Fix native follow-exec-mode "new"
[deliverable/binutils-gdb.git] / gdb / valops.c
... / ...
CommitLineData
1/* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "frame.h"
25#include "inferior.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "demangle.h"
29#include "language.h"
30#include "gdbcmd.h"
31#include "regcache.h"
32#include "cp-abi.h"
33#include "block.h"
34#include "infcall.h"
35#include "dictionary.h"
36#include "cp-support.h"
37#include "dfp.h"
38#include "tracepoint.h"
39#include "observer.h"
40#include "objfiles.h"
41#include "extension.h"
42
43extern unsigned int overload_debug;
44/* Local functions. */
45
46static int typecmp (int staticp, int varargs, int nargs,
47 struct field t1[], struct value *t2[]);
48
49static struct value *search_struct_field (const char *, struct value *,
50 struct type *, int);
51
52static struct value *search_struct_method (const char *, struct value **,
53 struct value **,
54 int, int *, struct type *);
55
56static int find_oload_champ_namespace (struct value **, int,
57 const char *, const char *,
58 struct symbol ***,
59 struct badness_vector **,
60 const int no_adl);
61
62static
63int find_oload_champ_namespace_loop (struct value **, int,
64 const char *, const char *,
65 int, struct symbol ***,
66 struct badness_vector **, int *,
67 const int no_adl);
68
69static int find_oload_champ (struct value **, int, int,
70 struct fn_field *, VEC (xmethod_worker_ptr) *,
71 struct symbol **, struct badness_vector **);
72
73static int oload_method_static_p (struct fn_field *, int);
74
75enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
76
77static enum
78oload_classification classify_oload_match (struct badness_vector *,
79 int, int);
80
81static struct value *value_struct_elt_for_reference (struct type *,
82 int, struct type *,
83 const char *,
84 struct type *,
85 int, enum noside);
86
87static struct value *value_namespace_elt (const struct type *,
88 const char *, int , enum noside);
89
90static struct value *value_maybe_namespace_elt (const struct type *,
91 const char *, int,
92 enum noside);
93
94static CORE_ADDR allocate_space_in_inferior (int);
95
96static struct value *cast_into_complex (struct type *, struct value *);
97
98static void find_method_list (struct value **, const char *,
99 int, struct type *, struct fn_field **, int *,
100 VEC (xmethod_worker_ptr) **,
101 struct type **, int *);
102
103void _initialize_valops (void);
104
105#if 0
106/* Flag for whether we want to abandon failed expression evals by
107 default. */
108
109static int auto_abandon = 0;
110#endif
111
112int overload_resolution = 0;
113static void
114show_overload_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117{
118 fprintf_filtered (file, _("Overload resolution in evaluating "
119 "C++ functions is %s.\n"),
120 value);
121}
122
123/* Find the address of function name NAME in the inferior. If OBJF_P
124 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
125 is defined. */
126
127struct value *
128find_function_in_inferior (const char *name, struct objfile **objf_p)
129{
130 struct block_symbol sym;
131
132 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
133 if (sym.symbol != NULL)
134 {
135 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
136 {
137 error (_("\"%s\" exists in this program but is not a function."),
138 name);
139 }
140
141 if (objf_p)
142 *objf_p = symbol_objfile (sym.symbol);
143
144 return value_of_variable (sym.symbol, sym.block);
145 }
146 else
147 {
148 struct bound_minimal_symbol msymbol =
149 lookup_bound_minimal_symbol (name);
150
151 if (msymbol.minsym != NULL)
152 {
153 struct objfile *objfile = msymbol.objfile;
154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
155
156 struct type *type;
157 CORE_ADDR maddr;
158 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
159 type = lookup_function_type (type);
160 type = lookup_pointer_type (type);
161 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
162
163 if (objf_p)
164 *objf_p = objfile;
165
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression "
172 "requires the target program to be active"));
173 else
174 error (_("evaluation of this expression requires the "
175 "program to have a function \"%s\"."),
176 name);
177 }
178 }
179}
180
181/* Allocate NBYTES of space in the inferior using the inferior's
182 malloc and return a value that is a pointer to the allocated
183 space. */
184
185struct value *
186value_allocate_space_in_inferior (int len)
187{
188 struct objfile *objf;
189 struct value *val = find_function_in_inferior ("malloc", &objf);
190 struct gdbarch *gdbarch = get_objfile_arch (objf);
191 struct value *blocklen;
192
193 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
194 val = call_function_by_hand (val, 1, &blocklen);
195 if (value_logical_not (val))
196 {
197 if (!target_has_execution)
198 error (_("No memory available to program now: "
199 "you need to start the target first"));
200 else
201 error (_("No memory available to program: call to malloc failed"));
202 }
203 return val;
204}
205
206static CORE_ADDR
207allocate_space_in_inferior (int len)
208{
209 return value_as_long (value_allocate_space_in_inferior (len));
210}
211
212/* Cast struct value VAL to type TYPE and return as a value.
213 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
214 for this to work. Typedef to one of the codes is permitted.
215 Returns NULL if the cast is neither an upcast nor a downcast. */
216
217static struct value *
218value_cast_structs (struct type *type, struct value *v2)
219{
220 struct type *t1;
221 struct type *t2;
222 struct value *v;
223
224 gdb_assert (type != NULL && v2 != NULL);
225
226 t1 = check_typedef (type);
227 t2 = check_typedef (value_type (v2));
228
229 /* Check preconditions. */
230 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 || TYPE_CODE (t1) == TYPE_CODE_UNION)
232 && !!"Precondition is that type is of STRUCT or UNION kind.");
233 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t2) == TYPE_CODE_UNION)
235 && !!"Precondition is that value is of STRUCT or UNION kind");
236
237 if (TYPE_NAME (t1) != NULL
238 && TYPE_NAME (t2) != NULL
239 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 return NULL;
241
242 /* Upcasting: look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 if (TYPE_NAME (t1) != NULL)
246 {
247 v = search_struct_field (type_name_no_tag (t1),
248 v2, t2, 1);
249 if (v)
250 return v;
251 }
252
253 /* Downcasting: look in the type of the target to see if it contains the
254 type of the source as a superclass. If so, we'll need to
255 offset the pointer rather than just change its type. */
256 if (TYPE_NAME (t2) != NULL)
257 {
258 /* Try downcasting using the run-time type of the value. */
259 int full, top, using_enc;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267 real_type = value_type (v);
268
269 /* We might be trying to cast to the outermost enclosing
270 type, in which case search_struct_field won't work. */
271 if (TYPE_NAME (real_type) != NULL
272 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
273 return v;
274
275 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
276 if (v)
277 return v;
278 }
279
280 /* Try downcasting using information from the destination type
281 T2. This wouldn't work properly for classes with virtual
282 bases, but those were handled above. */
283 v = search_struct_field (type_name_no_tag (t2),
284 value_zero (t1, not_lval), t1, 1);
285 if (v)
286 {
287 /* Downcasting is possible (t1 is superclass of v2). */
288 CORE_ADDR addr2 = value_address (v2);
289
290 addr2 -= value_address (v) + value_embedded_offset (v);
291 return value_at (type, addr2);
292 }
293 }
294
295 return NULL;
296}
297
298/* Cast one pointer or reference type to another. Both TYPE and
299 the type of ARG2 should be pointer types, or else both should be
300 reference types. If SUBCLASS_CHECK is non-zero, this will force a
301 check to see whether TYPE is a superclass of ARG2's type. If
302 SUBCLASS_CHECK is zero, then the subclass check is done only when
303 ARG2 is itself non-zero. Returns the new pointer or reference. */
304
305struct value *
306value_cast_pointers (struct type *type, struct value *arg2,
307 int subclass_check)
308{
309 struct type *type1 = check_typedef (type);
310 struct type *type2 = check_typedef (value_type (arg2));
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313
314 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316 && (subclass_check || !value_logical_not (arg2)))
317 {
318 struct value *v2;
319
320 if (TYPE_CODE (type2) == TYPE_CODE_REF)
321 v2 = coerce_ref (arg2);
322 else
323 v2 = value_ind (arg2);
324 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326 v2 = value_cast_structs (t1, v2);
327 /* At this point we have what we can have, un-dereference if needed. */
328 if (v2)
329 {
330 struct value *v = value_addr (v2);
331
332 deprecated_set_value_type (v, type);
333 return v;
334 }
335 }
336
337 /* No superclass found, just change the pointer type. */
338 arg2 = value_copy (arg2);
339 deprecated_set_value_type (arg2, type);
340 set_value_enclosing_type (arg2, type);
341 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 return arg2;
343}
344
345/* Cast value ARG2 to type TYPE and return as a value.
346 More general than a C cast: accepts any two types of the same length,
347 and if ARG2 is an lvalue it can be cast into anything at all. */
348/* In C++, casts may change pointer or object representations. */
349
350struct value *
351value_cast (struct type *type, struct value *arg2)
352{
353 enum type_code code1;
354 enum type_code code2;
355 int scalar;
356 struct type *type2;
357
358 int convert_to_boolean = 0;
359
360 if (value_type (arg2) == type)
361 return arg2;
362
363 code1 = TYPE_CODE (check_typedef (type));
364
365 /* Check if we are casting struct reference to struct reference. */
366 if (code1 == TYPE_CODE_REF)
367 {
368 /* We dereference type; then we recurse and finally
369 we generate value of the given reference. Nothing wrong with
370 that. */
371 struct type *t1 = check_typedef (type);
372 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
373 struct value *val = value_cast (dereftype, arg2);
374
375 return value_ref (val);
376 }
377
378 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
379
380 if (code2 == TYPE_CODE_REF)
381 /* We deref the value and then do the cast. */
382 return value_cast (type, coerce_ref (arg2));
383
384 type = check_typedef (type);
385 code1 = TYPE_CODE (type);
386 arg2 = coerce_ref (arg2);
387 type2 = check_typedef (value_type (arg2));
388
389 /* You can't cast to a reference type. See value_cast_pointers
390 instead. */
391 gdb_assert (code1 != TYPE_CODE_REF);
392
393 /* A cast to an undetermined-length array_type, such as
394 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
395 where N is sizeof(OBJECT)/sizeof(TYPE). */
396 if (code1 == TYPE_CODE_ARRAY)
397 {
398 struct type *element_type = TYPE_TARGET_TYPE (type);
399 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
400
401 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
402 {
403 struct type *range_type = TYPE_INDEX_TYPE (type);
404 int val_length = TYPE_LENGTH (type2);
405 LONGEST low_bound, high_bound, new_length;
406
407 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
408 low_bound = 0, high_bound = 0;
409 new_length = val_length / element_length;
410 if (val_length % element_length != 0)
411 warning (_("array element type size does not "
412 "divide object size in cast"));
413 /* FIXME-type-allocation: need a way to free this type when
414 we are done with it. */
415 range_type = create_static_range_type ((struct type *) NULL,
416 TYPE_TARGET_TYPE (range_type),
417 low_bound,
418 new_length + low_bound - 1);
419 deprecated_set_value_type (arg2,
420 create_array_type ((struct type *) NULL,
421 element_type,
422 range_type));
423 return arg2;
424 }
425 }
426
427 if (current_language->c_style_arrays
428 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
429 && !TYPE_VECTOR (type2))
430 arg2 = value_coerce_array (arg2);
431
432 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
433 arg2 = value_coerce_function (arg2);
434
435 type2 = check_typedef (value_type (arg2));
436 code2 = TYPE_CODE (type2);
437
438 if (code1 == TYPE_CODE_COMPLEX)
439 return cast_into_complex (type, arg2);
440 if (code1 == TYPE_CODE_BOOL)
441 {
442 code1 = TYPE_CODE_INT;
443 convert_to_boolean = 1;
444 }
445 if (code1 == TYPE_CODE_CHAR)
446 code1 = TYPE_CODE_INT;
447 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
448 code2 = TYPE_CODE_INT;
449
450 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
451 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
452 || code2 == TYPE_CODE_RANGE);
453
454 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
455 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
456 && TYPE_NAME (type) != 0)
457 {
458 struct value *v = value_cast_structs (type, arg2);
459
460 if (v)
461 return v;
462 }
463
464 if (code1 == TYPE_CODE_FLT && scalar)
465 return value_from_double (type, value_as_double (arg2));
466 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
467 {
468 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
469 int dec_len = TYPE_LENGTH (type);
470 gdb_byte dec[16];
471
472 if (code2 == TYPE_CODE_FLT)
473 decimal_from_floating (arg2, dec, dec_len, byte_order);
474 else if (code2 == TYPE_CODE_DECFLOAT)
475 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
476 byte_order, dec, dec_len, byte_order);
477 else
478 /* The only option left is an integral type. */
479 decimal_from_integral (arg2, dec, dec_len, byte_order);
480
481 return value_from_decfloat (type, dec);
482 }
483 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
484 || code1 == TYPE_CODE_RANGE)
485 && (scalar || code2 == TYPE_CODE_PTR
486 || code2 == TYPE_CODE_MEMBERPTR))
487 {
488 LONGEST longest;
489
490 /* When we cast pointers to integers, we mustn't use
491 gdbarch_pointer_to_address to find the address the pointer
492 represents, as value_as_long would. GDB should evaluate
493 expressions just as the compiler would --- and the compiler
494 sees a cast as a simple reinterpretation of the pointer's
495 bits. */
496 if (code2 == TYPE_CODE_PTR)
497 longest = extract_unsigned_integer
498 (value_contents (arg2), TYPE_LENGTH (type2),
499 gdbarch_byte_order (get_type_arch (type2)));
500 else
501 longest = value_as_long (arg2);
502 return value_from_longest (type, convert_to_boolean ?
503 (LONGEST) (longest ? 1 : 0) : longest);
504 }
505 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
506 || code2 == TYPE_CODE_ENUM
507 || code2 == TYPE_CODE_RANGE))
508 {
509 /* TYPE_LENGTH (type) is the length of a pointer, but we really
510 want the length of an address! -- we are really dealing with
511 addresses (i.e., gdb representations) not pointers (i.e.,
512 target representations) here.
513
514 This allows things like "print *(int *)0x01000234" to work
515 without printing a misleading message -- which would
516 otherwise occur when dealing with a target having two byte
517 pointers and four byte addresses. */
518
519 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
520 LONGEST longest = value_as_long (arg2);
521
522 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
523 {
524 if (longest >= ((LONGEST) 1 << addr_bit)
525 || longest <= -((LONGEST) 1 << addr_bit))
526 warning (_("value truncated"));
527 }
528 return value_from_longest (type, longest);
529 }
530 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
531 && value_as_long (arg2) == 0)
532 {
533 struct value *result = allocate_value (type);
534
535 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
536 return result;
537 }
538 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
539 && value_as_long (arg2) == 0)
540 {
541 /* The Itanium C++ ABI represents NULL pointers to members as
542 minus one, instead of biasing the normal case. */
543 return value_from_longest (type, -1);
544 }
545 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
546 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
547 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
548 error (_("Cannot convert between vector values of different sizes"));
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("can only cast scalar to vector of same size"));
552 else if (code1 == TYPE_CODE_VOID)
553 {
554 return value_zero (type, not_lval);
555 }
556 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
557 {
558 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
559 return value_cast_pointers (type, arg2, 0);
560
561 arg2 = value_copy (arg2);
562 deprecated_set_value_type (arg2, type);
563 set_value_enclosing_type (arg2, type);
564 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
565 return arg2;
566 }
567 else if (VALUE_LVAL (arg2) == lval_memory)
568 return value_at_lazy (type, value_address (arg2));
569 else
570 {
571 error (_("Invalid cast."));
572 return 0;
573 }
574}
575
576/* The C++ reinterpret_cast operator. */
577
578struct value *
579value_reinterpret_cast (struct type *type, struct value *arg)
580{
581 struct value *result;
582 struct type *real_type = check_typedef (type);
583 struct type *arg_type, *dest_type;
584 int is_ref = 0;
585 enum type_code dest_code, arg_code;
586
587 /* Do reference, function, and array conversion. */
588 arg = coerce_array (arg);
589
590 /* Attempt to preserve the type the user asked for. */
591 dest_type = type;
592
593 /* If we are casting to a reference type, transform
594 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
595 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
596 {
597 is_ref = 1;
598 arg = value_addr (arg);
599 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
600 real_type = lookup_pointer_type (real_type);
601 }
602
603 arg_type = value_type (arg);
604
605 dest_code = TYPE_CODE (real_type);
606 arg_code = TYPE_CODE (arg_type);
607
608 /* We can convert pointer types, or any pointer type to int, or int
609 type to pointer. */
610 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
611 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
612 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
614 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
616 || (dest_code == arg_code
617 && (dest_code == TYPE_CODE_PTR
618 || dest_code == TYPE_CODE_METHODPTR
619 || dest_code == TYPE_CODE_MEMBERPTR)))
620 result = value_cast (dest_type, arg);
621 else
622 error (_("Invalid reinterpret_cast"));
623
624 if (is_ref)
625 result = value_cast (type, value_ref (value_ind (result)));
626
627 return result;
628}
629
630/* A helper for value_dynamic_cast. This implements the first of two
631 runtime checks: we iterate over all the base classes of the value's
632 class which are equal to the desired class; if only one of these
633 holds the value, then it is the answer. */
634
635static int
636dynamic_cast_check_1 (struct type *desired_type,
637 const gdb_byte *valaddr,
638 int embedded_offset,
639 CORE_ADDR address,
640 struct value *val,
641 struct type *search_type,
642 CORE_ADDR arg_addr,
643 struct type *arg_type,
644 struct value **result)
645{
646 int i, result_count = 0;
647
648 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
649 {
650 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
651 address, val);
652
653 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
654 {
655 if (address + embedded_offset + offset >= arg_addr
656 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
657 {
658 ++result_count;
659 if (!*result)
660 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
661 address + embedded_offset + offset);
662 }
663 }
664 else
665 result_count += dynamic_cast_check_1 (desired_type,
666 valaddr,
667 embedded_offset + offset,
668 address, val,
669 TYPE_BASECLASS (search_type, i),
670 arg_addr,
671 arg_type,
672 result);
673 }
674
675 return result_count;
676}
677
678/* A helper for value_dynamic_cast. This implements the second of two
679 runtime checks: we look for a unique public sibling class of the
680 argument's declared class. */
681
682static int
683dynamic_cast_check_2 (struct type *desired_type,
684 const gdb_byte *valaddr,
685 int embedded_offset,
686 CORE_ADDR address,
687 struct value *val,
688 struct type *search_type,
689 struct value **result)
690{
691 int i, result_count = 0;
692
693 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
694 {
695 int offset;
696
697 if (! BASETYPE_VIA_PUBLIC (search_type, i))
698 continue;
699
700 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
701 address, val);
702 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
703 {
704 ++result_count;
705 if (*result == NULL)
706 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
707 address + embedded_offset + offset);
708 }
709 else
710 result_count += dynamic_cast_check_2 (desired_type,
711 valaddr,
712 embedded_offset + offset,
713 address, val,
714 TYPE_BASECLASS (search_type, i),
715 result);
716 }
717
718 return result_count;
719}
720
721/* The C++ dynamic_cast operator. */
722
723struct value *
724value_dynamic_cast (struct type *type, struct value *arg)
725{
726 int full, top, using_enc;
727 struct type *resolved_type = check_typedef (type);
728 struct type *arg_type = check_typedef (value_type (arg));
729 struct type *class_type, *rtti_type;
730 struct value *result, *tem, *original_arg = arg;
731 CORE_ADDR addr;
732 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
733
734 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
735 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
736 error (_("Argument to dynamic_cast must be a pointer or reference type"));
737 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
738 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
739 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
740
741 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
742 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
743 {
744 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
745 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
746 && value_as_long (arg) == 0))
747 error (_("Argument to dynamic_cast does not have pointer type"));
748 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
749 {
750 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
751 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
752 error (_("Argument to dynamic_cast does "
753 "not have pointer to class type"));
754 }
755
756 /* Handle NULL pointers. */
757 if (value_as_long (arg) == 0)
758 return value_zero (type, not_lval);
759
760 arg = value_ind (arg);
761 }
762 else
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
765 error (_("Argument to dynamic_cast does not have class type"));
766 }
767
768 /* If the classes are the same, just return the argument. */
769 if (class_types_same_p (class_type, arg_type))
770 return value_cast (type, arg);
771
772 /* If the target type is a unique base class of the argument's
773 declared type, just cast it. */
774 if (is_ancestor (class_type, arg_type))
775 {
776 if (is_unique_ancestor (class_type, arg))
777 return value_cast (type, original_arg);
778 error (_("Ambiguous dynamic_cast"));
779 }
780
781 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
782 if (! rtti_type)
783 error (_("Couldn't determine value's most derived type for dynamic_cast"));
784
785 /* Compute the most derived object's address. */
786 addr = value_address (arg);
787 if (full)
788 {
789 /* Done. */
790 }
791 else if (using_enc)
792 addr += top;
793 else
794 addr += top + value_embedded_offset (arg);
795
796 /* dynamic_cast<void *> means to return a pointer to the
797 most-derived object. */
798 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
799 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
800 return value_at_lazy (type, addr);
801
802 tem = value_at (type, addr);
803 type = value_type (tem);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837}
838
839/* Create a value of type TYPE that is zero, and return it. */
840
841struct value *
842value_zero (struct type *type, enum lval_type lv)
843{
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848}
849
850/* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852struct value *
853value_one (struct type *type)
854{
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901}
902
903/* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
904 The type of the created value may differ from the passed type TYPE.
905 Make sure to retrieve the returned values's new type after this call
906 e.g. in case the type is a variable length array. */
907
908static struct value *
909get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910{
911 struct value *val;
912
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
915
916 val = value_from_contents_and_address (type, NULL, addr);
917
918 if (!lazy)
919 value_fetch_lazy (val);
920
921 return val;
922}
923
924/* Return a value with type TYPE located at ADDR.
925
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required. The type of the created value
932 may differ from the passed type TYPE. Make sure to retrieve the
933 returned values's new type after this call e.g. in case the type
934 is a variable length array.
935
936 Note: value_at does *NOT* handle embedded offsets; perform such
937 adjustments before or after calling it. */
938
939struct value *
940value_at (struct type *type, CORE_ADDR addr)
941{
942 return get_value_at (type, addr, 0);
943}
944
945/* Return a lazy value with type TYPE located at ADDR (cf. value_at).
946 The type of the created value may differ from the passed type TYPE.
947 Make sure to retrieve the returned values's new type after this call
948 e.g. in case the type is a variable length array. */
949
950struct value *
951value_at_lazy (struct type *type, CORE_ADDR addr)
952{
953 return get_value_at (type, addr, 1);
954}
955
956void
957read_value_memory (struct value *val, int embedded_offset,
958 int stack, CORE_ADDR memaddr,
959 gdb_byte *buffer, size_t length)
960{
961 ULONGEST xfered_total = 0;
962 struct gdbarch *arch = get_value_arch (val);
963 int unit_size = gdbarch_addressable_memory_unit_size (arch);
964
965 while (xfered_total < length)
966 {
967 enum target_xfer_status status;
968 ULONGEST xfered_partial;
969
970 status = target_xfer_partial (current_target.beneath,
971 TARGET_OBJECT_MEMORY, NULL,
972 buffer + xfered_total * unit_size, NULL,
973 memaddr + xfered_total,
974 length - xfered_total,
975 &xfered_partial);
976
977 if (status == TARGET_XFER_OK)
978 /* nothing */;
979 else if (status == TARGET_XFER_UNAVAILABLE)
980 mark_value_bytes_unavailable (val, embedded_offset + xfered_total,
981 xfered_partial);
982 else if (status == TARGET_XFER_EOF)
983 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
984 else
985 memory_error (status, memaddr + xfered_total);
986
987 xfered_total += xfered_partial;
988 QUIT;
989 }
990}
991
992/* Store the contents of FROMVAL into the location of TOVAL.
993 Return a new value with the location of TOVAL and contents of FROMVAL. */
994
995struct value *
996value_assign (struct value *toval, struct value *fromval)
997{
998 struct type *type;
999 struct value *val;
1000 struct frame_id old_frame;
1001
1002 if (!deprecated_value_modifiable (toval))
1003 error (_("Left operand of assignment is not a modifiable lvalue."));
1004
1005 toval = coerce_ref (toval);
1006
1007 type = value_type (toval);
1008 if (VALUE_LVAL (toval) != lval_internalvar)
1009 fromval = value_cast (type, fromval);
1010 else
1011 {
1012 /* Coerce arrays and functions to pointers, except for arrays
1013 which only live in GDB's storage. */
1014 if (!value_must_coerce_to_target (fromval))
1015 fromval = coerce_array (fromval);
1016 }
1017
1018 type = check_typedef (type);
1019
1020 /* Since modifying a register can trash the frame chain, and
1021 modifying memory can trash the frame cache, we save the old frame
1022 and then restore the new frame afterwards. */
1023 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1024
1025 switch (VALUE_LVAL (toval))
1026 {
1027 case lval_internalvar:
1028 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1029 return value_of_internalvar (get_type_arch (type),
1030 VALUE_INTERNALVAR (toval));
1031
1032 case lval_internalvar_component:
1033 {
1034 int offset = value_offset (toval);
1035
1036 /* Are we dealing with a bitfield?
1037
1038 It is important to mention that `value_parent (toval)' is
1039 non-NULL iff `value_bitsize (toval)' is non-zero. */
1040 if (value_bitsize (toval))
1041 {
1042 /* VALUE_INTERNALVAR below refers to the parent value, while
1043 the offset is relative to this parent value. */
1044 gdb_assert (value_parent (value_parent (toval)) == NULL);
1045 offset += value_offset (value_parent (toval));
1046 }
1047
1048 set_internalvar_component (VALUE_INTERNALVAR (toval),
1049 offset,
1050 value_bitpos (toval),
1051 value_bitsize (toval),
1052 fromval);
1053 }
1054 break;
1055
1056 case lval_memory:
1057 {
1058 const gdb_byte *dest_buffer;
1059 CORE_ADDR changed_addr;
1060 int changed_len;
1061 gdb_byte buffer[sizeof (LONGEST)];
1062
1063 if (value_bitsize (toval))
1064 {
1065 struct value *parent = value_parent (toval);
1066
1067 changed_addr = value_address (parent) + value_offset (toval);
1068 changed_len = (value_bitpos (toval)
1069 + value_bitsize (toval)
1070 + HOST_CHAR_BIT - 1)
1071 / HOST_CHAR_BIT;
1072
1073 /* If we can read-modify-write exactly the size of the
1074 containing type (e.g. short or int) then do so. This
1075 is safer for volatile bitfields mapped to hardware
1076 registers. */
1077 if (changed_len < TYPE_LENGTH (type)
1078 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1079 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1080 changed_len = TYPE_LENGTH (type);
1081
1082 if (changed_len > (int) sizeof (LONGEST))
1083 error (_("Can't handle bitfields which "
1084 "don't fit in a %d bit word."),
1085 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1086
1087 read_memory (changed_addr, buffer, changed_len);
1088 modify_field (type, buffer, value_as_long (fromval),
1089 value_bitpos (toval), value_bitsize (toval));
1090 dest_buffer = buffer;
1091 }
1092 else
1093 {
1094 changed_addr = value_address (toval);
1095 changed_len = type_length_units (type);
1096 dest_buffer = value_contents (fromval);
1097 }
1098
1099 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1100 }
1101 break;
1102
1103 case lval_register:
1104 {
1105 struct frame_info *frame;
1106 struct gdbarch *gdbarch;
1107 int value_reg;
1108
1109 /* Figure out which frame this is in currently. */
1110 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1111 value_reg = VALUE_REGNUM (toval);
1112
1113 if (!frame)
1114 error (_("Value being assigned to is no longer active."));
1115
1116 gdbarch = get_frame_arch (frame);
1117
1118 if (value_bitsize (toval))
1119 {
1120 struct value *parent = value_parent (toval);
1121 int offset = value_offset (parent) + value_offset (toval);
1122 int changed_len;
1123 gdb_byte buffer[sizeof (LONGEST)];
1124 int optim, unavail;
1125
1126 changed_len = (value_bitpos (toval)
1127 + value_bitsize (toval)
1128 + HOST_CHAR_BIT - 1)
1129 / HOST_CHAR_BIT;
1130
1131 if (changed_len > (int) sizeof (LONGEST))
1132 error (_("Can't handle bitfields which "
1133 "don't fit in a %d bit word."),
1134 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1135
1136 if (!get_frame_register_bytes (frame, value_reg, offset,
1137 changed_len, buffer,
1138 &optim, &unavail))
1139 {
1140 if (optim)
1141 throw_error (OPTIMIZED_OUT_ERROR,
1142 _("value has been optimized out"));
1143 if (unavail)
1144 throw_error (NOT_AVAILABLE_ERROR,
1145 _("value is not available"));
1146 }
1147
1148 modify_field (type, buffer, value_as_long (fromval),
1149 value_bitpos (toval), value_bitsize (toval));
1150
1151 put_frame_register_bytes (frame, value_reg, offset,
1152 changed_len, buffer);
1153 }
1154 else
1155 {
1156 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1157 type))
1158 {
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1161 format. */
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1165 }
1166 else
1167 {
1168 put_frame_register_bytes (frame, value_reg,
1169 value_offset (toval),
1170 TYPE_LENGTH (type),
1171 value_contents (fromval));
1172 }
1173 }
1174
1175 observer_notify_register_changed (frame, value_reg);
1176 break;
1177 }
1178
1179 case lval_computed:
1180 {
1181 const struct lval_funcs *funcs = value_computed_funcs (toval);
1182
1183 if (funcs->write != NULL)
1184 {
1185 funcs->write (toval, fromval);
1186 break;
1187 }
1188 }
1189 /* Fall through. */
1190
1191 default:
1192 error (_("Left operand of assignment is not an lvalue."));
1193 }
1194
1195 /* Assigning to the stack pointer, frame pointer, and other
1196 (architecture and calling convention specific) registers may
1197 cause the frame cache and regcache to be out of date. Assigning to memory
1198 also can. We just do this on all assignments to registers or
1199 memory, for simplicity's sake; I doubt the slowdown matters. */
1200 switch (VALUE_LVAL (toval))
1201 {
1202 case lval_memory:
1203 case lval_register:
1204 case lval_computed:
1205
1206 observer_notify_target_changed (&current_target);
1207
1208 /* Having destroyed the frame cache, restore the selected
1209 frame. */
1210
1211 /* FIXME: cagney/2002-11-02: There has to be a better way of
1212 doing this. Instead of constantly saving/restoring the
1213 frame. Why not create a get_selected_frame() function that,
1214 having saved the selected frame's ID can automatically
1215 re-find the previously selected frame automatically. */
1216
1217 {
1218 struct frame_info *fi = frame_find_by_id (old_frame);
1219
1220 if (fi != NULL)
1221 select_frame (fi);
1222 }
1223
1224 break;
1225 default:
1226 break;
1227 }
1228
1229 /* If the field does not entirely fill a LONGEST, then zero the sign
1230 bits. If the field is signed, and is negative, then sign
1231 extend. */
1232 if ((value_bitsize (toval) > 0)
1233 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1234 {
1235 LONGEST fieldval = value_as_long (fromval);
1236 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1237
1238 fieldval &= valmask;
1239 if (!TYPE_UNSIGNED (type)
1240 && (fieldval & (valmask ^ (valmask >> 1))))
1241 fieldval |= ~valmask;
1242
1243 fromval = value_from_longest (type, fieldval);
1244 }
1245
1246 /* The return value is a copy of TOVAL so it shares its location
1247 information, but its contents are updated from FROMVAL. This
1248 implies the returned value is not lazy, even if TOVAL was. */
1249 val = value_copy (toval);
1250 set_value_lazy (val, 0);
1251 memcpy (value_contents_raw (val), value_contents (fromval),
1252 TYPE_LENGTH (type));
1253
1254 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1255 in the case of pointer types. For object types, the enclosing type
1256 and embedded offset must *not* be copied: the target object refered
1257 to by TOVAL retains its original dynamic type after assignment. */
1258 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1259 {
1260 set_value_enclosing_type (val, value_enclosing_type (fromval));
1261 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1262 }
1263
1264 return val;
1265}
1266
1267/* Extend a value VAL to COUNT repetitions of its type. */
1268
1269struct value *
1270value_repeat (struct value *arg1, int count)
1271{
1272 struct value *val;
1273
1274 if (VALUE_LVAL (arg1) != lval_memory)
1275 error (_("Only values in memory can be extended with '@'."));
1276 if (count < 1)
1277 error (_("Invalid number %d of repetitions."), count);
1278
1279 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1280
1281 VALUE_LVAL (val) = lval_memory;
1282 set_value_address (val, value_address (arg1));
1283
1284 read_value_memory (val, 0, value_stack (val), value_address (val),
1285 value_contents_all_raw (val),
1286 type_length_units (value_enclosing_type (val)));
1287
1288 return val;
1289}
1290
1291struct value *
1292value_of_variable (struct symbol *var, const struct block *b)
1293{
1294 struct frame_info *frame = NULL;
1295
1296 if (symbol_read_needs_frame (var))
1297 frame = get_selected_frame (_("No frame selected."));
1298
1299 return read_var_value (var, b, frame);
1300}
1301
1302struct value *
1303address_of_variable (struct symbol *var, const struct block *b)
1304{
1305 struct type *type = SYMBOL_TYPE (var);
1306 struct value *val;
1307
1308 /* Evaluate it first; if the result is a memory address, we're fine.
1309 Lazy evaluation pays off here. */
1310
1311 val = value_of_variable (var, b);
1312 type = value_type (val);
1313
1314 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1315 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1316 {
1317 CORE_ADDR addr = value_address (val);
1318
1319 return value_from_pointer (lookup_pointer_type (type), addr);
1320 }
1321
1322 /* Not a memory address; check what the problem was. */
1323 switch (VALUE_LVAL (val))
1324 {
1325 case lval_register:
1326 {
1327 struct frame_info *frame;
1328 const char *regname;
1329
1330 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1331 gdb_assert (frame);
1332
1333 regname = gdbarch_register_name (get_frame_arch (frame),
1334 VALUE_REGNUM (val));
1335 gdb_assert (regname && *regname);
1336
1337 error (_("Address requested for identifier "
1338 "\"%s\" which is in register $%s"),
1339 SYMBOL_PRINT_NAME (var), regname);
1340 break;
1341 }
1342
1343 default:
1344 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1345 SYMBOL_PRINT_NAME (var));
1346 break;
1347 }
1348
1349 return val;
1350}
1351
1352/* Return one if VAL does not live in target memory, but should in order
1353 to operate on it. Otherwise return zero. */
1354
1355int
1356value_must_coerce_to_target (struct value *val)
1357{
1358 struct type *valtype;
1359
1360 /* The only lval kinds which do not live in target memory. */
1361 if (VALUE_LVAL (val) != not_lval
1362 && VALUE_LVAL (val) != lval_internalvar
1363 && VALUE_LVAL (val) != lval_xcallable)
1364 return 0;
1365
1366 valtype = check_typedef (value_type (val));
1367
1368 switch (TYPE_CODE (valtype))
1369 {
1370 case TYPE_CODE_ARRAY:
1371 return TYPE_VECTOR (valtype) ? 0 : 1;
1372 case TYPE_CODE_STRING:
1373 return 1;
1374 default:
1375 return 0;
1376 }
1377}
1378
1379/* Make sure that VAL lives in target memory if it's supposed to. For
1380 instance, strings are constructed as character arrays in GDB's
1381 storage, and this function copies them to the target. */
1382
1383struct value *
1384value_coerce_to_target (struct value *val)
1385{
1386 LONGEST length;
1387 CORE_ADDR addr;
1388
1389 if (!value_must_coerce_to_target (val))
1390 return val;
1391
1392 length = TYPE_LENGTH (check_typedef (value_type (val)));
1393 addr = allocate_space_in_inferior (length);
1394 write_memory (addr, value_contents (val), length);
1395 return value_at_lazy (value_type (val), addr);
1396}
1397
1398/* Given a value which is an array, return a value which is a pointer
1399 to its first element, regardless of whether or not the array has a
1400 nonzero lower bound.
1401
1402 FIXME: A previous comment here indicated that this routine should
1403 be substracting the array's lower bound. It's not clear to me that
1404 this is correct. Given an array subscripting operation, it would
1405 certainly work to do the adjustment here, essentially computing:
1406
1407 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1408
1409 However I believe a more appropriate and logical place to account
1410 for the lower bound is to do so in value_subscript, essentially
1411 computing:
1412
1413 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1414
1415 As further evidence consider what would happen with operations
1416 other than array subscripting, where the caller would get back a
1417 value that had an address somewhere before the actual first element
1418 of the array, and the information about the lower bound would be
1419 lost because of the coercion to pointer type. */
1420
1421struct value *
1422value_coerce_array (struct value *arg1)
1423{
1424 struct type *type = check_typedef (value_type (arg1));
1425
1426 /* If the user tries to do something requiring a pointer with an
1427 array that has not yet been pushed to the target, then this would
1428 be a good time to do so. */
1429 arg1 = value_coerce_to_target (arg1);
1430
1431 if (VALUE_LVAL (arg1) != lval_memory)
1432 error (_("Attempt to take address of value not located in memory."));
1433
1434 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1435 value_address (arg1));
1436}
1437
1438/* Given a value which is a function, return a value which is a pointer
1439 to it. */
1440
1441struct value *
1442value_coerce_function (struct value *arg1)
1443{
1444 struct value *retval;
1445
1446 if (VALUE_LVAL (arg1) != lval_memory)
1447 error (_("Attempt to take address of value not located in memory."));
1448
1449 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1450 value_address (arg1));
1451 return retval;
1452}
1453
1454/* Return a pointer value for the object for which ARG1 is the
1455 contents. */
1456
1457struct value *
1458value_addr (struct value *arg1)
1459{
1460 struct value *arg2;
1461 struct type *type = check_typedef (value_type (arg1));
1462
1463 if (TYPE_CODE (type) == TYPE_CODE_REF)
1464 {
1465 /* Copy the value, but change the type from (T&) to (T*). We
1466 keep the same location information, which is efficient, and
1467 allows &(&X) to get the location containing the reference. */
1468 arg2 = value_copy (arg1);
1469 deprecated_set_value_type (arg2,
1470 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1471 return arg2;
1472 }
1473 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1474 return value_coerce_function (arg1);
1475
1476 /* If this is an array that has not yet been pushed to the target,
1477 then this would be a good time to force it to memory. */
1478 arg1 = value_coerce_to_target (arg1);
1479
1480 if (VALUE_LVAL (arg1) != lval_memory)
1481 error (_("Attempt to take address of value not located in memory."));
1482
1483 /* Get target memory address. */
1484 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1485 (value_address (arg1)
1486 + value_embedded_offset (arg1)));
1487
1488 /* This may be a pointer to a base subobject; so remember the
1489 full derived object's type ... */
1490 set_value_enclosing_type (arg2,
1491 lookup_pointer_type (value_enclosing_type (arg1)));
1492 /* ... and also the relative position of the subobject in the full
1493 object. */
1494 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1495 return arg2;
1496}
1497
1498/* Return a reference value for the object for which ARG1 is the
1499 contents. */
1500
1501struct value *
1502value_ref (struct value *arg1)
1503{
1504 struct value *arg2;
1505 struct type *type = check_typedef (value_type (arg1));
1506
1507 if (TYPE_CODE (type) == TYPE_CODE_REF)
1508 return arg1;
1509
1510 arg2 = value_addr (arg1);
1511 deprecated_set_value_type (arg2, lookup_reference_type (type));
1512 return arg2;
1513}
1514
1515/* Given a value of a pointer type, apply the C unary * operator to
1516 it. */
1517
1518struct value *
1519value_ind (struct value *arg1)
1520{
1521 struct type *base_type;
1522 struct value *arg2;
1523
1524 arg1 = coerce_array (arg1);
1525
1526 base_type = check_typedef (value_type (arg1));
1527
1528 if (VALUE_LVAL (arg1) == lval_computed)
1529 {
1530 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1531
1532 if (funcs->indirect)
1533 {
1534 struct value *result = funcs->indirect (arg1);
1535
1536 if (result)
1537 return result;
1538 }
1539 }
1540
1541 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *enc_type;
1544
1545 /* We may be pointing to something embedded in a larger object.
1546 Get the real type of the enclosing object. */
1547 enc_type = check_typedef (value_enclosing_type (arg1));
1548 enc_type = TYPE_TARGET_TYPE (enc_type);
1549
1550 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1551 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1552 /* For functions, go through find_function_addr, which knows
1553 how to handle function descriptors. */
1554 arg2 = value_at_lazy (enc_type,
1555 find_function_addr (arg1, NULL));
1556 else
1557 /* Retrieve the enclosing object pointed to. */
1558 arg2 = value_at_lazy (enc_type,
1559 (value_as_address (arg1)
1560 - value_pointed_to_offset (arg1)));
1561
1562 enc_type = value_type (arg2);
1563 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1564 }
1565
1566 error (_("Attempt to take contents of a non-pointer value."));
1567 return 0; /* For lint -- never reached. */
1568}
1569\f
1570/* Create a value for an array by allocating space in GDB, copying the
1571 data into that space, and then setting up an array value.
1572
1573 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1574 is populated from the values passed in ELEMVEC.
1575
1576 The element type of the array is inherited from the type of the
1577 first element, and all elements must have the same size (though we
1578 don't currently enforce any restriction on their types). */
1579
1580struct value *
1581value_array (int lowbound, int highbound, struct value **elemvec)
1582{
1583 int nelem;
1584 int idx;
1585 unsigned int typelength;
1586 struct value *val;
1587 struct type *arraytype;
1588
1589 /* Validate that the bounds are reasonable and that each of the
1590 elements have the same size. */
1591
1592 nelem = highbound - lowbound + 1;
1593 if (nelem <= 0)
1594 {
1595 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1596 }
1597 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1598 for (idx = 1; idx < nelem; idx++)
1599 {
1600 if (type_length_units (value_enclosing_type (elemvec[idx]))
1601 != typelength)
1602 {
1603 error (_("array elements must all be the same size"));
1604 }
1605 }
1606
1607 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1608 lowbound, highbound);
1609
1610 if (!current_language->c_style_arrays)
1611 {
1612 val = allocate_value (arraytype);
1613 for (idx = 0; idx < nelem; idx++)
1614 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1615 typelength);
1616 return val;
1617 }
1618
1619 /* Allocate space to store the array, and then initialize it by
1620 copying in each element. */
1621
1622 val = allocate_value (arraytype);
1623 for (idx = 0; idx < nelem; idx++)
1624 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1625 return val;
1626}
1627
1628struct value *
1629value_cstring (char *ptr, ssize_t len, struct type *char_type)
1630{
1631 struct value *val;
1632 int lowbound = current_language->string_lower_bound;
1633 ssize_t highbound = len / TYPE_LENGTH (char_type);
1634 struct type *stringtype
1635 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1636
1637 val = allocate_value (stringtype);
1638 memcpy (value_contents_raw (val), ptr, len);
1639 return val;
1640}
1641
1642/* Create a value for a string constant by allocating space in the
1643 inferior, copying the data into that space, and returning the
1644 address with type TYPE_CODE_STRING. PTR points to the string
1645 constant data; LEN is number of characters.
1646
1647 Note that string types are like array of char types with a lower
1648 bound of zero and an upper bound of LEN - 1. Also note that the
1649 string may contain embedded null bytes. */
1650
1651struct value *
1652value_string (char *ptr, ssize_t len, struct type *char_type)
1653{
1654 struct value *val;
1655 int lowbound = current_language->string_lower_bound;
1656 ssize_t highbound = len / TYPE_LENGTH (char_type);
1657 struct type *stringtype
1658 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1659
1660 val = allocate_value (stringtype);
1661 memcpy (value_contents_raw (val), ptr, len);
1662 return val;
1663}
1664
1665\f
1666/* See if we can pass arguments in T2 to a function which takes
1667 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1668 a NULL-terminated vector. If some arguments need coercion of some
1669 sort, then the coerced values are written into T2. Return value is
1670 0 if the arguments could be matched, or the position at which they
1671 differ if not.
1672
1673 STATICP is nonzero if the T1 argument list came from a static
1674 member function. T2 will still include the ``this'' pointer, but
1675 it will be skipped.
1676
1677 For non-static member functions, we ignore the first argument,
1678 which is the type of the instance variable. This is because we
1679 want to handle calls with objects from derived classes. This is
1680 not entirely correct: we should actually check to make sure that a
1681 requested operation is type secure, shouldn't we? FIXME. */
1682
1683static int
1684typecmp (int staticp, int varargs, int nargs,
1685 struct field t1[], struct value *t2[])
1686{
1687 int i;
1688
1689 if (t2 == 0)
1690 internal_error (__FILE__, __LINE__,
1691 _("typecmp: no argument list"));
1692
1693 /* Skip ``this'' argument if applicable. T2 will always include
1694 THIS. */
1695 if (staticp)
1696 t2 ++;
1697
1698 for (i = 0;
1699 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1700 i++)
1701 {
1702 struct type *tt1, *tt2;
1703
1704 if (!t2[i])
1705 return i + 1;
1706
1707 tt1 = check_typedef (t1[i].type);
1708 tt2 = check_typedef (value_type (t2[i]));
1709
1710 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1711 /* We should be doing hairy argument matching, as below. */
1712 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1713 == TYPE_CODE (tt2)))
1714 {
1715 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1716 t2[i] = value_coerce_array (t2[i]);
1717 else
1718 t2[i] = value_ref (t2[i]);
1719 continue;
1720 }
1721
1722 /* djb - 20000715 - Until the new type structure is in the
1723 place, and we can attempt things like implicit conversions,
1724 we need to do this so you can take something like a map<const
1725 char *>, and properly access map["hello"], because the
1726 argument to [] will be a reference to a pointer to a char,
1727 and the argument will be a pointer to a char. */
1728 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1729 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1730 {
1731 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1732 }
1733 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1734 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1735 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1736 {
1737 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1738 }
1739 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1740 continue;
1741 /* Array to pointer is a `trivial conversion' according to the
1742 ARM. */
1743
1744 /* We should be doing much hairier argument matching (see
1745 section 13.2 of the ARM), but as a quick kludge, just check
1746 for the same type code. */
1747 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1748 return i + 1;
1749 }
1750 if (varargs || t2[i] == NULL)
1751 return 0;
1752 return i + 1;
1753}
1754
1755/* Helper class for do_search_struct_field that updates *RESULT_PTR
1756 and *LAST_BOFFSET, and possibly throws an exception if the field
1757 search has yielded ambiguous results. */
1758
1759static void
1760update_search_result (struct value **result_ptr, struct value *v,
1761 int *last_boffset, int boffset,
1762 const char *name, struct type *type)
1763{
1764 if (v != NULL)
1765 {
1766 if (*result_ptr != NULL
1767 /* The result is not ambiguous if all the classes that are
1768 found occupy the same space. */
1769 && *last_boffset != boffset)
1770 error (_("base class '%s' is ambiguous in type '%s'"),
1771 name, TYPE_SAFE_NAME (type));
1772 *result_ptr = v;
1773 *last_boffset = boffset;
1774 }
1775}
1776
1777/* A helper for search_struct_field. This does all the work; most
1778 arguments are as passed to search_struct_field. The result is
1779 stored in *RESULT_PTR, which must be initialized to NULL.
1780 OUTERMOST_TYPE is the type of the initial type passed to
1781 search_struct_field; this is used for error reporting when the
1782 lookup is ambiguous. */
1783
1784static void
1785do_search_struct_field (const char *name, struct value *arg1, int offset,
1786 struct type *type, int looking_for_baseclass,
1787 struct value **result_ptr,
1788 int *last_boffset,
1789 struct type *outermost_type)
1790{
1791 int i;
1792 int nbases;
1793
1794 type = check_typedef (type);
1795 nbases = TYPE_N_BASECLASSES (type);
1796
1797 if (!looking_for_baseclass)
1798 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1799 {
1800 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1801
1802 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1803 {
1804 struct value *v;
1805
1806 if (field_is_static (&TYPE_FIELD (type, i)))
1807 v = value_static_field (type, i);
1808 else
1809 v = value_primitive_field (arg1, offset, i, type);
1810 *result_ptr = v;
1811 return;
1812 }
1813
1814 if (t_field_name
1815 && t_field_name[0] == '\0')
1816 {
1817 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1818
1819 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1820 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1821 {
1822 /* Look for a match through the fields of an anonymous
1823 union, or anonymous struct. C++ provides anonymous
1824 unions.
1825
1826 In the GNU Chill (now deleted from GDB)
1827 implementation of variant record types, each
1828 <alternative field> has an (anonymous) union type,
1829 each member of the union represents a <variant
1830 alternative>. Each <variant alternative> is
1831 represented as a struct, with a member for each
1832 <variant field>. */
1833
1834 struct value *v = NULL;
1835 int new_offset = offset;
1836
1837 /* This is pretty gross. In G++, the offset in an
1838 anonymous union is relative to the beginning of the
1839 enclosing struct. In the GNU Chill (now deleted
1840 from GDB) implementation of variant records, the
1841 bitpos is zero in an anonymous union field, so we
1842 have to add the offset of the union here. */
1843 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1844 || (TYPE_NFIELDS (field_type) > 0
1845 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1846 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1847
1848 do_search_struct_field (name, arg1, new_offset,
1849 field_type,
1850 looking_for_baseclass, &v,
1851 last_boffset,
1852 outermost_type);
1853 if (v)
1854 {
1855 *result_ptr = v;
1856 return;
1857 }
1858 }
1859 }
1860 }
1861
1862 for (i = 0; i < nbases; i++)
1863 {
1864 struct value *v = NULL;
1865 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1866 /* If we are looking for baseclasses, this is what we get when
1867 we hit them. But it could happen that the base part's member
1868 name is not yet filled in. */
1869 int found_baseclass = (looking_for_baseclass
1870 && TYPE_BASECLASS_NAME (type, i) != NULL
1871 && (strcmp_iw (name,
1872 TYPE_BASECLASS_NAME (type,
1873 i)) == 0));
1874 int boffset = value_embedded_offset (arg1) + offset;
1875
1876 if (BASETYPE_VIA_VIRTUAL (type, i))
1877 {
1878 struct value *v2;
1879
1880 boffset = baseclass_offset (type, i,
1881 value_contents_for_printing (arg1),
1882 value_embedded_offset (arg1) + offset,
1883 value_address (arg1),
1884 arg1);
1885
1886 /* The virtual base class pointer might have been clobbered
1887 by the user program. Make sure that it still points to a
1888 valid memory location. */
1889
1890 boffset += value_embedded_offset (arg1) + offset;
1891 if (boffset < 0
1892 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1893 {
1894 CORE_ADDR base_addr;
1895
1896 base_addr = value_address (arg1) + boffset;
1897 v2 = value_at_lazy (basetype, base_addr);
1898 if (target_read_memory (base_addr,
1899 value_contents_raw (v2),
1900 TYPE_LENGTH (value_type (v2))) != 0)
1901 error (_("virtual baseclass botch"));
1902 }
1903 else
1904 {
1905 v2 = value_copy (arg1);
1906 deprecated_set_value_type (v2, basetype);
1907 set_value_embedded_offset (v2, boffset);
1908 }
1909
1910 if (found_baseclass)
1911 v = v2;
1912 else
1913 {
1914 do_search_struct_field (name, v2, 0,
1915 TYPE_BASECLASS (type, i),
1916 looking_for_baseclass,
1917 result_ptr, last_boffset,
1918 outermost_type);
1919 }
1920 }
1921 else if (found_baseclass)
1922 v = value_primitive_field (arg1, offset, i, type);
1923 else
1924 {
1925 do_search_struct_field (name, arg1,
1926 offset + TYPE_BASECLASS_BITPOS (type,
1927 i) / 8,
1928 basetype, looking_for_baseclass,
1929 result_ptr, last_boffset,
1930 outermost_type);
1931 }
1932
1933 update_search_result (result_ptr, v, last_boffset,
1934 boffset, name, outermost_type);
1935 }
1936}
1937
1938/* Helper function used by value_struct_elt to recurse through
1939 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1940 it has (class) type TYPE. If found, return value, else return NULL.
1941
1942 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1943 fields, look for a baseclass named NAME. */
1944
1945static struct value *
1946search_struct_field (const char *name, struct value *arg1,
1947 struct type *type, int looking_for_baseclass)
1948{
1949 struct value *result = NULL;
1950 int boffset = 0;
1951
1952 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1953 &result, &boffset, type);
1954 return result;
1955}
1956
1957/* Helper function used by value_struct_elt to recurse through
1958 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1959 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1960 TYPE.
1961
1962 If found, return value, else if name matched and args not return
1963 (value) -1, else return NULL. */
1964
1965static struct value *
1966search_struct_method (const char *name, struct value **arg1p,
1967 struct value **args, int offset,
1968 int *static_memfuncp, struct type *type)
1969{
1970 int i;
1971 struct value *v;
1972 int name_matched = 0;
1973 char dem_opname[64];
1974
1975 type = check_typedef (type);
1976 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1977 {
1978 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1979
1980 /* FIXME! May need to check for ARM demangling here. */
1981 if (startswith (t_field_name, "__") ||
1982 startswith (t_field_name, "op") ||
1983 startswith (t_field_name, "type"))
1984 {
1985 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1986 t_field_name = dem_opname;
1987 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1988 t_field_name = dem_opname;
1989 }
1990 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1991 {
1992 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1993 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1994
1995 name_matched = 1;
1996 check_stub_method_group (type, i);
1997 if (j > 0 && args == 0)
1998 error (_("cannot resolve overloaded method "
1999 "`%s': no arguments supplied"), name);
2000 else if (j == 0 && args == 0)
2001 {
2002 v = value_fn_field (arg1p, f, j, type, offset);
2003 if (v != NULL)
2004 return v;
2005 }
2006 else
2007 while (j >= 0)
2008 {
2009 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2010 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2011 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2012 TYPE_FN_FIELD_ARGS (f, j), args))
2013 {
2014 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2015 return value_virtual_fn_field (arg1p, f, j,
2016 type, offset);
2017 if (TYPE_FN_FIELD_STATIC_P (f, j)
2018 && static_memfuncp)
2019 *static_memfuncp = 1;
2020 v = value_fn_field (arg1p, f, j, type, offset);
2021 if (v != NULL)
2022 return v;
2023 }
2024 j--;
2025 }
2026 }
2027 }
2028
2029 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2030 {
2031 int base_offset;
2032 int this_offset;
2033
2034 if (BASETYPE_VIA_VIRTUAL (type, i))
2035 {
2036 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2037 struct value *base_val;
2038 const gdb_byte *base_valaddr;
2039
2040 /* The virtual base class pointer might have been
2041 clobbered by the user program. Make sure that it
2042 still points to a valid memory location. */
2043
2044 if (offset < 0 || offset >= TYPE_LENGTH (type))
2045 {
2046 gdb_byte *tmp;
2047 struct cleanup *back_to;
2048 CORE_ADDR address;
2049
2050 tmp = xmalloc (TYPE_LENGTH (baseclass));
2051 back_to = make_cleanup (xfree, tmp);
2052 address = value_address (*arg1p);
2053
2054 if (target_read_memory (address + offset,
2055 tmp, TYPE_LENGTH (baseclass)) != 0)
2056 error (_("virtual baseclass botch"));
2057
2058 base_val = value_from_contents_and_address (baseclass,
2059 tmp,
2060 address + offset);
2061 base_valaddr = value_contents_for_printing (base_val);
2062 this_offset = 0;
2063 do_cleanups (back_to);
2064 }
2065 else
2066 {
2067 base_val = *arg1p;
2068 base_valaddr = value_contents_for_printing (*arg1p);
2069 this_offset = offset;
2070 }
2071
2072 base_offset = baseclass_offset (type, i, base_valaddr,
2073 this_offset, value_address (base_val),
2074 base_val);
2075 }
2076 else
2077 {
2078 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2079 }
2080 v = search_struct_method (name, arg1p, args, base_offset + offset,
2081 static_memfuncp, TYPE_BASECLASS (type, i));
2082 if (v == (struct value *) - 1)
2083 {
2084 name_matched = 1;
2085 }
2086 else if (v)
2087 {
2088 /* FIXME-bothner: Why is this commented out? Why is it here? */
2089 /* *arg1p = arg1_tmp; */
2090 return v;
2091 }
2092 }
2093 if (name_matched)
2094 return (struct value *) - 1;
2095 else
2096 return NULL;
2097}
2098
2099/* Given *ARGP, a value of type (pointer to a)* structure/union,
2100 extract the component named NAME from the ultimate target
2101 structure/union and return it as a value with its appropriate type.
2102 ERR is used in the error message if *ARGP's type is wrong.
2103
2104 C++: ARGS is a list of argument types to aid in the selection of
2105 an appropriate method. Also, handle derived types.
2106
2107 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2108 where the truthvalue of whether the function that was resolved was
2109 a static member function or not is stored.
2110
2111 ERR is an error message to be printed in case the field is not
2112 found. */
2113
2114struct value *
2115value_struct_elt (struct value **argp, struct value **args,
2116 const char *name, int *static_memfuncp, const char *err)
2117{
2118 struct type *t;
2119 struct value *v;
2120
2121 *argp = coerce_array (*argp);
2122
2123 t = check_typedef (value_type (*argp));
2124
2125 /* Follow pointers until we get to a non-pointer. */
2126
2127 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2128 {
2129 *argp = value_ind (*argp);
2130 /* Don't coerce fn pointer to fn and then back again! */
2131 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2132 *argp = coerce_array (*argp);
2133 t = check_typedef (value_type (*argp));
2134 }
2135
2136 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2137 && TYPE_CODE (t) != TYPE_CODE_UNION)
2138 error (_("Attempt to extract a component of a value that is not a %s."),
2139 err);
2140
2141 /* Assume it's not, unless we see that it is. */
2142 if (static_memfuncp)
2143 *static_memfuncp = 0;
2144
2145 if (!args)
2146 {
2147 /* if there are no arguments ...do this... */
2148
2149 /* Try as a field first, because if we succeed, there is less
2150 work to be done. */
2151 v = search_struct_field (name, *argp, t, 0);
2152 if (v)
2153 return v;
2154
2155 /* C++: If it was not found as a data field, then try to
2156 return it as a pointer to a method. */
2157 v = search_struct_method (name, argp, args, 0,
2158 static_memfuncp, t);
2159
2160 if (v == (struct value *) - 1)
2161 error (_("Cannot take address of method %s."), name);
2162 else if (v == 0)
2163 {
2164 if (TYPE_NFN_FIELDS (t))
2165 error (_("There is no member or method named %s."), name);
2166 else
2167 error (_("There is no member named %s."), name);
2168 }
2169 return v;
2170 }
2171
2172 v = search_struct_method (name, argp, args, 0,
2173 static_memfuncp, t);
2174
2175 if (v == (struct value *) - 1)
2176 {
2177 error (_("One of the arguments you tried to pass to %s could not "
2178 "be converted to what the function wants."), name);
2179 }
2180 else if (v == 0)
2181 {
2182 /* See if user tried to invoke data as function. If so, hand it
2183 back. If it's not callable (i.e., a pointer to function),
2184 gdb should give an error. */
2185 v = search_struct_field (name, *argp, t, 0);
2186 /* If we found an ordinary field, then it is not a method call.
2187 So, treat it as if it were a static member function. */
2188 if (v && static_memfuncp)
2189 *static_memfuncp = 1;
2190 }
2191
2192 if (!v)
2193 throw_error (NOT_FOUND_ERROR,
2194 _("Structure has no component named %s."), name);
2195 return v;
2196}
2197
2198/* Given *ARGP, a value of type structure or union, or a pointer/reference
2199 to a structure or union, extract and return its component (field) of
2200 type FTYPE at the specified BITPOS.
2201 Throw an exception on error. */
2202
2203struct value *
2204value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2205 const char *err)
2206{
2207 struct type *t;
2208 struct value *v;
2209 int i;
2210 int nbases;
2211
2212 *argp = coerce_array (*argp);
2213
2214 t = check_typedef (value_type (*argp));
2215
2216 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2217 {
2218 *argp = value_ind (*argp);
2219 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2220 *argp = coerce_array (*argp);
2221 t = check_typedef (value_type (*argp));
2222 }
2223
2224 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2225 && TYPE_CODE (t) != TYPE_CODE_UNION)
2226 error (_("Attempt to extract a component of a value that is not a %s."),
2227 err);
2228
2229 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2230 {
2231 if (!field_is_static (&TYPE_FIELD (t, i))
2232 && bitpos == TYPE_FIELD_BITPOS (t, i)
2233 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2234 return value_primitive_field (*argp, 0, i, t);
2235 }
2236
2237 error (_("No field with matching bitpos and type."));
2238
2239 /* Never hit. */
2240 return NULL;
2241}
2242
2243/* Search through the methods of an object (and its bases) to find a
2244 specified method. Return the pointer to the fn_field list FN_LIST of
2245 overloaded instances defined in the source language. If available
2246 and matching, a vector of matching xmethods defined in extension
2247 languages are also returned in XM_WORKER_VEC
2248
2249 Helper function for value_find_oload_list.
2250 ARGP is a pointer to a pointer to a value (the object).
2251 METHOD is a string containing the method name.
2252 OFFSET is the offset within the value.
2253 TYPE is the assumed type of the object.
2254 FN_LIST is the pointer to matching overloaded instances defined in
2255 source language. Since this is a recursive function, *FN_LIST
2256 should be set to NULL when calling this function.
2257 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2258 0 when calling this function.
2259 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2260 should also be set to NULL when calling this function.
2261 BASETYPE is set to the actual type of the subobject where the
2262 method is found.
2263 BOFFSET is the offset of the base subobject where the method is found. */
2264
2265static void
2266find_method_list (struct value **argp, const char *method,
2267 int offset, struct type *type,
2268 struct fn_field **fn_list, int *num_fns,
2269 VEC (xmethod_worker_ptr) **xm_worker_vec,
2270 struct type **basetype, int *boffset)
2271{
2272 int i;
2273 struct fn_field *f = NULL;
2274 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2275
2276 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2277 type = check_typedef (type);
2278
2279 /* First check in object itself.
2280 This function is called recursively to search through base classes.
2281 If there is a source method match found at some stage, then we need not
2282 look for source methods in consequent recursive calls. */
2283 if ((*fn_list) == NULL)
2284 {
2285 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2286 {
2287 /* pai: FIXME What about operators and type conversions? */
2288 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2289
2290 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2291 {
2292 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2293 f = TYPE_FN_FIELDLIST1 (type, i);
2294 *fn_list = f;
2295
2296 *num_fns = len;
2297 *basetype = type;
2298 *boffset = offset;
2299
2300 /* Resolve any stub methods. */
2301 check_stub_method_group (type, i);
2302
2303 break;
2304 }
2305 }
2306 }
2307
2308 /* Unlike source methods, xmethods can be accumulated over successive
2309 recursive calls. In other words, an xmethod named 'm' in a class
2310 will not hide an xmethod named 'm' in its base class(es). We want
2311 it to be this way because xmethods are after all convenience functions
2312 and hence there is no point restricting them with something like method
2313 hiding. Moreover, if hiding is done for xmethods as well, then we will
2314 have to provide a mechanism to un-hide (like the 'using' construct). */
2315 worker_vec = get_matching_xmethod_workers (type, method);
2316 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2317
2318 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2319 VEC_free (xmethod_worker_ptr, worker_vec);
2320 *xm_worker_vec = new_vec;
2321
2322 /* If source methods are not found in current class, look for them in the
2323 base classes. We also have to go through the base classes to gather
2324 extension methods. */
2325 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2326 {
2327 int base_offset;
2328
2329 if (BASETYPE_VIA_VIRTUAL (type, i))
2330 {
2331 base_offset = baseclass_offset (type, i,
2332 value_contents_for_printing (*argp),
2333 value_offset (*argp) + offset,
2334 value_address (*argp), *argp);
2335 }
2336 else /* Non-virtual base, simply use bit position from debug
2337 info. */
2338 {
2339 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2340 }
2341
2342 find_method_list (argp, method, base_offset + offset,
2343 TYPE_BASECLASS (type, i), fn_list, num_fns,
2344 xm_worker_vec, basetype, boffset);
2345 }
2346}
2347
2348/* Return the list of overloaded methods of a specified name. The methods
2349 could be those GDB finds in the binary, or xmethod. Methods found in
2350 the binary are returned in FN_LIST, and xmethods are returned in
2351 XM_WORKER_VEC.
2352
2353 ARGP is a pointer to a pointer to a value (the object).
2354 METHOD is the method name.
2355 OFFSET is the offset within the value contents.
2356 FN_LIST is the pointer to matching overloaded instances defined in
2357 source language.
2358 NUM_FNS is the number of overloaded instances.
2359 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2360 extension languages.
2361 BASETYPE is set to the type of the base subobject that defines the
2362 method.
2363 BOFFSET is the offset of the base subobject which defines the method. */
2364
2365static void
2366value_find_oload_method_list (struct value **argp, const char *method,
2367 int offset, struct fn_field **fn_list,
2368 int *num_fns,
2369 VEC (xmethod_worker_ptr) **xm_worker_vec,
2370 struct type **basetype, int *boffset)
2371{
2372 struct type *t;
2373
2374 t = check_typedef (value_type (*argp));
2375
2376 /* Code snarfed from value_struct_elt. */
2377 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2378 {
2379 *argp = value_ind (*argp);
2380 /* Don't coerce fn pointer to fn and then back again! */
2381 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2382 *argp = coerce_array (*argp);
2383 t = check_typedef (value_type (*argp));
2384 }
2385
2386 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2387 && TYPE_CODE (t) != TYPE_CODE_UNION)
2388 error (_("Attempt to extract a component of a "
2389 "value that is not a struct or union"));
2390
2391 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2392
2393 /* Clear the lists. */
2394 *fn_list = NULL;
2395 *num_fns = 0;
2396 *xm_worker_vec = NULL;
2397
2398 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2399 basetype, boffset);
2400}
2401
2402/* Given an array of arguments (ARGS) (which includes an
2403 entry for "this" in the case of C++ methods), the number of
2404 arguments NARGS, the NAME of a function, and whether it's a method or
2405 not (METHOD), find the best function that matches on the argument types
2406 according to the overload resolution rules.
2407
2408 METHOD can be one of three values:
2409 NON_METHOD for non-member functions.
2410 METHOD: for member functions.
2411 BOTH: used for overload resolution of operators where the
2412 candidates are expected to be either member or non member
2413 functions. In this case the first argument ARGTYPES
2414 (representing 'this') is expected to be a reference to the
2415 target object, and will be dereferenced when attempting the
2416 non-member search.
2417
2418 In the case of class methods, the parameter OBJ is an object value
2419 in which to search for overloaded methods.
2420
2421 In the case of non-method functions, the parameter FSYM is a symbol
2422 corresponding to one of the overloaded functions.
2423
2424 Return value is an integer: 0 -> good match, 10 -> debugger applied
2425 non-standard coercions, 100 -> incompatible.
2426
2427 If a method is being searched for, VALP will hold the value.
2428 If a non-method is being searched for, SYMP will hold the symbol
2429 for it.
2430
2431 If a method is being searched for, and it is a static method,
2432 then STATICP will point to a non-zero value.
2433
2434 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2435 ADL overload candidates when performing overload resolution for a fully
2436 qualified name.
2437
2438 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2439 read while picking the best overload match (it may be all zeroes and thus
2440 not have a vtable pointer), in which case skip virtual function lookup.
2441 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2442 the result type.
2443
2444 Note: This function does *not* check the value of
2445 overload_resolution. Caller must check it to see whether overload
2446 resolution is permitted. */
2447
2448int
2449find_overload_match (struct value **args, int nargs,
2450 const char *name, enum oload_search_type method,
2451 struct value **objp, struct symbol *fsym,
2452 struct value **valp, struct symbol **symp,
2453 int *staticp, const int no_adl,
2454 const enum noside noside)
2455{
2456 struct value *obj = (objp ? *objp : NULL);
2457 struct type *obj_type = obj ? value_type (obj) : NULL;
2458 /* Index of best overloaded function. */
2459 int func_oload_champ = -1;
2460 int method_oload_champ = -1;
2461 int src_method_oload_champ = -1;
2462 int ext_method_oload_champ = -1;
2463 int src_and_ext_equal = 0;
2464
2465 /* The measure for the current best match. */
2466 struct badness_vector *method_badness = NULL;
2467 struct badness_vector *func_badness = NULL;
2468 struct badness_vector *ext_method_badness = NULL;
2469 struct badness_vector *src_method_badness = NULL;
2470
2471 struct value *temp = obj;
2472 /* For methods, the list of overloaded methods. */
2473 struct fn_field *fns_ptr = NULL;
2474 /* For non-methods, the list of overloaded function symbols. */
2475 struct symbol **oload_syms = NULL;
2476 /* For xmethods, the VEC of xmethod workers. */
2477 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2478 /* Number of overloaded instances being considered. */
2479 int num_fns = 0;
2480 struct type *basetype = NULL;
2481 int boffset;
2482
2483 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2484
2485 const char *obj_type_name = NULL;
2486 const char *func_name = NULL;
2487 enum oload_classification match_quality;
2488 enum oload_classification method_match_quality = INCOMPATIBLE;
2489 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2490 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2491 enum oload_classification func_match_quality = INCOMPATIBLE;
2492
2493 /* Get the list of overloaded methods or functions. */
2494 if (method == METHOD || method == BOTH)
2495 {
2496 gdb_assert (obj);
2497
2498 /* OBJ may be a pointer value rather than the object itself. */
2499 obj = coerce_ref (obj);
2500 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2501 obj = coerce_ref (value_ind (obj));
2502 obj_type_name = TYPE_NAME (value_type (obj));
2503
2504 /* First check whether this is a data member, e.g. a pointer to
2505 a function. */
2506 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2507 {
2508 *valp = search_struct_field (name, obj,
2509 check_typedef (value_type (obj)), 0);
2510 if (*valp)
2511 {
2512 *staticp = 1;
2513 do_cleanups (all_cleanups);
2514 return 0;
2515 }
2516 }
2517
2518 /* Retrieve the list of methods with the name NAME. */
2519 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2520 &xm_worker_vec, &basetype, &boffset);
2521 /* If this is a method only search, and no methods were found
2522 the search has faild. */
2523 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2524 error (_("Couldn't find method %s%s%s"),
2525 obj_type_name,
2526 (obj_type_name && *obj_type_name) ? "::" : "",
2527 name);
2528 /* If we are dealing with stub method types, they should have
2529 been resolved by find_method_list via
2530 value_find_oload_method_list above. */
2531 if (fns_ptr)
2532 {
2533 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2534
2535 src_method_oload_champ = find_oload_champ (args, nargs,
2536 num_fns, fns_ptr, NULL,
2537 NULL, &src_method_badness);
2538
2539 src_method_match_quality = classify_oload_match
2540 (src_method_badness, nargs,
2541 oload_method_static_p (fns_ptr, src_method_oload_champ));
2542
2543 make_cleanup (xfree, src_method_badness);
2544 }
2545
2546 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2547 {
2548 ext_method_oload_champ = find_oload_champ (args, nargs,
2549 0, NULL, xm_worker_vec,
2550 NULL, &ext_method_badness);
2551 ext_method_match_quality = classify_oload_match (ext_method_badness,
2552 nargs, 0);
2553 make_cleanup (xfree, ext_method_badness);
2554 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2555 }
2556
2557 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2558 {
2559 switch (compare_badness (ext_method_badness, src_method_badness))
2560 {
2561 case 0: /* Src method and xmethod are equally good. */
2562 src_and_ext_equal = 1;
2563 /* If src method and xmethod are equally good, then
2564 xmethod should be the winner. Hence, fall through to the
2565 case where a xmethod is better than the source
2566 method, except when the xmethod match quality is
2567 non-standard. */
2568 /* FALLTHROUGH */
2569 case 1: /* Src method and ext method are incompatible. */
2570 /* If ext method match is not standard, then let source method
2571 win. Otherwise, fallthrough to let xmethod win. */
2572 if (ext_method_match_quality != STANDARD)
2573 {
2574 method_oload_champ = src_method_oload_champ;
2575 method_badness = src_method_badness;
2576 ext_method_oload_champ = -1;
2577 method_match_quality = src_method_match_quality;
2578 break;
2579 }
2580 /* FALLTHROUGH */
2581 case 2: /* Ext method is champion. */
2582 method_oload_champ = ext_method_oload_champ;
2583 method_badness = ext_method_badness;
2584 src_method_oload_champ = -1;
2585 method_match_quality = ext_method_match_quality;
2586 break;
2587 case 3: /* Src method is champion. */
2588 method_oload_champ = src_method_oload_champ;
2589 method_badness = src_method_badness;
2590 ext_method_oload_champ = -1;
2591 method_match_quality = src_method_match_quality;
2592 break;
2593 default:
2594 gdb_assert_not_reached ("Unexpected overload comparison "
2595 "result");
2596 break;
2597 }
2598 }
2599 else if (src_method_oload_champ >= 0)
2600 {
2601 method_oload_champ = src_method_oload_champ;
2602 method_badness = src_method_badness;
2603 method_match_quality = src_method_match_quality;
2604 }
2605 else if (ext_method_oload_champ >= 0)
2606 {
2607 method_oload_champ = ext_method_oload_champ;
2608 method_badness = ext_method_badness;
2609 method_match_quality = ext_method_match_quality;
2610 }
2611 }
2612
2613 if (method == NON_METHOD || method == BOTH)
2614 {
2615 const char *qualified_name = NULL;
2616
2617 /* If the overload match is being search for both as a method
2618 and non member function, the first argument must now be
2619 dereferenced. */
2620 if (method == BOTH)
2621 args[0] = value_ind (args[0]);
2622
2623 if (fsym)
2624 {
2625 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2626
2627 /* If we have a function with a C++ name, try to extract just
2628 the function part. Do not try this for non-functions (e.g.
2629 function pointers). */
2630 if (qualified_name
2631 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2632 == TYPE_CODE_FUNC)
2633 {
2634 char *temp;
2635
2636 temp = cp_func_name (qualified_name);
2637
2638 /* If cp_func_name did not remove anything, the name of the
2639 symbol did not include scope or argument types - it was
2640 probably a C-style function. */
2641 if (temp)
2642 {
2643 make_cleanup (xfree, temp);
2644 if (strcmp (temp, qualified_name) == 0)
2645 func_name = NULL;
2646 else
2647 func_name = temp;
2648 }
2649 }
2650 }
2651 else
2652 {
2653 func_name = name;
2654 qualified_name = name;
2655 }
2656
2657 /* If there was no C++ name, this must be a C-style function or
2658 not a function at all. Just return the same symbol. Do the
2659 same if cp_func_name fails for some reason. */
2660 if (func_name == NULL)
2661 {
2662 *symp = fsym;
2663 do_cleanups (all_cleanups);
2664 return 0;
2665 }
2666
2667 func_oload_champ = find_oload_champ_namespace (args, nargs,
2668 func_name,
2669 qualified_name,
2670 &oload_syms,
2671 &func_badness,
2672 no_adl);
2673
2674 if (func_oload_champ >= 0)
2675 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2676
2677 make_cleanup (xfree, oload_syms);
2678 make_cleanup (xfree, func_badness);
2679 }
2680
2681 /* Did we find a match ? */
2682 if (method_oload_champ == -1 && func_oload_champ == -1)
2683 throw_error (NOT_FOUND_ERROR,
2684 _("No symbol \"%s\" in current context."),
2685 name);
2686
2687 /* If we have found both a method match and a function
2688 match, find out which one is better, and calculate match
2689 quality. */
2690 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2691 {
2692 switch (compare_badness (func_badness, method_badness))
2693 {
2694 case 0: /* Top two contenders are equally good. */
2695 /* FIXME: GDB does not support the general ambiguous case.
2696 All candidates should be collected and presented the
2697 user. */
2698 error (_("Ambiguous overload resolution"));
2699 break;
2700 case 1: /* Incomparable top contenders. */
2701 /* This is an error incompatible candidates
2702 should not have been proposed. */
2703 error (_("Internal error: incompatible "
2704 "overload candidates proposed"));
2705 break;
2706 case 2: /* Function champion. */
2707 method_oload_champ = -1;
2708 match_quality = func_match_quality;
2709 break;
2710 case 3: /* Method champion. */
2711 func_oload_champ = -1;
2712 match_quality = method_match_quality;
2713 break;
2714 default:
2715 error (_("Internal error: unexpected overload comparison result"));
2716 break;
2717 }
2718 }
2719 else
2720 {
2721 /* We have either a method match or a function match. */
2722 if (method_oload_champ >= 0)
2723 match_quality = method_match_quality;
2724 else
2725 match_quality = func_match_quality;
2726 }
2727
2728 if (match_quality == INCOMPATIBLE)
2729 {
2730 if (method == METHOD)
2731 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2732 obj_type_name,
2733 (obj_type_name && *obj_type_name) ? "::" : "",
2734 name);
2735 else
2736 error (_("Cannot resolve function %s to any overloaded instance"),
2737 func_name);
2738 }
2739 else if (match_quality == NON_STANDARD)
2740 {
2741 if (method == METHOD)
2742 warning (_("Using non-standard conversion to match "
2743 "method %s%s%s to supplied arguments"),
2744 obj_type_name,
2745 (obj_type_name && *obj_type_name) ? "::" : "",
2746 name);
2747 else
2748 warning (_("Using non-standard conversion to match "
2749 "function %s to supplied arguments"),
2750 func_name);
2751 }
2752
2753 if (staticp != NULL)
2754 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2755
2756 if (method_oload_champ >= 0)
2757 {
2758 if (src_method_oload_champ >= 0)
2759 {
2760 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2761 && noside != EVAL_AVOID_SIDE_EFFECTS)
2762 {
2763 *valp = value_virtual_fn_field (&temp, fns_ptr,
2764 method_oload_champ, basetype,
2765 boffset);
2766 }
2767 else
2768 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2769 basetype, boffset);
2770 }
2771 else
2772 {
2773 *valp = value_of_xmethod (clone_xmethod_worker
2774 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2775 ext_method_oload_champ)));
2776 }
2777 }
2778 else
2779 *symp = oload_syms[func_oload_champ];
2780
2781 if (objp)
2782 {
2783 struct type *temp_type = check_typedef (value_type (temp));
2784 struct type *objtype = check_typedef (obj_type);
2785
2786 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2787 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2788 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2789 {
2790 temp = value_addr (temp);
2791 }
2792 *objp = temp;
2793 }
2794
2795 do_cleanups (all_cleanups);
2796
2797 switch (match_quality)
2798 {
2799 case INCOMPATIBLE:
2800 return 100;
2801 case NON_STANDARD:
2802 return 10;
2803 default: /* STANDARD */
2804 return 0;
2805 }
2806}
2807
2808/* Find the best overload match, searching for FUNC_NAME in namespaces
2809 contained in QUALIFIED_NAME until it either finds a good match or
2810 runs out of namespaces. It stores the overloaded functions in
2811 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2812 calling function is responsible for freeing *OLOAD_SYMS and
2813 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2814 performned. */
2815
2816static int
2817find_oload_champ_namespace (struct value **args, int nargs,
2818 const char *func_name,
2819 const char *qualified_name,
2820 struct symbol ***oload_syms,
2821 struct badness_vector **oload_champ_bv,
2822 const int no_adl)
2823{
2824 int oload_champ;
2825
2826 find_oload_champ_namespace_loop (args, nargs,
2827 func_name,
2828 qualified_name, 0,
2829 oload_syms, oload_champ_bv,
2830 &oload_champ,
2831 no_adl);
2832
2833 return oload_champ;
2834}
2835
2836/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2837 how deep we've looked for namespaces, and the champ is stored in
2838 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2839 if it isn't. Other arguments are the same as in
2840 find_oload_champ_namespace
2841
2842 It is the caller's responsibility to free *OLOAD_SYMS and
2843 *OLOAD_CHAMP_BV. */
2844
2845static int
2846find_oload_champ_namespace_loop (struct value **args, int nargs,
2847 const char *func_name,
2848 const char *qualified_name,
2849 int namespace_len,
2850 struct symbol ***oload_syms,
2851 struct badness_vector **oload_champ_bv,
2852 int *oload_champ,
2853 const int no_adl)
2854{
2855 int next_namespace_len = namespace_len;
2856 int searched_deeper = 0;
2857 int num_fns = 0;
2858 struct cleanup *old_cleanups;
2859 int new_oload_champ;
2860 struct symbol **new_oload_syms;
2861 struct badness_vector *new_oload_champ_bv;
2862 char *new_namespace;
2863
2864 if (next_namespace_len != 0)
2865 {
2866 gdb_assert (qualified_name[next_namespace_len] == ':');
2867 next_namespace_len += 2;
2868 }
2869 next_namespace_len +=
2870 cp_find_first_component (qualified_name + next_namespace_len);
2871
2872 /* Initialize these to values that can safely be xfree'd. */
2873 *oload_syms = NULL;
2874 *oload_champ_bv = NULL;
2875
2876 /* First, see if we have a deeper namespace we can search in.
2877 If we get a good match there, use it. */
2878
2879 if (qualified_name[next_namespace_len] == ':')
2880 {
2881 searched_deeper = 1;
2882
2883 if (find_oload_champ_namespace_loop (args, nargs,
2884 func_name, qualified_name,
2885 next_namespace_len,
2886 oload_syms, oload_champ_bv,
2887 oload_champ, no_adl))
2888 {
2889 return 1;
2890 }
2891 };
2892
2893 /* If we reach here, either we're in the deepest namespace or we
2894 didn't find a good match in a deeper namespace. But, in the
2895 latter case, we still have a bad match in a deeper namespace;
2896 note that we might not find any match at all in the current
2897 namespace. (There's always a match in the deepest namespace,
2898 because this overload mechanism only gets called if there's a
2899 function symbol to start off with.) */
2900
2901 old_cleanups = make_cleanup (xfree, *oload_syms);
2902 make_cleanup (xfree, *oload_champ_bv);
2903 new_namespace = alloca (namespace_len + 1);
2904 strncpy (new_namespace, qualified_name, namespace_len);
2905 new_namespace[namespace_len] = '\0';
2906 new_oload_syms = make_symbol_overload_list (func_name,
2907 new_namespace);
2908
2909 /* If we have reached the deepest level perform argument
2910 determined lookup. */
2911 if (!searched_deeper && !no_adl)
2912 {
2913 int ix;
2914 struct type **arg_types;
2915
2916 /* Prepare list of argument types for overload resolution. */
2917 arg_types = (struct type **)
2918 alloca (nargs * (sizeof (struct type *)));
2919 for (ix = 0; ix < nargs; ix++)
2920 arg_types[ix] = value_type (args[ix]);
2921 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2922 }
2923
2924 while (new_oload_syms[num_fns])
2925 ++num_fns;
2926
2927 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2928 NULL, NULL, new_oload_syms,
2929 &new_oload_champ_bv);
2930
2931 /* Case 1: We found a good match. Free earlier matches (if any),
2932 and return it. Case 2: We didn't find a good match, but we're
2933 not the deepest function. Then go with the bad match that the
2934 deeper function found. Case 3: We found a bad match, and we're
2935 the deepest function. Then return what we found, even though
2936 it's a bad match. */
2937
2938 if (new_oload_champ != -1
2939 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2940 {
2941 *oload_syms = new_oload_syms;
2942 *oload_champ = new_oload_champ;
2943 *oload_champ_bv = new_oload_champ_bv;
2944 do_cleanups (old_cleanups);
2945 return 1;
2946 }
2947 else if (searched_deeper)
2948 {
2949 xfree (new_oload_syms);
2950 xfree (new_oload_champ_bv);
2951 discard_cleanups (old_cleanups);
2952 return 0;
2953 }
2954 else
2955 {
2956 *oload_syms = new_oload_syms;
2957 *oload_champ = new_oload_champ;
2958 *oload_champ_bv = new_oload_champ_bv;
2959 do_cleanups (old_cleanups);
2960 return 0;
2961 }
2962}
2963
2964/* Look for a function to take NARGS args of ARGS. Find
2965 the best match from among the overloaded methods or functions
2966 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2967 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2968 non-NULL.
2969
2970 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2971 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2972
2973 Return the index of the best match; store an indication of the
2974 quality of the match in OLOAD_CHAMP_BV.
2975
2976 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2977
2978static int
2979find_oload_champ (struct value **args, int nargs,
2980 int num_fns, struct fn_field *fns_ptr,
2981 VEC (xmethod_worker_ptr) *xm_worker_vec,
2982 struct symbol **oload_syms,
2983 struct badness_vector **oload_champ_bv)
2984{
2985 int ix;
2986 int fn_count;
2987 int xm_worker_vec_n = VEC_length (xmethod_worker_ptr, xm_worker_vec);
2988 /* A measure of how good an overloaded instance is. */
2989 struct badness_vector *bv;
2990 /* Index of best overloaded function. */
2991 int oload_champ = -1;
2992 /* Current ambiguity state for overload resolution. */
2993 int oload_ambiguous = 0;
2994 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2995
2996 /* A champion can be found among methods alone, or among functions
2997 alone, or in xmethods alone, but not in more than one of these
2998 groups. */
2999 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3000 == 1);
3001
3002 *oload_champ_bv = NULL;
3003
3004 fn_count = (xm_worker_vec != NULL
3005 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3006 : num_fns);
3007 /* Consider each candidate in turn. */
3008 for (ix = 0; ix < fn_count; ix++)
3009 {
3010 int jj;
3011 int static_offset = 0;
3012 int nparms;
3013 struct type **parm_types;
3014 struct xmethod_worker *worker = NULL;
3015
3016 if (xm_worker_vec != NULL)
3017 {
3018 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3019 parm_types = get_xmethod_arg_types (worker, &nparms);
3020 }
3021 else
3022 {
3023 if (fns_ptr != NULL)
3024 {
3025 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3026 static_offset = oload_method_static_p (fns_ptr, ix);
3027 }
3028 else
3029 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3030
3031 parm_types = (struct type **)
3032 xmalloc (nparms * (sizeof (struct type *)));
3033 for (jj = 0; jj < nparms; jj++)
3034 parm_types[jj] = (fns_ptr != NULL
3035 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3036 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3037 jj));
3038 }
3039
3040 /* Compare parameter types to supplied argument types. Skip
3041 THIS for static methods. */
3042 bv = rank_function (parm_types, nparms,
3043 args + static_offset,
3044 nargs - static_offset);
3045
3046 if (!*oload_champ_bv)
3047 {
3048 *oload_champ_bv = bv;
3049 oload_champ = 0;
3050 }
3051 else /* See whether current candidate is better or worse than
3052 previous best. */
3053 switch (compare_badness (bv, *oload_champ_bv))
3054 {
3055 case 0: /* Top two contenders are equally good. */
3056 oload_ambiguous = 1;
3057 break;
3058 case 1: /* Incomparable top contenders. */
3059 oload_ambiguous = 2;
3060 break;
3061 case 2: /* New champion, record details. */
3062 *oload_champ_bv = bv;
3063 oload_ambiguous = 0;
3064 oload_champ = ix;
3065 break;
3066 case 3:
3067 default:
3068 break;
3069 }
3070 xfree (parm_types);
3071 if (overload_debug)
3072 {
3073 if (fns_ptr != NULL)
3074 fprintf_filtered (gdb_stderr,
3075 "Overloaded method instance %s, # of parms %d\n",
3076 fns_ptr[ix].physname, nparms);
3077 else if (xm_worker_vec != NULL)
3078 fprintf_filtered (gdb_stderr,
3079 "Xmethod worker, # of parms %d\n",
3080 nparms);
3081 else
3082 fprintf_filtered (gdb_stderr,
3083 "Overloaded function instance "
3084 "%s # of parms %d\n",
3085 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3086 nparms);
3087 for (jj = 0; jj < nargs - static_offset; jj++)
3088 fprintf_filtered (gdb_stderr,
3089 "...Badness @ %d : %d\n",
3090 jj, bv->rank[jj].rank);
3091 fprintf_filtered (gdb_stderr, "Overload resolution "
3092 "champion is %d, ambiguous? %d\n",
3093 oload_champ, oload_ambiguous);
3094 }
3095 }
3096
3097 return oload_champ;
3098}
3099
3100/* Return 1 if we're looking at a static method, 0 if we're looking at
3101 a non-static method or a function that isn't a method. */
3102
3103static int
3104oload_method_static_p (struct fn_field *fns_ptr, int index)
3105{
3106 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3107 return 1;
3108 else
3109 return 0;
3110}
3111
3112/* Check how good an overload match OLOAD_CHAMP_BV represents. */
3113
3114static enum oload_classification
3115classify_oload_match (struct badness_vector *oload_champ_bv,
3116 int nargs,
3117 int static_offset)
3118{
3119 int ix;
3120 enum oload_classification worst = STANDARD;
3121
3122 for (ix = 1; ix <= nargs - static_offset; ix++)
3123 {
3124 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3125 or worse return INCOMPATIBLE. */
3126 if (compare_ranks (oload_champ_bv->rank[ix],
3127 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3128 return INCOMPATIBLE; /* Truly mismatched types. */
3129 /* Otherwise If this conversion is as bad as
3130 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3131 else if (compare_ranks (oload_champ_bv->rank[ix],
3132 NS_POINTER_CONVERSION_BADNESS) <= 0)
3133 worst = NON_STANDARD; /* Non-standard type conversions
3134 needed. */
3135 }
3136
3137 /* If no INCOMPATIBLE classification was found, return the worst one
3138 that was found (if any). */
3139 return worst;
3140}
3141
3142/* C++: return 1 is NAME is a legitimate name for the destructor of
3143 type TYPE. If TYPE does not have a destructor, or if NAME is
3144 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3145 have CHECK_TYPEDEF applied, this function will apply it itself. */
3146
3147int
3148destructor_name_p (const char *name, struct type *type)
3149{
3150 if (name[0] == '~')
3151 {
3152 const char *dname = type_name_no_tag_or_error (type);
3153 const char *cp = strchr (dname, '<');
3154 unsigned int len;
3155
3156 /* Do not compare the template part for template classes. */
3157 if (cp == NULL)
3158 len = strlen (dname);
3159 else
3160 len = cp - dname;
3161 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3162 error (_("name of destructor must equal name of class"));
3163 else
3164 return 1;
3165 }
3166 return 0;
3167}
3168
3169/* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3170 class". If the name is found, return a value representing it;
3171 otherwise throw an exception. */
3172
3173static struct value *
3174enum_constant_from_type (struct type *type, const char *name)
3175{
3176 int i;
3177 int name_len = strlen (name);
3178
3179 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3180 && TYPE_DECLARED_CLASS (type));
3181
3182 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3183 {
3184 const char *fname = TYPE_FIELD_NAME (type, i);
3185 int len;
3186
3187 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3188 || fname == NULL)
3189 continue;
3190
3191 /* Look for the trailing "::NAME", since enum class constant
3192 names are qualified here. */
3193 len = strlen (fname);
3194 if (len + 2 >= name_len
3195 && fname[len - name_len - 2] == ':'
3196 && fname[len - name_len - 1] == ':'
3197 && strcmp (&fname[len - name_len], name) == 0)
3198 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3199 }
3200
3201 error (_("no constant named \"%s\" in enum \"%s\""),
3202 name, TYPE_TAG_NAME (type));
3203}
3204
3205/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3206 return the appropriate member (or the address of the member, if
3207 WANT_ADDRESS). This function is used to resolve user expressions
3208 of the form "DOMAIN::NAME". For more details on what happens, see
3209 the comment before value_struct_elt_for_reference. */
3210
3211struct value *
3212value_aggregate_elt (struct type *curtype, const char *name,
3213 struct type *expect_type, int want_address,
3214 enum noside noside)
3215{
3216 switch (TYPE_CODE (curtype))
3217 {
3218 case TYPE_CODE_STRUCT:
3219 case TYPE_CODE_UNION:
3220 return value_struct_elt_for_reference (curtype, 0, curtype,
3221 name, expect_type,
3222 want_address, noside);
3223 case TYPE_CODE_NAMESPACE:
3224 return value_namespace_elt (curtype, name,
3225 want_address, noside);
3226
3227 case TYPE_CODE_ENUM:
3228 return enum_constant_from_type (curtype, name);
3229
3230 default:
3231 internal_error (__FILE__, __LINE__,
3232 _("non-aggregate type in value_aggregate_elt"));
3233 }
3234}
3235
3236/* Compares the two method/function types T1 and T2 for "equality"
3237 with respect to the methods' parameters. If the types of the
3238 two parameter lists are the same, returns 1; 0 otherwise. This
3239 comparison may ignore any artificial parameters in T1 if
3240 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3241 the first artificial parameter in T1, assumed to be a 'this' pointer.
3242
3243 The type T2 is expected to have come from make_params (in eval.c). */
3244
3245static int
3246compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3247{
3248 int start = 0;
3249
3250 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3251 ++start;
3252
3253 /* If skipping artificial fields, find the first real field
3254 in T1. */
3255 if (skip_artificial)
3256 {
3257 while (start < TYPE_NFIELDS (t1)
3258 && TYPE_FIELD_ARTIFICIAL (t1, start))
3259 ++start;
3260 }
3261
3262 /* Now compare parameters. */
3263
3264 /* Special case: a method taking void. T1 will contain no
3265 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3266 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3267 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3268 return 1;
3269
3270 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3271 {
3272 int i;
3273
3274 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3275 {
3276 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3277 TYPE_FIELD_TYPE (t2, i), NULL),
3278 EXACT_MATCH_BADNESS) != 0)
3279 return 0;
3280 }
3281
3282 return 1;
3283 }
3284
3285 return 0;
3286}
3287
3288/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3289 return the address of this member as a "pointer to member" type.
3290 If INTYPE is non-null, then it will be the type of the member we
3291 are looking for. This will help us resolve "pointers to member
3292 functions". This function is used to resolve user expressions of
3293 the form "DOMAIN::NAME". */
3294
3295static struct value *
3296value_struct_elt_for_reference (struct type *domain, int offset,
3297 struct type *curtype, const char *name,
3298 struct type *intype,
3299 int want_address,
3300 enum noside noside)
3301{
3302 struct type *t = curtype;
3303 int i;
3304 struct value *v, *result;
3305
3306 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3307 && TYPE_CODE (t) != TYPE_CODE_UNION)
3308 error (_("Internal error: non-aggregate type "
3309 "to value_struct_elt_for_reference"));
3310
3311 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3312 {
3313 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3314
3315 if (t_field_name && strcmp (t_field_name, name) == 0)
3316 {
3317 if (field_is_static (&TYPE_FIELD (t, i)))
3318 {
3319 v = value_static_field (t, i);
3320 if (want_address)
3321 v = value_addr (v);
3322 return v;
3323 }
3324 if (TYPE_FIELD_PACKED (t, i))
3325 error (_("pointers to bitfield members not allowed"));
3326
3327 if (want_address)
3328 return value_from_longest
3329 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3330 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3331 else if (noside != EVAL_NORMAL)
3332 return allocate_value (TYPE_FIELD_TYPE (t, i));
3333 else
3334 {
3335 /* Try to evaluate NAME as a qualified name with implicit
3336 this pointer. In this case, attempt to return the
3337 equivalent to `this->*(&TYPE::NAME)'. */
3338 v = value_of_this_silent (current_language);
3339 if (v != NULL)
3340 {
3341 struct value *ptr;
3342 long mem_offset;
3343 struct type *type, *tmp;
3344
3345 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3346 type = check_typedef (value_type (ptr));
3347 gdb_assert (type != NULL
3348 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3349 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3350 v = value_cast_pointers (tmp, v, 1);
3351 mem_offset = value_as_long (ptr);
3352 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3353 result = value_from_pointer (tmp,
3354 value_as_long (v) + mem_offset);
3355 return value_ind (result);
3356 }
3357
3358 error (_("Cannot reference non-static field \"%s\""), name);
3359 }
3360 }
3361 }
3362
3363 /* C++: If it was not found as a data field, then try to return it
3364 as a pointer to a method. */
3365
3366 /* Perform all necessary dereferencing. */
3367 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3368 intype = TYPE_TARGET_TYPE (intype);
3369
3370 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3371 {
3372 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3373 char dem_opname[64];
3374
3375 if (startswith (t_field_name, "__")
3376 || startswith (t_field_name, "op")
3377 || startswith (t_field_name, "type"))
3378 {
3379 if (cplus_demangle_opname (t_field_name,
3380 dem_opname, DMGL_ANSI))
3381 t_field_name = dem_opname;
3382 else if (cplus_demangle_opname (t_field_name,
3383 dem_opname, 0))
3384 t_field_name = dem_opname;
3385 }
3386 if (t_field_name && strcmp (t_field_name, name) == 0)
3387 {
3388 int j;
3389 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3390 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3391
3392 check_stub_method_group (t, i);
3393
3394 if (intype)
3395 {
3396 for (j = 0; j < len; ++j)
3397 {
3398 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3399 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3400 intype, 1))
3401 break;
3402 }
3403
3404 if (j == len)
3405 error (_("no member function matches "
3406 "that type instantiation"));
3407 }
3408 else
3409 {
3410 int ii;
3411
3412 j = -1;
3413 for (ii = 0; ii < len; ++ii)
3414 {
3415 /* Skip artificial methods. This is necessary if,
3416 for example, the user wants to "print
3417 subclass::subclass" with only one user-defined
3418 constructor. There is no ambiguity in this case.
3419 We are careful here to allow artificial methods
3420 if they are the unique result. */
3421 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3422 {
3423 if (j == -1)
3424 j = ii;
3425 continue;
3426 }
3427
3428 /* Desired method is ambiguous if more than one
3429 method is defined. */
3430 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3431 error (_("non-unique member `%s' requires "
3432 "type instantiation"), name);
3433
3434 j = ii;
3435 }
3436
3437 if (j == -1)
3438 error (_("no matching member function"));
3439 }
3440
3441 if (TYPE_FN_FIELD_STATIC_P (f, j))
3442 {
3443 struct symbol *s =
3444 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3445 0, VAR_DOMAIN, 0).symbol;
3446
3447 if (s == NULL)
3448 return NULL;
3449
3450 if (want_address)
3451 return value_addr (read_var_value (s, 0, 0));
3452 else
3453 return read_var_value (s, 0, 0);
3454 }
3455
3456 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3457 {
3458 if (want_address)
3459 {
3460 result = allocate_value
3461 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3462 cplus_make_method_ptr (value_type (result),
3463 value_contents_writeable (result),
3464 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3465 }
3466 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3467 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3468 else
3469 error (_("Cannot reference virtual member function \"%s\""),
3470 name);
3471 }
3472 else
3473 {
3474 struct symbol *s =
3475 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3476 0, VAR_DOMAIN, 0).symbol;
3477
3478 if (s == NULL)
3479 return NULL;
3480
3481 v = read_var_value (s, 0, 0);
3482 if (!want_address)
3483 result = v;
3484 else
3485 {
3486 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3487 cplus_make_method_ptr (value_type (result),
3488 value_contents_writeable (result),
3489 value_address (v), 0);
3490 }
3491 }
3492 return result;
3493 }
3494 }
3495 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3496 {
3497 struct value *v;
3498 int base_offset;
3499
3500 if (BASETYPE_VIA_VIRTUAL (t, i))
3501 base_offset = 0;
3502 else
3503 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3504 v = value_struct_elt_for_reference (domain,
3505 offset + base_offset,
3506 TYPE_BASECLASS (t, i),
3507 name, intype,
3508 want_address, noside);
3509 if (v)
3510 return v;
3511 }
3512
3513 /* As a last chance, pretend that CURTYPE is a namespace, and look
3514 it up that way; this (frequently) works for types nested inside
3515 classes. */
3516
3517 return value_maybe_namespace_elt (curtype, name,
3518 want_address, noside);
3519}
3520
3521/* C++: Return the member NAME of the namespace given by the type
3522 CURTYPE. */
3523
3524static struct value *
3525value_namespace_elt (const struct type *curtype,
3526 const char *name, int want_address,
3527 enum noside noside)
3528{
3529 struct value *retval = value_maybe_namespace_elt (curtype, name,
3530 want_address,
3531 noside);
3532
3533 if (retval == NULL)
3534 error (_("No symbol \"%s\" in namespace \"%s\"."),
3535 name, TYPE_TAG_NAME (curtype));
3536
3537 return retval;
3538}
3539
3540/* A helper function used by value_namespace_elt and
3541 value_struct_elt_for_reference. It looks up NAME inside the
3542 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3543 is a class and NAME refers to a type in CURTYPE itself (as opposed
3544 to, say, some base class of CURTYPE). */
3545
3546static struct value *
3547value_maybe_namespace_elt (const struct type *curtype,
3548 const char *name, int want_address,
3549 enum noside noside)
3550{
3551 const char *namespace_name = TYPE_TAG_NAME (curtype);
3552 struct block_symbol sym;
3553 struct value *result;
3554
3555 sym = cp_lookup_symbol_namespace (namespace_name, name,
3556 get_selected_block (0), VAR_DOMAIN);
3557
3558 if (sym.symbol == NULL)
3559 return NULL;
3560 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3561 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3562 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3563 else
3564 result = value_of_variable (sym.symbol, sym.block);
3565
3566 if (want_address)
3567 result = value_addr (result);
3568
3569 return result;
3570}
3571
3572/* Given a pointer or a reference value V, find its real (RTTI) type.
3573
3574 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3575 and refer to the values computed for the object pointed to. */
3576
3577struct type *
3578value_rtti_indirect_type (struct value *v, int *full,
3579 int *top, int *using_enc)
3580{
3581 struct value *target = NULL;
3582 struct type *type, *real_type, *target_type;
3583
3584 type = value_type (v);
3585 type = check_typedef (type);
3586 if (TYPE_CODE (type) == TYPE_CODE_REF)
3587 target = coerce_ref (v);
3588 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3589 {
3590
3591 TRY
3592 {
3593 target = value_ind (v);
3594 }
3595 CATCH (except, RETURN_MASK_ERROR)
3596 {
3597 if (except.error == MEMORY_ERROR)
3598 {
3599 /* value_ind threw a memory error. The pointer is NULL or
3600 contains an uninitialized value: we can't determine any
3601 type. */
3602 return NULL;
3603 }
3604 throw_exception (except);
3605 }
3606 END_CATCH
3607 }
3608 else
3609 return NULL;
3610
3611 real_type = value_rtti_type (target, full, top, using_enc);
3612
3613 if (real_type)
3614 {
3615 /* Copy qualifiers to the referenced object. */
3616 target_type = value_type (target);
3617 real_type = make_cv_type (TYPE_CONST (target_type),
3618 TYPE_VOLATILE (target_type), real_type, NULL);
3619 if (TYPE_CODE (type) == TYPE_CODE_REF)
3620 real_type = lookup_reference_type (real_type);
3621 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3622 real_type = lookup_pointer_type (real_type);
3623 else
3624 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3625
3626 /* Copy qualifiers to the pointer/reference. */
3627 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3628 real_type, NULL);
3629 }
3630
3631 return real_type;
3632}
3633
3634/* Given a value pointed to by ARGP, check its real run-time type, and
3635 if that is different from the enclosing type, create a new value
3636 using the real run-time type as the enclosing type (and of the same
3637 type as ARGP) and return it, with the embedded offset adjusted to
3638 be the correct offset to the enclosed object. RTYPE is the type,
3639 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3640 by value_rtti_type(). If these are available, they can be supplied
3641 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3642 NULL if they're not available. */
3643
3644struct value *
3645value_full_object (struct value *argp,
3646 struct type *rtype,
3647 int xfull, int xtop,
3648 int xusing_enc)
3649{
3650 struct type *real_type;
3651 int full = 0;
3652 int top = -1;
3653 int using_enc = 0;
3654 struct value *new_val;
3655
3656 if (rtype)
3657 {
3658 real_type = rtype;
3659 full = xfull;
3660 top = xtop;
3661 using_enc = xusing_enc;
3662 }
3663 else
3664 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3665
3666 /* If no RTTI data, or if object is already complete, do nothing. */
3667 if (!real_type || real_type == value_enclosing_type (argp))
3668 return argp;
3669
3670 /* In a destructor we might see a real type that is a superclass of
3671 the object's type. In this case it is better to leave the object
3672 as-is. */
3673 if (full
3674 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3675 return argp;
3676
3677 /* If we have the full object, but for some reason the enclosing
3678 type is wrong, set it. */
3679 /* pai: FIXME -- sounds iffy */
3680 if (full)
3681 {
3682 argp = value_copy (argp);
3683 set_value_enclosing_type (argp, real_type);
3684 return argp;
3685 }
3686
3687 /* Check if object is in memory. */
3688 if (VALUE_LVAL (argp) != lval_memory)
3689 {
3690 warning (_("Couldn't retrieve complete object of RTTI "
3691 "type %s; object may be in register(s)."),
3692 TYPE_NAME (real_type));
3693
3694 return argp;
3695 }
3696
3697 /* All other cases -- retrieve the complete object. */
3698 /* Go back by the computed top_offset from the beginning of the
3699 object, adjusting for the embedded offset of argp if that's what
3700 value_rtti_type used for its computation. */
3701 new_val = value_at_lazy (real_type, value_address (argp) - top +
3702 (using_enc ? 0 : value_embedded_offset (argp)));
3703 deprecated_set_value_type (new_val, value_type (argp));
3704 set_value_embedded_offset (new_val, (using_enc
3705 ? top + value_embedded_offset (argp)
3706 : top));
3707 return new_val;
3708}
3709
3710
3711/* Return the value of the local variable, if one exists. Throw error
3712 otherwise, such as if the request is made in an inappropriate context. */
3713
3714struct value *
3715value_of_this (const struct language_defn *lang)
3716{
3717 struct block_symbol sym;
3718 const struct block *b;
3719 struct frame_info *frame;
3720
3721 if (!lang->la_name_of_this)
3722 error (_("no `this' in current language"));
3723
3724 frame = get_selected_frame (_("no frame selected"));
3725
3726 b = get_frame_block (frame, NULL);
3727
3728 sym = lookup_language_this (lang, b);
3729 if (sym.symbol == NULL)
3730 error (_("current stack frame does not contain a variable named `%s'"),
3731 lang->la_name_of_this);
3732
3733 return read_var_value (sym.symbol, sym.block, frame);
3734}
3735
3736/* Return the value of the local variable, if one exists. Return NULL
3737 otherwise. Never throw error. */
3738
3739struct value *
3740value_of_this_silent (const struct language_defn *lang)
3741{
3742 struct value *ret = NULL;
3743
3744 TRY
3745 {
3746 ret = value_of_this (lang);
3747 }
3748 CATCH (except, RETURN_MASK_ERROR)
3749 {
3750 }
3751 END_CATCH
3752
3753 return ret;
3754}
3755
3756/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3757 elements long, starting at LOWBOUND. The result has the same lower
3758 bound as the original ARRAY. */
3759
3760struct value *
3761value_slice (struct value *array, int lowbound, int length)
3762{
3763 struct type *slice_range_type, *slice_type, *range_type;
3764 LONGEST lowerbound, upperbound;
3765 struct value *slice;
3766 struct type *array_type;
3767
3768 array_type = check_typedef (value_type (array));
3769 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3770 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3771 error (_("cannot take slice of non-array"));
3772
3773 range_type = TYPE_INDEX_TYPE (array_type);
3774 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3775 error (_("slice from bad array or bitstring"));
3776
3777 if (lowbound < lowerbound || length < 0
3778 || lowbound + length - 1 > upperbound)
3779 error (_("slice out of range"));
3780
3781 /* FIXME-type-allocation: need a way to free this type when we are
3782 done with it. */
3783 slice_range_type = create_static_range_type ((struct type *) NULL,
3784 TYPE_TARGET_TYPE (range_type),
3785 lowbound,
3786 lowbound + length - 1);
3787
3788 {
3789 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3790 LONGEST offset
3791 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3792
3793 slice_type = create_array_type ((struct type *) NULL,
3794 element_type,
3795 slice_range_type);
3796 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3797
3798 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3799 slice = allocate_value_lazy (slice_type);
3800 else
3801 {
3802 slice = allocate_value (slice_type);
3803 value_contents_copy (slice, 0, array, offset,
3804 type_length_units (slice_type));
3805 }
3806
3807 set_value_component_location (slice, array);
3808 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3809 set_value_offset (slice, value_offset (array) + offset);
3810 }
3811
3812 return slice;
3813}
3814
3815/* Create a value for a FORTRAN complex number. Currently most of the
3816 time values are coerced to COMPLEX*16 (i.e. a complex number
3817 composed of 2 doubles. This really should be a smarter routine
3818 that figures out precision inteligently as opposed to assuming
3819 doubles. FIXME: fmb */
3820
3821struct value *
3822value_literal_complex (struct value *arg1,
3823 struct value *arg2,
3824 struct type *type)
3825{
3826 struct value *val;
3827 struct type *real_type = TYPE_TARGET_TYPE (type);
3828
3829 val = allocate_value (type);
3830 arg1 = value_cast (real_type, arg1);
3831 arg2 = value_cast (real_type, arg2);
3832
3833 memcpy (value_contents_raw (val),
3834 value_contents (arg1), TYPE_LENGTH (real_type));
3835 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3836 value_contents (arg2), TYPE_LENGTH (real_type));
3837 return val;
3838}
3839
3840/* Cast a value into the appropriate complex data type. */
3841
3842static struct value *
3843cast_into_complex (struct type *type, struct value *val)
3844{
3845 struct type *real_type = TYPE_TARGET_TYPE (type);
3846
3847 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3848 {
3849 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3850 struct value *re_val = allocate_value (val_real_type);
3851 struct value *im_val = allocate_value (val_real_type);
3852
3853 memcpy (value_contents_raw (re_val),
3854 value_contents (val), TYPE_LENGTH (val_real_type));
3855 memcpy (value_contents_raw (im_val),
3856 value_contents (val) + TYPE_LENGTH (val_real_type),
3857 TYPE_LENGTH (val_real_type));
3858
3859 return value_literal_complex (re_val, im_val, type);
3860 }
3861 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3862 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3863 return value_literal_complex (val,
3864 value_zero (real_type, not_lval),
3865 type);
3866 else
3867 error (_("cannot cast non-number to complex"));
3868}
3869
3870void
3871_initialize_valops (void)
3872{
3873 add_setshow_boolean_cmd ("overload-resolution", class_support,
3874 &overload_resolution, _("\
3875Set overload resolution in evaluating C++ functions."), _("\
3876Show overload resolution in evaluating C++ functions."),
3877 NULL, NULL,
3878 show_overload_resolution,
3879 &setlist, &showlist);
3880 overload_resolution = 1;
3881}
This page took 0.034529 seconds and 4 git commands to generate.