convert to_terminal_info
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25struct objfile;
26struct ui_file;
27struct mem_attrib;
28struct target_ops;
29struct bp_location;
30struct bp_target_info;
31struct regcache;
32struct target_section_table;
33struct trace_state_variable;
34struct trace_status;
35struct uploaded_tsv;
36struct uploaded_tp;
37struct static_tracepoint_marker;
38struct traceframe_info;
39struct expression;
40struct dcache_struct;
41
42/* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61#include "target/resume.h"
62#include "target/wait.h"
63#include "target/waitstatus.h"
64#include "bfd.h"
65#include "symtab.h"
66#include "memattr.h"
67#include "vec.h"
68#include "gdb_signals.h"
69#include "btrace.h"
70#include "command.h"
71
72enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88/* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103/* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107/* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109extern char *target_options_to_string (int target_options);
110
111/* Possible types of events that the inferior handler will have to
112 deal with. */
113enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128\f
129/* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132enum target_object
133{
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204};
205
206/* Possible values returned by target_xfer_partial, etc. */
207
208enum target_xfer_status
209{
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226};
227
228#define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230/* Return the string form of ERR. */
231
232extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234/* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247DEF_VEC_P(static_tracepoint_marker_p);
248
249typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259/* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284};
285typedef struct memory_read_result memory_read_result_s;
286DEF_VEC_O(memory_read_result_s);
287
288extern void free_memory_read_result_vector (void *);
289
290extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299/* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339/* See target_ops->to_xfer_partial. */
340extern target_xfer_partial_ftype target_xfer_partial;
341
342/* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354\f
355struct thread_info; /* fwd decl for parameter list below: */
356
357/* The type of the callback to the to_async method. */
358
359typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362/* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381#define TARGET_DEFAULT_IGNORE()
382#define TARGET_DEFAULT_NORETURN(ARG)
383#define TARGET_DEFAULT_RETURN(ARG)
384#define TARGET_DEFAULT_FUNC(ARG)
385
386struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int);
517 void (*to_create_inferior) (struct target_ops *,
518 char *, char *, char **, int);
519 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
520 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
521 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
522 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
523 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
524 int (*to_follow_fork) (struct target_ops *, int, int);
525 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
526 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
527 int (*to_set_syscall_catchpoint) (struct target_ops *,
528 int, int, int, int, int *);
529 int (*to_has_exited) (struct target_ops *, int, int, int *);
530 void (*to_mourn_inferior) (struct target_ops *);
531 int (*to_can_run) (struct target_ops *);
532
533 /* Documentation of this routine is provided with the corresponding
534 target_* macro. */
535 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
536
537 /* Documentation of this routine is provided with the
538 corresponding target_* function. */
539 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
540
541 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
542 void (*to_find_new_threads) (struct target_ops *);
543 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
544 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
545 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
546 void (*to_stop) (struct target_ops *, ptid_t);
547 void (*to_rcmd) (struct target_ops *,
548 char *command, struct ui_file *output)
549 TARGET_DEFAULT_FUNC (default_rcmd);
550 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
551 void (*to_log_command) (struct target_ops *, const char *);
552 struct target_section_table *(*to_get_section_table) (struct target_ops *);
553 enum strata to_stratum;
554 int (*to_has_all_memory) (struct target_ops *);
555 int (*to_has_memory) (struct target_ops *);
556 int (*to_has_stack) (struct target_ops *);
557 int (*to_has_registers) (struct target_ops *);
558 int (*to_has_execution) (struct target_ops *, ptid_t);
559 int to_has_thread_control; /* control thread execution */
560 int to_attach_no_wait;
561 /* ASYNC target controls */
562 int (*to_can_async_p) (struct target_ops *)
563 TARGET_DEFAULT_FUNC (find_default_can_async_p);
564 int (*to_is_async_p) (struct target_ops *)
565 TARGET_DEFAULT_FUNC (find_default_is_async_p);
566 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
567 TARGET_DEFAULT_NORETURN (tcomplain ());
568 int (*to_supports_non_stop) (struct target_ops *);
569 /* find_memory_regions support method for gcore */
570 int (*to_find_memory_regions) (struct target_ops *,
571 find_memory_region_ftype func, void *data);
572 /* make_corefile_notes support method for gcore */
573 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
574 /* get_bookmark support method for bookmarks */
575 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
576 /* goto_bookmark support method for bookmarks */
577 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
578 /* Return the thread-local address at OFFSET in the
579 thread-local storage for the thread PTID and the shared library
580 or executable file given by OBJFILE. If that block of
581 thread-local storage hasn't been allocated yet, this function
582 may return an error. */
583 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
584 ptid_t ptid,
585 CORE_ADDR load_module_addr,
586 CORE_ADDR offset);
587
588 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
589 OBJECT. The OFFSET, for a seekable object, specifies the
590 starting point. The ANNEX can be used to provide additional
591 data-specific information to the target.
592
593 Return the transferred status, error or OK (an
594 'enum target_xfer_status' value). Save the number of bytes
595 actually transferred in *XFERED_LEN if transfer is successful
596 (TARGET_XFER_OK) or the number unavailable bytes if the requested
597 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
598 smaller than LEN does not indicate the end of the object, only
599 the end of the transfer; higher level code should continue
600 transferring if desired. This is handled in target.c.
601
602 The interface does not support a "retry" mechanism. Instead it
603 assumes that at least one byte will be transfered on each
604 successful call.
605
606 NOTE: cagney/2003-10-17: The current interface can lead to
607 fragmented transfers. Lower target levels should not implement
608 hacks, such as enlarging the transfer, in an attempt to
609 compensate for this. Instead, the target stack should be
610 extended so that it implements supply/collect methods and a
611 look-aside object cache. With that available, the lowest
612 target can safely and freely "push" data up the stack.
613
614 See target_read and target_write for more information. One,
615 and only one, of readbuf or writebuf must be non-NULL. */
616
617 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
618 enum target_object object,
619 const char *annex,
620 gdb_byte *readbuf,
621 const gdb_byte *writebuf,
622 ULONGEST offset, ULONGEST len,
623 ULONGEST *xfered_len)
624 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
625
626 /* Returns the memory map for the target. A return value of NULL
627 means that no memory map is available. If a memory address
628 does not fall within any returned regions, it's assumed to be
629 RAM. The returned memory regions should not overlap.
630
631 The order of regions does not matter; target_memory_map will
632 sort regions by starting address. For that reason, this
633 function should not be called directly except via
634 target_memory_map.
635
636 This method should not cache data; if the memory map could
637 change unexpectedly, it should be invalidated, and higher
638 layers will re-fetch it. */
639 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
640
641 /* Erases the region of flash memory starting at ADDRESS, of
642 length LENGTH.
643
644 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
645 on flash block boundaries, as reported by 'to_memory_map'. */
646 void (*to_flash_erase) (struct target_ops *,
647 ULONGEST address, LONGEST length);
648
649 /* Finishes a flash memory write sequence. After this operation
650 all flash memory should be available for writing and the result
651 of reading from areas written by 'to_flash_write' should be
652 equal to what was written. */
653 void (*to_flash_done) (struct target_ops *);
654
655 /* Describe the architecture-specific features of this target.
656 Returns the description found, or NULL if no description
657 was available. */
658 const struct target_desc *(*to_read_description) (struct target_ops *ops);
659
660 /* Build the PTID of the thread on which a given task is running,
661 based on LWP and THREAD. These values are extracted from the
662 task Private_Data section of the Ada Task Control Block, and
663 their interpretation depends on the target. */
664 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
665 long lwp, long thread);
666
667 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
668 Return 0 if *READPTR is already at the end of the buffer.
669 Return -1 if there is insufficient buffer for a whole entry.
670 Return 1 if an entry was read into *TYPEP and *VALP. */
671 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
672 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
673
674 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
675 sequence of bytes in PATTERN with length PATTERN_LEN.
676
677 The result is 1 if found, 0 if not found, and -1 if there was an error
678 requiring halting of the search (e.g. memory read error).
679 If the pattern is found the address is recorded in FOUND_ADDRP. */
680 int (*to_search_memory) (struct target_ops *ops,
681 CORE_ADDR start_addr, ULONGEST search_space_len,
682 const gdb_byte *pattern, ULONGEST pattern_len,
683 CORE_ADDR *found_addrp);
684
685 /* Can target execute in reverse? */
686 int (*to_can_execute_reverse) (struct target_ops *);
687
688 /* The direction the target is currently executing. Must be
689 implemented on targets that support reverse execution and async
690 mode. The default simply returns forward execution. */
691 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
692
693 /* Does this target support debugging multiple processes
694 simultaneously? */
695 int (*to_supports_multi_process) (struct target_ops *);
696
697 /* Does this target support enabling and disabling tracepoints while a trace
698 experiment is running? */
699 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
700
701 /* Does this target support disabling address space randomization? */
702 int (*to_supports_disable_randomization) (struct target_ops *);
703
704 /* Does this target support the tracenz bytecode for string collection? */
705 int (*to_supports_string_tracing) (struct target_ops *);
706
707 /* Does this target support evaluation of breakpoint conditions on its
708 end? */
709 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
710
711 /* Does this target support evaluation of breakpoint commands on its
712 end? */
713 int (*to_can_run_breakpoint_commands) (struct target_ops *);
714
715 /* Determine current architecture of thread PTID.
716
717 The target is supposed to determine the architecture of the code where
718 the target is currently stopped at (on Cell, if a target is in spu_run,
719 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
720 This is architecture used to perform decr_pc_after_break adjustment,
721 and also determines the frame architecture of the innermost frame.
722 ptrace operations need to operate according to target_gdbarch ().
723
724 The default implementation always returns target_gdbarch (). */
725 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
726
727 /* Determine current address space of thread PTID.
728
729 The default implementation always returns the inferior's
730 address space. */
731 struct address_space *(*to_thread_address_space) (struct target_ops *,
732 ptid_t);
733
734 /* Target file operations. */
735
736 /* Open FILENAME on the target, using FLAGS and MODE. Return a
737 target file descriptor, or -1 if an error occurs (and set
738 *TARGET_ERRNO). */
739 int (*to_fileio_open) (struct target_ops *,
740 const char *filename, int flags, int mode,
741 int *target_errno);
742
743 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
744 Return the number of bytes written, or -1 if an error occurs
745 (and set *TARGET_ERRNO). */
746 int (*to_fileio_pwrite) (struct target_ops *,
747 int fd, const gdb_byte *write_buf, int len,
748 ULONGEST offset, int *target_errno);
749
750 /* Read up to LEN bytes FD on the target into READ_BUF.
751 Return the number of bytes read, or -1 if an error occurs
752 (and set *TARGET_ERRNO). */
753 int (*to_fileio_pread) (struct target_ops *,
754 int fd, gdb_byte *read_buf, int len,
755 ULONGEST offset, int *target_errno);
756
757 /* Close FD on the target. Return 0, or -1 if an error occurs
758 (and set *TARGET_ERRNO). */
759 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
760
761 /* Unlink FILENAME on the target. Return 0, or -1 if an error
762 occurs (and set *TARGET_ERRNO). */
763 int (*to_fileio_unlink) (struct target_ops *,
764 const char *filename, int *target_errno);
765
766 /* Read value of symbolic link FILENAME on the target. Return a
767 null-terminated string allocated via xmalloc, or NULL if an error
768 occurs (and set *TARGET_ERRNO). */
769 char *(*to_fileio_readlink) (struct target_ops *,
770 const char *filename, int *target_errno);
771
772
773 /* Implement the "info proc" command. */
774 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
775
776 /* Tracepoint-related operations. */
777
778 /* Prepare the target for a tracing run. */
779 void (*to_trace_init) (struct target_ops *);
780
781 /* Send full details of a tracepoint location to the target. */
782 void (*to_download_tracepoint) (struct target_ops *,
783 struct bp_location *location);
784
785 /* Is the target able to download tracepoint locations in current
786 state? */
787 int (*to_can_download_tracepoint) (struct target_ops *);
788
789 /* Send full details of a trace state variable to the target. */
790 void (*to_download_trace_state_variable) (struct target_ops *,
791 struct trace_state_variable *tsv);
792
793 /* Enable a tracepoint on the target. */
794 void (*to_enable_tracepoint) (struct target_ops *,
795 struct bp_location *location);
796
797 /* Disable a tracepoint on the target. */
798 void (*to_disable_tracepoint) (struct target_ops *,
799 struct bp_location *location);
800
801 /* Inform the target info of memory regions that are readonly
802 (such as text sections), and so it should return data from
803 those rather than look in the trace buffer. */
804 void (*to_trace_set_readonly_regions) (struct target_ops *);
805
806 /* Start a trace run. */
807 void (*to_trace_start) (struct target_ops *);
808
809 /* Get the current status of a tracing run. */
810 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
811
812 void (*to_get_tracepoint_status) (struct target_ops *,
813 struct breakpoint *tp,
814 struct uploaded_tp *utp);
815
816 /* Stop a trace run. */
817 void (*to_trace_stop) (struct target_ops *);
818
819 /* Ask the target to find a trace frame of the given type TYPE,
820 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
821 number of the trace frame, and also the tracepoint number at
822 TPP. If no trace frame matches, return -1. May throw if the
823 operation fails. */
824 int (*to_trace_find) (struct target_ops *,
825 enum trace_find_type type, int num,
826 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
827
828 /* Get the value of the trace state variable number TSV, returning
829 1 if the value is known and writing the value itself into the
830 location pointed to by VAL, else returning 0. */
831 int (*to_get_trace_state_variable_value) (struct target_ops *,
832 int tsv, LONGEST *val);
833
834 int (*to_save_trace_data) (struct target_ops *, const char *filename);
835
836 int (*to_upload_tracepoints) (struct target_ops *,
837 struct uploaded_tp **utpp);
838
839 int (*to_upload_trace_state_variables) (struct target_ops *,
840 struct uploaded_tsv **utsvp);
841
842 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
843 ULONGEST offset, LONGEST len);
844
845 /* Get the minimum length of instruction on which a fast tracepoint
846 may be set on the target. If this operation is unsupported,
847 return -1. If for some reason the minimum length cannot be
848 determined, return 0. */
849 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
850
851 /* Set the target's tracing behavior in response to unexpected
852 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
853 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
854 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
855 /* Set the size of trace buffer in the target. */
856 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
857
858 /* Add/change textual notes about the trace run, returning 1 if
859 successful, 0 otherwise. */
860 int (*to_set_trace_notes) (struct target_ops *,
861 const char *user, const char *notes,
862 const char *stopnotes);
863
864 /* Return the processor core that thread PTID was last seen on.
865 This information is updated only when:
866 - update_thread_list is called
867 - thread stops
868 If the core cannot be determined -- either for the specified
869 thread, or right now, or in this debug session, or for this
870 target -- return -1. */
871 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
872
873 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
874 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
875 a match, 0 if there's a mismatch, and -1 if an error is
876 encountered while reading memory. */
877 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
878 CORE_ADDR memaddr, ULONGEST size);
879
880 /* Return the address of the start of the Thread Information Block
881 a Windows OS specific feature. */
882 int (*to_get_tib_address) (struct target_ops *,
883 ptid_t ptid, CORE_ADDR *addr);
884
885 /* Send the new settings of write permission variables. */
886 void (*to_set_permissions) (struct target_ops *);
887
888 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
889 with its details. Return 1 on success, 0 on failure. */
890 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
891 struct static_tracepoint_marker *marker);
892
893 /* Return a vector of all tracepoints markers string id ID, or all
894 markers if ID is NULL. */
895 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
896 (struct target_ops *, const char *id);
897
898 /* Return a traceframe info object describing the current
899 traceframe's contents. If the target doesn't support
900 traceframe info, return NULL. If the current traceframe is not
901 selected (the current traceframe number is -1), the target can
902 choose to return either NULL or an empty traceframe info. If
903 NULL is returned, for example in remote target, GDB will read
904 from the live inferior. If an empty traceframe info is
905 returned, for example in tfile target, which means the
906 traceframe info is available, but the requested memory is not
907 available in it. GDB will try to see if the requested memory
908 is available in the read-only sections. This method should not
909 cache data; higher layers take care of caching, invalidating,
910 and re-fetching when necessary. */
911 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
912
913 /* Ask the target to use or not to use agent according to USE. Return 1
914 successful, 0 otherwise. */
915 int (*to_use_agent) (struct target_ops *, int use);
916
917 /* Is the target able to use agent in current state? */
918 int (*to_can_use_agent) (struct target_ops *);
919
920 /* Check whether the target supports branch tracing. */
921 int (*to_supports_btrace) (struct target_ops *)
922 TARGET_DEFAULT_RETURN (0);
923
924 /* Enable branch tracing for PTID and allocate a branch trace target
925 information struct for reading and for disabling branch trace. */
926 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
927 ptid_t ptid);
928
929 /* Disable branch tracing and deallocate TINFO. */
930 void (*to_disable_btrace) (struct target_ops *,
931 struct btrace_target_info *tinfo);
932
933 /* Disable branch tracing and deallocate TINFO. This function is similar
934 to to_disable_btrace, except that it is called during teardown and is
935 only allowed to perform actions that are safe. A counter-example would
936 be attempting to talk to a remote target. */
937 void (*to_teardown_btrace) (struct target_ops *,
938 struct btrace_target_info *tinfo);
939
940 /* Read branch trace data for the thread indicated by BTINFO into DATA.
941 DATA is cleared before new trace is added.
942 The branch trace will start with the most recent block and continue
943 towards older blocks. */
944 enum btrace_error (*to_read_btrace) (struct target_ops *self,
945 VEC (btrace_block_s) **data,
946 struct btrace_target_info *btinfo,
947 enum btrace_read_type type);
948
949 /* Stop trace recording. */
950 void (*to_stop_recording) (struct target_ops *);
951
952 /* Print information about the recording. */
953 void (*to_info_record) (struct target_ops *);
954
955 /* Save the recorded execution trace into a file. */
956 void (*to_save_record) (struct target_ops *, const char *filename);
957
958 /* Delete the recorded execution trace from the current position onwards. */
959 void (*to_delete_record) (struct target_ops *);
960
961 /* Query if the record target is currently replaying. */
962 int (*to_record_is_replaying) (struct target_ops *);
963
964 /* Go to the begin of the execution trace. */
965 void (*to_goto_record_begin) (struct target_ops *);
966
967 /* Go to the end of the execution trace. */
968 void (*to_goto_record_end) (struct target_ops *);
969
970 /* Go to a specific location in the recorded execution trace. */
971 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
972
973 /* Disassemble SIZE instructions in the recorded execution trace from
974 the current position.
975 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
976 disassemble SIZE succeeding instructions. */
977 void (*to_insn_history) (struct target_ops *, int size, int flags);
978
979 /* Disassemble SIZE instructions in the recorded execution trace around
980 FROM.
981 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
982 disassemble SIZE instructions after FROM. */
983 void (*to_insn_history_from) (struct target_ops *,
984 ULONGEST from, int size, int flags);
985
986 /* Disassemble a section of the recorded execution trace from instruction
987 BEGIN (inclusive) to instruction END (inclusive). */
988 void (*to_insn_history_range) (struct target_ops *,
989 ULONGEST begin, ULONGEST end, int flags);
990
991 /* Print a function trace of the recorded execution trace.
992 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
993 succeeding functions. */
994 void (*to_call_history) (struct target_ops *, int size, int flags);
995
996 /* Print a function trace of the recorded execution trace starting
997 at function FROM.
998 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
999 SIZE functions after FROM. */
1000 void (*to_call_history_from) (struct target_ops *,
1001 ULONGEST begin, int size, int flags);
1002
1003 /* Print a function trace of an execution trace section from function BEGIN
1004 (inclusive) to function END (inclusive). */
1005 void (*to_call_history_range) (struct target_ops *,
1006 ULONGEST begin, ULONGEST end, int flags);
1007
1008 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1009 non-empty annex. */
1010 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1011
1012 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1013 it is not used. */
1014 const struct frame_unwind *to_get_unwinder;
1015 const struct frame_unwind *to_get_tailcall_unwinder;
1016
1017 /* Return the number of bytes by which the PC needs to be decremented
1018 after executing a breakpoint instruction.
1019 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1020 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1021 struct gdbarch *gdbarch);
1022
1023 int to_magic;
1024 /* Need sub-structure for target machine related rather than comm related?
1025 */
1026 };
1027
1028/* Magic number for checking ops size. If a struct doesn't end with this
1029 number, somebody changed the declaration but didn't change all the
1030 places that initialize one. */
1031
1032#define OPS_MAGIC 3840
1033
1034/* The ops structure for our "current" target process. This should
1035 never be NULL. If there is no target, it points to the dummy_target. */
1036
1037extern struct target_ops current_target;
1038
1039/* Define easy words for doing these operations on our current target. */
1040
1041#define target_shortname (current_target.to_shortname)
1042#define target_longname (current_target.to_longname)
1043
1044/* Does whatever cleanup is required for a target that we are no
1045 longer going to be calling. This routine is automatically always
1046 called after popping the target off the target stack - the target's
1047 own methods are no longer available through the target vector.
1048 Closing file descriptors and freeing all memory allocated memory are
1049 typical things it should do. */
1050
1051void target_close (struct target_ops *targ);
1052
1053/* Attaches to a process on the target side. Arguments are as passed
1054 to the `attach' command by the user. This routine can be called
1055 when the target is not on the target-stack, if the target_can_run
1056 routine returns 1; in that case, it must push itself onto the stack.
1057 Upon exit, the target should be ready for normal operations, and
1058 should be ready to deliver the status of the process immediately
1059 (without waiting) to an upcoming target_wait call. */
1060
1061void target_attach (char *, int);
1062
1063/* Some targets don't generate traps when attaching to the inferior,
1064 or their target_attach implementation takes care of the waiting.
1065 These targets must set to_attach_no_wait. */
1066
1067#define target_attach_no_wait \
1068 (current_target.to_attach_no_wait)
1069
1070/* The target_attach operation places a process under debugger control,
1071 and stops the process.
1072
1073 This operation provides a target-specific hook that allows the
1074 necessary bookkeeping to be performed after an attach completes. */
1075#define target_post_attach(pid) \
1076 (*current_target.to_post_attach) (&current_target, pid)
1077
1078/* Takes a program previously attached to and detaches it.
1079 The program may resume execution (some targets do, some don't) and will
1080 no longer stop on signals, etc. We better not have left any breakpoints
1081 in the program or it'll die when it hits one. ARGS is arguments
1082 typed by the user (e.g. a signal to send the process). FROM_TTY
1083 says whether to be verbose or not. */
1084
1085extern void target_detach (const char *, int);
1086
1087/* Disconnect from the current target without resuming it (leaving it
1088 waiting for a debugger). */
1089
1090extern void target_disconnect (char *, int);
1091
1092/* Resume execution of the target process PTID (or a group of
1093 threads). STEP says whether to single-step or to run free; SIGGNAL
1094 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1095 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1096 PTID means `step/resume only this process id'. A wildcard PTID
1097 (all threads, or all threads of process) means `step/resume
1098 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1099 matches) resume with their 'thread->suspend.stop_signal' signal
1100 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1101 if in "no pass" state. */
1102
1103extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1104
1105/* Wait for process pid to do something. PTID = -1 to wait for any
1106 pid to do something. Return pid of child, or -1 in case of error;
1107 store status through argument pointer STATUS. Note that it is
1108 _NOT_ OK to throw_exception() out of target_wait() without popping
1109 the debugging target from the stack; GDB isn't prepared to get back
1110 to the prompt with a debugging target but without the frame cache,
1111 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1112 options. */
1113
1114extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1115 int options);
1116
1117/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1118
1119extern void target_fetch_registers (struct regcache *regcache, int regno);
1120
1121/* Store at least register REGNO, or all regs if REGNO == -1.
1122 It can store as many registers as it wants to, so target_prepare_to_store
1123 must have been previously called. Calls error() if there are problems. */
1124
1125extern void target_store_registers (struct regcache *regcache, int regs);
1126
1127/* Get ready to modify the registers array. On machines which store
1128 individual registers, this doesn't need to do anything. On machines
1129 which store all the registers in one fell swoop, this makes sure
1130 that REGISTERS contains all the registers from the program being
1131 debugged. */
1132
1133#define target_prepare_to_store(regcache) \
1134 (*current_target.to_prepare_to_store) (&current_target, regcache)
1135
1136/* Determine current address space of thread PTID. */
1137
1138struct address_space *target_thread_address_space (ptid_t);
1139
1140/* Implement the "info proc" command. This returns one if the request
1141 was handled, and zero otherwise. It can also throw an exception if
1142 an error was encountered while attempting to handle the
1143 request. */
1144
1145int target_info_proc (char *, enum info_proc_what);
1146
1147/* Returns true if this target can debug multiple processes
1148 simultaneously. */
1149
1150#define target_supports_multi_process() \
1151 (*current_target.to_supports_multi_process) (&current_target)
1152
1153/* Returns true if this target can disable address space randomization. */
1154
1155int target_supports_disable_randomization (void);
1156
1157/* Returns true if this target can enable and disable tracepoints
1158 while a trace experiment is running. */
1159
1160#define target_supports_enable_disable_tracepoint() \
1161 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1162
1163#define target_supports_string_tracing() \
1164 (*current_target.to_supports_string_tracing) (&current_target)
1165
1166/* Returns true if this target can handle breakpoint conditions
1167 on its end. */
1168
1169#define target_supports_evaluation_of_breakpoint_conditions() \
1170 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1171
1172/* Returns true if this target can handle breakpoint commands
1173 on its end. */
1174
1175#define target_can_run_breakpoint_commands() \
1176 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1177
1178extern int target_read_string (CORE_ADDR, char **, int, int *);
1179
1180extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1181 ssize_t len);
1182
1183extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1184 ssize_t len);
1185
1186extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1187
1188extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1189
1190extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1191 ssize_t len);
1192
1193extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1194 ssize_t len);
1195
1196/* Fetches the target's memory map. If one is found it is sorted
1197 and returned, after some consistency checking. Otherwise, NULL
1198 is returned. */
1199VEC(mem_region_s) *target_memory_map (void);
1200
1201/* Erase the specified flash region. */
1202void target_flash_erase (ULONGEST address, LONGEST length);
1203
1204/* Finish a sequence of flash operations. */
1205void target_flash_done (void);
1206
1207/* Describes a request for a memory write operation. */
1208struct memory_write_request
1209 {
1210 /* Begining address that must be written. */
1211 ULONGEST begin;
1212 /* Past-the-end address. */
1213 ULONGEST end;
1214 /* The data to write. */
1215 gdb_byte *data;
1216 /* A callback baton for progress reporting for this request. */
1217 void *baton;
1218 };
1219typedef struct memory_write_request memory_write_request_s;
1220DEF_VEC_O(memory_write_request_s);
1221
1222/* Enumeration specifying different flash preservation behaviour. */
1223enum flash_preserve_mode
1224 {
1225 flash_preserve,
1226 flash_discard
1227 };
1228
1229/* Write several memory blocks at once. This version can be more
1230 efficient than making several calls to target_write_memory, in
1231 particular because it can optimize accesses to flash memory.
1232
1233 Moreover, this is currently the only memory access function in gdb
1234 that supports writing to flash memory, and it should be used for
1235 all cases where access to flash memory is desirable.
1236
1237 REQUESTS is the vector (see vec.h) of memory_write_request.
1238 PRESERVE_FLASH_P indicates what to do with blocks which must be
1239 erased, but not completely rewritten.
1240 PROGRESS_CB is a function that will be periodically called to provide
1241 feedback to user. It will be called with the baton corresponding
1242 to the request currently being written. It may also be called
1243 with a NULL baton, when preserved flash sectors are being rewritten.
1244
1245 The function returns 0 on success, and error otherwise. */
1246int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1247 enum flash_preserve_mode preserve_flash_p,
1248 void (*progress_cb) (ULONGEST, void *));
1249
1250/* Print a line about the current target. */
1251
1252#define target_files_info() \
1253 (*current_target.to_files_info) (&current_target)
1254
1255/* Insert a hardware breakpoint at address BP_TGT->placed_address in
1256 the target machine. Returns 0 for success, and returns non-zero or
1257 throws an error (with a detailed failure reason error code and
1258 message) otherwise. */
1259
1260extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1261 struct bp_target_info *bp_tgt);
1262
1263/* Remove a breakpoint at address BP_TGT->placed_address in the target
1264 machine. Result is 0 for success, non-zero for error. */
1265
1266extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1267 struct bp_target_info *bp_tgt);
1268
1269/* Initialize the terminal settings we record for the inferior,
1270 before we actually run the inferior. */
1271
1272#define target_terminal_init() \
1273 (*current_target.to_terminal_init) (&current_target)
1274
1275/* Put the inferior's terminal settings into effect.
1276 This is preparation for starting or resuming the inferior. */
1277
1278extern void target_terminal_inferior (void);
1279
1280/* Put some of our terminal settings into effect,
1281 enough to get proper results from our output,
1282 but do not change into or out of RAW mode
1283 so that no input is discarded.
1284
1285 After doing this, either terminal_ours or terminal_inferior
1286 should be called to get back to a normal state of affairs. */
1287
1288#define target_terminal_ours_for_output() \
1289 (*current_target.to_terminal_ours_for_output) (&current_target)
1290
1291/* Put our terminal settings into effect.
1292 First record the inferior's terminal settings
1293 so they can be restored properly later. */
1294
1295#define target_terminal_ours() \
1296 (*current_target.to_terminal_ours) (&current_target)
1297
1298/* Save our terminal settings.
1299 This is called from TUI after entering or leaving the curses
1300 mode. Since curses modifies our terminal this call is here
1301 to take this change into account. */
1302
1303#define target_terminal_save_ours() \
1304 (*current_target.to_terminal_save_ours) (&current_target)
1305
1306/* Print useful information about our terminal status, if such a thing
1307 exists. */
1308
1309#define target_terminal_info(arg, from_tty) \
1310 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1311
1312/* Kill the inferior process. Make it go away. */
1313
1314extern void target_kill (void);
1315
1316/* Load an executable file into the target process. This is expected
1317 to not only bring new code into the target process, but also to
1318 update GDB's symbol tables to match.
1319
1320 ARG contains command-line arguments, to be broken down with
1321 buildargv (). The first non-switch argument is the filename to
1322 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1323 0)), which is an offset to apply to the load addresses of FILE's
1324 sections. The target may define switches, or other non-switch
1325 arguments, as it pleases. */
1326
1327extern void target_load (char *arg, int from_tty);
1328
1329/* Start an inferior process and set inferior_ptid to its pid.
1330 EXEC_FILE is the file to run.
1331 ALLARGS is a string containing the arguments to the program.
1332 ENV is the environment vector to pass. Errors reported with error().
1333 On VxWorks and various standalone systems, we ignore exec_file. */
1334
1335void target_create_inferior (char *exec_file, char *args,
1336 char **env, int from_tty);
1337
1338/* Some targets (such as ttrace-based HPUX) don't allow us to request
1339 notification of inferior events such as fork and vork immediately
1340 after the inferior is created. (This because of how gdb gets an
1341 inferior created via invoking a shell to do it. In such a scenario,
1342 if the shell init file has commands in it, the shell will fork and
1343 exec for each of those commands, and we will see each such fork
1344 event. Very bad.)
1345
1346 Such targets will supply an appropriate definition for this function. */
1347
1348#define target_post_startup_inferior(ptid) \
1349 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1350
1351/* On some targets, we can catch an inferior fork or vfork event when
1352 it occurs. These functions insert/remove an already-created
1353 catchpoint for such events. They return 0 for success, 1 if the
1354 catchpoint type is not supported and -1 for failure. */
1355
1356#define target_insert_fork_catchpoint(pid) \
1357 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1358
1359#define target_remove_fork_catchpoint(pid) \
1360 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1361
1362#define target_insert_vfork_catchpoint(pid) \
1363 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1364
1365#define target_remove_vfork_catchpoint(pid) \
1366 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1367
1368/* If the inferior forks or vforks, this function will be called at
1369 the next resume in order to perform any bookkeeping and fiddling
1370 necessary to continue debugging either the parent or child, as
1371 requested, and releasing the other. Information about the fork
1372 or vfork event is available via get_last_target_status ().
1373 This function returns 1 if the inferior should not be resumed
1374 (i.e. there is another event pending). */
1375
1376int target_follow_fork (int follow_child, int detach_fork);
1377
1378/* On some targets, we can catch an inferior exec event when it
1379 occurs. These functions insert/remove an already-created
1380 catchpoint for such events. They return 0 for success, 1 if the
1381 catchpoint type is not supported and -1 for failure. */
1382
1383#define target_insert_exec_catchpoint(pid) \
1384 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1385
1386#define target_remove_exec_catchpoint(pid) \
1387 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1388
1389/* Syscall catch.
1390
1391 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1392 If NEEDED is zero, it means the target can disable the mechanism to
1393 catch system calls because there are no more catchpoints of this type.
1394
1395 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1396 being requested. In this case, both TABLE_SIZE and TABLE should
1397 be ignored.
1398
1399 TABLE_SIZE is the number of elements in TABLE. It only matters if
1400 ANY_COUNT is zero.
1401
1402 TABLE is an array of ints, indexed by syscall number. An element in
1403 this array is nonzero if that syscall should be caught. This argument
1404 only matters if ANY_COUNT is zero.
1405
1406 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1407 for failure. */
1408
1409#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1410 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1411 pid, needed, any_count, \
1412 table_size, table)
1413
1414/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1415 exit code of PID, if any. */
1416
1417#define target_has_exited(pid,wait_status,exit_status) \
1418 (*current_target.to_has_exited) (&current_target, \
1419 pid,wait_status,exit_status)
1420
1421/* The debugger has completed a blocking wait() call. There is now
1422 some process event that must be processed. This function should
1423 be defined by those targets that require the debugger to perform
1424 cleanup or internal state changes in response to the process event. */
1425
1426/* The inferior process has died. Do what is right. */
1427
1428void target_mourn_inferior (void);
1429
1430/* Does target have enough data to do a run or attach command? */
1431
1432#define target_can_run(t) \
1433 ((t)->to_can_run) (t)
1434
1435/* Set list of signals to be handled in the target.
1436
1437 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1438 (enum gdb_signal). For every signal whose entry in this array is
1439 non-zero, the target is allowed -but not required- to skip reporting
1440 arrival of the signal to the GDB core by returning from target_wait,
1441 and to pass the signal directly to the inferior instead.
1442
1443 However, if the target is hardware single-stepping a thread that is
1444 about to receive a signal, it needs to be reported in any case, even
1445 if mentioned in a previous target_pass_signals call. */
1446
1447extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1448
1449/* Set list of signals the target may pass to the inferior. This
1450 directly maps to the "handle SIGNAL pass/nopass" setting.
1451
1452 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1453 number (enum gdb_signal). For every signal whose entry in this
1454 array is non-zero, the target is allowed to pass the signal to the
1455 inferior. Signals not present in the array shall be silently
1456 discarded. This does not influence whether to pass signals to the
1457 inferior as a result of a target_resume call. This is useful in
1458 scenarios where the target needs to decide whether to pass or not a
1459 signal to the inferior without GDB core involvement, such as for
1460 example, when detaching (as threads may have been suspended with
1461 pending signals not reported to GDB). */
1462
1463extern void target_program_signals (int nsig, unsigned char *program_signals);
1464
1465/* Check to see if a thread is still alive. */
1466
1467extern int target_thread_alive (ptid_t ptid);
1468
1469/* Query for new threads and add them to the thread list. */
1470
1471extern void target_find_new_threads (void);
1472
1473/* Make target stop in a continuable fashion. (For instance, under
1474 Unix, this should act like SIGSTOP). This function is normally
1475 used by GUIs to implement a stop button. */
1476
1477extern void target_stop (ptid_t ptid);
1478
1479/* Send the specified COMMAND to the target's monitor
1480 (shell,interpreter) for execution. The result of the query is
1481 placed in OUTBUF. */
1482
1483#define target_rcmd(command, outbuf) \
1484 (*current_target.to_rcmd) (&current_target, command, outbuf)
1485
1486
1487/* Does the target include all of memory, or only part of it? This
1488 determines whether we look up the target chain for other parts of
1489 memory if this target can't satisfy a request. */
1490
1491extern int target_has_all_memory_1 (void);
1492#define target_has_all_memory target_has_all_memory_1 ()
1493
1494/* Does the target include memory? (Dummy targets don't.) */
1495
1496extern int target_has_memory_1 (void);
1497#define target_has_memory target_has_memory_1 ()
1498
1499/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1500 we start a process.) */
1501
1502extern int target_has_stack_1 (void);
1503#define target_has_stack target_has_stack_1 ()
1504
1505/* Does the target have registers? (Exec files don't.) */
1506
1507extern int target_has_registers_1 (void);
1508#define target_has_registers target_has_registers_1 ()
1509
1510/* Does the target have execution? Can we make it jump (through
1511 hoops), or pop its stack a few times? This means that the current
1512 target is currently executing; for some targets, that's the same as
1513 whether or not the target is capable of execution, but there are
1514 also targets which can be current while not executing. In that
1515 case this will become true after target_create_inferior or
1516 target_attach. */
1517
1518extern int target_has_execution_1 (ptid_t);
1519
1520/* Like target_has_execution_1, but always passes inferior_ptid. */
1521
1522extern int target_has_execution_current (void);
1523
1524#define target_has_execution target_has_execution_current ()
1525
1526/* Default implementations for process_stratum targets. Return true
1527 if there's a selected inferior, false otherwise. */
1528
1529extern int default_child_has_all_memory (struct target_ops *ops);
1530extern int default_child_has_memory (struct target_ops *ops);
1531extern int default_child_has_stack (struct target_ops *ops);
1532extern int default_child_has_registers (struct target_ops *ops);
1533extern int default_child_has_execution (struct target_ops *ops,
1534 ptid_t the_ptid);
1535
1536/* Can the target support the debugger control of thread execution?
1537 Can it lock the thread scheduler? */
1538
1539#define target_can_lock_scheduler \
1540 (current_target.to_has_thread_control & tc_schedlock)
1541
1542/* Should the target enable async mode if it is supported? Temporary
1543 cludge until async mode is a strict superset of sync mode. */
1544extern int target_async_permitted;
1545
1546/* Can the target support asynchronous execution? */
1547#define target_can_async_p() (current_target.to_can_async_p (&current_target))
1548
1549/* Is the target in asynchronous execution mode? */
1550#define target_is_async_p() (current_target.to_is_async_p (&current_target))
1551
1552int target_supports_non_stop (void);
1553
1554/* Put the target in async mode with the specified callback function. */
1555#define target_async(CALLBACK,CONTEXT) \
1556 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1557
1558#define target_execution_direction() \
1559 (current_target.to_execution_direction (&current_target))
1560
1561/* Converts a process id to a string. Usually, the string just contains
1562 `process xyz', but on some systems it may contain
1563 `process xyz thread abc'. */
1564
1565extern char *target_pid_to_str (ptid_t ptid);
1566
1567extern char *normal_pid_to_str (ptid_t ptid);
1568
1569/* Return a short string describing extra information about PID,
1570 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1571 is okay. */
1572
1573#define target_extra_thread_info(TP) \
1574 (current_target.to_extra_thread_info (&current_target, TP))
1575
1576/* Return the thread's name. A NULL result means that the target
1577 could not determine this thread's name. */
1578
1579extern char *target_thread_name (struct thread_info *);
1580
1581/* Attempts to find the pathname of the executable file
1582 that was run to create a specified process.
1583
1584 The process PID must be stopped when this operation is used.
1585
1586 If the executable file cannot be determined, NULL is returned.
1587
1588 Else, a pointer to a character string containing the pathname
1589 is returned. This string should be copied into a buffer by
1590 the client if the string will not be immediately used, or if
1591 it must persist. */
1592
1593#define target_pid_to_exec_file(pid) \
1594 (current_target.to_pid_to_exec_file) (&current_target, pid)
1595
1596/* See the to_thread_architecture description in struct target_ops. */
1597
1598#define target_thread_architecture(ptid) \
1599 (current_target.to_thread_architecture (&current_target, ptid))
1600
1601/*
1602 * Iterator function for target memory regions.
1603 * Calls a callback function once for each memory region 'mapped'
1604 * in the child process. Defined as a simple macro rather than
1605 * as a function macro so that it can be tested for nullity.
1606 */
1607
1608#define target_find_memory_regions(FUNC, DATA) \
1609 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1610
1611/*
1612 * Compose corefile .note section.
1613 */
1614
1615#define target_make_corefile_notes(BFD, SIZE_P) \
1616 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1617
1618/* Bookmark interfaces. */
1619#define target_get_bookmark(ARGS, FROM_TTY) \
1620 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1621
1622#define target_goto_bookmark(ARG, FROM_TTY) \
1623 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1624
1625/* Hardware watchpoint interfaces. */
1626
1627/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1628 write). Only the INFERIOR_PTID task is being queried. */
1629
1630#define target_stopped_by_watchpoint() \
1631 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1632
1633/* Non-zero if we have steppable watchpoints */
1634
1635#define target_have_steppable_watchpoint \
1636 (current_target.to_have_steppable_watchpoint)
1637
1638/* Non-zero if we have continuable watchpoints */
1639
1640#define target_have_continuable_watchpoint \
1641 (current_target.to_have_continuable_watchpoint)
1642
1643/* Provide defaults for hardware watchpoint functions. */
1644
1645/* If the *_hw_beakpoint functions have not been defined
1646 elsewhere use the definitions in the target vector. */
1647
1648/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1649 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1650 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1651 (including this one?). OTHERTYPE is who knows what... */
1652
1653#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1654 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1655 TYPE, CNT, OTHERTYPE);
1656
1657/* Returns the number of debug registers needed to watch the given
1658 memory region, or zero if not supported. */
1659
1660#define target_region_ok_for_hw_watchpoint(addr, len) \
1661 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1662 addr, len)
1663
1664
1665/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1666 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1667 COND is the expression for its condition, or NULL if there's none.
1668 Returns 0 for success, 1 if the watchpoint type is not supported,
1669 -1 for failure. */
1670
1671#define target_insert_watchpoint(addr, len, type, cond) \
1672 (*current_target.to_insert_watchpoint) (&current_target, \
1673 addr, len, type, cond)
1674
1675#define target_remove_watchpoint(addr, len, type, cond) \
1676 (*current_target.to_remove_watchpoint) (&current_target, \
1677 addr, len, type, cond)
1678
1679/* Insert a new masked watchpoint at ADDR using the mask MASK.
1680 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1681 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1682 masked watchpoints are not supported, -1 for failure. */
1683
1684extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1685
1686/* Remove a masked watchpoint at ADDR with the mask MASK.
1687 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1688 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1689 for failure. */
1690
1691extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1692
1693/* Insert a hardware breakpoint at address BP_TGT->placed_address in
1694 the target machine. Returns 0 for success, and returns non-zero or
1695 throws an error (with a detailed failure reason error code and
1696 message) otherwise. */
1697
1698#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1699 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1700 gdbarch, bp_tgt)
1701
1702#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1703 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1704 gdbarch, bp_tgt)
1705
1706/* Return number of debug registers needed for a ranged breakpoint,
1707 or -1 if ranged breakpoints are not supported. */
1708
1709extern int target_ranged_break_num_registers (void);
1710
1711/* Return non-zero if target knows the data address which triggered this
1712 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1713 INFERIOR_PTID task is being queried. */
1714#define target_stopped_data_address(target, addr_p) \
1715 (*target.to_stopped_data_address) (target, addr_p)
1716
1717/* Return non-zero if ADDR is within the range of a watchpoint spanning
1718 LENGTH bytes beginning at START. */
1719#define target_watchpoint_addr_within_range(target, addr, start, length) \
1720 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1721
1722/* Return non-zero if the target is capable of using hardware to evaluate
1723 the condition expression. In this case, if the condition is false when
1724 the watched memory location changes, execution may continue without the
1725 debugger being notified.
1726
1727 Due to limitations in the hardware implementation, it may be capable of
1728 avoiding triggering the watchpoint in some cases where the condition
1729 expression is false, but may report some false positives as well.
1730 For this reason, GDB will still evaluate the condition expression when
1731 the watchpoint triggers. */
1732#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1733 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1734 addr, len, type, cond)
1735
1736/* Return number of debug registers needed for a masked watchpoint,
1737 -1 if masked watchpoints are not supported or -2 if the given address
1738 and mask combination cannot be used. */
1739
1740extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1741
1742/* Target can execute in reverse? */
1743#define target_can_execute_reverse \
1744 (current_target.to_can_execute_reverse ? \
1745 current_target.to_can_execute_reverse (&current_target) : 0)
1746
1747extern const struct target_desc *target_read_description (struct target_ops *);
1748
1749#define target_get_ada_task_ptid(lwp, tid) \
1750 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1751
1752/* Utility implementation of searching memory. */
1753extern int simple_search_memory (struct target_ops* ops,
1754 CORE_ADDR start_addr,
1755 ULONGEST search_space_len,
1756 const gdb_byte *pattern,
1757 ULONGEST pattern_len,
1758 CORE_ADDR *found_addrp);
1759
1760/* Main entry point for searching memory. */
1761extern int target_search_memory (CORE_ADDR start_addr,
1762 ULONGEST search_space_len,
1763 const gdb_byte *pattern,
1764 ULONGEST pattern_len,
1765 CORE_ADDR *found_addrp);
1766
1767/* Target file operations. */
1768
1769/* Open FILENAME on the target, using FLAGS and MODE. Return a
1770 target file descriptor, or -1 if an error occurs (and set
1771 *TARGET_ERRNO). */
1772extern int target_fileio_open (const char *filename, int flags, int mode,
1773 int *target_errno);
1774
1775/* Write up to LEN bytes from WRITE_BUF to FD on the target.
1776 Return the number of bytes written, or -1 if an error occurs
1777 (and set *TARGET_ERRNO). */
1778extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1779 ULONGEST offset, int *target_errno);
1780
1781/* Read up to LEN bytes FD on the target into READ_BUF.
1782 Return the number of bytes read, or -1 if an error occurs
1783 (and set *TARGET_ERRNO). */
1784extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1785 ULONGEST offset, int *target_errno);
1786
1787/* Close FD on the target. Return 0, or -1 if an error occurs
1788 (and set *TARGET_ERRNO). */
1789extern int target_fileio_close (int fd, int *target_errno);
1790
1791/* Unlink FILENAME on the target. Return 0, or -1 if an error
1792 occurs (and set *TARGET_ERRNO). */
1793extern int target_fileio_unlink (const char *filename, int *target_errno);
1794
1795/* Read value of symbolic link FILENAME on the target. Return a
1796 null-terminated string allocated via xmalloc, or NULL if an error
1797 occurs (and set *TARGET_ERRNO). */
1798extern char *target_fileio_readlink (const char *filename, int *target_errno);
1799
1800/* Read target file FILENAME. The return value will be -1 if the transfer
1801 fails or is not supported; 0 if the object is empty; or the length
1802 of the object otherwise. If a positive value is returned, a
1803 sufficiently large buffer will be allocated using xmalloc and
1804 returned in *BUF_P containing the contents of the object.
1805
1806 This method should be used for objects sufficiently small to store
1807 in a single xmalloc'd buffer, when no fixed bound on the object's
1808 size is known in advance. */
1809extern LONGEST target_fileio_read_alloc (const char *filename,
1810 gdb_byte **buf_p);
1811
1812/* Read target file FILENAME. The result is NUL-terminated and
1813 returned as a string, allocated using xmalloc. If an error occurs
1814 or the transfer is unsupported, NULL is returned. Empty objects
1815 are returned as allocated but empty strings. A warning is issued
1816 if the result contains any embedded NUL bytes. */
1817extern char *target_fileio_read_stralloc (const char *filename);
1818
1819
1820/* Tracepoint-related operations. */
1821
1822#define target_trace_init() \
1823 (*current_target.to_trace_init) (&current_target)
1824
1825#define target_download_tracepoint(t) \
1826 (*current_target.to_download_tracepoint) (&current_target, t)
1827
1828#define target_can_download_tracepoint() \
1829 (*current_target.to_can_download_tracepoint) (&current_target)
1830
1831#define target_download_trace_state_variable(tsv) \
1832 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1833
1834#define target_enable_tracepoint(loc) \
1835 (*current_target.to_enable_tracepoint) (&current_target, loc)
1836
1837#define target_disable_tracepoint(loc) \
1838 (*current_target.to_disable_tracepoint) (&current_target, loc)
1839
1840#define target_trace_start() \
1841 (*current_target.to_trace_start) (&current_target)
1842
1843#define target_trace_set_readonly_regions() \
1844 (*current_target.to_trace_set_readonly_regions) (&current_target)
1845
1846#define target_get_trace_status(ts) \
1847 (*current_target.to_get_trace_status) (&current_target, ts)
1848
1849#define target_get_tracepoint_status(tp,utp) \
1850 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1851
1852#define target_trace_stop() \
1853 (*current_target.to_trace_stop) (&current_target)
1854
1855#define target_trace_find(type,num,addr1,addr2,tpp) \
1856 (*current_target.to_trace_find) (&current_target, \
1857 (type), (num), (addr1), (addr2), (tpp))
1858
1859#define target_get_trace_state_variable_value(tsv,val) \
1860 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1861 (tsv), (val))
1862
1863#define target_save_trace_data(filename) \
1864 (*current_target.to_save_trace_data) (&current_target, filename)
1865
1866#define target_upload_tracepoints(utpp) \
1867 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1868
1869#define target_upload_trace_state_variables(utsvp) \
1870 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1871
1872#define target_get_raw_trace_data(buf,offset,len) \
1873 (*current_target.to_get_raw_trace_data) (&current_target, \
1874 (buf), (offset), (len))
1875
1876#define target_get_min_fast_tracepoint_insn_len() \
1877 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1878
1879#define target_set_disconnected_tracing(val) \
1880 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1881
1882#define target_set_circular_trace_buffer(val) \
1883 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1884
1885#define target_set_trace_buffer_size(val) \
1886 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1887
1888#define target_set_trace_notes(user,notes,stopnotes) \
1889 (*current_target.to_set_trace_notes) (&current_target, \
1890 (user), (notes), (stopnotes))
1891
1892#define target_get_tib_address(ptid, addr) \
1893 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1894
1895#define target_set_permissions() \
1896 (*current_target.to_set_permissions) (&current_target)
1897
1898#define target_static_tracepoint_marker_at(addr, marker) \
1899 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1900 addr, marker)
1901
1902#define target_static_tracepoint_markers_by_strid(marker_id) \
1903 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1904 marker_id)
1905
1906#define target_traceframe_info() \
1907 (*current_target.to_traceframe_info) (&current_target)
1908
1909#define target_use_agent(use) \
1910 (*current_target.to_use_agent) (&current_target, use)
1911
1912#define target_can_use_agent() \
1913 (*current_target.to_can_use_agent) (&current_target)
1914
1915#define target_augmented_libraries_svr4_read() \
1916 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1917
1918/* Command logging facility. */
1919
1920#define target_log_command(p) \
1921 do \
1922 if (current_target.to_log_command) \
1923 (*current_target.to_log_command) (&current_target, \
1924 p); \
1925 while (0)
1926
1927
1928extern int target_core_of_thread (ptid_t ptid);
1929
1930/* See to_get_unwinder in struct target_ops. */
1931extern const struct frame_unwind *target_get_unwinder (void);
1932
1933/* See to_get_tailcall_unwinder in struct target_ops. */
1934extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1935
1936/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1937 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1938 if there's a mismatch, and -1 if an error is encountered while
1939 reading memory. Throws an error if the functionality is found not
1940 to be supported by the current target. */
1941int target_verify_memory (const gdb_byte *data,
1942 CORE_ADDR memaddr, ULONGEST size);
1943
1944/* Routines for maintenance of the target structures...
1945
1946 complete_target_initialization: Finalize a target_ops by filling in
1947 any fields needed by the target implementation.
1948
1949 add_target: Add a target to the list of all possible targets.
1950
1951 push_target: Make this target the top of the stack of currently used
1952 targets, within its particular stratum of the stack. Result
1953 is 0 if now atop the stack, nonzero if not on top (maybe
1954 should warn user).
1955
1956 unpush_target: Remove this from the stack of currently used targets,
1957 no matter where it is on the list. Returns 0 if no
1958 change, 1 if removed from stack. */
1959
1960extern void add_target (struct target_ops *);
1961
1962extern void add_target_with_completer (struct target_ops *t,
1963 completer_ftype *completer);
1964
1965extern void complete_target_initialization (struct target_ops *t);
1966
1967/* Adds a command ALIAS for target T and marks it deprecated. This is useful
1968 for maintaining backwards compatibility when renaming targets. */
1969
1970extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1971
1972extern void push_target (struct target_ops *);
1973
1974extern int unpush_target (struct target_ops *);
1975
1976extern void target_pre_inferior (int);
1977
1978extern void target_preopen (int);
1979
1980/* Does whatever cleanup is required to get rid of all pushed targets. */
1981extern void pop_all_targets (void);
1982
1983/* Like pop_all_targets, but pops only targets whose stratum is
1984 strictly above ABOVE_STRATUM. */
1985extern void pop_all_targets_above (enum strata above_stratum);
1986
1987extern int target_is_pushed (struct target_ops *t);
1988
1989extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1990 CORE_ADDR offset);
1991
1992/* Struct target_section maps address ranges to file sections. It is
1993 mostly used with BFD files, but can be used without (e.g. for handling
1994 raw disks, or files not in formats handled by BFD). */
1995
1996struct target_section
1997 {
1998 CORE_ADDR addr; /* Lowest address in section */
1999 CORE_ADDR endaddr; /* 1+highest address in section */
2000
2001 struct bfd_section *the_bfd_section;
2002
2003 /* The "owner" of the section.
2004 It can be any unique value. It is set by add_target_sections
2005 and used by remove_target_sections.
2006 For example, for executables it is a pointer to exec_bfd and
2007 for shlibs it is the so_list pointer. */
2008 void *owner;
2009 };
2010
2011/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2012
2013struct target_section_table
2014{
2015 struct target_section *sections;
2016 struct target_section *sections_end;
2017};
2018
2019/* Return the "section" containing the specified address. */
2020struct target_section *target_section_by_addr (struct target_ops *target,
2021 CORE_ADDR addr);
2022
2023/* Return the target section table this target (or the targets
2024 beneath) currently manipulate. */
2025
2026extern struct target_section_table *target_get_section_table
2027 (struct target_ops *target);
2028
2029/* From mem-break.c */
2030
2031extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2032 struct bp_target_info *);
2033
2034extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2035 struct bp_target_info *);
2036
2037extern int default_memory_remove_breakpoint (struct gdbarch *,
2038 struct bp_target_info *);
2039
2040extern int default_memory_insert_breakpoint (struct gdbarch *,
2041 struct bp_target_info *);
2042
2043
2044/* From target.c */
2045
2046extern void initialize_targets (void);
2047
2048extern void noprocess (void) ATTRIBUTE_NORETURN;
2049
2050extern void target_require_runnable (void);
2051
2052extern void find_default_attach (struct target_ops *, char *, int);
2053
2054extern void find_default_create_inferior (struct target_ops *,
2055 char *, char *, char **, int);
2056
2057extern struct target_ops *find_target_beneath (struct target_ops *);
2058
2059/* Find the target at STRATUM. If no target is at that stratum,
2060 return NULL. */
2061
2062struct target_ops *find_target_at (enum strata stratum);
2063
2064/* Read OS data object of type TYPE from the target, and return it in
2065 XML format. The result is NUL-terminated and returned as a string,
2066 allocated using xmalloc. If an error occurs or the transfer is
2067 unsupported, NULL is returned. Empty objects are returned as
2068 allocated but empty strings. */
2069
2070extern char *target_get_osdata (const char *type);
2071
2072\f
2073/* Stuff that should be shared among the various remote targets. */
2074
2075/* Debugging level. 0 is off, and non-zero values mean to print some debug
2076 information (higher values, more information). */
2077extern int remote_debug;
2078
2079/* Speed in bits per second, or -1 which means don't mess with the speed. */
2080extern int baud_rate;
2081/* Timeout limit for response from target. */
2082extern int remote_timeout;
2083
2084\f
2085
2086/* Set the show memory breakpoints mode to show, and installs a cleanup
2087 to restore it back to the current value. */
2088extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2089
2090extern int may_write_registers;
2091extern int may_write_memory;
2092extern int may_insert_breakpoints;
2093extern int may_insert_tracepoints;
2094extern int may_insert_fast_tracepoints;
2095extern int may_stop;
2096
2097extern void update_target_permissions (void);
2098
2099\f
2100/* Imported from machine dependent code. */
2101
2102/* Blank target vector entries are initialized to target_ignore. */
2103void target_ignore (void);
2104
2105/* See to_supports_btrace in struct target_ops. */
2106#define target_supports_btrace() \
2107 (current_target.to_supports_btrace (&current_target))
2108
2109/* See to_enable_btrace in struct target_ops. */
2110extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2111
2112/* See to_disable_btrace in struct target_ops. */
2113extern void target_disable_btrace (struct btrace_target_info *btinfo);
2114
2115/* See to_teardown_btrace in struct target_ops. */
2116extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2117
2118/* See to_read_btrace in struct target_ops. */
2119extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2120 struct btrace_target_info *,
2121 enum btrace_read_type);
2122
2123/* See to_stop_recording in struct target_ops. */
2124extern void target_stop_recording (void);
2125
2126/* See to_info_record in struct target_ops. */
2127extern void target_info_record (void);
2128
2129/* See to_save_record in struct target_ops. */
2130extern void target_save_record (const char *filename);
2131
2132/* Query if the target supports deleting the execution log. */
2133extern int target_supports_delete_record (void);
2134
2135/* See to_delete_record in struct target_ops. */
2136extern void target_delete_record (void);
2137
2138/* See to_record_is_replaying in struct target_ops. */
2139extern int target_record_is_replaying (void);
2140
2141/* See to_goto_record_begin in struct target_ops. */
2142extern void target_goto_record_begin (void);
2143
2144/* See to_goto_record_end in struct target_ops. */
2145extern void target_goto_record_end (void);
2146
2147/* See to_goto_record in struct target_ops. */
2148extern void target_goto_record (ULONGEST insn);
2149
2150/* See to_insn_history. */
2151extern void target_insn_history (int size, int flags);
2152
2153/* See to_insn_history_from. */
2154extern void target_insn_history_from (ULONGEST from, int size, int flags);
2155
2156/* See to_insn_history_range. */
2157extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2158
2159/* See to_call_history. */
2160extern void target_call_history (int size, int flags);
2161
2162/* See to_call_history_from. */
2163extern void target_call_history_from (ULONGEST begin, int size, int flags);
2164
2165/* See to_call_history_range. */
2166extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2167
2168/* See to_decr_pc_after_break. Start searching for the target at OPS. */
2169extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2170 struct gdbarch *gdbarch);
2171
2172/* See to_decr_pc_after_break. */
2173extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2174
2175#endif /* !defined (TARGET_H) */
This page took 0.030247 seconds and 4 git commands to generate.