* top.c (print_gdb_version): Update copyright year.
[deliverable/binutils-gdb.git] / gdb / valops.c
... / ...
CommitLineData
1/* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
30#include "demangle.h"
31#include "language.h"
32#include "gdbcmd.h"
33#include "regcache.h"
34#include "cp-abi.h"
35#include "block.h"
36#include "infcall.h"
37#include "dictionary.h"
38#include "cp-support.h"
39#include "dfp.h"
40#include "user-regs.h"
41
42#include <errno.h>
43#include "gdb_string.h"
44#include "gdb_assert.h"
45#include "cp-support.h"
46#include "observer.h"
47#include "objfiles.h"
48#include "symtab.h"
49
50extern int overload_debug;
51/* Local functions. */
52
53static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68static
69int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78static int oload_method_static (int, struct fn_field *, int);
79
80enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82static enum
83oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99static CORE_ADDR allocate_space_in_inferior (int);
100
101static struct value *cast_into_complex (struct type *, struct value *);
102
103static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107void _initialize_valops (void);
108
109#if 0
110/* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113static int auto_abandon = 0;
114#endif
115
116int overload_resolution = 0;
117static void
118show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121{
122 fprintf_filtered (file, _("\
123Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125}
126
127/* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131struct value *
132find_function_in_inferior (const char *name, struct objfile **objf_p)
133{
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178}
179
180/* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184struct value *
185value_allocate_space_in_inferior (int len)
186{
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202}
203
204static CORE_ADDR
205allocate_space_in_inferior (int len)
206{
207 return value_as_long (value_allocate_space_in_inferior (len));
208}
209
210/* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215static struct value *
216value_cast_structs (struct type *type, struct value *v2)
217{
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = VALUE_ADDRESS (v2);
258 addr2 -= (VALUE_ADDRESS (v)
259 + value_offset (v)
260 + value_embedded_offset (v));
261 return value_at (type, addr2);
262 }
263 }
264
265 return NULL;
266}
267
268/* Cast one pointer or reference type to another. Both TYPE and
269 the type of ARG2 should be pointer types, or else both should be
270 reference types. Returns the new pointer or reference. */
271
272struct value *
273value_cast_pointers (struct type *type, struct value *arg2)
274{
275 struct type *type1 = check_typedef (type);
276 struct type *type2 = check_typedef (value_type (arg2));
277 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
278 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
279
280 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
281 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
282 && !value_logical_not (arg2))
283 {
284 struct value *v2;
285
286 if (TYPE_CODE (type2) == TYPE_CODE_REF)
287 v2 = coerce_ref (arg2);
288 else
289 v2 = value_ind (arg2);
290 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
291 && !!"Why did coercion fail?");
292 v2 = value_cast_structs (t1, v2);
293 /* At this point we have what we can have, un-dereference if needed. */
294 if (v2)
295 {
296 struct value *v = value_addr (v2);
297 deprecated_set_value_type (v, type);
298 return v;
299 }
300 }
301
302 /* No superclass found, just change the pointer type. */
303 arg2 = value_copy (arg2);
304 deprecated_set_value_type (arg2, type);
305 arg2 = value_change_enclosing_type (arg2, type);
306 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
307 return arg2;
308}
309
310/* Cast value ARG2 to type TYPE and return as a value.
311 More general than a C cast: accepts any two types of the same length,
312 and if ARG2 is an lvalue it can be cast into anything at all. */
313/* In C++, casts may change pointer or object representations. */
314
315struct value *
316value_cast (struct type *type, struct value *arg2)
317{
318 enum type_code code1;
319 enum type_code code2;
320 int scalar;
321 struct type *type2;
322
323 int convert_to_boolean = 0;
324
325 if (value_type (arg2) == type)
326 return arg2;
327
328 code1 = TYPE_CODE (check_typedef (type));
329
330 /* Check if we are casting struct reference to struct reference. */
331 if (code1 == TYPE_CODE_REF)
332 {
333 /* We dereference type; then we recurse and finally
334 we generate value of the given reference. Nothing wrong with
335 that. */
336 struct type *t1 = check_typedef (type);
337 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
338 struct value *val = value_cast (dereftype, arg2);
339 return value_ref (val);
340 }
341
342 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
343
344 if (code2 == TYPE_CODE_REF)
345 /* We deref the value and then do the cast. */
346 return value_cast (type, coerce_ref (arg2));
347
348 CHECK_TYPEDEF (type);
349 code1 = TYPE_CODE (type);
350 arg2 = coerce_ref (arg2);
351 type2 = check_typedef (value_type (arg2));
352
353 /* You can't cast to a reference type. See value_cast_pointers
354 instead. */
355 gdb_assert (code1 != TYPE_CODE_REF);
356
357 /* A cast to an undetermined-length array_type, such as
358 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
359 where N is sizeof(OBJECT)/sizeof(TYPE). */
360 if (code1 == TYPE_CODE_ARRAY)
361 {
362 struct type *element_type = TYPE_TARGET_TYPE (type);
363 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
364 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
365 {
366 struct type *range_type = TYPE_INDEX_TYPE (type);
367 int val_length = TYPE_LENGTH (type2);
368 LONGEST low_bound, high_bound, new_length;
369 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
370 low_bound = 0, high_bound = 0;
371 new_length = val_length / element_length;
372 if (val_length % element_length != 0)
373 warning (_("array element type size does not divide object size in cast"));
374 /* FIXME-type-allocation: need a way to free this type when
375 we are done with it. */
376 range_type = create_range_type ((struct type *) NULL,
377 TYPE_TARGET_TYPE (range_type),
378 low_bound,
379 new_length + low_bound - 1);
380 deprecated_set_value_type (arg2,
381 create_array_type ((struct type *) NULL,
382 element_type,
383 range_type));
384 return arg2;
385 }
386 }
387
388 if (current_language->c_style_arrays
389 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
390 arg2 = value_coerce_array (arg2);
391
392 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
393 arg2 = value_coerce_function (arg2);
394
395 type2 = check_typedef (value_type (arg2));
396 code2 = TYPE_CODE (type2);
397
398 if (code1 == TYPE_CODE_COMPLEX)
399 return cast_into_complex (type, arg2);
400 if (code1 == TYPE_CODE_BOOL)
401 {
402 code1 = TYPE_CODE_INT;
403 convert_to_boolean = 1;
404 }
405 if (code1 == TYPE_CODE_CHAR)
406 code1 = TYPE_CODE_INT;
407 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
408 code2 = TYPE_CODE_INT;
409
410 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
411 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
412 || code2 == TYPE_CODE_RANGE);
413
414 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
415 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
416 && TYPE_NAME (type) != 0)
417 {
418 struct value *v = value_cast_structs (type, arg2);
419 if (v)
420 return v;
421 }
422
423 if (code1 == TYPE_CODE_FLT && scalar)
424 return value_from_double (type, value_as_double (arg2));
425 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
426 {
427 int dec_len = TYPE_LENGTH (type);
428 gdb_byte dec[16];
429
430 if (code2 == TYPE_CODE_FLT)
431 decimal_from_floating (arg2, dec, dec_len);
432 else if (code2 == TYPE_CODE_DECFLOAT)
433 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
434 dec, dec_len);
435 else
436 /* The only option left is an integral type. */
437 decimal_from_integral (arg2, dec, dec_len);
438
439 return value_from_decfloat (type, dec);
440 }
441 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
442 || code1 == TYPE_CODE_RANGE)
443 && (scalar || code2 == TYPE_CODE_PTR
444 || code2 == TYPE_CODE_MEMBERPTR))
445 {
446 LONGEST longest;
447
448 /* When we cast pointers to integers, we mustn't use
449 gdbarch_pointer_to_address to find the address the pointer
450 represents, as value_as_long would. GDB should evaluate
451 expressions just as the compiler would --- and the compiler
452 sees a cast as a simple reinterpretation of the pointer's
453 bits. */
454 if (code2 == TYPE_CODE_PTR)
455 longest = extract_unsigned_integer (value_contents (arg2),
456 TYPE_LENGTH (type2));
457 else
458 longest = value_as_long (arg2);
459 return value_from_longest (type, convert_to_boolean ?
460 (LONGEST) (longest ? 1 : 0) : longest);
461 }
462 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
463 || code2 == TYPE_CODE_ENUM
464 || code2 == TYPE_CODE_RANGE))
465 {
466 /* TYPE_LENGTH (type) is the length of a pointer, but we really
467 want the length of an address! -- we are really dealing with
468 addresses (i.e., gdb representations) not pointers (i.e.,
469 target representations) here.
470
471 This allows things like "print *(int *)0x01000234" to work
472 without printing a misleading message -- which would
473 otherwise occur when dealing with a target having two byte
474 pointers and four byte addresses. */
475
476 int addr_bit = gdbarch_addr_bit (current_gdbarch);
477
478 LONGEST longest = value_as_long (arg2);
479 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
480 {
481 if (longest >= ((LONGEST) 1 << addr_bit)
482 || longest <= -((LONGEST) 1 << addr_bit))
483 warning (_("value truncated"));
484 }
485 return value_from_longest (type, longest);
486 }
487 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
488 && value_as_long (arg2) == 0)
489 {
490 struct value *result = allocate_value (type);
491 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
492 return result;
493 }
494 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
495 && value_as_long (arg2) == 0)
496 {
497 /* The Itanium C++ ABI represents NULL pointers to members as
498 minus one, instead of biasing the normal case. */
499 return value_from_longest (type, -1);
500 }
501 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
502 {
503 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
504 return value_cast_pointers (type, arg2);
505
506 arg2 = value_copy (arg2);
507 deprecated_set_value_type (arg2, type);
508 arg2 = value_change_enclosing_type (arg2, type);
509 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
510 return arg2;
511 }
512 else if (VALUE_LVAL (arg2) == lval_memory)
513 return value_at_lazy (type,
514 VALUE_ADDRESS (arg2) + value_offset (arg2));
515 else if (code1 == TYPE_CODE_VOID)
516 {
517 return value_zero (builtin_type_void, not_lval);
518 }
519 else
520 {
521 error (_("Invalid cast."));
522 return 0;
523 }
524}
525
526/* Create a value of type TYPE that is zero, and return it. */
527
528struct value *
529value_zero (struct type *type, enum lval_type lv)
530{
531 struct value *val = allocate_value (type);
532 VALUE_LVAL (val) = lv;
533
534 return val;
535}
536
537/* Create a value of numeric type TYPE that is one, and return it. */
538
539struct value *
540value_one (struct type *type, enum lval_type lv)
541{
542 struct type *type1 = check_typedef (type);
543 struct value *val = NULL; /* avoid -Wall warning */
544
545 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
546 {
547 struct value *int_one = value_from_longest (builtin_type_int32, 1);
548 struct value *val;
549 gdb_byte v[16];
550
551 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
552 val = value_from_decfloat (type, v);
553 }
554 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
555 {
556 val = value_from_double (type, (DOUBLEST) 1);
557 }
558 else if (is_integral_type (type1))
559 {
560 val = value_from_longest (type, (LONGEST) 1);
561 }
562 else
563 {
564 error (_("Not a numeric type."));
565 }
566
567 VALUE_LVAL (val) = lv;
568 return val;
569}
570
571/* Return a value with type TYPE located at ADDR.
572
573 Call value_at only if the data needs to be fetched immediately;
574 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
575 value_at_lazy instead. value_at_lazy simply records the address of
576 the data and sets the lazy-evaluation-required flag. The lazy flag
577 is tested in the value_contents macro, which is used if and when
578 the contents are actually required.
579
580 Note: value_at does *NOT* handle embedded offsets; perform such
581 adjustments before or after calling it. */
582
583struct value *
584value_at (struct type *type, CORE_ADDR addr)
585{
586 struct value *val;
587
588 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
589 error (_("Attempt to dereference a generic pointer."));
590
591 val = allocate_value (type);
592
593 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
594
595 VALUE_LVAL (val) = lval_memory;
596 VALUE_ADDRESS (val) = addr;
597
598 return val;
599}
600
601/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
602
603struct value *
604value_at_lazy (struct type *type, CORE_ADDR addr)
605{
606 struct value *val;
607
608 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
609 error (_("Attempt to dereference a generic pointer."));
610
611 val = allocate_value_lazy (type);
612
613 VALUE_LVAL (val) = lval_memory;
614 VALUE_ADDRESS (val) = addr;
615
616 return val;
617}
618
619/* Called only from the value_contents and value_contents_all()
620 macros, if the current data for a variable needs to be loaded into
621 value_contents(VAL). Fetches the data from the user's process, and
622 clears the lazy flag to indicate that the data in the buffer is
623 valid.
624
625 If the value is zero-length, we avoid calling read_memory, which
626 would abort. We mark the value as fetched anyway -- all 0 bytes of
627 it.
628
629 This function returns a value because it is used in the
630 value_contents macro as part of an expression, where a void would
631 not work. The value is ignored. */
632
633int
634value_fetch_lazy (struct value *val)
635{
636 gdb_assert (value_lazy (val));
637 allocate_value_contents (val);
638 if (VALUE_LVAL (val) == lval_memory)
639 {
640 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
641 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
642
643 if (length)
644 read_memory (addr, value_contents_all_raw (val), length);
645 }
646 else if (VALUE_LVAL (val) == lval_register)
647 {
648 struct frame_info *frame;
649 int regnum;
650 struct type *type = check_typedef (value_type (val));
651 struct value *new_val = val, *mark = value_mark ();
652
653 /* Offsets are not supported here; lazy register values must
654 refer to the entire register. */
655 gdb_assert (value_offset (val) == 0);
656
657 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
658 {
659 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
660 regnum = VALUE_REGNUM (new_val);
661
662 gdb_assert (frame != NULL);
663
664 /* Convertible register routines are used for multi-register
665 values and for interpretation in different types
666 (e.g. float or int from a double register). Lazy
667 register values should have the register's natural type,
668 so they do not apply. */
669 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
670 regnum, type));
671
672 new_val = get_frame_register_value (frame, regnum);
673 }
674
675 /* If it's still lazy (for instance, a saved register on the
676 stack), fetch it. */
677 if (value_lazy (new_val))
678 value_fetch_lazy (new_val);
679
680 /* If the register was not saved, mark it unavailable. */
681 if (value_optimized_out (new_val))
682 set_value_optimized_out (val, 1);
683 else
684 memcpy (value_contents_raw (val), value_contents (new_val),
685 TYPE_LENGTH (type));
686
687 if (frame_debug)
688 {
689 struct gdbarch *gdbarch;
690 frame = frame_find_by_id (VALUE_FRAME_ID (val));
691 regnum = VALUE_REGNUM (val);
692 gdbarch = get_frame_arch (frame);
693
694 fprintf_unfiltered (gdb_stdlog, "\
695{ value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
696 frame_relative_level (frame), regnum,
697 user_reg_map_regnum_to_name (gdbarch, regnum));
698
699 fprintf_unfiltered (gdb_stdlog, "->");
700 if (value_optimized_out (new_val))
701 fprintf_unfiltered (gdb_stdlog, " optimized out");
702 else
703 {
704 int i;
705 const gdb_byte *buf = value_contents (new_val);
706
707 if (VALUE_LVAL (new_val) == lval_register)
708 fprintf_unfiltered (gdb_stdlog, " register=%d",
709 VALUE_REGNUM (new_val));
710 else if (VALUE_LVAL (new_val) == lval_memory)
711 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
712 paddr_nz (VALUE_ADDRESS (new_val)));
713 else
714 fprintf_unfiltered (gdb_stdlog, " computed");
715
716 fprintf_unfiltered (gdb_stdlog, " bytes=");
717 fprintf_unfiltered (gdb_stdlog, "[");
718 for (i = 0; i < register_size (gdbarch, regnum); i++)
719 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
720 fprintf_unfiltered (gdb_stdlog, "]");
721 }
722
723 fprintf_unfiltered (gdb_stdlog, " }\n");
724 }
725
726 /* Dispose of the intermediate values. This prevents
727 watchpoints from trying to watch the saved frame pointer. */
728 value_free_to_mark (mark);
729 }
730 else
731 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
732
733 set_value_lazy (val, 0);
734 return 0;
735}
736
737
738/* Store the contents of FROMVAL into the location of TOVAL.
739 Return a new value with the location of TOVAL and contents of FROMVAL. */
740
741struct value *
742value_assign (struct value *toval, struct value *fromval)
743{
744 struct type *type;
745 struct value *val;
746 struct frame_id old_frame;
747
748 if (!deprecated_value_modifiable (toval))
749 error (_("Left operand of assignment is not a modifiable lvalue."));
750
751 toval = coerce_ref (toval);
752
753 type = value_type (toval);
754 if (VALUE_LVAL (toval) != lval_internalvar)
755 {
756 toval = value_coerce_to_target (toval);
757 fromval = value_cast (type, fromval);
758 }
759 else
760 {
761 /* Coerce arrays and functions to pointers, except for arrays
762 which only live in GDB's storage. */
763 if (!value_must_coerce_to_target (fromval))
764 fromval = coerce_array (fromval);
765 }
766
767 CHECK_TYPEDEF (type);
768
769 /* Since modifying a register can trash the frame chain, and
770 modifying memory can trash the frame cache, we save the old frame
771 and then restore the new frame afterwards. */
772 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
773
774 switch (VALUE_LVAL (toval))
775 {
776 case lval_internalvar:
777 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
778 val = value_copy (VALUE_INTERNALVAR (toval)->value);
779 val = value_change_enclosing_type (val,
780 value_enclosing_type (fromval));
781 set_value_embedded_offset (val, value_embedded_offset (fromval));
782 set_value_pointed_to_offset (val,
783 value_pointed_to_offset (fromval));
784 return val;
785
786 case lval_internalvar_component:
787 set_internalvar_component (VALUE_INTERNALVAR (toval),
788 value_offset (toval),
789 value_bitpos (toval),
790 value_bitsize (toval),
791 fromval);
792 break;
793
794 case lval_memory:
795 {
796 const gdb_byte *dest_buffer;
797 CORE_ADDR changed_addr;
798 int changed_len;
799 gdb_byte buffer[sizeof (LONGEST)];
800
801 if (value_bitsize (toval))
802 {
803 /* We assume that the argument to read_memory is in units
804 of host chars. FIXME: Is that correct? */
805 changed_len = (value_bitpos (toval)
806 + value_bitsize (toval)
807 + HOST_CHAR_BIT - 1)
808 / HOST_CHAR_BIT;
809
810 if (changed_len > (int) sizeof (LONGEST))
811 error (_("Can't handle bitfields which don't fit in a %d bit word."),
812 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
813
814 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
815 buffer, changed_len);
816 modify_field (buffer, value_as_long (fromval),
817 value_bitpos (toval), value_bitsize (toval));
818 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
819 dest_buffer = buffer;
820 }
821 else
822 {
823 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
824 changed_len = TYPE_LENGTH (type);
825 dest_buffer = value_contents (fromval);
826 }
827
828 write_memory (changed_addr, dest_buffer, changed_len);
829 if (deprecated_memory_changed_hook)
830 deprecated_memory_changed_hook (changed_addr, changed_len);
831 }
832 break;
833
834 case lval_register:
835 {
836 struct frame_info *frame;
837 int value_reg;
838
839 /* Figure out which frame this is in currently. */
840 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
841 value_reg = VALUE_REGNUM (toval);
842
843 if (!frame)
844 error (_("Value being assigned to is no longer active."));
845
846 if (gdbarch_convert_register_p
847 (current_gdbarch, VALUE_REGNUM (toval), type))
848 {
849 /* If TOVAL is a special machine register requiring
850 conversion of program values to a special raw
851 format. */
852 gdbarch_value_to_register (current_gdbarch, frame,
853 VALUE_REGNUM (toval), type,
854 value_contents (fromval));
855 }
856 else
857 {
858 if (value_bitsize (toval))
859 {
860 int changed_len;
861 gdb_byte buffer[sizeof (LONGEST)];
862
863 changed_len = (value_bitpos (toval)
864 + value_bitsize (toval)
865 + HOST_CHAR_BIT - 1)
866 / HOST_CHAR_BIT;
867
868 if (changed_len > (int) sizeof (LONGEST))
869 error (_("Can't handle bitfields which don't fit in a %d bit word."),
870 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
871
872 get_frame_register_bytes (frame, value_reg,
873 value_offset (toval),
874 changed_len, buffer);
875
876 modify_field (buffer, value_as_long (fromval),
877 value_bitpos (toval),
878 value_bitsize (toval));
879
880 put_frame_register_bytes (frame, value_reg,
881 value_offset (toval),
882 changed_len, buffer);
883 }
884 else
885 {
886 put_frame_register_bytes (frame, value_reg,
887 value_offset (toval),
888 TYPE_LENGTH (type),
889 value_contents (fromval));
890 }
891 }
892
893 if (deprecated_register_changed_hook)
894 deprecated_register_changed_hook (-1);
895 observer_notify_target_changed (&current_target);
896 break;
897 }
898
899 default:
900 error (_("Left operand of assignment is not an lvalue."));
901 }
902
903 /* Assigning to the stack pointer, frame pointer, and other
904 (architecture and calling convention specific) registers may
905 cause the frame cache to be out of date. Assigning to memory
906 also can. We just do this on all assignments to registers or
907 memory, for simplicity's sake; I doubt the slowdown matters. */
908 switch (VALUE_LVAL (toval))
909 {
910 case lval_memory:
911 case lval_register:
912
913 reinit_frame_cache ();
914
915 /* Having destroyed the frame cache, restore the selected
916 frame. */
917
918 /* FIXME: cagney/2002-11-02: There has to be a better way of
919 doing this. Instead of constantly saving/restoring the
920 frame. Why not create a get_selected_frame() function that,
921 having saved the selected frame's ID can automatically
922 re-find the previously selected frame automatically. */
923
924 {
925 struct frame_info *fi = frame_find_by_id (old_frame);
926 if (fi != NULL)
927 select_frame (fi);
928 }
929
930 break;
931 default:
932 break;
933 }
934
935 /* If the field does not entirely fill a LONGEST, then zero the sign
936 bits. If the field is signed, and is negative, then sign
937 extend. */
938 if ((value_bitsize (toval) > 0)
939 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
940 {
941 LONGEST fieldval = value_as_long (fromval);
942 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
943
944 fieldval &= valmask;
945 if (!TYPE_UNSIGNED (type)
946 && (fieldval & (valmask ^ (valmask >> 1))))
947 fieldval |= ~valmask;
948
949 fromval = value_from_longest (type, fieldval);
950 }
951
952 val = value_copy (toval);
953 memcpy (value_contents_raw (val), value_contents (fromval),
954 TYPE_LENGTH (type));
955 deprecated_set_value_type (val, type);
956 val = value_change_enclosing_type (val,
957 value_enclosing_type (fromval));
958 set_value_embedded_offset (val, value_embedded_offset (fromval));
959 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
960
961 return val;
962}
963
964/* Extend a value VAL to COUNT repetitions of its type. */
965
966struct value *
967value_repeat (struct value *arg1, int count)
968{
969 struct value *val;
970
971 if (VALUE_LVAL (arg1) != lval_memory)
972 error (_("Only values in memory can be extended with '@'."));
973 if (count < 1)
974 error (_("Invalid number %d of repetitions."), count);
975
976 val = allocate_repeat_value (value_enclosing_type (arg1), count);
977
978 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
979 value_contents_all_raw (val),
980 TYPE_LENGTH (value_enclosing_type (val)));
981 VALUE_LVAL (val) = lval_memory;
982 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
983
984 return val;
985}
986
987struct value *
988value_of_variable (struct symbol *var, struct block *b)
989{
990 struct value *val;
991 struct frame_info *frame = NULL;
992
993 if (!b)
994 frame = NULL; /* Use selected frame. */
995 else if (symbol_read_needs_frame (var))
996 {
997 frame = block_innermost_frame (b);
998 if (!frame)
999 {
1000 if (BLOCK_FUNCTION (b)
1001 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1002 error (_("No frame is currently executing in block %s."),
1003 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1004 else
1005 error (_("No frame is currently executing in specified block"));
1006 }
1007 }
1008
1009 val = read_var_value (var, frame);
1010 if (!val)
1011 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1012
1013 return val;
1014}
1015
1016/* Return one if VAL does not live in target memory, but should in order
1017 to operate on it. Otherwise return zero. */
1018
1019int
1020value_must_coerce_to_target (struct value *val)
1021{
1022 struct type *valtype;
1023
1024 /* The only lval kinds which do not live in target memory. */
1025 if (VALUE_LVAL (val) != not_lval
1026 && VALUE_LVAL (val) != lval_internalvar)
1027 return 0;
1028
1029 valtype = check_typedef (value_type (val));
1030
1031 switch (TYPE_CODE (valtype))
1032 {
1033 case TYPE_CODE_ARRAY:
1034 case TYPE_CODE_STRING:
1035 return 1;
1036 default:
1037 return 0;
1038 }
1039}
1040
1041/* Make sure that VAL lives in target memory if it's supposed to. For instance,
1042 strings are constructed as character arrays in GDB's storage, and this
1043 function copies them to the target. */
1044
1045struct value *
1046value_coerce_to_target (struct value *val)
1047{
1048 LONGEST length;
1049 CORE_ADDR addr;
1050
1051 if (!value_must_coerce_to_target (val))
1052 return val;
1053
1054 length = TYPE_LENGTH (check_typedef (value_type (val)));
1055 addr = allocate_space_in_inferior (length);
1056 write_memory (addr, value_contents (val), length);
1057 return value_at_lazy (value_type (val), addr);
1058}
1059
1060/* Given a value which is an array, return a value which is a pointer
1061 to its first element, regardless of whether or not the array has a
1062 nonzero lower bound.
1063
1064 FIXME: A previous comment here indicated that this routine should
1065 be substracting the array's lower bound. It's not clear to me that
1066 this is correct. Given an array subscripting operation, it would
1067 certainly work to do the adjustment here, essentially computing:
1068
1069 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1070
1071 However I believe a more appropriate and logical place to account
1072 for the lower bound is to do so in value_subscript, essentially
1073 computing:
1074
1075 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1076
1077 As further evidence consider what would happen with operations
1078 other than array subscripting, where the caller would get back a
1079 value that had an address somewhere before the actual first element
1080 of the array, and the information about the lower bound would be
1081 lost because of the coercion to pointer type.
1082 */
1083
1084struct value *
1085value_coerce_array (struct value *arg1)
1086{
1087 struct type *type = check_typedef (value_type (arg1));
1088
1089 /* If the user tries to do something requiring a pointer with an
1090 array that has not yet been pushed to the target, then this would
1091 be a good time to do so. */
1092 arg1 = value_coerce_to_target (arg1);
1093
1094 if (VALUE_LVAL (arg1) != lval_memory)
1095 error (_("Attempt to take address of value not located in memory."));
1096
1097 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1098 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1099}
1100
1101/* Given a value which is a function, return a value which is a pointer
1102 to it. */
1103
1104struct value *
1105value_coerce_function (struct value *arg1)
1106{
1107 struct value *retval;
1108
1109 if (VALUE_LVAL (arg1) != lval_memory)
1110 error (_("Attempt to take address of value not located in memory."));
1111
1112 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1113 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1114 return retval;
1115}
1116
1117/* Return a pointer value for the object for which ARG1 is the
1118 contents. */
1119
1120struct value *
1121value_addr (struct value *arg1)
1122{
1123 struct value *arg2;
1124
1125 struct type *type = check_typedef (value_type (arg1));
1126 if (TYPE_CODE (type) == TYPE_CODE_REF)
1127 {
1128 /* Copy the value, but change the type from (T&) to (T*). We
1129 keep the same location information, which is efficient, and
1130 allows &(&X) to get the location containing the reference. */
1131 arg2 = value_copy (arg1);
1132 deprecated_set_value_type (arg2,
1133 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1134 return arg2;
1135 }
1136 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1137 return value_coerce_function (arg1);
1138
1139 /* If this is an array that has not yet been pushed to the target,
1140 then this would be a good time to force it to memory. */
1141 arg1 = value_coerce_to_target (arg1);
1142
1143 if (VALUE_LVAL (arg1) != lval_memory)
1144 error (_("Attempt to take address of value not located in memory."));
1145
1146 /* Get target memory address */
1147 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1148 (VALUE_ADDRESS (arg1)
1149 + value_offset (arg1)
1150 + value_embedded_offset (arg1)));
1151
1152 /* This may be a pointer to a base subobject; so remember the
1153 full derived object's type ... */
1154 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1155 /* ... and also the relative position of the subobject in the full
1156 object. */
1157 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1158 return arg2;
1159}
1160
1161/* Return a reference value for the object for which ARG1 is the
1162 contents. */
1163
1164struct value *
1165value_ref (struct value *arg1)
1166{
1167 struct value *arg2;
1168
1169 struct type *type = check_typedef (value_type (arg1));
1170 if (TYPE_CODE (type) == TYPE_CODE_REF)
1171 return arg1;
1172
1173 arg2 = value_addr (arg1);
1174 deprecated_set_value_type (arg2, lookup_reference_type (type));
1175 return arg2;
1176}
1177
1178/* Given a value of a pointer type, apply the C unary * operator to
1179 it. */
1180
1181struct value *
1182value_ind (struct value *arg1)
1183{
1184 struct type *base_type;
1185 struct value *arg2;
1186
1187 arg1 = coerce_array (arg1);
1188
1189 base_type = check_typedef (value_type (arg1));
1190
1191 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1192 {
1193 struct type *enc_type;
1194 /* We may be pointing to something embedded in a larger object.
1195 Get the real type of the enclosing object. */
1196 enc_type = check_typedef (value_enclosing_type (arg1));
1197 enc_type = TYPE_TARGET_TYPE (enc_type);
1198
1199 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1200 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1201 /* For functions, go through find_function_addr, which knows
1202 how to handle function descriptors. */
1203 arg2 = value_at_lazy (enc_type,
1204 find_function_addr (arg1, NULL));
1205 else
1206 /* Retrieve the enclosing object pointed to */
1207 arg2 = value_at_lazy (enc_type,
1208 (value_as_address (arg1)
1209 - value_pointed_to_offset (arg1)));
1210
1211 /* Re-adjust type. */
1212 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1213 /* Add embedding info. */
1214 arg2 = value_change_enclosing_type (arg2, enc_type);
1215 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1216
1217 /* We may be pointing to an object of some derived type. */
1218 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1219 return arg2;
1220 }
1221
1222 error (_("Attempt to take contents of a non-pointer value."));
1223 return 0; /* For lint -- never reached. */
1224}
1225\f
1226/* Create a value for an array by allocating space in GDB, copying
1227 copying the data into that space, and then setting up an array
1228 value.
1229
1230 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1231 is populated from the values passed in ELEMVEC.
1232
1233 The element type of the array is inherited from the type of the
1234 first element, and all elements must have the same size (though we
1235 don't currently enforce any restriction on their types). */
1236
1237struct value *
1238value_array (int lowbound, int highbound, struct value **elemvec)
1239{
1240 int nelem;
1241 int idx;
1242 unsigned int typelength;
1243 struct value *val;
1244 struct type *rangetype;
1245 struct type *arraytype;
1246 CORE_ADDR addr;
1247
1248 /* Validate that the bounds are reasonable and that each of the
1249 elements have the same size. */
1250
1251 nelem = highbound - lowbound + 1;
1252 if (nelem <= 0)
1253 {
1254 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1255 }
1256 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1257 for (idx = 1; idx < nelem; idx++)
1258 {
1259 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1260 {
1261 error (_("array elements must all be the same size"));
1262 }
1263 }
1264
1265 rangetype = create_range_type ((struct type *) NULL,
1266 builtin_type_int32,
1267 lowbound, highbound);
1268 arraytype = create_array_type ((struct type *) NULL,
1269 value_enclosing_type (elemvec[0]),
1270 rangetype);
1271
1272 if (!current_language->c_style_arrays)
1273 {
1274 val = allocate_value (arraytype);
1275 for (idx = 0; idx < nelem; idx++)
1276 {
1277 memcpy (value_contents_all_raw (val) + (idx * typelength),
1278 value_contents_all (elemvec[idx]),
1279 typelength);
1280 }
1281 return val;
1282 }
1283
1284 /* Allocate space to store the array, and then initialize it by
1285 copying in each element. */
1286
1287 val = allocate_value (arraytype);
1288 for (idx = 0; idx < nelem; idx++)
1289 memcpy (value_contents_writeable (val) + (idx * typelength),
1290 value_contents_all (elemvec[idx]),
1291 typelength);
1292 return val;
1293}
1294
1295/* Create a value for a string constant by allocating space in the
1296 inferior, copying the data into that space, and returning the
1297 address with type TYPE_CODE_STRING. PTR points to the string
1298 constant data; LEN is number of characters.
1299
1300 Note that string types are like array of char types with a lower
1301 bound of zero and an upper bound of LEN - 1. Also note that the
1302 string may contain embedded null bytes. */
1303
1304struct value *
1305value_string (char *ptr, int len)
1306{
1307 struct value *val;
1308 int lowbound = current_language->string_lower_bound;
1309 struct type *rangetype = create_range_type ((struct type *) NULL,
1310 builtin_type_int32,
1311 lowbound,
1312 len + lowbound - 1);
1313 struct type *stringtype
1314 = create_string_type ((struct type *) NULL, rangetype);
1315 CORE_ADDR addr;
1316
1317 if (current_language->c_style_arrays == 0)
1318 {
1319 val = allocate_value (stringtype);
1320 memcpy (value_contents_raw (val), ptr, len);
1321 return val;
1322 }
1323
1324
1325 /* Allocate space to store the string in the inferior, and then copy
1326 LEN bytes from PTR in gdb to that address in the inferior. */
1327
1328 addr = allocate_space_in_inferior (len);
1329 write_memory (addr, (gdb_byte *) ptr, len);
1330
1331 val = value_at_lazy (stringtype, addr);
1332 return (val);
1333}
1334
1335struct value *
1336value_bitstring (char *ptr, int len)
1337{
1338 struct value *val;
1339 struct type *domain_type = create_range_type (NULL,
1340 builtin_type_int32,
1341 0, len - 1);
1342 struct type *type = create_set_type ((struct type *) NULL,
1343 domain_type);
1344 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1345 val = allocate_value (type);
1346 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1347 return val;
1348}
1349\f
1350/* See if we can pass arguments in T2 to a function which takes
1351 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1352 a NULL-terminated vector. If some arguments need coercion of some
1353 sort, then the coerced values are written into T2. Return value is
1354 0 if the arguments could be matched, or the position at which they
1355 differ if not.
1356
1357 STATICP is nonzero if the T1 argument list came from a static
1358 member function. T2 will still include the ``this'' pointer, but
1359 it will be skipped.
1360
1361 For non-static member functions, we ignore the first argument,
1362 which is the type of the instance variable. This is because we
1363 want to handle calls with objects from derived classes. This is
1364 not entirely correct: we should actually check to make sure that a
1365 requested operation is type secure, shouldn't we? FIXME. */
1366
1367static int
1368typecmp (int staticp, int varargs, int nargs,
1369 struct field t1[], struct value *t2[])
1370{
1371 int i;
1372
1373 if (t2 == 0)
1374 internal_error (__FILE__, __LINE__,
1375 _("typecmp: no argument list"));
1376
1377 /* Skip ``this'' argument if applicable. T2 will always include
1378 THIS. */
1379 if (staticp)
1380 t2 ++;
1381
1382 for (i = 0;
1383 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1384 i++)
1385 {
1386 struct type *tt1, *tt2;
1387
1388 if (!t2[i])
1389 return i + 1;
1390
1391 tt1 = check_typedef (t1[i].type);
1392 tt2 = check_typedef (value_type (t2[i]));
1393
1394 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1395 /* We should be doing hairy argument matching, as below. */
1396 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1397 {
1398 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1399 t2[i] = value_coerce_array (t2[i]);
1400 else
1401 t2[i] = value_ref (t2[i]);
1402 continue;
1403 }
1404
1405 /* djb - 20000715 - Until the new type structure is in the
1406 place, and we can attempt things like implicit conversions,
1407 we need to do this so you can take something like a map<const
1408 char *>, and properly access map["hello"], because the
1409 argument to [] will be a reference to a pointer to a char,
1410 and the argument will be a pointer to a char. */
1411 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1412 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1413 {
1414 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1415 }
1416 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1417 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1418 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1419 {
1420 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1421 }
1422 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1423 continue;
1424 /* Array to pointer is a `trivial conversion' according to the
1425 ARM. */
1426
1427 /* We should be doing much hairier argument matching (see
1428 section 13.2 of the ARM), but as a quick kludge, just check
1429 for the same type code. */
1430 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1431 return i + 1;
1432 }
1433 if (varargs || t2[i] == NULL)
1434 return 0;
1435 return i + 1;
1436}
1437
1438/* Helper function used by value_struct_elt to recurse through
1439 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1440 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1441 TYPE. If found, return value, else return NULL.
1442
1443 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1444 fields, look for a baseclass named NAME. */
1445
1446static struct value *
1447search_struct_field (char *name, struct value *arg1, int offset,
1448 struct type *type, int looking_for_baseclass)
1449{
1450 int i;
1451 int nbases = TYPE_N_BASECLASSES (type);
1452
1453 CHECK_TYPEDEF (type);
1454
1455 if (!looking_for_baseclass)
1456 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1457 {
1458 char *t_field_name = TYPE_FIELD_NAME (type, i);
1459
1460 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1461 {
1462 struct value *v;
1463 if (field_is_static (&TYPE_FIELD (type, i)))
1464 {
1465 v = value_static_field (type, i);
1466 if (v == 0)
1467 error (_("field %s is nonexistent or has been optimised out"),
1468 name);
1469 }
1470 else
1471 {
1472 v = value_primitive_field (arg1, offset, i, type);
1473 if (v == 0)
1474 error (_("there is no field named %s"), name);
1475 }
1476 return v;
1477 }
1478
1479 if (t_field_name
1480 && (t_field_name[0] == '\0'
1481 || (TYPE_CODE (type) == TYPE_CODE_UNION
1482 && (strcmp_iw (t_field_name, "else") == 0))))
1483 {
1484 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1485 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1486 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1487 {
1488 /* Look for a match through the fields of an anonymous
1489 union, or anonymous struct. C++ provides anonymous
1490 unions.
1491
1492 In the GNU Chill (now deleted from GDB)
1493 implementation of variant record types, each
1494 <alternative field> has an (anonymous) union type,
1495 each member of the union represents a <variant
1496 alternative>. Each <variant alternative> is
1497 represented as a struct, with a member for each
1498 <variant field>. */
1499
1500 struct value *v;
1501 int new_offset = offset;
1502
1503 /* This is pretty gross. In G++, the offset in an
1504 anonymous union is relative to the beginning of the
1505 enclosing struct. In the GNU Chill (now deleted
1506 from GDB) implementation of variant records, the
1507 bitpos is zero in an anonymous union field, so we
1508 have to add the offset of the union here. */
1509 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1510 || (TYPE_NFIELDS (field_type) > 0
1511 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1512 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1513
1514 v = search_struct_field (name, arg1, new_offset,
1515 field_type,
1516 looking_for_baseclass);
1517 if (v)
1518 return v;
1519 }
1520 }
1521 }
1522
1523 for (i = 0; i < nbases; i++)
1524 {
1525 struct value *v;
1526 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1527 /* If we are looking for baseclasses, this is what we get when
1528 we hit them. But it could happen that the base part's member
1529 name is not yet filled in. */
1530 int found_baseclass = (looking_for_baseclass
1531 && TYPE_BASECLASS_NAME (type, i) != NULL
1532 && (strcmp_iw (name,
1533 TYPE_BASECLASS_NAME (type,
1534 i)) == 0));
1535
1536 if (BASETYPE_VIA_VIRTUAL (type, i))
1537 {
1538 int boffset;
1539 struct value *v2;
1540
1541 boffset = baseclass_offset (type, i,
1542 value_contents (arg1) + offset,
1543 VALUE_ADDRESS (arg1)
1544 + value_offset (arg1) + offset);
1545 if (boffset == -1)
1546 error (_("virtual baseclass botch"));
1547
1548 /* The virtual base class pointer might have been clobbered
1549 by the user program. Make sure that it still points to a
1550 valid memory location. */
1551
1552 boffset += offset;
1553 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1554 {
1555 CORE_ADDR base_addr;
1556
1557 v2 = allocate_value (basetype);
1558 base_addr =
1559 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1560 if (target_read_memory (base_addr,
1561 value_contents_raw (v2),
1562 TYPE_LENGTH (basetype)) != 0)
1563 error (_("virtual baseclass botch"));
1564 VALUE_LVAL (v2) = lval_memory;
1565 VALUE_ADDRESS (v2) = base_addr;
1566 }
1567 else
1568 {
1569 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1570 v2 = allocate_value_lazy (basetype);
1571 else
1572 {
1573 v2 = allocate_value (basetype);
1574 memcpy (value_contents_raw (v2),
1575 value_contents_raw (arg1) + boffset,
1576 TYPE_LENGTH (basetype));
1577 }
1578 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1579 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1580 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1581 set_value_offset (v2, value_offset (arg1) + boffset);
1582 }
1583
1584 if (found_baseclass)
1585 return v2;
1586 v = search_struct_field (name, v2, 0,
1587 TYPE_BASECLASS (type, i),
1588 looking_for_baseclass);
1589 }
1590 else if (found_baseclass)
1591 v = value_primitive_field (arg1, offset, i, type);
1592 else
1593 v = search_struct_field (name, arg1,
1594 offset + TYPE_BASECLASS_BITPOS (type,
1595 i) / 8,
1596 basetype, looking_for_baseclass);
1597 if (v)
1598 return v;
1599 }
1600 return NULL;
1601}
1602
1603/* Helper function used by value_struct_elt to recurse through
1604 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1605 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1606 TYPE.
1607
1608 If found, return value, else if name matched and args not return
1609 (value) -1, else return NULL. */
1610
1611static struct value *
1612search_struct_method (char *name, struct value **arg1p,
1613 struct value **args, int offset,
1614 int *static_memfuncp, struct type *type)
1615{
1616 int i;
1617 struct value *v;
1618 int name_matched = 0;
1619 char dem_opname[64];
1620
1621 CHECK_TYPEDEF (type);
1622 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1623 {
1624 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1625 /* FIXME! May need to check for ARM demangling here */
1626 if (strncmp (t_field_name, "__", 2) == 0 ||
1627 strncmp (t_field_name, "op", 2) == 0 ||
1628 strncmp (t_field_name, "type", 4) == 0)
1629 {
1630 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1631 t_field_name = dem_opname;
1632 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1633 t_field_name = dem_opname;
1634 }
1635 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1636 {
1637 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1638 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1639 name_matched = 1;
1640
1641 check_stub_method_group (type, i);
1642 if (j > 0 && args == 0)
1643 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1644 else if (j == 0 && args == 0)
1645 {
1646 v = value_fn_field (arg1p, f, j, type, offset);
1647 if (v != NULL)
1648 return v;
1649 }
1650 else
1651 while (j >= 0)
1652 {
1653 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1654 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1655 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1656 TYPE_FN_FIELD_ARGS (f, j), args))
1657 {
1658 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1659 return value_virtual_fn_field (arg1p, f, j,
1660 type, offset);
1661 if (TYPE_FN_FIELD_STATIC_P (f, j)
1662 && static_memfuncp)
1663 *static_memfuncp = 1;
1664 v = value_fn_field (arg1p, f, j, type, offset);
1665 if (v != NULL)
1666 return v;
1667 }
1668 j--;
1669 }
1670 }
1671 }
1672
1673 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1674 {
1675 int base_offset;
1676
1677 if (BASETYPE_VIA_VIRTUAL (type, i))
1678 {
1679 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1680 const gdb_byte *base_valaddr;
1681
1682 /* The virtual base class pointer might have been
1683 clobbered by the user program. Make sure that it
1684 still points to a valid memory location. */
1685
1686 if (offset < 0 || offset >= TYPE_LENGTH (type))
1687 {
1688 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1689 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1690 + value_offset (*arg1p) + offset,
1691 tmp, TYPE_LENGTH (baseclass)) != 0)
1692 error (_("virtual baseclass botch"));
1693 base_valaddr = tmp;
1694 }
1695 else
1696 base_valaddr = value_contents (*arg1p) + offset;
1697
1698 base_offset = baseclass_offset (type, i, base_valaddr,
1699 VALUE_ADDRESS (*arg1p)
1700 + value_offset (*arg1p) + offset);
1701 if (base_offset == -1)
1702 error (_("virtual baseclass botch"));
1703 }
1704 else
1705 {
1706 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1707 }
1708 v = search_struct_method (name, arg1p, args, base_offset + offset,
1709 static_memfuncp, TYPE_BASECLASS (type, i));
1710 if (v == (struct value *) - 1)
1711 {
1712 name_matched = 1;
1713 }
1714 else if (v)
1715 {
1716 /* FIXME-bothner: Why is this commented out? Why is it here? */
1717 /* *arg1p = arg1_tmp; */
1718 return v;
1719 }
1720 }
1721 if (name_matched)
1722 return (struct value *) - 1;
1723 else
1724 return NULL;
1725}
1726
1727/* Given *ARGP, a value of type (pointer to a)* structure/union,
1728 extract the component named NAME from the ultimate target
1729 structure/union and return it as a value with its appropriate type.
1730 ERR is used in the error message if *ARGP's type is wrong.
1731
1732 C++: ARGS is a list of argument types to aid in the selection of
1733 an appropriate method. Also, handle derived types.
1734
1735 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1736 where the truthvalue of whether the function that was resolved was
1737 a static member function or not is stored.
1738
1739 ERR is an error message to be printed in case the field is not
1740 found. */
1741
1742struct value *
1743value_struct_elt (struct value **argp, struct value **args,
1744 char *name, int *static_memfuncp, char *err)
1745{
1746 struct type *t;
1747 struct value *v;
1748
1749 *argp = coerce_array (*argp);
1750
1751 t = check_typedef (value_type (*argp));
1752
1753 /* Follow pointers until we get to a non-pointer. */
1754
1755 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1756 {
1757 *argp = value_ind (*argp);
1758 /* Don't coerce fn pointer to fn and then back again! */
1759 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1760 *argp = coerce_array (*argp);
1761 t = check_typedef (value_type (*argp));
1762 }
1763
1764 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1765 && TYPE_CODE (t) != TYPE_CODE_UNION)
1766 error (_("Attempt to extract a component of a value that is not a %s."), err);
1767
1768 /* Assume it's not, unless we see that it is. */
1769 if (static_memfuncp)
1770 *static_memfuncp = 0;
1771
1772 if (!args)
1773 {
1774 /* if there are no arguments ...do this... */
1775
1776 /* Try as a field first, because if we succeed, there is less
1777 work to be done. */
1778 v = search_struct_field (name, *argp, 0, t, 0);
1779 if (v)
1780 return v;
1781
1782 /* C++: If it was not found as a data field, then try to
1783 return it as a pointer to a method. */
1784
1785 if (destructor_name_p (name, t))
1786 error (_("Cannot get value of destructor"));
1787
1788 v = search_struct_method (name, argp, args, 0,
1789 static_memfuncp, t);
1790
1791 if (v == (struct value *) - 1)
1792 error (_("Cannot take address of method %s."), name);
1793 else if (v == 0)
1794 {
1795 if (TYPE_NFN_FIELDS (t))
1796 error (_("There is no member or method named %s."), name);
1797 else
1798 error (_("There is no member named %s."), name);
1799 }
1800 return v;
1801 }
1802
1803 if (destructor_name_p (name, t))
1804 {
1805 if (!args[1])
1806 {
1807 /* Destructors are a special case. */
1808 int m_index, f_index;
1809
1810 v = NULL;
1811 if (get_destructor_fn_field (t, &m_index, &f_index))
1812 {
1813 v = value_fn_field (NULL,
1814 TYPE_FN_FIELDLIST1 (t, m_index),
1815 f_index, NULL, 0);
1816 }
1817 if (v == NULL)
1818 error (_("could not find destructor function named %s."),
1819 name);
1820 else
1821 return v;
1822 }
1823 else
1824 {
1825 error (_("destructor should not have any argument"));
1826 }
1827 }
1828 else
1829 v = search_struct_method (name, argp, args, 0,
1830 static_memfuncp, t);
1831
1832 if (v == (struct value *) - 1)
1833 {
1834 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1835 }
1836 else if (v == 0)
1837 {
1838 /* See if user tried to invoke data as function. If so, hand it
1839 back. If it's not callable (i.e., a pointer to function),
1840 gdb should give an error. */
1841 v = search_struct_field (name, *argp, 0, t, 0);
1842 /* If we found an ordinary field, then it is not a method call.
1843 So, treat it as if it were a static member function. */
1844 if (v && static_memfuncp)
1845 *static_memfuncp = 1;
1846 }
1847
1848 if (!v)
1849 error (_("Structure has no component named %s."), name);
1850 return v;
1851}
1852
1853/* Search through the methods of an object (and its bases) to find a
1854 specified method. Return the pointer to the fn_field list of
1855 overloaded instances.
1856
1857 Helper function for value_find_oload_list.
1858 ARGP is a pointer to a pointer to a value (the object).
1859 METHOD is a string containing the method name.
1860 OFFSET is the offset within the value.
1861 TYPE is the assumed type of the object.
1862 NUM_FNS is the number of overloaded instances.
1863 BASETYPE is set to the actual type of the subobject where the
1864 method is found.
1865 BOFFSET is the offset of the base subobject where the method is found.
1866*/
1867
1868static struct fn_field *
1869find_method_list (struct value **argp, char *method,
1870 int offset, struct type *type, int *num_fns,
1871 struct type **basetype, int *boffset)
1872{
1873 int i;
1874 struct fn_field *f;
1875 CHECK_TYPEDEF (type);
1876
1877 *num_fns = 0;
1878
1879 /* First check in object itself. */
1880 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1881 {
1882 /* pai: FIXME What about operators and type conversions? */
1883 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1884 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1885 {
1886 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1887 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1888
1889 *num_fns = len;
1890 *basetype = type;
1891 *boffset = offset;
1892
1893 /* Resolve any stub methods. */
1894 check_stub_method_group (type, i);
1895
1896 return f;
1897 }
1898 }
1899
1900 /* Not found in object, check in base subobjects. */
1901 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1902 {
1903 int base_offset;
1904 if (BASETYPE_VIA_VIRTUAL (type, i))
1905 {
1906 base_offset = value_offset (*argp) + offset;
1907 base_offset = baseclass_offset (type, i,
1908 value_contents (*argp) + base_offset,
1909 VALUE_ADDRESS (*argp) + base_offset);
1910 if (base_offset == -1)
1911 error (_("virtual baseclass botch"));
1912 }
1913 else /* Non-virtual base, simply use bit position from debug
1914 info. */
1915 {
1916 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1917 }
1918 f = find_method_list (argp, method, base_offset + offset,
1919 TYPE_BASECLASS (type, i), num_fns,
1920 basetype, boffset);
1921 if (f)
1922 return f;
1923 }
1924 return NULL;
1925}
1926
1927/* Return the list of overloaded methods of a specified name.
1928
1929 ARGP is a pointer to a pointer to a value (the object).
1930 METHOD is the method name.
1931 OFFSET is the offset within the value contents.
1932 NUM_FNS is the number of overloaded instances.
1933 BASETYPE is set to the type of the base subobject that defines the
1934 method.
1935 BOFFSET is the offset of the base subobject which defines the method.
1936*/
1937
1938struct fn_field *
1939value_find_oload_method_list (struct value **argp, char *method,
1940 int offset, int *num_fns,
1941 struct type **basetype, int *boffset)
1942{
1943 struct type *t;
1944
1945 t = check_typedef (value_type (*argp));
1946
1947 /* Code snarfed from value_struct_elt. */
1948 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1949 {
1950 *argp = value_ind (*argp);
1951 /* Don't coerce fn pointer to fn and then back again! */
1952 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1953 *argp = coerce_array (*argp);
1954 t = check_typedef (value_type (*argp));
1955 }
1956
1957 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1958 && TYPE_CODE (t) != TYPE_CODE_UNION)
1959 error (_("Attempt to extract a component of a value that is not a struct or union"));
1960
1961 return find_method_list (argp, method, 0, t, num_fns,
1962 basetype, boffset);
1963}
1964
1965/* Given an array of argument types (ARGTYPES) (which includes an
1966 entry for "this" in the case of C++ methods), the number of
1967 arguments NARGS, the NAME of a function whether it's a method or
1968 not (METHOD), and the degree of laxness (LAX) in conforming to
1969 overload resolution rules in ANSI C++, find the best function that
1970 matches on the argument types according to the overload resolution
1971 rules.
1972
1973 In the case of class methods, the parameter OBJ is an object value
1974 in which to search for overloaded methods.
1975
1976 In the case of non-method functions, the parameter FSYM is a symbol
1977 corresponding to one of the overloaded functions.
1978
1979 Return value is an integer: 0 -> good match, 10 -> debugger applied
1980 non-standard coercions, 100 -> incompatible.
1981
1982 If a method is being searched for, VALP will hold the value.
1983 If a non-method is being searched for, SYMP will hold the symbol
1984 for it.
1985
1986 If a method is being searched for, and it is a static method,
1987 then STATICP will point to a non-zero value.
1988
1989 Note: This function does *not* check the value of
1990 overload_resolution. Caller must check it to see whether overload
1991 resolution is permitted.
1992*/
1993
1994int
1995find_overload_match (struct type **arg_types, int nargs,
1996 char *name, int method, int lax,
1997 struct value **objp, struct symbol *fsym,
1998 struct value **valp, struct symbol **symp,
1999 int *staticp)
2000{
2001 struct value *obj = (objp ? *objp : NULL);
2002 /* Index of best overloaded function. */
2003 int oload_champ;
2004 /* The measure for the current best match. */
2005 struct badness_vector *oload_champ_bv = NULL;
2006 struct value *temp = obj;
2007 /* For methods, the list of overloaded methods. */
2008 struct fn_field *fns_ptr = NULL;
2009 /* For non-methods, the list of overloaded function symbols. */
2010 struct symbol **oload_syms = NULL;
2011 /* Number of overloaded instances being considered. */
2012 int num_fns = 0;
2013 struct type *basetype = NULL;
2014 int boffset;
2015 int ix;
2016 int static_offset;
2017 struct cleanup *old_cleanups = NULL;
2018
2019 const char *obj_type_name = NULL;
2020 char *func_name = NULL;
2021 enum oload_classification match_quality;
2022
2023 /* Get the list of overloaded methods or functions. */
2024 if (method)
2025 {
2026 gdb_assert (obj);
2027 obj_type_name = TYPE_NAME (value_type (obj));
2028 /* Hack: evaluate_subexp_standard often passes in a pointer
2029 value rather than the object itself, so try again. */
2030 if ((!obj_type_name || !*obj_type_name)
2031 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2032 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2033
2034 fns_ptr = value_find_oload_method_list (&temp, name,
2035 0, &num_fns,
2036 &basetype, &boffset);
2037 if (!fns_ptr || !num_fns)
2038 error (_("Couldn't find method %s%s%s"),
2039 obj_type_name,
2040 (obj_type_name && *obj_type_name) ? "::" : "",
2041 name);
2042 /* If we are dealing with stub method types, they should have
2043 been resolved by find_method_list via
2044 value_find_oload_method_list above. */
2045 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2046 oload_champ = find_oload_champ (arg_types, nargs, method,
2047 num_fns, fns_ptr,
2048 oload_syms, &oload_champ_bv);
2049 }
2050 else
2051 {
2052 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2053
2054 /* If we have a C++ name, try to extract just the function
2055 part. */
2056 if (qualified_name)
2057 func_name = cp_func_name (qualified_name);
2058
2059 /* If there was no C++ name, this must be a C-style function.
2060 Just return the same symbol. Do the same if cp_func_name
2061 fails for some reason. */
2062 if (func_name == NULL)
2063 {
2064 *symp = fsym;
2065 return 0;
2066 }
2067
2068 old_cleanups = make_cleanup (xfree, func_name);
2069 make_cleanup (xfree, oload_syms);
2070 make_cleanup (xfree, oload_champ_bv);
2071
2072 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2073 func_name,
2074 qualified_name,
2075 &oload_syms,
2076 &oload_champ_bv);
2077 }
2078
2079 /* Check how bad the best match is. */
2080
2081 match_quality =
2082 classify_oload_match (oload_champ_bv, nargs,
2083 oload_method_static (method, fns_ptr,
2084 oload_champ));
2085
2086 if (match_quality == INCOMPATIBLE)
2087 {
2088 if (method)
2089 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2090 obj_type_name,
2091 (obj_type_name && *obj_type_name) ? "::" : "",
2092 name);
2093 else
2094 error (_("Cannot resolve function %s to any overloaded instance"),
2095 func_name);
2096 }
2097 else if (match_quality == NON_STANDARD)
2098 {
2099 if (method)
2100 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2101 obj_type_name,
2102 (obj_type_name && *obj_type_name) ? "::" : "",
2103 name);
2104 else
2105 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2106 func_name);
2107 }
2108
2109 if (method)
2110 {
2111 if (staticp != NULL)
2112 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2113 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2114 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2115 basetype, boffset);
2116 else
2117 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2118 basetype, boffset);
2119 }
2120 else
2121 {
2122 *symp = oload_syms[oload_champ];
2123 }
2124
2125 if (objp)
2126 {
2127 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
2128 && (TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR
2129 || TYPE_CODE (value_type (*objp)) == TYPE_CODE_REF))
2130 {
2131 temp = value_addr (temp);
2132 }
2133 *objp = temp;
2134 }
2135 if (old_cleanups != NULL)
2136 do_cleanups (old_cleanups);
2137
2138 switch (match_quality)
2139 {
2140 case INCOMPATIBLE:
2141 return 100;
2142 case NON_STANDARD:
2143 return 10;
2144 default: /* STANDARD */
2145 return 0;
2146 }
2147}
2148
2149/* Find the best overload match, searching for FUNC_NAME in namespaces
2150 contained in QUALIFIED_NAME until it either finds a good match or
2151 runs out of namespaces. It stores the overloaded functions in
2152 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2153 calling function is responsible for freeing *OLOAD_SYMS and
2154 *OLOAD_CHAMP_BV. */
2155
2156static int
2157find_oload_champ_namespace (struct type **arg_types, int nargs,
2158 const char *func_name,
2159 const char *qualified_name,
2160 struct symbol ***oload_syms,
2161 struct badness_vector **oload_champ_bv)
2162{
2163 int oload_champ;
2164
2165 find_oload_champ_namespace_loop (arg_types, nargs,
2166 func_name,
2167 qualified_name, 0,
2168 oload_syms, oload_champ_bv,
2169 &oload_champ);
2170
2171 return oload_champ;
2172}
2173
2174/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2175 how deep we've looked for namespaces, and the champ is stored in
2176 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2177 if it isn't.
2178
2179 It is the caller's responsibility to free *OLOAD_SYMS and
2180 *OLOAD_CHAMP_BV. */
2181
2182static int
2183find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2184 const char *func_name,
2185 const char *qualified_name,
2186 int namespace_len,
2187 struct symbol ***oload_syms,
2188 struct badness_vector **oload_champ_bv,
2189 int *oload_champ)
2190{
2191 int next_namespace_len = namespace_len;
2192 int searched_deeper = 0;
2193 int num_fns = 0;
2194 struct cleanup *old_cleanups;
2195 int new_oload_champ;
2196 struct symbol **new_oload_syms;
2197 struct badness_vector *new_oload_champ_bv;
2198 char *new_namespace;
2199
2200 if (next_namespace_len != 0)
2201 {
2202 gdb_assert (qualified_name[next_namespace_len] == ':');
2203 next_namespace_len += 2;
2204 }
2205 next_namespace_len +=
2206 cp_find_first_component (qualified_name + next_namespace_len);
2207
2208 /* Initialize these to values that can safely be xfree'd. */
2209 *oload_syms = NULL;
2210 *oload_champ_bv = NULL;
2211
2212 /* First, see if we have a deeper namespace we can search in.
2213 If we get a good match there, use it. */
2214
2215 if (qualified_name[next_namespace_len] == ':')
2216 {
2217 searched_deeper = 1;
2218
2219 if (find_oload_champ_namespace_loop (arg_types, nargs,
2220 func_name, qualified_name,
2221 next_namespace_len,
2222 oload_syms, oload_champ_bv,
2223 oload_champ))
2224 {
2225 return 1;
2226 }
2227 };
2228
2229 /* If we reach here, either we're in the deepest namespace or we
2230 didn't find a good match in a deeper namespace. But, in the
2231 latter case, we still have a bad match in a deeper namespace;
2232 note that we might not find any match at all in the current
2233 namespace. (There's always a match in the deepest namespace,
2234 because this overload mechanism only gets called if there's a
2235 function symbol to start off with.) */
2236
2237 old_cleanups = make_cleanup (xfree, *oload_syms);
2238 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2239 new_namespace = alloca (namespace_len + 1);
2240 strncpy (new_namespace, qualified_name, namespace_len);
2241 new_namespace[namespace_len] = '\0';
2242 new_oload_syms = make_symbol_overload_list (func_name,
2243 new_namespace);
2244 while (new_oload_syms[num_fns])
2245 ++num_fns;
2246
2247 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2248 NULL, new_oload_syms,
2249 &new_oload_champ_bv);
2250
2251 /* Case 1: We found a good match. Free earlier matches (if any),
2252 and return it. Case 2: We didn't find a good match, but we're
2253 not the deepest function. Then go with the bad match that the
2254 deeper function found. Case 3: We found a bad match, and we're
2255 the deepest function. Then return what we found, even though
2256 it's a bad match. */
2257
2258 if (new_oload_champ != -1
2259 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2260 {
2261 *oload_syms = new_oload_syms;
2262 *oload_champ = new_oload_champ;
2263 *oload_champ_bv = new_oload_champ_bv;
2264 do_cleanups (old_cleanups);
2265 return 1;
2266 }
2267 else if (searched_deeper)
2268 {
2269 xfree (new_oload_syms);
2270 xfree (new_oload_champ_bv);
2271 discard_cleanups (old_cleanups);
2272 return 0;
2273 }
2274 else
2275 {
2276 gdb_assert (new_oload_champ != -1);
2277 *oload_syms = new_oload_syms;
2278 *oload_champ = new_oload_champ;
2279 *oload_champ_bv = new_oload_champ_bv;
2280 discard_cleanups (old_cleanups);
2281 return 0;
2282 }
2283}
2284
2285/* Look for a function to take NARGS args of types ARG_TYPES. Find
2286 the best match from among the overloaded methods or functions
2287 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2288 The number of methods/functions in the list is given by NUM_FNS.
2289 Return the index of the best match; store an indication of the
2290 quality of the match in OLOAD_CHAMP_BV.
2291
2292 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2293
2294static int
2295find_oload_champ (struct type **arg_types, int nargs, int method,
2296 int num_fns, struct fn_field *fns_ptr,
2297 struct symbol **oload_syms,
2298 struct badness_vector **oload_champ_bv)
2299{
2300 int ix;
2301 /* A measure of how good an overloaded instance is. */
2302 struct badness_vector *bv;
2303 /* Index of best overloaded function. */
2304 int oload_champ = -1;
2305 /* Current ambiguity state for overload resolution. */
2306 int oload_ambiguous = 0;
2307 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2308
2309 *oload_champ_bv = NULL;
2310
2311 /* Consider each candidate in turn. */
2312 for (ix = 0; ix < num_fns; ix++)
2313 {
2314 int jj;
2315 int static_offset = oload_method_static (method, fns_ptr, ix);
2316 int nparms;
2317 struct type **parm_types;
2318
2319 if (method)
2320 {
2321 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2322 }
2323 else
2324 {
2325 /* If it's not a method, this is the proper place. */
2326 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2327 }
2328
2329 /* Prepare array of parameter types. */
2330 parm_types = (struct type **)
2331 xmalloc (nparms * (sizeof (struct type *)));
2332 for (jj = 0; jj < nparms; jj++)
2333 parm_types[jj] = (method
2334 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2335 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2336 jj));
2337
2338 /* Compare parameter types to supplied argument types. Skip
2339 THIS for static methods. */
2340 bv = rank_function (parm_types, nparms,
2341 arg_types + static_offset,
2342 nargs - static_offset);
2343
2344 if (!*oload_champ_bv)
2345 {
2346 *oload_champ_bv = bv;
2347 oload_champ = 0;
2348 }
2349 else /* See whether current candidate is better or worse than
2350 previous best. */
2351 switch (compare_badness (bv, *oload_champ_bv))
2352 {
2353 case 0: /* Top two contenders are equally good. */
2354 oload_ambiguous = 1;
2355 break;
2356 case 1: /* Incomparable top contenders. */
2357 oload_ambiguous = 2;
2358 break;
2359 case 2: /* New champion, record details. */
2360 *oload_champ_bv = bv;
2361 oload_ambiguous = 0;
2362 oload_champ = ix;
2363 break;
2364 case 3:
2365 default:
2366 break;
2367 }
2368 xfree (parm_types);
2369 if (overload_debug)
2370 {
2371 if (method)
2372 fprintf_filtered (gdb_stderr,
2373 "Overloaded method instance %s, # of parms %d\n",
2374 fns_ptr[ix].physname, nparms);
2375 else
2376 fprintf_filtered (gdb_stderr,
2377 "Overloaded function instance %s # of parms %d\n",
2378 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2379 nparms);
2380 for (jj = 0; jj < nargs - static_offset; jj++)
2381 fprintf_filtered (gdb_stderr,
2382 "...Badness @ %d : %d\n",
2383 jj, bv->rank[jj]);
2384 fprintf_filtered (gdb_stderr,
2385 "Overload resolution champion is %d, ambiguous? %d\n",
2386 oload_champ, oload_ambiguous);
2387 }
2388 }
2389
2390 return oload_champ;
2391}
2392
2393/* Return 1 if we're looking at a static method, 0 if we're looking at
2394 a non-static method or a function that isn't a method. */
2395
2396static int
2397oload_method_static (int method, struct fn_field *fns_ptr, int index)
2398{
2399 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2400 return 1;
2401 else
2402 return 0;
2403}
2404
2405/* Check how good an overload match OLOAD_CHAMP_BV represents. */
2406
2407static enum oload_classification
2408classify_oload_match (struct badness_vector *oload_champ_bv,
2409 int nargs,
2410 int static_offset)
2411{
2412 int ix;
2413
2414 for (ix = 1; ix <= nargs - static_offset; ix++)
2415 {
2416 if (oload_champ_bv->rank[ix] >= 100)
2417 return INCOMPATIBLE; /* Truly mismatched types. */
2418 else if (oload_champ_bv->rank[ix] >= 10)
2419 return NON_STANDARD; /* Non-standard type conversions
2420 needed. */
2421 }
2422
2423 return STANDARD; /* Only standard conversions needed. */
2424}
2425
2426/* C++: return 1 is NAME is a legitimate name for the destructor of
2427 type TYPE. If TYPE does not have a destructor, or if NAME is
2428 inappropriate for TYPE, an error is signaled. */
2429int
2430destructor_name_p (const char *name, const struct type *type)
2431{
2432 /* Destructors are a special case. */
2433
2434 if (name[0] == '~')
2435 {
2436 char *dname = type_name_no_tag (type);
2437 char *cp = strchr (dname, '<');
2438 unsigned int len;
2439
2440 /* Do not compare the template part for template classes. */
2441 if (cp == NULL)
2442 len = strlen (dname);
2443 else
2444 len = cp - dname;
2445 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2446 error (_("name of destructor must equal name of class"));
2447 else
2448 return 1;
2449 }
2450 return 0;
2451}
2452
2453/* Given TYPE, a structure/union,
2454 return 1 if the component named NAME from the ultimate target
2455 structure/union is defined, otherwise, return 0. */
2456
2457int
2458check_field (struct type *type, const char *name)
2459{
2460 int i;
2461
2462 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2463 {
2464 char *t_field_name = TYPE_FIELD_NAME (type, i);
2465 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2466 return 1;
2467 }
2468
2469 /* C++: If it was not found as a data field, then try to return it
2470 as a pointer to a method. */
2471
2472 /* Destructors are a special case. */
2473 if (destructor_name_p (name, type))
2474 {
2475 int m_index, f_index;
2476
2477 return get_destructor_fn_field (type, &m_index, &f_index);
2478 }
2479
2480 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2481 {
2482 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2483 return 1;
2484 }
2485
2486 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2487 if (check_field (TYPE_BASECLASS (type, i), name))
2488 return 1;
2489
2490 return 0;
2491}
2492
2493/* C++: Given an aggregate type CURTYPE, and a member name NAME,
2494 return the appropriate member (or the address of the member, if
2495 WANT_ADDRESS). This function is used to resolve user expressions
2496 of the form "DOMAIN::NAME". For more details on what happens, see
2497 the comment before value_struct_elt_for_reference. */
2498
2499struct value *
2500value_aggregate_elt (struct type *curtype,
2501 char *name, int want_address,
2502 enum noside noside)
2503{
2504 switch (TYPE_CODE (curtype))
2505 {
2506 case TYPE_CODE_STRUCT:
2507 case TYPE_CODE_UNION:
2508 return value_struct_elt_for_reference (curtype, 0, curtype,
2509 name, NULL,
2510 want_address, noside);
2511 case TYPE_CODE_NAMESPACE:
2512 return value_namespace_elt (curtype, name,
2513 want_address, noside);
2514 default:
2515 internal_error (__FILE__, __LINE__,
2516 _("non-aggregate type in value_aggregate_elt"));
2517 }
2518}
2519
2520/* C++: Given an aggregate type CURTYPE, and a member name NAME,
2521 return the address of this member as a "pointer to member" type.
2522 If INTYPE is non-null, then it will be the type of the member we
2523 are looking for. This will help us resolve "pointers to member
2524 functions". This function is used to resolve user expressions of
2525 the form "DOMAIN::NAME". */
2526
2527static struct value *
2528value_struct_elt_for_reference (struct type *domain, int offset,
2529 struct type *curtype, char *name,
2530 struct type *intype,
2531 int want_address,
2532 enum noside noside)
2533{
2534 struct type *t = curtype;
2535 int i;
2536 struct value *v, *result;
2537
2538 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2539 && TYPE_CODE (t) != TYPE_CODE_UNION)
2540 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2541
2542 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2543 {
2544 char *t_field_name = TYPE_FIELD_NAME (t, i);
2545
2546 if (t_field_name && strcmp (t_field_name, name) == 0)
2547 {
2548 if (field_is_static (&TYPE_FIELD (t, i)))
2549 {
2550 v = value_static_field (t, i);
2551 if (v == NULL)
2552 error (_("static field %s has been optimized out"),
2553 name);
2554 if (want_address)
2555 v = value_addr (v);
2556 return v;
2557 }
2558 if (TYPE_FIELD_PACKED (t, i))
2559 error (_("pointers to bitfield members not allowed"));
2560
2561 if (want_address)
2562 return value_from_longest
2563 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2564 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2565 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2566 return allocate_value (TYPE_FIELD_TYPE (t, i));
2567 else
2568 error (_("Cannot reference non-static field \"%s\""), name);
2569 }
2570 }
2571
2572 /* C++: If it was not found as a data field, then try to return it
2573 as a pointer to a method. */
2574
2575 /* Destructors are a special case. */
2576 if (destructor_name_p (name, t))
2577 {
2578 error (_("member pointers to destructors not implemented yet"));
2579 }
2580
2581 /* Perform all necessary dereferencing. */
2582 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2583 intype = TYPE_TARGET_TYPE (intype);
2584
2585 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2586 {
2587 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2588 char dem_opname[64];
2589
2590 if (strncmp (t_field_name, "__", 2) == 0
2591 || strncmp (t_field_name, "op", 2) == 0
2592 || strncmp (t_field_name, "type", 4) == 0)
2593 {
2594 if (cplus_demangle_opname (t_field_name,
2595 dem_opname, DMGL_ANSI))
2596 t_field_name = dem_opname;
2597 else if (cplus_demangle_opname (t_field_name,
2598 dem_opname, 0))
2599 t_field_name = dem_opname;
2600 }
2601 if (t_field_name && strcmp (t_field_name, name) == 0)
2602 {
2603 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2604 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2605
2606 check_stub_method_group (t, i);
2607
2608 if (intype == 0 && j > 1)
2609 error (_("non-unique member `%s' requires type instantiation"), name);
2610 if (intype)
2611 {
2612 while (j--)
2613 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2614 break;
2615 if (j < 0)
2616 error (_("no member function matches that type instantiation"));
2617 }
2618 else
2619 j = 0;
2620
2621 if (TYPE_FN_FIELD_STATIC_P (f, j))
2622 {
2623 struct symbol *s =
2624 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2625 0, VAR_DOMAIN, 0);
2626 if (s == NULL)
2627 return NULL;
2628
2629 if (want_address)
2630 return value_addr (read_var_value (s, 0));
2631 else
2632 return read_var_value (s, 0);
2633 }
2634
2635 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2636 {
2637 if (want_address)
2638 {
2639 result = allocate_value
2640 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2641 cplus_make_method_ptr (value_type (result),
2642 value_contents_writeable (result),
2643 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2644 }
2645 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2646 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2647 else
2648 error (_("Cannot reference virtual member function \"%s\""),
2649 name);
2650 }
2651 else
2652 {
2653 struct symbol *s =
2654 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2655 0, VAR_DOMAIN, 0);
2656 if (s == NULL)
2657 return NULL;
2658
2659 v = read_var_value (s, 0);
2660 if (!want_address)
2661 result = v;
2662 else
2663 {
2664 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2665 cplus_make_method_ptr (value_type (result),
2666 value_contents_writeable (result),
2667 VALUE_ADDRESS (v), 0);
2668 }
2669 }
2670 return result;
2671 }
2672 }
2673 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2674 {
2675 struct value *v;
2676 int base_offset;
2677
2678 if (BASETYPE_VIA_VIRTUAL (t, i))
2679 base_offset = 0;
2680 else
2681 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2682 v = value_struct_elt_for_reference (domain,
2683 offset + base_offset,
2684 TYPE_BASECLASS (t, i),
2685 name, intype,
2686 want_address, noside);
2687 if (v)
2688 return v;
2689 }
2690
2691 /* As a last chance, pretend that CURTYPE is a namespace, and look
2692 it up that way; this (frequently) works for types nested inside
2693 classes. */
2694
2695 return value_maybe_namespace_elt (curtype, name,
2696 want_address, noside);
2697}
2698
2699/* C++: Return the member NAME of the namespace given by the type
2700 CURTYPE. */
2701
2702static struct value *
2703value_namespace_elt (const struct type *curtype,
2704 char *name, int want_address,
2705 enum noside noside)
2706{
2707 struct value *retval = value_maybe_namespace_elt (curtype, name,
2708 want_address,
2709 noside);
2710
2711 if (retval == NULL)
2712 error (_("No symbol \"%s\" in namespace \"%s\"."),
2713 name, TYPE_TAG_NAME (curtype));
2714
2715 return retval;
2716}
2717
2718/* A helper function used by value_namespace_elt and
2719 value_struct_elt_for_reference. It looks up NAME inside the
2720 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2721 is a class and NAME refers to a type in CURTYPE itself (as opposed
2722 to, say, some base class of CURTYPE). */
2723
2724static struct value *
2725value_maybe_namespace_elt (const struct type *curtype,
2726 char *name, int want_address,
2727 enum noside noside)
2728{
2729 const char *namespace_name = TYPE_TAG_NAME (curtype);
2730 struct symbol *sym;
2731 struct value *result;
2732
2733 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2734 get_selected_block (0),
2735 VAR_DOMAIN);
2736
2737 if (sym == NULL)
2738 return NULL;
2739 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2740 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2741 result = allocate_value (SYMBOL_TYPE (sym));
2742 else
2743 result = value_of_variable (sym, get_selected_block (0));
2744
2745 if (result && want_address)
2746 result = value_addr (result);
2747
2748 return result;
2749}
2750
2751/* Given a pointer value V, find the real (RTTI) type of the object it
2752 points to.
2753
2754 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2755 and refer to the values computed for the object pointed to. */
2756
2757struct type *
2758value_rtti_target_type (struct value *v, int *full,
2759 int *top, int *using_enc)
2760{
2761 struct value *target;
2762
2763 target = value_ind (v);
2764
2765 return value_rtti_type (target, full, top, using_enc);
2766}
2767
2768/* Given a value pointed to by ARGP, check its real run-time type, and
2769 if that is different from the enclosing type, create a new value
2770 using the real run-time type as the enclosing type (and of the same
2771 type as ARGP) and return it, with the embedded offset adjusted to
2772 be the correct offset to the enclosed object. RTYPE is the type,
2773 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2774 by value_rtti_type(). If these are available, they can be supplied
2775 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2776 NULL if they're not available. */
2777
2778struct value *
2779value_full_object (struct value *argp,
2780 struct type *rtype,
2781 int xfull, int xtop,
2782 int xusing_enc)
2783{
2784 struct type *real_type;
2785 int full = 0;
2786 int top = -1;
2787 int using_enc = 0;
2788 struct value *new_val;
2789
2790 if (rtype)
2791 {
2792 real_type = rtype;
2793 full = xfull;
2794 top = xtop;
2795 using_enc = xusing_enc;
2796 }
2797 else
2798 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2799
2800 /* If no RTTI data, or if object is already complete, do nothing. */
2801 if (!real_type || real_type == value_enclosing_type (argp))
2802 return argp;
2803
2804 /* If we have the full object, but for some reason the enclosing
2805 type is wrong, set it. */
2806 /* pai: FIXME -- sounds iffy */
2807 if (full)
2808 {
2809 argp = value_change_enclosing_type (argp, real_type);
2810 return argp;
2811 }
2812
2813 /* Check if object is in memory */
2814 if (VALUE_LVAL (argp) != lval_memory)
2815 {
2816 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2817 TYPE_NAME (real_type));
2818
2819 return argp;
2820 }
2821
2822 /* All other cases -- retrieve the complete object. */
2823 /* Go back by the computed top_offset from the beginning of the
2824 object, adjusting for the embedded offset of argp if that's what
2825 value_rtti_type used for its computation. */
2826 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2827 (using_enc ? 0 : value_embedded_offset (argp)));
2828 deprecated_set_value_type (new_val, value_type (argp));
2829 set_value_embedded_offset (new_val, (using_enc
2830 ? top + value_embedded_offset (argp)
2831 : top));
2832 return new_val;
2833}
2834
2835
2836/* Return the value of the local variable, if one exists.
2837 Flag COMPLAIN signals an error if the request is made in an
2838 inappropriate context. */
2839
2840struct value *
2841value_of_local (const char *name, int complain)
2842{
2843 struct symbol *func, *sym;
2844 struct block *b;
2845 struct value * ret;
2846 struct frame_info *frame;
2847
2848 if (complain)
2849 frame = get_selected_frame (_("no frame selected"));
2850 else
2851 {
2852 frame = deprecated_safe_get_selected_frame ();
2853 if (frame == 0)
2854 return 0;
2855 }
2856
2857 func = get_frame_function (frame);
2858 if (!func)
2859 {
2860 if (complain)
2861 error (_("no `%s' in nameless context"), name);
2862 else
2863 return 0;
2864 }
2865
2866 b = SYMBOL_BLOCK_VALUE (func);
2867 if (dict_empty (BLOCK_DICT (b)))
2868 {
2869 if (complain)
2870 error (_("no args, no `%s'"), name);
2871 else
2872 return 0;
2873 }
2874
2875 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2876 symbol instead of the LOC_ARG one (if both exist). */
2877 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2878 if (sym == NULL)
2879 {
2880 if (complain)
2881 error (_("current stack frame does not contain a variable named `%s'"),
2882 name);
2883 else
2884 return NULL;
2885 }
2886
2887 ret = read_var_value (sym, frame);
2888 if (ret == 0 && complain)
2889 error (_("`%s' argument unreadable"), name);
2890 return ret;
2891}
2892
2893/* C++/Objective-C: return the value of the class instance variable,
2894 if one exists. Flag COMPLAIN signals an error if the request is
2895 made in an inappropriate context. */
2896
2897struct value *
2898value_of_this (int complain)
2899{
2900 if (!current_language->la_name_of_this)
2901 return 0;
2902 return value_of_local (current_language->la_name_of_this, complain);
2903}
2904
2905/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2906 elements long, starting at LOWBOUND. The result has the same lower
2907 bound as the original ARRAY. */
2908
2909struct value *
2910value_slice (struct value *array, int lowbound, int length)
2911{
2912 struct type *slice_range_type, *slice_type, *range_type;
2913 LONGEST lowerbound, upperbound;
2914 struct value *slice;
2915 struct type *array_type;
2916
2917 array_type = check_typedef (value_type (array));
2918 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2919 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2920 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2921 error (_("cannot take slice of non-array"));
2922
2923 range_type = TYPE_INDEX_TYPE (array_type);
2924 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2925 error (_("slice from bad array or bitstring"));
2926
2927 if (lowbound < lowerbound || length < 0
2928 || lowbound + length - 1 > upperbound)
2929 error (_("slice out of range"));
2930
2931 /* FIXME-type-allocation: need a way to free this type when we are
2932 done with it. */
2933 slice_range_type = create_range_type ((struct type *) NULL,
2934 TYPE_TARGET_TYPE (range_type),
2935 lowbound,
2936 lowbound + length - 1);
2937 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2938 {
2939 int i;
2940
2941 slice_type = create_set_type ((struct type *) NULL,
2942 slice_range_type);
2943 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2944 slice = value_zero (slice_type, not_lval);
2945
2946 for (i = 0; i < length; i++)
2947 {
2948 int element = value_bit_index (array_type,
2949 value_contents (array),
2950 lowbound + i);
2951 if (element < 0)
2952 error (_("internal error accessing bitstring"));
2953 else if (element > 0)
2954 {
2955 int j = i % TARGET_CHAR_BIT;
2956 if (gdbarch_bits_big_endian (current_gdbarch))
2957 j = TARGET_CHAR_BIT - 1 - j;
2958 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2959 }
2960 }
2961 /* We should set the address, bitssize, and bitspos, so the
2962 slice can be used on the LHS, but that may require extensions
2963 to value_assign. For now, just leave as a non_lval.
2964 FIXME. */
2965 }
2966 else
2967 {
2968 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2969 LONGEST offset =
2970 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2971
2972 slice_type = create_array_type ((struct type *) NULL,
2973 element_type,
2974 slice_range_type);
2975 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2976
2977 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2978 slice = allocate_value_lazy (slice_type);
2979 else
2980 {
2981 slice = allocate_value (slice_type);
2982 memcpy (value_contents_writeable (slice),
2983 value_contents (array) + offset,
2984 TYPE_LENGTH (slice_type));
2985 }
2986
2987 if (VALUE_LVAL (array) == lval_internalvar)
2988 VALUE_LVAL (slice) = lval_internalvar_component;
2989 else
2990 VALUE_LVAL (slice) = VALUE_LVAL (array);
2991
2992 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2993 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2994 set_value_offset (slice, value_offset (array) + offset);
2995 }
2996 return slice;
2997}
2998
2999/* Create a value for a FORTRAN complex number. Currently most of the
3000 time values are coerced to COMPLEX*16 (i.e. a complex number
3001 composed of 2 doubles. This really should be a smarter routine
3002 that figures out precision inteligently as opposed to assuming
3003 doubles. FIXME: fmb */
3004
3005struct value *
3006value_literal_complex (struct value *arg1,
3007 struct value *arg2,
3008 struct type *type)
3009{
3010 struct value *val;
3011 struct type *real_type = TYPE_TARGET_TYPE (type);
3012
3013 val = allocate_value (type);
3014 arg1 = value_cast (real_type, arg1);
3015 arg2 = value_cast (real_type, arg2);
3016
3017 memcpy (value_contents_raw (val),
3018 value_contents (arg1), TYPE_LENGTH (real_type));
3019 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3020 value_contents (arg2), TYPE_LENGTH (real_type));
3021 return val;
3022}
3023
3024/* Cast a value into the appropriate complex data type. */
3025
3026static struct value *
3027cast_into_complex (struct type *type, struct value *val)
3028{
3029 struct type *real_type = TYPE_TARGET_TYPE (type);
3030
3031 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3032 {
3033 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3034 struct value *re_val = allocate_value (val_real_type);
3035 struct value *im_val = allocate_value (val_real_type);
3036
3037 memcpy (value_contents_raw (re_val),
3038 value_contents (val), TYPE_LENGTH (val_real_type));
3039 memcpy (value_contents_raw (im_val),
3040 value_contents (val) + TYPE_LENGTH (val_real_type),
3041 TYPE_LENGTH (val_real_type));
3042
3043 return value_literal_complex (re_val, im_val, type);
3044 }
3045 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3046 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3047 return value_literal_complex (val,
3048 value_zero (real_type, not_lval),
3049 type);
3050 else
3051 error (_("cannot cast non-number to complex"));
3052}
3053
3054void
3055_initialize_valops (void)
3056{
3057 add_setshow_boolean_cmd ("overload-resolution", class_support,
3058 &overload_resolution, _("\
3059Set overload resolution in evaluating C++ functions."), _("\
3060Show overload resolution in evaluating C++ functions."),
3061 NULL, NULL,
3062 show_overload_resolution,
3063 &setlist, &showlist);
3064 overload_resolution = 1;
3065}
This page took 0.033428 seconds and 4 git commands to generate.