*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / valprint.c
... / ...
CommitLineData
1/* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
31#include "annotate.h"
32#include "valprint.h"
33#include "floatformat.h"
34#include "doublest.h"
35#include "exceptions.h"
36#include "dfp.h"
37#include "python/python.h"
38#include "ada-lang.h"
39
40#include <errno.h>
41
42/* Prototypes for local functions */
43
44static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47static void show_print (char *, int);
48
49static void set_print (char *, int);
50
51static void set_radix (char *, int);
52
53static void show_radix (char *, int);
54
55static void set_input_radix (char *, int, struct cmd_list_element *);
56
57static void set_input_radix_1 (int, unsigned);
58
59static void set_output_radix (char *, int, struct cmd_list_element *);
60
61static void set_output_radix_1 (int, unsigned);
62
63void _initialize_valprint (void);
64
65#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67struct value_print_options user_print_options =
68{
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88};
89
90/* Initialize *OPTS to be a copy of the user print options. */
91void
92get_user_print_options (struct value_print_options *opts)
93{
94 *opts = user_print_options;
95}
96
97/* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99void
100get_raw_print_options (struct value_print_options *opts)
101{
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104}
105
106/* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108void
109get_formatted_print_options (struct value_print_options *opts,
110 char format)
111{
112 *opts = user_print_options;
113 opts->format = format;
114}
115
116static void
117show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
123 value);
124}
125
126
127/* Default input and output radixes, and output format letter. */
128
129unsigned input_radix = 10;
130static void
131show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133{
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
136 value);
137}
138
139unsigned output_radix = 10;
140static void
141show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
146 value);
147}
148
149/* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
152static void
153show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157}
158
159/* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
161 print routines. */
162
163static void
164show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169}
170
171/* If nonzero, stops printing of char arrays at first null. */
172
173static void
174show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
180 value);
181}
182
183/* Controls pretty printing of structures. */
184
185static void
186show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188{
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190}
191
192/* Controls pretty printing of arrays. */
193
194static void
195show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197{
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199}
200
201/* If nonzero, causes unions inside structures or other unions to be
202 printed. */
203
204static void
205show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207{
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
210 value);
211}
212
213/* If nonzero, causes machine addresses to be printed in certain contexts. */
214
215static void
216show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218{
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220}
221\f
222
223/* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227static int
228scalar_type_p (struct type *type)
229{
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248}
249
250/* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260static int
261valprint_check_validity (struct ui_file *stream,
262 struct type *type,
263 int embedded_offset,
264 const struct value *val)
265{
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
272 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 val_print_optimized_out (stream);
276 return 0;
277 }
278
279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
285
286 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
287 {
288 val_print_unavailable (stream);
289 return 0;
290 }
291 }
292
293 return 1;
294}
295
296void
297val_print_optimized_out (struct ui_file *stream)
298{
299 fprintf_filtered (stream, _("<optimized out>"));
300}
301
302void
303val_print_unavailable (struct ui_file *stream)
304{
305 fprintf_filtered (stream, _("<unavailable>"));
306}
307
308void
309val_print_invalid_address (struct ui_file *stream)
310{
311 fprintf_filtered (stream, _("<invalid address>"));
312}
313
314/* Print using the given LANGUAGE the data of type TYPE located at
315 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
316 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
317 STREAM according to OPTIONS. VAL is the whole object that came
318 from ADDRESS. VALADDR must point to the head of VAL's contents
319 buffer.
320
321 The language printers will pass down an adjusted EMBEDDED_OFFSET to
322 further helper subroutines as subfields of TYPE are printed. In
323 such cases, VALADDR is passed down unadjusted, as well as VAL, so
324 that VAL can be queried for metadata about the contents data being
325 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
326 buffer. For example: "has this field been optimized out", or "I'm
327 printing an object while inspecting a traceframe; has this
328 particular piece of data been collected?".
329
330 RECURSE indicates the amount of indentation to supply before
331 continuation lines; this amount is roughly twice the value of
332 RECURSE.
333
334 If the data is printed as a string, returns the number of string
335 characters printed. */
336
337int
338val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
339 CORE_ADDR address, struct ui_file *stream, int recurse,
340 const struct value *val,
341 const struct value_print_options *options,
342 const struct language_defn *language)
343{
344 volatile struct gdb_exception except;
345 int ret = 0;
346 struct value_print_options local_opts = *options;
347 struct type *real_type = check_typedef (type);
348
349 if (local_opts.pretty == Val_pretty_default)
350 local_opts.pretty = (local_opts.prettyprint_structs
351 ? Val_prettyprint : Val_no_prettyprint);
352
353 QUIT;
354
355 /* Ensure that the type is complete and not just a stub. If the type is
356 only a stub and we can't find and substitute its complete type, then
357 print appropriate string and return. */
358
359 if (TYPE_STUB (real_type))
360 {
361 fprintf_filtered (stream, _("<incomplete type>"));
362 gdb_flush (stream);
363 return (0);
364 }
365
366 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
367 return 0;
368
369 if (!options->raw)
370 {
371 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
372 address, stream, recurse,
373 val, options, language);
374 if (ret)
375 return ret;
376 }
377
378 /* Handle summary mode. If the value is a scalar, print it;
379 otherwise, print an ellipsis. */
380 if (options->summary && !scalar_type_p (type))
381 {
382 fprintf_filtered (stream, "...");
383 return 0;
384 }
385
386 TRY_CATCH (except, RETURN_MASK_ERROR)
387 {
388 ret = language->la_val_print (type, valaddr, embedded_offset, address,
389 stream, recurse, val,
390 &local_opts);
391 }
392 if (except.reason < 0)
393 fprintf_filtered (stream, _("<error reading variable>"));
394
395 return ret;
396}
397
398/* Check whether the value VAL is printable. Return 1 if it is;
399 return 0 and print an appropriate error message to STREAM if it
400 is not. */
401
402static int
403value_check_printable (struct value *val, struct ui_file *stream)
404{
405 if (val == 0)
406 {
407 fprintf_filtered (stream, _("<address of value unknown>"));
408 return 0;
409 }
410
411 if (value_entirely_optimized_out (val))
412 {
413 val_print_optimized_out (stream);
414 return 0;
415 }
416
417 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
418 {
419 fprintf_filtered (stream, _("<internal function %s>"),
420 value_internal_function_name (val));
421 return 0;
422 }
423
424 return 1;
425}
426
427/* Print using the given LANGUAGE the value VAL onto stream STREAM according
428 to OPTIONS.
429
430 If the data are a string pointer, returns the number of string characters
431 printed.
432
433 This is a preferable interface to val_print, above, because it uses
434 GDB's value mechanism. */
435
436int
437common_val_print (struct value *val, struct ui_file *stream, int recurse,
438 const struct value_print_options *options,
439 const struct language_defn *language)
440{
441 if (!value_check_printable (val, stream))
442 return 0;
443
444 if (language->la_language == language_ada)
445 /* The value might have a dynamic type, which would cause trouble
446 below when trying to extract the value contents (since the value
447 size is determined from the type size which is unknown). So
448 get a fixed representation of our value. */
449 val = ada_to_fixed_value (val);
450
451 return val_print (value_type (val), value_contents_for_printing (val),
452 value_embedded_offset (val), value_address (val),
453 stream, recurse,
454 val, options, language);
455}
456
457/* Print on stream STREAM the value VAL according to OPTIONS. The value
458 is printed using the current_language syntax.
459
460 If the object printed is a string pointer, return the number of string
461 bytes printed. */
462
463int
464value_print (struct value *val, struct ui_file *stream,
465 const struct value_print_options *options)
466{
467 if (!value_check_printable (val, stream))
468 return 0;
469
470 if (!options->raw)
471 {
472 int r = apply_val_pretty_printer (value_type (val),
473 value_contents_for_printing (val),
474 value_embedded_offset (val),
475 value_address (val),
476 stream, 0,
477 val, options, current_language);
478
479 if (r)
480 return r;
481 }
482
483 return LA_VALUE_PRINT (val, stream, options);
484}
485
486/* Called by various <lang>_val_print routines to print
487 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
488 value. STREAM is where to print the value. */
489
490void
491val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
492 struct ui_file *stream)
493{
494 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
495
496 if (TYPE_LENGTH (type) > sizeof (LONGEST))
497 {
498 LONGEST val;
499
500 if (TYPE_UNSIGNED (type)
501 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
502 byte_order, &val))
503 {
504 print_longest (stream, 'u', 0, val);
505 }
506 else
507 {
508 /* Signed, or we couldn't turn an unsigned value into a
509 LONGEST. For signed values, one could assume two's
510 complement (a reasonable assumption, I think) and do
511 better than this. */
512 print_hex_chars (stream, (unsigned char *) valaddr,
513 TYPE_LENGTH (type), byte_order);
514 }
515 }
516 else
517 {
518 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
519 unpack_long (type, valaddr));
520 }
521}
522
523void
524val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
525 struct ui_file *stream)
526{
527 ULONGEST val = unpack_long (type, valaddr);
528 int bitpos, nfields = TYPE_NFIELDS (type);
529
530 fputs_filtered ("[ ", stream);
531 for (bitpos = 0; bitpos < nfields; bitpos++)
532 {
533 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
534 && (val & ((ULONGEST)1 << bitpos)))
535 {
536 if (TYPE_FIELD_NAME (type, bitpos))
537 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
538 else
539 fprintf_filtered (stream, "#%d ", bitpos);
540 }
541 }
542 fputs_filtered ("]", stream);
543
544/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
545 according to OPTIONS and SIZE on STREAM. Format i is not supported
546 at this level.
547
548 This is how the elements of an array or structure are printed
549 with a format. */
550}
551
552void
553val_print_scalar_formatted (struct type *type,
554 const gdb_byte *valaddr, int embedded_offset,
555 const struct value *val,
556 const struct value_print_options *options,
557 int size,
558 struct ui_file *stream)
559{
560 gdb_assert (val != NULL);
561 gdb_assert (valaddr == value_contents_for_printing_const (val));
562
563 /* If we get here with a string format, try again without it. Go
564 all the way back to the language printers, which may call us
565 again. */
566 if (options->format == 's')
567 {
568 struct value_print_options opts = *options;
569 opts.format = 0;
570 opts.deref_ref = 0;
571 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
572 current_language);
573 return;
574 }
575
576 /* A scalar object that does not have all bits available can't be
577 printed, because all bits contribute to its representation. */
578 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
579 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
580 val_print_optimized_out (stream);
581 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
582 val_print_unavailable (stream);
583 else
584 print_scalar_formatted (valaddr + embedded_offset, type,
585 options, size, stream);
586}
587
588/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
589 The raison d'etre of this function is to consolidate printing of
590 LONG_LONG's into this one function. The format chars b,h,w,g are
591 from print_scalar_formatted(). Numbers are printed using C
592 format.
593
594 USE_C_FORMAT means to use C format in all cases. Without it,
595 'o' and 'x' format do not include the standard C radix prefix
596 (leading 0 or 0x).
597
598 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
599 and was intended to request formating according to the current
600 language and would be used for most integers that GDB prints. The
601 exceptional cases were things like protocols where the format of
602 the integer is a protocol thing, not a user-visible thing). The
603 parameter remains to preserve the information of what things might
604 be printed with language-specific format, should we ever resurrect
605 that capability. */
606
607void
608print_longest (struct ui_file *stream, int format, int use_c_format,
609 LONGEST val_long)
610{
611 const char *val;
612
613 switch (format)
614 {
615 case 'd':
616 val = int_string (val_long, 10, 1, 0, 1); break;
617 case 'u':
618 val = int_string (val_long, 10, 0, 0, 1); break;
619 case 'x':
620 val = int_string (val_long, 16, 0, 0, use_c_format); break;
621 case 'b':
622 val = int_string (val_long, 16, 0, 2, 1); break;
623 case 'h':
624 val = int_string (val_long, 16, 0, 4, 1); break;
625 case 'w':
626 val = int_string (val_long, 16, 0, 8, 1); break;
627 case 'g':
628 val = int_string (val_long, 16, 0, 16, 1); break;
629 break;
630 case 'o':
631 val = int_string (val_long, 8, 0, 0, use_c_format); break;
632 default:
633 internal_error (__FILE__, __LINE__,
634 _("failed internal consistency check"));
635 }
636 fputs_filtered (val, stream);
637}
638
639/* This used to be a macro, but I don't think it is called often enough
640 to merit such treatment. */
641/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
642 arguments to a function, number in a value history, register number, etc.)
643 where the value must not be larger than can fit in an int. */
644
645int
646longest_to_int (LONGEST arg)
647{
648 /* Let the compiler do the work. */
649 int rtnval = (int) arg;
650
651 /* Check for overflows or underflows. */
652 if (sizeof (LONGEST) > sizeof (int))
653 {
654 if (rtnval != arg)
655 {
656 error (_("Value out of range."));
657 }
658 }
659 return (rtnval);
660}
661
662/* Print a floating point value of type TYPE (not always a
663 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
664
665void
666print_floating (const gdb_byte *valaddr, struct type *type,
667 struct ui_file *stream)
668{
669 DOUBLEST doub;
670 int inv;
671 const struct floatformat *fmt = NULL;
672 unsigned len = TYPE_LENGTH (type);
673 enum float_kind kind;
674
675 /* If it is a floating-point, check for obvious problems. */
676 if (TYPE_CODE (type) == TYPE_CODE_FLT)
677 fmt = floatformat_from_type (type);
678 if (fmt != NULL)
679 {
680 kind = floatformat_classify (fmt, valaddr);
681 if (kind == float_nan)
682 {
683 if (floatformat_is_negative (fmt, valaddr))
684 fprintf_filtered (stream, "-");
685 fprintf_filtered (stream, "nan(");
686 fputs_filtered ("0x", stream);
687 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
688 fprintf_filtered (stream, ")");
689 return;
690 }
691 else if (kind == float_infinite)
692 {
693 if (floatformat_is_negative (fmt, valaddr))
694 fputs_filtered ("-", stream);
695 fputs_filtered ("inf", stream);
696 return;
697 }
698 }
699
700 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
701 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
702 needs to be used as that takes care of any necessary type
703 conversions. Such conversions are of course direct to DOUBLEST
704 and disregard any possible target floating point limitations.
705 For instance, a u64 would be converted and displayed exactly on a
706 host with 80 bit DOUBLEST but with loss of information on a host
707 with 64 bit DOUBLEST. */
708
709 doub = unpack_double (type, valaddr, &inv);
710 if (inv)
711 {
712 fprintf_filtered (stream, "<invalid float value>");
713 return;
714 }
715
716 /* FIXME: kettenis/2001-01-20: The following code makes too much
717 assumptions about the host and target floating point format. */
718
719 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
720 not necessarily be a TYPE_CODE_FLT, the below ignores that and
721 instead uses the type's length to determine the precision of the
722 floating-point value being printed. */
723
724 if (len < sizeof (double))
725 fprintf_filtered (stream, "%.9g", (double) doub);
726 else if (len == sizeof (double))
727 fprintf_filtered (stream, "%.17g", (double) doub);
728 else
729#ifdef PRINTF_HAS_LONG_DOUBLE
730 fprintf_filtered (stream, "%.35Lg", doub);
731#else
732 /* This at least wins with values that are representable as
733 doubles. */
734 fprintf_filtered (stream, "%.17g", (double) doub);
735#endif
736}
737
738void
739print_decimal_floating (const gdb_byte *valaddr, struct type *type,
740 struct ui_file *stream)
741{
742 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
743 char decstr[MAX_DECIMAL_STRING];
744 unsigned len = TYPE_LENGTH (type);
745
746 decimal_to_string (valaddr, len, byte_order, decstr);
747 fputs_filtered (decstr, stream);
748 return;
749}
750
751void
752print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
753 unsigned len, enum bfd_endian byte_order)
754{
755
756#define BITS_IN_BYTES 8
757
758 const gdb_byte *p;
759 unsigned int i;
760 int b;
761
762 /* Declared "int" so it will be signed.
763 This ensures that right shift will shift in zeros. */
764
765 const int mask = 0x080;
766
767 /* FIXME: We should be not printing leading zeroes in most cases. */
768
769 if (byte_order == BFD_ENDIAN_BIG)
770 {
771 for (p = valaddr;
772 p < valaddr + len;
773 p++)
774 {
775 /* Every byte has 8 binary characters; peel off
776 and print from the MSB end. */
777
778 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
779 {
780 if (*p & (mask >> i))
781 b = 1;
782 else
783 b = 0;
784
785 fprintf_filtered (stream, "%1d", b);
786 }
787 }
788 }
789 else
790 {
791 for (p = valaddr + len - 1;
792 p >= valaddr;
793 p--)
794 {
795 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
796 {
797 if (*p & (mask >> i))
798 b = 1;
799 else
800 b = 0;
801
802 fprintf_filtered (stream, "%1d", b);
803 }
804 }
805 }
806}
807
808/* VALADDR points to an integer of LEN bytes.
809 Print it in octal on stream or format it in buf. */
810
811void
812print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
813 unsigned len, enum bfd_endian byte_order)
814{
815 const gdb_byte *p;
816 unsigned char octa1, octa2, octa3, carry;
817 int cycle;
818
819 /* FIXME: We should be not printing leading zeroes in most cases. */
820
821
822 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
823 * the extra bits, which cycle every three bytes:
824 *
825 * Byte side: 0 1 2 3
826 * | | | |
827 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
828 *
829 * Octal side: 0 1 carry 3 4 carry ...
830 *
831 * Cycle number: 0 1 2
832 *
833 * But of course we are printing from the high side, so we have to
834 * figure out where in the cycle we are so that we end up with no
835 * left over bits at the end.
836 */
837#define BITS_IN_OCTAL 3
838#define HIGH_ZERO 0340
839#define LOW_ZERO 0016
840#define CARRY_ZERO 0003
841#define HIGH_ONE 0200
842#define MID_ONE 0160
843#define LOW_ONE 0016
844#define CARRY_ONE 0001
845#define HIGH_TWO 0300
846#define MID_TWO 0070
847#define LOW_TWO 0007
848
849 /* For 32 we start in cycle 2, with two bits and one bit carry;
850 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
851
852 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
853 carry = 0;
854
855 fputs_filtered ("0", stream);
856 if (byte_order == BFD_ENDIAN_BIG)
857 {
858 for (p = valaddr;
859 p < valaddr + len;
860 p++)
861 {
862 switch (cycle)
863 {
864 case 0:
865 /* No carry in, carry out two bits. */
866
867 octa1 = (HIGH_ZERO & *p) >> 5;
868 octa2 = (LOW_ZERO & *p) >> 2;
869 carry = (CARRY_ZERO & *p);
870 fprintf_filtered (stream, "%o", octa1);
871 fprintf_filtered (stream, "%o", octa2);
872 break;
873
874 case 1:
875 /* Carry in two bits, carry out one bit. */
876
877 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
878 octa2 = (MID_ONE & *p) >> 4;
879 octa3 = (LOW_ONE & *p) >> 1;
880 carry = (CARRY_ONE & *p);
881 fprintf_filtered (stream, "%o", octa1);
882 fprintf_filtered (stream, "%o", octa2);
883 fprintf_filtered (stream, "%o", octa3);
884 break;
885
886 case 2:
887 /* Carry in one bit, no carry out. */
888
889 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
890 octa2 = (MID_TWO & *p) >> 3;
891 octa3 = (LOW_TWO & *p);
892 carry = 0;
893 fprintf_filtered (stream, "%o", octa1);
894 fprintf_filtered (stream, "%o", octa2);
895 fprintf_filtered (stream, "%o", octa3);
896 break;
897
898 default:
899 error (_("Internal error in octal conversion;"));
900 }
901
902 cycle++;
903 cycle = cycle % BITS_IN_OCTAL;
904 }
905 }
906 else
907 {
908 for (p = valaddr + len - 1;
909 p >= valaddr;
910 p--)
911 {
912 switch (cycle)
913 {
914 case 0:
915 /* Carry out, no carry in */
916
917 octa1 = (HIGH_ZERO & *p) >> 5;
918 octa2 = (LOW_ZERO & *p) >> 2;
919 carry = (CARRY_ZERO & *p);
920 fprintf_filtered (stream, "%o", octa1);
921 fprintf_filtered (stream, "%o", octa2);
922 break;
923
924 case 1:
925 /* Carry in, carry out */
926
927 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
928 octa2 = (MID_ONE & *p) >> 4;
929 octa3 = (LOW_ONE & *p) >> 1;
930 carry = (CARRY_ONE & *p);
931 fprintf_filtered (stream, "%o", octa1);
932 fprintf_filtered (stream, "%o", octa2);
933 fprintf_filtered (stream, "%o", octa3);
934 break;
935
936 case 2:
937 /* Carry in, no carry out */
938
939 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
940 octa2 = (MID_TWO & *p) >> 3;
941 octa3 = (LOW_TWO & *p);
942 carry = 0;
943 fprintf_filtered (stream, "%o", octa1);
944 fprintf_filtered (stream, "%o", octa2);
945 fprintf_filtered (stream, "%o", octa3);
946 break;
947
948 default:
949 error (_("Internal error in octal conversion;"));
950 }
951
952 cycle++;
953 cycle = cycle % BITS_IN_OCTAL;
954 }
955 }
956
957}
958
959/* VALADDR points to an integer of LEN bytes.
960 Print it in decimal on stream or format it in buf. */
961
962void
963print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
964 unsigned len, enum bfd_endian byte_order)
965{
966#define TEN 10
967#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
968#define CARRY_LEFT( x ) ((x) % TEN)
969#define SHIFT( x ) ((x) << 4)
970#define LOW_NIBBLE( x ) ( (x) & 0x00F)
971#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
972
973 const gdb_byte *p;
974 unsigned char *digits;
975 int carry;
976 int decimal_len;
977 int i, j, decimal_digits;
978 int dummy;
979 int flip;
980
981 /* Base-ten number is less than twice as many digits
982 as the base 16 number, which is 2 digits per byte. */
983
984 decimal_len = len * 2 * 2;
985 digits = xmalloc (decimal_len);
986
987 for (i = 0; i < decimal_len; i++)
988 {
989 digits[i] = 0;
990 }
991
992 /* Ok, we have an unknown number of bytes of data to be printed in
993 * decimal.
994 *
995 * Given a hex number (in nibbles) as XYZ, we start by taking X and
996 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
997 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
998 *
999 * The trick is that "digits" holds a base-10 number, but sometimes
1000 * the individual digits are > 10.
1001 *
1002 * Outer loop is per nibble (hex digit) of input, from MSD end to
1003 * LSD end.
1004 */
1005 decimal_digits = 0; /* Number of decimal digits so far */
1006 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1007 flip = 0;
1008 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1009 {
1010 /*
1011 * Multiply current base-ten number by 16 in place.
1012 * Each digit was between 0 and 9, now is between
1013 * 0 and 144.
1014 */
1015 for (j = 0; j < decimal_digits; j++)
1016 {
1017 digits[j] = SHIFT (digits[j]);
1018 }
1019
1020 /* Take the next nibble off the input and add it to what
1021 * we've got in the LSB position. Bottom 'digit' is now
1022 * between 0 and 159.
1023 *
1024 * "flip" is used to run this loop twice for each byte.
1025 */
1026 if (flip == 0)
1027 {
1028 /* Take top nibble. */
1029
1030 digits[0] += HIGH_NIBBLE (*p);
1031 flip = 1;
1032 }
1033 else
1034 {
1035 /* Take low nibble and bump our pointer "p". */
1036
1037 digits[0] += LOW_NIBBLE (*p);
1038 if (byte_order == BFD_ENDIAN_BIG)
1039 p++;
1040 else
1041 p--;
1042 flip = 0;
1043 }
1044
1045 /* Re-decimalize. We have to do this often enough
1046 * that we don't overflow, but once per nibble is
1047 * overkill. Easier this way, though. Note that the
1048 * carry is often larger than 10 (e.g. max initial
1049 * carry out of lowest nibble is 15, could bubble all
1050 * the way up greater than 10). So we have to do
1051 * the carrying beyond the last current digit.
1052 */
1053 carry = 0;
1054 for (j = 0; j < decimal_len - 1; j++)
1055 {
1056 digits[j] += carry;
1057
1058 /* "/" won't handle an unsigned char with
1059 * a value that if signed would be negative.
1060 * So extend to longword int via "dummy".
1061 */
1062 dummy = digits[j];
1063 carry = CARRY_OUT (dummy);
1064 digits[j] = CARRY_LEFT (dummy);
1065
1066 if (j >= decimal_digits && carry == 0)
1067 {
1068 /*
1069 * All higher digits are 0 and we
1070 * no longer have a carry.
1071 *
1072 * Note: "j" is 0-based, "decimal_digits" is
1073 * 1-based.
1074 */
1075 decimal_digits = j + 1;
1076 break;
1077 }
1078 }
1079 }
1080
1081 /* Ok, now "digits" is the decimal representation, with
1082 the "decimal_digits" actual digits. Print! */
1083
1084 for (i = decimal_digits - 1; i >= 0; i--)
1085 {
1086 fprintf_filtered (stream, "%1d", digits[i]);
1087 }
1088 xfree (digits);
1089}
1090
1091/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1092
1093void
1094print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1095 unsigned len, enum bfd_endian byte_order)
1096{
1097 const gdb_byte *p;
1098
1099 /* FIXME: We should be not printing leading zeroes in most cases. */
1100
1101 fputs_filtered ("0x", stream);
1102 if (byte_order == BFD_ENDIAN_BIG)
1103 {
1104 for (p = valaddr;
1105 p < valaddr + len;
1106 p++)
1107 {
1108 fprintf_filtered (stream, "%02x", *p);
1109 }
1110 }
1111 else
1112 {
1113 for (p = valaddr + len - 1;
1114 p >= valaddr;
1115 p--)
1116 {
1117 fprintf_filtered (stream, "%02x", *p);
1118 }
1119 }
1120}
1121
1122/* VALADDR points to a char integer of LEN bytes.
1123 Print it out in appropriate language form on stream.
1124 Omit any leading zero chars. */
1125
1126void
1127print_char_chars (struct ui_file *stream, struct type *type,
1128 const gdb_byte *valaddr,
1129 unsigned len, enum bfd_endian byte_order)
1130{
1131 const gdb_byte *p;
1132
1133 if (byte_order == BFD_ENDIAN_BIG)
1134 {
1135 p = valaddr;
1136 while (p < valaddr + len - 1 && *p == 0)
1137 ++p;
1138
1139 while (p < valaddr + len)
1140 {
1141 LA_EMIT_CHAR (*p, type, stream, '\'');
1142 ++p;
1143 }
1144 }
1145 else
1146 {
1147 p = valaddr + len - 1;
1148 while (p > valaddr && *p == 0)
1149 --p;
1150
1151 while (p >= valaddr)
1152 {
1153 LA_EMIT_CHAR (*p, type, stream, '\'');
1154 --p;
1155 }
1156 }
1157}
1158
1159/* Print on STREAM using the given OPTIONS the index for the element
1160 at INDEX of an array whose index type is INDEX_TYPE. */
1161
1162void
1163maybe_print_array_index (struct type *index_type, LONGEST index,
1164 struct ui_file *stream,
1165 const struct value_print_options *options)
1166{
1167 struct value *index_value;
1168
1169 if (!options->print_array_indexes)
1170 return;
1171
1172 index_value = value_from_longest (index_type, index);
1173
1174 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1175}
1176
1177/* Called by various <lang>_val_print routines to print elements of an
1178 array in the form "<elem1>, <elem2>, <elem3>, ...".
1179
1180 (FIXME?) Assumes array element separator is a comma, which is correct
1181 for all languages currently handled.
1182 (FIXME?) Some languages have a notation for repeated array elements,
1183 perhaps we should try to use that notation when appropriate. */
1184
1185void
1186val_print_array_elements (struct type *type,
1187 const gdb_byte *valaddr, int embedded_offset,
1188 CORE_ADDR address, struct ui_file *stream,
1189 int recurse,
1190 const struct value *val,
1191 const struct value_print_options *options,
1192 unsigned int i)
1193{
1194 unsigned int things_printed = 0;
1195 unsigned len;
1196 struct type *elttype, *index_type;
1197 unsigned eltlen;
1198 /* Position of the array element we are examining to see
1199 whether it is repeated. */
1200 unsigned int rep1;
1201 /* Number of repetitions we have detected so far. */
1202 unsigned int reps;
1203 LONGEST low_bound, high_bound;
1204
1205 elttype = TYPE_TARGET_TYPE (type);
1206 eltlen = TYPE_LENGTH (check_typedef (elttype));
1207 index_type = TYPE_INDEX_TYPE (type);
1208
1209 if (get_array_bounds (type, &low_bound, &high_bound))
1210 {
1211 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1212 But we have to be a little extra careful, because some languages
1213 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1214 empty arrays. In that situation, the array length is just zero,
1215 not negative! */
1216 if (low_bound > high_bound)
1217 len = 0;
1218 else
1219 len = high_bound - low_bound + 1;
1220 }
1221 else
1222 {
1223 warning (_("unable to get bounds of array, assuming null array"));
1224 low_bound = 0;
1225 len = 0;
1226 }
1227
1228 annotate_array_section_begin (i, elttype);
1229
1230 for (; i < len && things_printed < options->print_max; i++)
1231 {
1232 if (i != 0)
1233 {
1234 if (options->prettyprint_arrays)
1235 {
1236 fprintf_filtered (stream, ",\n");
1237 print_spaces_filtered (2 + 2 * recurse, stream);
1238 }
1239 else
1240 {
1241 fprintf_filtered (stream, ", ");
1242 }
1243 }
1244 wrap_here (n_spaces (2 + 2 * recurse));
1245 maybe_print_array_index (index_type, i + low_bound,
1246 stream, options);
1247
1248 rep1 = i + 1;
1249 reps = 1;
1250 /* Only check for reps if repeat_count_threshold is not set to
1251 UINT_MAX (unlimited). */
1252 if (options->repeat_count_threshold < UINT_MAX)
1253 {
1254 while (rep1 < len
1255 && value_available_contents_eq (val,
1256 embedded_offset + i * eltlen,
1257 val,
1258 (embedded_offset
1259 + rep1 * eltlen),
1260 eltlen))
1261 {
1262 ++reps;
1263 ++rep1;
1264 }
1265 }
1266
1267 if (reps > options->repeat_count_threshold)
1268 {
1269 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1270 address, stream, recurse + 1, val, options,
1271 current_language);
1272 annotate_elt_rep (reps);
1273 fprintf_filtered (stream, " <repeats %u times>", reps);
1274 annotate_elt_rep_end ();
1275
1276 i = rep1 - 1;
1277 things_printed += options->repeat_count_threshold;
1278 }
1279 else
1280 {
1281 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1282 address,
1283 stream, recurse + 1, val, options, current_language);
1284 annotate_elt ();
1285 things_printed++;
1286 }
1287 }
1288 annotate_array_section_end ();
1289 if (i < len)
1290 {
1291 fprintf_filtered (stream, "...");
1292 }
1293}
1294
1295/* Read LEN bytes of target memory at address MEMADDR, placing the
1296 results in GDB's memory at MYADDR. Returns a count of the bytes
1297 actually read, and optionally an errno value in the location
1298 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1299
1300/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1301 function be eliminated. */
1302
1303static int
1304partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1305 int len, int *errnoptr)
1306{
1307 int nread; /* Number of bytes actually read. */
1308 int errcode; /* Error from last read. */
1309
1310 /* First try a complete read. */
1311 errcode = target_read_memory (memaddr, myaddr, len);
1312 if (errcode == 0)
1313 {
1314 /* Got it all. */
1315 nread = len;
1316 }
1317 else
1318 {
1319 /* Loop, reading one byte at a time until we get as much as we can. */
1320 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1321 {
1322 errcode = target_read_memory (memaddr++, myaddr++, 1);
1323 }
1324 /* If an error, the last read was unsuccessful, so adjust count. */
1325 if (errcode != 0)
1326 {
1327 nread--;
1328 }
1329 }
1330 if (errnoptr != NULL)
1331 {
1332 *errnoptr = errcode;
1333 }
1334 return (nread);
1335}
1336
1337/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1338 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1339 allocated buffer containing the string, which the caller is responsible to
1340 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1341 success, or errno on failure.
1342
1343 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1344 the middle or end of the string). If LEN is -1, stops at the first
1345 null character (not necessarily the first null byte) up to a maximum
1346 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1347 characters as possible from the string.
1348
1349 Unless an exception is thrown, BUFFER will always be allocated, even on
1350 failure. In this case, some characters might have been read before the
1351 failure happened. Check BYTES_READ to recognize this situation.
1352
1353 Note: There was a FIXME asking to make this code use target_read_string,
1354 but this function is more general (can read past null characters, up to
1355 given LEN). Besides, it is used much more often than target_read_string
1356 so it is more tested. Perhaps callers of target_read_string should use
1357 this function instead? */
1358
1359int
1360read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1361 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1362{
1363 int found_nul; /* Non-zero if we found the nul char. */
1364 int errcode; /* Errno returned from bad reads. */
1365 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1366 unsigned int chunksize; /* Size of each fetch, in chars. */
1367 gdb_byte *bufptr; /* Pointer to next available byte in
1368 buffer. */
1369 gdb_byte *limit; /* First location past end of fetch buffer. */
1370 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1371
1372 /* Decide how large of chunks to try to read in one operation. This
1373 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1374 so we might as well read them all in one operation. If LEN is -1, we
1375 are looking for a NUL terminator to end the fetching, so we might as
1376 well read in blocks that are large enough to be efficient, but not so
1377 large as to be slow if fetchlimit happens to be large. So we choose the
1378 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1379 200 is way too big for remote debugging over a serial line. */
1380
1381 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1382
1383 /* Loop until we either have all the characters, or we encounter
1384 some error, such as bumping into the end of the address space. */
1385
1386 found_nul = 0;
1387 *buffer = NULL;
1388
1389 old_chain = make_cleanup (free_current_contents, buffer);
1390
1391 if (len > 0)
1392 {
1393 *buffer = (gdb_byte *) xmalloc (len * width);
1394 bufptr = *buffer;
1395
1396 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1397 / width;
1398 addr += nfetch * width;
1399 bufptr += nfetch * width;
1400 }
1401 else if (len == -1)
1402 {
1403 unsigned long bufsize = 0;
1404
1405 do
1406 {
1407 QUIT;
1408 nfetch = min (chunksize, fetchlimit - bufsize);
1409
1410 if (*buffer == NULL)
1411 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1412 else
1413 *buffer = (gdb_byte *) xrealloc (*buffer,
1414 (nfetch + bufsize) * width);
1415
1416 bufptr = *buffer + bufsize * width;
1417 bufsize += nfetch;
1418
1419 /* Read as much as we can. */
1420 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1421 / width;
1422
1423 /* Scan this chunk for the null character that terminates the string
1424 to print. If found, we don't need to fetch any more. Note
1425 that bufptr is explicitly left pointing at the next character
1426 after the null character, or at the next character after the end
1427 of the buffer. */
1428
1429 limit = bufptr + nfetch * width;
1430 while (bufptr < limit)
1431 {
1432 unsigned long c;
1433
1434 c = extract_unsigned_integer (bufptr, width, byte_order);
1435 addr += width;
1436 bufptr += width;
1437 if (c == 0)
1438 {
1439 /* We don't care about any error which happened after
1440 the NUL terminator. */
1441 errcode = 0;
1442 found_nul = 1;
1443 break;
1444 }
1445 }
1446 }
1447 while (errcode == 0 /* no error */
1448 && bufptr - *buffer < fetchlimit * width /* no overrun */
1449 && !found_nul); /* haven't found NUL yet */
1450 }
1451 else
1452 { /* Length of string is really 0! */
1453 /* We always allocate *buffer. */
1454 *buffer = bufptr = xmalloc (1);
1455 errcode = 0;
1456 }
1457
1458 /* bufptr and addr now point immediately beyond the last byte which we
1459 consider part of the string (including a '\0' which ends the string). */
1460 *bytes_read = bufptr - *buffer;
1461
1462 QUIT;
1463
1464 discard_cleanups (old_chain);
1465
1466 return errcode;
1467}
1468
1469/* Print a string from the inferior, starting at ADDR and printing up to LEN
1470 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1471 stops at the first null byte, otherwise printing proceeds (including null
1472 bytes) until either print_max or LEN characters have been printed,
1473 whichever is smaller. ENCODING is the name of the string's
1474 encoding. It can be NULL, in which case the target encoding is
1475 assumed. */
1476
1477int
1478val_print_string (struct type *elttype, const char *encoding,
1479 CORE_ADDR addr, int len,
1480 struct ui_file *stream,
1481 const struct value_print_options *options)
1482{
1483 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1484 int errcode; /* Errno returned from bad reads. */
1485 int found_nul; /* Non-zero if we found the nul char. */
1486 unsigned int fetchlimit; /* Maximum number of chars to print. */
1487 int bytes_read;
1488 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1489 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1490 struct gdbarch *gdbarch = get_type_arch (elttype);
1491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1492 int width = TYPE_LENGTH (elttype);
1493
1494 /* First we need to figure out the limit on the number of characters we are
1495 going to attempt to fetch and print. This is actually pretty simple. If
1496 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1497 LEN is -1, then the limit is print_max. This is true regardless of
1498 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1499 because finding the null byte (or available memory) is what actually
1500 limits the fetch. */
1501
1502 fetchlimit = (len == -1 ? options->print_max : min (len,
1503 options->print_max));
1504
1505 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1506 &buffer, &bytes_read);
1507 old_chain = make_cleanup (xfree, buffer);
1508
1509 addr += bytes_read;
1510
1511 /* We now have either successfully filled the buffer to fetchlimit,
1512 or terminated early due to an error or finding a null char when
1513 LEN is -1. */
1514
1515 /* Determine found_nul by looking at the last character read. */
1516 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1517 byte_order) == 0;
1518 if (len == -1 && !found_nul)
1519 {
1520 gdb_byte *peekbuf;
1521
1522 /* We didn't find a NUL terminator we were looking for. Attempt
1523 to peek at the next character. If not successful, or it is not
1524 a null byte, then force ellipsis to be printed. */
1525
1526 peekbuf = (gdb_byte *) alloca (width);
1527
1528 if (target_read_memory (addr, peekbuf, width) == 0
1529 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1530 force_ellipsis = 1;
1531 }
1532 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1533 {
1534 /* Getting an error when we have a requested length, or fetching less
1535 than the number of characters actually requested, always make us
1536 print ellipsis. */
1537 force_ellipsis = 1;
1538 }
1539
1540 /* If we get an error before fetching anything, don't print a string.
1541 But if we fetch something and then get an error, print the string
1542 and then the error message. */
1543 if (errcode == 0 || bytes_read > 0)
1544 {
1545 if (options->addressprint)
1546 {
1547 fputs_filtered (" ", stream);
1548 }
1549 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1550 encoding, force_ellipsis, options);
1551 }
1552
1553 if (errcode != 0)
1554 {
1555 if (errcode == EIO)
1556 {
1557 fprintf_filtered (stream, " <Address ");
1558 fputs_filtered (paddress (gdbarch, addr), stream);
1559 fprintf_filtered (stream, " out of bounds>");
1560 }
1561 else
1562 {
1563 fprintf_filtered (stream, " <Error reading address ");
1564 fputs_filtered (paddress (gdbarch, addr), stream);
1565 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1566 }
1567 }
1568
1569 gdb_flush (stream);
1570 do_cleanups (old_chain);
1571
1572 return (bytes_read / width);
1573}
1574\f
1575
1576/* The 'set input-radix' command writes to this auxiliary variable.
1577 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1578 it is left unchanged. */
1579
1580static unsigned input_radix_1 = 10;
1581
1582/* Validate an input or output radix setting, and make sure the user
1583 knows what they really did here. Radix setting is confusing, e.g.
1584 setting the input radix to "10" never changes it! */
1585
1586static void
1587set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1588{
1589 set_input_radix_1 (from_tty, input_radix_1);
1590}
1591
1592static void
1593set_input_radix_1 (int from_tty, unsigned radix)
1594{
1595 /* We don't currently disallow any input radix except 0 or 1, which don't
1596 make any mathematical sense. In theory, we can deal with any input
1597 radix greater than 1, even if we don't have unique digits for every
1598 value from 0 to radix-1, but in practice we lose on large radix values.
1599 We should either fix the lossage or restrict the radix range more.
1600 (FIXME). */
1601
1602 if (radix < 2)
1603 {
1604 input_radix_1 = input_radix;
1605 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1606 radix);
1607 }
1608 input_radix_1 = input_radix = radix;
1609 if (from_tty)
1610 {
1611 printf_filtered (_("Input radix now set to "
1612 "decimal %u, hex %x, octal %o.\n"),
1613 radix, radix, radix);
1614 }
1615}
1616
1617/* The 'set output-radix' command writes to this auxiliary variable.
1618 If the requested radix is valid, OUTPUT_RADIX is updated,
1619 otherwise, it is left unchanged. */
1620
1621static unsigned output_radix_1 = 10;
1622
1623static void
1624set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1625{
1626 set_output_radix_1 (from_tty, output_radix_1);
1627}
1628
1629static void
1630set_output_radix_1 (int from_tty, unsigned radix)
1631{
1632 /* Validate the radix and disallow ones that we aren't prepared to
1633 handle correctly, leaving the radix unchanged. */
1634 switch (radix)
1635 {
1636 case 16:
1637 user_print_options.output_format = 'x'; /* hex */
1638 break;
1639 case 10:
1640 user_print_options.output_format = 0; /* decimal */
1641 break;
1642 case 8:
1643 user_print_options.output_format = 'o'; /* octal */
1644 break;
1645 default:
1646 output_radix_1 = output_radix;
1647 error (_("Unsupported output radix ``decimal %u''; "
1648 "output radix unchanged."),
1649 radix);
1650 }
1651 output_radix_1 = output_radix = radix;
1652 if (from_tty)
1653 {
1654 printf_filtered (_("Output radix now set to "
1655 "decimal %u, hex %x, octal %o.\n"),
1656 radix, radix, radix);
1657 }
1658}
1659
1660/* Set both the input and output radix at once. Try to set the output radix
1661 first, since it has the most restrictive range. An radix that is valid as
1662 an output radix is also valid as an input radix.
1663
1664 It may be useful to have an unusual input radix. If the user wishes to
1665 set an input radix that is not valid as an output radix, he needs to use
1666 the 'set input-radix' command. */
1667
1668static void
1669set_radix (char *arg, int from_tty)
1670{
1671 unsigned radix;
1672
1673 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1674 set_output_radix_1 (0, radix);
1675 set_input_radix_1 (0, radix);
1676 if (from_tty)
1677 {
1678 printf_filtered (_("Input and output radices now set to "
1679 "decimal %u, hex %x, octal %o.\n"),
1680 radix, radix, radix);
1681 }
1682}
1683
1684/* Show both the input and output radices. */
1685
1686static void
1687show_radix (char *arg, int from_tty)
1688{
1689 if (from_tty)
1690 {
1691 if (input_radix == output_radix)
1692 {
1693 printf_filtered (_("Input and output radices set to "
1694 "decimal %u, hex %x, octal %o.\n"),
1695 input_radix, input_radix, input_radix);
1696 }
1697 else
1698 {
1699 printf_filtered (_("Input radix set to decimal "
1700 "%u, hex %x, octal %o.\n"),
1701 input_radix, input_radix, input_radix);
1702 printf_filtered (_("Output radix set to decimal "
1703 "%u, hex %x, octal %o.\n"),
1704 output_radix, output_radix, output_radix);
1705 }
1706 }
1707}
1708\f
1709
1710static void
1711set_print (char *arg, int from_tty)
1712{
1713 printf_unfiltered (
1714 "\"set print\" must be followed by the name of a print subcommand.\n");
1715 help_list (setprintlist, "set print ", -1, gdb_stdout);
1716}
1717
1718static void
1719show_print (char *args, int from_tty)
1720{
1721 cmd_show_list (showprintlist, from_tty, "");
1722}
1723\f
1724void
1725_initialize_valprint (void)
1726{
1727 add_prefix_cmd ("print", no_class, set_print,
1728 _("Generic command for setting how things print."),
1729 &setprintlist, "set print ", 0, &setlist);
1730 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1731 /* Prefer set print to set prompt. */
1732 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1733
1734 add_prefix_cmd ("print", no_class, show_print,
1735 _("Generic command for showing print settings."),
1736 &showprintlist, "show print ", 0, &showlist);
1737 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1738 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1739
1740 add_setshow_uinteger_cmd ("elements", no_class,
1741 &user_print_options.print_max, _("\
1742Set limit on string chars or array elements to print."), _("\
1743Show limit on string chars or array elements to print."), _("\
1744\"set print elements 0\" causes there to be no limit."),
1745 NULL,
1746 show_print_max,
1747 &setprintlist, &showprintlist);
1748
1749 add_setshow_boolean_cmd ("null-stop", no_class,
1750 &user_print_options.stop_print_at_null, _("\
1751Set printing of char arrays to stop at first null char."), _("\
1752Show printing of char arrays to stop at first null char."), NULL,
1753 NULL,
1754 show_stop_print_at_null,
1755 &setprintlist, &showprintlist);
1756
1757 add_setshow_uinteger_cmd ("repeats", no_class,
1758 &user_print_options.repeat_count_threshold, _("\
1759Set threshold for repeated print elements."), _("\
1760Show threshold for repeated print elements."), _("\
1761\"set print repeats 0\" causes all elements to be individually printed."),
1762 NULL,
1763 show_repeat_count_threshold,
1764 &setprintlist, &showprintlist);
1765
1766 add_setshow_boolean_cmd ("pretty", class_support,
1767 &user_print_options.prettyprint_structs, _("\
1768Set prettyprinting of structures."), _("\
1769Show prettyprinting of structures."), NULL,
1770 NULL,
1771 show_prettyprint_structs,
1772 &setprintlist, &showprintlist);
1773
1774 add_setshow_boolean_cmd ("union", class_support,
1775 &user_print_options.unionprint, _("\
1776Set printing of unions interior to structures."), _("\
1777Show printing of unions interior to structures."), NULL,
1778 NULL,
1779 show_unionprint,
1780 &setprintlist, &showprintlist);
1781
1782 add_setshow_boolean_cmd ("array", class_support,
1783 &user_print_options.prettyprint_arrays, _("\
1784Set prettyprinting of arrays."), _("\
1785Show prettyprinting of arrays."), NULL,
1786 NULL,
1787 show_prettyprint_arrays,
1788 &setprintlist, &showprintlist);
1789
1790 add_setshow_boolean_cmd ("address", class_support,
1791 &user_print_options.addressprint, _("\
1792Set printing of addresses."), _("\
1793Show printing of addresses."), NULL,
1794 NULL,
1795 show_addressprint,
1796 &setprintlist, &showprintlist);
1797
1798 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1799 _("\
1800Set default input radix for entering numbers."), _("\
1801Show default input radix for entering numbers."), NULL,
1802 set_input_radix,
1803 show_input_radix,
1804 &setlist, &showlist);
1805
1806 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1807 _("\
1808Set default output radix for printing of values."), _("\
1809Show default output radix for printing of values."), NULL,
1810 set_output_radix,
1811 show_output_radix,
1812 &setlist, &showlist);
1813
1814 /* The "set radix" and "show radix" commands are special in that
1815 they are like normal set and show commands but allow two normally
1816 independent variables to be either set or shown with a single
1817 command. So the usual deprecated_add_set_cmd() and [deleted]
1818 add_show_from_set() commands aren't really appropriate. */
1819 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1820 longer true - show can display anything. */
1821 add_cmd ("radix", class_support, set_radix, _("\
1822Set default input and output number radices.\n\
1823Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1824Without an argument, sets both radices back to the default value of 10."),
1825 &setlist);
1826 add_cmd ("radix", class_support, show_radix, _("\
1827Show the default input and output number radices.\n\
1828Use 'show input-radix' or 'show output-radix' to independently show each."),
1829 &showlist);
1830
1831 add_setshow_boolean_cmd ("array-indexes", class_support,
1832 &user_print_options.print_array_indexes, _("\
1833Set printing of array indexes."), _("\
1834Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1835 &setprintlist, &showprintlist);
1836}
This page took 0.027303 seconds and 4 git commands to generate.