#define target_stopped_data_address() \
1086 (*current_target.to_stopped_data_address) ()
1087#endif
1088
1089/* Sometimes gdb may pick up what appears to be a valid target address
1090 from a minimal symbol, but the value really means, essentially,
1091 "This is an index into a table which is populated when the inferior
1092 is run. Therefore, do not attempt to use this as a PC." */
1093
1094#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1095#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1096#endif
1097
1098/* This will only be defined by a target that supports catching vfork events,
1099 such as HP-UX.
1100
1101 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1102 child process after it has exec'd, causes the parent process to resume as
1103 well. To prevent the parent from running spontaneously, such targets should
1104 define this to a function that prevents that from happening. */
1105#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1106#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1107#endif
1108
1109/* This will only be defined by a target that supports catching vfork events,
1110 such as HP-UX.
1111
1112 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1113 process must be resumed when it delivers its exec event, before the parent
1114 vfork event will be delivered to us. */
1115
1116#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1117#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1118#endif
1119
1120/* Routines for maintenance of the target structures...
1121
1122 add_target: Add a target to the list of all possible targets.
1123
1124 push_target: Make this target the top of the stack of currently used
1125 targets, within its particular stratum of the stack. Result
1126 is 0 if now atop the stack, nonzero if not on top (maybe
1127 should warn user).
1128
1129 unpush_target: Remove this from the stack of currently used targets,
1130 no matter where it is on the list. Returns 0 if no
1131 change, 1 if removed from stack.
1132
1133 pop_target: Remove the top thing on the stack of current targets. */
1134
1135extern void add_target (struct target_ops *);
1136
1137extern int push_target (struct target_ops *);
1138
1139extern int unpush_target (struct target_ops *);
1140
1141extern void target_preopen (int);
1142
1143extern void pop_target (void);
1144
1145/* Struct section_table maps address ranges to file sections. It is
1146 mostly used with BFD files, but can be used without (e.g. for handling
1147 raw disks, or files not in formats handled by BFD). */
1148
1149struct section_table
1150 {
1151 CORE_ADDR addr; /* Lowest address in section */
1152 CORE_ADDR endaddr; /* 1+highest address in section */
1153
1154 struct bfd_section *the_bfd_section;
1155
1156 bfd *bfd; /* BFD file pointer */
1157 };
1158
1159/* Return the "section" containing the specified address. */
1160struct section_table *target_section_by_addr (struct target_ops *target,
1161 CORE_ADDR addr);
1162
1163
1164/* From mem-break.c */
1165
1166extern int memory_remove_breakpoint (CORE_ADDR, char *);
1167
1168extern int memory_insert_breakpoint (CORE_ADDR, char *);
1169
1170extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1171
1172extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1173
1174
1175/* From target.c */
1176
1177extern void initialize_targets (void);
1178
1179extern void noprocess (void);
1180
1181extern void find_default_attach (char *, int);
1182
1183extern void find_default_create_inferior (char *, char *, char **);
1184
1185extern struct target_ops *find_run_target (void);
1186
1187extern struct target_ops *find_core_target (void);
1188
1189extern struct target_ops *find_target_beneath (struct target_ops *);
1190
1191extern int target_resize_to_sections (struct target_ops *target,
1192 int num_added);
1193
1194extern void remove_target_sections (bfd *abfd);
1195
1196\f
1197/* Stuff that should be shared among the various remote targets. */
1198
1199/* Debugging level. 0 is off, and non-zero values mean to print some debug
1200 information (higher values, more information). */
1201extern int remote_debug;
1202
1203/* Speed in bits per second, or -1 which means don't mess with the speed. */
1204extern int baud_rate;
1205/* Timeout limit for response from target. */
1206extern int remote_timeout;
1207
1208\f
1209/* Functions for helping to write a native target. */
1210
1211/* This is for native targets which use a unix/POSIX-style waitstatus. */
1212extern void store_waitstatus (struct target_waitstatus *, int);
1213
1214/* Predicate to target_signal_to_host(). Return non-zero if the enum
1215 targ_signal SIGNO has an equivalent ``host'' representation. */
1216/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1217 to the shorter target_signal_p() because it is far less ambigious.
1218 In this context ``target_signal'' refers to GDB's internal
1219 representation of the target's set of signals while ``host signal''
1220 refers to the target operating system's signal. Confused? */
1221
1222extern int target_signal_to_host_p (enum target_signal signo);
1223
1224/* Convert between host signal numbers and enum target_signal's.
1225 target_signal_to_host() returns 0 and prints a warning() on GDB's
1226 console if SIGNO has no equivalent host representation. */
1227/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1228 refering to the target operating system's signal numbering.
1229 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1230 gdb_signal'' would probably be better as it is refering to GDB's
1231 internal representation of a target operating system's signal. */
1232
1233extern enum target_signal target_signal_from_host (int);
1234extern int target_signal_to_host (enum target_signal);
1235
1236/* Convert from a number used in a GDB command to an enum target_signal. */
1237extern enum target_signal target_signal_from_command (int);
1238
1239/* Any target can call this to switch to remote protocol (in remote.c). */
1240extern void push_remote_target (char *name, int from_tty);
1241\f
1242/* Imported from machine dependent code */
1243
1244/* Blank target vector entries are initialized to target_ignore. */
1245void target_ignore (void);
1246
1247#endif /* !defined (TARGET_H) */
This page took 0.025529 seconds and 4 git commands to generate.