Protoization.
[deliverable/binutils-gdb.git] / gdb / valops.c
... / ...
CommitLineData
1/* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcore.h"
29#include "target.h"
30#include "demangle.h"
31#include "language.h"
32#include "gdbcmd.h"
33
34#include <errno.h>
35#include "gdb_string.h"
36
37/* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39extern int hp_som_som_object_present;
40
41extern int overload_debug;
42/* Local functions. */
43
44static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
45
46static CORE_ADDR find_function_addr (value_ptr, struct type **);
47static value_ptr value_arg_coerce (value_ptr, struct type *, int);
48
49
50static CORE_ADDR value_push (CORE_ADDR, value_ptr);
51
52static value_ptr search_struct_field (char *, value_ptr, int,
53 struct type *, int);
54
55static value_ptr search_struct_method (char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *);
58
59static int check_field_in (struct type *, const char *);
60
61static CORE_ADDR allocate_space_in_inferior (int);
62
63static value_ptr cast_into_complex (struct type *, value_ptr);
64
65static struct fn_field *find_method_list (value_ptr * argp, char *method,
66 int offset, int *static_memfuncp,
67 struct type *type, int *num_fns,
68 struct type **basetype,
69 int *boffset);
70
71void _initialize_valops (void);
72
73#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
74
75/* Flag for whether we want to abandon failed expression evals by default. */
76
77#if 0
78static int auto_abandon = 0;
79#endif
80
81int overload_resolution = 0;
82
83/* This boolean tells what gdb should do if a signal is received while in
84 a function called from gdb (call dummy). If set, gdb unwinds the stack
85 and restore the context to what as it was before the call.
86 The default is to stop in the frame where the signal was received. */
87
88int unwind_on_signal_p = 0;
89\f
90
91
92/* Find the address of function name NAME in the inferior. */
93
94value_ptr
95find_function_in_inferior (char *name)
96{
97 register struct symbol *sym;
98 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
99 if (sym != NULL)
100 {
101 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
102 {
103 error ("\"%s\" exists in this program but is not a function.",
104 name);
105 }
106 return value_of_variable (sym, NULL);
107 }
108 else
109 {
110 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
111 if (msymbol != NULL)
112 {
113 struct type *type;
114 CORE_ADDR maddr;
115 type = lookup_pointer_type (builtin_type_char);
116 type = lookup_function_type (type);
117 type = lookup_pointer_type (type);
118 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
119 return value_from_pointer (type, maddr);
120 }
121 else
122 {
123 if (!target_has_execution)
124 error ("evaluation of this expression requires the target program to be active");
125 else
126 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
127 }
128 }
129}
130
131/* Allocate NBYTES of space in the inferior using the inferior's malloc
132 and return a value that is a pointer to the allocated space. */
133
134value_ptr
135value_allocate_space_in_inferior (int len)
136{
137 value_ptr blocklen;
138 register value_ptr val = find_function_in_inferior ("malloc");
139
140 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
141 val = call_function_by_hand (val, 1, &blocklen);
142 if (value_logical_not (val))
143 {
144 if (!target_has_execution)
145 error ("No memory available to program now: you need to start the target first");
146 else
147 error ("No memory available to program: call to malloc failed");
148 }
149 return val;
150}
151
152static CORE_ADDR
153allocate_space_in_inferior (int len)
154{
155 return value_as_long (value_allocate_space_in_inferior (len));
156}
157
158/* Cast value ARG2 to type TYPE and return as a value.
159 More general than a C cast: accepts any two types of the same length,
160 and if ARG2 is an lvalue it can be cast into anything at all. */
161/* In C++, casts may change pointer or object representations. */
162
163value_ptr
164value_cast (struct type *type, register value_ptr arg2)
165{
166 register enum type_code code1;
167 register enum type_code code2;
168 register int scalar;
169 struct type *type2;
170
171 int convert_to_boolean = 0;
172
173 if (VALUE_TYPE (arg2) == type)
174 return arg2;
175
176 CHECK_TYPEDEF (type);
177 code1 = TYPE_CODE (type);
178 COERCE_REF (arg2);
179 type2 = check_typedef (VALUE_TYPE (arg2));
180
181 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
182 is treated like a cast to (TYPE [N])OBJECT,
183 where N is sizeof(OBJECT)/sizeof(TYPE). */
184 if (code1 == TYPE_CODE_ARRAY)
185 {
186 struct type *element_type = TYPE_TARGET_TYPE (type);
187 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
188 if (element_length > 0
189 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (type);
192 int val_length = TYPE_LENGTH (type2);
193 LONGEST low_bound, high_bound, new_length;
194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
195 low_bound = 0, high_bound = 0;
196 new_length = val_length / element_length;
197 if (val_length % element_length != 0)
198 warning ("array element type size does not divide object size in cast");
199 /* FIXME-type-allocation: need a way to free this type when we are
200 done with it. */
201 range_type = create_range_type ((struct type *) NULL,
202 TYPE_TARGET_TYPE (range_type),
203 low_bound,
204 new_length + low_bound - 1);
205 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
206 element_type, range_type);
207 return arg2;
208 }
209 }
210
211 if (current_language->c_style_arrays
212 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
213 arg2 = value_coerce_array (arg2);
214
215 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
216 arg2 = value_coerce_function (arg2);
217
218 type2 = check_typedef (VALUE_TYPE (arg2));
219 COERCE_VARYING_ARRAY (arg2, type2);
220 code2 = TYPE_CODE (type2);
221
222 if (code1 == TYPE_CODE_COMPLEX)
223 return cast_into_complex (type, arg2);
224 if (code1 == TYPE_CODE_BOOL)
225 {
226 code1 = TYPE_CODE_INT;
227 convert_to_boolean = 1;
228 }
229 if (code1 == TYPE_CODE_CHAR)
230 code1 = TYPE_CODE_INT;
231 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
232 code2 = TYPE_CODE_INT;
233
234 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
235 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
236
237 if (code1 == TYPE_CODE_STRUCT
238 && code2 == TYPE_CODE_STRUCT
239 && TYPE_NAME (type) != 0)
240 {
241 /* Look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the object in addition to changing its type. */
244 value_ptr v = search_struct_field (type_name_no_tag (type),
245 arg2, 0, type2, 1);
246 if (v)
247 {
248 VALUE_TYPE (v) = type;
249 return v;
250 }
251 }
252 if (code1 == TYPE_CODE_FLT && scalar)
253 return value_from_double (type, value_as_double (arg2));
254 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
255 || code1 == TYPE_CODE_RANGE)
256 && (scalar || code2 == TYPE_CODE_PTR))
257 {
258 LONGEST longest;
259
260 if (hp_som_som_object_present && /* if target compiled by HP aCC */
261 (code2 == TYPE_CODE_PTR))
262 {
263 unsigned int *ptr;
264 value_ptr retvalp;
265
266 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
267 {
268 /* With HP aCC, pointers to data members have a bias */
269 case TYPE_CODE_MEMBER:
270 retvalp = value_from_longest (type, value_as_long (arg2));
271 /* force evaluation */
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ?
286 (LONGEST) (longest ? 1 : 0) : longest);
287 }
288 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
289 code2 == TYPE_CODE_ENUM ||
290 code2 == TYPE_CODE_RANGE))
291 {
292 int ptr_bit = HOST_CHAR_BIT * TYPE_LENGTH (type);
293 LONGEST longest = value_as_long (arg2);
294 if (ptr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
295 {
296 if (longest >= ((LONGEST) 1 << ptr_bit)
297 || longest <= -((LONGEST) 1 << ptr_bit))
298 warning ("value truncated");
299 }
300 return value_from_longest (type, longest);
301 }
302 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
303 {
304 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
305 {
306 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
307 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
308 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
309 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
310 && !value_logical_not (arg2))
311 {
312 value_ptr v;
313
314 /* Look in the type of the source to see if it contains the
315 type of the target as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type. */
317 if (TYPE_NAME (t1) != NULL)
318 {
319 v = search_struct_field (type_name_no_tag (t1),
320 value_ind (arg2), 0, t2, 1);
321 if (v)
322 {
323 v = value_addr (v);
324 VALUE_TYPE (v) = type;
325 return v;
326 }
327 }
328
329 /* Look in the type of the target to see if it contains the
330 type of the source as a superclass. If so, we'll need to
331 offset the pointer rather than just change its type.
332 FIXME: This fails silently with virtual inheritance. */
333 if (TYPE_NAME (t2) != NULL)
334 {
335 v = search_struct_field (type_name_no_tag (t2),
336 value_zero (t1, not_lval), 0, t1, 1);
337 if (v)
338 {
339 value_ptr v2 = value_ind (arg2);
340 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
341 + VALUE_OFFSET (v);
342
343 /* JYG: adjust the new pointer value and
344 embedded offset. */
345 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
346 VALUE_EMBEDDED_OFFSET (v2) = 0;
347
348 v2 = value_addr (v2);
349 VALUE_TYPE (v2) = type;
350 return v2;
351 }
352 }
353 }
354 /* No superclass found, just fall through to change ptr type. */
355 }
356 VALUE_TYPE (arg2) = type;
357 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
358 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
359 return arg2;
360 }
361 else if (chill_varying_type (type))
362 {
363 struct type *range1, *range2, *eltype1, *eltype2;
364 value_ptr val;
365 int count1, count2;
366 LONGEST low_bound, high_bound;
367 char *valaddr, *valaddr_data;
368 /* For lint warning about eltype2 possibly uninitialized: */
369 eltype2 = NULL;
370 if (code2 == TYPE_CODE_BITSTRING)
371 error ("not implemented: converting bitstring to varying type");
372 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
373 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
374 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
375 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
376 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
377 error ("Invalid conversion to varying type");
378 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
379 range2 = TYPE_FIELD_TYPE (type2, 0);
380 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
381 count1 = -1;
382 else
383 count1 = high_bound - low_bound + 1;
384 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
385 count1 = -1, count2 = 0; /* To force error before */
386 else
387 count2 = high_bound - low_bound + 1;
388 if (count2 > count1)
389 error ("target varying type is too small");
390 val = allocate_value (type);
391 valaddr = VALUE_CONTENTS_RAW (val);
392 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
393 /* Set val's __var_length field to count2. */
394 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
395 count2);
396 /* Set the __var_data field to count2 elements copied from arg2. */
397 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
398 count2 * TYPE_LENGTH (eltype2));
399 /* Zero the rest of the __var_data field of val. */
400 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
401 (count1 - count2) * TYPE_LENGTH (eltype2));
402 return val;
403 }
404 else if (VALUE_LVAL (arg2) == lval_memory)
405 {
406 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
407 VALUE_BFD_SECTION (arg2));
408 }
409 else if (code1 == TYPE_CODE_VOID)
410 {
411 return value_zero (builtin_type_void, not_lval);
412 }
413 else
414 {
415 error ("Invalid cast.");
416 return 0;
417 }
418}
419
420/* Create a value of type TYPE that is zero, and return it. */
421
422value_ptr
423value_zero (struct type *type, enum lval_type lv)
424{
425 register value_ptr val = allocate_value (type);
426
427 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
428 VALUE_LVAL (val) = lv;
429
430 return val;
431}
432
433/* Return a value with type TYPE located at ADDR.
434
435 Call value_at only if the data needs to be fetched immediately;
436 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
437 value_at_lazy instead. value_at_lazy simply records the address of
438 the data and sets the lazy-evaluation-required flag. The lazy flag
439 is tested in the VALUE_CONTENTS macro, which is used if and when
440 the contents are actually required.
441
442 Note: value_at does *NOT* handle embedded offsets; perform such
443 adjustments before or after calling it. */
444
445value_ptr
446value_at (struct type *type, CORE_ADDR addr, asection *sect)
447{
448 register value_ptr val;
449
450 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
451 error ("Attempt to dereference a generic pointer.");
452
453 val = allocate_value (type);
454
455 if (GDB_TARGET_IS_D10V
456 && TYPE_CODE (type) == TYPE_CODE_PTR
457 && TYPE_TARGET_TYPE (type)
458 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
459 {
460 /* pointer to function */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_IADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else if (GDB_TARGET_IS_D10V
468 && TYPE_CODE (type) == TYPE_CODE_PTR)
469 {
470 /* pointer to data */
471 unsigned long num;
472 unsigned short snum;
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_DADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
476 }
477 else
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485}
486
487/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489value_ptr
490value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491{
492 register value_ptr val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505}
506
507/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519int
520value_fetch_lazy (register value_ptr val)
521{
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (GDB_TARGET_IS_D10V
527 && TYPE_CODE (type) == TYPE_CODE_PTR
528 && TYPE_TARGET_TYPE (type)
529 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
530 {
531 /* pointer to function */
532 unsigned long num;
533 unsigned short snum;
534 snum = read_memory_unsigned_integer (addr, 2);
535 num = D10V_MAKE_IADDR (snum);
536 store_address (VALUE_CONTENTS_RAW (val), 4, num);
537 }
538 else if (GDB_TARGET_IS_D10V
539 && TYPE_CODE (type) == TYPE_CODE_PTR)
540 {
541 /* pointer to data */
542 unsigned long num;
543 unsigned short snum;
544 snum = read_memory_unsigned_integer (addr, 2);
545 num = D10V_MAKE_DADDR (snum);
546 store_address (VALUE_CONTENTS_RAW (val), 4, num);
547 }
548 else if (length)
549 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
550
551 VALUE_LAZY (val) = 0;
552 return 0;
553}
554
555
556/* Store the contents of FROMVAL into the location of TOVAL.
557 Return a new value with the location of TOVAL and contents of FROMVAL. */
558
559value_ptr
560value_assign (register value_ptr toval, register value_ptr fromval)
561{
562 register struct type *type;
563 register value_ptr val;
564 char raw_buffer[MAX_REGISTER_RAW_SIZE];
565 int use_buffer = 0;
566
567 if (!toval->modifiable)
568 error ("Left operand of assignment is not a modifiable lvalue.");
569
570 COERCE_REF (toval);
571
572 type = VALUE_TYPE (toval);
573 if (VALUE_LVAL (toval) != lval_internalvar)
574 fromval = value_cast (type, fromval);
575 else
576 COERCE_ARRAY (fromval);
577 CHECK_TYPEDEF (type);
578
579 /* If TOVAL is a special machine register requiring conversion
580 of program values to a special raw format,
581 convert FROMVAL's contents now, with result in `raw_buffer',
582 and set USE_BUFFER to the number of bytes to write. */
583
584 if (VALUE_REGNO (toval) >= 0)
585 {
586 int regno = VALUE_REGNO (toval);
587 if (REGISTER_CONVERTIBLE (regno))
588 {
589 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
590 REGISTER_CONVERT_TO_RAW (fromtype, regno,
591 VALUE_CONTENTS (fromval), raw_buffer);
592 use_buffer = REGISTER_RAW_SIZE (regno);
593 }
594 }
595
596 switch (VALUE_LVAL (toval))
597 {
598 case lval_internalvar:
599 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
600 val = value_copy (VALUE_INTERNALVAR (toval)->value);
601 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
602 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
603 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
604 return val;
605
606 case lval_internalvar_component:
607 set_internalvar_component (VALUE_INTERNALVAR (toval),
608 VALUE_OFFSET (toval),
609 VALUE_BITPOS (toval),
610 VALUE_BITSIZE (toval),
611 fromval);
612 break;
613
614 case lval_memory:
615 {
616 char *dest_buffer;
617 CORE_ADDR changed_addr;
618 int changed_len;
619
620 if (VALUE_BITSIZE (toval))
621 {
622 char buffer[sizeof (LONGEST)];
623 /* We assume that the argument to read_memory is in units of
624 host chars. FIXME: Is that correct? */
625 changed_len = (VALUE_BITPOS (toval)
626 + VALUE_BITSIZE (toval)
627 + HOST_CHAR_BIT - 1)
628 / HOST_CHAR_BIT;
629
630 if (changed_len > (int) sizeof (LONGEST))
631 error ("Can't handle bitfields which don't fit in a %d bit word.",
632 sizeof (LONGEST) * HOST_CHAR_BIT);
633
634 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
635 buffer, changed_len);
636 modify_field (buffer, value_as_long (fromval),
637 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 dest_buffer = buffer;
640 }
641 else if (use_buffer)
642 {
643 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
644 changed_len = use_buffer;
645 dest_buffer = raw_buffer;
646 }
647 else
648 {
649 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
650 changed_len = TYPE_LENGTH (type);
651 dest_buffer = VALUE_CONTENTS (fromval);
652 }
653
654 write_memory (changed_addr, dest_buffer, changed_len);
655 if (memory_changed_hook)
656 memory_changed_hook (changed_addr, changed_len);
657 }
658 break;
659
660 case lval_register:
661 if (VALUE_BITSIZE (toval))
662 {
663 char buffer[sizeof (LONGEST)];
664 int len =
665 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
666
667 if (len > (int) sizeof (LONGEST))
668 error ("Can't handle bitfields in registers larger than %d bits.",
669 sizeof (LONGEST) * HOST_CHAR_BIT);
670
671 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
672 > len * HOST_CHAR_BIT)
673 /* Getting this right would involve being very careful about
674 byte order. */
675 error ("Can't assign to bitfields that cross register "
676 "boundaries.");
677
678 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
679 buffer, len);
680 modify_field (buffer, value_as_long (fromval),
681 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
682 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
683 buffer, len);
684 }
685 else if (use_buffer)
686 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
687 raw_buffer, use_buffer);
688 else
689 {
690 /* Do any conversion necessary when storing this type to more
691 than one register. */
692#ifdef REGISTER_CONVERT_FROM_TYPE
693 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
695 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
696 raw_buffer, TYPE_LENGTH (type));
697#else
698 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
699 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
700#endif
701 }
702 /* Assigning to the stack pointer, frame pointer, and other
703 (architecture and calling convention specific) registers may
704 cause the frame cache to be out of date. We just do this
705 on all assignments to registers for simplicity; I doubt the slowdown
706 matters. */
707 reinit_frame_cache ();
708 break;
709
710 case lval_reg_frame_relative:
711 {
712 /* value is stored in a series of registers in the frame
713 specified by the structure. Copy that value out, modify
714 it, and copy it back in. */
715 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
716 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
717 int byte_offset = VALUE_OFFSET (toval) % reg_size;
718 int reg_offset = VALUE_OFFSET (toval) / reg_size;
719 int amount_copied;
720
721 /* Make the buffer large enough in all cases. */
722 char *buffer = (char *) alloca (amount_to_copy
723 + sizeof (LONGEST)
724 + MAX_REGISTER_RAW_SIZE);
725
726 int regno;
727 struct frame_info *frame;
728
729 /* Figure out which frame this is in currently. */
730 for (frame = get_current_frame ();
731 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
732 frame = get_prev_frame (frame))
733 ;
734
735 if (!frame)
736 error ("Value being assigned to is no longer active.");
737
738 amount_to_copy += (reg_size - amount_to_copy % reg_size);
739
740 /* Copy it out. */
741 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
742 amount_copied = 0);
743 amount_copied < amount_to_copy;
744 amount_copied += reg_size, regno++)
745 {
746 get_saved_register (buffer + amount_copied,
747 (int *) NULL, (CORE_ADDR *) NULL,
748 frame, regno, (enum lval_type *) NULL);
749 }
750
751 /* Modify what needs to be modified. */
752 if (VALUE_BITSIZE (toval))
753 modify_field (buffer + byte_offset,
754 value_as_long (fromval),
755 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
756 else if (use_buffer)
757 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
758 else
759 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
760 TYPE_LENGTH (type));
761
762 /* Copy it back. */
763 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
764 amount_copied = 0);
765 amount_copied < amount_to_copy;
766 amount_copied += reg_size, regno++)
767 {
768 enum lval_type lval;
769 CORE_ADDR addr;
770 int optim;
771
772 /* Just find out where to put it. */
773 get_saved_register ((char *) NULL,
774 &optim, &addr, frame, regno, &lval);
775
776 if (optim)
777 error ("Attempt to assign to a value that was optimized out.");
778 if (lval == lval_memory)
779 write_memory (addr, buffer + amount_copied, reg_size);
780 else if (lval == lval_register)
781 write_register_bytes (addr, buffer + amount_copied, reg_size);
782 else
783 error ("Attempt to assign to an unmodifiable value.");
784 }
785
786 if (register_changed_hook)
787 register_changed_hook (-1);
788 }
789 break;
790
791
792 default:
793 error ("Left operand of assignment is not an lvalue.");
794 }
795
796 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
797 If the field is signed, and is negative, then sign extend. */
798 if ((VALUE_BITSIZE (toval) > 0)
799 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
800 {
801 LONGEST fieldval = value_as_long (fromval);
802 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
803
804 fieldval &= valmask;
805 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
806 fieldval |= ~valmask;
807
808 fromval = value_from_longest (type, fieldval);
809 }
810
811 val = value_copy (toval);
812 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
813 TYPE_LENGTH (type));
814 VALUE_TYPE (val) = type;
815 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
816 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
817 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
818
819 return val;
820}
821
822/* Extend a value VAL to COUNT repetitions of its type. */
823
824value_ptr
825value_repeat (value_ptr arg1, int count)
826{
827 register value_ptr val;
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error ("Only values in memory can be extended with '@'.");
831 if (count < 1)
832 error ("Invalid number %d of repetitions.", count);
833
834 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
835
836 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
837 VALUE_CONTENTS_ALL_RAW (val),
838 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
839 VALUE_LVAL (val) = lval_memory;
840 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
841
842 return val;
843}
844
845value_ptr
846value_of_variable (struct symbol *var, struct block *b)
847{
848 value_ptr val;
849 struct frame_info *frame = NULL;
850
851 if (!b)
852 frame = NULL; /* Use selected frame. */
853 else if (symbol_read_needs_frame (var))
854 {
855 frame = block_innermost_frame (b);
856 if (!frame)
857 {
858 if (BLOCK_FUNCTION (b)
859 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
860 error ("No frame is currently executing in block %s.",
861 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
862 else
863 error ("No frame is currently executing in specified block");
864 }
865 }
866
867 val = read_var_value (var, frame);
868 if (!val)
869 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
870
871 return val;
872}
873
874/* Given a value which is an array, return a value which is a pointer to its
875 first element, regardless of whether or not the array has a nonzero lower
876 bound.
877
878 FIXME: A previous comment here indicated that this routine should be
879 substracting the array's lower bound. It's not clear to me that this
880 is correct. Given an array subscripting operation, it would certainly
881 work to do the adjustment here, essentially computing:
882
883 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
884
885 However I believe a more appropriate and logical place to account for
886 the lower bound is to do so in value_subscript, essentially computing:
887
888 (&array[0] + ((index - lowerbound) * sizeof array[0]))
889
890 As further evidence consider what would happen with operations other
891 than array subscripting, where the caller would get back a value that
892 had an address somewhere before the actual first element of the array,
893 and the information about the lower bound would be lost because of
894 the coercion to pointer type.
895 */
896
897value_ptr
898value_coerce_array (value_ptr arg1)
899{
900 register struct type *type = check_typedef (VALUE_TYPE (arg1));
901
902 if (VALUE_LVAL (arg1) != lval_memory)
903 error ("Attempt to take address of value not located in memory.");
904
905 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
906 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
907}
908
909/* Given a value which is a function, return a value which is a pointer
910 to it. */
911
912value_ptr
913value_coerce_function (value_ptr arg1)
914{
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924}
925
926/* Return a pointer value for the object for which ARG1 is the contents. */
927
928value_ptr
929value_addr (value_ptr arg1)
930{
931 value_ptr arg2;
932
933 struct type *type = check_typedef (VALUE_TYPE (arg1));
934 if (TYPE_CODE (type) == TYPE_CODE_REF)
935 {
936 /* Copy the value, but change the type from (T&) to (T*).
937 We keep the same location information, which is efficient,
938 and allows &(&X) to get the location containing the reference. */
939 arg2 = value_copy (arg1);
940 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
941 return arg2;
942 }
943 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
944 return value_coerce_function (arg1);
945
946 if (VALUE_LVAL (arg1) != lval_memory)
947 error ("Attempt to take address of value not located in memory.");
948
949 /* Get target memory address */
950 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
951 (VALUE_ADDRESS (arg1)
952 + VALUE_OFFSET (arg1)
953 + VALUE_EMBEDDED_OFFSET (arg1)));
954
955 /* This may be a pointer to a base subobject; so remember the
956 full derived object's type ... */
957 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
958 /* ... and also the relative position of the subobject in the full object */
959 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
960 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
961 return arg2;
962}
963
964/* Given a value of a pointer type, apply the C unary * operator to it. */
965
966value_ptr
967value_ind (value_ptr arg1)
968{
969 struct type *base_type;
970 value_ptr arg2;
971
972 COERCE_ARRAY (arg1);
973
974 base_type = check_typedef (VALUE_TYPE (arg1));
975
976 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
977 error ("not implemented: member types in value_ind");
978
979 /* Allow * on an integer so we can cast it to whatever we want.
980 This returns an int, which seems like the most C-like thing
981 to do. "long long" variables are rare enough that
982 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
983 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
984 return value_at (builtin_type_int,
985 (CORE_ADDR) value_as_long (arg1),
986 VALUE_BFD_SECTION (arg1));
987 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
988 {
989 struct type *enc_type;
990 /* We may be pointing to something embedded in a larger object */
991 /* Get the real type of the enclosing object */
992 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
993 enc_type = TYPE_TARGET_TYPE (enc_type);
994 /* Retrieve the enclosing object pointed to */
995 arg2 = value_at_lazy (enc_type,
996 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
997 VALUE_BFD_SECTION (arg1));
998 /* Re-adjust type */
999 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1000 /* Add embedding info */
1001 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1002 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1003
1004 /* We may be pointing to an object of some derived type */
1005 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1006 return arg2;
1007 }
1008
1009 error ("Attempt to take contents of a non-pointer value.");
1010 return 0; /* For lint -- never reached */
1011}
1012\f
1013/* Pushing small parts of stack frames. */
1014
1015/* Push one word (the size of object that a register holds). */
1016
1017CORE_ADDR
1018push_word (CORE_ADDR sp, ULONGEST word)
1019{
1020 register int len = REGISTER_SIZE;
1021 char buffer[MAX_REGISTER_RAW_SIZE];
1022
1023 store_unsigned_integer (buffer, len, word);
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038}
1039
1040/* Push LEN bytes with data at BUFFER. */
1041
1042CORE_ADDR
1043push_bytes (CORE_ADDR sp, char *buffer, int len)
1044{
1045 if (INNER_THAN (1, 2))
1046 {
1047 /* stack grows downward */
1048 sp -= len;
1049 write_memory (sp, buffer, len);
1050 }
1051 else
1052 {
1053 /* stack grows upward */
1054 write_memory (sp, buffer, len);
1055 sp += len;
1056 }
1057
1058 return sp;
1059}
1060
1061#ifndef PARM_BOUNDARY
1062#define PARM_BOUNDARY (0)
1063#endif
1064
1065/* Push onto the stack the specified value VALUE. Pad it correctly for
1066 it to be an argument to a function. */
1067
1068static CORE_ADDR
1069value_push (register CORE_ADDR sp, value_ptr arg)
1070{
1071 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1072 register int container_len = len;
1073 register int offset;
1074
1075 /* How big is the container we're going to put this value in? */
1076 if (PARM_BOUNDARY)
1077 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1078 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1079
1080 /* Are we going to put it at the high or low end of the container? */
1081 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1082 offset = container_len - len;
1083 else
1084 offset = 0;
1085
1086 if (INNER_THAN (1, 2))
1087 {
1088 /* stack grows downward */
1089 sp -= container_len;
1090 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1091 }
1092 else
1093 {
1094 /* stack grows upward */
1095 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1096 sp += container_len;
1097 }
1098
1099 return sp;
1100}
1101
1102#ifndef PUSH_ARGUMENTS
1103#define PUSH_ARGUMENTS default_push_arguments
1104#endif
1105
1106CORE_ADDR
1107default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1108 int struct_return, CORE_ADDR struct_addr)
1109{
1110 /* ASSERT ( !struct_return); */
1111 int i;
1112 for (i = nargs - 1; i >= 0; i--)
1113 sp = value_push (sp, args[i]);
1114 return sp;
1115}
1116
1117
1118/* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1119 when we don't have any type for the argument at hand. This occurs
1120 when we have no debug info, or when passing varargs.
1121
1122 This is an annoying default: the rule the compiler follows is to do
1123 the standard promotions whenever there is no prototype in scope,
1124 and almost all targets want this behavior. But there are some old
1125 architectures which want this odd behavior. If you want to go
1126 through them all and fix them, please do. Modern gdbarch-style
1127 targets may find it convenient to use standard_coerce_float_to_double. */
1128int
1129default_coerce_float_to_double (struct type *formal, struct type *actual)
1130{
1131 return formal == NULL;
1132}
1133
1134
1135/* Always coerce floats to doubles when there is no prototype in scope.
1136 If your architecture follows the standard type promotion rules for
1137 calling unprototyped functions, your gdbarch init function can pass
1138 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1139int
1140standard_coerce_float_to_double (struct type *formal, struct type *actual)
1141{
1142 return 1;
1143}
1144
1145
1146/* Perform the standard coercions that are specified
1147 for arguments to be passed to C functions.
1148
1149 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1150 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1151
1152static value_ptr
1153value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1154{
1155 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1156 register struct type *type
1157 = param_type ? check_typedef (param_type) : arg_type;
1158
1159 switch (TYPE_CODE (type))
1160 {
1161 case TYPE_CODE_REF:
1162 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1163 {
1164 arg = value_addr (arg);
1165 VALUE_TYPE (arg) = param_type;
1166 return arg;
1167 }
1168 break;
1169 case TYPE_CODE_INT:
1170 case TYPE_CODE_CHAR:
1171 case TYPE_CODE_BOOL:
1172 case TYPE_CODE_ENUM:
1173 /* If we don't have a prototype, coerce to integer type if necessary. */
1174 if (!is_prototyped)
1175 {
1176 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1177 type = builtin_type_int;
1178 }
1179 /* Currently all target ABIs require at least the width of an integer
1180 type for an argument. We may have to conditionalize the following
1181 type coercion for future targets. */
1182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1183 type = builtin_type_int;
1184 break;
1185 case TYPE_CODE_FLT:
1186 /* FIXME: We should always convert floats to doubles in the
1187 non-prototyped case. As many debugging formats include
1188 no information about prototyping, we have to live with
1189 COERCE_FLOAT_TO_DOUBLE for now. */
1190 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1191 {
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1193 type = builtin_type_double;
1194 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1195 type = builtin_type_long_double;
1196 }
1197 break;
1198 case TYPE_CODE_FUNC:
1199 type = lookup_pointer_type (type);
1200 break;
1201 case TYPE_CODE_ARRAY:
1202 if (current_language->c_style_arrays)
1203 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1204 break;
1205 case TYPE_CODE_UNDEF:
1206 case TYPE_CODE_PTR:
1207 case TYPE_CODE_STRUCT:
1208 case TYPE_CODE_UNION:
1209 case TYPE_CODE_VOID:
1210 case TYPE_CODE_SET:
1211 case TYPE_CODE_RANGE:
1212 case TYPE_CODE_STRING:
1213 case TYPE_CODE_BITSTRING:
1214 case TYPE_CODE_ERROR:
1215 case TYPE_CODE_MEMBER:
1216 case TYPE_CODE_METHOD:
1217 case TYPE_CODE_COMPLEX:
1218 default:
1219 break;
1220 }
1221
1222 return value_cast (type, arg);
1223}
1224
1225/* Determine a function's address and its return type from its value.
1226 Calls error() if the function is not valid for calling. */
1227
1228static CORE_ADDR
1229find_function_addr (value_ptr function, struct type **retval_type)
1230{
1231 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1232 register enum type_code code = TYPE_CODE (ftype);
1233 struct type *value_type;
1234 CORE_ADDR funaddr;
1235
1236 /* If it's a member function, just look at the function
1237 part of it. */
1238
1239 /* Determine address to call. */
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1241 {
1242 funaddr = VALUE_ADDRESS (function);
1243 value_type = TYPE_TARGET_TYPE (ftype);
1244 }
1245 else if (code == TYPE_CODE_PTR)
1246 {
1247 funaddr = value_as_pointer (function);
1248 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1249 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1250 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1251 {
1252#ifdef CONVERT_FROM_FUNC_PTR_ADDR
1253 /* FIXME: This is a workaround for the unusual function
1254 pointer representation on the RS/6000, see comment
1255 in config/rs6000/tm-rs6000.h */
1256 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1257#endif
1258 value_type = TYPE_TARGET_TYPE (ftype);
1259 }
1260 else
1261 value_type = builtin_type_int;
1262 }
1263 else if (code == TYPE_CODE_INT)
1264 {
1265 /* Handle the case of functions lacking debugging info.
1266 Their values are characters since their addresses are char */
1267 if (TYPE_LENGTH (ftype) == 1)
1268 funaddr = value_as_pointer (value_addr (function));
1269 else
1270 /* Handle integer used as address of a function. */
1271 funaddr = (CORE_ADDR) value_as_long (function);
1272
1273 value_type = builtin_type_int;
1274 }
1275 else
1276 error ("Invalid data type for function to be called.");
1277
1278 *retval_type = value_type;
1279 return funaddr;
1280}
1281
1282/* All this stuff with a dummy frame may seem unnecessarily complicated
1283 (why not just save registers in GDB?). The purpose of pushing a dummy
1284 frame which looks just like a real frame is so that if you call a
1285 function and then hit a breakpoint (get a signal, etc), "backtrace"
1286 will look right. Whether the backtrace needs to actually show the
1287 stack at the time the inferior function was called is debatable, but
1288 it certainly needs to not display garbage. So if you are contemplating
1289 making dummy frames be different from normal frames, consider that. */
1290
1291/* Perform a function call in the inferior.
1292 ARGS is a vector of values of arguments (NARGS of them).
1293 FUNCTION is a value, the function to be called.
1294 Returns a value representing what the function returned.
1295 May fail to return, if a breakpoint or signal is hit
1296 during the execution of the function.
1297
1298 ARGS is modified to contain coerced values. */
1299
1300static value_ptr hand_function_call (value_ptr function, int nargs,
1301 value_ptr * args);
1302static value_ptr
1303hand_function_call (value_ptr function, int nargs, value_ptr *args)
1304{
1305 register CORE_ADDR sp;
1306 register int i;
1307 int rc;
1308 CORE_ADDR start_sp;
1309 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1310 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1311 and remove any extra bytes which might exist because ULONGEST is
1312 bigger than REGISTER_SIZE.
1313
1314 NOTE: This is pretty wierd, as the call dummy is actually a
1315 sequence of instructions. But CISC machines will have
1316 to pack the instructions into REGISTER_SIZE units (and
1317 so will RISC machines for which INSTRUCTION_SIZE is not
1318 REGISTER_SIZE).
1319
1320 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1321 target byte order. */
1322
1323 static ULONGEST *dummy;
1324 int sizeof_dummy1;
1325 char *dummy1;
1326 CORE_ADDR old_sp;
1327 struct type *value_type;
1328 unsigned char struct_return;
1329 CORE_ADDR struct_addr = 0;
1330 struct inferior_status *inf_status;
1331 struct cleanup *old_chain;
1332 CORE_ADDR funaddr;
1333 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1334 CORE_ADDR real_pc;
1335 struct type *param_type = NULL;
1336 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1337
1338 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1339 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1340 dummy1 = alloca (sizeof_dummy1);
1341 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1342
1343 if (!target_has_execution)
1344 noprocess ();
1345
1346 inf_status = save_inferior_status (1);
1347 old_chain = make_cleanup_restore_inferior_status (inf_status);
1348
1349 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1350 (and POP_FRAME for restoring them). (At least on most machines)
1351 they are saved on the stack in the inferior. */
1352 PUSH_DUMMY_FRAME;
1353
1354 old_sp = sp = read_sp ();
1355
1356 if (INNER_THAN (1, 2))
1357 {
1358 /* Stack grows down */
1359 sp -= sizeof_dummy1;
1360 start_sp = sp;
1361 }
1362 else
1363 {
1364 /* Stack grows up */
1365 start_sp = sp;
1366 sp += sizeof_dummy1;
1367 }
1368
1369 funaddr = find_function_addr (function, &value_type);
1370 CHECK_TYPEDEF (value_type);
1371
1372 {
1373 struct block *b = block_for_pc (funaddr);
1374 /* If compiled without -g, assume GCC 2. */
1375 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1376 }
1377
1378 /* Are we returning a value using a structure return or a normal
1379 value return? */
1380
1381 struct_return = using_struct_return (function, funaddr, value_type,
1382 using_gcc);
1383
1384 /* Create a call sequence customized for this function
1385 and the number of arguments for it. */
1386 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1387 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1388 REGISTER_SIZE,
1389 (ULONGEST) dummy[i]);
1390
1391#ifdef GDB_TARGET_IS_HPPA
1392 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1393 value_type, using_gcc);
1394#else
1395 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1396 value_type, using_gcc);
1397 real_pc = start_sp;
1398#endif
1399
1400 if (CALL_DUMMY_LOCATION == ON_STACK)
1401 {
1402 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1403 }
1404
1405 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1406 {
1407 /* Convex Unix prohibits executing in the stack segment. */
1408 /* Hope there is empty room at the top of the text segment. */
1409 extern CORE_ADDR text_end;
1410 static int checked = 0;
1411 if (!checked)
1412 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1413 if (read_memory_integer (start_sp, 1) != 0)
1414 error ("text segment full -- no place to put call");
1415 checked = 1;
1416 sp = old_sp;
1417 real_pc = text_end - sizeof_dummy1;
1418 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1419 }
1420
1421 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1422 {
1423 extern CORE_ADDR text_end;
1424 int errcode;
1425 sp = old_sp;
1426 real_pc = text_end;
1427 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1428 if (errcode != 0)
1429 error ("Cannot write text segment -- call_function failed");
1430 }
1431
1432 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1433 {
1434 real_pc = funaddr;
1435 }
1436
1437#ifdef lint
1438 sp = old_sp; /* It really is used, for some ifdef's... */
1439#endif
1440
1441 if (nargs < TYPE_NFIELDS (ftype))
1442 error ("too few arguments in function call");
1443
1444 for (i = nargs - 1; i >= 0; i--)
1445 {
1446 /* If we're off the end of the known arguments, do the standard
1447 promotions. FIXME: if we had a prototype, this should only
1448 be allowed if ... were present. */
1449 if (i >= TYPE_NFIELDS (ftype))
1450 args[i] = value_arg_coerce (args[i], NULL, 0);
1451
1452 else
1453 {
1454 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1455 param_type = TYPE_FIELD_TYPE (ftype, i);
1456
1457 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1458 }
1459
1460 /*elz: this code is to handle the case in which the function to be called
1461 has a pointer to function as parameter and the corresponding actual argument
1462 is the address of a function and not a pointer to function variable.
1463 In aCC compiled code, the calls through pointers to functions (in the body
1464 of the function called by hand) are made via $$dyncall_external which
1465 requires some registers setting, this is taken care of if we call
1466 via a function pointer variable, but not via a function address.
1467 In cc this is not a problem. */
1468
1469 if (using_gcc == 0)
1470 if (param_type)
1471 /* if this parameter is a pointer to function */
1472 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1473 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1474 /* elz: FIXME here should go the test about the compiler used
1475 to compile the target. We want to issue the error
1476 message only if the compiler used was HP's aCC.
1477 If we used HP's cc, then there is no problem and no need
1478 to return at this point */
1479 if (using_gcc == 0) /* && compiler == aCC */
1480 /* go see if the actual parameter is a variable of type
1481 pointer to function or just a function */
1482 if (args[i]->lval == not_lval)
1483 {
1484 char *arg_name;
1485 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1486 error ("\
1487You cannot use function <%s> as argument. \n\
1488You must use a pointer to function type variable. Command ignored.", arg_name);
1489 }
1490 }
1491
1492 if (REG_STRUCT_HAS_ADDR_P ())
1493 {
1494 /* This is a machine like the sparc, where we may need to pass a
1495 pointer to the structure, not the structure itself. */
1496 for (i = nargs - 1; i >= 0; i--)
1497 {
1498 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1499 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1500 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1501 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1502 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1503 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1504 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1505 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1506 && TYPE_LENGTH (arg_type) > 8)
1507 )
1508 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1509 {
1510 CORE_ADDR addr;
1511 int len; /* = TYPE_LENGTH (arg_type); */
1512 int aligned_len;
1513 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1514 len = TYPE_LENGTH (arg_type);
1515
1516 if (STACK_ALIGN_P ())
1517 /* MVS 11/22/96: I think at least some of this
1518 stack_align code is really broken. Better to let
1519 PUSH_ARGUMENTS adjust the stack in a target-defined
1520 manner. */
1521 aligned_len = STACK_ALIGN (len);
1522 else
1523 aligned_len = len;
1524 if (INNER_THAN (1, 2))
1525 {
1526 /* stack grows downward */
1527 sp -= aligned_len;
1528 }
1529 else
1530 {
1531 /* The stack grows up, so the address of the thing
1532 we push is the stack pointer before we push it. */
1533 addr = sp;
1534 }
1535 /* Push the structure. */
1536 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1537 if (INNER_THAN (1, 2))
1538 {
1539 /* The stack grows down, so the address of the thing
1540 we push is the stack pointer after we push it. */
1541 addr = sp;
1542 }
1543 else
1544 {
1545 /* stack grows upward */
1546 sp += aligned_len;
1547 }
1548 /* The value we're going to pass is the address of the
1549 thing we just pushed. */
1550 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1551 (LONGEST) addr); */
1552 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1553 addr);
1554 }
1555 }
1556 }
1557
1558
1559 /* Reserve space for the return structure to be written on the
1560 stack, if necessary */
1561
1562 if (struct_return)
1563 {
1564 int len = TYPE_LENGTH (value_type);
1565 if (STACK_ALIGN_P ())
1566 /* MVS 11/22/96: I think at least some of this stack_align
1567 code is really broken. Better to let PUSH_ARGUMENTS adjust
1568 the stack in a target-defined manner. */
1569 len = STACK_ALIGN (len);
1570 if (INNER_THAN (1, 2))
1571 {
1572 /* stack grows downward */
1573 sp -= len;
1574 struct_addr = sp;
1575 }
1576 else
1577 {
1578 /* stack grows upward */
1579 struct_addr = sp;
1580 sp += len;
1581 }
1582 }
1583
1584/* elz: on HPPA no need for this extra alignment, maybe it is needed
1585 on other architectures. This is because all the alignment is taken care
1586 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1587 hppa_push_arguments */
1588#ifndef NO_EXTRA_ALIGNMENT_NEEDED
1589
1590 /* MVS 11/22/96: I think at least some of this stack_align code is
1591 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1592 a target-defined manner. */
1593 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1594 {
1595 /* If stack grows down, we must leave a hole at the top. */
1596 int len = 0;
1597
1598 for (i = nargs - 1; i >= 0; i--)
1599 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1600 if (CALL_DUMMY_STACK_ADJUST_P)
1601 len += CALL_DUMMY_STACK_ADJUST;
1602 sp -= STACK_ALIGN (len) - len;
1603 }
1604#endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1605
1606 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1607
1608#ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1609 /* There are a number of targets now which actually don't write any
1610 CALL_DUMMY instructions into the target, but instead just save the
1611 machine state, push the arguments, and jump directly to the callee
1612 function. Since this doesn't actually involve executing a JSR/BSR
1613 instruction, the return address must be set up by hand, either by
1614 pushing onto the stack or copying into a return-address register
1615 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1616 but that's overloading its functionality a bit, so I'm making it
1617 explicit to do it here. */
1618 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1619#endif /* PUSH_RETURN_ADDRESS */
1620
1621 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1622 {
1623 /* If stack grows up, we must leave a hole at the bottom, note
1624 that sp already has been advanced for the arguments! */
1625 if (CALL_DUMMY_STACK_ADJUST_P)
1626 sp += CALL_DUMMY_STACK_ADJUST;
1627 sp = STACK_ALIGN (sp);
1628 }
1629
1630/* XXX This seems wrong. For stacks that grow down we shouldn't do
1631 anything here! */
1632 /* MVS 11/22/96: I think at least some of this stack_align code is
1633 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1634 a target-defined manner. */
1635 if (CALL_DUMMY_STACK_ADJUST_P)
1636 if (INNER_THAN (1, 2))
1637 {
1638 /* stack grows downward */
1639 sp -= CALL_DUMMY_STACK_ADJUST;
1640 }
1641
1642 /* Store the address at which the structure is supposed to be
1643 written. Note that this (and the code which reserved the space
1644 above) assumes that gcc was used to compile this function. Since
1645 it doesn't cost us anything but space and if the function is pcc
1646 it will ignore this value, we will make that assumption.
1647
1648 Also note that on some machines (like the sparc) pcc uses a
1649 convention like gcc's. */
1650
1651 if (struct_return)
1652 STORE_STRUCT_RETURN (struct_addr, sp);
1653
1654 /* Write the stack pointer. This is here because the statements above
1655 might fool with it. On SPARC, this write also stores the register
1656 window into the right place in the new stack frame, which otherwise
1657 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1658 write_sp (sp);
1659
1660 if (SAVE_DUMMY_FRAME_TOS_P ())
1661 SAVE_DUMMY_FRAME_TOS (sp);
1662
1663 {
1664 char retbuf[REGISTER_BYTES];
1665 char *name;
1666 struct symbol *symbol;
1667
1668 name = NULL;
1669 symbol = find_pc_function (funaddr);
1670 if (symbol)
1671 {
1672 name = SYMBOL_SOURCE_NAME (symbol);
1673 }
1674 else
1675 {
1676 /* Try the minimal symbols. */
1677 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1678
1679 if (msymbol)
1680 {
1681 name = SYMBOL_SOURCE_NAME (msymbol);
1682 }
1683 }
1684 if (name == NULL)
1685 {
1686 char format[80];
1687 sprintf (format, "at %s", local_hex_format ());
1688 name = alloca (80);
1689 /* FIXME-32x64: assumes funaddr fits in a long. */
1690 sprintf (name, format, (unsigned long) funaddr);
1691 }
1692
1693 /* Execute the stack dummy routine, calling FUNCTION.
1694 When it is done, discard the empty frame
1695 after storing the contents of all regs into retbuf. */
1696 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1697
1698 if (rc == 1)
1699 {
1700 /* We stopped inside the FUNCTION because of a random signal.
1701 Further execution of the FUNCTION is not allowed. */
1702
1703 if (unwind_on_signal_p)
1704 {
1705 /* The user wants the context restored. */
1706
1707 /* We must get back to the frame we were before the dummy call. */
1708 POP_FRAME;
1709
1710 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1711 a C++ name with arguments and stuff. */
1712 error ("\
1713The program being debugged was signaled while in a function called from GDB.\n\
1714GDB has restored the context to what it was before the call.\n\
1715To change this behavior use \"set unwindonsignal off\"\n\
1716Evaluation of the expression containing the function (%s) will be abandoned.",
1717 name);
1718 }
1719 else
1720 {
1721 /* The user wants to stay in the frame where we stopped (default).*/
1722
1723 /* If we did the cleanups, we would print a spurious error
1724 message (Unable to restore previously selected frame),
1725 would write the registers from the inf_status (which is
1726 wrong), and would do other wrong things. */
1727 discard_cleanups (old_chain);
1728 discard_inferior_status (inf_status);
1729
1730 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1731 a C++ name with arguments and stuff. */
1732 error ("\
1733The program being debugged was signaled while in a function called from GDB.\n\
1734GDB remains in the frame where the signal was received.\n\
1735To change this behavior use \"set unwindonsignal on\"\n\
1736Evaluation of the expression containing the function (%s) will be abandoned.",
1737 name);
1738 }
1739 }
1740
1741 if (rc == 2)
1742 {
1743 /* We hit a breakpoint inside the FUNCTION. */
1744
1745 /* If we did the cleanups, we would print a spurious error
1746 message (Unable to restore previously selected frame),
1747 would write the registers from the inf_status (which is
1748 wrong), and would do other wrong things. */
1749 discard_cleanups (old_chain);
1750 discard_inferior_status (inf_status);
1751
1752 /* The following error message used to say "The expression
1753 which contained the function call has been discarded." It
1754 is a hard concept to explain in a few words. Ideally, GDB
1755 would be able to resume evaluation of the expression when
1756 the function finally is done executing. Perhaps someday
1757 this will be implemented (it would not be easy). */
1758
1759 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1760 a C++ name with arguments and stuff. */
1761 error ("\
1762The program being debugged stopped while in a function called from GDB.\n\
1763When the function (%s) is done executing, GDB will silently\n\
1764stop (instead of continuing to evaluate the expression containing\n\
1765the function call).", name);
1766 }
1767
1768 /* If we get here the called FUNCTION run to completion. */
1769 do_cleanups (old_chain);
1770
1771 /* Figure out the value returned by the function. */
1772/* elz: I defined this new macro for the hppa architecture only.
1773 this gives us a way to get the value returned by the function from the stack,
1774 at the same address we told the function to put it.
1775 We cannot assume on the pa that r28 still contains the address of the returned
1776 structure. Usually this will be overwritten by the callee.
1777 I don't know about other architectures, so I defined this macro
1778 */
1779
1780#ifdef VALUE_RETURNED_FROM_STACK
1781 if (struct_return)
1782 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1783#endif
1784
1785 return value_being_returned (value_type, retbuf, struct_return);
1786 }
1787}
1788
1789value_ptr
1790call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1791{
1792 if (CALL_DUMMY_P)
1793 {
1794 return hand_function_call (function, nargs, args);
1795 }
1796 else
1797 {
1798 error ("Cannot invoke functions on this machine.");
1799 }
1800}
1801\f
1802
1803
1804/* Create a value for an array by allocating space in the inferior, copying
1805 the data into that space, and then setting up an array value.
1806
1807 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1808 populated from the values passed in ELEMVEC.
1809
1810 The element type of the array is inherited from the type of the
1811 first element, and all elements must have the same size (though we
1812 don't currently enforce any restriction on their types). */
1813
1814value_ptr
1815value_array (int lowbound, int highbound, value_ptr *elemvec)
1816{
1817 int nelem;
1818 int idx;
1819 unsigned int typelength;
1820 value_ptr val;
1821 struct type *rangetype;
1822 struct type *arraytype;
1823 CORE_ADDR addr;
1824
1825 /* Validate that the bounds are reasonable and that each of the elements
1826 have the same size. */
1827
1828 nelem = highbound - lowbound + 1;
1829 if (nelem <= 0)
1830 {
1831 error ("bad array bounds (%d, %d)", lowbound, highbound);
1832 }
1833 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1834 for (idx = 1; idx < nelem; idx++)
1835 {
1836 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1837 {
1838 error ("array elements must all be the same size");
1839 }
1840 }
1841
1842 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1843 lowbound, highbound);
1844 arraytype = create_array_type ((struct type *) NULL,
1845 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1846
1847 if (!current_language->c_style_arrays)
1848 {
1849 val = allocate_value (arraytype);
1850 for (idx = 0; idx < nelem; idx++)
1851 {
1852 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1853 VALUE_CONTENTS_ALL (elemvec[idx]),
1854 typelength);
1855 }
1856 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1857 return val;
1858 }
1859
1860 /* Allocate space to store the array in the inferior, and then initialize
1861 it by copying in each element. FIXME: Is it worth it to create a
1862 local buffer in which to collect each value and then write all the
1863 bytes in one operation? */
1864
1865 addr = allocate_space_in_inferior (nelem * typelength);
1866 for (idx = 0; idx < nelem; idx++)
1867 {
1868 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1869 typelength);
1870 }
1871
1872 /* Create the array type and set up an array value to be evaluated lazily. */
1873
1874 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1875 return (val);
1876}
1877
1878/* Create a value for a string constant by allocating space in the inferior,
1879 copying the data into that space, and returning the address with type
1880 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1881 of characters.
1882 Note that string types are like array of char types with a lower bound of
1883 zero and an upper bound of LEN - 1. Also note that the string may contain
1884 embedded null bytes. */
1885
1886value_ptr
1887value_string (char *ptr, int len)
1888{
1889 value_ptr val;
1890 int lowbound = current_language->string_lower_bound;
1891 struct type *rangetype = create_range_type ((struct type *) NULL,
1892 builtin_type_int,
1893 lowbound, len + lowbound - 1);
1894 struct type *stringtype
1895 = create_string_type ((struct type *) NULL, rangetype);
1896 CORE_ADDR addr;
1897
1898 if (current_language->c_style_arrays == 0)
1899 {
1900 val = allocate_value (stringtype);
1901 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1902 return val;
1903 }
1904
1905
1906 /* Allocate space to store the string in the inferior, and then
1907 copy LEN bytes from PTR in gdb to that address in the inferior. */
1908
1909 addr = allocate_space_in_inferior (len);
1910 write_memory (addr, ptr, len);
1911
1912 val = value_at_lazy (stringtype, addr, NULL);
1913 return (val);
1914}
1915
1916value_ptr
1917value_bitstring (char *ptr, int len)
1918{
1919 value_ptr val;
1920 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1921 0, len - 1);
1922 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1923 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1924 val = allocate_value (type);
1925 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1926 return val;
1927}
1928\f
1929/* See if we can pass arguments in T2 to a function which takes arguments
1930 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1931 arguments need coercion of some sort, then the coerced values are written
1932 into T2. Return value is 0 if the arguments could be matched, or the
1933 position at which they differ if not.
1934
1935 STATICP is nonzero if the T1 argument list came from a
1936 static member function.
1937
1938 For non-static member functions, we ignore the first argument,
1939 which is the type of the instance variable. This is because we want
1940 to handle calls with objects from derived classes. This is not
1941 entirely correct: we should actually check to make sure that a
1942 requested operation is type secure, shouldn't we? FIXME. */
1943
1944static int
1945typecmp (staticp, t1, t2)
1946 int staticp;
1947 struct type *t1[];
1948 value_ptr t2[];
1949{
1950 int i;
1951
1952 if (t2 == 0)
1953 return 1;
1954 if (staticp && t1 == 0)
1955 return t2[1] != 0;
1956 if (t1 == 0)
1957 return 1;
1958 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1959 return 0;
1960 if (t1[!staticp] == 0)
1961 return 0;
1962 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1963 {
1964 struct type *tt1, *tt2;
1965 if (!t2[i])
1966 return i + 1;
1967 tt1 = check_typedef (t1[i]);
1968 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1969 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1970 /* We should be doing hairy argument matching, as below. */
1971 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1972 {
1973 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1974 t2[i] = value_coerce_array (t2[i]);
1975 else
1976 t2[i] = value_addr (t2[i]);
1977 continue;
1978 }
1979
1980 /* djb - 20000715 - Until the new type structure is in the
1981 place, and we can attempt things like implicit conversions,
1982 we need to do this so you can take something like a map<const
1983 char *>, and properly access map["hello"], because the
1984 argument to [] will be a reference to a pointer to a char,
1985 and the argument will be a pointer to a char. */
1986 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1987 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1988 {
1989 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1990 }
1991 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1992 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1993 TYPE_CODE(tt2) == TYPE_CODE_REF)
1994 {
1995 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1996 }
1997 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1998 continue;
1999 /* Array to pointer is a `trivial conversion' according to the ARM. */
2000
2001 /* We should be doing much hairier argument matching (see section 13.2
2002 of the ARM), but as a quick kludge, just check for the same type
2003 code. */
2004 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2005 return i + 1;
2006 }
2007 if (!t1[i])
2008 return 0;
2009 return t2[i] ? i + 1 : 0;
2010}
2011
2012/* Helper function used by value_struct_elt to recurse through baseclasses.
2013 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2014 and search in it assuming it has (class) type TYPE.
2015 If found, return value, else return NULL.
2016
2017 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2018 look for a baseclass named NAME. */
2019
2020static value_ptr
2021search_struct_field (char *name, register value_ptr arg1, int offset,
2022 register struct type *type, int looking_for_baseclass)
2023{
2024 int i;
2025 int nbases = TYPE_N_BASECLASSES (type);
2026
2027 CHECK_TYPEDEF (type);
2028
2029 if (!looking_for_baseclass)
2030 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2031 {
2032 char *t_field_name = TYPE_FIELD_NAME (type, i);
2033
2034 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2035 {
2036 value_ptr v;
2037 if (TYPE_FIELD_STATIC (type, i))
2038 v = value_static_field (type, i);
2039 else
2040 v = value_primitive_field (arg1, offset, i, type);
2041 if (v == 0)
2042 error ("there is no field named %s", name);
2043 return v;
2044 }
2045
2046 if (t_field_name
2047 && (t_field_name[0] == '\0'
2048 || (TYPE_CODE (type) == TYPE_CODE_UNION
2049 && (strcmp_iw (t_field_name, "else") == 0))))
2050 {
2051 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2052 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2053 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2054 {
2055 /* Look for a match through the fields of an anonymous union,
2056 or anonymous struct. C++ provides anonymous unions.
2057
2058 In the GNU Chill implementation of variant record types,
2059 each <alternative field> has an (anonymous) union type,
2060 each member of the union represents a <variant alternative>.
2061 Each <variant alternative> is represented as a struct,
2062 with a member for each <variant field>. */
2063
2064 value_ptr v;
2065 int new_offset = offset;
2066
2067 /* This is pretty gross. In G++, the offset in an anonymous
2068 union is relative to the beginning of the enclosing struct.
2069 In the GNU Chill implementation of variant records,
2070 the bitpos is zero in an anonymous union field, so we
2071 have to add the offset of the union here. */
2072 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2073 || (TYPE_NFIELDS (field_type) > 0
2074 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2075 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2076
2077 v = search_struct_field (name, arg1, new_offset, field_type,
2078 looking_for_baseclass);
2079 if (v)
2080 return v;
2081 }
2082 }
2083 }
2084
2085 for (i = 0; i < nbases; i++)
2086 {
2087 value_ptr v;
2088 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2089 /* If we are looking for baseclasses, this is what we get when we
2090 hit them. But it could happen that the base part's member name
2091 is not yet filled in. */
2092 int found_baseclass = (looking_for_baseclass
2093 && TYPE_BASECLASS_NAME (type, i) != NULL
2094 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2095
2096 if (BASETYPE_VIA_VIRTUAL (type, i))
2097 {
2098 int boffset;
2099 value_ptr v2 = allocate_value (basetype);
2100
2101 boffset = baseclass_offset (type, i,
2102 VALUE_CONTENTS (arg1) + offset,
2103 VALUE_ADDRESS (arg1)
2104 + VALUE_OFFSET (arg1) + offset);
2105 if (boffset == -1)
2106 error ("virtual baseclass botch");
2107
2108 /* The virtual base class pointer might have been clobbered by the
2109 user program. Make sure that it still points to a valid memory
2110 location. */
2111
2112 boffset += offset;
2113 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2114 {
2115 CORE_ADDR base_addr;
2116
2117 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2118 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2119 TYPE_LENGTH (basetype)) != 0)
2120 error ("virtual baseclass botch");
2121 VALUE_LVAL (v2) = lval_memory;
2122 VALUE_ADDRESS (v2) = base_addr;
2123 }
2124 else
2125 {
2126 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2127 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2128 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2129 if (VALUE_LAZY (arg1))
2130 VALUE_LAZY (v2) = 1;
2131 else
2132 memcpy (VALUE_CONTENTS_RAW (v2),
2133 VALUE_CONTENTS_RAW (arg1) + boffset,
2134 TYPE_LENGTH (basetype));
2135 }
2136
2137 if (found_baseclass)
2138 return v2;
2139 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2140 looking_for_baseclass);
2141 }
2142 else if (found_baseclass)
2143 v = value_primitive_field (arg1, offset, i, type);
2144 else
2145 v = search_struct_field (name, arg1,
2146 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2147 basetype, looking_for_baseclass);
2148 if (v)
2149 return v;
2150 }
2151 return NULL;
2152}
2153
2154
2155/* Return the offset (in bytes) of the virtual base of type BASETYPE
2156 * in an object pointed to by VALADDR (on the host), assumed to be of
2157 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2158 * looking (in case VALADDR is the contents of an enclosing object).
2159 *
2160 * This routine recurses on the primary base of the derived class because
2161 * the virtual base entries of the primary base appear before the other
2162 * virtual base entries.
2163 *
2164 * If the virtual base is not found, a negative integer is returned.
2165 * The magnitude of the negative integer is the number of entries in
2166 * the virtual table to skip over (entries corresponding to various
2167 * ancestral classes in the chain of primary bases).
2168 *
2169 * Important: This assumes the HP / Taligent C++ runtime
2170 * conventions. Use baseclass_offset() instead to deal with g++
2171 * conventions. */
2172
2173void
2174find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2175 int offset, int *boffset_p, int *skip_p)
2176{
2177 int boffset; /* offset of virtual base */
2178 int index; /* displacement to use in virtual table */
2179 int skip;
2180
2181 value_ptr vp;
2182 CORE_ADDR vtbl; /* the virtual table pointer */
2183 struct type *pbc; /* the primary base class */
2184
2185 /* Look for the virtual base recursively in the primary base, first.
2186 * This is because the derived class object and its primary base
2187 * subobject share the primary virtual table. */
2188
2189 boffset = 0;
2190 pbc = TYPE_PRIMARY_BASE (type);
2191 if (pbc)
2192 {
2193 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2194 if (skip < 0)
2195 {
2196 *boffset_p = boffset;
2197 *skip_p = -1;
2198 return;
2199 }
2200 }
2201 else
2202 skip = 0;
2203
2204
2205 /* Find the index of the virtual base according to HP/Taligent
2206 runtime spec. (Depth-first, left-to-right.) */
2207 index = virtual_base_index_skip_primaries (basetype, type);
2208
2209 if (index < 0)
2210 {
2211 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2212 *boffset_p = 0;
2213 return;
2214 }
2215
2216 /* pai: FIXME -- 32x64 possible problem */
2217 /* First word (4 bytes) in object layout is the vtable pointer */
2218 vtbl = *(CORE_ADDR *) (valaddr + offset);
2219
2220 /* Before the constructor is invoked, things are usually zero'd out. */
2221 if (vtbl == 0)
2222 error ("Couldn't find virtual table -- object may not be constructed yet.");
2223
2224
2225 /* Find virtual base's offset -- jump over entries for primary base
2226 * ancestors, then use the index computed above. But also adjust by
2227 * HP_ACC_VBASE_START for the vtable slots before the start of the
2228 * virtual base entries. Offset is negative -- virtual base entries
2229 * appear _before_ the address point of the virtual table. */
2230
2231 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2232 & use long type */
2233
2234 /* epstein : FIXME -- added param for overlay section. May not be correct */
2235 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2236 boffset = value_as_long (vp);
2237 *skip_p = -1;
2238 *boffset_p = boffset;
2239 return;
2240}
2241
2242
2243/* Helper function used by value_struct_elt to recurse through baseclasses.
2244 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2245 and search in it assuming it has (class) type TYPE.
2246 If found, return value, else if name matched and args not return (value)-1,
2247 else return NULL. */
2248
2249static value_ptr
2250search_struct_method (char *name, register value_ptr *arg1p,
2251 register value_ptr *args, int offset,
2252 int *static_memfuncp, register struct type *type)
2253{
2254 int i;
2255 value_ptr v;
2256 int name_matched = 0;
2257 char dem_opname[64];
2258
2259 CHECK_TYPEDEF (type);
2260 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2261 {
2262 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2263 /* FIXME! May need to check for ARM demangling here */
2264 if (strncmp (t_field_name, "__", 2) == 0 ||
2265 strncmp (t_field_name, "op", 2) == 0 ||
2266 strncmp (t_field_name, "type", 4) == 0)
2267 {
2268 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2269 t_field_name = dem_opname;
2270 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2271 t_field_name = dem_opname;
2272 }
2273 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2274 {
2275 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2276 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2277 name_matched = 1;
2278
2279 if (j > 0 && args == 0)
2280 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2281 while (j >= 0)
2282 {
2283 if (TYPE_FN_FIELD_STUB (f, j))
2284 check_stub_method (type, i, j);
2285 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2286 TYPE_FN_FIELD_ARGS (f, j), args))
2287 {
2288 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2289 return value_virtual_fn_field (arg1p, f, j, type, offset);
2290 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2291 *static_memfuncp = 1;
2292 v = value_fn_field (arg1p, f, j, type, offset);
2293 if (v != NULL)
2294 return v;
2295 }
2296 j--;
2297 }
2298 }
2299 }
2300
2301 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2302 {
2303 int base_offset;
2304
2305 if (BASETYPE_VIA_VIRTUAL (type, i))
2306 {
2307 if (TYPE_HAS_VTABLE (type))
2308 {
2309 /* HP aCC compiled type, search for virtual base offset
2310 according to HP/Taligent runtime spec. */
2311 int skip;
2312 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2313 VALUE_CONTENTS_ALL (*arg1p),
2314 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2315 &base_offset, &skip);
2316 if (skip >= 0)
2317 error ("Virtual base class offset not found in vtable");
2318 }
2319 else
2320 {
2321 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2322 char *base_valaddr;
2323
2324 /* The virtual base class pointer might have been clobbered by the
2325 user program. Make sure that it still points to a valid memory
2326 location. */
2327
2328 if (offset < 0 || offset >= TYPE_LENGTH (type))
2329 {
2330 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2331 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2332 + VALUE_OFFSET (*arg1p) + offset,
2333 base_valaddr,
2334 TYPE_LENGTH (baseclass)) != 0)
2335 error ("virtual baseclass botch");
2336 }
2337 else
2338 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2339
2340 base_offset =
2341 baseclass_offset (type, i, base_valaddr,
2342 VALUE_ADDRESS (*arg1p)
2343 + VALUE_OFFSET (*arg1p) + offset);
2344 if (base_offset == -1)
2345 error ("virtual baseclass botch");
2346 }
2347 }
2348 else
2349 {
2350 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2351 }
2352 v = search_struct_method (name, arg1p, args, base_offset + offset,
2353 static_memfuncp, TYPE_BASECLASS (type, i));
2354 if (v == (value_ptr) - 1)
2355 {
2356 name_matched = 1;
2357 }
2358 else if (v)
2359 {
2360/* FIXME-bothner: Why is this commented out? Why is it here? */
2361/* *arg1p = arg1_tmp; */
2362 return v;
2363 }
2364 }
2365 if (name_matched)
2366 return (value_ptr) - 1;
2367 else
2368 return NULL;
2369}
2370
2371/* Given *ARGP, a value of type (pointer to a)* structure/union,
2372 extract the component named NAME from the ultimate target structure/union
2373 and return it as a value with its appropriate type.
2374 ERR is used in the error message if *ARGP's type is wrong.
2375
2376 C++: ARGS is a list of argument types to aid in the selection of
2377 an appropriate method. Also, handle derived types.
2378
2379 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2380 where the truthvalue of whether the function that was resolved was
2381 a static member function or not is stored.
2382
2383 ERR is an error message to be printed in case the field is not found. */
2384
2385value_ptr
2386value_struct_elt (register value_ptr *argp, register value_ptr *args,
2387 char *name, int *static_memfuncp, char *err)
2388{
2389 register struct type *t;
2390 value_ptr v;
2391
2392 COERCE_ARRAY (*argp);
2393
2394 t = check_typedef (VALUE_TYPE (*argp));
2395
2396 /* Follow pointers until we get to a non-pointer. */
2397
2398 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2399 {
2400 *argp = value_ind (*argp);
2401 /* Don't coerce fn pointer to fn and then back again! */
2402 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2403 COERCE_ARRAY (*argp);
2404 t = check_typedef (VALUE_TYPE (*argp));
2405 }
2406
2407 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2408 error ("not implemented: member type in value_struct_elt");
2409
2410 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2411 && TYPE_CODE (t) != TYPE_CODE_UNION)
2412 error ("Attempt to extract a component of a value that is not a %s.", err);
2413
2414 /* Assume it's not, unless we see that it is. */
2415 if (static_memfuncp)
2416 *static_memfuncp = 0;
2417
2418 if (!args)
2419 {
2420 /* if there are no arguments ...do this... */
2421
2422 /* Try as a field first, because if we succeed, there
2423 is less work to be done. */
2424 v = search_struct_field (name, *argp, 0, t, 0);
2425 if (v)
2426 return v;
2427
2428 /* C++: If it was not found as a data field, then try to
2429 return it as a pointer to a method. */
2430
2431 if (destructor_name_p (name, t))
2432 error ("Cannot get value of destructor");
2433
2434 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2435
2436 if (v == (value_ptr) - 1)
2437 error ("Cannot take address of a method");
2438 else if (v == 0)
2439 {
2440 if (TYPE_NFN_FIELDS (t))
2441 error ("There is no member or method named %s.", name);
2442 else
2443 error ("There is no member named %s.", name);
2444 }
2445 return v;
2446 }
2447
2448 if (destructor_name_p (name, t))
2449 {
2450 if (!args[1])
2451 {
2452 /* Destructors are a special case. */
2453 int m_index, f_index;
2454
2455 v = NULL;
2456 if (get_destructor_fn_field (t, &m_index, &f_index))
2457 {
2458 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2459 f_index, NULL, 0);
2460 }
2461 if (v == NULL)
2462 error ("could not find destructor function named %s.", name);
2463 else
2464 return v;
2465 }
2466 else
2467 {
2468 error ("destructor should not have any argument");
2469 }
2470 }
2471 else
2472 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2473
2474 if (v == (value_ptr) - 1)
2475 {
2476 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2477 }
2478 else if (v == 0)
2479 {
2480 /* See if user tried to invoke data as function. If so,
2481 hand it back. If it's not callable (i.e., a pointer to function),
2482 gdb should give an error. */
2483 v = search_struct_field (name, *argp, 0, t, 0);
2484 }
2485
2486 if (!v)
2487 error ("Structure has no component named %s.", name);
2488 return v;
2489}
2490
2491/* Search through the methods of an object (and its bases)
2492 * to find a specified method. Return the pointer to the
2493 * fn_field list of overloaded instances.
2494 * Helper function for value_find_oload_list.
2495 * ARGP is a pointer to a pointer to a value (the object)
2496 * METHOD is a string containing the method name
2497 * OFFSET is the offset within the value
2498 * STATIC_MEMFUNCP is set if the method is static
2499 * TYPE is the assumed type of the object
2500 * NUM_FNS is the number of overloaded instances
2501 * BASETYPE is set to the actual type of the subobject where the method is found
2502 * BOFFSET is the offset of the base subobject where the method is found */
2503
2504static struct fn_field *
2505find_method_list (value_ptr *argp, char *method, int offset,
2506 int *static_memfuncp, struct type *type, int *num_fns,
2507 struct type **basetype, int *boffset)
2508{
2509 int i;
2510 struct fn_field *f;
2511 CHECK_TYPEDEF (type);
2512
2513 *num_fns = 0;
2514
2515 /* First check in object itself */
2516 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2517 {
2518 /* pai: FIXME What about operators and type conversions? */
2519 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2520 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2521 {
2522 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2523 *basetype = type;
2524 *boffset = offset;
2525 return TYPE_FN_FIELDLIST1 (type, i);
2526 }
2527 }
2528
2529 /* Not found in object, check in base subobjects */
2530 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2531 {
2532 int base_offset;
2533 if (BASETYPE_VIA_VIRTUAL (type, i))
2534 {
2535 if (TYPE_HAS_VTABLE (type))
2536 {
2537 /* HP aCC compiled type, search for virtual base offset
2538 * according to HP/Taligent runtime spec. */
2539 int skip;
2540 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2541 VALUE_CONTENTS_ALL (*argp),
2542 offset + VALUE_EMBEDDED_OFFSET (*argp),
2543 &base_offset, &skip);
2544 if (skip >= 0)
2545 error ("Virtual base class offset not found in vtable");
2546 }
2547 else
2548 {
2549 /* probably g++ runtime model */
2550 base_offset = VALUE_OFFSET (*argp) + offset;
2551 base_offset =
2552 baseclass_offset (type, i,
2553 VALUE_CONTENTS (*argp) + base_offset,
2554 VALUE_ADDRESS (*argp) + base_offset);
2555 if (base_offset == -1)
2556 error ("virtual baseclass botch");
2557 }
2558 }
2559 else
2560 /* non-virtual base, simply use bit position from debug info */
2561 {
2562 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2563 }
2564 f = find_method_list (argp, method, base_offset + offset,
2565 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2566 if (f)
2567 return f;
2568 }
2569 return NULL;
2570}
2571
2572/* Return the list of overloaded methods of a specified name.
2573 * ARGP is a pointer to a pointer to a value (the object)
2574 * METHOD is the method name
2575 * OFFSET is the offset within the value contents
2576 * STATIC_MEMFUNCP is set if the method is static
2577 * NUM_FNS is the number of overloaded instances
2578 * BASETYPE is set to the type of the base subobject that defines the method
2579 * BOFFSET is the offset of the base subobject which defines the method */
2580
2581struct fn_field *
2582value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2583 int *static_memfuncp, int *num_fns,
2584 struct type **basetype, int *boffset)
2585{
2586 struct type *t;
2587
2588 t = check_typedef (VALUE_TYPE (*argp));
2589
2590 /* code snarfed from value_struct_elt */
2591 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2592 {
2593 *argp = value_ind (*argp);
2594 /* Don't coerce fn pointer to fn and then back again! */
2595 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2596 COERCE_ARRAY (*argp);
2597 t = check_typedef (VALUE_TYPE (*argp));
2598 }
2599
2600 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2601 error ("Not implemented: member type in value_find_oload_lis");
2602
2603 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2604 && TYPE_CODE (t) != TYPE_CODE_UNION)
2605 error ("Attempt to extract a component of a value that is not a struct or union");
2606
2607 /* Assume it's not static, unless we see that it is. */
2608 if (static_memfuncp)
2609 *static_memfuncp = 0;
2610
2611 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2612
2613}
2614
2615/* Given an array of argument types (ARGTYPES) (which includes an
2616 entry for "this" in the case of C++ methods), the number of
2617 arguments NARGS, the NAME of a function whether it's a method or
2618 not (METHOD), and the degree of laxness (LAX) in conforming to
2619 overload resolution rules in ANSI C++, find the best function that
2620 matches on the argument types according to the overload resolution
2621 rules.
2622
2623 In the case of class methods, the parameter OBJ is an object value
2624 in which to search for overloaded methods.
2625
2626 In the case of non-method functions, the parameter FSYM is a symbol
2627 corresponding to one of the overloaded functions.
2628
2629 Return value is an integer: 0 -> good match, 10 -> debugger applied
2630 non-standard coercions, 100 -> incompatible.
2631
2632 If a method is being searched for, VALP will hold the value.
2633 If a non-method is being searched for, SYMP will hold the symbol for it.
2634
2635 If a method is being searched for, and it is a static method,
2636 then STATICP will point to a non-zero value.
2637
2638 Note: This function does *not* check the value of
2639 overload_resolution. Caller must check it to see whether overload
2640 resolution is permitted.
2641 */
2642
2643int
2644find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2645 int lax, value_ptr obj, struct symbol *fsym,
2646 value_ptr *valp, struct symbol **symp, int *staticp)
2647{
2648 int nparms;
2649 struct type **parm_types;
2650 int champ_nparms = 0;
2651
2652 short oload_champ = -1; /* Index of best overloaded function */
2653 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2654 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2655 short oload_ambig_champ = -1; /* 2nd contender for best match */
2656 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2657 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2658
2659 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2660 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2661
2662 value_ptr temp = obj;
2663 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2664 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2665 int num_fns = 0; /* Number of overloaded instances being considered */
2666 struct type *basetype = NULL;
2667 int boffset;
2668 register int jj;
2669 register int ix;
2670
2671 char *obj_type_name = NULL;
2672 char *func_name = NULL;
2673
2674 /* Get the list of overloaded methods or functions */
2675 if (method)
2676 {
2677 int i;
2678 int len;
2679 struct type *domain;
2680 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2681 /* Hack: evaluate_subexp_standard often passes in a pointer
2682 value rather than the object itself, so try again */
2683 if ((!obj_type_name || !*obj_type_name) &&
2684 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2685 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2686
2687 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2688 staticp,
2689 &num_fns,
2690 &basetype, &boffset);
2691 if (!fns_ptr || !num_fns)
2692 error ("Couldn't find method %s%s%s",
2693 obj_type_name,
2694 (obj_type_name && *obj_type_name) ? "::" : "",
2695 name);
2696 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2697 len = TYPE_NFN_FIELDS (domain);
2698 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2699 give us the info we need directly in the types. We have to
2700 use the method stub conversion to get it. Be aware that this
2701 is by no means perfect, and if you use STABS, please move to
2702 DWARF-2, or something like it, because trying to improve
2703 overloading using STABS is really a waste of time. */
2704 for (i = 0; i < len; i++)
2705 {
2706 int j;
2707 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2708 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2709
2710 for (j = 0; j < len2; j++)
2711 {
2712 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2713 check_stub_method (domain, i, j);
2714 }
2715 }
2716 }
2717 else
2718 {
2719 int i = -1;
2720 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2721
2722 /* If the name is NULL this must be a C-style function.
2723 Just return the same symbol. */
2724 if (!func_name)
2725 {
2726 *symp = fsym;
2727 return 0;
2728 }
2729
2730 oload_syms = make_symbol_overload_list (fsym);
2731 while (oload_syms[++i])
2732 num_fns++;
2733 if (!num_fns)
2734 error ("Couldn't find function %s", func_name);
2735 }
2736
2737 oload_champ_bv = NULL;
2738
2739 /* Consider each candidate in turn */
2740 for (ix = 0; ix < num_fns; ix++)
2741 {
2742 if (method)
2743 {
2744 /* For static member functions, we won't have a this pointer, but nothing
2745 else seems to handle them right now, so we just pretend ourselves */
2746 nparms=0;
2747
2748 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2749 {
2750 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2751 nparms++;
2752 }
2753 }
2754 else
2755 {
2756 /* If it's not a method, this is the proper place */
2757 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2758 }
2759
2760 /* Prepare array of parameter types */
2761 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2762 for (jj = 0; jj < nparms; jj++)
2763 parm_types[jj] = (method
2764 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2765 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2766
2767 /* Compare parameter types to supplied argument types */
2768 bv = rank_function (parm_types, nparms, arg_types, nargs);
2769
2770 if (!oload_champ_bv)
2771 {
2772 oload_champ_bv = bv;
2773 oload_champ = 0;
2774 champ_nparms = nparms;
2775 }
2776 else
2777 /* See whether current candidate is better or worse than previous best */
2778 switch (compare_badness (bv, oload_champ_bv))
2779 {
2780 case 0:
2781 oload_ambiguous = 1; /* top two contenders are equally good */
2782 oload_ambig_champ = ix;
2783 break;
2784 case 1:
2785 oload_ambiguous = 2; /* incomparable top contenders */
2786 oload_ambig_champ = ix;
2787 break;
2788 case 2:
2789 oload_champ_bv = bv; /* new champion, record details */
2790 oload_ambiguous = 0;
2791 oload_champ = ix;
2792 oload_ambig_champ = -1;
2793 champ_nparms = nparms;
2794 break;
2795 case 3:
2796 default:
2797 break;
2798 }
2799 free (parm_types);
2800 if (overload_debug)
2801 {
2802 if (method)
2803 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2804 else
2805 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2806 for (jj = 0; jj < nargs; jj++)
2807 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2808 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2809 }
2810 } /* end loop over all candidates */
2811 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2812 if they have the exact same goodness. This is because there is no
2813 way to differentiate based on return type, which we need to in
2814 cases like overloads of .begin() <It's both const and non-const> */
2815#if 0
2816 if (oload_ambiguous)
2817 {
2818 if (method)
2819 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2820 obj_type_name,
2821 (obj_type_name && *obj_type_name) ? "::" : "",
2822 name);
2823 else
2824 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2825 func_name);
2826 }
2827#endif
2828
2829 /* Check how bad the best match is */
2830 for (ix = 1; ix <= nargs; ix++)
2831 {
2832 if (oload_champ_bv->rank[ix] >= 100)
2833 oload_incompatible = 1; /* truly mismatched types */
2834
2835 else if (oload_champ_bv->rank[ix] >= 10)
2836 oload_non_standard = 1; /* non-standard type conversions needed */
2837 }
2838 if (oload_incompatible)
2839 {
2840 if (method)
2841 error ("Cannot resolve method %s%s%s to any overloaded instance",
2842 obj_type_name,
2843 (obj_type_name && *obj_type_name) ? "::" : "",
2844 name);
2845 else
2846 error ("Cannot resolve function %s to any overloaded instance",
2847 func_name);
2848 }
2849 else if (oload_non_standard)
2850 {
2851 if (method)
2852 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2853 obj_type_name,
2854 (obj_type_name && *obj_type_name) ? "::" : "",
2855 name);
2856 else
2857 warning ("Using non-standard conversion to match function %s to supplied arguments",
2858 func_name);
2859 }
2860
2861 if (method)
2862 {
2863 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2864 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2865 else
2866 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2867 }
2868 else
2869 {
2870 *symp = oload_syms[oload_champ];
2871 free (func_name);
2872 }
2873
2874 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2875}
2876
2877/* C++: return 1 is NAME is a legitimate name for the destructor
2878 of type TYPE. If TYPE does not have a destructor, or
2879 if NAME is inappropriate for TYPE, an error is signaled. */
2880int
2881destructor_name_p (const char *name, const struct type *type)
2882{
2883 /* destructors are a special case. */
2884
2885 if (name[0] == '~')
2886 {
2887 char *dname = type_name_no_tag (type);
2888 char *cp = strchr (dname, '<');
2889 unsigned int len;
2890
2891 /* Do not compare the template part for template classes. */
2892 if (cp == NULL)
2893 len = strlen (dname);
2894 else
2895 len = cp - dname;
2896 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2897 error ("name of destructor must equal name of class");
2898 else
2899 return 1;
2900 }
2901 return 0;
2902}
2903
2904/* Helper function for check_field: Given TYPE, a structure/union,
2905 return 1 if the component named NAME from the ultimate
2906 target structure/union is defined, otherwise, return 0. */
2907
2908static int
2909check_field_in (register struct type *type, const char *name)
2910{
2911 register int i;
2912
2913 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2914 {
2915 char *t_field_name = TYPE_FIELD_NAME (type, i);
2916 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2917 return 1;
2918 }
2919
2920 /* C++: If it was not found as a data field, then try to
2921 return it as a pointer to a method. */
2922
2923 /* Destructors are a special case. */
2924 if (destructor_name_p (name, type))
2925 {
2926 int m_index, f_index;
2927
2928 return get_destructor_fn_field (type, &m_index, &f_index);
2929 }
2930
2931 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2932 {
2933 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2934 return 1;
2935 }
2936
2937 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2938 if (check_field_in (TYPE_BASECLASS (type, i), name))
2939 return 1;
2940
2941 return 0;
2942}
2943
2944
2945/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2946 return 1 if the component named NAME from the ultimate
2947 target structure/union is defined, otherwise, return 0. */
2948
2949int
2950check_field (register value_ptr arg1, const char *name)
2951{
2952 register struct type *t;
2953
2954 COERCE_ARRAY (arg1);
2955
2956 t = VALUE_TYPE (arg1);
2957
2958 /* Follow pointers until we get to a non-pointer. */
2959
2960 for (;;)
2961 {
2962 CHECK_TYPEDEF (t);
2963 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2964 break;
2965 t = TYPE_TARGET_TYPE (t);
2966 }
2967
2968 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2969 error ("not implemented: member type in check_field");
2970
2971 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2972 && TYPE_CODE (t) != TYPE_CODE_UNION)
2973 error ("Internal error: `this' is not an aggregate");
2974
2975 return check_field_in (t, name);
2976}
2977
2978/* C++: Given an aggregate type CURTYPE, and a member name NAME,
2979 return the address of this member as a "pointer to member"
2980 type. If INTYPE is non-null, then it will be the type
2981 of the member we are looking for. This will help us resolve
2982 "pointers to member functions". This function is used
2983 to resolve user expressions of the form "DOMAIN::NAME". */
2984
2985value_ptr
2986value_struct_elt_for_reference (struct type *domain, int offset,
2987 struct type *curtype, char *name,
2988 struct type *intype)
2989{
2990 register struct type *t = curtype;
2991 register int i;
2992 value_ptr v;
2993
2994 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2995 && TYPE_CODE (t) != TYPE_CODE_UNION)
2996 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2997
2998 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2999 {
3000 char *t_field_name = TYPE_FIELD_NAME (t, i);
3001
3002 if (t_field_name && STREQ (t_field_name, name))
3003 {
3004 if (TYPE_FIELD_STATIC (t, i))
3005 {
3006 v = value_static_field (t, i);
3007 if (v == NULL)
3008 error ("Internal error: could not find static variable %s",
3009 name);
3010 return v;
3011 }
3012 if (TYPE_FIELD_PACKED (t, i))
3013 error ("pointers to bitfield members not allowed");
3014
3015 return value_from_longest
3016 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3017 domain)),
3018 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3019 }
3020 }
3021
3022 /* C++: If it was not found as a data field, then try to
3023 return it as a pointer to a method. */
3024
3025 /* Destructors are a special case. */
3026 if (destructor_name_p (name, t))
3027 {
3028 error ("member pointers to destructors not implemented yet");
3029 }
3030
3031 /* Perform all necessary dereferencing. */
3032 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3033 intype = TYPE_TARGET_TYPE (intype);
3034
3035 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3036 {
3037 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3038 char dem_opname[64];
3039
3040 if (strncmp (t_field_name, "__", 2) == 0 ||
3041 strncmp (t_field_name, "op", 2) == 0 ||
3042 strncmp (t_field_name, "type", 4) == 0)
3043 {
3044 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3045 t_field_name = dem_opname;
3046 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3047 t_field_name = dem_opname;
3048 }
3049 if (t_field_name && STREQ (t_field_name, name))
3050 {
3051 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3052 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3053
3054 if (intype == 0 && j > 1)
3055 error ("non-unique member `%s' requires type instantiation", name);
3056 if (intype)
3057 {
3058 while (j--)
3059 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3060 break;
3061 if (j < 0)
3062 error ("no member function matches that type instantiation");
3063 }
3064 else
3065 j = 0;
3066
3067 if (TYPE_FN_FIELD_STUB (f, j))
3068 check_stub_method (t, i, j);
3069 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3070 {
3071 return value_from_longest
3072 (lookup_reference_type
3073 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3074 domain)),
3075 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3076 }
3077 else
3078 {
3079 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3080 0, VAR_NAMESPACE, 0, NULL);
3081 if (s == NULL)
3082 {
3083 v = 0;
3084 }
3085 else
3086 {
3087 v = read_var_value (s, 0);
3088#if 0
3089 VALUE_TYPE (v) = lookup_reference_type
3090 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3091 domain));
3092#endif
3093 }
3094 return v;
3095 }
3096 }
3097 }
3098 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3099 {
3100 value_ptr v;
3101 int base_offset;
3102
3103 if (BASETYPE_VIA_VIRTUAL (t, i))
3104 base_offset = 0;
3105 else
3106 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3107 v = value_struct_elt_for_reference (domain,
3108 offset + base_offset,
3109 TYPE_BASECLASS (t, i),
3110 name,
3111 intype);
3112 if (v)
3113 return v;
3114 }
3115 return 0;
3116}
3117
3118
3119/* Find the real run-time type of a value using RTTI.
3120 * V is a pointer to the value.
3121 * A pointer to the struct type entry of the run-time type
3122 * is returneed.
3123 * FULL is a flag that is set only if the value V includes
3124 * the entire contents of an object of the RTTI type.
3125 * TOP is the offset to the top of the enclosing object of
3126 * the real run-time type. This offset may be for the embedded
3127 * object, or for the enclosing object of V.
3128 * USING_ENC is the flag that distinguishes the two cases.
3129 * If it is 1, then the offset is for the enclosing object,
3130 * otherwise for the embedded object.
3131 *
3132 */
3133
3134struct type *
3135value_rtti_type (value_ptr v, int *full, int *top, int *using_enc)
3136{
3137 struct type *known_type;
3138 struct type *rtti_type;
3139 CORE_ADDR coreptr;
3140 value_ptr vp;
3141 int using_enclosing = 0;
3142 long top_offset = 0;
3143 char rtti_type_name[256];
3144
3145 if (full)
3146 *full = 0;
3147 if (top)
3148 *top = -1;
3149 if (using_enc)
3150 *using_enc = 0;
3151
3152 /* Get declared type */
3153 known_type = VALUE_TYPE (v);
3154 CHECK_TYPEDEF (known_type);
3155 /* RTTI works only or class objects */
3156 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3157 return NULL;
3158 if (TYPE_HAS_VTABLE(known_type))
3159 {
3160 /* If neither the declared type nor the enclosing type of the
3161 * value structure has a HP ANSI C++ style virtual table,
3162 * we can't do anything. */
3163 if (!TYPE_HAS_VTABLE (known_type))
3164 {
3165 known_type = VALUE_ENCLOSING_TYPE (v);
3166 CHECK_TYPEDEF (known_type);
3167 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3168 !TYPE_HAS_VTABLE (known_type))
3169 return NULL; /* No RTTI, or not HP-compiled types */
3170 CHECK_TYPEDEF (known_type);
3171 using_enclosing = 1;
3172 }
3173
3174 if (using_enclosing && using_enc)
3175 *using_enc = 1;
3176
3177 /* First get the virtual table address */
3178 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3179 + VALUE_OFFSET (v)
3180 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3181 if (coreptr == 0)
3182 return NULL; /* return silently -- maybe called on gdb-generated value */
3183
3184 /* Fetch the top offset of the object */
3185 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3186 vp = value_at (builtin_type_int,
3187 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3188 VALUE_BFD_SECTION (v));
3189 top_offset = value_as_long (vp);
3190 if (top)
3191 *top = top_offset;
3192
3193 /* Fetch the typeinfo pointer */
3194 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3195 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3196 /* Indirect through the typeinfo pointer and retrieve the pointer
3197 * to the string name */
3198 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3199 if (!coreptr)
3200 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3201 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3202 /* FIXME possible 32x64 problem */
3203
3204 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3205
3206 read_memory_string (coreptr, rtti_type_name, 256);
3207
3208 if (strlen (rtti_type_name) == 0)
3209 error ("Retrieved null type name from typeinfo");
3210
3211 /* search for type */
3212 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3213
3214 if (!rtti_type)
3215 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3216 CHECK_TYPEDEF (rtti_type);
3217#if 0
3218 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3219#endif
3220 /* Check whether we have the entire object */
3221 if (full /* Non-null pointer passed */
3222 &&
3223 /* Either we checked on the whole object in hand and found the
3224 top offset to be zero */
3225 (((top_offset == 0) &&
3226 using_enclosing &&
3227 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3228 ||
3229 /* Or we checked on the embedded object and top offset was the
3230 same as the embedded offset */
3231 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3232 !using_enclosing &&
3233 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3234
3235 *full = 1;
3236 }
3237 else
3238 /*
3239 Right now this is G++ RTTI. Plan on this changing in the
3240 future as i get around to setting the vtables properly for G++
3241 compiled stuff. Also, i'll be using the type info functions,
3242 which are always right. Deal with it until then.
3243 */
3244 {
3245 CORE_ADDR vtbl;
3246 struct minimal_symbol *minsym;
3247 struct symbol *sym;
3248 char *demangled_name;
3249 struct type *btype;
3250 /* If the type has no vptr fieldno, try to get it filled in */
3251 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3252 fill_in_vptr_fieldno(known_type);
3253
3254 /* If we still can't find one, give up */
3255 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3256 return NULL;
3257
3258 /* Make sure our basetype and known type match, otherwise, cast
3259 so we can get at the vtable properly.
3260 */
3261 btype = TYPE_VPTR_BASETYPE (known_type);
3262 CHECK_TYPEDEF (btype);
3263 if (btype != known_type )
3264 {
3265 v = value_cast (btype, v);
3266 if (using_enc)
3267 *using_enc=1;
3268 }
3269 /*
3270 We can't use value_ind here, because it would want to use RTTI, and
3271 we'd waste a bunch of time figuring out we already know the type.
3272 Besides, we don't care about the type, just the actual pointer
3273 */
3274 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3275 return NULL;
3276
3277 /*
3278 If we are enclosed by something that isn't us, adjust the
3279 address properly and set using_enclosing.
3280 */
3281 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3282 {
3283 value_ptr tempval;
3284 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3285 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3286 vtbl=value_as_pointer(tempval);
3287 using_enclosing=1;
3288 }
3289 else
3290 {
3291 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3292 using_enclosing=0;
3293 }
3294
3295 /* Try to find a symbol that is the vtable */
3296 minsym=lookup_minimal_symbol_by_pc(vtbl);
3297 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3298 return NULL;
3299
3300 /* If we just skip the prefix, we get screwed by namespaces */
3301 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3302 *(strchr(demangled_name,' '))=0;
3303
3304 /* Lookup the type for the name */
3305 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3306
3307 if (rtti_type==NULL)
3308 return NULL;
3309
3310 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3311 {
3312 if (top)
3313 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3314 if (top && ((*top) >0))
3315 {
3316 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3317 {
3318 if (full)
3319 *full=0;
3320 }
3321 else
3322 {
3323 if (full)
3324 *full=1;
3325 }
3326 }
3327 }
3328 else
3329 {
3330 if (full)
3331 *full=1;
3332 }
3333 if (using_enc)
3334 *using_enc=using_enclosing;
3335 }
3336 return rtti_type;
3337}
3338
3339/* Given a pointer value V, find the real (RTTI) type
3340 of the object it points to.
3341 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3342 and refer to the values computed for the object pointed to. */
3343
3344struct type *
3345value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3346{
3347 value_ptr target;
3348
3349 target = value_ind (v);
3350
3351 return value_rtti_type (target, full, top, using_enc);
3352}
3353
3354/* Given a value pointed to by ARGP, check its real run-time type, and
3355 if that is different from the enclosing type, create a new value
3356 using the real run-time type as the enclosing type (and of the same
3357 type as ARGP) and return it, with the embedded offset adjusted to
3358 be the correct offset to the enclosed object
3359 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3360 parameters, computed by value_rtti_type(). If these are available,
3361 they can be supplied and a second call to value_rtti_type() is avoided.
3362 (Pass RTYPE == NULL if they're not available */
3363
3364value_ptr
3365value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3366 int xusing_enc)
3367{
3368 struct type *real_type;
3369 int full = 0;
3370 int top = -1;
3371 int using_enc = 0;
3372 value_ptr new_val;
3373
3374 if (rtype)
3375 {
3376 real_type = rtype;
3377 full = xfull;
3378 top = xtop;
3379 using_enc = xusing_enc;
3380 }
3381 else
3382 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3383
3384 /* If no RTTI data, or if object is already complete, do nothing */
3385 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3386 return argp;
3387
3388 /* If we have the full object, but for some reason the enclosing
3389 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3390 if (full)
3391 {
3392 VALUE_ENCLOSING_TYPE (argp) = real_type;
3393 return argp;
3394 }
3395
3396 /* Check if object is in memory */
3397 if (VALUE_LVAL (argp) != lval_memory)
3398 {
3399 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3400
3401 return argp;
3402 }
3403
3404 /* All other cases -- retrieve the complete object */
3405 /* Go back by the computed top_offset from the beginning of the object,
3406 adjusting for the embedded offset of argp if that's what value_rtti_type
3407 used for its computation. */
3408 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3409 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3410 VALUE_BFD_SECTION (argp));
3411 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3412 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3413 return new_val;
3414}
3415
3416
3417
3418
3419/* C++: return the value of the class instance variable, if one exists.
3420 Flag COMPLAIN signals an error if the request is made in an
3421 inappropriate context. */
3422
3423value_ptr
3424value_of_this (int complain)
3425{
3426 struct symbol *func, *sym;
3427 struct block *b;
3428 int i;
3429 static const char funny_this[] = "this";
3430 value_ptr this;
3431
3432 if (selected_frame == 0)
3433 {
3434 if (complain)
3435 error ("no frame selected");
3436 else
3437 return 0;
3438 }
3439
3440 func = get_frame_function (selected_frame);
3441 if (!func)
3442 {
3443 if (complain)
3444 error ("no `this' in nameless context");
3445 else
3446 return 0;
3447 }
3448
3449 b = SYMBOL_BLOCK_VALUE (func);
3450 i = BLOCK_NSYMS (b);
3451 if (i <= 0)
3452 {
3453 if (complain)
3454 error ("no args, no `this'");
3455 else
3456 return 0;
3457 }
3458
3459 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3460 symbol instead of the LOC_ARG one (if both exist). */
3461 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3462 if (sym == NULL)
3463 {
3464 if (complain)
3465 error ("current stack frame not in method");
3466 else
3467 return NULL;
3468 }
3469
3470 this = read_var_value (sym, selected_frame);
3471 if (this == 0 && complain)
3472 error ("`this' argument at unknown address");
3473 return this;
3474}
3475
3476/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3477 long, starting at LOWBOUND. The result has the same lower bound as
3478 the original ARRAY. */
3479
3480value_ptr
3481value_slice (value_ptr array, int lowbound, int length)
3482{
3483 struct type *slice_range_type, *slice_type, *range_type;
3484 LONGEST lowerbound, upperbound, offset;
3485 value_ptr slice;
3486 struct type *array_type;
3487 array_type = check_typedef (VALUE_TYPE (array));
3488 COERCE_VARYING_ARRAY (array, array_type);
3489 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3490 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3491 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3492 error ("cannot take slice of non-array");
3493 range_type = TYPE_INDEX_TYPE (array_type);
3494 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3495 error ("slice from bad array or bitstring");
3496 if (lowbound < lowerbound || length < 0
3497 || lowbound + length - 1 > upperbound
3498 /* Chill allows zero-length strings but not arrays. */
3499 || (current_language->la_language == language_chill
3500 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3501 error ("slice out of range");
3502 /* FIXME-type-allocation: need a way to free this type when we are
3503 done with it. */
3504 slice_range_type = create_range_type ((struct type *) NULL,
3505 TYPE_TARGET_TYPE (range_type),
3506 lowbound, lowbound + length - 1);
3507 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3508 {
3509 int i;
3510 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3511 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3512 slice = value_zero (slice_type, not_lval);
3513 for (i = 0; i < length; i++)
3514 {
3515 int element = value_bit_index (array_type,
3516 VALUE_CONTENTS (array),
3517 lowbound + i);
3518 if (element < 0)
3519 error ("internal error accessing bitstring");
3520 else if (element > 0)
3521 {
3522 int j = i % TARGET_CHAR_BIT;
3523 if (BITS_BIG_ENDIAN)
3524 j = TARGET_CHAR_BIT - 1 - j;
3525 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3526 }
3527 }
3528 /* We should set the address, bitssize, and bitspos, so the clice
3529 can be used on the LHS, but that may require extensions to
3530 value_assign. For now, just leave as a non_lval. FIXME. */
3531 }
3532 else
3533 {
3534 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3535 offset
3536 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3537 slice_type = create_array_type ((struct type *) NULL, element_type,
3538 slice_range_type);
3539 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3540 slice = allocate_value (slice_type);
3541 if (VALUE_LAZY (array))
3542 VALUE_LAZY (slice) = 1;
3543 else
3544 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3545 TYPE_LENGTH (slice_type));
3546 if (VALUE_LVAL (array) == lval_internalvar)
3547 VALUE_LVAL (slice) = lval_internalvar_component;
3548 else
3549 VALUE_LVAL (slice) = VALUE_LVAL (array);
3550 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3551 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3552 }
3553 return slice;
3554}
3555
3556/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3557 value as a fixed-length array. */
3558
3559value_ptr
3560varying_to_slice (value_ptr varray)
3561{
3562 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3563 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3564 VALUE_CONTENTS (varray)
3565 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3566 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3567}
3568
3569/* Create a value for a FORTRAN complex number. Currently most of
3570 the time values are coerced to COMPLEX*16 (i.e. a complex number
3571 composed of 2 doubles. This really should be a smarter routine
3572 that figures out precision inteligently as opposed to assuming
3573 doubles. FIXME: fmb */
3574
3575value_ptr
3576value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3577{
3578 register value_ptr val;
3579 struct type *real_type = TYPE_TARGET_TYPE (type);
3580
3581 val = allocate_value (type);
3582 arg1 = value_cast (real_type, arg1);
3583 arg2 = value_cast (real_type, arg2);
3584
3585 memcpy (VALUE_CONTENTS_RAW (val),
3586 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3587 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3588 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3589 return val;
3590}
3591
3592/* Cast a value into the appropriate complex data type. */
3593
3594static value_ptr
3595cast_into_complex (struct type *type, register value_ptr val)
3596{
3597 struct type *real_type = TYPE_TARGET_TYPE (type);
3598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3599 {
3600 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3601 value_ptr re_val = allocate_value (val_real_type);
3602 value_ptr im_val = allocate_value (val_real_type);
3603
3604 memcpy (VALUE_CONTENTS_RAW (re_val),
3605 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3606 memcpy (VALUE_CONTENTS_RAW (im_val),
3607 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3608 TYPE_LENGTH (val_real_type));
3609
3610 return value_literal_complex (re_val, im_val, type);
3611 }
3612 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3613 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3614 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3615 else
3616 error ("cannot cast non-number to complex");
3617}
3618
3619void
3620_initialize_valops (void)
3621{
3622#if 0
3623 add_show_from_set
3624 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3625 "Set automatic abandonment of expressions upon failure.",
3626 &setlist),
3627 &showlist);
3628#endif
3629
3630 add_show_from_set
3631 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3632 "Set overload resolution in evaluating C++ functions.",
3633 &setlist),
3634 &showlist);
3635 overload_resolution = 1;
3636
3637 add_show_from_set (
3638 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3639 (char *) &unwind_on_signal_p,
3640"Set unwinding of stack if a signal is received while in a call dummy.\n\
3641The unwindonsignal lets the user determine what gdb should do if a signal\n\
3642is received while in a function called from gdb (call dummy). If set, gdb\n\
3643unwinds the stack and restore the context to what as it was before the call.\n\
3644The default is to stop in the frame where the signal was received.", &setlist),
3645 &showlist);
3646}
This page took 0.033777 seconds and 4 git commands to generate.