Introduce generic_value_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
... / ...
CommitLineData
1/* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
27#include "language.h"
28#include "annotate.h"
29#include "valprint.h"
30#include "target-float.h"
31#include "extension.h"
32#include "ada-lang.h"
33#include "gdb_obstack.h"
34#include "charset.h"
35#include "typeprint.h"
36#include <ctype.h>
37#include <algorithm>
38#include "gdbsupport/byte-vector.h"
39#include "cli/cli-option.h"
40#include "gdbarch.h"
41#include "cli/cli-style.h"
42#include "count-one-bits.h"
43
44/* Maximum number of wchars returned from wchar_iterate. */
45#define MAX_WCHARS 4
46
47/* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51/* Character buffer size saved while iterating over wchars. */
52#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54/* A structure to encapsulate state information from iterated
55 character conversions. */
56struct converted_character
57{
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75};
76
77/* Command lists for set/show print raw. */
78struct cmd_list_element *setprintrawlist;
79struct cmd_list_element *showprintrawlist;
80
81/* Prototypes for local functions */
82
83static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86static void set_input_radix_1 (int, unsigned);
87
88static void set_output_radix_1 (int, unsigned);
89
90static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95#define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97struct value_print_options user_print_options =
98{
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120};
121
122/* Initialize *OPTS to be a copy of the user print options. */
123void
124get_user_print_options (struct value_print_options *opts)
125{
126 *opts = user_print_options;
127}
128
129/* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131void
132get_no_prettyformat_print_options (struct value_print_options *opts)
133{
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136}
137
138/* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140void
141get_formatted_print_options (struct value_print_options *opts,
142 char format)
143{
144 *opts = user_print_options;
145 opts->format = format;
146}
147
148static void
149show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156}
157
158
159/* Default input and output radixes, and output format letter. */
160
161unsigned input_radix = 10;
162static void
163show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165{
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169}
170
171unsigned output_radix = 10;
172static void
173show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179}
180
181/* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184static void
185show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187{
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189}
190
191/* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195static void
196show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201}
202
203/* If nonzero, stops printing of char arrays at first null. */
204
205static void
206show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208{
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213}
214
215/* Controls pretty printing of structures. */
216
217static void
218show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220{
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222}
223
224/* Controls pretty printing of arrays. */
225
226static void
227show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229{
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231}
232
233/* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236static void
237show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239{
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243}
244
245/* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247static void
248show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252}
253
254static void
255show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257{
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261}
262
263\f
264
265/* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269int
270val_print_scalar_type_p (struct type *type)
271{
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289}
290
291/* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295static bool
296val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298{
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301}
302
303/* See its definition in value.h. */
304
305int
306valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310{
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367}
368
369void
370val_print_optimized_out (const struct value *val, struct ui_file *stream)
371{
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376}
377
378void
379val_print_not_saved (struct ui_file *stream)
380{
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382}
383
384void
385val_print_unavailable (struct ui_file *stream)
386{
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388}
389
390void
391val_print_invalid_address (struct ui_file *stream)
392{
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394}
395
396/* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403static void
404print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407{
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421}
422
423/* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425static void
426generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433{
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462}
463
464/* generic_val_print helper for TYPE_CODE_PTR. */
465
466static void
467generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471{
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490}
491
492
493/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495static void
496generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500{
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503}
504
505/* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507static void
508print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510{
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522}
523
524/* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527static const gdb_byte *
528get_value_addr_contents (struct value *deref_val)
529{
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539}
540
541/* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543static void
544generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548{
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605}
606
607/* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610static void
611generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613{
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690}
691
692/* generic_val_print helper for TYPE_CODE_ENUM. */
693
694static void
695generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699{
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717}
718
719/* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721static void
722generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727{
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737}
738
739/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741static void
742generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747{
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766}
767
768/* generic_val_print helper for TYPE_CODE_BOOL. */
769
770static void
771generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776{
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801}
802
803/* generic_val_print helper for TYPE_CODE_INT. */
804
805static void
806generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810{
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817}
818
819/* generic_val_print helper for TYPE_CODE_CHAR. */
820
821static void
822generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827{
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853}
854
855/* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857static void
858generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862{
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877}
878
879/* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881static void
882generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888{
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912}
913
914/* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925void
926generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932{
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034}
1035
1036/* See valprint.h. */
1037
1038void
1039generic_value_print (struct value *val, struct ui_file *stream, int recurse,
1040 const struct value_print_options *options,
1041 const struct generic_val_print_decorations *decorations)
1042{
1043 generic_val_print (value_type (val), value_embedded_offset (val),
1044 value_address (val), stream, recurse, val, options,
1045 decorations);
1046}
1047
1048/* Helper function for val_print and common_val_print that does the
1049 work. Arguments are as to val_print, but FULL_VALUE, if given, is
1050 the value to be printed. */
1051
1052static void
1053do_val_print (struct value *full_value,
1054 struct type *type, LONGEST embedded_offset,
1055 CORE_ADDR address, struct ui_file *stream, int recurse,
1056 struct value *val,
1057 const struct value_print_options *options,
1058 const struct language_defn *language)
1059{
1060 int ret = 0;
1061 struct value_print_options local_opts = *options;
1062 struct type *real_type = check_typedef (type);
1063
1064 if (local_opts.prettyformat == Val_prettyformat_default)
1065 local_opts.prettyformat = (local_opts.prettyformat_structs
1066 ? Val_prettyformat : Val_no_prettyformat);
1067
1068 QUIT;
1069
1070 /* Ensure that the type is complete and not just a stub. If the type is
1071 only a stub and we can't find and substitute its complete type, then
1072 print appropriate string and return. */
1073
1074 if (TYPE_STUB (real_type))
1075 {
1076 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1077 return;
1078 }
1079
1080 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1081 return;
1082
1083 if (!options->raw)
1084 {
1085 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1086 address, stream, recurse,
1087 val, options, language);
1088 if (ret)
1089 return;
1090 }
1091
1092 /* Handle summary mode. If the value is a scalar, print it;
1093 otherwise, print an ellipsis. */
1094 if (options->summary && !val_print_scalar_type_p (type))
1095 {
1096 fprintf_filtered (stream, "...");
1097 return;
1098 }
1099
1100 /* If this value is too deep then don't print it. */
1101 if (!val_print_scalar_or_string_type_p (type, language)
1102 && val_print_check_max_depth (stream, recurse, options, language))
1103 return;
1104
1105 try
1106 {
1107 if (full_value != nullptr && language->la_value_print_inner != nullptr)
1108 language->la_value_print_inner (full_value, stream, recurse,
1109 &local_opts);
1110 else
1111 language->la_val_print (type, embedded_offset, address,
1112 stream, recurse, val,
1113 &local_opts);
1114 }
1115 catch (const gdb_exception_error &except)
1116 {
1117 fprintf_styled (stream, metadata_style.style (),
1118 _("<error reading variable>"));
1119 }
1120}
1121
1122/* Print using the given LANGUAGE the data of type TYPE located at
1123 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1124 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1125 stdio stream STREAM according to OPTIONS. VAL is the whole object
1126 that came from ADDRESS.
1127
1128 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1129 further helper subroutines as subfields of TYPE are printed. In
1130 such cases, VAL is passed down unadjusted, so
1131 that VAL can be queried for metadata about the contents data being
1132 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1133 buffer. For example: "has this field been optimized out", or "I'm
1134 printing an object while inspecting a traceframe; has this
1135 particular piece of data been collected?".
1136
1137 RECURSE indicates the amount of indentation to supply before
1138 continuation lines; this amount is roughly twice the value of
1139 RECURSE. */
1140
1141void
1142val_print (struct type *type, LONGEST embedded_offset,
1143 CORE_ADDR address, struct ui_file *stream, int recurse,
1144 struct value *val,
1145 const struct value_print_options *options,
1146 const struct language_defn *language)
1147{
1148 do_val_print (nullptr, type, embedded_offset, address, stream,
1149 recurse, val, options, language);
1150}
1151
1152/* See valprint.h. */
1153
1154bool
1155val_print_check_max_depth (struct ui_file *stream, int recurse,
1156 const struct value_print_options *options,
1157 const struct language_defn *language)
1158{
1159 if (options->max_depth > -1 && recurse >= options->max_depth)
1160 {
1161 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1162 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1163 return true;
1164 }
1165
1166 return false;
1167}
1168
1169/* Check whether the value VAL is printable. Return 1 if it is;
1170 return 0 and print an appropriate error message to STREAM according to
1171 OPTIONS if it is not. */
1172
1173static int
1174value_check_printable (struct value *val, struct ui_file *stream,
1175 const struct value_print_options *options)
1176{
1177 if (val == 0)
1178 {
1179 fprintf_styled (stream, metadata_style.style (),
1180 _("<address of value unknown>"));
1181 return 0;
1182 }
1183
1184 if (value_entirely_optimized_out (val))
1185 {
1186 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1187 fprintf_filtered (stream, "...");
1188 else
1189 val_print_optimized_out (val, stream);
1190 return 0;
1191 }
1192
1193 if (value_entirely_unavailable (val))
1194 {
1195 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1196 fprintf_filtered (stream, "...");
1197 else
1198 val_print_unavailable (stream);
1199 return 0;
1200 }
1201
1202 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1203 {
1204 fprintf_styled (stream, metadata_style.style (),
1205 _("<internal function %s>"),
1206 value_internal_function_name (val));
1207 return 0;
1208 }
1209
1210 if (type_not_associated (value_type (val)))
1211 {
1212 val_print_not_associated (stream);
1213 return 0;
1214 }
1215
1216 if (type_not_allocated (value_type (val)))
1217 {
1218 val_print_not_allocated (stream);
1219 return 0;
1220 }
1221
1222 return 1;
1223}
1224
1225/* Print using the given LANGUAGE the value VAL onto stream STREAM according
1226 to OPTIONS.
1227
1228 This is a preferable interface to val_print, above, because it uses
1229 GDB's value mechanism. */
1230
1231void
1232common_val_print (struct value *val, struct ui_file *stream, int recurse,
1233 const struct value_print_options *options,
1234 const struct language_defn *language)
1235{
1236 if (!value_check_printable (val, stream, options))
1237 return;
1238
1239 if (language->la_language == language_ada)
1240 /* The value might have a dynamic type, which would cause trouble
1241 below when trying to extract the value contents (since the value
1242 size is determined from the type size which is unknown). So
1243 get a fixed representation of our value. */
1244 val = ada_to_fixed_value (val);
1245
1246 if (value_lazy (val))
1247 value_fetch_lazy (val);
1248
1249 do_val_print (val, value_type (val),
1250 value_embedded_offset (val), value_address (val),
1251 stream, recurse,
1252 val, options, language);
1253}
1254
1255/* See valprint.h. */
1256
1257void
1258common_val_print_checked (struct value *val, struct ui_file *stream,
1259 int recurse,
1260 const struct value_print_options *options,
1261 const struct language_defn *language)
1262{
1263 if (!value_check_printable (val, stream, options))
1264 return;
1265 common_val_print (val, stream, recurse, options, language);
1266}
1267
1268/* Print on stream STREAM the value VAL according to OPTIONS. The value
1269 is printed using the current_language syntax. */
1270
1271void
1272value_print (struct value *val, struct ui_file *stream,
1273 const struct value_print_options *options)
1274{
1275 scoped_value_mark free_values;
1276
1277 if (!value_check_printable (val, stream, options))
1278 return;
1279
1280 if (!options->raw)
1281 {
1282 int r
1283 = apply_ext_lang_val_pretty_printer (value_type (val),
1284 value_embedded_offset (val),
1285 value_address (val),
1286 stream, 0,
1287 val, options, current_language);
1288
1289 if (r)
1290 return;
1291 }
1292
1293 LA_VALUE_PRINT (val, stream, options);
1294}
1295
1296static void
1297val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1298 struct ui_file *stream)
1299{
1300 ULONGEST val = unpack_long (type, valaddr);
1301 int field, nfields = TYPE_NFIELDS (type);
1302 struct gdbarch *gdbarch = get_type_arch (type);
1303 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1304
1305 fputs_filtered ("[", stream);
1306 for (field = 0; field < nfields; field++)
1307 {
1308 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1309 {
1310 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1311
1312 if (field_type == bool_type
1313 /* We require boolean types here to be one bit wide. This is a
1314 problematic place to notify the user of an internal error
1315 though. Instead just fall through and print the field as an
1316 int. */
1317 && TYPE_FIELD_BITSIZE (type, field) == 1)
1318 {
1319 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1320 fprintf_filtered
1321 (stream, " %ps",
1322 styled_string (variable_name_style.style (),
1323 TYPE_FIELD_NAME (type, field)));
1324 }
1325 else
1326 {
1327 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1328 ULONGEST field_val
1329 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1330
1331 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1332 field_val &= ((ULONGEST) 1 << field_len) - 1;
1333 fprintf_filtered (stream, " %ps=",
1334 styled_string (variable_name_style.style (),
1335 TYPE_FIELD_NAME (type, field)));
1336 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1337 generic_val_print_enum_1 (field_type, field_val, stream);
1338 else
1339 print_longest (stream, 'd', 0, field_val);
1340 }
1341 }
1342 }
1343 fputs_filtered (" ]", stream);
1344}
1345
1346/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1347 according to OPTIONS and SIZE on STREAM. Format i is not supported
1348 at this level.
1349
1350 This is how the elements of an array or structure are printed
1351 with a format. */
1352
1353void
1354val_print_scalar_formatted (struct type *type,
1355 LONGEST embedded_offset,
1356 struct value *val,
1357 const struct value_print_options *options,
1358 int size,
1359 struct ui_file *stream)
1360{
1361 struct gdbarch *arch = get_type_arch (type);
1362 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1363
1364 gdb_assert (val != NULL);
1365
1366 /* If we get here with a string format, try again without it. Go
1367 all the way back to the language printers, which may call us
1368 again. */
1369 if (options->format == 's')
1370 {
1371 struct value_print_options opts = *options;
1372 opts.format = 0;
1373 opts.deref_ref = 0;
1374 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1375 current_language);
1376 return;
1377 }
1378
1379 /* value_contents_for_printing fetches all VAL's contents. They are
1380 needed to check whether VAL is optimized-out or unavailable
1381 below. */
1382 const gdb_byte *valaddr = value_contents_for_printing (val);
1383
1384 /* A scalar object that does not have all bits available can't be
1385 printed, because all bits contribute to its representation. */
1386 if (value_bits_any_optimized_out (val,
1387 TARGET_CHAR_BIT * embedded_offset,
1388 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1389 val_print_optimized_out (val, stream);
1390 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1391 val_print_unavailable (stream);
1392 else
1393 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1394 options, size, stream);
1395}
1396
1397/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1398 The raison d'etre of this function is to consolidate printing of
1399 LONG_LONG's into this one function. The format chars b,h,w,g are
1400 from print_scalar_formatted(). Numbers are printed using C
1401 format.
1402
1403 USE_C_FORMAT means to use C format in all cases. Without it,
1404 'o' and 'x' format do not include the standard C radix prefix
1405 (leading 0 or 0x).
1406
1407 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1408 and was intended to request formatting according to the current
1409 language and would be used for most integers that GDB prints. The
1410 exceptional cases were things like protocols where the format of
1411 the integer is a protocol thing, not a user-visible thing). The
1412 parameter remains to preserve the information of what things might
1413 be printed with language-specific format, should we ever resurrect
1414 that capability. */
1415
1416void
1417print_longest (struct ui_file *stream, int format, int use_c_format,
1418 LONGEST val_long)
1419{
1420 const char *val;
1421
1422 switch (format)
1423 {
1424 case 'd':
1425 val = int_string (val_long, 10, 1, 0, 1); break;
1426 case 'u':
1427 val = int_string (val_long, 10, 0, 0, 1); break;
1428 case 'x':
1429 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1430 case 'b':
1431 val = int_string (val_long, 16, 0, 2, 1); break;
1432 case 'h':
1433 val = int_string (val_long, 16, 0, 4, 1); break;
1434 case 'w':
1435 val = int_string (val_long, 16, 0, 8, 1); break;
1436 case 'g':
1437 val = int_string (val_long, 16, 0, 16, 1); break;
1438 break;
1439 case 'o':
1440 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1441 default:
1442 internal_error (__FILE__, __LINE__,
1443 _("failed internal consistency check"));
1444 }
1445 fputs_filtered (val, stream);
1446}
1447
1448/* This used to be a macro, but I don't think it is called often enough
1449 to merit such treatment. */
1450/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1451 arguments to a function, number in a value history, register number, etc.)
1452 where the value must not be larger than can fit in an int. */
1453
1454int
1455longest_to_int (LONGEST arg)
1456{
1457 /* Let the compiler do the work. */
1458 int rtnval = (int) arg;
1459
1460 /* Check for overflows or underflows. */
1461 if (sizeof (LONGEST) > sizeof (int))
1462 {
1463 if (rtnval != arg)
1464 {
1465 error (_("Value out of range."));
1466 }
1467 }
1468 return (rtnval);
1469}
1470
1471/* Print a floating point value of floating-point type TYPE,
1472 pointed to in GDB by VALADDR, on STREAM. */
1473
1474void
1475print_floating (const gdb_byte *valaddr, struct type *type,
1476 struct ui_file *stream)
1477{
1478 std::string str = target_float_to_string (valaddr, type);
1479 fputs_filtered (str.c_str (), stream);
1480}
1481
1482void
1483print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1484 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1485{
1486 const gdb_byte *p;
1487 unsigned int i;
1488 int b;
1489 bool seen_a_one = false;
1490
1491 /* Declared "int" so it will be signed.
1492 This ensures that right shift will shift in zeros. */
1493
1494 const int mask = 0x080;
1495
1496 if (byte_order == BFD_ENDIAN_BIG)
1497 {
1498 for (p = valaddr;
1499 p < valaddr + len;
1500 p++)
1501 {
1502 /* Every byte has 8 binary characters; peel off
1503 and print from the MSB end. */
1504
1505 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1506 {
1507 if (*p & (mask >> i))
1508 b = '1';
1509 else
1510 b = '0';
1511
1512 if (zero_pad || seen_a_one || b == '1')
1513 fputc_filtered (b, stream);
1514 if (b == '1')
1515 seen_a_one = true;
1516 }
1517 }
1518 }
1519 else
1520 {
1521 for (p = valaddr + len - 1;
1522 p >= valaddr;
1523 p--)
1524 {
1525 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1526 {
1527 if (*p & (mask >> i))
1528 b = '1';
1529 else
1530 b = '0';
1531
1532 if (zero_pad || seen_a_one || b == '1')
1533 fputc_filtered (b, stream);
1534 if (b == '1')
1535 seen_a_one = true;
1536 }
1537 }
1538 }
1539
1540 /* When not zero-padding, ensure that something is printed when the
1541 input is 0. */
1542 if (!zero_pad && !seen_a_one)
1543 fputc_filtered ('0', stream);
1544}
1545
1546/* A helper for print_octal_chars that emits a single octal digit,
1547 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1548
1549static void
1550emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1551{
1552 if (*seen_a_one || digit != 0)
1553 fprintf_filtered (stream, "%o", digit);
1554 if (digit != 0)
1555 *seen_a_one = true;
1556}
1557
1558/* VALADDR points to an integer of LEN bytes.
1559 Print it in octal on stream or format it in buf. */
1560
1561void
1562print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1563 unsigned len, enum bfd_endian byte_order)
1564{
1565 const gdb_byte *p;
1566 unsigned char octa1, octa2, octa3, carry;
1567 int cycle;
1568
1569 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1570 * the extra bits, which cycle every three bytes:
1571 *
1572 * Byte side: 0 1 2 3
1573 * | | | |
1574 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1575 *
1576 * Octal side: 0 1 carry 3 4 carry ...
1577 *
1578 * Cycle number: 0 1 2
1579 *
1580 * But of course we are printing from the high side, so we have to
1581 * figure out where in the cycle we are so that we end up with no
1582 * left over bits at the end.
1583 */
1584#define BITS_IN_OCTAL 3
1585#define HIGH_ZERO 0340
1586#define LOW_ZERO 0034
1587#define CARRY_ZERO 0003
1588 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1589 "cycle zero constants are wrong");
1590#define HIGH_ONE 0200
1591#define MID_ONE 0160
1592#define LOW_ONE 0016
1593#define CARRY_ONE 0001
1594 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1595 "cycle one constants are wrong");
1596#define HIGH_TWO 0300
1597#define MID_TWO 0070
1598#define LOW_TWO 0007
1599 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1600 "cycle two constants are wrong");
1601
1602 /* For 32 we start in cycle 2, with two bits and one bit carry;
1603 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1604
1605 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1606 carry = 0;
1607
1608 fputs_filtered ("0", stream);
1609 bool seen_a_one = false;
1610 if (byte_order == BFD_ENDIAN_BIG)
1611 {
1612 for (p = valaddr;
1613 p < valaddr + len;
1614 p++)
1615 {
1616 switch (cycle)
1617 {
1618 case 0:
1619 /* No carry in, carry out two bits. */
1620
1621 octa1 = (HIGH_ZERO & *p) >> 5;
1622 octa2 = (LOW_ZERO & *p) >> 2;
1623 carry = (CARRY_ZERO & *p);
1624 emit_octal_digit (stream, &seen_a_one, octa1);
1625 emit_octal_digit (stream, &seen_a_one, octa2);
1626 break;
1627
1628 case 1:
1629 /* Carry in two bits, carry out one bit. */
1630
1631 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1632 octa2 = (MID_ONE & *p) >> 4;
1633 octa3 = (LOW_ONE & *p) >> 1;
1634 carry = (CARRY_ONE & *p);
1635 emit_octal_digit (stream, &seen_a_one, octa1);
1636 emit_octal_digit (stream, &seen_a_one, octa2);
1637 emit_octal_digit (stream, &seen_a_one, octa3);
1638 break;
1639
1640 case 2:
1641 /* Carry in one bit, no carry out. */
1642
1643 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1644 octa2 = (MID_TWO & *p) >> 3;
1645 octa3 = (LOW_TWO & *p);
1646 carry = 0;
1647 emit_octal_digit (stream, &seen_a_one, octa1);
1648 emit_octal_digit (stream, &seen_a_one, octa2);
1649 emit_octal_digit (stream, &seen_a_one, octa3);
1650 break;
1651
1652 default:
1653 error (_("Internal error in octal conversion;"));
1654 }
1655
1656 cycle++;
1657 cycle = cycle % BITS_IN_OCTAL;
1658 }
1659 }
1660 else
1661 {
1662 for (p = valaddr + len - 1;
1663 p >= valaddr;
1664 p--)
1665 {
1666 switch (cycle)
1667 {
1668 case 0:
1669 /* Carry out, no carry in */
1670
1671 octa1 = (HIGH_ZERO & *p) >> 5;
1672 octa2 = (LOW_ZERO & *p) >> 2;
1673 carry = (CARRY_ZERO & *p);
1674 emit_octal_digit (stream, &seen_a_one, octa1);
1675 emit_octal_digit (stream, &seen_a_one, octa2);
1676 break;
1677
1678 case 1:
1679 /* Carry in, carry out */
1680
1681 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1682 octa2 = (MID_ONE & *p) >> 4;
1683 octa3 = (LOW_ONE & *p) >> 1;
1684 carry = (CARRY_ONE & *p);
1685 emit_octal_digit (stream, &seen_a_one, octa1);
1686 emit_octal_digit (stream, &seen_a_one, octa2);
1687 emit_octal_digit (stream, &seen_a_one, octa3);
1688 break;
1689
1690 case 2:
1691 /* Carry in, no carry out */
1692
1693 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1694 octa2 = (MID_TWO & *p) >> 3;
1695 octa3 = (LOW_TWO & *p);
1696 carry = 0;
1697 emit_octal_digit (stream, &seen_a_one, octa1);
1698 emit_octal_digit (stream, &seen_a_one, octa2);
1699 emit_octal_digit (stream, &seen_a_one, octa3);
1700 break;
1701
1702 default:
1703 error (_("Internal error in octal conversion;"));
1704 }
1705
1706 cycle++;
1707 cycle = cycle % BITS_IN_OCTAL;
1708 }
1709 }
1710
1711}
1712
1713/* Possibly negate the integer represented by BYTES. It contains LEN
1714 bytes in the specified byte order. If the integer is negative,
1715 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1716 nothing and return false. */
1717
1718static bool
1719maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1720 enum bfd_endian byte_order,
1721 gdb::byte_vector *out_vec)
1722{
1723 gdb_byte sign_byte;
1724 gdb_assert (len > 0);
1725 if (byte_order == BFD_ENDIAN_BIG)
1726 sign_byte = bytes[0];
1727 else
1728 sign_byte = bytes[len - 1];
1729 if ((sign_byte & 0x80) == 0)
1730 return false;
1731
1732 out_vec->resize (len);
1733
1734 /* Compute -x == 1 + ~x. */
1735 if (byte_order == BFD_ENDIAN_LITTLE)
1736 {
1737 unsigned carry = 1;
1738 for (unsigned i = 0; i < len; ++i)
1739 {
1740 unsigned tem = (0xff & ~bytes[i]) + carry;
1741 (*out_vec)[i] = tem & 0xff;
1742 carry = tem / 256;
1743 }
1744 }
1745 else
1746 {
1747 unsigned carry = 1;
1748 for (unsigned i = len; i > 0; --i)
1749 {
1750 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1751 (*out_vec)[i - 1] = tem & 0xff;
1752 carry = tem / 256;
1753 }
1754 }
1755
1756 return true;
1757}
1758
1759/* VALADDR points to an integer of LEN bytes.
1760 Print it in decimal on stream or format it in buf. */
1761
1762void
1763print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1764 unsigned len, bool is_signed,
1765 enum bfd_endian byte_order)
1766{
1767#define TEN 10
1768#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1769#define CARRY_LEFT( x ) ((x) % TEN)
1770#define SHIFT( x ) ((x) << 4)
1771#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1772#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1773
1774 const gdb_byte *p;
1775 int carry;
1776 int decimal_len;
1777 int i, j, decimal_digits;
1778 int dummy;
1779 int flip;
1780
1781 gdb::byte_vector negated_bytes;
1782 if (is_signed
1783 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1784 {
1785 fputs_filtered ("-", stream);
1786 valaddr = negated_bytes.data ();
1787 }
1788
1789 /* Base-ten number is less than twice as many digits
1790 as the base 16 number, which is 2 digits per byte. */
1791
1792 decimal_len = len * 2 * 2;
1793 std::vector<unsigned char> digits (decimal_len, 0);
1794
1795 /* Ok, we have an unknown number of bytes of data to be printed in
1796 * decimal.
1797 *
1798 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1799 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1800 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1801 *
1802 * The trick is that "digits" holds a base-10 number, but sometimes
1803 * the individual digits are > 10.
1804 *
1805 * Outer loop is per nibble (hex digit) of input, from MSD end to
1806 * LSD end.
1807 */
1808 decimal_digits = 0; /* Number of decimal digits so far */
1809 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1810 flip = 0;
1811 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1812 {
1813 /*
1814 * Multiply current base-ten number by 16 in place.
1815 * Each digit was between 0 and 9, now is between
1816 * 0 and 144.
1817 */
1818 for (j = 0; j < decimal_digits; j++)
1819 {
1820 digits[j] = SHIFT (digits[j]);
1821 }
1822
1823 /* Take the next nibble off the input and add it to what
1824 * we've got in the LSB position. Bottom 'digit' is now
1825 * between 0 and 159.
1826 *
1827 * "flip" is used to run this loop twice for each byte.
1828 */
1829 if (flip == 0)
1830 {
1831 /* Take top nibble. */
1832
1833 digits[0] += HIGH_NIBBLE (*p);
1834 flip = 1;
1835 }
1836 else
1837 {
1838 /* Take low nibble and bump our pointer "p". */
1839
1840 digits[0] += LOW_NIBBLE (*p);
1841 if (byte_order == BFD_ENDIAN_BIG)
1842 p++;
1843 else
1844 p--;
1845 flip = 0;
1846 }
1847
1848 /* Re-decimalize. We have to do this often enough
1849 * that we don't overflow, but once per nibble is
1850 * overkill. Easier this way, though. Note that the
1851 * carry is often larger than 10 (e.g. max initial
1852 * carry out of lowest nibble is 15, could bubble all
1853 * the way up greater than 10). So we have to do
1854 * the carrying beyond the last current digit.
1855 */
1856 carry = 0;
1857 for (j = 0; j < decimal_len - 1; j++)
1858 {
1859 digits[j] += carry;
1860
1861 /* "/" won't handle an unsigned char with
1862 * a value that if signed would be negative.
1863 * So extend to longword int via "dummy".
1864 */
1865 dummy = digits[j];
1866 carry = CARRY_OUT (dummy);
1867 digits[j] = CARRY_LEFT (dummy);
1868
1869 if (j >= decimal_digits && carry == 0)
1870 {
1871 /*
1872 * All higher digits are 0 and we
1873 * no longer have a carry.
1874 *
1875 * Note: "j" is 0-based, "decimal_digits" is
1876 * 1-based.
1877 */
1878 decimal_digits = j + 1;
1879 break;
1880 }
1881 }
1882 }
1883
1884 /* Ok, now "digits" is the decimal representation, with
1885 the "decimal_digits" actual digits. Print! */
1886
1887 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1888 ;
1889
1890 for (; i >= 0; i--)
1891 {
1892 fprintf_filtered (stream, "%1d", digits[i]);
1893 }
1894}
1895
1896/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1897
1898void
1899print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1900 unsigned len, enum bfd_endian byte_order,
1901 bool zero_pad)
1902{
1903 const gdb_byte *p;
1904
1905 fputs_filtered ("0x", stream);
1906 if (byte_order == BFD_ENDIAN_BIG)
1907 {
1908 p = valaddr;
1909
1910 if (!zero_pad)
1911 {
1912 /* Strip leading 0 bytes, but be sure to leave at least a
1913 single byte at the end. */
1914 for (; p < valaddr + len - 1 && !*p; ++p)
1915 ;
1916 }
1917
1918 const gdb_byte *first = p;
1919 for (;
1920 p < valaddr + len;
1921 p++)
1922 {
1923 /* When not zero-padding, use a different format for the
1924 very first byte printed. */
1925 if (!zero_pad && p == first)
1926 fprintf_filtered (stream, "%x", *p);
1927 else
1928 fprintf_filtered (stream, "%02x", *p);
1929 }
1930 }
1931 else
1932 {
1933 p = valaddr + len - 1;
1934
1935 if (!zero_pad)
1936 {
1937 /* Strip leading 0 bytes, but be sure to leave at least a
1938 single byte at the end. */
1939 for (; p >= valaddr + 1 && !*p; --p)
1940 ;
1941 }
1942
1943 const gdb_byte *first = p;
1944 for (;
1945 p >= valaddr;
1946 p--)
1947 {
1948 /* When not zero-padding, use a different format for the
1949 very first byte printed. */
1950 if (!zero_pad && p == first)
1951 fprintf_filtered (stream, "%x", *p);
1952 else
1953 fprintf_filtered (stream, "%02x", *p);
1954 }
1955 }
1956}
1957
1958/* VALADDR points to a char integer of LEN bytes.
1959 Print it out in appropriate language form on stream.
1960 Omit any leading zero chars. */
1961
1962void
1963print_char_chars (struct ui_file *stream, struct type *type,
1964 const gdb_byte *valaddr,
1965 unsigned len, enum bfd_endian byte_order)
1966{
1967 const gdb_byte *p;
1968
1969 if (byte_order == BFD_ENDIAN_BIG)
1970 {
1971 p = valaddr;
1972 while (p < valaddr + len - 1 && *p == 0)
1973 ++p;
1974
1975 while (p < valaddr + len)
1976 {
1977 LA_EMIT_CHAR (*p, type, stream, '\'');
1978 ++p;
1979 }
1980 }
1981 else
1982 {
1983 p = valaddr + len - 1;
1984 while (p > valaddr && *p == 0)
1985 --p;
1986
1987 while (p >= valaddr)
1988 {
1989 LA_EMIT_CHAR (*p, type, stream, '\'');
1990 --p;
1991 }
1992 }
1993}
1994
1995/* Print function pointer with inferior address ADDRESS onto stdio
1996 stream STREAM. */
1997
1998void
1999print_function_pointer_address (const struct value_print_options *options,
2000 struct gdbarch *gdbarch,
2001 CORE_ADDR address,
2002 struct ui_file *stream)
2003{
2004 CORE_ADDR func_addr
2005 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2006 current_top_target ());
2007
2008 /* If the function pointer is represented by a description, print
2009 the address of the description. */
2010 if (options->addressprint && func_addr != address)
2011 {
2012 fputs_filtered ("@", stream);
2013 fputs_filtered (paddress (gdbarch, address), stream);
2014 fputs_filtered (": ", stream);
2015 }
2016 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2017}
2018
2019
2020/* Print on STREAM using the given OPTIONS the index for the element
2021 at INDEX of an array whose index type is INDEX_TYPE. */
2022
2023void
2024maybe_print_array_index (struct type *index_type, LONGEST index,
2025 struct ui_file *stream,
2026 const struct value_print_options *options)
2027{
2028 struct value *index_value;
2029
2030 if (!options->print_array_indexes)
2031 return;
2032
2033 index_value = value_from_longest (index_type, index);
2034
2035 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2036}
2037
2038/* Called by various <lang>_val_print routines to print elements of an
2039 array in the form "<elem1>, <elem2>, <elem3>, ...".
2040
2041 (FIXME?) Assumes array element separator is a comma, which is correct
2042 for all languages currently handled.
2043 (FIXME?) Some languages have a notation for repeated array elements,
2044 perhaps we should try to use that notation when appropriate. */
2045
2046void
2047val_print_array_elements (struct type *type,
2048 LONGEST embedded_offset,
2049 CORE_ADDR address, struct ui_file *stream,
2050 int recurse,
2051 struct value *val,
2052 const struct value_print_options *options,
2053 unsigned int i)
2054{
2055 unsigned int things_printed = 0;
2056 unsigned len;
2057 struct type *elttype, *index_type, *base_index_type;
2058 unsigned eltlen;
2059 /* Position of the array element we are examining to see
2060 whether it is repeated. */
2061 unsigned int rep1;
2062 /* Number of repetitions we have detected so far. */
2063 unsigned int reps;
2064 LONGEST low_bound, high_bound;
2065 LONGEST low_pos, high_pos;
2066
2067 elttype = TYPE_TARGET_TYPE (type);
2068 eltlen = type_length_units (check_typedef (elttype));
2069 index_type = TYPE_INDEX_TYPE (type);
2070
2071 if (get_array_bounds (type, &low_bound, &high_bound))
2072 {
2073 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2074 base_index_type = TYPE_TARGET_TYPE (index_type);
2075 else
2076 base_index_type = index_type;
2077
2078 /* Non-contiguous enumerations types can by used as index types
2079 in some languages (e.g. Ada). In this case, the array length
2080 shall be computed from the positions of the first and last
2081 literal in the enumeration type, and not from the values
2082 of these literals. */
2083 if (!discrete_position (base_index_type, low_bound, &low_pos)
2084 || !discrete_position (base_index_type, high_bound, &high_pos))
2085 {
2086 warning (_("unable to get positions in array, use bounds instead"));
2087 low_pos = low_bound;
2088 high_pos = high_bound;
2089 }
2090
2091 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2092 But we have to be a little extra careful, because some languages
2093 such as Ada allow LOW_POS to be greater than HIGH_POS for
2094 empty arrays. In that situation, the array length is just zero,
2095 not negative! */
2096 if (low_pos > high_pos)
2097 len = 0;
2098 else
2099 len = high_pos - low_pos + 1;
2100 }
2101 else
2102 {
2103 warning (_("unable to get bounds of array, assuming null array"));
2104 low_bound = 0;
2105 len = 0;
2106 }
2107
2108 annotate_array_section_begin (i, elttype);
2109
2110 for (; i < len && things_printed < options->print_max; i++)
2111 {
2112 if (i != 0)
2113 {
2114 if (options->prettyformat_arrays)
2115 {
2116 fprintf_filtered (stream, ",\n");
2117 print_spaces_filtered (2 + 2 * recurse, stream);
2118 }
2119 else
2120 {
2121 fprintf_filtered (stream, ", ");
2122 }
2123 }
2124 wrap_here (n_spaces (2 + 2 * recurse));
2125 maybe_print_array_index (index_type, i + low_bound,
2126 stream, options);
2127
2128 rep1 = i + 1;
2129 reps = 1;
2130 /* Only check for reps if repeat_count_threshold is not set to
2131 UINT_MAX (unlimited). */
2132 if (options->repeat_count_threshold < UINT_MAX)
2133 {
2134 while (rep1 < len
2135 && value_contents_eq (val,
2136 embedded_offset + i * eltlen,
2137 val,
2138 (embedded_offset
2139 + rep1 * eltlen),
2140 eltlen))
2141 {
2142 ++reps;
2143 ++rep1;
2144 }
2145 }
2146
2147 if (reps > options->repeat_count_threshold)
2148 {
2149 val_print (elttype, embedded_offset + i * eltlen,
2150 address, stream, recurse + 1, val, options,
2151 current_language);
2152 annotate_elt_rep (reps);
2153 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2154 metadata_style.style ().ptr (), reps, nullptr);
2155 annotate_elt_rep_end ();
2156
2157 i = rep1 - 1;
2158 things_printed += options->repeat_count_threshold;
2159 }
2160 else
2161 {
2162 val_print (elttype, embedded_offset + i * eltlen,
2163 address,
2164 stream, recurse + 1, val, options, current_language);
2165 annotate_elt ();
2166 things_printed++;
2167 }
2168 }
2169 annotate_array_section_end ();
2170 if (i < len)
2171 {
2172 fprintf_filtered (stream, "...");
2173 }
2174}
2175
2176/* Read LEN bytes of target memory at address MEMADDR, placing the
2177 results in GDB's memory at MYADDR. Returns a count of the bytes
2178 actually read, and optionally a target_xfer_status value in the
2179 location pointed to by ERRPTR if ERRPTR is non-null. */
2180
2181/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2182 function be eliminated. */
2183
2184static int
2185partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2186 int len, int *errptr)
2187{
2188 int nread; /* Number of bytes actually read. */
2189 int errcode; /* Error from last read. */
2190
2191 /* First try a complete read. */
2192 errcode = target_read_memory (memaddr, myaddr, len);
2193 if (errcode == 0)
2194 {
2195 /* Got it all. */
2196 nread = len;
2197 }
2198 else
2199 {
2200 /* Loop, reading one byte at a time until we get as much as we can. */
2201 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2202 {
2203 errcode = target_read_memory (memaddr++, myaddr++, 1);
2204 }
2205 /* If an error, the last read was unsuccessful, so adjust count. */
2206 if (errcode != 0)
2207 {
2208 nread--;
2209 }
2210 }
2211 if (errptr != NULL)
2212 {
2213 *errptr = errcode;
2214 }
2215 return (nread);
2216}
2217
2218/* Read a string from the inferior, at ADDR, with LEN characters of
2219 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2220 will be set to a newly allocated buffer containing the string, and
2221 BYTES_READ will be set to the number of bytes read. Returns 0 on
2222 success, or a target_xfer_status on failure.
2223
2224 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2225 (including eventual NULs in the middle or end of the string).
2226
2227 If LEN is -1, stops at the first null character (not necessarily
2228 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2229 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2230 the string.
2231
2232 Unless an exception is thrown, BUFFER will always be allocated, even on
2233 failure. In this case, some characters might have been read before the
2234 failure happened. Check BYTES_READ to recognize this situation.
2235
2236 Note: There was a FIXME asking to make this code use target_read_string,
2237 but this function is more general (can read past null characters, up to
2238 given LEN). Besides, it is used much more often than target_read_string
2239 so it is more tested. Perhaps callers of target_read_string should use
2240 this function instead? */
2241
2242int
2243read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2244 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2245 int *bytes_read)
2246{
2247 int errcode; /* Errno returned from bad reads. */
2248 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2249 gdb_byte *bufptr; /* Pointer to next available byte in
2250 buffer. */
2251
2252 /* Loop until we either have all the characters, or we encounter
2253 some error, such as bumping into the end of the address space. */
2254
2255 buffer->reset (nullptr);
2256
2257 if (len > 0)
2258 {
2259 /* We want fetchlimit chars, so we might as well read them all in
2260 one operation. */
2261 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2262
2263 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2264 bufptr = buffer->get ();
2265
2266 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2267 / width;
2268 addr += nfetch * width;
2269 bufptr += nfetch * width;
2270 }
2271 else if (len == -1)
2272 {
2273 unsigned long bufsize = 0;
2274 unsigned int chunksize; /* Size of each fetch, in chars. */
2275 int found_nul; /* Non-zero if we found the nul char. */
2276 gdb_byte *limit; /* First location past end of fetch buffer. */
2277
2278 found_nul = 0;
2279 /* We are looking for a NUL terminator to end the fetching, so we
2280 might as well read in blocks that are large enough to be efficient,
2281 but not so large as to be slow if fetchlimit happens to be large.
2282 So we choose the minimum of 8 and fetchlimit. We used to use 200
2283 instead of 8 but 200 is way too big for remote debugging over a
2284 serial line. */
2285 chunksize = std::min (8u, fetchlimit);
2286
2287 do
2288 {
2289 QUIT;
2290 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2291
2292 if (*buffer == NULL)
2293 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2294 else
2295 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2296 (nfetch + bufsize) * width));
2297
2298 bufptr = buffer->get () + bufsize * width;
2299 bufsize += nfetch;
2300
2301 /* Read as much as we can. */
2302 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2303 / width;
2304
2305 /* Scan this chunk for the null character that terminates the string
2306 to print. If found, we don't need to fetch any more. Note
2307 that bufptr is explicitly left pointing at the next character
2308 after the null character, or at the next character after the end
2309 of the buffer. */
2310
2311 limit = bufptr + nfetch * width;
2312 while (bufptr < limit)
2313 {
2314 unsigned long c;
2315
2316 c = extract_unsigned_integer (bufptr, width, byte_order);
2317 addr += width;
2318 bufptr += width;
2319 if (c == 0)
2320 {
2321 /* We don't care about any error which happened after
2322 the NUL terminator. */
2323 errcode = 0;
2324 found_nul = 1;
2325 break;
2326 }
2327 }
2328 }
2329 while (errcode == 0 /* no error */
2330 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2331 && !found_nul); /* haven't found NUL yet */
2332 }
2333 else
2334 { /* Length of string is really 0! */
2335 /* We always allocate *buffer. */
2336 buffer->reset ((gdb_byte *) xmalloc (1));
2337 bufptr = buffer->get ();
2338 errcode = 0;
2339 }
2340
2341 /* bufptr and addr now point immediately beyond the last byte which we
2342 consider part of the string (including a '\0' which ends the string). */
2343 *bytes_read = bufptr - buffer->get ();
2344
2345 QUIT;
2346
2347 return errcode;
2348}
2349
2350/* Return true if print_wchar can display W without resorting to a
2351 numeric escape, false otherwise. */
2352
2353static int
2354wchar_printable (gdb_wchar_t w)
2355{
2356 return (gdb_iswprint (w)
2357 || w == LCST ('\a') || w == LCST ('\b')
2358 || w == LCST ('\f') || w == LCST ('\n')
2359 || w == LCST ('\r') || w == LCST ('\t')
2360 || w == LCST ('\v'));
2361}
2362
2363/* A helper function that converts the contents of STRING to wide
2364 characters and then appends them to OUTPUT. */
2365
2366static void
2367append_string_as_wide (const char *string,
2368 struct obstack *output)
2369{
2370 for (; *string; ++string)
2371 {
2372 gdb_wchar_t w = gdb_btowc (*string);
2373 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2374 }
2375}
2376
2377/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2378 original (target) bytes representing the character, ORIG_LEN is the
2379 number of valid bytes. WIDTH is the number of bytes in a base
2380 characters of the type. OUTPUT is an obstack to which wide
2381 characters are emitted. QUOTER is a (narrow) character indicating
2382 the style of quotes surrounding the character to be printed.
2383 NEED_ESCAPE is an in/out flag which is used to track numeric
2384 escapes across calls. */
2385
2386static void
2387print_wchar (gdb_wint_t w, const gdb_byte *orig,
2388 int orig_len, int width,
2389 enum bfd_endian byte_order,
2390 struct obstack *output,
2391 int quoter, int *need_escapep)
2392{
2393 int need_escape = *need_escapep;
2394
2395 *need_escapep = 0;
2396
2397 /* iswprint implementation on Windows returns 1 for tab character.
2398 In order to avoid different printout on this host, we explicitly
2399 use wchar_printable function. */
2400 switch (w)
2401 {
2402 case LCST ('\a'):
2403 obstack_grow_wstr (output, LCST ("\\a"));
2404 break;
2405 case LCST ('\b'):
2406 obstack_grow_wstr (output, LCST ("\\b"));
2407 break;
2408 case LCST ('\f'):
2409 obstack_grow_wstr (output, LCST ("\\f"));
2410 break;
2411 case LCST ('\n'):
2412 obstack_grow_wstr (output, LCST ("\\n"));
2413 break;
2414 case LCST ('\r'):
2415 obstack_grow_wstr (output, LCST ("\\r"));
2416 break;
2417 case LCST ('\t'):
2418 obstack_grow_wstr (output, LCST ("\\t"));
2419 break;
2420 case LCST ('\v'):
2421 obstack_grow_wstr (output, LCST ("\\v"));
2422 break;
2423 default:
2424 {
2425 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2426 && w != LCST ('8')
2427 && w != LCST ('9'))))
2428 {
2429 gdb_wchar_t wchar = w;
2430
2431 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2432 obstack_grow_wstr (output, LCST ("\\"));
2433 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2434 }
2435 else
2436 {
2437 int i;
2438
2439 for (i = 0; i + width <= orig_len; i += width)
2440 {
2441 char octal[30];
2442 ULONGEST value;
2443
2444 value = extract_unsigned_integer (&orig[i], width,
2445 byte_order);
2446 /* If the value fits in 3 octal digits, print it that
2447 way. Otherwise, print it as a hex escape. */
2448 if (value <= 0777)
2449 xsnprintf (octal, sizeof (octal), "\\%.3o",
2450 (int) (value & 0777));
2451 else
2452 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2453 append_string_as_wide (octal, output);
2454 }
2455 /* If we somehow have extra bytes, print them now. */
2456 while (i < orig_len)
2457 {
2458 char octal[5];
2459
2460 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2461 append_string_as_wide (octal, output);
2462 ++i;
2463 }
2464
2465 *need_escapep = 1;
2466 }
2467 break;
2468 }
2469 }
2470}
2471
2472/* Print the character C on STREAM as part of the contents of a
2473 literal string whose delimiter is QUOTER. ENCODING names the
2474 encoding of C. */
2475
2476void
2477generic_emit_char (int c, struct type *type, struct ui_file *stream,
2478 int quoter, const char *encoding)
2479{
2480 enum bfd_endian byte_order
2481 = type_byte_order (type);
2482 gdb_byte *c_buf;
2483 int need_escape = 0;
2484
2485 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2486 pack_long (c_buf, type, c);
2487
2488 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2489
2490 /* This holds the printable form of the wchar_t data. */
2491 auto_obstack wchar_buf;
2492
2493 while (1)
2494 {
2495 int num_chars;
2496 gdb_wchar_t *chars;
2497 const gdb_byte *buf;
2498 size_t buflen;
2499 int print_escape = 1;
2500 enum wchar_iterate_result result;
2501
2502 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2503 if (num_chars < 0)
2504 break;
2505 if (num_chars > 0)
2506 {
2507 /* If all characters are printable, print them. Otherwise,
2508 we're going to have to print an escape sequence. We
2509 check all characters because we want to print the target
2510 bytes in the escape sequence, and we don't know character
2511 boundaries there. */
2512 int i;
2513
2514 print_escape = 0;
2515 for (i = 0; i < num_chars; ++i)
2516 if (!wchar_printable (chars[i]))
2517 {
2518 print_escape = 1;
2519 break;
2520 }
2521
2522 if (!print_escape)
2523 {
2524 for (i = 0; i < num_chars; ++i)
2525 print_wchar (chars[i], buf, buflen,
2526 TYPE_LENGTH (type), byte_order,
2527 &wchar_buf, quoter, &need_escape);
2528 }
2529 }
2530
2531 /* This handles the NUM_CHARS == 0 case as well. */
2532 if (print_escape)
2533 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2534 byte_order, &wchar_buf, quoter, &need_escape);
2535 }
2536
2537 /* The output in the host encoding. */
2538 auto_obstack output;
2539
2540 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2541 (gdb_byte *) obstack_base (&wchar_buf),
2542 obstack_object_size (&wchar_buf),
2543 sizeof (gdb_wchar_t), &output, translit_char);
2544 obstack_1grow (&output, '\0');
2545
2546 fputs_filtered ((const char *) obstack_base (&output), stream);
2547}
2548
2549/* Return the repeat count of the next character/byte in ITER,
2550 storing the result in VEC. */
2551
2552static int
2553count_next_character (wchar_iterator *iter,
2554 std::vector<converted_character> *vec)
2555{
2556 struct converted_character *current;
2557
2558 if (vec->empty ())
2559 {
2560 struct converted_character tmp;
2561 gdb_wchar_t *chars;
2562
2563 tmp.num_chars
2564 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2565 if (tmp.num_chars > 0)
2566 {
2567 gdb_assert (tmp.num_chars < MAX_WCHARS);
2568 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2569 }
2570 vec->push_back (tmp);
2571 }
2572
2573 current = &vec->back ();
2574
2575 /* Count repeated characters or bytes. */
2576 current->repeat_count = 1;
2577 if (current->num_chars == -1)
2578 {
2579 /* EOF */
2580 return -1;
2581 }
2582 else
2583 {
2584 gdb_wchar_t *chars;
2585 struct converted_character d;
2586 int repeat;
2587
2588 d.repeat_count = 0;
2589
2590 while (1)
2591 {
2592 /* Get the next character. */
2593 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2594
2595 /* If a character was successfully converted, save the character
2596 into the converted character. */
2597 if (d.num_chars > 0)
2598 {
2599 gdb_assert (d.num_chars < MAX_WCHARS);
2600 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2601 }
2602
2603 /* Determine if the current character is the same as this
2604 new character. */
2605 if (d.num_chars == current->num_chars && d.result == current->result)
2606 {
2607 /* There are two cases to consider:
2608
2609 1) Equality of converted character (num_chars > 0)
2610 2) Equality of non-converted character (num_chars == 0) */
2611 if ((current->num_chars > 0
2612 && memcmp (current->chars, d.chars,
2613 WCHAR_BUFLEN (current->num_chars)) == 0)
2614 || (current->num_chars == 0
2615 && current->buflen == d.buflen
2616 && memcmp (current->buf, d.buf, current->buflen) == 0))
2617 ++current->repeat_count;
2618 else
2619 break;
2620 }
2621 else
2622 break;
2623 }
2624
2625 /* Push this next converted character onto the result vector. */
2626 repeat = current->repeat_count;
2627 vec->push_back (d);
2628 return repeat;
2629 }
2630}
2631
2632/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2633 character to use with string output. WIDTH is the size of the output
2634 character type. BYTE_ORDER is the target byte order. OPTIONS
2635 is the user's print options. */
2636
2637static void
2638print_converted_chars_to_obstack (struct obstack *obstack,
2639 const std::vector<converted_character> &chars,
2640 int quote_char, int width,
2641 enum bfd_endian byte_order,
2642 const struct value_print_options *options)
2643{
2644 unsigned int idx;
2645 const converted_character *elem;
2646 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2647 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2648 int need_escape = 0;
2649
2650 /* Set the start state. */
2651 idx = 0;
2652 last = state = START;
2653 elem = NULL;
2654
2655 while (1)
2656 {
2657 switch (state)
2658 {
2659 case START:
2660 /* Nothing to do. */
2661 break;
2662
2663 case SINGLE:
2664 {
2665 int j;
2666
2667 /* We are outputting a single character
2668 (< options->repeat_count_threshold). */
2669
2670 if (last != SINGLE)
2671 {
2672 /* We were outputting some other type of content, so we
2673 must output and a comma and a quote. */
2674 if (last != START)
2675 obstack_grow_wstr (obstack, LCST (", "));
2676 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2677 }
2678 /* Output the character. */
2679 for (j = 0; j < elem->repeat_count; ++j)
2680 {
2681 if (elem->result == wchar_iterate_ok)
2682 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2683 byte_order, obstack, quote_char, &need_escape);
2684 else
2685 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2686 byte_order, obstack, quote_char, &need_escape);
2687 }
2688 }
2689 break;
2690
2691 case REPEAT:
2692 {
2693 int j;
2694
2695 /* We are outputting a character with a repeat count
2696 greater than options->repeat_count_threshold. */
2697
2698 if (last == SINGLE)
2699 {
2700 /* We were outputting a single string. Terminate the
2701 string. */
2702 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2703 }
2704 if (last != START)
2705 obstack_grow_wstr (obstack, LCST (", "));
2706
2707 /* Output the character and repeat string. */
2708 obstack_grow_wstr (obstack, LCST ("'"));
2709 if (elem->result == wchar_iterate_ok)
2710 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2711 byte_order, obstack, quote_char, &need_escape);
2712 else
2713 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2714 byte_order, obstack, quote_char, &need_escape);
2715 obstack_grow_wstr (obstack, LCST ("'"));
2716 std::string s = string_printf (_(" <repeats %u times>"),
2717 elem->repeat_count);
2718 for (j = 0; s[j]; ++j)
2719 {
2720 gdb_wchar_t w = gdb_btowc (s[j]);
2721 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2722 }
2723 }
2724 break;
2725
2726 case INCOMPLETE:
2727 /* We are outputting an incomplete sequence. */
2728 if (last == SINGLE)
2729 {
2730 /* If we were outputting a string of SINGLE characters,
2731 terminate the quote. */
2732 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2733 }
2734 if (last != START)
2735 obstack_grow_wstr (obstack, LCST (", "));
2736
2737 /* Output the incomplete sequence string. */
2738 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2739 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2740 obstack, 0, &need_escape);
2741 obstack_grow_wstr (obstack, LCST (">"));
2742
2743 /* We do not attempt to output anything after this. */
2744 state = FINISH;
2745 break;
2746
2747 case FINISH:
2748 /* All done. If we were outputting a string of SINGLE
2749 characters, the string must be terminated. Otherwise,
2750 REPEAT and INCOMPLETE are always left properly terminated. */
2751 if (last == SINGLE)
2752 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2753
2754 return;
2755 }
2756
2757 /* Get the next element and state. */
2758 last = state;
2759 if (state != FINISH)
2760 {
2761 elem = &chars[idx++];
2762 switch (elem->result)
2763 {
2764 case wchar_iterate_ok:
2765 case wchar_iterate_invalid:
2766 if (elem->repeat_count > options->repeat_count_threshold)
2767 state = REPEAT;
2768 else
2769 state = SINGLE;
2770 break;
2771
2772 case wchar_iterate_incomplete:
2773 state = INCOMPLETE;
2774 break;
2775
2776 case wchar_iterate_eof:
2777 state = FINISH;
2778 break;
2779 }
2780 }
2781 }
2782}
2783
2784/* Print the character string STRING, printing at most LENGTH
2785 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2786 the type of each character. OPTIONS holds the printing options;
2787 printing stops early if the number hits print_max; repeat counts
2788 are printed as appropriate. Print ellipses at the end if we had to
2789 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2790 QUOTE_CHAR is the character to print at each end of the string. If
2791 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2792 omitted. */
2793
2794void
2795generic_printstr (struct ui_file *stream, struct type *type,
2796 const gdb_byte *string, unsigned int length,
2797 const char *encoding, int force_ellipses,
2798 int quote_char, int c_style_terminator,
2799 const struct value_print_options *options)
2800{
2801 enum bfd_endian byte_order = type_byte_order (type);
2802 unsigned int i;
2803 int width = TYPE_LENGTH (type);
2804 int finished = 0;
2805 struct converted_character *last;
2806
2807 if (length == -1)
2808 {
2809 unsigned long current_char = 1;
2810
2811 for (i = 0; current_char; ++i)
2812 {
2813 QUIT;
2814 current_char = extract_unsigned_integer (string + i * width,
2815 width, byte_order);
2816 }
2817 length = i;
2818 }
2819
2820 /* If the string was not truncated due to `set print elements', and
2821 the last byte of it is a null, we don't print that, in
2822 traditional C style. */
2823 if (c_style_terminator
2824 && !force_ellipses
2825 && length > 0
2826 && (extract_unsigned_integer (string + (length - 1) * width,
2827 width, byte_order) == 0))
2828 length--;
2829
2830 if (length == 0)
2831 {
2832 fputs_filtered ("\"\"", stream);
2833 return;
2834 }
2835
2836 /* Arrange to iterate over the characters, in wchar_t form. */
2837 wchar_iterator iter (string, length * width, encoding, width);
2838 std::vector<converted_character> converted_chars;
2839
2840 /* Convert characters until the string is over or the maximum
2841 number of printed characters has been reached. */
2842 i = 0;
2843 while (i < options->print_max)
2844 {
2845 int r;
2846
2847 QUIT;
2848
2849 /* Grab the next character and repeat count. */
2850 r = count_next_character (&iter, &converted_chars);
2851
2852 /* If less than zero, the end of the input string was reached. */
2853 if (r < 0)
2854 break;
2855
2856 /* Otherwise, add the count to the total print count and get
2857 the next character. */
2858 i += r;
2859 }
2860
2861 /* Get the last element and determine if the entire string was
2862 processed. */
2863 last = &converted_chars.back ();
2864 finished = (last->result == wchar_iterate_eof);
2865
2866 /* Ensure that CONVERTED_CHARS is terminated. */
2867 last->result = wchar_iterate_eof;
2868
2869 /* WCHAR_BUF is the obstack we use to represent the string in
2870 wchar_t form. */
2871 auto_obstack wchar_buf;
2872
2873 /* Print the output string to the obstack. */
2874 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2875 width, byte_order, options);
2876
2877 if (force_ellipses || !finished)
2878 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2879
2880 /* OUTPUT is where we collect `char's for printing. */
2881 auto_obstack output;
2882
2883 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2884 (gdb_byte *) obstack_base (&wchar_buf),
2885 obstack_object_size (&wchar_buf),
2886 sizeof (gdb_wchar_t), &output, translit_char);
2887 obstack_1grow (&output, '\0');
2888
2889 fputs_filtered ((const char *) obstack_base (&output), stream);
2890}
2891
2892/* Print a string from the inferior, starting at ADDR and printing up to LEN
2893 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2894 stops at the first null byte, otherwise printing proceeds (including null
2895 bytes) until either print_max or LEN characters have been printed,
2896 whichever is smaller. ENCODING is the name of the string's
2897 encoding. It can be NULL, in which case the target encoding is
2898 assumed. */
2899
2900int
2901val_print_string (struct type *elttype, const char *encoding,
2902 CORE_ADDR addr, int len,
2903 struct ui_file *stream,
2904 const struct value_print_options *options)
2905{
2906 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2907 int err; /* Non-zero if we got a bad read. */
2908 int found_nul; /* Non-zero if we found the nul char. */
2909 unsigned int fetchlimit; /* Maximum number of chars to print. */
2910 int bytes_read;
2911 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2912 struct gdbarch *gdbarch = get_type_arch (elttype);
2913 enum bfd_endian byte_order = type_byte_order (elttype);
2914 int width = TYPE_LENGTH (elttype);
2915
2916 /* First we need to figure out the limit on the number of characters we are
2917 going to attempt to fetch and print. This is actually pretty simple. If
2918 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2919 LEN is -1, then the limit is print_max. This is true regardless of
2920 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2921 because finding the null byte (or available memory) is what actually
2922 limits the fetch. */
2923
2924 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2925 options->print_max));
2926
2927 err = read_string (addr, len, width, fetchlimit, byte_order,
2928 &buffer, &bytes_read);
2929
2930 addr += bytes_read;
2931
2932 /* We now have either successfully filled the buffer to fetchlimit,
2933 or terminated early due to an error or finding a null char when
2934 LEN is -1. */
2935
2936 /* Determine found_nul by looking at the last character read. */
2937 found_nul = 0;
2938 if (bytes_read >= width)
2939 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2940 width, byte_order) == 0;
2941 if (len == -1 && !found_nul)
2942 {
2943 gdb_byte *peekbuf;
2944
2945 /* We didn't find a NUL terminator we were looking for. Attempt
2946 to peek at the next character. If not successful, or it is not
2947 a null byte, then force ellipsis to be printed. */
2948
2949 peekbuf = (gdb_byte *) alloca (width);
2950
2951 if (target_read_memory (addr, peekbuf, width) == 0
2952 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2953 force_ellipsis = 1;
2954 }
2955 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2956 {
2957 /* Getting an error when we have a requested length, or fetching less
2958 than the number of characters actually requested, always make us
2959 print ellipsis. */
2960 force_ellipsis = 1;
2961 }
2962
2963 /* If we get an error before fetching anything, don't print a string.
2964 But if we fetch something and then get an error, print the string
2965 and then the error message. */
2966 if (err == 0 || bytes_read > 0)
2967 {
2968 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2969 encoding, force_ellipsis, options);
2970 }
2971
2972 if (err != 0)
2973 {
2974 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2975
2976 fprintf_filtered (stream, _("<error: %ps>"),
2977 styled_string (metadata_style.style (),
2978 str.c_str ()));
2979 }
2980
2981 return (bytes_read / width);
2982}
2983
2984/* Handle 'show print max-depth'. */
2985
2986static void
2987show_print_max_depth (struct ui_file *file, int from_tty,
2988 struct cmd_list_element *c, const char *value)
2989{
2990 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2991}
2992\f
2993
2994/* The 'set input-radix' command writes to this auxiliary variable.
2995 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2996 it is left unchanged. */
2997
2998static unsigned input_radix_1 = 10;
2999
3000/* Validate an input or output radix setting, and make sure the user
3001 knows what they really did here. Radix setting is confusing, e.g.
3002 setting the input radix to "10" never changes it! */
3003
3004static void
3005set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
3006{
3007 set_input_radix_1 (from_tty, input_radix_1);
3008}
3009
3010static void
3011set_input_radix_1 (int from_tty, unsigned radix)
3012{
3013 /* We don't currently disallow any input radix except 0 or 1, which don't
3014 make any mathematical sense. In theory, we can deal with any input
3015 radix greater than 1, even if we don't have unique digits for every
3016 value from 0 to radix-1, but in practice we lose on large radix values.
3017 We should either fix the lossage or restrict the radix range more.
3018 (FIXME). */
3019
3020 if (radix < 2)
3021 {
3022 input_radix_1 = input_radix;
3023 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3024 radix);
3025 }
3026 input_radix_1 = input_radix = radix;
3027 if (from_tty)
3028 {
3029 printf_filtered (_("Input radix now set to "
3030 "decimal %u, hex %x, octal %o.\n"),
3031 radix, radix, radix);
3032 }
3033}
3034
3035/* The 'set output-radix' command writes to this auxiliary variable.
3036 If the requested radix is valid, OUTPUT_RADIX is updated,
3037 otherwise, it is left unchanged. */
3038
3039static unsigned output_radix_1 = 10;
3040
3041static void
3042set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
3043{
3044 set_output_radix_1 (from_tty, output_radix_1);
3045}
3046
3047static void
3048set_output_radix_1 (int from_tty, unsigned radix)
3049{
3050 /* Validate the radix and disallow ones that we aren't prepared to
3051 handle correctly, leaving the radix unchanged. */
3052 switch (radix)
3053 {
3054 case 16:
3055 user_print_options.output_format = 'x'; /* hex */
3056 break;
3057 case 10:
3058 user_print_options.output_format = 0; /* decimal */
3059 break;
3060 case 8:
3061 user_print_options.output_format = 'o'; /* octal */
3062 break;
3063 default:
3064 output_radix_1 = output_radix;
3065 error (_("Unsupported output radix ``decimal %u''; "
3066 "output radix unchanged."),
3067 radix);
3068 }
3069 output_radix_1 = output_radix = radix;
3070 if (from_tty)
3071 {
3072 printf_filtered (_("Output radix now set to "
3073 "decimal %u, hex %x, octal %o.\n"),
3074 radix, radix, radix);
3075 }
3076}
3077
3078/* Set both the input and output radix at once. Try to set the output radix
3079 first, since it has the most restrictive range. An radix that is valid as
3080 an output radix is also valid as an input radix.
3081
3082 It may be useful to have an unusual input radix. If the user wishes to
3083 set an input radix that is not valid as an output radix, he needs to use
3084 the 'set input-radix' command. */
3085
3086static void
3087set_radix (const char *arg, int from_tty)
3088{
3089 unsigned radix;
3090
3091 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3092 set_output_radix_1 (0, radix);
3093 set_input_radix_1 (0, radix);
3094 if (from_tty)
3095 {
3096 printf_filtered (_("Input and output radices now set to "
3097 "decimal %u, hex %x, octal %o.\n"),
3098 radix, radix, radix);
3099 }
3100}
3101
3102/* Show both the input and output radices. */
3103
3104static void
3105show_radix (const char *arg, int from_tty)
3106{
3107 if (from_tty)
3108 {
3109 if (input_radix == output_radix)
3110 {
3111 printf_filtered (_("Input and output radices set to "
3112 "decimal %u, hex %x, octal %o.\n"),
3113 input_radix, input_radix, input_radix);
3114 }
3115 else
3116 {
3117 printf_filtered (_("Input radix set to decimal "
3118 "%u, hex %x, octal %o.\n"),
3119 input_radix, input_radix, input_radix);
3120 printf_filtered (_("Output radix set to decimal "
3121 "%u, hex %x, octal %o.\n"),
3122 output_radix, output_radix, output_radix);
3123 }
3124 }
3125}
3126\f
3127
3128static void
3129set_print (const char *arg, int from_tty)
3130{
3131 printf_unfiltered (
3132 "\"set print\" must be followed by the name of a print subcommand.\n");
3133 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3134}
3135
3136static void
3137show_print (const char *args, int from_tty)
3138{
3139 cmd_show_list (showprintlist, from_tty, "");
3140}
3141
3142static void
3143set_print_raw (const char *arg, int from_tty)
3144{
3145 printf_unfiltered (
3146 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3147 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3148}
3149
3150static void
3151show_print_raw (const char *args, int from_tty)
3152{
3153 cmd_show_list (showprintrawlist, from_tty, "");
3154}
3155
3156/* Controls printing of vtbl's. */
3157static void
3158show_vtblprint (struct ui_file *file, int from_tty,
3159 struct cmd_list_element *c, const char *value)
3160{
3161 fprintf_filtered (file, _("\
3162Printing of C++ virtual function tables is %s.\n"),
3163 value);
3164}
3165
3166/* Controls looking up an object's derived type using what we find in
3167 its vtables. */
3168static void
3169show_objectprint (struct ui_file *file, int from_tty,
3170 struct cmd_list_element *c,
3171 const char *value)
3172{
3173 fprintf_filtered (file, _("\
3174Printing of object's derived type based on vtable info is %s.\n"),
3175 value);
3176}
3177
3178static void
3179show_static_field_print (struct ui_file *file, int from_tty,
3180 struct cmd_list_element *c,
3181 const char *value)
3182{
3183 fprintf_filtered (file,
3184 _("Printing of C++ static members is %s.\n"),
3185 value);
3186}
3187
3188\f
3189
3190/* A couple typedefs to make writing the options a bit more
3191 convenient. */
3192using boolean_option_def
3193 = gdb::option::boolean_option_def<value_print_options>;
3194using uinteger_option_def
3195 = gdb::option::uinteger_option_def<value_print_options>;
3196using zuinteger_unlimited_option_def
3197 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3198
3199/* Definitions of options for the "print" and "compile print"
3200 commands. */
3201static const gdb::option::option_def value_print_option_defs[] = {
3202
3203 boolean_option_def {
3204 "address",
3205 [] (value_print_options *opt) { return &opt->addressprint; },
3206 show_addressprint, /* show_cmd_cb */
3207 N_("Set printing of addresses."),
3208 N_("Show printing of addresses."),
3209 NULL, /* help_doc */
3210 },
3211
3212 boolean_option_def {
3213 "array",
3214 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3215 show_prettyformat_arrays, /* show_cmd_cb */
3216 N_("Set pretty formatting of arrays."),
3217 N_("Show pretty formatting of arrays."),
3218 NULL, /* help_doc */
3219 },
3220
3221 boolean_option_def {
3222 "array-indexes",
3223 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3224 show_print_array_indexes, /* show_cmd_cb */
3225 N_("Set printing of array indexes."),
3226 N_("Show printing of array indexes."),
3227 NULL, /* help_doc */
3228 },
3229
3230 uinteger_option_def {
3231 "elements",
3232 [] (value_print_options *opt) { return &opt->print_max; },
3233 show_print_max, /* show_cmd_cb */
3234 N_("Set limit on string chars or array elements to print."),
3235 N_("Show limit on string chars or array elements to print."),
3236 N_("\"unlimited\" causes there to be no limit."),
3237 },
3238
3239 zuinteger_unlimited_option_def {
3240 "max-depth",
3241 [] (value_print_options *opt) { return &opt->max_depth; },
3242 show_print_max_depth, /* show_cmd_cb */
3243 N_("Set maximum print depth for nested structures, unions and arrays."),
3244 N_("Show maximum print depth for nested structures, unions, and arrays."),
3245 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3246will be replaced with either '{...}' or '(...)' depending on the language.\n\
3247Use \"unlimited\" to print the complete structure.")
3248 },
3249
3250 boolean_option_def {
3251 "null-stop",
3252 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3253 show_stop_print_at_null, /* show_cmd_cb */
3254 N_("Set printing of char arrays to stop at first null char."),
3255 N_("Show printing of char arrays to stop at first null char."),
3256 NULL, /* help_doc */
3257 },
3258
3259 boolean_option_def {
3260 "object",
3261 [] (value_print_options *opt) { return &opt->objectprint; },
3262 show_objectprint, /* show_cmd_cb */
3263 _("Set printing of C++ virtual function tables."),
3264 _("Show printing of C++ virtual function tables."),
3265 NULL, /* help_doc */
3266 },
3267
3268 boolean_option_def {
3269 "pretty",
3270 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3271 show_prettyformat_structs, /* show_cmd_cb */
3272 N_("Set pretty formatting of structures."),
3273 N_("Show pretty formatting of structures."),
3274 NULL, /* help_doc */
3275 },
3276
3277 boolean_option_def {
3278 "raw-values",
3279 [] (value_print_options *opt) { return &opt->raw; },
3280 NULL, /* show_cmd_cb */
3281 N_("Set whether to print values in raw form."),
3282 N_("Show whether to print values in raw form."),
3283 N_("If set, values are printed in raw form, bypassing any\n\
3284pretty-printers for that value.")
3285 },
3286
3287 uinteger_option_def {
3288 "repeats",
3289 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3290 show_repeat_count_threshold, /* show_cmd_cb */
3291 N_("Set threshold for repeated print elements."),
3292 N_("Show threshold for repeated print elements."),
3293 N_("\"unlimited\" causes all elements to be individually printed."),
3294 },
3295
3296 boolean_option_def {
3297 "static-members",
3298 [] (value_print_options *opt) { return &opt->static_field_print; },
3299 show_static_field_print, /* show_cmd_cb */
3300 N_("Set printing of C++ static members."),
3301 N_("Show printing of C++ static members."),
3302 NULL, /* help_doc */
3303 },
3304
3305 boolean_option_def {
3306 "symbol",
3307 [] (value_print_options *opt) { return &opt->symbol_print; },
3308 show_symbol_print, /* show_cmd_cb */
3309 N_("Set printing of symbol names when printing pointers."),
3310 N_("Show printing of symbol names when printing pointers."),
3311 NULL, /* help_doc */
3312 },
3313
3314 boolean_option_def {
3315 "union",
3316 [] (value_print_options *opt) { return &opt->unionprint; },
3317 show_unionprint, /* show_cmd_cb */
3318 N_("Set printing of unions interior to structures."),
3319 N_("Show printing of unions interior to structures."),
3320 NULL, /* help_doc */
3321 },
3322
3323 boolean_option_def {
3324 "vtbl",
3325 [] (value_print_options *opt) { return &opt->vtblprint; },
3326 show_vtblprint, /* show_cmd_cb */
3327 N_("Set printing of C++ virtual function tables."),
3328 N_("Show printing of C++ virtual function tables."),
3329 NULL, /* help_doc */
3330 },
3331};
3332
3333/* See valprint.h. */
3334
3335gdb::option::option_def_group
3336make_value_print_options_def_group (value_print_options *opts)
3337{
3338 return {{value_print_option_defs}, opts};
3339}
3340
3341void _initialize_valprint ();
3342void
3343_initialize_valprint ()
3344{
3345 cmd_list_element *cmd;
3346
3347 add_prefix_cmd ("print", no_class, set_print,
3348 _("Generic command for setting how things print."),
3349 &setprintlist, "set print ", 0, &setlist);
3350 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3351 /* Prefer set print to set prompt. */
3352 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3353
3354 add_prefix_cmd ("print", no_class, show_print,
3355 _("Generic command for showing print settings."),
3356 &showprintlist, "show print ", 0, &showlist);
3357 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3358 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3359
3360 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3361 _("\
3362Generic command for setting what things to print in \"raw\" mode."),
3363 &setprintrawlist, "set print raw ", 0,
3364 &setprintlist);
3365 deprecate_cmd (cmd, nullptr);
3366
3367 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3368 _("Generic command for showing \"print raw\" settings."),
3369 &showprintrawlist, "show print raw ", 0,
3370 &showprintlist);
3371 deprecate_cmd (cmd, nullptr);
3372
3373 gdb::option::add_setshow_cmds_for_options
3374 (class_support, &user_print_options, value_print_option_defs,
3375 &setprintlist, &showprintlist);
3376
3377 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3378 _("\
3379Set default input radix for entering numbers."), _("\
3380Show default input radix for entering numbers."), NULL,
3381 set_input_radix,
3382 show_input_radix,
3383 &setlist, &showlist);
3384
3385 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3386 _("\
3387Set default output radix for printing of values."), _("\
3388Show default output radix for printing of values."), NULL,
3389 set_output_radix,
3390 show_output_radix,
3391 &setlist, &showlist);
3392
3393 /* The "set radix" and "show radix" commands are special in that
3394 they are like normal set and show commands but allow two normally
3395 independent variables to be either set or shown with a single
3396 command. So the usual deprecated_add_set_cmd() and [deleted]
3397 add_show_from_set() commands aren't really appropriate. */
3398 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3399 longer true - show can display anything. */
3400 add_cmd ("radix", class_support, set_radix, _("\
3401Set default input and output number radices.\n\
3402Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3403Without an argument, sets both radices back to the default value of 10."),
3404 &setlist);
3405 add_cmd ("radix", class_support, show_radix, _("\
3406Show the default input and output number radices.\n\
3407Use 'show input-radix' or 'show output-radix' to independently show each."),
3408 &showlist);
3409}
This page took 0.046184 seconds and 4 git commands to generate.