Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25struct objfile;
26struct ui_file;
27struct mem_attrib;
28struct target_ops;
29struct bp_location;
30struct bp_target_info;
31struct regcache;
32struct target_section_table;
33struct trace_state_variable;
34struct trace_status;
35struct uploaded_tsv;
36struct uploaded_tp;
37struct static_tracepoint_marker;
38struct traceframe_info;
39struct expression;
40struct dcache_struct;
41struct inferior;
42
43#include "infrun.h" /* For enum exec_direction_kind. */
44#include "breakpoint.h" /* For enum bptype. */
45#include "common/scoped_restore.h"
46
47/* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70#include "target/target.h"
71#include "target/resume.h"
72#include "target/wait.h"
73#include "target/waitstatus.h"
74#include "bfd.h"
75#include "symtab.h"
76#include "memattr.h"
77#include "vec.h"
78#include "gdb_signals.h"
79#include "btrace.h"
80#include "record.h"
81#include "command.h"
82#include "disasm.h"
83#include "tracepoint.h"
84
85#include "break-common.h" /* For enum target_hw_bp_type. */
86
87enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104/* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119/* Return a pretty printed form of TARGET_OPTIONS.
120 Space for the result is malloc'd, caller must free. */
121extern char *target_options_to_string (int target_options);
122
123/* Possible types of events that the inferior handler will have to
124 deal with. */
125enum inferior_event_type
126 {
127 /* Process a normal inferior event which will result in target_wait
128 being called. */
129 INF_REG_EVENT,
130 /* We are called to do stuff after the inferior stops. */
131 INF_EXEC_COMPLETE,
132 };
133\f
134/* Target objects which can be transfered using target_read,
135 target_write, et cetera. */
136
137enum target_object
138{
139 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
140 TARGET_OBJECT_AVR,
141 /* SPU target specific transfer. See "spu-tdep.c". */
142 TARGET_OBJECT_SPU,
143 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
144 TARGET_OBJECT_MEMORY,
145 /* Memory, avoiding GDB's data cache and trusting the executable.
146 Target implementations of to_xfer_partial never need to handle
147 this object, and most callers should not use it. */
148 TARGET_OBJECT_RAW_MEMORY,
149 /* Memory known to be part of the target's stack. This is cached even
150 if it is not in a region marked as such, since it is known to be
151 "normal" RAM. */
152 TARGET_OBJECT_STACK_MEMORY,
153 /* Memory known to be part of the target code. This is cached even
154 if it is not in a region marked as such. */
155 TARGET_OBJECT_CODE_MEMORY,
156 /* Kernel Unwind Table. See "ia64-tdep.c". */
157 TARGET_OBJECT_UNWIND_TABLE,
158 /* Transfer auxilliary vector. */
159 TARGET_OBJECT_AUXV,
160 /* StackGhost cookie. See "sparc-tdep.c". */
161 TARGET_OBJECT_WCOOKIE,
162 /* Target memory map in XML format. */
163 TARGET_OBJECT_MEMORY_MAP,
164 /* Flash memory. This object can be used to write contents to
165 a previously erased flash memory. Using it without erasing
166 flash can have unexpected results. Addresses are physical
167 address on target, and not relative to flash start. */
168 TARGET_OBJECT_FLASH,
169 /* Available target-specific features, e.g. registers and coprocessors.
170 See "target-descriptions.c". ANNEX should never be empty. */
171 TARGET_OBJECT_AVAILABLE_FEATURES,
172 /* Currently loaded libraries, in XML format. */
173 TARGET_OBJECT_LIBRARIES,
174 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
175 TARGET_OBJECT_LIBRARIES_SVR4,
176 /* Currently loaded libraries specific to AIX systems, in XML format. */
177 TARGET_OBJECT_LIBRARIES_AIX,
178 /* Get OS specific data. The ANNEX specifies the type (running
179 processes, etc.). The data being transfered is expected to follow
180 the DTD specified in features/osdata.dtd. */
181 TARGET_OBJECT_OSDATA,
182 /* Extra signal info. Usually the contents of `siginfo_t' on unix
183 platforms. */
184 TARGET_OBJECT_SIGNAL_INFO,
185 /* The list of threads that are being debugged. */
186 TARGET_OBJECT_THREADS,
187 /* Collected static trace data. */
188 TARGET_OBJECT_STATIC_TRACE_DATA,
189 /* Traceframe info, in XML format. */
190 TARGET_OBJECT_TRACEFRAME_INFO,
191 /* Load maps for FDPIC systems. */
192 TARGET_OBJECT_FDPIC,
193 /* Darwin dynamic linker info data. */
194 TARGET_OBJECT_DARWIN_DYLD_INFO,
195 /* OpenVMS Unwind Information Block. */
196 TARGET_OBJECT_OPENVMS_UIB,
197 /* Branch trace data, in XML format. */
198 TARGET_OBJECT_BTRACE,
199 /* Branch trace configuration, in XML format. */
200 TARGET_OBJECT_BTRACE_CONF,
201 /* The pathname of the executable file that was run to create
202 a specified process. ANNEX should be a string representation
203 of the process ID of the process in question, in hexadecimal
204 format. */
205 TARGET_OBJECT_EXEC_FILE,
206 /* Possible future objects: TARGET_OBJECT_FILE, ... */
207};
208
209/* Possible values returned by target_xfer_partial, etc. */
210
211enum target_xfer_status
212{
213 /* Some bytes are transferred. */
214 TARGET_XFER_OK = 1,
215
216 /* No further transfer is possible. */
217 TARGET_XFER_EOF = 0,
218
219 /* The piece of the object requested is unavailable. */
220 TARGET_XFER_UNAVAILABLE = 2,
221
222 /* Generic I/O error. Note that it's important that this is '-1',
223 as we still have target_xfer-related code returning hardcoded
224 '-1' on error. */
225 TARGET_XFER_E_IO = -1,
226
227 /* Keep list in sync with target_xfer_status_to_string. */
228};
229
230/* Return the string form of STATUS. */
231
232extern const char *
233 target_xfer_status_to_string (enum target_xfer_status status);
234
235typedef enum target_xfer_status
236 target_xfer_partial_ftype (struct target_ops *ops,
237 enum target_object object,
238 const char *annex,
239 gdb_byte *readbuf,
240 const gdb_byte *writebuf,
241 ULONGEST offset,
242 ULONGEST len,
243 ULONGEST *xfered_len);
244
245enum target_xfer_status
246 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
247 const gdb_byte *writebuf, ULONGEST memaddr,
248 LONGEST len, ULONGEST *xfered_len);
249
250/* Request that OPS transfer up to LEN addressable units of the target's
251 OBJECT. When reading from a memory object, the size of an addressable unit
252 is architecture dependent and can be found using
253 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
254 byte long. BUF should point to a buffer large enough to hold the read data,
255 taking into account the addressable unit size. The OFFSET, for a seekable
256 object, specifies the starting point. The ANNEX can be used to provide
257 additional data-specific information to the target.
258
259 Return the number of addressable units actually transferred, or a negative
260 error code (an 'enum target_xfer_error' value) if the transfer is not
261 supported or otherwise fails. Return of a positive value less than
262 LEN indicates that no further transfer is possible. Unlike the raw
263 to_xfer_partial interface, callers of these functions do not need
264 to retry partial transfers. */
265
266extern LONGEST target_read (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte *buf,
269 ULONGEST offset, LONGEST len);
270
271struct memory_read_result
272{
273 memory_read_result (ULONGEST begin_, ULONGEST end_,
274 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
275 : begin (begin_),
276 end (end_),
277 data (std::move (data_))
278 {
279 }
280
281 ~memory_read_result () = default;
282
283 memory_read_result (memory_read_result &&other) = default;
284
285 DISABLE_COPY_AND_ASSIGN (memory_read_result);
286
287 /* First address that was read. */
288 ULONGEST begin;
289 /* Past-the-end address. */
290 ULONGEST end;
291 /* The data. */
292 gdb::unique_xmalloc_ptr<gdb_byte> data;
293};
294
295extern std::vector<memory_read_result> read_memory_robust
296 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
297
298/* Request that OPS transfer up to LEN addressable units from BUF to the
299 target's OBJECT. When writing to a memory object, the addressable unit
300 size is architecture dependent and can be found using
301 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
302 byte long. The OFFSET, for a seekable object, specifies the starting point.
303 The ANNEX can be used to provide additional data-specific information to
304 the target.
305
306 Return the number of addressable units actually transferred, or a negative
307 error code (an 'enum target_xfer_status' value) if the transfer is not
308 supported or otherwise fails. Return of a positive value less than
309 LEN indicates that no further transfer is possible. Unlike the raw
310 to_xfer_partial interface, callers of these functions do not need to
311 retry partial transfers. */
312
313extern LONGEST target_write (struct target_ops *ops,
314 enum target_object object,
315 const char *annex, const gdb_byte *buf,
316 ULONGEST offset, LONGEST len);
317
318/* Similar to target_write, except that it also calls PROGRESS with
319 the number of bytes written and the opaque BATON after every
320 successful partial write (and before the first write). This is
321 useful for progress reporting and user interaction while writing
322 data. To abort the transfer, the progress callback can throw an
323 exception. */
324
325LONGEST target_write_with_progress (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, const gdb_byte *buf,
328 ULONGEST offset, LONGEST len,
329 void (*progress) (ULONGEST, void *),
330 void *baton);
331
332/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
333 using OPS. The return value will be uninstantiated if the transfer fails or
334 is not supported.
335
336 This method should be used for objects sufficiently small to store
337 in a single xmalloc'd buffer, when no fixed bound on the object's
338 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
339 through this function. */
340
341extern gdb::optional<gdb::byte_vector> target_read_alloc
342 (struct target_ops *ops, enum target_object object, const char *annex);
343
344/* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
345 (therefore usable as a NUL-terminated string). If an error occurs or the
346 transfer is unsupported, the return value will be uninstantiated. Empty
347 objects are returned as allocated but empty strings. Therefore, on success,
348 the returned vector is guaranteed to have at least one element. A warning is
349 issued if the result contains any embedded NUL bytes. */
350
351extern gdb::optional<gdb::char_vector> target_read_stralloc
352 (struct target_ops *ops, enum target_object object, const char *annex);
353
354/* See target_ops->to_xfer_partial. */
355extern target_xfer_partial_ftype target_xfer_partial;
356
357/* Wrappers to target read/write that perform memory transfers. They
358 throw an error if the memory transfer fails.
359
360 NOTE: cagney/2003-10-23: The naming schema is lifted from
361 "frame.h". The parameter order is lifted from get_frame_memory,
362 which in turn lifted it from read_memory. */
363
364extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
365 gdb_byte *buf, LONGEST len);
366extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
367 CORE_ADDR addr, int len,
368 enum bfd_endian byte_order);
369\f
370struct thread_info; /* fwd decl for parameter list below: */
371
372/* The type of the callback to the to_async method. */
373
374typedef void async_callback_ftype (enum inferior_event_type event_type,
375 void *context);
376
377/* Normally target debug printing is purely type-based. However,
378 sometimes it is necessary to override the debug printing on a
379 per-argument basis. This macro can be used, attribute-style, to
380 name the target debug printing function for a particular method
381 argument. FUNC is the name of the function. The macro's
382 definition is empty because it is only used by the
383 make-target-delegates script. */
384
385#define TARGET_DEBUG_PRINTER(FUNC)
386
387/* These defines are used to mark target_ops methods. The script
388 make-target-delegates scans these and auto-generates the base
389 method implementations. There are four macros that can be used:
390
391 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
392 does nothing. This is only valid if the method return type is
393 'void'.
394
395 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
396 'tcomplain ()'. The base method simply makes this call, which is
397 assumed not to return.
398
399 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
400 base method returns this expression's value.
401
402 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
403 make-target-delegates does not generate a base method in this case,
404 but instead uses the argument function as the base method. */
405
406#define TARGET_DEFAULT_IGNORE()
407#define TARGET_DEFAULT_NORETURN(ARG)
408#define TARGET_DEFAULT_RETURN(ARG)
409#define TARGET_DEFAULT_FUNC(ARG)
410
411/* Each target that can be activated with "target TARGET_NAME" passes
412 the address of one of these objects to add_target, which uses the
413 object's address as unique identifier, and registers the "target
414 TARGET_NAME" command using SHORTNAME as target name. */
415
416struct target_info
417{
418 /* Name of this target. */
419 const char *shortname;
420
421 /* Name for printing. */
422 const char *longname;
423
424 /* Documentation. Does not include trailing newline, and starts
425 with a one-line description (probably similar to longname). */
426 const char *doc;
427};
428
429struct target_ops
430 {
431 /* To the target under this one. */
432 target_ops *beneath () const;
433
434 /* Free resources associated with the target. Note that singleton
435 targets, like e.g., native targets, are global objects, not
436 heap allocated, and are thus only deleted on GDB exit. The
437 main teardown entry point is the "close" method, below. */
438 virtual ~target_ops () {}
439
440 /* Return a reference to this target's unique target_info
441 object. */
442 virtual const target_info &info () const = 0;
443
444 /* Name this target type. */
445 const char *shortname ()
446 { return info ().shortname; }
447
448 const char *longname ()
449 { return info ().longname; }
450
451 /* Close the target. This is where the target can handle
452 teardown. Heap-allocated targets should delete themselves
453 before returning. */
454 virtual void close ();
455
456 /* Attaches to a process on the target side. Arguments are as
457 passed to the `attach' command by the user. This routine can
458 be called when the target is not on the target-stack, if the
459 target_ops::can_run method returns 1; in that case, it must push
460 itself onto the stack. Upon exit, the target should be ready
461 for normal operations, and should be ready to deliver the
462 status of the process immediately (without waiting) to an
463 upcoming target_wait call. */
464 virtual bool can_attach ();
465 virtual void attach (const char *, int);
466 virtual void post_attach (int)
467 TARGET_DEFAULT_IGNORE ();
468 virtual void detach (inferior *, int)
469 TARGET_DEFAULT_IGNORE ();
470 virtual void disconnect (const char *, int)
471 TARGET_DEFAULT_NORETURN (tcomplain ());
472 virtual void resume (ptid_t,
473 int TARGET_DEBUG_PRINTER (target_debug_print_step),
474 enum gdb_signal)
475 TARGET_DEFAULT_NORETURN (noprocess ());
476 virtual void commit_resume ()
477 TARGET_DEFAULT_IGNORE ();
478 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
479 int TARGET_DEBUG_PRINTER (target_debug_print_options))
480 TARGET_DEFAULT_FUNC (default_target_wait);
481 virtual void fetch_registers (struct regcache *, int)
482 TARGET_DEFAULT_IGNORE ();
483 virtual void store_registers (struct regcache *, int)
484 TARGET_DEFAULT_NORETURN (noprocess ());
485 virtual void prepare_to_store (struct regcache *)
486 TARGET_DEFAULT_NORETURN (noprocess ());
487
488 virtual void files_info ()
489 TARGET_DEFAULT_IGNORE ();
490 virtual int insert_breakpoint (struct gdbarch *,
491 struct bp_target_info *)
492 TARGET_DEFAULT_NORETURN (noprocess ());
493 virtual int remove_breakpoint (struct gdbarch *,
494 struct bp_target_info *,
495 enum remove_bp_reason)
496 TARGET_DEFAULT_NORETURN (noprocess ());
497
498 /* Returns true if the target stopped because it executed a
499 software breakpoint. This is necessary for correct background
500 execution / non-stop mode operation, and for correct PC
501 adjustment on targets where the PC needs to be adjusted when a
502 software breakpoint triggers. In these modes, by the time GDB
503 processes a breakpoint event, the breakpoint may already be
504 done from the target, so GDB needs to be able to tell whether
505 it should ignore the event and whether it should adjust the PC.
506 See adjust_pc_after_break. */
507 virtual bool stopped_by_sw_breakpoint ()
508 TARGET_DEFAULT_RETURN (false);
509 /* Returns true if the above method is supported. */
510 virtual bool supports_stopped_by_sw_breakpoint ()
511 TARGET_DEFAULT_RETURN (false);
512
513 /* Returns true if the target stopped for a hardware breakpoint.
514 Likewise, if the target supports hardware breakpoints, this
515 method is necessary for correct background execution / non-stop
516 mode operation. Even though hardware breakpoints do not
517 require PC adjustment, GDB needs to be able to tell whether the
518 hardware breakpoint event is a delayed event for a breakpoint
519 that is already gone and should thus be ignored. */
520 virtual bool stopped_by_hw_breakpoint ()
521 TARGET_DEFAULT_RETURN (false);
522 /* Returns true if the above method is supported. */
523 virtual bool supports_stopped_by_hw_breakpoint ()
524 TARGET_DEFAULT_RETURN (false);
525
526 virtual int can_use_hw_breakpoint (enum bptype, int, int)
527 TARGET_DEFAULT_RETURN (0);
528 virtual int ranged_break_num_registers ()
529 TARGET_DEFAULT_RETURN (-1);
530 virtual int insert_hw_breakpoint (struct gdbarch *,
531 struct bp_target_info *)
532 TARGET_DEFAULT_RETURN (-1);
533 virtual int remove_hw_breakpoint (struct gdbarch *,
534 struct bp_target_info *)
535 TARGET_DEFAULT_RETURN (-1);
536
537 /* Documentation of what the two routines below are expected to do is
538 provided with the corresponding target_* macros. */
539 virtual int remove_watchpoint (CORE_ADDR, int,
540 enum target_hw_bp_type, struct expression *)
541 TARGET_DEFAULT_RETURN (-1);
542 virtual int insert_watchpoint (CORE_ADDR, int,
543 enum target_hw_bp_type, struct expression *)
544 TARGET_DEFAULT_RETURN (-1);
545
546 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
547 enum target_hw_bp_type)
548 TARGET_DEFAULT_RETURN (1);
549 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
550 enum target_hw_bp_type)
551 TARGET_DEFAULT_RETURN (1);
552 virtual bool stopped_by_watchpoint ()
553 TARGET_DEFAULT_RETURN (false);
554 virtual int have_steppable_watchpoint ()
555 TARGET_DEFAULT_RETURN (false);
556 virtual bool have_continuable_watchpoint ()
557 TARGET_DEFAULT_RETURN (false);
558 virtual bool stopped_data_address (CORE_ADDR *)
559 TARGET_DEFAULT_RETURN (false);
560 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
561 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
562
563 /* Documentation of this routine is provided with the corresponding
564 target_* macro. */
565 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
566 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
567
568 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
569 struct expression *)
570 TARGET_DEFAULT_RETURN (false);
571 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
572 TARGET_DEFAULT_RETURN (-1);
573
574 /* Return 1 for sure target can do single step. Return -1 for
575 unknown. Return 0 for target can't do. */
576 virtual int can_do_single_step ()
577 TARGET_DEFAULT_RETURN (-1);
578
579 virtual bool supports_terminal_ours ()
580 TARGET_DEFAULT_RETURN (false);
581 virtual void terminal_init ()
582 TARGET_DEFAULT_IGNORE ();
583 virtual void terminal_inferior ()
584 TARGET_DEFAULT_IGNORE ();
585 virtual void terminal_save_inferior ()
586 TARGET_DEFAULT_IGNORE ();
587 virtual void terminal_ours_for_output ()
588 TARGET_DEFAULT_IGNORE ();
589 virtual void terminal_ours ()
590 TARGET_DEFAULT_IGNORE ();
591 virtual void terminal_info (const char *, int)
592 TARGET_DEFAULT_FUNC (default_terminal_info);
593 virtual void kill ()
594 TARGET_DEFAULT_NORETURN (noprocess ());
595 virtual void load (const char *, int)
596 TARGET_DEFAULT_NORETURN (tcomplain ());
597 /* Start an inferior process and set inferior_ptid to its pid.
598 EXEC_FILE is the file to run.
599 ALLARGS is a string containing the arguments to the program.
600 ENV is the environment vector to pass. Errors reported with error().
601 On VxWorks and various standalone systems, we ignore exec_file. */
602 virtual bool can_create_inferior ();
603 virtual void create_inferior (const char *, const std::string &,
604 char **, int);
605 virtual void post_startup_inferior (ptid_t)
606 TARGET_DEFAULT_IGNORE ();
607 virtual int insert_fork_catchpoint (int)
608 TARGET_DEFAULT_RETURN (1);
609 virtual int remove_fork_catchpoint (int)
610 TARGET_DEFAULT_RETURN (1);
611 virtual int insert_vfork_catchpoint (int)
612 TARGET_DEFAULT_RETURN (1);
613 virtual int remove_vfork_catchpoint (int)
614 TARGET_DEFAULT_RETURN (1);
615 virtual int follow_fork (int, int)
616 TARGET_DEFAULT_FUNC (default_follow_fork);
617 virtual int insert_exec_catchpoint (int)
618 TARGET_DEFAULT_RETURN (1);
619 virtual int remove_exec_catchpoint (int)
620 TARGET_DEFAULT_RETURN (1);
621 virtual void follow_exec (struct inferior *, char *)
622 TARGET_DEFAULT_IGNORE ();
623 virtual int set_syscall_catchpoint (int, bool, int,
624 gdb::array_view<const int>)
625 TARGET_DEFAULT_RETURN (1);
626 virtual void mourn_inferior ()
627 TARGET_DEFAULT_FUNC (default_mourn_inferior);
628
629 /* Note that can_run is special and can be invoked on an unpushed
630 target. Targets defining this method must also define
631 to_can_async_p and to_supports_non_stop. */
632 virtual bool can_run ();
633
634 /* Documentation of this routine is provided with the corresponding
635 target_* macro. */
636 virtual void pass_signals (int,
637 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
638 TARGET_DEFAULT_IGNORE ();
639
640 /* Documentation of this routine is provided with the
641 corresponding target_* function. */
642 virtual void program_signals (int,
643 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
644 TARGET_DEFAULT_IGNORE ();
645
646 virtual bool thread_alive (ptid_t ptid)
647 TARGET_DEFAULT_RETURN (false);
648 virtual void update_thread_list ()
649 TARGET_DEFAULT_IGNORE ();
650 virtual const char *pid_to_str (ptid_t)
651 TARGET_DEFAULT_FUNC (default_pid_to_str);
652 virtual const char *extra_thread_info (thread_info *)
653 TARGET_DEFAULT_RETURN (NULL);
654 virtual const char *thread_name (thread_info *)
655 TARGET_DEFAULT_RETURN (NULL);
656 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
657 int,
658 inferior *inf)
659 TARGET_DEFAULT_RETURN (NULL);
660 virtual void stop (ptid_t)
661 TARGET_DEFAULT_IGNORE ();
662 virtual void interrupt ()
663 TARGET_DEFAULT_IGNORE ();
664 virtual void pass_ctrlc ()
665 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
666 virtual void rcmd (const char *command, struct ui_file *output)
667 TARGET_DEFAULT_FUNC (default_rcmd);
668 virtual char *pid_to_exec_file (int pid)
669 TARGET_DEFAULT_RETURN (NULL);
670 virtual void log_command (const char *)
671 TARGET_DEFAULT_IGNORE ();
672 virtual struct target_section_table *get_section_table ()
673 TARGET_DEFAULT_RETURN (NULL);
674 enum strata to_stratum;
675
676 /* Provide default values for all "must have" methods. */
677 virtual bool has_all_memory () { return false; }
678 virtual bool has_memory () { return false; }
679 virtual bool has_stack () { return false; }
680 virtual bool has_registers () { return false; }
681 virtual bool has_execution (ptid_t) { return false; }
682
683 /* Control thread execution. */
684 virtual thread_control_capabilities get_thread_control_capabilities ()
685 TARGET_DEFAULT_RETURN (tc_none);
686 virtual bool attach_no_wait ()
687 TARGET_DEFAULT_RETURN (0);
688 /* This method must be implemented in some situations. See the
689 comment on 'can_run'. */
690 virtual bool can_async_p ()
691 TARGET_DEFAULT_RETURN (false);
692 virtual bool is_async_p ()
693 TARGET_DEFAULT_RETURN (false);
694 virtual void async (int)
695 TARGET_DEFAULT_NORETURN (tcomplain ());
696 virtual void thread_events (int)
697 TARGET_DEFAULT_IGNORE ();
698 /* This method must be implemented in some situations. See the
699 comment on 'can_run'. */
700 virtual bool supports_non_stop ()
701 TARGET_DEFAULT_RETURN (false);
702 /* Return true if the target operates in non-stop mode even with
703 "set non-stop off". */
704 virtual bool always_non_stop_p ()
705 TARGET_DEFAULT_RETURN (false);
706 /* find_memory_regions support method for gcore */
707 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
708 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
709 /* make_corefile_notes support method for gcore */
710 virtual char *make_corefile_notes (bfd *, int *)
711 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
712 /* get_bookmark support method for bookmarks */
713 virtual gdb_byte *get_bookmark (const char *, int)
714 TARGET_DEFAULT_NORETURN (tcomplain ());
715 /* goto_bookmark support method for bookmarks */
716 virtual void goto_bookmark (const gdb_byte *, int)
717 TARGET_DEFAULT_NORETURN (tcomplain ());
718 /* Return the thread-local address at OFFSET in the
719 thread-local storage for the thread PTID and the shared library
720 or executable file given by OBJFILE. If that block of
721 thread-local storage hasn't been allocated yet, this function
722 may return an error. LOAD_MODULE_ADDR may be zero for statically
723 linked multithreaded inferiors. */
724 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
725 CORE_ADDR load_module_addr,
726 CORE_ADDR offset)
727 TARGET_DEFAULT_NORETURN (generic_tls_error ());
728
729 /* Request that OPS transfer up to LEN addressable units of the target's
730 OBJECT. When reading from a memory object, the size of an addressable
731 unit is architecture dependent and can be found using
732 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
733 1 byte long. The OFFSET, for a seekable object, specifies the
734 starting point. The ANNEX can be used to provide additional
735 data-specific information to the target.
736
737 Return the transferred status, error or OK (an
738 'enum target_xfer_status' value). Save the number of addressable units
739 actually transferred in *XFERED_LEN if transfer is successful
740 (TARGET_XFER_OK) or the number unavailable units if the requested
741 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
742 smaller than LEN does not indicate the end of the object, only
743 the end of the transfer; higher level code should continue
744 transferring if desired. This is handled in target.c.
745
746 The interface does not support a "retry" mechanism. Instead it
747 assumes that at least one addressable unit will be transfered on each
748 successful call.
749
750 NOTE: cagney/2003-10-17: The current interface can lead to
751 fragmented transfers. Lower target levels should not implement
752 hacks, such as enlarging the transfer, in an attempt to
753 compensate for this. Instead, the target stack should be
754 extended so that it implements supply/collect methods and a
755 look-aside object cache. With that available, the lowest
756 target can safely and freely "push" data up the stack.
757
758 See target_read and target_write for more information. One,
759 and only one, of readbuf or writebuf must be non-NULL. */
760
761 virtual enum target_xfer_status xfer_partial (enum target_object object,
762 const char *annex,
763 gdb_byte *readbuf,
764 const gdb_byte *writebuf,
765 ULONGEST offset, ULONGEST len,
766 ULONGEST *xfered_len)
767 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
768
769 /* Return the limit on the size of any single memory transfer
770 for the target. */
771
772 virtual ULONGEST get_memory_xfer_limit ()
773 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
774
775 /* Returns the memory map for the target. A return value of NULL
776 means that no memory map is available. If a memory address
777 does not fall within any returned regions, it's assumed to be
778 RAM. The returned memory regions should not overlap.
779
780 The order of regions does not matter; target_memory_map will
781 sort regions by starting address. For that reason, this
782 function should not be called directly except via
783 target_memory_map.
784
785 This method should not cache data; if the memory map could
786 change unexpectedly, it should be invalidated, and higher
787 layers will re-fetch it. */
788 virtual std::vector<mem_region> memory_map ()
789 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
790
791 /* Erases the region of flash memory starting at ADDRESS, of
792 length LENGTH.
793
794 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
795 on flash block boundaries, as reported by 'to_memory_map'. */
796 virtual void flash_erase (ULONGEST address, LONGEST length)
797 TARGET_DEFAULT_NORETURN (tcomplain ());
798
799 /* Finishes a flash memory write sequence. After this operation
800 all flash memory should be available for writing and the result
801 of reading from areas written by 'to_flash_write' should be
802 equal to what was written. */
803 virtual void flash_done ()
804 TARGET_DEFAULT_NORETURN (tcomplain ());
805
806 /* Describe the architecture-specific features of this target. If
807 OPS doesn't have a description, this should delegate to the
808 "beneath" target. Returns the description found, or NULL if no
809 description was available. */
810 virtual const struct target_desc *read_description ()
811 TARGET_DEFAULT_RETURN (NULL);
812
813 /* Build the PTID of the thread on which a given task is running,
814 based on LWP and THREAD. These values are extracted from the
815 task Private_Data section of the Ada Task Control Block, and
816 their interpretation depends on the target. */
817 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
818 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
819
820 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
821 Return 0 if *READPTR is already at the end of the buffer.
822 Return -1 if there is insufficient buffer for a whole entry.
823 Return 1 if an entry was read into *TYPEP and *VALP. */
824 virtual int auxv_parse (gdb_byte **readptr,
825 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
826 TARGET_DEFAULT_FUNC (default_auxv_parse);
827
828 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
829 sequence of bytes in PATTERN with length PATTERN_LEN.
830
831 The result is 1 if found, 0 if not found, and -1 if there was an error
832 requiring halting of the search (e.g. memory read error).
833 If the pattern is found the address is recorded in FOUND_ADDRP. */
834 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
835 const gdb_byte *pattern, ULONGEST pattern_len,
836 CORE_ADDR *found_addrp)
837 TARGET_DEFAULT_FUNC (default_search_memory);
838
839 /* Can target execute in reverse? */
840 virtual bool can_execute_reverse ()
841 TARGET_DEFAULT_RETURN (false);
842
843 /* The direction the target is currently executing. Must be
844 implemented on targets that support reverse execution and async
845 mode. The default simply returns forward execution. */
846 virtual enum exec_direction_kind execution_direction ()
847 TARGET_DEFAULT_FUNC (default_execution_direction);
848
849 /* Does this target support debugging multiple processes
850 simultaneously? */
851 virtual bool supports_multi_process ()
852 TARGET_DEFAULT_RETURN (false);
853
854 /* Does this target support enabling and disabling tracepoints while a trace
855 experiment is running? */
856 virtual bool supports_enable_disable_tracepoint ()
857 TARGET_DEFAULT_RETURN (false);
858
859 /* Does this target support disabling address space randomization? */
860 virtual bool supports_disable_randomization ()
861 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
862
863 /* Does this target support the tracenz bytecode for string collection? */
864 virtual bool supports_string_tracing ()
865 TARGET_DEFAULT_RETURN (false);
866
867 /* Does this target support evaluation of breakpoint conditions on its
868 end? */
869 virtual bool supports_evaluation_of_breakpoint_conditions ()
870 TARGET_DEFAULT_RETURN (false);
871
872 /* Does this target support evaluation of breakpoint commands on its
873 end? */
874 virtual bool can_run_breakpoint_commands ()
875 TARGET_DEFAULT_RETURN (false);
876
877 /* Determine current architecture of thread PTID.
878
879 The target is supposed to determine the architecture of the code where
880 the target is currently stopped at (on Cell, if a target is in spu_run,
881 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
882 This is architecture used to perform decr_pc_after_break adjustment,
883 and also determines the frame architecture of the innermost frame.
884 ptrace operations need to operate according to target_gdbarch ().
885
886 The default implementation always returns target_gdbarch (). */
887 virtual struct gdbarch *thread_architecture (ptid_t)
888 TARGET_DEFAULT_FUNC (default_thread_architecture);
889
890 /* Determine current address space of thread PTID.
891
892 The default implementation always returns the inferior's
893 address space. */
894 virtual struct address_space *thread_address_space (ptid_t)
895 TARGET_DEFAULT_FUNC (default_thread_address_space);
896
897 /* Target file operations. */
898
899 /* Return nonzero if the filesystem seen by the current inferior
900 is the local filesystem, zero otherwise. */
901 virtual bool filesystem_is_local ()
902 TARGET_DEFAULT_RETURN (true);
903
904 /* Open FILENAME on the target, in the filesystem as seen by INF,
905 using FLAGS and MODE. If INF is NULL, use the filesystem seen
906 by the debugger (GDB or, for remote targets, the remote stub).
907 If WARN_IF_SLOW is nonzero, print a warning message if the file
908 is being accessed over a link that may be slow. Return a
909 target file descriptor, or -1 if an error occurs (and set
910 *TARGET_ERRNO). */
911 virtual int fileio_open (struct inferior *inf, const char *filename,
912 int flags, int mode, int warn_if_slow,
913 int *target_errno);
914
915 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
916 Return the number of bytes written, or -1 if an error occurs
917 (and set *TARGET_ERRNO). */
918 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
919 ULONGEST offset, int *target_errno);
920
921 /* Read up to LEN bytes FD on the target into READ_BUF.
922 Return the number of bytes read, or -1 if an error occurs
923 (and set *TARGET_ERRNO). */
924 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
925 ULONGEST offset, int *target_errno);
926
927 /* Get information about the file opened as FD and put it in
928 SB. Return 0 on success, or -1 if an error occurs (and set
929 *TARGET_ERRNO). */
930 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
931
932 /* Close FD on the target. Return 0, or -1 if an error occurs
933 (and set *TARGET_ERRNO). */
934 virtual int fileio_close (int fd, int *target_errno);
935
936 /* Unlink FILENAME on the target, in the filesystem as seen by
937 INF. If INF is NULL, use the filesystem seen by the debugger
938 (GDB or, for remote targets, the remote stub). Return 0, or
939 -1 if an error occurs (and set *TARGET_ERRNO). */
940 virtual int fileio_unlink (struct inferior *inf,
941 const char *filename,
942 int *target_errno);
943
944 /* Read value of symbolic link FILENAME on the target, in the
945 filesystem as seen by INF. If INF is NULL, use the filesystem
946 seen by the debugger (GDB or, for remote targets, the remote
947 stub). Return a string, or an empty optional if an error
948 occurs (and set *TARGET_ERRNO). */
949 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
950 const char *filename,
951 int *target_errno);
952
953 /* Implement the "info proc" command. Returns true if the target
954 actually implemented the command, false otherwise. */
955 virtual bool info_proc (const char *, enum info_proc_what);
956
957 /* Tracepoint-related operations. */
958
959 /* Prepare the target for a tracing run. */
960 virtual void trace_init ()
961 TARGET_DEFAULT_NORETURN (tcomplain ());
962
963 /* Send full details of a tracepoint location to the target. */
964 virtual void download_tracepoint (struct bp_location *location)
965 TARGET_DEFAULT_NORETURN (tcomplain ());
966
967 /* Is the target able to download tracepoint locations in current
968 state? */
969 virtual bool can_download_tracepoint ()
970 TARGET_DEFAULT_RETURN (false);
971
972 /* Send full details of a trace state variable to the target. */
973 virtual void download_trace_state_variable (const trace_state_variable &tsv)
974 TARGET_DEFAULT_NORETURN (tcomplain ());
975
976 /* Enable a tracepoint on the target. */
977 virtual void enable_tracepoint (struct bp_location *location)
978 TARGET_DEFAULT_NORETURN (tcomplain ());
979
980 /* Disable a tracepoint on the target. */
981 virtual void disable_tracepoint (struct bp_location *location)
982 TARGET_DEFAULT_NORETURN (tcomplain ());
983
984 /* Inform the target info of memory regions that are readonly
985 (such as text sections), and so it should return data from
986 those rather than look in the trace buffer. */
987 virtual void trace_set_readonly_regions ()
988 TARGET_DEFAULT_NORETURN (tcomplain ());
989
990 /* Start a trace run. */
991 virtual void trace_start ()
992 TARGET_DEFAULT_NORETURN (tcomplain ());
993
994 /* Get the current status of a tracing run. */
995 virtual int get_trace_status (struct trace_status *ts)
996 TARGET_DEFAULT_RETURN (-1);
997
998 virtual void get_tracepoint_status (struct breakpoint *tp,
999 struct uploaded_tp *utp)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Stop a trace run. */
1003 virtual void trace_stop ()
1004 TARGET_DEFAULT_NORETURN (tcomplain ());
1005
1006 /* Ask the target to find a trace frame of the given type TYPE,
1007 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1008 number of the trace frame, and also the tracepoint number at
1009 TPP. If no trace frame matches, return -1. May throw if the
1010 operation fails. */
1011 virtual int trace_find (enum trace_find_type type, int num,
1012 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1013 TARGET_DEFAULT_RETURN (-1);
1014
1015 /* Get the value of the trace state variable number TSV, returning
1016 1 if the value is known and writing the value itself into the
1017 location pointed to by VAL, else returning 0. */
1018 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1019 TARGET_DEFAULT_RETURN (false);
1020
1021 virtual int save_trace_data (const char *filename)
1022 TARGET_DEFAULT_NORETURN (tcomplain ());
1023
1024 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1025 TARGET_DEFAULT_RETURN (0);
1026
1027 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1028 TARGET_DEFAULT_RETURN (0);
1029
1030 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1031 ULONGEST offset, LONGEST len)
1032 TARGET_DEFAULT_NORETURN (tcomplain ());
1033
1034 /* Get the minimum length of instruction on which a fast tracepoint
1035 may be set on the target. If this operation is unsupported,
1036 return -1. If for some reason the minimum length cannot be
1037 determined, return 0. */
1038 virtual int get_min_fast_tracepoint_insn_len ()
1039 TARGET_DEFAULT_RETURN (-1);
1040
1041 /* Set the target's tracing behavior in response to unexpected
1042 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1043 virtual void set_disconnected_tracing (int val)
1044 TARGET_DEFAULT_IGNORE ();
1045 virtual void set_circular_trace_buffer (int val)
1046 TARGET_DEFAULT_IGNORE ();
1047 /* Set the size of trace buffer in the target. */
1048 virtual void set_trace_buffer_size (LONGEST val)
1049 TARGET_DEFAULT_IGNORE ();
1050
1051 /* Add/change textual notes about the trace run, returning 1 if
1052 successful, 0 otherwise. */
1053 virtual bool set_trace_notes (const char *user, const char *notes,
1054 const char *stopnotes)
1055 TARGET_DEFAULT_RETURN (false);
1056
1057 /* Return the processor core that thread PTID was last seen on.
1058 This information is updated only when:
1059 - update_thread_list is called
1060 - thread stops
1061 If the core cannot be determined -- either for the specified
1062 thread, or right now, or in this debug session, or for this
1063 target -- return -1. */
1064 virtual int core_of_thread (ptid_t ptid)
1065 TARGET_DEFAULT_RETURN (-1);
1066
1067 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1068 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1069 a match, 0 if there's a mismatch, and -1 if an error is
1070 encountered while reading memory. */
1071 virtual int verify_memory (const gdb_byte *data,
1072 CORE_ADDR memaddr, ULONGEST size)
1073 TARGET_DEFAULT_FUNC (default_verify_memory);
1074
1075 /* Return the address of the start of the Thread Information Block
1076 a Windows OS specific feature. */
1077 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Send the new settings of write permission variables. */
1081 virtual void set_permissions ()
1082 TARGET_DEFAULT_IGNORE ();
1083
1084 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1085 with its details. Return true on success, false on failure. */
1086 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1087 static_tracepoint_marker *marker)
1088 TARGET_DEFAULT_RETURN (false);
1089
1090 /* Return a vector of all tracepoints markers string id ID, or all
1091 markers if ID is NULL. */
1092 virtual std::vector<static_tracepoint_marker>
1093 static_tracepoint_markers_by_strid (const char *id)
1094 TARGET_DEFAULT_NORETURN (tcomplain ());
1095
1096 /* Return a traceframe info object describing the current
1097 traceframe's contents. This method should not cache data;
1098 higher layers take care of caching, invalidating, and
1099 re-fetching when necessary. */
1100 virtual traceframe_info_up traceframe_info ()
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Ask the target to use or not to use agent according to USE.
1104 Return true if successful, false otherwise. */
1105 virtual bool use_agent (bool use)
1106 TARGET_DEFAULT_NORETURN (tcomplain ());
1107
1108 /* Is the target able to use agent in current state? */
1109 virtual bool can_use_agent ()
1110 TARGET_DEFAULT_RETURN (false);
1111
1112 /* Enable branch tracing for PTID using CONF configuration.
1113 Return a branch trace target information struct for reading and for
1114 disabling branch trace. */
1115 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1116 const struct btrace_config *conf)
1117 TARGET_DEFAULT_NORETURN (tcomplain ());
1118
1119 /* Disable branch tracing and deallocate TINFO. */
1120 virtual void disable_btrace (struct btrace_target_info *tinfo)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123 /* Disable branch tracing and deallocate TINFO. This function is similar
1124 to to_disable_btrace, except that it is called during teardown and is
1125 only allowed to perform actions that are safe. A counter-example would
1126 be attempting to talk to a remote target. */
1127 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1128 TARGET_DEFAULT_NORETURN (tcomplain ());
1129
1130 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1131 DATA is cleared before new trace is added. */
1132 virtual enum btrace_error read_btrace (struct btrace_data *data,
1133 struct btrace_target_info *btinfo,
1134 enum btrace_read_type type)
1135 TARGET_DEFAULT_NORETURN (tcomplain ());
1136
1137 /* Get the branch trace configuration. */
1138 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1139 TARGET_DEFAULT_RETURN (NULL);
1140
1141 /* Current recording method. */
1142 virtual enum record_method record_method (ptid_t ptid)
1143 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1144
1145 /* Stop trace recording. */
1146 virtual void stop_recording ()
1147 TARGET_DEFAULT_IGNORE ();
1148
1149 /* Print information about the recording. */
1150 virtual void info_record ()
1151 TARGET_DEFAULT_IGNORE ();
1152
1153 /* Save the recorded execution trace into a file. */
1154 virtual void save_record (const char *filename)
1155 TARGET_DEFAULT_NORETURN (tcomplain ());
1156
1157 /* Delete the recorded execution trace from the current position
1158 onwards. */
1159 virtual bool supports_delete_record ()
1160 TARGET_DEFAULT_RETURN (false);
1161 virtual void delete_record ()
1162 TARGET_DEFAULT_NORETURN (tcomplain ());
1163
1164 /* Query if the record target is currently replaying PTID. */
1165 virtual bool record_is_replaying (ptid_t ptid)
1166 TARGET_DEFAULT_RETURN (false);
1167
1168 /* Query if the record target will replay PTID if it were resumed in
1169 execution direction DIR. */
1170 virtual bool record_will_replay (ptid_t ptid, int dir)
1171 TARGET_DEFAULT_RETURN (false);
1172
1173 /* Stop replaying. */
1174 virtual void record_stop_replaying ()
1175 TARGET_DEFAULT_IGNORE ();
1176
1177 /* Go to the begin of the execution trace. */
1178 virtual void goto_record_begin ()
1179 TARGET_DEFAULT_NORETURN (tcomplain ());
1180
1181 /* Go to the end of the execution trace. */
1182 virtual void goto_record_end ()
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Go to a specific location in the recorded execution trace. */
1186 virtual void goto_record (ULONGEST insn)
1187 TARGET_DEFAULT_NORETURN (tcomplain ());
1188
1189 /* Disassemble SIZE instructions in the recorded execution trace from
1190 the current position.
1191 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1192 disassemble SIZE succeeding instructions. */
1193 virtual void insn_history (int size, gdb_disassembly_flags flags)
1194 TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196 /* Disassemble SIZE instructions in the recorded execution trace around
1197 FROM.
1198 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1199 disassemble SIZE instructions after FROM. */
1200 virtual void insn_history_from (ULONGEST from, int size,
1201 gdb_disassembly_flags flags)
1202 TARGET_DEFAULT_NORETURN (tcomplain ());
1203
1204 /* Disassemble a section of the recorded execution trace from instruction
1205 BEGIN (inclusive) to instruction END (inclusive). */
1206 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1207 gdb_disassembly_flags flags)
1208 TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210 /* Print a function trace of the recorded execution trace.
1211 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1212 succeeding functions. */
1213 virtual void call_history (int size, record_print_flags flags)
1214 TARGET_DEFAULT_NORETURN (tcomplain ());
1215
1216 /* Print a function trace of the recorded execution trace starting
1217 at function FROM.
1218 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1219 SIZE functions after FROM. */
1220 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* Print a function trace of an execution trace section from function BEGIN
1224 (inclusive) to function END (inclusive). */
1225 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1226 TARGET_DEFAULT_NORETURN (tcomplain ());
1227
1228 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1229 non-empty annex. */
1230 virtual bool augmented_libraries_svr4_read ()
1231 TARGET_DEFAULT_RETURN (false);
1232
1233 /* Those unwinders are tried before any other arch unwinders. If
1234 SELF doesn't have unwinders, it should delegate to the
1235 "beneath" target. */
1236 virtual const struct frame_unwind *get_unwinder ()
1237 TARGET_DEFAULT_RETURN (NULL);
1238
1239 virtual const struct frame_unwind *get_tailcall_unwinder ()
1240 TARGET_DEFAULT_RETURN (NULL);
1241
1242 /* Prepare to generate a core file. */
1243 virtual void prepare_to_generate_core ()
1244 TARGET_DEFAULT_IGNORE ();
1245
1246 /* Cleanup after generating a core file. */
1247 virtual void done_generating_core ()
1248 TARGET_DEFAULT_IGNORE ();
1249 };
1250
1251/* Deleter for std::unique_ptr. See comments in
1252 target_ops::~target_ops and target_ops::close about heap-allocated
1253 targets. */
1254struct target_ops_deleter
1255{
1256 void operator() (target_ops *target)
1257 {
1258 target->close ();
1259 }
1260};
1261
1262/* A unique pointer for target_ops. */
1263typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1264
1265/* Native target backends call this once at initialization time to
1266 inform the core about which is the target that can respond to "run"
1267 or "attach". Note: native targets are always singletons. */
1268extern void set_native_target (target_ops *target);
1269
1270/* Get the registered native target, if there's one. Otherwise return
1271 NULL. */
1272extern target_ops *get_native_target ();
1273
1274/* Type that manages a target stack. See description of target stacks
1275 and strata at the top of the file. */
1276
1277class target_stack
1278{
1279public:
1280 target_stack () = default;
1281 DISABLE_COPY_AND_ASSIGN (target_stack);
1282
1283 /* Push a new target into the stack of the existing target
1284 accessors, possibly superseding some existing accessor. */
1285 void push (target_ops *t);
1286
1287 /* Remove a target from the stack, wherever it may be. Return true
1288 if it was removed, false otherwise. */
1289 bool unpush (target_ops *t);
1290
1291 /* Returns true if T is pushed on the target stack. */
1292 bool is_pushed (target_ops *t) const
1293 { return at (t->to_stratum) == t; }
1294
1295 /* Return the target at STRATUM. */
1296 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1297
1298 /* Return the target at the top of the stack. */
1299 target_ops *top () const { return at (m_top); }
1300
1301 /* Find the next target down the stack from the specified target. */
1302 target_ops *find_beneath (const target_ops *t) const;
1303
1304private:
1305 /* The stratum of the top target. */
1306 enum strata m_top {};
1307
1308 /* The stack, represented as an array, with one slot per stratum.
1309 If no target is pushed at some stratum, the corresponding slot is
1310 null. */
1311 target_ops *m_stack[(int) debug_stratum + 1] {};
1312};
1313
1314/* The ops structure for our "current" target process. This should
1315 never be NULL. If there is no target, it points to the dummy_target. */
1316
1317extern target_ops *current_top_target ();
1318
1319/* Define easy words for doing these operations on our current target. */
1320
1321#define target_shortname (current_top_target ()->shortname ())
1322#define target_longname (current_top_target ()->longname ())
1323
1324/* Does whatever cleanup is required for a target that we are no
1325 longer going to be calling. This routine is automatically always
1326 called after popping the target off the target stack - the target's
1327 own methods are no longer available through the target vector.
1328 Closing file descriptors and freeing all memory allocated memory are
1329 typical things it should do. */
1330
1331void target_close (struct target_ops *targ);
1332
1333/* Find the correct target to use for "attach". If a target on the
1334 current stack supports attaching, then it is returned. Otherwise,
1335 the default run target is returned. */
1336
1337extern struct target_ops *find_attach_target (void);
1338
1339/* Find the correct target to use for "run". If a target on the
1340 current stack supports creating a new inferior, then it is
1341 returned. Otherwise, the default run target is returned. */
1342
1343extern struct target_ops *find_run_target (void);
1344
1345/* Some targets don't generate traps when attaching to the inferior,
1346 or their target_attach implementation takes care of the waiting.
1347 These targets must set to_attach_no_wait. */
1348
1349#define target_attach_no_wait() \
1350 (current_top_target ()->attach_no_wait ())
1351
1352/* The target_attach operation places a process under debugger control,
1353 and stops the process.
1354
1355 This operation provides a target-specific hook that allows the
1356 necessary bookkeeping to be performed after an attach completes. */
1357#define target_post_attach(pid) \
1358 (current_top_target ()->post_attach) (pid)
1359
1360/* Display a message indicating we're about to detach from the current
1361 inferior process. */
1362
1363extern void target_announce_detach (int from_tty);
1364
1365/* Takes a program previously attached to and detaches it.
1366 The program may resume execution (some targets do, some don't) and will
1367 no longer stop on signals, etc. We better not have left any breakpoints
1368 in the program or it'll die when it hits one. FROM_TTY says whether to be
1369 verbose or not. */
1370
1371extern void target_detach (inferior *inf, int from_tty);
1372
1373/* Disconnect from the current target without resuming it (leaving it
1374 waiting for a debugger). */
1375
1376extern void target_disconnect (const char *, int);
1377
1378/* Resume execution (or prepare for execution) of a target thread,
1379 process or all processes. STEP says whether to hardware
1380 single-step or to run free; SIGGNAL is the signal to be given to
1381 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1382 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1383 process id'. A wildcard PTID (all threads, or all threads of
1384 process) means `step/resume INFERIOR_PTID, and let other threads
1385 (for which the wildcard PTID matches) resume with their
1386 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1387 is in "pass" state, or with no signal if in "no pass" state.
1388
1389 In order to efficiently handle batches of resumption requests,
1390 targets may implement this method such that it records the
1391 resumption request, but defers the actual resumption to the
1392 target_commit_resume method implementation. See
1393 target_commit_resume below. */
1394extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1395
1396/* Commit a series of resumption requests previously prepared with
1397 target_resume calls.
1398
1399 GDB always calls target_commit_resume after calling target_resume
1400 one or more times. A target may thus use this method in
1401 coordination with the target_resume method to batch target-side
1402 resumption requests. In that case, the target doesn't actually
1403 resume in its target_resume implementation. Instead, it prepares
1404 the resumption in target_resume, and defers the actual resumption
1405 to target_commit_resume. E.g., the remote target uses this to
1406 coalesce multiple resumption requests in a single vCont packet. */
1407extern void target_commit_resume ();
1408
1409/* Setup to defer target_commit_resume calls, and reactivate
1410 target_commit_resume on destruction, if it was previously
1411 active. */
1412extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1413
1414/* For target_read_memory see target/target.h. */
1415
1416/* The default target_ops::to_wait implementation. */
1417
1418extern ptid_t default_target_wait (struct target_ops *ops,
1419 ptid_t ptid,
1420 struct target_waitstatus *status,
1421 int options);
1422
1423/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1424
1425extern void target_fetch_registers (struct regcache *regcache, int regno);
1426
1427/* Store at least register REGNO, or all regs if REGNO == -1.
1428 It can store as many registers as it wants to, so target_prepare_to_store
1429 must have been previously called. Calls error() if there are problems. */
1430
1431extern void target_store_registers (struct regcache *regcache, int regs);
1432
1433/* Get ready to modify the registers array. On machines which store
1434 individual registers, this doesn't need to do anything. On machines
1435 which store all the registers in one fell swoop, this makes sure
1436 that REGISTERS contains all the registers from the program being
1437 debugged. */
1438
1439#define target_prepare_to_store(regcache) \
1440 (current_top_target ()->prepare_to_store) (regcache)
1441
1442/* Determine current address space of thread PTID. */
1443
1444struct address_space *target_thread_address_space (ptid_t);
1445
1446/* Implement the "info proc" command. This returns one if the request
1447 was handled, and zero otherwise. It can also throw an exception if
1448 an error was encountered while attempting to handle the
1449 request. */
1450
1451int target_info_proc (const char *, enum info_proc_what);
1452
1453/* Returns true if this target can disable address space randomization. */
1454
1455int target_supports_disable_randomization (void);
1456
1457/* Returns true if this target can enable and disable tracepoints
1458 while a trace experiment is running. */
1459
1460#define target_supports_enable_disable_tracepoint() \
1461 (current_top_target ()->supports_enable_disable_tracepoint) ()
1462
1463#define target_supports_string_tracing() \
1464 (current_top_target ()->supports_string_tracing) ()
1465
1466/* Returns true if this target can handle breakpoint conditions
1467 on its end. */
1468
1469#define target_supports_evaluation_of_breakpoint_conditions() \
1470 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1471
1472/* Returns true if this target can handle breakpoint commands
1473 on its end. */
1474
1475#define target_can_run_breakpoint_commands() \
1476 (current_top_target ()->can_run_breakpoint_commands) ()
1477
1478extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1479 int, int *);
1480
1481/* For target_read_memory see target/target.h. */
1482
1483extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1484 ssize_t len);
1485
1486extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1487
1488extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1489
1490/* For target_write_memory see target/target.h. */
1491
1492extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1493 ssize_t len);
1494
1495/* Fetches the target's memory map. If one is found it is sorted
1496 and returned, after some consistency checking. Otherwise, NULL
1497 is returned. */
1498std::vector<mem_region> target_memory_map (void);
1499
1500/* Erases all flash memory regions on the target. */
1501void flash_erase_command (const char *cmd, int from_tty);
1502
1503/* Erase the specified flash region. */
1504void target_flash_erase (ULONGEST address, LONGEST length);
1505
1506/* Finish a sequence of flash operations. */
1507void target_flash_done (void);
1508
1509/* Describes a request for a memory write operation. */
1510struct memory_write_request
1511{
1512 memory_write_request (ULONGEST begin_, ULONGEST end_,
1513 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1514 : begin (begin_), end (end_), data (data_), baton (baton_)
1515 {}
1516
1517 /* Begining address that must be written. */
1518 ULONGEST begin;
1519 /* Past-the-end address. */
1520 ULONGEST end;
1521 /* The data to write. */
1522 gdb_byte *data;
1523 /* A callback baton for progress reporting for this request. */
1524 void *baton;
1525};
1526
1527/* Enumeration specifying different flash preservation behaviour. */
1528enum flash_preserve_mode
1529 {
1530 flash_preserve,
1531 flash_discard
1532 };
1533
1534/* Write several memory blocks at once. This version can be more
1535 efficient than making several calls to target_write_memory, in
1536 particular because it can optimize accesses to flash memory.
1537
1538 Moreover, this is currently the only memory access function in gdb
1539 that supports writing to flash memory, and it should be used for
1540 all cases where access to flash memory is desirable.
1541
1542 REQUESTS is the vector (see vec.h) of memory_write_request.
1543 PRESERVE_FLASH_P indicates what to do with blocks which must be
1544 erased, but not completely rewritten.
1545 PROGRESS_CB is a function that will be periodically called to provide
1546 feedback to user. It will be called with the baton corresponding
1547 to the request currently being written. It may also be called
1548 with a NULL baton, when preserved flash sectors are being rewritten.
1549
1550 The function returns 0 on success, and error otherwise. */
1551int target_write_memory_blocks
1552 (const std::vector<memory_write_request> &requests,
1553 enum flash_preserve_mode preserve_flash_p,
1554 void (*progress_cb) (ULONGEST, void *));
1555
1556/* Print a line about the current target. */
1557
1558#define target_files_info() \
1559 (current_top_target ()->files_info) ()
1560
1561/* Insert a breakpoint at address BP_TGT->placed_address in
1562 the target machine. Returns 0 for success, and returns non-zero or
1563 throws an error (with a detailed failure reason error code and
1564 message) otherwise. */
1565
1566extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1567 struct bp_target_info *bp_tgt);
1568
1569/* Remove a breakpoint at address BP_TGT->placed_address in the target
1570 machine. Result is 0 for success, non-zero for error. */
1571
1572extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1573 struct bp_target_info *bp_tgt,
1574 enum remove_bp_reason reason);
1575
1576/* Return true if the target stack has a non-default
1577 "terminal_ours" method. */
1578
1579extern int target_supports_terminal_ours (void);
1580
1581/* Kill the inferior process. Make it go away. */
1582
1583extern void target_kill (void);
1584
1585/* Load an executable file into the target process. This is expected
1586 to not only bring new code into the target process, but also to
1587 update GDB's symbol tables to match.
1588
1589 ARG contains command-line arguments, to be broken down with
1590 buildargv (). The first non-switch argument is the filename to
1591 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1592 0)), which is an offset to apply to the load addresses of FILE's
1593 sections. The target may define switches, or other non-switch
1594 arguments, as it pleases. */
1595
1596extern void target_load (const char *arg, int from_tty);
1597
1598/* Some targets (such as ttrace-based HPUX) don't allow us to request
1599 notification of inferior events such as fork and vork immediately
1600 after the inferior is created. (This because of how gdb gets an
1601 inferior created via invoking a shell to do it. In such a scenario,
1602 if the shell init file has commands in it, the shell will fork and
1603 exec for each of those commands, and we will see each such fork
1604 event. Very bad.)
1605
1606 Such targets will supply an appropriate definition for this function. */
1607
1608#define target_post_startup_inferior(ptid) \
1609 (current_top_target ()->post_startup_inferior) (ptid)
1610
1611/* On some targets, we can catch an inferior fork or vfork event when
1612 it occurs. These functions insert/remove an already-created
1613 catchpoint for such events. They return 0 for success, 1 if the
1614 catchpoint type is not supported and -1 for failure. */
1615
1616#define target_insert_fork_catchpoint(pid) \
1617 (current_top_target ()->insert_fork_catchpoint) (pid)
1618
1619#define target_remove_fork_catchpoint(pid) \
1620 (current_top_target ()->remove_fork_catchpoint) (pid)
1621
1622#define target_insert_vfork_catchpoint(pid) \
1623 (current_top_target ()->insert_vfork_catchpoint) (pid)
1624
1625#define target_remove_vfork_catchpoint(pid) \
1626 (current_top_target ()->remove_vfork_catchpoint) (pid)
1627
1628/* If the inferior forks or vforks, this function will be called at
1629 the next resume in order to perform any bookkeeping and fiddling
1630 necessary to continue debugging either the parent or child, as
1631 requested, and releasing the other. Information about the fork
1632 or vfork event is available via get_last_target_status ().
1633 This function returns 1 if the inferior should not be resumed
1634 (i.e. there is another event pending). */
1635
1636int target_follow_fork (int follow_child, int detach_fork);
1637
1638/* Handle the target-specific bookkeeping required when the inferior
1639 makes an exec call. INF is the exec'd inferior. */
1640
1641void target_follow_exec (struct inferior *inf, char *execd_pathname);
1642
1643/* On some targets, we can catch an inferior exec event when it
1644 occurs. These functions insert/remove an already-created
1645 catchpoint for such events. They return 0 for success, 1 if the
1646 catchpoint type is not supported and -1 for failure. */
1647
1648#define target_insert_exec_catchpoint(pid) \
1649 (current_top_target ()->insert_exec_catchpoint) (pid)
1650
1651#define target_remove_exec_catchpoint(pid) \
1652 (current_top_target ()->remove_exec_catchpoint) (pid)
1653
1654/* Syscall catch.
1655
1656 NEEDED is true if any syscall catch (of any kind) is requested.
1657 If NEEDED is false, it means the target can disable the mechanism to
1658 catch system calls because there are no more catchpoints of this type.
1659
1660 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1661 being requested. In this case, SYSCALL_COUNTS should be ignored.
1662
1663 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1664 element in this array is nonzero if that syscall should be caught.
1665 This argument only matters if ANY_COUNT is zero.
1666
1667 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1668 for failure. */
1669
1670#define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1671 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1672 syscall_counts)
1673
1674/* The debugger has completed a blocking wait() call. There is now
1675 some process event that must be processed. This function should
1676 be defined by those targets that require the debugger to perform
1677 cleanup or internal state changes in response to the process event. */
1678
1679/* For target_mourn_inferior see target/target.h. */
1680
1681/* Does target have enough data to do a run or attach command? */
1682
1683extern int target_can_run ();
1684
1685/* Set list of signals to be handled in the target.
1686
1687 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1688 (enum gdb_signal). For every signal whose entry in this array is
1689 non-zero, the target is allowed -but not required- to skip reporting
1690 arrival of the signal to the GDB core by returning from target_wait,
1691 and to pass the signal directly to the inferior instead.
1692
1693 However, if the target is hardware single-stepping a thread that is
1694 about to receive a signal, it needs to be reported in any case, even
1695 if mentioned in a previous target_pass_signals call. */
1696
1697extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1698
1699/* Set list of signals the target may pass to the inferior. This
1700 directly maps to the "handle SIGNAL pass/nopass" setting.
1701
1702 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1703 number (enum gdb_signal). For every signal whose entry in this
1704 array is non-zero, the target is allowed to pass the signal to the
1705 inferior. Signals not present in the array shall be silently
1706 discarded. This does not influence whether to pass signals to the
1707 inferior as a result of a target_resume call. This is useful in
1708 scenarios where the target needs to decide whether to pass or not a
1709 signal to the inferior without GDB core involvement, such as for
1710 example, when detaching (as threads may have been suspended with
1711 pending signals not reported to GDB). */
1712
1713extern void target_program_signals (int nsig, unsigned char *program_signals);
1714
1715/* Check to see if a thread is still alive. */
1716
1717extern int target_thread_alive (ptid_t ptid);
1718
1719/* Sync the target's threads with GDB's thread list. */
1720
1721extern void target_update_thread_list (void);
1722
1723/* Make target stop in a continuable fashion. (For instance, under
1724 Unix, this should act like SIGSTOP). Note that this function is
1725 asynchronous: it does not wait for the target to become stopped
1726 before returning. If this is the behavior you want please use
1727 target_stop_and_wait. */
1728
1729extern void target_stop (ptid_t ptid);
1730
1731/* Interrupt the target. Unlike target_stop, this does not specify
1732 which thread/process reports the stop. For most target this acts
1733 like raising a SIGINT, though that's not absolutely required. This
1734 function is asynchronous. */
1735
1736extern void target_interrupt ();
1737
1738/* Pass a ^C, as determined to have been pressed by checking the quit
1739 flag, to the target, as if the user had typed the ^C on the
1740 inferior's controlling terminal while the inferior was in the
1741 foreground. Remote targets may take the opportunity to detect the
1742 remote side is not responding and offer to disconnect. */
1743
1744extern void target_pass_ctrlc (void);
1745
1746/* The default target_ops::to_pass_ctrlc implementation. Simply calls
1747 target_interrupt. */
1748extern void default_target_pass_ctrlc (struct target_ops *ops);
1749
1750/* Send the specified COMMAND to the target's monitor
1751 (shell,interpreter) for execution. The result of the query is
1752 placed in OUTBUF. */
1753
1754#define target_rcmd(command, outbuf) \
1755 (current_top_target ()->rcmd) (command, outbuf)
1756
1757
1758/* Does the target include all of memory, or only part of it? This
1759 determines whether we look up the target chain for other parts of
1760 memory if this target can't satisfy a request. */
1761
1762extern int target_has_all_memory_1 (void);
1763#define target_has_all_memory target_has_all_memory_1 ()
1764
1765/* Does the target include memory? (Dummy targets don't.) */
1766
1767extern int target_has_memory_1 (void);
1768#define target_has_memory target_has_memory_1 ()
1769
1770/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1771 we start a process.) */
1772
1773extern int target_has_stack_1 (void);
1774#define target_has_stack target_has_stack_1 ()
1775
1776/* Does the target have registers? (Exec files don't.) */
1777
1778extern int target_has_registers_1 (void);
1779#define target_has_registers target_has_registers_1 ()
1780
1781/* Does the target have execution? Can we make it jump (through
1782 hoops), or pop its stack a few times? This means that the current
1783 target is currently executing; for some targets, that's the same as
1784 whether or not the target is capable of execution, but there are
1785 also targets which can be current while not executing. In that
1786 case this will become true after to_create_inferior or
1787 to_attach. */
1788
1789extern int target_has_execution_1 (ptid_t);
1790
1791/* Like target_has_execution_1, but always passes inferior_ptid. */
1792
1793extern int target_has_execution_current (void);
1794
1795#define target_has_execution target_has_execution_current ()
1796
1797/* Default implementations for process_stratum targets. Return true
1798 if there's a selected inferior, false otherwise. */
1799
1800extern int default_child_has_all_memory ();
1801extern int default_child_has_memory ();
1802extern int default_child_has_stack ();
1803extern int default_child_has_registers ();
1804extern int default_child_has_execution (ptid_t the_ptid);
1805
1806/* Can the target support the debugger control of thread execution?
1807 Can it lock the thread scheduler? */
1808
1809#define target_can_lock_scheduler \
1810 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1811
1812/* Controls whether async mode is permitted. */
1813extern int target_async_permitted;
1814
1815/* Can the target support asynchronous execution? */
1816#define target_can_async_p() (current_top_target ()->can_async_p ())
1817
1818/* Is the target in asynchronous execution mode? */
1819#define target_is_async_p() (current_top_target ()->is_async_p ())
1820
1821/* Enables/disabled async target events. */
1822extern void target_async (int enable);
1823
1824/* Enables/disables thread create and exit events. */
1825extern void target_thread_events (int enable);
1826
1827/* Whether support for controlling the target backends always in
1828 non-stop mode is enabled. */
1829extern enum auto_boolean target_non_stop_enabled;
1830
1831/* Is the target in non-stop mode? Some targets control the inferior
1832 in non-stop mode even with "set non-stop off". Always true if "set
1833 non-stop" is on. */
1834extern int target_is_non_stop_p (void);
1835
1836#define target_execution_direction() \
1837 (current_top_target ()->execution_direction ())
1838
1839/* Converts a process id to a string. Usually, the string just contains
1840 `process xyz', but on some systems it may contain
1841 `process xyz thread abc'. */
1842
1843extern const char *target_pid_to_str (ptid_t ptid);
1844
1845extern const char *normal_pid_to_str (ptid_t ptid);
1846
1847/* Return a short string describing extra information about PID,
1848 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1849 is okay. */
1850
1851#define target_extra_thread_info(TP) \
1852 (current_top_target ()->extra_thread_info (TP))
1853
1854/* Return the thread's name, or NULL if the target is unable to determine it.
1855 The returned value must not be freed by the caller. */
1856
1857extern const char *target_thread_name (struct thread_info *);
1858
1859/* Given a pointer to a thread library specific thread handle and
1860 its length, return a pointer to the corresponding thread_info struct. */
1861
1862extern struct thread_info *target_thread_handle_to_thread_info
1863 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1864
1865/* Attempts to find the pathname of the executable file
1866 that was run to create a specified process.
1867
1868 The process PID must be stopped when this operation is used.
1869
1870 If the executable file cannot be determined, NULL is returned.
1871
1872 Else, a pointer to a character string containing the pathname
1873 is returned. This string should be copied into a buffer by
1874 the client if the string will not be immediately used, or if
1875 it must persist. */
1876
1877#define target_pid_to_exec_file(pid) \
1878 (current_top_target ()->pid_to_exec_file) (pid)
1879
1880/* See the to_thread_architecture description in struct target_ops. */
1881
1882#define target_thread_architecture(ptid) \
1883 (current_top_target ()->thread_architecture (ptid))
1884
1885/*
1886 * Iterator function for target memory regions.
1887 * Calls a callback function once for each memory region 'mapped'
1888 * in the child process. Defined as a simple macro rather than
1889 * as a function macro so that it can be tested for nullity.
1890 */
1891
1892#define target_find_memory_regions(FUNC, DATA) \
1893 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1894
1895/*
1896 * Compose corefile .note section.
1897 */
1898
1899#define target_make_corefile_notes(BFD, SIZE_P) \
1900 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1901
1902/* Bookmark interfaces. */
1903#define target_get_bookmark(ARGS, FROM_TTY) \
1904 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1905
1906#define target_goto_bookmark(ARG, FROM_TTY) \
1907 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1908
1909/* Hardware watchpoint interfaces. */
1910
1911/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1912 write). Only the INFERIOR_PTID task is being queried. */
1913
1914#define target_stopped_by_watchpoint() \
1915 ((current_top_target ()->stopped_by_watchpoint) ())
1916
1917/* Returns non-zero if the target stopped because it executed a
1918 software breakpoint instruction. */
1919
1920#define target_stopped_by_sw_breakpoint() \
1921 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1922
1923#define target_supports_stopped_by_sw_breakpoint() \
1924 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1925
1926#define target_stopped_by_hw_breakpoint() \
1927 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1928
1929#define target_supports_stopped_by_hw_breakpoint() \
1930 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1931
1932/* Non-zero if we have steppable watchpoints */
1933
1934#define target_have_steppable_watchpoint \
1935 (current_top_target ()->have_steppable_watchpoint ())
1936
1937/* Non-zero if we have continuable watchpoints */
1938
1939#define target_have_continuable_watchpoint \
1940 (current_top_target ()->have_continuable_watchpoint ())
1941
1942/* Provide defaults for hardware watchpoint functions. */
1943
1944/* If the *_hw_beakpoint functions have not been defined
1945 elsewhere use the definitions in the target vector. */
1946
1947/* Returns positive if we can set a hardware watchpoint of type TYPE.
1948 Returns negative if the target doesn't have enough hardware debug
1949 registers available. Return zero if hardware watchpoint of type
1950 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1951 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1952 CNT is the number of such watchpoints used so far, including this
1953 one. OTHERTYPE is the number of watchpoints of other types than
1954 this one used so far. */
1955
1956#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1957 (current_top_target ()->can_use_hw_breakpoint) ( \
1958 TYPE, CNT, OTHERTYPE)
1959
1960/* Returns the number of debug registers needed to watch the given
1961 memory region, or zero if not supported. */
1962
1963#define target_region_ok_for_hw_watchpoint(addr, len) \
1964 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1965
1966
1967#define target_can_do_single_step() \
1968 (current_top_target ()->can_do_single_step) ()
1969
1970/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1971 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1972 COND is the expression for its condition, or NULL if there's none.
1973 Returns 0 for success, 1 if the watchpoint type is not supported,
1974 -1 for failure. */
1975
1976#define target_insert_watchpoint(addr, len, type, cond) \
1977 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
1978
1979#define target_remove_watchpoint(addr, len, type, cond) \
1980 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
1981
1982/* Insert a new masked watchpoint at ADDR using the mask MASK.
1983 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1984 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1985 masked watchpoints are not supported, -1 for failure. */
1986
1987extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1988 enum target_hw_bp_type);
1989
1990/* Remove a masked watchpoint at ADDR with the mask MASK.
1991 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1992 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1993 for failure. */
1994
1995extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1996 enum target_hw_bp_type);
1997
1998/* Insert a hardware breakpoint at address BP_TGT->placed_address in
1999 the target machine. Returns 0 for success, and returns non-zero or
2000 throws an error (with a detailed failure reason error code and
2001 message) otherwise. */
2002
2003#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2004 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2005
2006#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2007 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2008
2009/* Return number of debug registers needed for a ranged breakpoint,
2010 or -1 if ranged breakpoints are not supported. */
2011
2012extern int target_ranged_break_num_registers (void);
2013
2014/* Return non-zero if target knows the data address which triggered this
2015 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2016 INFERIOR_PTID task is being queried. */
2017#define target_stopped_data_address(target, addr_p) \
2018 (target)->stopped_data_address (addr_p)
2019
2020/* Return non-zero if ADDR is within the range of a watchpoint spanning
2021 LENGTH bytes beginning at START. */
2022#define target_watchpoint_addr_within_range(target, addr, start, length) \
2023 (target)->watchpoint_addr_within_range (addr, start, length)
2024
2025/* Return non-zero if the target is capable of using hardware to evaluate
2026 the condition expression. In this case, if the condition is false when
2027 the watched memory location changes, execution may continue without the
2028 debugger being notified.
2029
2030 Due to limitations in the hardware implementation, it may be capable of
2031 avoiding triggering the watchpoint in some cases where the condition
2032 expression is false, but may report some false positives as well.
2033 For this reason, GDB will still evaluate the condition expression when
2034 the watchpoint triggers. */
2035#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2036 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2037
2038/* Return number of debug registers needed for a masked watchpoint,
2039 -1 if masked watchpoints are not supported or -2 if the given address
2040 and mask combination cannot be used. */
2041
2042extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2043
2044/* Target can execute in reverse? */
2045#define target_can_execute_reverse \
2046 current_top_target ()->can_execute_reverse ()
2047
2048extern const struct target_desc *target_read_description (struct target_ops *);
2049
2050#define target_get_ada_task_ptid(lwp, tid) \
2051 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2052
2053/* Utility implementation of searching memory. */
2054extern int simple_search_memory (struct target_ops* ops,
2055 CORE_ADDR start_addr,
2056 ULONGEST search_space_len,
2057 const gdb_byte *pattern,
2058 ULONGEST pattern_len,
2059 CORE_ADDR *found_addrp);
2060
2061/* Main entry point for searching memory. */
2062extern int target_search_memory (CORE_ADDR start_addr,
2063 ULONGEST search_space_len,
2064 const gdb_byte *pattern,
2065 ULONGEST pattern_len,
2066 CORE_ADDR *found_addrp);
2067
2068/* Target file operations. */
2069
2070/* Return nonzero if the filesystem seen by the current inferior
2071 is the local filesystem, zero otherwise. */
2072#define target_filesystem_is_local() \
2073 current_top_target ()->filesystem_is_local ()
2074
2075/* Open FILENAME on the target, in the filesystem as seen by INF,
2076 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2077 by the debugger (GDB or, for remote targets, the remote stub).
2078 Return a target file descriptor, or -1 if an error occurs (and
2079 set *TARGET_ERRNO). */
2080extern int target_fileio_open (struct inferior *inf,
2081 const char *filename, int flags,
2082 int mode, int *target_errno);
2083
2084/* Like target_fileio_open, but print a warning message if the
2085 file is being accessed over a link that may be slow. */
2086extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2087 const char *filename,
2088 int flags,
2089 int mode,
2090 int *target_errno);
2091
2092/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2093 Return the number of bytes written, or -1 if an error occurs
2094 (and set *TARGET_ERRNO). */
2095extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2096 ULONGEST offset, int *target_errno);
2097
2098/* Read up to LEN bytes FD on the target into READ_BUF.
2099 Return the number of bytes read, or -1 if an error occurs
2100 (and set *TARGET_ERRNO). */
2101extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2102 ULONGEST offset, int *target_errno);
2103
2104/* Get information about the file opened as FD on the target
2105 and put it in SB. Return 0 on success, or -1 if an error
2106 occurs (and set *TARGET_ERRNO). */
2107extern int target_fileio_fstat (int fd, struct stat *sb,
2108 int *target_errno);
2109
2110/* Close FD on the target. Return 0, or -1 if an error occurs
2111 (and set *TARGET_ERRNO). */
2112extern int target_fileio_close (int fd, int *target_errno);
2113
2114/* Unlink FILENAME on the target, in the filesystem as seen by INF.
2115 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2116 for remote targets, the remote stub). Return 0, or -1 if an error
2117 occurs (and set *TARGET_ERRNO). */
2118extern int target_fileio_unlink (struct inferior *inf,
2119 const char *filename,
2120 int *target_errno);
2121
2122/* Read value of symbolic link FILENAME on the target, in the
2123 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2124 by the debugger (GDB or, for remote targets, the remote stub).
2125 Return a null-terminated string allocated via xmalloc, or NULL if
2126 an error occurs (and set *TARGET_ERRNO). */
2127extern gdb::optional<std::string> target_fileio_readlink
2128 (struct inferior *inf, const char *filename, int *target_errno);
2129
2130/* Read target file FILENAME, in the filesystem as seen by INF. If
2131 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2132 remote targets, the remote stub). The return value will be -1 if
2133 the transfer fails or is not supported; 0 if the object is empty;
2134 or the length of the object otherwise. If a positive value is
2135 returned, a sufficiently large buffer will be allocated using
2136 xmalloc and returned in *BUF_P containing the contents of the
2137 object.
2138
2139 This method should be used for objects sufficiently small to store
2140 in a single xmalloc'd buffer, when no fixed bound on the object's
2141 size is known in advance. */
2142extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2143 const char *filename,
2144 gdb_byte **buf_p);
2145
2146/* Read target file FILENAME, in the filesystem as seen by INF. If
2147 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2148 remote targets, the remote stub). The result is NUL-terminated and
2149 returned as a string, allocated using xmalloc. If an error occurs
2150 or the transfer is unsupported, NULL is returned. Empty objects
2151 are returned as allocated but empty strings. A warning is issued
2152 if the result contains any embedded NUL bytes. */
2153extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2154 (struct inferior *inf, const char *filename);
2155
2156
2157/* Tracepoint-related operations. */
2158
2159#define target_trace_init() \
2160 (current_top_target ()->trace_init) ()
2161
2162#define target_download_tracepoint(t) \
2163 (current_top_target ()->download_tracepoint) (t)
2164
2165#define target_can_download_tracepoint() \
2166 (current_top_target ()->can_download_tracepoint) ()
2167
2168#define target_download_trace_state_variable(tsv) \
2169 (current_top_target ()->download_trace_state_variable) (tsv)
2170
2171#define target_enable_tracepoint(loc) \
2172 (current_top_target ()->enable_tracepoint) (loc)
2173
2174#define target_disable_tracepoint(loc) \
2175 (current_top_target ()->disable_tracepoint) (loc)
2176
2177#define target_trace_start() \
2178 (current_top_target ()->trace_start) ()
2179
2180#define target_trace_set_readonly_regions() \
2181 (current_top_target ()->trace_set_readonly_regions) ()
2182
2183#define target_get_trace_status(ts) \
2184 (current_top_target ()->get_trace_status) (ts)
2185
2186#define target_get_tracepoint_status(tp,utp) \
2187 (current_top_target ()->get_tracepoint_status) (tp, utp)
2188
2189#define target_trace_stop() \
2190 (current_top_target ()->trace_stop) ()
2191
2192#define target_trace_find(type,num,addr1,addr2,tpp) \
2193 (current_top_target ()->trace_find) (\
2194 (type), (num), (addr1), (addr2), (tpp))
2195
2196#define target_get_trace_state_variable_value(tsv,val) \
2197 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2198
2199#define target_save_trace_data(filename) \
2200 (current_top_target ()->save_trace_data) (filename)
2201
2202#define target_upload_tracepoints(utpp) \
2203 (current_top_target ()->upload_tracepoints) (utpp)
2204
2205#define target_upload_trace_state_variables(utsvp) \
2206 (current_top_target ()->upload_trace_state_variables) (utsvp)
2207
2208#define target_get_raw_trace_data(buf,offset,len) \
2209 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2210
2211#define target_get_min_fast_tracepoint_insn_len() \
2212 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2213
2214#define target_set_disconnected_tracing(val) \
2215 (current_top_target ()->set_disconnected_tracing) (val)
2216
2217#define target_set_circular_trace_buffer(val) \
2218 (current_top_target ()->set_circular_trace_buffer) (val)
2219
2220#define target_set_trace_buffer_size(val) \
2221 (current_top_target ()->set_trace_buffer_size) (val)
2222
2223#define target_set_trace_notes(user,notes,stopnotes) \
2224 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2225
2226#define target_get_tib_address(ptid, addr) \
2227 (current_top_target ()->get_tib_address) ((ptid), (addr))
2228
2229#define target_set_permissions() \
2230 (current_top_target ()->set_permissions) ()
2231
2232#define target_static_tracepoint_marker_at(addr, marker) \
2233 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2234
2235#define target_static_tracepoint_markers_by_strid(marker_id) \
2236 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2237
2238#define target_traceframe_info() \
2239 (current_top_target ()->traceframe_info) ()
2240
2241#define target_use_agent(use) \
2242 (current_top_target ()->use_agent) (use)
2243
2244#define target_can_use_agent() \
2245 (current_top_target ()->can_use_agent) ()
2246
2247#define target_augmented_libraries_svr4_read() \
2248 (current_top_target ()->augmented_libraries_svr4_read) ()
2249
2250/* Command logging facility. */
2251
2252#define target_log_command(p) \
2253 (current_top_target ()->log_command) (p)
2254
2255
2256extern int target_core_of_thread (ptid_t ptid);
2257
2258/* See to_get_unwinder in struct target_ops. */
2259extern const struct frame_unwind *target_get_unwinder (void);
2260
2261/* See to_get_tailcall_unwinder in struct target_ops. */
2262extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2263
2264/* This implements basic memory verification, reading target memory
2265 and performing the comparison here (as opposed to accelerated
2266 verification making use of the qCRC packet, for example). */
2267
2268extern int simple_verify_memory (struct target_ops* ops,
2269 const gdb_byte *data,
2270 CORE_ADDR memaddr, ULONGEST size);
2271
2272/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2273 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2274 if there's a mismatch, and -1 if an error is encountered while
2275 reading memory. Throws an error if the functionality is found not
2276 to be supported by the current target. */
2277int target_verify_memory (const gdb_byte *data,
2278 CORE_ADDR memaddr, ULONGEST size);
2279
2280/* Routines for maintenance of the target structures...
2281
2282 add_target: Add a target to the list of all possible targets.
2283 This only makes sense for targets that should be activated using
2284 the "target TARGET_NAME ..." command.
2285
2286 push_target: Make this target the top of the stack of currently used
2287 targets, within its particular stratum of the stack. Result
2288 is 0 if now atop the stack, nonzero if not on top (maybe
2289 should warn user).
2290
2291 unpush_target: Remove this from the stack of currently used targets,
2292 no matter where it is on the list. Returns 0 if no
2293 change, 1 if removed from stack. */
2294
2295/* Type of callback called when the user activates a target with
2296 "target TARGET_NAME". The callback routine takes the rest of the
2297 parameters from the command, and (if successful) pushes a new
2298 target onto the stack. */
2299typedef void target_open_ftype (const char *args, int from_tty);
2300
2301/* Add the target described by INFO to the list of possible targets
2302 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2303 as the command's completer if not NULL. */
2304
2305extern void add_target (const target_info &info,
2306 target_open_ftype *func,
2307 completer_ftype *completer = NULL);
2308
2309/* Adds a command ALIAS for the target described by INFO and marks it
2310 deprecated. This is useful for maintaining backwards compatibility
2311 when renaming targets. */
2312
2313extern void add_deprecated_target_alias (const target_info &info,
2314 const char *alias);
2315
2316extern void push_target (struct target_ops *);
2317
2318extern int unpush_target (struct target_ops *);
2319
2320extern void target_pre_inferior (int);
2321
2322extern void target_preopen (int);
2323
2324/* Does whatever cleanup is required to get rid of all pushed targets. */
2325extern void pop_all_targets (void);
2326
2327/* Like pop_all_targets, but pops only targets whose stratum is at or
2328 above STRATUM. */
2329extern void pop_all_targets_at_and_above (enum strata stratum);
2330
2331/* Like pop_all_targets, but pops only targets whose stratum is
2332 strictly above ABOVE_STRATUM. */
2333extern void pop_all_targets_above (enum strata above_stratum);
2334
2335extern int target_is_pushed (struct target_ops *t);
2336
2337extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2338 CORE_ADDR offset);
2339
2340/* Struct target_section maps address ranges to file sections. It is
2341 mostly used with BFD files, but can be used without (e.g. for handling
2342 raw disks, or files not in formats handled by BFD). */
2343
2344struct target_section
2345 {
2346 CORE_ADDR addr; /* Lowest address in section */
2347 CORE_ADDR endaddr; /* 1+highest address in section */
2348
2349 struct bfd_section *the_bfd_section;
2350
2351 /* The "owner" of the section.
2352 It can be any unique value. It is set by add_target_sections
2353 and used by remove_target_sections.
2354 For example, for executables it is a pointer to exec_bfd and
2355 for shlibs it is the so_list pointer. */
2356 void *owner;
2357 };
2358
2359/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2360
2361struct target_section_table
2362{
2363 struct target_section *sections;
2364 struct target_section *sections_end;
2365};
2366
2367/* Return the "section" containing the specified address. */
2368struct target_section *target_section_by_addr (struct target_ops *target,
2369 CORE_ADDR addr);
2370
2371/* Return the target section table this target (or the targets
2372 beneath) currently manipulate. */
2373
2374extern struct target_section_table *target_get_section_table
2375 (struct target_ops *target);
2376
2377/* From mem-break.c */
2378
2379extern int memory_remove_breakpoint (struct target_ops *,
2380 struct gdbarch *, struct bp_target_info *,
2381 enum remove_bp_reason);
2382
2383extern int memory_insert_breakpoint (struct target_ops *,
2384 struct gdbarch *, struct bp_target_info *);
2385
2386/* Convenience template use to add memory breakpoints support to a
2387 target. */
2388
2389template <typename BaseTarget>
2390struct memory_breakpoint_target : public BaseTarget
2391{
2392 int insert_breakpoint (struct gdbarch *gdbarch,
2393 struct bp_target_info *bp_tgt) override
2394 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2395
2396 int remove_breakpoint (struct gdbarch *gdbarch,
2397 struct bp_target_info *bp_tgt,
2398 enum remove_bp_reason reason) override
2399 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2400};
2401
2402/* Check whether the memory at the breakpoint's placed address still
2403 contains the expected breakpoint instruction. */
2404
2405extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2406 struct bp_target_info *bp_tgt);
2407
2408extern int default_memory_remove_breakpoint (struct gdbarch *,
2409 struct bp_target_info *);
2410
2411extern int default_memory_insert_breakpoint (struct gdbarch *,
2412 struct bp_target_info *);
2413
2414
2415/* From target.c */
2416
2417extern void initialize_targets (void);
2418
2419extern void noprocess (void) ATTRIBUTE_NORETURN;
2420
2421extern void target_require_runnable (void);
2422
2423/* Find the target at STRATUM. If no target is at that stratum,
2424 return NULL. */
2425
2426struct target_ops *find_target_at (enum strata stratum);
2427
2428/* Read OS data object of type TYPE from the target, and return it in XML
2429 format. The return value follows the same rules as target_read_stralloc. */
2430
2431extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2432
2433/* Stuff that should be shared among the various remote targets. */
2434
2435/* Debugging level. 0 is off, and non-zero values mean to print some debug
2436 information (higher values, more information). */
2437extern int remote_debug;
2438
2439/* Speed in bits per second, or -1 which means don't mess with the speed. */
2440extern int baud_rate;
2441
2442/* Parity for serial port */
2443extern int serial_parity;
2444
2445/* Timeout limit for response from target. */
2446extern int remote_timeout;
2447
2448\f
2449
2450/* Set the show memory breakpoints mode to show, and return a
2451 scoped_restore to restore it back to the current value. */
2452extern scoped_restore_tmpl<int>
2453 make_scoped_restore_show_memory_breakpoints (int show);
2454
2455extern int may_write_registers;
2456extern int may_write_memory;
2457extern int may_insert_breakpoints;
2458extern int may_insert_tracepoints;
2459extern int may_insert_fast_tracepoints;
2460extern int may_stop;
2461
2462extern void update_target_permissions (void);
2463
2464\f
2465/* Imported from machine dependent code. */
2466
2467/* See to_enable_btrace in struct target_ops. */
2468extern struct btrace_target_info *
2469 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2470
2471/* See to_disable_btrace in struct target_ops. */
2472extern void target_disable_btrace (struct btrace_target_info *btinfo);
2473
2474/* See to_teardown_btrace in struct target_ops. */
2475extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2476
2477/* See to_read_btrace in struct target_ops. */
2478extern enum btrace_error target_read_btrace (struct btrace_data *,
2479 struct btrace_target_info *,
2480 enum btrace_read_type);
2481
2482/* See to_btrace_conf in struct target_ops. */
2483extern const struct btrace_config *
2484 target_btrace_conf (const struct btrace_target_info *);
2485
2486/* See to_stop_recording in struct target_ops. */
2487extern void target_stop_recording (void);
2488
2489/* See to_save_record in struct target_ops. */
2490extern void target_save_record (const char *filename);
2491
2492/* Query if the target supports deleting the execution log. */
2493extern int target_supports_delete_record (void);
2494
2495/* See to_delete_record in struct target_ops. */
2496extern void target_delete_record (void);
2497
2498/* See to_record_method. */
2499extern enum record_method target_record_method (ptid_t ptid);
2500
2501/* See to_record_is_replaying in struct target_ops. */
2502extern int target_record_is_replaying (ptid_t ptid);
2503
2504/* See to_record_will_replay in struct target_ops. */
2505extern int target_record_will_replay (ptid_t ptid, int dir);
2506
2507/* See to_record_stop_replaying in struct target_ops. */
2508extern void target_record_stop_replaying (void);
2509
2510/* See to_goto_record_begin in struct target_ops. */
2511extern void target_goto_record_begin (void);
2512
2513/* See to_goto_record_end in struct target_ops. */
2514extern void target_goto_record_end (void);
2515
2516/* See to_goto_record in struct target_ops. */
2517extern void target_goto_record (ULONGEST insn);
2518
2519/* See to_insn_history. */
2520extern void target_insn_history (int size, gdb_disassembly_flags flags);
2521
2522/* See to_insn_history_from. */
2523extern void target_insn_history_from (ULONGEST from, int size,
2524 gdb_disassembly_flags flags);
2525
2526/* See to_insn_history_range. */
2527extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2528 gdb_disassembly_flags flags);
2529
2530/* See to_call_history. */
2531extern void target_call_history (int size, record_print_flags flags);
2532
2533/* See to_call_history_from. */
2534extern void target_call_history_from (ULONGEST begin, int size,
2535 record_print_flags flags);
2536
2537/* See to_call_history_range. */
2538extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2539 record_print_flags flags);
2540
2541/* See to_prepare_to_generate_core. */
2542extern void target_prepare_to_generate_core (void);
2543
2544/* See to_done_generating_core. */
2545extern void target_done_generating_core (void);
2546
2547#if GDB_SELF_TEST
2548namespace selftests {
2549
2550/* A mock process_stratum target_ops that doesn't read/write registers
2551 anywhere. */
2552
2553class test_target_ops : public target_ops
2554{
2555public:
2556 test_target_ops ()
2557 : target_ops {}
2558 {
2559 to_stratum = process_stratum;
2560 }
2561
2562 const target_info &info () const override;
2563
2564 bool has_registers () override
2565 {
2566 return true;
2567 }
2568
2569 bool has_stack () override
2570 {
2571 return true;
2572 }
2573
2574 bool has_memory () override
2575 {
2576 return true;
2577 }
2578
2579 void prepare_to_store (regcache *regs) override
2580 {
2581 }
2582
2583 void store_registers (regcache *regs, int regno) override
2584 {
2585 }
2586};
2587
2588
2589} // namespace selftests
2590#endif /* GDB_SELF_TEST */
2591
2592#endif /* !defined (TARGET_H) */
This page took 0.031126 seconds and 4 git commands to generate.