gnulib's sys/stat.h always defines S_IRGRP, S_IXGRP, S_IXOTH.
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25struct objfile;
26struct ui_file;
27struct mem_attrib;
28struct target_ops;
29struct bp_location;
30struct bp_target_info;
31struct regcache;
32struct target_section_table;
33struct trace_state_variable;
34struct trace_status;
35struct uploaded_tsv;
36struct uploaded_tp;
37struct static_tracepoint_marker;
38struct traceframe_info;
39struct expression;
40struct dcache_struct;
41
42/* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61#include "target/resume.h"
62#include "target/wait.h"
63#include "target/waitstatus.h"
64#include "bfd.h"
65#include "symtab.h"
66#include "memattr.h"
67#include "vec.h"
68#include "gdb_signals.h"
69#include "btrace.h"
70#include "command.h"
71
72enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88/* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103/* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107/* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109extern char *target_options_to_string (int target_options);
110
111/* Possible types of events that the inferior handler will have to
112 deal with. */
113enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128\f
129/* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132enum target_object
133{
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204};
205
206/* Possible error codes returned by target_xfer_partial, etc. */
207
208enum target_xfer_error
209{
210 /* Generic I/O error. Note that it's important that this is '-1',
211 as we still have target_xfer-related code returning hardcoded
212 '-1' on error. */
213 TARGET_XFER_E_IO = -1,
214
215 /* Transfer failed because the piece of the object requested is
216 unavailable. */
217 TARGET_XFER_E_UNAVAILABLE = -2,
218
219 /* Keep list in sync with target_xfer_error_to_string. */
220};
221
222/* Return the string form of ERR. */
223
224extern const char *target_xfer_error_to_string (enum target_xfer_error err);
225
226/* Enumeration of the kinds of traceframe searches that a target may
227 be able to perform. */
228
229enum trace_find_type
230 {
231 tfind_number,
232 tfind_pc,
233 tfind_tp,
234 tfind_range,
235 tfind_outside,
236 };
237
238typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
239DEF_VEC_P(static_tracepoint_marker_p);
240
241/* Request that OPS transfer up to LEN 8-bit bytes of the target's
242 OBJECT. The OFFSET, for a seekable object, specifies the
243 starting point. The ANNEX can be used to provide additional
244 data-specific information to the target.
245
246 Return the number of bytes actually transfered, or a negative error
247 code (an 'enum target_xfer_error' value) if the transfer is not
248 supported or otherwise fails. Return of a positive value less than
249 LEN indicates that no further transfer is possible. Unlike the raw
250 to_xfer_partial interface, callers of these functions do not need
251 to retry partial transfers. */
252
253extern LONGEST target_read (struct target_ops *ops,
254 enum target_object object,
255 const char *annex, gdb_byte *buf,
256 ULONGEST offset, LONGEST len);
257
258struct memory_read_result
259 {
260 /* First address that was read. */
261 ULONGEST begin;
262 /* Past-the-end address. */
263 ULONGEST end;
264 /* The data. */
265 gdb_byte *data;
266};
267typedef struct memory_read_result memory_read_result_s;
268DEF_VEC_O(memory_read_result_s);
269
270extern void free_memory_read_result_vector (void *);
271
272extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
273 ULONGEST offset,
274 LONGEST len);
275
276extern LONGEST target_write (struct target_ops *ops,
277 enum target_object object,
278 const char *annex, const gdb_byte *buf,
279 ULONGEST offset, LONGEST len);
280
281/* Similar to target_write, except that it also calls PROGRESS with
282 the number of bytes written and the opaque BATON after every
283 successful partial write (and before the first write). This is
284 useful for progress reporting and user interaction while writing
285 data. To abort the transfer, the progress callback can throw an
286 exception. */
287
288LONGEST target_write_with_progress (struct target_ops *ops,
289 enum target_object object,
290 const char *annex, const gdb_byte *buf,
291 ULONGEST offset, LONGEST len,
292 void (*progress) (ULONGEST, void *),
293 void *baton);
294
295/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
296 be read using OPS. The return value will be -1 if the transfer
297 fails or is not supported; 0 if the object is empty; or the length
298 of the object otherwise. If a positive value is returned, a
299 sufficiently large buffer will be allocated using xmalloc and
300 returned in *BUF_P containing the contents of the object.
301
302 This method should be used for objects sufficiently small to store
303 in a single xmalloc'd buffer, when no fixed bound on the object's
304 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
305 through this function. */
306
307extern LONGEST target_read_alloc (struct target_ops *ops,
308 enum target_object object,
309 const char *annex, gdb_byte **buf_p);
310
311/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
312 returned as a string, allocated using xmalloc. If an error occurs
313 or the transfer is unsupported, NULL is returned. Empty objects
314 are returned as allocated but empty strings. A warning is issued
315 if the result contains any embedded NUL bytes. */
316
317extern char *target_read_stralloc (struct target_ops *ops,
318 enum target_object object,
319 const char *annex);
320
321/* See target_ops->to_xfer_partial. */
322
323extern LONGEST target_xfer_partial (struct target_ops *ops,
324 enum target_object object,
325 const char *annex,
326 void *readbuf, const void *writebuf,
327 ULONGEST offset, LONGEST len);
328
329/* Wrappers to target read/write that perform memory transfers. They
330 throw an error if the memory transfer fails.
331
332 NOTE: cagney/2003-10-23: The naming schema is lifted from
333 "frame.h". The parameter order is lifted from get_frame_memory,
334 which in turn lifted it from read_memory. */
335
336extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
337 gdb_byte *buf, LONGEST len);
338extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
339 CORE_ADDR addr, int len,
340 enum bfd_endian byte_order);
341\f
342struct thread_info; /* fwd decl for parameter list below: */
343
344struct target_ops
345 {
346 struct target_ops *beneath; /* To the target under this one. */
347 char *to_shortname; /* Name this target type */
348 char *to_longname; /* Name for printing */
349 char *to_doc; /* Documentation. Does not include trailing
350 newline, and starts with a one-line descrip-
351 tion (probably similar to to_longname). */
352 /* Per-target scratch pad. */
353 void *to_data;
354 /* The open routine takes the rest of the parameters from the
355 command, and (if successful) pushes a new target onto the
356 stack. Targets should supply this routine, if only to provide
357 an error message. */
358 void (*to_open) (char *, int);
359 /* Old targets with a static target vector provide "to_close".
360 New re-entrant targets provide "to_xclose" and that is expected
361 to xfree everything (including the "struct target_ops"). */
362 void (*to_xclose) (struct target_ops *targ);
363 void (*to_close) (void);
364 void (*to_attach) (struct target_ops *ops, char *, int);
365 void (*to_post_attach) (int);
366 void (*to_detach) (struct target_ops *ops, const char *, int);
367 void (*to_disconnect) (struct target_ops *, char *, int);
368 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
369 ptid_t (*to_wait) (struct target_ops *,
370 ptid_t, struct target_waitstatus *, int);
371 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
372 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
373 void (*to_prepare_to_store) (struct regcache *);
374
375 /* Transfer LEN bytes of memory between GDB address MYADDR and
376 target address MEMADDR. If WRITE, transfer them to the target, else
377 transfer them from the target. TARGET is the target from which we
378 get this function.
379
380 Return value, N, is one of the following:
381
382 0 means that we can't handle this. If errno has been set, it is the
383 error which prevented us from doing it (FIXME: What about bfd_error?).
384
385 positive (call it N) means that we have transferred N bytes
386 starting at MEMADDR. We might be able to handle more bytes
387 beyond this length, but no promises.
388
389 negative (call its absolute value N) means that we cannot
390 transfer right at MEMADDR, but we could transfer at least
391 something at MEMADDR + N.
392
393 NOTE: cagney/2004-10-01: This has been entirely superseeded by
394 to_xfer_partial and inferior inheritance. */
395
396 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
397 int len, int write,
398 struct mem_attrib *attrib,
399 struct target_ops *target);
400
401 void (*to_files_info) (struct target_ops *);
402 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
403 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
404 int (*to_can_use_hw_breakpoint) (int, int, int);
405 int (*to_ranged_break_num_registers) (struct target_ops *);
406 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
407 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
408
409 /* Documentation of what the two routines below are expected to do is
410 provided with the corresponding target_* macros. */
411 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
412 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
413
414 int (*to_insert_mask_watchpoint) (struct target_ops *,
415 CORE_ADDR, CORE_ADDR, int);
416 int (*to_remove_mask_watchpoint) (struct target_ops *,
417 CORE_ADDR, CORE_ADDR, int);
418 int (*to_stopped_by_watchpoint) (void);
419 int to_have_steppable_watchpoint;
420 int to_have_continuable_watchpoint;
421 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
422 int (*to_watchpoint_addr_within_range) (struct target_ops *,
423 CORE_ADDR, CORE_ADDR, int);
424
425 /* Documentation of this routine is provided with the corresponding
426 target_* macro. */
427 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
428
429 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
430 struct expression *);
431 int (*to_masked_watch_num_registers) (struct target_ops *,
432 CORE_ADDR, CORE_ADDR);
433 void (*to_terminal_init) (void);
434 void (*to_terminal_inferior) (void);
435 void (*to_terminal_ours_for_output) (void);
436 void (*to_terminal_ours) (void);
437 void (*to_terminal_save_ours) (void);
438 void (*to_terminal_info) (const char *, int);
439 void (*to_kill) (struct target_ops *);
440 void (*to_load) (char *, int);
441 void (*to_create_inferior) (struct target_ops *,
442 char *, char *, char **, int);
443 void (*to_post_startup_inferior) (ptid_t);
444 int (*to_insert_fork_catchpoint) (int);
445 int (*to_remove_fork_catchpoint) (int);
446 int (*to_insert_vfork_catchpoint) (int);
447 int (*to_remove_vfork_catchpoint) (int);
448 int (*to_follow_fork) (struct target_ops *, int, int);
449 int (*to_insert_exec_catchpoint) (int);
450 int (*to_remove_exec_catchpoint) (int);
451 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
452 int (*to_has_exited) (int, int, int *);
453 void (*to_mourn_inferior) (struct target_ops *);
454 int (*to_can_run) (void);
455
456 /* Documentation of this routine is provided with the corresponding
457 target_* macro. */
458 void (*to_pass_signals) (int, unsigned char *);
459
460 /* Documentation of this routine is provided with the
461 corresponding target_* function. */
462 void (*to_program_signals) (int, unsigned char *);
463
464 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
465 void (*to_find_new_threads) (struct target_ops *);
466 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
467 char *(*to_extra_thread_info) (struct thread_info *);
468 char *(*to_thread_name) (struct thread_info *);
469 void (*to_stop) (ptid_t);
470 void (*to_rcmd) (char *command, struct ui_file *output);
471 char *(*to_pid_to_exec_file) (int pid);
472 void (*to_log_command) (const char *);
473 struct target_section_table *(*to_get_section_table) (struct target_ops *);
474 enum strata to_stratum;
475 int (*to_has_all_memory) (struct target_ops *);
476 int (*to_has_memory) (struct target_ops *);
477 int (*to_has_stack) (struct target_ops *);
478 int (*to_has_registers) (struct target_ops *);
479 int (*to_has_execution) (struct target_ops *, ptid_t);
480 int to_has_thread_control; /* control thread execution */
481 int to_attach_no_wait;
482 /* ASYNC target controls */
483 int (*to_can_async_p) (void);
484 int (*to_is_async_p) (void);
485 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
486 int (*to_supports_non_stop) (void);
487 /* find_memory_regions support method for gcore */
488 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
489 /* make_corefile_notes support method for gcore */
490 char * (*to_make_corefile_notes) (bfd *, int *);
491 /* get_bookmark support method for bookmarks */
492 gdb_byte * (*to_get_bookmark) (char *, int);
493 /* goto_bookmark support method for bookmarks */
494 void (*to_goto_bookmark) (gdb_byte *, int);
495 /* Return the thread-local address at OFFSET in the
496 thread-local storage for the thread PTID and the shared library
497 or executable file given by OBJFILE. If that block of
498 thread-local storage hasn't been allocated yet, this function
499 may return an error. */
500 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
501 ptid_t ptid,
502 CORE_ADDR load_module_addr,
503 CORE_ADDR offset);
504
505 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
506 OBJECT. The OFFSET, for a seekable object, specifies the
507 starting point. The ANNEX can be used to provide additional
508 data-specific information to the target.
509
510 Return the number of bytes actually transfered, zero when no
511 further transfer is possible, and a negative error code (really
512 an 'enum target_xfer_error' value) when the transfer is not
513 supported. Return of a positive value smaller than LEN does
514 not indicate the end of the object, only the end of the
515 transfer; higher level code should continue transferring if
516 desired. This is handled in target.c.
517
518 The interface does not support a "retry" mechanism. Instead it
519 assumes that at least one byte will be transfered on each
520 successful call.
521
522 NOTE: cagney/2003-10-17: The current interface can lead to
523 fragmented transfers. Lower target levels should not implement
524 hacks, such as enlarging the transfer, in an attempt to
525 compensate for this. Instead, the target stack should be
526 extended so that it implements supply/collect methods and a
527 look-aside object cache. With that available, the lowest
528 target can safely and freely "push" data up the stack.
529
530 See target_read and target_write for more information. One,
531 and only one, of readbuf or writebuf must be non-NULL. */
532
533 LONGEST (*to_xfer_partial) (struct target_ops *ops,
534 enum target_object object, const char *annex,
535 gdb_byte *readbuf, const gdb_byte *writebuf,
536 ULONGEST offset, LONGEST len);
537
538 /* Returns the memory map for the target. A return value of NULL
539 means that no memory map is available. If a memory address
540 does not fall within any returned regions, it's assumed to be
541 RAM. The returned memory regions should not overlap.
542
543 The order of regions does not matter; target_memory_map will
544 sort regions by starting address. For that reason, this
545 function should not be called directly except via
546 target_memory_map.
547
548 This method should not cache data; if the memory map could
549 change unexpectedly, it should be invalidated, and higher
550 layers will re-fetch it. */
551 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
552
553 /* Erases the region of flash memory starting at ADDRESS, of
554 length LENGTH.
555
556 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
557 on flash block boundaries, as reported by 'to_memory_map'. */
558 void (*to_flash_erase) (struct target_ops *,
559 ULONGEST address, LONGEST length);
560
561 /* Finishes a flash memory write sequence. After this operation
562 all flash memory should be available for writing and the result
563 of reading from areas written by 'to_flash_write' should be
564 equal to what was written. */
565 void (*to_flash_done) (struct target_ops *);
566
567 /* Describe the architecture-specific features of this target.
568 Returns the description found, or NULL if no description
569 was available. */
570 const struct target_desc *(*to_read_description) (struct target_ops *ops);
571
572 /* Build the PTID of the thread on which a given task is running,
573 based on LWP and THREAD. These values are extracted from the
574 task Private_Data section of the Ada Task Control Block, and
575 their interpretation depends on the target. */
576 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
577
578 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
579 Return 0 if *READPTR is already at the end of the buffer.
580 Return -1 if there is insufficient buffer for a whole entry.
581 Return 1 if an entry was read into *TYPEP and *VALP. */
582 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
583 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
584
585 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
586 sequence of bytes in PATTERN with length PATTERN_LEN.
587
588 The result is 1 if found, 0 if not found, and -1 if there was an error
589 requiring halting of the search (e.g. memory read error).
590 If the pattern is found the address is recorded in FOUND_ADDRP. */
591 int (*to_search_memory) (struct target_ops *ops,
592 CORE_ADDR start_addr, ULONGEST search_space_len,
593 const gdb_byte *pattern, ULONGEST pattern_len,
594 CORE_ADDR *found_addrp);
595
596 /* Can target execute in reverse? */
597 int (*to_can_execute_reverse) (void);
598
599 /* The direction the target is currently executing. Must be
600 implemented on targets that support reverse execution and async
601 mode. The default simply returns forward execution. */
602 enum exec_direction_kind (*to_execution_direction) (void);
603
604 /* Does this target support debugging multiple processes
605 simultaneously? */
606 int (*to_supports_multi_process) (void);
607
608 /* Does this target support enabling and disabling tracepoints while a trace
609 experiment is running? */
610 int (*to_supports_enable_disable_tracepoint) (void);
611
612 /* Does this target support disabling address space randomization? */
613 int (*to_supports_disable_randomization) (void);
614
615 /* Does this target support the tracenz bytecode for string collection? */
616 int (*to_supports_string_tracing) (void);
617
618 /* Does this target support evaluation of breakpoint conditions on its
619 end? */
620 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
621
622 /* Does this target support evaluation of breakpoint commands on its
623 end? */
624 int (*to_can_run_breakpoint_commands) (void);
625
626 /* Determine current architecture of thread PTID.
627
628 The target is supposed to determine the architecture of the code where
629 the target is currently stopped at (on Cell, if a target is in spu_run,
630 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
631 This is architecture used to perform decr_pc_after_break adjustment,
632 and also determines the frame architecture of the innermost frame.
633 ptrace operations need to operate according to target_gdbarch ().
634
635 The default implementation always returns target_gdbarch (). */
636 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
637
638 /* Determine current address space of thread PTID.
639
640 The default implementation always returns the inferior's
641 address space. */
642 struct address_space *(*to_thread_address_space) (struct target_ops *,
643 ptid_t);
644
645 /* Target file operations. */
646
647 /* Open FILENAME on the target, using FLAGS and MODE. Return a
648 target file descriptor, or -1 if an error occurs (and set
649 *TARGET_ERRNO). */
650 int (*to_fileio_open) (const char *filename, int flags, int mode,
651 int *target_errno);
652
653 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
654 Return the number of bytes written, or -1 if an error occurs
655 (and set *TARGET_ERRNO). */
656 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
657 ULONGEST offset, int *target_errno);
658
659 /* Read up to LEN bytes FD on the target into READ_BUF.
660 Return the number of bytes read, or -1 if an error occurs
661 (and set *TARGET_ERRNO). */
662 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
663 ULONGEST offset, int *target_errno);
664
665 /* Close FD on the target. Return 0, or -1 if an error occurs
666 (and set *TARGET_ERRNO). */
667 int (*to_fileio_close) (int fd, int *target_errno);
668
669 /* Unlink FILENAME on the target. Return 0, or -1 if an error
670 occurs (and set *TARGET_ERRNO). */
671 int (*to_fileio_unlink) (const char *filename, int *target_errno);
672
673 /* Read value of symbolic link FILENAME on the target. Return a
674 null-terminated string allocated via xmalloc, or NULL if an error
675 occurs (and set *TARGET_ERRNO). */
676 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
677
678
679 /* Implement the "info proc" command. */
680 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
681
682 /* Tracepoint-related operations. */
683
684 /* Prepare the target for a tracing run. */
685 void (*to_trace_init) (void);
686
687 /* Send full details of a tracepoint location to the target. */
688 void (*to_download_tracepoint) (struct bp_location *location);
689
690 /* Is the target able to download tracepoint locations in current
691 state? */
692 int (*to_can_download_tracepoint) (void);
693
694 /* Send full details of a trace state variable to the target. */
695 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
696
697 /* Enable a tracepoint on the target. */
698 void (*to_enable_tracepoint) (struct bp_location *location);
699
700 /* Disable a tracepoint on the target. */
701 void (*to_disable_tracepoint) (struct bp_location *location);
702
703 /* Inform the target info of memory regions that are readonly
704 (such as text sections), and so it should return data from
705 those rather than look in the trace buffer. */
706 void (*to_trace_set_readonly_regions) (void);
707
708 /* Start a trace run. */
709 void (*to_trace_start) (void);
710
711 /* Get the current status of a tracing run. */
712 int (*to_get_trace_status) (struct trace_status *ts);
713
714 void (*to_get_tracepoint_status) (struct breakpoint *tp,
715 struct uploaded_tp *utp);
716
717 /* Stop a trace run. */
718 void (*to_trace_stop) (void);
719
720 /* Ask the target to find a trace frame of the given type TYPE,
721 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
722 number of the trace frame, and also the tracepoint number at
723 TPP. If no trace frame matches, return -1. May throw if the
724 operation fails. */
725 int (*to_trace_find) (enum trace_find_type type, int num,
726 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
727
728 /* Get the value of the trace state variable number TSV, returning
729 1 if the value is known and writing the value itself into the
730 location pointed to by VAL, else returning 0. */
731 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
732
733 int (*to_save_trace_data) (const char *filename);
734
735 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
736
737 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
738
739 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
740 ULONGEST offset, LONGEST len);
741
742 /* Get the minimum length of instruction on which a fast tracepoint
743 may be set on the target. If this operation is unsupported,
744 return -1. If for some reason the minimum length cannot be
745 determined, return 0. */
746 int (*to_get_min_fast_tracepoint_insn_len) (void);
747
748 /* Set the target's tracing behavior in response to unexpected
749 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
750 void (*to_set_disconnected_tracing) (int val);
751 void (*to_set_circular_trace_buffer) (int val);
752 /* Set the size of trace buffer in the target. */
753 void (*to_set_trace_buffer_size) (LONGEST val);
754
755 /* Add/change textual notes about the trace run, returning 1 if
756 successful, 0 otherwise. */
757 int (*to_set_trace_notes) (const char *user, const char *notes,
758 const char *stopnotes);
759
760 /* Return the processor core that thread PTID was last seen on.
761 This information is updated only when:
762 - update_thread_list is called
763 - thread stops
764 If the core cannot be determined -- either for the specified
765 thread, or right now, or in this debug session, or for this
766 target -- return -1. */
767 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
768
769 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
770 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
771 a match, 0 if there's a mismatch, and -1 if an error is
772 encountered while reading memory. */
773 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
774 CORE_ADDR memaddr, ULONGEST size);
775
776 /* Return the address of the start of the Thread Information Block
777 a Windows OS specific feature. */
778 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
779
780 /* Send the new settings of write permission variables. */
781 void (*to_set_permissions) (void);
782
783 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
784 with its details. Return 1 on success, 0 on failure. */
785 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
786 struct static_tracepoint_marker *marker);
787
788 /* Return a vector of all tracepoints markers string id ID, or all
789 markers if ID is NULL. */
790 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
791 (const char *id);
792
793 /* Return a traceframe info object describing the current
794 traceframe's contents. If the target doesn't support
795 traceframe info, return NULL. If the current traceframe is not
796 selected (the current traceframe number is -1), the target can
797 choose to return either NULL or an empty traceframe info. If
798 NULL is returned, for example in remote target, GDB will read
799 from the live inferior. If an empty traceframe info is
800 returned, for example in tfile target, which means the
801 traceframe info is available, but the requested memory is not
802 available in it. GDB will try to see if the requested memory
803 is available in the read-only sections. This method should not
804 cache data; higher layers take care of caching, invalidating,
805 and re-fetching when necessary. */
806 struct traceframe_info *(*to_traceframe_info) (void);
807
808 /* Ask the target to use or not to use agent according to USE. Return 1
809 successful, 0 otherwise. */
810 int (*to_use_agent) (int use);
811
812 /* Is the target able to use agent in current state? */
813 int (*to_can_use_agent) (void);
814
815 /* Check whether the target supports branch tracing. */
816 int (*to_supports_btrace) (void);
817
818 /* Enable branch tracing for PTID and allocate a branch trace target
819 information struct for reading and for disabling branch trace. */
820 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
821
822 /* Disable branch tracing and deallocate TINFO. */
823 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
824
825 /* Disable branch tracing and deallocate TINFO. This function is similar
826 to to_disable_btrace, except that it is called during teardown and is
827 only allowed to perform actions that are safe. A counter-example would
828 be attempting to talk to a remote target. */
829 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
830
831 /* Read branch trace data. */
832 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
833 enum btrace_read_type);
834
835 /* Stop trace recording. */
836 void (*to_stop_recording) (void);
837
838 /* Print information about the recording. */
839 void (*to_info_record) (void);
840
841 /* Save the recorded execution trace into a file. */
842 void (*to_save_record) (const char *filename);
843
844 /* Delete the recorded execution trace from the current position onwards. */
845 void (*to_delete_record) (void);
846
847 /* Query if the record target is currently replaying. */
848 int (*to_record_is_replaying) (void);
849
850 /* Go to the begin of the execution trace. */
851 void (*to_goto_record_begin) (void);
852
853 /* Go to the end of the execution trace. */
854 void (*to_goto_record_end) (void);
855
856 /* Go to a specific location in the recorded execution trace. */
857 void (*to_goto_record) (ULONGEST insn);
858
859 /* Disassemble SIZE instructions in the recorded execution trace from
860 the current position.
861 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
862 disassemble SIZE succeeding instructions. */
863 void (*to_insn_history) (int size, int flags);
864
865 /* Disassemble SIZE instructions in the recorded execution trace around
866 FROM.
867 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
868 disassemble SIZE instructions after FROM. */
869 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
870
871 /* Disassemble a section of the recorded execution trace from instruction
872 BEGIN (inclusive) to instruction END (exclusive). */
873 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
874
875 /* Print a function trace of the recorded execution trace.
876 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
877 succeeding functions. */
878 void (*to_call_history) (int size, int flags);
879
880 /* Print a function trace of the recorded execution trace starting
881 at function FROM.
882 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
883 SIZE functions after FROM. */
884 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
885
886 /* Print a function trace of an execution trace section from function BEGIN
887 (inclusive) to function END (exclusive). */
888 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
889
890 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
891 non-empty annex. */
892 int (*to_augmented_libraries_svr4_read) (void);
893
894 int to_magic;
895 /* Need sub-structure for target machine related rather than comm related?
896 */
897 };
898
899/* Magic number for checking ops size. If a struct doesn't end with this
900 number, somebody changed the declaration but didn't change all the
901 places that initialize one. */
902
903#define OPS_MAGIC 3840
904
905/* The ops structure for our "current" target process. This should
906 never be NULL. If there is no target, it points to the dummy_target. */
907
908extern struct target_ops current_target;
909
910/* Define easy words for doing these operations on our current target. */
911
912#define target_shortname (current_target.to_shortname)
913#define target_longname (current_target.to_longname)
914
915/* Does whatever cleanup is required for a target that we are no
916 longer going to be calling. This routine is automatically always
917 called after popping the target off the target stack - the target's
918 own methods are no longer available through the target vector.
919 Closing file descriptors and freeing all memory allocated memory are
920 typical things it should do. */
921
922void target_close (struct target_ops *targ);
923
924/* Attaches to a process on the target side. Arguments are as passed
925 to the `attach' command by the user. This routine can be called
926 when the target is not on the target-stack, if the target_can_run
927 routine returns 1; in that case, it must push itself onto the stack.
928 Upon exit, the target should be ready for normal operations, and
929 should be ready to deliver the status of the process immediately
930 (without waiting) to an upcoming target_wait call. */
931
932void target_attach (char *, int);
933
934/* Some targets don't generate traps when attaching to the inferior,
935 or their target_attach implementation takes care of the waiting.
936 These targets must set to_attach_no_wait. */
937
938#define target_attach_no_wait \
939 (current_target.to_attach_no_wait)
940
941/* The target_attach operation places a process under debugger control,
942 and stops the process.
943
944 This operation provides a target-specific hook that allows the
945 necessary bookkeeping to be performed after an attach completes. */
946#define target_post_attach(pid) \
947 (*current_target.to_post_attach) (pid)
948
949/* Takes a program previously attached to and detaches it.
950 The program may resume execution (some targets do, some don't) and will
951 no longer stop on signals, etc. We better not have left any breakpoints
952 in the program or it'll die when it hits one. ARGS is arguments
953 typed by the user (e.g. a signal to send the process). FROM_TTY
954 says whether to be verbose or not. */
955
956extern void target_detach (const char *, int);
957
958/* Disconnect from the current target without resuming it (leaving it
959 waiting for a debugger). */
960
961extern void target_disconnect (char *, int);
962
963/* Resume execution of the target process PTID (or a group of
964 threads). STEP says whether to single-step or to run free; SIGGNAL
965 is the signal to be given to the target, or GDB_SIGNAL_0 for no
966 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
967 PTID means `step/resume only this process id'. A wildcard PTID
968 (all threads, or all threads of process) means `step/resume
969 INFERIOR_PTID, and let other threads (for which the wildcard PTID
970 matches) resume with their 'thread->suspend.stop_signal' signal
971 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
972 if in "no pass" state. */
973
974extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
975
976/* Wait for process pid to do something. PTID = -1 to wait for any
977 pid to do something. Return pid of child, or -1 in case of error;
978 store status through argument pointer STATUS. Note that it is
979 _NOT_ OK to throw_exception() out of target_wait() without popping
980 the debugging target from the stack; GDB isn't prepared to get back
981 to the prompt with a debugging target but without the frame cache,
982 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
983 options. */
984
985extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
986 int options);
987
988/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
989
990extern void target_fetch_registers (struct regcache *regcache, int regno);
991
992/* Store at least register REGNO, or all regs if REGNO == -1.
993 It can store as many registers as it wants to, so target_prepare_to_store
994 must have been previously called. Calls error() if there are problems. */
995
996extern void target_store_registers (struct regcache *regcache, int regs);
997
998/* Get ready to modify the registers array. On machines which store
999 individual registers, this doesn't need to do anything. On machines
1000 which store all the registers in one fell swoop, this makes sure
1001 that REGISTERS contains all the registers from the program being
1002 debugged. */
1003
1004#define target_prepare_to_store(regcache) \
1005 (*current_target.to_prepare_to_store) (regcache)
1006
1007/* Determine current address space of thread PTID. */
1008
1009struct address_space *target_thread_address_space (ptid_t);
1010
1011/* Implement the "info proc" command. This returns one if the request
1012 was handled, and zero otherwise. It can also throw an exception if
1013 an error was encountered while attempting to handle the
1014 request. */
1015
1016int target_info_proc (char *, enum info_proc_what);
1017
1018/* Returns true if this target can debug multiple processes
1019 simultaneously. */
1020
1021#define target_supports_multi_process() \
1022 (*current_target.to_supports_multi_process) ()
1023
1024/* Returns true if this target can disable address space randomization. */
1025
1026int target_supports_disable_randomization (void);
1027
1028/* Returns true if this target can enable and disable tracepoints
1029 while a trace experiment is running. */
1030
1031#define target_supports_enable_disable_tracepoint() \
1032 (*current_target.to_supports_enable_disable_tracepoint) ()
1033
1034#define target_supports_string_tracing() \
1035 (*current_target.to_supports_string_tracing) ()
1036
1037/* Returns true if this target can handle breakpoint conditions
1038 on its end. */
1039
1040#define target_supports_evaluation_of_breakpoint_conditions() \
1041 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1042
1043/* Returns true if this target can handle breakpoint commands
1044 on its end. */
1045
1046#define target_can_run_breakpoint_commands() \
1047 (*current_target.to_can_run_breakpoint_commands) ()
1048
1049extern int target_read_string (CORE_ADDR, char **, int, int *);
1050
1051extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1052 ssize_t len);
1053
1054extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1055
1056extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1057
1058extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1059 ssize_t len);
1060
1061extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1062 ssize_t len);
1063
1064/* Fetches the target's memory map. If one is found it is sorted
1065 and returned, after some consistency checking. Otherwise, NULL
1066 is returned. */
1067VEC(mem_region_s) *target_memory_map (void);
1068
1069/* Erase the specified flash region. */
1070void target_flash_erase (ULONGEST address, LONGEST length);
1071
1072/* Finish a sequence of flash operations. */
1073void target_flash_done (void);
1074
1075/* Describes a request for a memory write operation. */
1076struct memory_write_request
1077 {
1078 /* Begining address that must be written. */
1079 ULONGEST begin;
1080 /* Past-the-end address. */
1081 ULONGEST end;
1082 /* The data to write. */
1083 gdb_byte *data;
1084 /* A callback baton for progress reporting for this request. */
1085 void *baton;
1086 };
1087typedef struct memory_write_request memory_write_request_s;
1088DEF_VEC_O(memory_write_request_s);
1089
1090/* Enumeration specifying different flash preservation behaviour. */
1091enum flash_preserve_mode
1092 {
1093 flash_preserve,
1094 flash_discard
1095 };
1096
1097/* Write several memory blocks at once. This version can be more
1098 efficient than making several calls to target_write_memory, in
1099 particular because it can optimize accesses to flash memory.
1100
1101 Moreover, this is currently the only memory access function in gdb
1102 that supports writing to flash memory, and it should be used for
1103 all cases where access to flash memory is desirable.
1104
1105 REQUESTS is the vector (see vec.h) of memory_write_request.
1106 PRESERVE_FLASH_P indicates what to do with blocks which must be
1107 erased, but not completely rewritten.
1108 PROGRESS_CB is a function that will be periodically called to provide
1109 feedback to user. It will be called with the baton corresponding
1110 to the request currently being written. It may also be called
1111 with a NULL baton, when preserved flash sectors are being rewritten.
1112
1113 The function returns 0 on success, and error otherwise. */
1114int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1115 enum flash_preserve_mode preserve_flash_p,
1116 void (*progress_cb) (ULONGEST, void *));
1117
1118/* Print a line about the current target. */
1119
1120#define target_files_info() \
1121 (*current_target.to_files_info) (&current_target)
1122
1123/* Insert a breakpoint at address BP_TGT->placed_address in the target
1124 machine. Result is 0 for success, non-zero for error. */
1125
1126extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1127 struct bp_target_info *bp_tgt);
1128
1129/* Remove a breakpoint at address BP_TGT->placed_address in the target
1130 machine. Result is 0 for success, non-zero for error. */
1131
1132extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1133 struct bp_target_info *bp_tgt);
1134
1135/* Initialize the terminal settings we record for the inferior,
1136 before we actually run the inferior. */
1137
1138#define target_terminal_init() \
1139 (*current_target.to_terminal_init) ()
1140
1141/* Put the inferior's terminal settings into effect.
1142 This is preparation for starting or resuming the inferior. */
1143
1144extern void target_terminal_inferior (void);
1145
1146/* Put some of our terminal settings into effect,
1147 enough to get proper results from our output,
1148 but do not change into or out of RAW mode
1149 so that no input is discarded.
1150
1151 After doing this, either terminal_ours or terminal_inferior
1152 should be called to get back to a normal state of affairs. */
1153
1154#define target_terminal_ours_for_output() \
1155 (*current_target.to_terminal_ours_for_output) ()
1156
1157/* Put our terminal settings into effect.
1158 First record the inferior's terminal settings
1159 so they can be restored properly later. */
1160
1161#define target_terminal_ours() \
1162 (*current_target.to_terminal_ours) ()
1163
1164/* Save our terminal settings.
1165 This is called from TUI after entering or leaving the curses
1166 mode. Since curses modifies our terminal this call is here
1167 to take this change into account. */
1168
1169#define target_terminal_save_ours() \
1170 (*current_target.to_terminal_save_ours) ()
1171
1172/* Print useful information about our terminal status, if such a thing
1173 exists. */
1174
1175#define target_terminal_info(arg, from_tty) \
1176 (*current_target.to_terminal_info) (arg, from_tty)
1177
1178/* Kill the inferior process. Make it go away. */
1179
1180extern void target_kill (void);
1181
1182/* Load an executable file into the target process. This is expected
1183 to not only bring new code into the target process, but also to
1184 update GDB's symbol tables to match.
1185
1186 ARG contains command-line arguments, to be broken down with
1187 buildargv (). The first non-switch argument is the filename to
1188 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1189 0)), which is an offset to apply to the load addresses of FILE's
1190 sections. The target may define switches, or other non-switch
1191 arguments, as it pleases. */
1192
1193extern void target_load (char *arg, int from_tty);
1194
1195/* Start an inferior process and set inferior_ptid to its pid.
1196 EXEC_FILE is the file to run.
1197 ALLARGS is a string containing the arguments to the program.
1198 ENV is the environment vector to pass. Errors reported with error().
1199 On VxWorks and various standalone systems, we ignore exec_file. */
1200
1201void target_create_inferior (char *exec_file, char *args,
1202 char **env, int from_tty);
1203
1204/* Some targets (such as ttrace-based HPUX) don't allow us to request
1205 notification of inferior events such as fork and vork immediately
1206 after the inferior is created. (This because of how gdb gets an
1207 inferior created via invoking a shell to do it. In such a scenario,
1208 if the shell init file has commands in it, the shell will fork and
1209 exec for each of those commands, and we will see each such fork
1210 event. Very bad.)
1211
1212 Such targets will supply an appropriate definition for this function. */
1213
1214#define target_post_startup_inferior(ptid) \
1215 (*current_target.to_post_startup_inferior) (ptid)
1216
1217/* On some targets, we can catch an inferior fork or vfork event when
1218 it occurs. These functions insert/remove an already-created
1219 catchpoint for such events. They return 0 for success, 1 if the
1220 catchpoint type is not supported and -1 for failure. */
1221
1222#define target_insert_fork_catchpoint(pid) \
1223 (*current_target.to_insert_fork_catchpoint) (pid)
1224
1225#define target_remove_fork_catchpoint(pid) \
1226 (*current_target.to_remove_fork_catchpoint) (pid)
1227
1228#define target_insert_vfork_catchpoint(pid) \
1229 (*current_target.to_insert_vfork_catchpoint) (pid)
1230
1231#define target_remove_vfork_catchpoint(pid) \
1232 (*current_target.to_remove_vfork_catchpoint) (pid)
1233
1234/* If the inferior forks or vforks, this function will be called at
1235 the next resume in order to perform any bookkeeping and fiddling
1236 necessary to continue debugging either the parent or child, as
1237 requested, and releasing the other. Information about the fork
1238 or vfork event is available via get_last_target_status ().
1239 This function returns 1 if the inferior should not be resumed
1240 (i.e. there is another event pending). */
1241
1242int target_follow_fork (int follow_child, int detach_fork);
1243
1244/* On some targets, we can catch an inferior exec event when it
1245 occurs. These functions insert/remove an already-created
1246 catchpoint for such events. They return 0 for success, 1 if the
1247 catchpoint type is not supported and -1 for failure. */
1248
1249#define target_insert_exec_catchpoint(pid) \
1250 (*current_target.to_insert_exec_catchpoint) (pid)
1251
1252#define target_remove_exec_catchpoint(pid) \
1253 (*current_target.to_remove_exec_catchpoint) (pid)
1254
1255/* Syscall catch.
1256
1257 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1258 If NEEDED is zero, it means the target can disable the mechanism to
1259 catch system calls because there are no more catchpoints of this type.
1260
1261 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1262 being requested. In this case, both TABLE_SIZE and TABLE should
1263 be ignored.
1264
1265 TABLE_SIZE is the number of elements in TABLE. It only matters if
1266 ANY_COUNT is zero.
1267
1268 TABLE is an array of ints, indexed by syscall number. An element in
1269 this array is nonzero if that syscall should be caught. This argument
1270 only matters if ANY_COUNT is zero.
1271
1272 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1273 for failure. */
1274
1275#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1276 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1277 table_size, table)
1278
1279/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1280 exit code of PID, if any. */
1281
1282#define target_has_exited(pid,wait_status,exit_status) \
1283 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1284
1285/* The debugger has completed a blocking wait() call. There is now
1286 some process event that must be processed. This function should
1287 be defined by those targets that require the debugger to perform
1288 cleanup or internal state changes in response to the process event. */
1289
1290/* The inferior process has died. Do what is right. */
1291
1292void target_mourn_inferior (void);
1293
1294/* Does target have enough data to do a run or attach command? */
1295
1296#define target_can_run(t) \
1297 ((t)->to_can_run) ()
1298
1299/* Set list of signals to be handled in the target.
1300
1301 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1302 (enum gdb_signal). For every signal whose entry in this array is
1303 non-zero, the target is allowed -but not required- to skip reporting
1304 arrival of the signal to the GDB core by returning from target_wait,
1305 and to pass the signal directly to the inferior instead.
1306
1307 However, if the target is hardware single-stepping a thread that is
1308 about to receive a signal, it needs to be reported in any case, even
1309 if mentioned in a previous target_pass_signals call. */
1310
1311extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1312
1313/* Set list of signals the target may pass to the inferior. This
1314 directly maps to the "handle SIGNAL pass/nopass" setting.
1315
1316 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1317 number (enum gdb_signal). For every signal whose entry in this
1318 array is non-zero, the target is allowed to pass the signal to the
1319 inferior. Signals not present in the array shall be silently
1320 discarded. This does not influence whether to pass signals to the
1321 inferior as a result of a target_resume call. This is useful in
1322 scenarios where the target needs to decide whether to pass or not a
1323 signal to the inferior without GDB core involvement, such as for
1324 example, when detaching (as threads may have been suspended with
1325 pending signals not reported to GDB). */
1326
1327extern void target_program_signals (int nsig, unsigned char *program_signals);
1328
1329/* Check to see if a thread is still alive. */
1330
1331extern int target_thread_alive (ptid_t ptid);
1332
1333/* Query for new threads and add them to the thread list. */
1334
1335extern void target_find_new_threads (void);
1336
1337/* Make target stop in a continuable fashion. (For instance, under
1338 Unix, this should act like SIGSTOP). This function is normally
1339 used by GUIs to implement a stop button. */
1340
1341extern void target_stop (ptid_t ptid);
1342
1343/* Send the specified COMMAND to the target's monitor
1344 (shell,interpreter) for execution. The result of the query is
1345 placed in OUTBUF. */
1346
1347#define target_rcmd(command, outbuf) \
1348 (*current_target.to_rcmd) (command, outbuf)
1349
1350
1351/* Does the target include all of memory, or only part of it? This
1352 determines whether we look up the target chain for other parts of
1353 memory if this target can't satisfy a request. */
1354
1355extern int target_has_all_memory_1 (void);
1356#define target_has_all_memory target_has_all_memory_1 ()
1357
1358/* Does the target include memory? (Dummy targets don't.) */
1359
1360extern int target_has_memory_1 (void);
1361#define target_has_memory target_has_memory_1 ()
1362
1363/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1364 we start a process.) */
1365
1366extern int target_has_stack_1 (void);
1367#define target_has_stack target_has_stack_1 ()
1368
1369/* Does the target have registers? (Exec files don't.) */
1370
1371extern int target_has_registers_1 (void);
1372#define target_has_registers target_has_registers_1 ()
1373
1374/* Does the target have execution? Can we make it jump (through
1375 hoops), or pop its stack a few times? This means that the current
1376 target is currently executing; for some targets, that's the same as
1377 whether or not the target is capable of execution, but there are
1378 also targets which can be current while not executing. In that
1379 case this will become true after target_create_inferior or
1380 target_attach. */
1381
1382extern int target_has_execution_1 (ptid_t);
1383
1384/* Like target_has_execution_1, but always passes inferior_ptid. */
1385
1386extern int target_has_execution_current (void);
1387
1388#define target_has_execution target_has_execution_current ()
1389
1390/* Default implementations for process_stratum targets. Return true
1391 if there's a selected inferior, false otherwise. */
1392
1393extern int default_child_has_all_memory (struct target_ops *ops);
1394extern int default_child_has_memory (struct target_ops *ops);
1395extern int default_child_has_stack (struct target_ops *ops);
1396extern int default_child_has_registers (struct target_ops *ops);
1397extern int default_child_has_execution (struct target_ops *ops,
1398 ptid_t the_ptid);
1399
1400/* Can the target support the debugger control of thread execution?
1401 Can it lock the thread scheduler? */
1402
1403#define target_can_lock_scheduler \
1404 (current_target.to_has_thread_control & tc_schedlock)
1405
1406/* Should the target enable async mode if it is supported? Temporary
1407 cludge until async mode is a strict superset of sync mode. */
1408extern int target_async_permitted;
1409
1410/* Can the target support asynchronous execution? */
1411#define target_can_async_p() (current_target.to_can_async_p ())
1412
1413/* Is the target in asynchronous execution mode? */
1414#define target_is_async_p() (current_target.to_is_async_p ())
1415
1416int target_supports_non_stop (void);
1417
1418/* Put the target in async mode with the specified callback function. */
1419#define target_async(CALLBACK,CONTEXT) \
1420 (current_target.to_async ((CALLBACK), (CONTEXT)))
1421
1422#define target_execution_direction() \
1423 (current_target.to_execution_direction ())
1424
1425/* Converts a process id to a string. Usually, the string just contains
1426 `process xyz', but on some systems it may contain
1427 `process xyz thread abc'. */
1428
1429extern char *target_pid_to_str (ptid_t ptid);
1430
1431extern char *normal_pid_to_str (ptid_t ptid);
1432
1433/* Return a short string describing extra information about PID,
1434 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1435 is okay. */
1436
1437#define target_extra_thread_info(TP) \
1438 (current_target.to_extra_thread_info (TP))
1439
1440/* Return the thread's name. A NULL result means that the target
1441 could not determine this thread's name. */
1442
1443extern char *target_thread_name (struct thread_info *);
1444
1445/* Attempts to find the pathname of the executable file
1446 that was run to create a specified process.
1447
1448 The process PID must be stopped when this operation is used.
1449
1450 If the executable file cannot be determined, NULL is returned.
1451
1452 Else, a pointer to a character string containing the pathname
1453 is returned. This string should be copied into a buffer by
1454 the client if the string will not be immediately used, or if
1455 it must persist. */
1456
1457#define target_pid_to_exec_file(pid) \
1458 (current_target.to_pid_to_exec_file) (pid)
1459
1460/* See the to_thread_architecture description in struct target_ops. */
1461
1462#define target_thread_architecture(ptid) \
1463 (current_target.to_thread_architecture (&current_target, ptid))
1464
1465/*
1466 * Iterator function for target memory regions.
1467 * Calls a callback function once for each memory region 'mapped'
1468 * in the child process. Defined as a simple macro rather than
1469 * as a function macro so that it can be tested for nullity.
1470 */
1471
1472#define target_find_memory_regions(FUNC, DATA) \
1473 (current_target.to_find_memory_regions) (FUNC, DATA)
1474
1475/*
1476 * Compose corefile .note section.
1477 */
1478
1479#define target_make_corefile_notes(BFD, SIZE_P) \
1480 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1481
1482/* Bookmark interfaces. */
1483#define target_get_bookmark(ARGS, FROM_TTY) \
1484 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1485
1486#define target_goto_bookmark(ARG, FROM_TTY) \
1487 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1488
1489/* Hardware watchpoint interfaces. */
1490
1491/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1492 write). Only the INFERIOR_PTID task is being queried. */
1493
1494#define target_stopped_by_watchpoint \
1495 (*current_target.to_stopped_by_watchpoint)
1496
1497/* Non-zero if we have steppable watchpoints */
1498
1499#define target_have_steppable_watchpoint \
1500 (current_target.to_have_steppable_watchpoint)
1501
1502/* Non-zero if we have continuable watchpoints */
1503
1504#define target_have_continuable_watchpoint \
1505 (current_target.to_have_continuable_watchpoint)
1506
1507/* Provide defaults for hardware watchpoint functions. */
1508
1509/* If the *_hw_beakpoint functions have not been defined
1510 elsewhere use the definitions in the target vector. */
1511
1512/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1513 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1514 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1515 (including this one?). OTHERTYPE is who knows what... */
1516
1517#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1518 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1519
1520/* Returns the number of debug registers needed to watch the given
1521 memory region, or zero if not supported. */
1522
1523#define target_region_ok_for_hw_watchpoint(addr, len) \
1524 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1525
1526
1527/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1528 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1529 COND is the expression for its condition, or NULL if there's none.
1530 Returns 0 for success, 1 if the watchpoint type is not supported,
1531 -1 for failure. */
1532
1533#define target_insert_watchpoint(addr, len, type, cond) \
1534 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1535
1536#define target_remove_watchpoint(addr, len, type, cond) \
1537 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1538
1539/* Insert a new masked watchpoint at ADDR using the mask MASK.
1540 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1541 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1542 masked watchpoints are not supported, -1 for failure. */
1543
1544extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1545
1546/* Remove a masked watchpoint at ADDR with the mask MASK.
1547 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1548 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1549 for failure. */
1550
1551extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1552
1553#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1554 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1555
1556#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1557 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1558
1559/* Return number of debug registers needed for a ranged breakpoint,
1560 or -1 if ranged breakpoints are not supported. */
1561
1562extern int target_ranged_break_num_registers (void);
1563
1564/* Return non-zero if target knows the data address which triggered this
1565 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1566 INFERIOR_PTID task is being queried. */
1567#define target_stopped_data_address(target, addr_p) \
1568 (*target.to_stopped_data_address) (target, addr_p)
1569
1570/* Return non-zero if ADDR is within the range of a watchpoint spanning
1571 LENGTH bytes beginning at START. */
1572#define target_watchpoint_addr_within_range(target, addr, start, length) \
1573 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1574
1575/* Return non-zero if the target is capable of using hardware to evaluate
1576 the condition expression. In this case, if the condition is false when
1577 the watched memory location changes, execution may continue without the
1578 debugger being notified.
1579
1580 Due to limitations in the hardware implementation, it may be capable of
1581 avoiding triggering the watchpoint in some cases where the condition
1582 expression is false, but may report some false positives as well.
1583 For this reason, GDB will still evaluate the condition expression when
1584 the watchpoint triggers. */
1585#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1586 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1587
1588/* Return number of debug registers needed for a masked watchpoint,
1589 -1 if masked watchpoints are not supported or -2 if the given address
1590 and mask combination cannot be used. */
1591
1592extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1593
1594/* Target can execute in reverse? */
1595#define target_can_execute_reverse \
1596 (current_target.to_can_execute_reverse ? \
1597 current_target.to_can_execute_reverse () : 0)
1598
1599extern const struct target_desc *target_read_description (struct target_ops *);
1600
1601#define target_get_ada_task_ptid(lwp, tid) \
1602 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1603
1604/* Utility implementation of searching memory. */
1605extern int simple_search_memory (struct target_ops* ops,
1606 CORE_ADDR start_addr,
1607 ULONGEST search_space_len,
1608 const gdb_byte *pattern,
1609 ULONGEST pattern_len,
1610 CORE_ADDR *found_addrp);
1611
1612/* Main entry point for searching memory. */
1613extern int target_search_memory (CORE_ADDR start_addr,
1614 ULONGEST search_space_len,
1615 const gdb_byte *pattern,
1616 ULONGEST pattern_len,
1617 CORE_ADDR *found_addrp);
1618
1619/* Target file operations. */
1620
1621/* Open FILENAME on the target, using FLAGS and MODE. Return a
1622 target file descriptor, or -1 if an error occurs (and set
1623 *TARGET_ERRNO). */
1624extern int target_fileio_open (const char *filename, int flags, int mode,
1625 int *target_errno);
1626
1627/* Write up to LEN bytes from WRITE_BUF to FD on the target.
1628 Return the number of bytes written, or -1 if an error occurs
1629 (and set *TARGET_ERRNO). */
1630extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1631 ULONGEST offset, int *target_errno);
1632
1633/* Read up to LEN bytes FD on the target into READ_BUF.
1634 Return the number of bytes read, or -1 if an error occurs
1635 (and set *TARGET_ERRNO). */
1636extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1637 ULONGEST offset, int *target_errno);
1638
1639/* Close FD on the target. Return 0, or -1 if an error occurs
1640 (and set *TARGET_ERRNO). */
1641extern int target_fileio_close (int fd, int *target_errno);
1642
1643/* Unlink FILENAME on the target. Return 0, or -1 if an error
1644 occurs (and set *TARGET_ERRNO). */
1645extern int target_fileio_unlink (const char *filename, int *target_errno);
1646
1647/* Read value of symbolic link FILENAME on the target. Return a
1648 null-terminated string allocated via xmalloc, or NULL if an error
1649 occurs (and set *TARGET_ERRNO). */
1650extern char *target_fileio_readlink (const char *filename, int *target_errno);
1651
1652/* Read target file FILENAME. The return value will be -1 if the transfer
1653 fails or is not supported; 0 if the object is empty; or the length
1654 of the object otherwise. If a positive value is returned, a
1655 sufficiently large buffer will be allocated using xmalloc and
1656 returned in *BUF_P containing the contents of the object.
1657
1658 This method should be used for objects sufficiently small to store
1659 in a single xmalloc'd buffer, when no fixed bound on the object's
1660 size is known in advance. */
1661extern LONGEST target_fileio_read_alloc (const char *filename,
1662 gdb_byte **buf_p);
1663
1664/* Read target file FILENAME. The result is NUL-terminated and
1665 returned as a string, allocated using xmalloc. If an error occurs
1666 or the transfer is unsupported, NULL is returned. Empty objects
1667 are returned as allocated but empty strings. A warning is issued
1668 if the result contains any embedded NUL bytes. */
1669extern char *target_fileio_read_stralloc (const char *filename);
1670
1671
1672/* Tracepoint-related operations. */
1673
1674#define target_trace_init() \
1675 (*current_target.to_trace_init) ()
1676
1677#define target_download_tracepoint(t) \
1678 (*current_target.to_download_tracepoint) (t)
1679
1680#define target_can_download_tracepoint() \
1681 (*current_target.to_can_download_tracepoint) ()
1682
1683#define target_download_trace_state_variable(tsv) \
1684 (*current_target.to_download_trace_state_variable) (tsv)
1685
1686#define target_enable_tracepoint(loc) \
1687 (*current_target.to_enable_tracepoint) (loc)
1688
1689#define target_disable_tracepoint(loc) \
1690 (*current_target.to_disable_tracepoint) (loc)
1691
1692#define target_trace_start() \
1693 (*current_target.to_trace_start) ()
1694
1695#define target_trace_set_readonly_regions() \
1696 (*current_target.to_trace_set_readonly_regions) ()
1697
1698#define target_get_trace_status(ts) \
1699 (*current_target.to_get_trace_status) (ts)
1700
1701#define target_get_tracepoint_status(tp,utp) \
1702 (*current_target.to_get_tracepoint_status) (tp, utp)
1703
1704#define target_trace_stop() \
1705 (*current_target.to_trace_stop) ()
1706
1707#define target_trace_find(type,num,addr1,addr2,tpp) \
1708 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1709
1710#define target_get_trace_state_variable_value(tsv,val) \
1711 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1712
1713#define target_save_trace_data(filename) \
1714 (*current_target.to_save_trace_data) (filename)
1715
1716#define target_upload_tracepoints(utpp) \
1717 (*current_target.to_upload_tracepoints) (utpp)
1718
1719#define target_upload_trace_state_variables(utsvp) \
1720 (*current_target.to_upload_trace_state_variables) (utsvp)
1721
1722#define target_get_raw_trace_data(buf,offset,len) \
1723 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1724
1725#define target_get_min_fast_tracepoint_insn_len() \
1726 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1727
1728#define target_set_disconnected_tracing(val) \
1729 (*current_target.to_set_disconnected_tracing) (val)
1730
1731#define target_set_circular_trace_buffer(val) \
1732 (*current_target.to_set_circular_trace_buffer) (val)
1733
1734#define target_set_trace_buffer_size(val) \
1735 (*current_target.to_set_trace_buffer_size) (val)
1736
1737#define target_set_trace_notes(user,notes,stopnotes) \
1738 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1739
1740#define target_get_tib_address(ptid, addr) \
1741 (*current_target.to_get_tib_address) ((ptid), (addr))
1742
1743#define target_set_permissions() \
1744 (*current_target.to_set_permissions) ()
1745
1746#define target_static_tracepoint_marker_at(addr, marker) \
1747 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1748
1749#define target_static_tracepoint_markers_by_strid(marker_id) \
1750 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1751
1752#define target_traceframe_info() \
1753 (*current_target.to_traceframe_info) ()
1754
1755#define target_use_agent(use) \
1756 (*current_target.to_use_agent) (use)
1757
1758#define target_can_use_agent() \
1759 (*current_target.to_can_use_agent) ()
1760
1761#define target_augmented_libraries_svr4_read() \
1762 (*current_target.to_augmented_libraries_svr4_read) ()
1763
1764/* Command logging facility. */
1765
1766#define target_log_command(p) \
1767 do \
1768 if (current_target.to_log_command) \
1769 (*current_target.to_log_command) (p); \
1770 while (0)
1771
1772
1773extern int target_core_of_thread (ptid_t ptid);
1774
1775/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1776 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1777 if there's a mismatch, and -1 if an error is encountered while
1778 reading memory. Throws an error if the functionality is found not
1779 to be supported by the current target. */
1780int target_verify_memory (const gdb_byte *data,
1781 CORE_ADDR memaddr, ULONGEST size);
1782
1783/* Routines for maintenance of the target structures...
1784
1785 complete_target_initialization: Finalize a target_ops by filling in
1786 any fields needed by the target implementation.
1787
1788 add_target: Add a target to the list of all possible targets.
1789
1790 push_target: Make this target the top of the stack of currently used
1791 targets, within its particular stratum of the stack. Result
1792 is 0 if now atop the stack, nonzero if not on top (maybe
1793 should warn user).
1794
1795 unpush_target: Remove this from the stack of currently used targets,
1796 no matter where it is on the list. Returns 0 if no
1797 change, 1 if removed from stack. */
1798
1799extern void add_target (struct target_ops *);
1800
1801extern void add_target_with_completer (struct target_ops *t,
1802 completer_ftype *completer);
1803
1804extern void complete_target_initialization (struct target_ops *t);
1805
1806/* Adds a command ALIAS for target T and marks it deprecated. This is useful
1807 for maintaining backwards compatibility when renaming targets. */
1808
1809extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1810
1811extern void push_target (struct target_ops *);
1812
1813extern int unpush_target (struct target_ops *);
1814
1815extern void target_pre_inferior (int);
1816
1817extern void target_preopen (int);
1818
1819/* Does whatever cleanup is required to get rid of all pushed targets. */
1820extern void pop_all_targets (void);
1821
1822/* Like pop_all_targets, but pops only targets whose stratum is
1823 strictly above ABOVE_STRATUM. */
1824extern void pop_all_targets_above (enum strata above_stratum);
1825
1826extern int target_is_pushed (struct target_ops *t);
1827
1828extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1829 CORE_ADDR offset);
1830
1831/* Struct target_section maps address ranges to file sections. It is
1832 mostly used with BFD files, but can be used without (e.g. for handling
1833 raw disks, or files not in formats handled by BFD). */
1834
1835struct target_section
1836 {
1837 CORE_ADDR addr; /* Lowest address in section */
1838 CORE_ADDR endaddr; /* 1+highest address in section */
1839
1840 struct bfd_section *the_bfd_section;
1841
1842 /* The "owner" of the section.
1843 It can be any unique value. It is set by add_target_sections
1844 and used by remove_target_sections.
1845 For example, for executables it is a pointer to exec_bfd and
1846 for shlibs it is the so_list pointer. */
1847 void *owner;
1848 };
1849
1850/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1851
1852struct target_section_table
1853{
1854 struct target_section *sections;
1855 struct target_section *sections_end;
1856};
1857
1858/* Return the "section" containing the specified address. */
1859struct target_section *target_section_by_addr (struct target_ops *target,
1860 CORE_ADDR addr);
1861
1862/* Return the target section table this target (or the targets
1863 beneath) currently manipulate. */
1864
1865extern struct target_section_table *target_get_section_table
1866 (struct target_ops *target);
1867
1868/* From mem-break.c */
1869
1870extern int memory_remove_breakpoint (struct gdbarch *,
1871 struct bp_target_info *);
1872
1873extern int memory_insert_breakpoint (struct gdbarch *,
1874 struct bp_target_info *);
1875
1876extern int default_memory_remove_breakpoint (struct gdbarch *,
1877 struct bp_target_info *);
1878
1879extern int default_memory_insert_breakpoint (struct gdbarch *,
1880 struct bp_target_info *);
1881
1882
1883/* From target.c */
1884
1885extern void initialize_targets (void);
1886
1887extern void noprocess (void) ATTRIBUTE_NORETURN;
1888
1889extern void target_require_runnable (void);
1890
1891extern void find_default_attach (struct target_ops *, char *, int);
1892
1893extern void find_default_create_inferior (struct target_ops *,
1894 char *, char *, char **, int);
1895
1896extern struct target_ops *find_target_beneath (struct target_ops *);
1897
1898/* Read OS data object of type TYPE from the target, and return it in
1899 XML format. The result is NUL-terminated and returned as a string,
1900 allocated using xmalloc. If an error occurs or the transfer is
1901 unsupported, NULL is returned. Empty objects are returned as
1902 allocated but empty strings. */
1903
1904extern char *target_get_osdata (const char *type);
1905
1906\f
1907/* Stuff that should be shared among the various remote targets. */
1908
1909/* Debugging level. 0 is off, and non-zero values mean to print some debug
1910 information (higher values, more information). */
1911extern int remote_debug;
1912
1913/* Speed in bits per second, or -1 which means don't mess with the speed. */
1914extern int baud_rate;
1915/* Timeout limit for response from target. */
1916extern int remote_timeout;
1917
1918\f
1919
1920/* Set the show memory breakpoints mode to show, and installs a cleanup
1921 to restore it back to the current value. */
1922extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1923
1924extern int may_write_registers;
1925extern int may_write_memory;
1926extern int may_insert_breakpoints;
1927extern int may_insert_tracepoints;
1928extern int may_insert_fast_tracepoints;
1929extern int may_stop;
1930
1931extern void update_target_permissions (void);
1932
1933\f
1934/* Imported from machine dependent code. */
1935
1936/* Blank target vector entries are initialized to target_ignore. */
1937void target_ignore (void);
1938
1939/* See to_supports_btrace in struct target_ops. */
1940extern int target_supports_btrace (void);
1941
1942/* See to_enable_btrace in struct target_ops. */
1943extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1944
1945/* See to_disable_btrace in struct target_ops. */
1946extern void target_disable_btrace (struct btrace_target_info *btinfo);
1947
1948/* See to_teardown_btrace in struct target_ops. */
1949extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1950
1951/* See to_read_btrace in struct target_ops. */
1952extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1953 enum btrace_read_type);
1954
1955/* See to_stop_recording in struct target_ops. */
1956extern void target_stop_recording (void);
1957
1958/* See to_info_record in struct target_ops. */
1959extern void target_info_record (void);
1960
1961/* See to_save_record in struct target_ops. */
1962extern void target_save_record (const char *filename);
1963
1964/* Query if the target supports deleting the execution log. */
1965extern int target_supports_delete_record (void);
1966
1967/* See to_delete_record in struct target_ops. */
1968extern void target_delete_record (void);
1969
1970/* See to_record_is_replaying in struct target_ops. */
1971extern int target_record_is_replaying (void);
1972
1973/* See to_goto_record_begin in struct target_ops. */
1974extern void target_goto_record_begin (void);
1975
1976/* See to_goto_record_end in struct target_ops. */
1977extern void target_goto_record_end (void);
1978
1979/* See to_goto_record in struct target_ops. */
1980extern void target_goto_record (ULONGEST insn);
1981
1982/* See to_insn_history. */
1983extern void target_insn_history (int size, int flags);
1984
1985/* See to_insn_history_from. */
1986extern void target_insn_history_from (ULONGEST from, int size, int flags);
1987
1988/* See to_insn_history_range. */
1989extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
1990
1991/* See to_call_history. */
1992extern void target_call_history (int size, int flags);
1993
1994/* See to_call_history_from. */
1995extern void target_call_history_from (ULONGEST begin, int size, int flags);
1996
1997/* See to_call_history_range. */
1998extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
1999
2000#endif /* !defined (TARGET_H) */
This page took 0.02943 seconds and 4 git commands to generate.