* infrun.c (handle_inferior_event): Clear trap_expected after
[deliverable/binutils-gdb.git] / gdb / value.c
... / ...
CommitLineData
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "demangle.h"
34#include "doublest.h"
35#include "gdb_assert.h"
36#include "regcache.h"
37#include "block.h"
38#include "dfp.h"
39#include "objfiles.h"
40#include "valprint.h"
41#include "cli/cli-decode.h"
42
43#include "python/python.h"
44
45/* Prototypes for exported functions. */
46
47void _initialize_values (void);
48
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* Actual contents of the value. Target byte-order. NULL or not
200 valid if lazy is nonzero. */
201 gdb_byte *contents;
202
203 /* The number of references to this value. When a value is created,
204 the value chain holds a reference, so REFERENCE_COUNT is 1. If
205 release_value is called, this value is removed from the chain but
206 the caller of release_value now has a reference to this value.
207 The caller must arrange for a call to value_free later. */
208 int reference_count;
209};
210
211/* Prototypes for local functions. */
212
213static void show_values (char *, int);
214
215static void show_convenience (char *, int);
216
217
218/* The value-history records all the values printed
219 by print commands during this session. Each chunk
220 records 60 consecutive values. The first chunk on
221 the chain records the most recent values.
222 The total number of values is in value_history_count. */
223
224#define VALUE_HISTORY_CHUNK 60
225
226struct value_history_chunk
227 {
228 struct value_history_chunk *next;
229 struct value *values[VALUE_HISTORY_CHUNK];
230 };
231
232/* Chain of chunks now in use. */
233
234static struct value_history_chunk *value_history_chain;
235
236static int value_history_count; /* Abs number of last entry stored */
237
238\f
239/* List of all value objects currently allocated
240 (except for those released by calls to release_value)
241 This is so they can be freed after each command. */
242
243static struct value *all_values;
244
245/* Allocate a lazy value for type TYPE. Its actual content is
246 "lazily" allocated too: the content field of the return value is
247 NULL; it will be allocated when it is fetched from the target. */
248
249struct value *
250allocate_value_lazy (struct type *type)
251{
252 struct value *val;
253 struct type *atype = check_typedef (type);
254
255 val = (struct value *) xzalloc (sizeof (struct value));
256 val->contents = NULL;
257 val->next = all_values;
258 all_values = val;
259 val->type = type;
260 val->enclosing_type = type;
261 VALUE_LVAL (val) = not_lval;
262 val->location.address = 0;
263 VALUE_FRAME_ID (val) = null_frame_id;
264 val->offset = 0;
265 val->bitpos = 0;
266 val->bitsize = 0;
267 VALUE_REGNUM (val) = -1;
268 val->lazy = 1;
269 val->optimized_out = 0;
270 val->embedded_offset = 0;
271 val->pointed_to_offset = 0;
272 val->modifiable = 1;
273 val->initialized = 1; /* Default to initialized. */
274
275 /* Values start out on the all_values chain. */
276 val->reference_count = 1;
277
278 return val;
279}
280
281/* Allocate the contents of VAL if it has not been allocated yet. */
282
283void
284allocate_value_contents (struct value *val)
285{
286 if (!val->contents)
287 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
288}
289
290/* Allocate a value and its contents for type TYPE. */
291
292struct value *
293allocate_value (struct type *type)
294{
295 struct value *val = allocate_value_lazy (type);
296 allocate_value_contents (val);
297 val->lazy = 0;
298 return val;
299}
300
301/* Allocate a value that has the correct length
302 for COUNT repetitions of type TYPE. */
303
304struct value *
305allocate_repeat_value (struct type *type, int count)
306{
307 int low_bound = current_language->string_lower_bound; /* ??? */
308 /* FIXME-type-allocation: need a way to free this type when we are
309 done with it. */
310 struct type *array_type
311 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
312 return allocate_value (array_type);
313}
314
315/* Needed if another module needs to maintain its on list of values. */
316void
317value_prepend_to_list (struct value **head, struct value *val)
318{
319 val->next = *head;
320 *head = val;
321}
322
323/* Needed if another module needs to maintain its on list of values. */
324void
325value_remove_from_list (struct value **head, struct value *val)
326{
327 struct value *prev;
328
329 if (*head == val)
330 *head = (*head)->next;
331 else
332 for (prev = *head; prev->next; prev = prev->next)
333 if (prev->next == val)
334 {
335 prev->next = val->next;
336 break;
337 }
338}
339
340struct value *
341allocate_computed_value (struct type *type,
342 struct lval_funcs *funcs,
343 void *closure)
344{
345 struct value *v = allocate_value (type);
346 VALUE_LVAL (v) = lval_computed;
347 v->location.computed.funcs = funcs;
348 v->location.computed.closure = closure;
349 set_value_lazy (v, 1);
350
351 return v;
352}
353
354/* Accessor methods. */
355
356struct value *
357value_next (struct value *value)
358{
359 return value->next;
360}
361
362struct type *
363value_type (struct value *value)
364{
365 return value->type;
366}
367void
368deprecated_set_value_type (struct value *value, struct type *type)
369{
370 value->type = type;
371}
372
373int
374value_offset (struct value *value)
375{
376 return value->offset;
377}
378void
379set_value_offset (struct value *value, int offset)
380{
381 value->offset = offset;
382}
383
384int
385value_bitpos (struct value *value)
386{
387 return value->bitpos;
388}
389void
390set_value_bitpos (struct value *value, int bit)
391{
392 value->bitpos = bit;
393}
394
395int
396value_bitsize (struct value *value)
397{
398 return value->bitsize;
399}
400void
401set_value_bitsize (struct value *value, int bit)
402{
403 value->bitsize = bit;
404}
405
406struct value *
407value_parent (struct value *value)
408{
409 return value->parent;
410}
411
412gdb_byte *
413value_contents_raw (struct value *value)
414{
415 allocate_value_contents (value);
416 return value->contents + value->embedded_offset;
417}
418
419gdb_byte *
420value_contents_all_raw (struct value *value)
421{
422 allocate_value_contents (value);
423 return value->contents;
424}
425
426struct type *
427value_enclosing_type (struct value *value)
428{
429 return value->enclosing_type;
430}
431
432const gdb_byte *
433value_contents_all (struct value *value)
434{
435 if (value->lazy)
436 value_fetch_lazy (value);
437 return value->contents;
438}
439
440int
441value_lazy (struct value *value)
442{
443 return value->lazy;
444}
445
446void
447set_value_lazy (struct value *value, int val)
448{
449 value->lazy = val;
450}
451
452const gdb_byte *
453value_contents (struct value *value)
454{
455 return value_contents_writeable (value);
456}
457
458gdb_byte *
459value_contents_writeable (struct value *value)
460{
461 if (value->lazy)
462 value_fetch_lazy (value);
463 return value_contents_raw (value);
464}
465
466/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
467 this function is different from value_equal; in C the operator ==
468 can return 0 even if the two values being compared are equal. */
469
470int
471value_contents_equal (struct value *val1, struct value *val2)
472{
473 struct type *type1;
474 struct type *type2;
475 int len;
476
477 type1 = check_typedef (value_type (val1));
478 type2 = check_typedef (value_type (val2));
479 len = TYPE_LENGTH (type1);
480 if (len != TYPE_LENGTH (type2))
481 return 0;
482
483 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
484}
485
486int
487value_optimized_out (struct value *value)
488{
489 return value->optimized_out;
490}
491
492void
493set_value_optimized_out (struct value *value, int val)
494{
495 value->optimized_out = val;
496}
497
498int
499value_embedded_offset (struct value *value)
500{
501 return value->embedded_offset;
502}
503
504void
505set_value_embedded_offset (struct value *value, int val)
506{
507 value->embedded_offset = val;
508}
509
510int
511value_pointed_to_offset (struct value *value)
512{
513 return value->pointed_to_offset;
514}
515
516void
517set_value_pointed_to_offset (struct value *value, int val)
518{
519 value->pointed_to_offset = val;
520}
521
522struct lval_funcs *
523value_computed_funcs (struct value *v)
524{
525 gdb_assert (VALUE_LVAL (v) == lval_computed);
526
527 return v->location.computed.funcs;
528}
529
530void *
531value_computed_closure (struct value *v)
532{
533 gdb_assert (VALUE_LVAL (v) == lval_computed);
534
535 return v->location.computed.closure;
536}
537
538enum lval_type *
539deprecated_value_lval_hack (struct value *value)
540{
541 return &value->lval;
542}
543
544CORE_ADDR
545value_address (struct value *value)
546{
547 if (value->lval == lval_internalvar
548 || value->lval == lval_internalvar_component)
549 return 0;
550 return value->location.address + value->offset;
551}
552
553CORE_ADDR
554value_raw_address (struct value *value)
555{
556 if (value->lval == lval_internalvar
557 || value->lval == lval_internalvar_component)
558 return 0;
559 return value->location.address;
560}
561
562void
563set_value_address (struct value *value, CORE_ADDR addr)
564{
565 gdb_assert (value->lval != lval_internalvar
566 && value->lval != lval_internalvar_component);
567 value->location.address = addr;
568}
569
570struct internalvar **
571deprecated_value_internalvar_hack (struct value *value)
572{
573 return &value->location.internalvar;
574}
575
576struct frame_id *
577deprecated_value_frame_id_hack (struct value *value)
578{
579 return &value->frame_id;
580}
581
582short *
583deprecated_value_regnum_hack (struct value *value)
584{
585 return &value->regnum;
586}
587
588int
589deprecated_value_modifiable (struct value *value)
590{
591 return value->modifiable;
592}
593void
594deprecated_set_value_modifiable (struct value *value, int modifiable)
595{
596 value->modifiable = modifiable;
597}
598\f
599/* Return a mark in the value chain. All values allocated after the
600 mark is obtained (except for those released) are subject to being freed
601 if a subsequent value_free_to_mark is passed the mark. */
602struct value *
603value_mark (void)
604{
605 return all_values;
606}
607
608/* Take a reference to VAL. VAL will not be deallocated until all
609 references are released. */
610
611void
612value_incref (struct value *val)
613{
614 val->reference_count++;
615}
616
617/* Release a reference to VAL, which was acquired with value_incref.
618 This function is also called to deallocate values from the value
619 chain. */
620
621void
622value_free (struct value *val)
623{
624 if (val)
625 {
626 gdb_assert (val->reference_count > 0);
627 val->reference_count--;
628 if (val->reference_count > 0)
629 return;
630
631 /* If there's an associated parent value, drop our reference to
632 it. */
633 if (val->parent != NULL)
634 value_free (val->parent);
635
636 if (VALUE_LVAL (val) == lval_computed)
637 {
638 struct lval_funcs *funcs = val->location.computed.funcs;
639
640 if (funcs->free_closure)
641 funcs->free_closure (val);
642 }
643
644 xfree (val->contents);
645 }
646 xfree (val);
647}
648
649/* Free all values allocated since MARK was obtained by value_mark
650 (except for those released). */
651void
652value_free_to_mark (struct value *mark)
653{
654 struct value *val;
655 struct value *next;
656
657 for (val = all_values; val && val != mark; val = next)
658 {
659 next = val->next;
660 value_free (val);
661 }
662 all_values = val;
663}
664
665/* Free all the values that have been allocated (except for those released).
666 Called after each command, successful or not. */
667
668void
669free_all_values (void)
670{
671 struct value *val;
672 struct value *next;
673
674 for (val = all_values; val; val = next)
675 {
676 next = val->next;
677 value_free (val);
678 }
679
680 all_values = 0;
681}
682
683/* Remove VAL from the chain all_values
684 so it will not be freed automatically. */
685
686void
687release_value (struct value *val)
688{
689 struct value *v;
690
691 if (all_values == val)
692 {
693 all_values = val->next;
694 return;
695 }
696
697 for (v = all_values; v; v = v->next)
698 {
699 if (v->next == val)
700 {
701 v->next = val->next;
702 break;
703 }
704 }
705}
706
707/* Release all values up to mark */
708struct value *
709value_release_to_mark (struct value *mark)
710{
711 struct value *val;
712 struct value *next;
713
714 for (val = next = all_values; next; next = next->next)
715 if (next->next == mark)
716 {
717 all_values = next->next;
718 next->next = NULL;
719 return val;
720 }
721 all_values = 0;
722 return val;
723}
724
725/* Return a copy of the value ARG.
726 It contains the same contents, for same memory address,
727 but it's a different block of storage. */
728
729struct value *
730value_copy (struct value *arg)
731{
732 struct type *encl_type = value_enclosing_type (arg);
733 struct value *val;
734
735 if (value_lazy (arg))
736 val = allocate_value_lazy (encl_type);
737 else
738 val = allocate_value (encl_type);
739 val->type = arg->type;
740 VALUE_LVAL (val) = VALUE_LVAL (arg);
741 val->location = arg->location;
742 val->offset = arg->offset;
743 val->bitpos = arg->bitpos;
744 val->bitsize = arg->bitsize;
745 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
746 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
747 val->lazy = arg->lazy;
748 val->optimized_out = arg->optimized_out;
749 val->embedded_offset = value_embedded_offset (arg);
750 val->pointed_to_offset = arg->pointed_to_offset;
751 val->modifiable = arg->modifiable;
752 if (!value_lazy (val))
753 {
754 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
755 TYPE_LENGTH (value_enclosing_type (arg)));
756
757 }
758 val->parent = arg->parent;
759 if (val->parent)
760 value_incref (val->parent);
761 if (VALUE_LVAL (val) == lval_computed)
762 {
763 struct lval_funcs *funcs = val->location.computed.funcs;
764
765 if (funcs->copy_closure)
766 val->location.computed.closure = funcs->copy_closure (val);
767 }
768 return val;
769}
770
771void
772set_value_component_location (struct value *component, struct value *whole)
773{
774 if (VALUE_LVAL (whole) == lval_internalvar)
775 VALUE_LVAL (component) = lval_internalvar_component;
776 else
777 VALUE_LVAL (component) = VALUE_LVAL (whole);
778
779 component->location = whole->location;
780 if (VALUE_LVAL (whole) == lval_computed)
781 {
782 struct lval_funcs *funcs = whole->location.computed.funcs;
783
784 if (funcs->copy_closure)
785 component->location.computed.closure = funcs->copy_closure (whole);
786 }
787}
788
789\f
790/* Access to the value history. */
791
792/* Record a new value in the value history.
793 Returns the absolute history index of the entry.
794 Result of -1 indicates the value was not saved; otherwise it is the
795 value history index of this new item. */
796
797int
798record_latest_value (struct value *val)
799{
800 int i;
801
802 /* We don't want this value to have anything to do with the inferior anymore.
803 In particular, "set $1 = 50" should not affect the variable from which
804 the value was taken, and fast watchpoints should be able to assume that
805 a value on the value history never changes. */
806 if (value_lazy (val))
807 value_fetch_lazy (val);
808 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
809 from. This is a bit dubious, because then *&$1 does not just return $1
810 but the current contents of that location. c'est la vie... */
811 val->modifiable = 0;
812 release_value (val);
813
814 /* Here we treat value_history_count as origin-zero
815 and applying to the value being stored now. */
816
817 i = value_history_count % VALUE_HISTORY_CHUNK;
818 if (i == 0)
819 {
820 struct value_history_chunk *new
821 = (struct value_history_chunk *)
822 xmalloc (sizeof (struct value_history_chunk));
823 memset (new->values, 0, sizeof new->values);
824 new->next = value_history_chain;
825 value_history_chain = new;
826 }
827
828 value_history_chain->values[i] = val;
829
830 /* Now we regard value_history_count as origin-one
831 and applying to the value just stored. */
832
833 return ++value_history_count;
834}
835
836/* Return a copy of the value in the history with sequence number NUM. */
837
838struct value *
839access_value_history (int num)
840{
841 struct value_history_chunk *chunk;
842 int i;
843 int absnum = num;
844
845 if (absnum <= 0)
846 absnum += value_history_count;
847
848 if (absnum <= 0)
849 {
850 if (num == 0)
851 error (_("The history is empty."));
852 else if (num == 1)
853 error (_("There is only one value in the history."));
854 else
855 error (_("History does not go back to $$%d."), -num);
856 }
857 if (absnum > value_history_count)
858 error (_("History has not yet reached $%d."), absnum);
859
860 absnum--;
861
862 /* Now absnum is always absolute and origin zero. */
863
864 chunk = value_history_chain;
865 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
866 i > 0; i--)
867 chunk = chunk->next;
868
869 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
870}
871
872static void
873show_values (char *num_exp, int from_tty)
874{
875 int i;
876 struct value *val;
877 static int num = 1;
878
879 if (num_exp)
880 {
881 /* "show values +" should print from the stored position.
882 "show values <exp>" should print around value number <exp>. */
883 if (num_exp[0] != '+' || num_exp[1] != '\0')
884 num = parse_and_eval_long (num_exp) - 5;
885 }
886 else
887 {
888 /* "show values" means print the last 10 values. */
889 num = value_history_count - 9;
890 }
891
892 if (num <= 0)
893 num = 1;
894
895 for (i = num; i < num + 10 && i <= value_history_count; i++)
896 {
897 struct value_print_options opts;
898 val = access_value_history (i);
899 printf_filtered (("$%d = "), i);
900 get_user_print_options (&opts);
901 value_print (val, gdb_stdout, &opts);
902 printf_filtered (("\n"));
903 }
904
905 /* The next "show values +" should start after what we just printed. */
906 num += 10;
907
908 /* Hitting just return after this command should do the same thing as
909 "show values +". If num_exp is null, this is unnecessary, since
910 "show values +" is not useful after "show values". */
911 if (from_tty && num_exp)
912 {
913 num_exp[0] = '+';
914 num_exp[1] = '\0';
915 }
916}
917\f
918/* Internal variables. These are variables within the debugger
919 that hold values assigned by debugger commands.
920 The user refers to them with a '$' prefix
921 that does not appear in the variable names stored internally. */
922
923struct internalvar
924{
925 struct internalvar *next;
926 char *name;
927
928 /* We support various different kinds of content of an internal variable.
929 enum internalvar_kind specifies the kind, and union internalvar_data
930 provides the data associated with this particular kind. */
931
932 enum internalvar_kind
933 {
934 /* The internal variable is empty. */
935 INTERNALVAR_VOID,
936
937 /* The value of the internal variable is provided directly as
938 a GDB value object. */
939 INTERNALVAR_VALUE,
940
941 /* A fresh value is computed via a call-back routine on every
942 access to the internal variable. */
943 INTERNALVAR_MAKE_VALUE,
944
945 /* The internal variable holds a GDB internal convenience function. */
946 INTERNALVAR_FUNCTION,
947
948 /* The variable holds a simple scalar value. */
949 INTERNALVAR_SCALAR,
950
951 /* The variable holds a GDB-provided string. */
952 INTERNALVAR_STRING,
953
954 } kind;
955
956 union internalvar_data
957 {
958 /* A value object used with INTERNALVAR_VALUE. */
959 struct value *value;
960
961 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
962 internalvar_make_value make_value;
963
964 /* The internal function used with INTERNALVAR_FUNCTION. */
965 struct
966 {
967 struct internal_function *function;
968 /* True if this is the canonical name for the function. */
969 int canonical;
970 } fn;
971
972 /* A scalar value used with INTERNALVAR_SCALAR. */
973 struct
974 {
975 /* If type is non-NULL, it will be used as the type to generate
976 a value for this internal variable. If type is NULL, a default
977 integer type for the architecture is used. */
978 struct type *type;
979 union
980 {
981 LONGEST l; /* Used with TYPE_CODE_INT and NULL types. */
982 CORE_ADDR a; /* Used with TYPE_CODE_PTR types. */
983 } val;
984 } scalar;
985
986 /* A string value used with INTERNALVAR_STRING. */
987 char *string;
988 } u;
989};
990
991static struct internalvar *internalvars;
992
993/* If the variable does not already exist create it and give it the value given.
994 If no value is given then the default is zero. */
995static void
996init_if_undefined_command (char* args, int from_tty)
997{
998 struct internalvar* intvar;
999
1000 /* Parse the expression - this is taken from set_command(). */
1001 struct expression *expr = parse_expression (args);
1002 register struct cleanup *old_chain =
1003 make_cleanup (free_current_contents, &expr);
1004
1005 /* Validate the expression.
1006 Was the expression an assignment?
1007 Or even an expression at all? */
1008 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1009 error (_("Init-if-undefined requires an assignment expression."));
1010
1011 /* Extract the variable from the parsed expression.
1012 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1013 if (expr->elts[1].opcode != OP_INTERNALVAR)
1014 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1015 intvar = expr->elts[2].internalvar;
1016
1017 /* Only evaluate the expression if the lvalue is void.
1018 This may still fail if the expresssion is invalid. */
1019 if (intvar->kind == INTERNALVAR_VOID)
1020 evaluate_expression (expr);
1021
1022 do_cleanups (old_chain);
1023}
1024
1025
1026/* Look up an internal variable with name NAME. NAME should not
1027 normally include a dollar sign.
1028
1029 If the specified internal variable does not exist,
1030 the return value is NULL. */
1031
1032struct internalvar *
1033lookup_only_internalvar (const char *name)
1034{
1035 struct internalvar *var;
1036
1037 for (var = internalvars; var; var = var->next)
1038 if (strcmp (var->name, name) == 0)
1039 return var;
1040
1041 return NULL;
1042}
1043
1044
1045/* Create an internal variable with name NAME and with a void value.
1046 NAME should not normally include a dollar sign. */
1047
1048struct internalvar *
1049create_internalvar (const char *name)
1050{
1051 struct internalvar *var;
1052 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1053 var->name = concat (name, (char *)NULL);
1054 var->kind = INTERNALVAR_VOID;
1055 var->next = internalvars;
1056 internalvars = var;
1057 return var;
1058}
1059
1060/* Create an internal variable with name NAME and register FUN as the
1061 function that value_of_internalvar uses to create a value whenever
1062 this variable is referenced. NAME should not normally include a
1063 dollar sign. */
1064
1065struct internalvar *
1066create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1067{
1068 struct internalvar *var = create_internalvar (name);
1069 var->kind = INTERNALVAR_MAKE_VALUE;
1070 var->u.make_value = fun;
1071 return var;
1072}
1073
1074/* Look up an internal variable with name NAME. NAME should not
1075 normally include a dollar sign.
1076
1077 If the specified internal variable does not exist,
1078 one is created, with a void value. */
1079
1080struct internalvar *
1081lookup_internalvar (const char *name)
1082{
1083 struct internalvar *var;
1084
1085 var = lookup_only_internalvar (name);
1086 if (var)
1087 return var;
1088
1089 return create_internalvar (name);
1090}
1091
1092/* Return current value of internal variable VAR. For variables that
1093 are not inherently typed, use a value type appropriate for GDBARCH. */
1094
1095struct value *
1096value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1097{
1098 struct value *val;
1099
1100 switch (var->kind)
1101 {
1102 case INTERNALVAR_VOID:
1103 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1104 break;
1105
1106 case INTERNALVAR_FUNCTION:
1107 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1108 break;
1109
1110 case INTERNALVAR_SCALAR:
1111 if (!var->u.scalar.type)
1112 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1113 var->u.scalar.val.l);
1114 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1115 val = value_from_longest (var->u.scalar.type, var->u.scalar.val.l);
1116 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_PTR)
1117 val = value_from_pointer (var->u.scalar.type, var->u.scalar.val.a);
1118 else
1119 internal_error (__FILE__, __LINE__, "bad type");
1120 break;
1121
1122 case INTERNALVAR_STRING:
1123 val = value_cstring (var->u.string, strlen (var->u.string),
1124 builtin_type (gdbarch)->builtin_char);
1125 break;
1126
1127 case INTERNALVAR_VALUE:
1128 val = value_copy (var->u.value);
1129 if (value_lazy (val))
1130 value_fetch_lazy (val);
1131 break;
1132
1133 case INTERNALVAR_MAKE_VALUE:
1134 val = (*var->u.make_value) (gdbarch, var);
1135 break;
1136
1137 default:
1138 internal_error (__FILE__, __LINE__, "bad kind");
1139 }
1140
1141 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1142 on this value go back to affect the original internal variable.
1143
1144 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1145 no underlying modifyable state in the internal variable.
1146
1147 Likewise, if the variable's value is a computed lvalue, we want
1148 references to it to produce another computed lvalue, where
1149 references and assignments actually operate through the
1150 computed value's functions.
1151
1152 This means that internal variables with computed values
1153 behave a little differently from other internal variables:
1154 assignments to them don't just replace the previous value
1155 altogether. At the moment, this seems like the behavior we
1156 want. */
1157
1158 if (var->kind != INTERNALVAR_MAKE_VALUE
1159 && val->lval != lval_computed)
1160 {
1161 VALUE_LVAL (val) = lval_internalvar;
1162 VALUE_INTERNALVAR (val) = var;
1163 }
1164
1165 return val;
1166}
1167
1168int
1169get_internalvar_integer (struct internalvar *var, LONGEST *result)
1170{
1171 switch (var->kind)
1172 {
1173 case INTERNALVAR_SCALAR:
1174 if (var->u.scalar.type == NULL
1175 || TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1176 {
1177 *result = var->u.scalar.val.l;
1178 return 1;
1179 }
1180 /* Fall through. */
1181
1182 default:
1183 return 0;
1184 }
1185}
1186
1187static int
1188get_internalvar_function (struct internalvar *var,
1189 struct internal_function **result)
1190{
1191 switch (var->kind)
1192 {
1193 case INTERNALVAR_FUNCTION:
1194 *result = var->u.fn.function;
1195 return 1;
1196
1197 default:
1198 return 0;
1199 }
1200}
1201
1202void
1203set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1204 int bitsize, struct value *newval)
1205{
1206 gdb_byte *addr;
1207
1208 switch (var->kind)
1209 {
1210 case INTERNALVAR_VALUE:
1211 addr = value_contents_writeable (var->u.value);
1212
1213 if (bitsize)
1214 modify_field (value_type (var->u.value), addr + offset,
1215 value_as_long (newval), bitpos, bitsize);
1216 else
1217 memcpy (addr + offset, value_contents (newval),
1218 TYPE_LENGTH (value_type (newval)));
1219 break;
1220
1221 default:
1222 /* We can never get a component of any other kind. */
1223 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1224 }
1225}
1226
1227void
1228set_internalvar (struct internalvar *var, struct value *val)
1229{
1230 enum internalvar_kind new_kind;
1231 union internalvar_data new_data = { 0 };
1232
1233 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1234 error (_("Cannot overwrite convenience function %s"), var->name);
1235
1236 /* Prepare new contents. */
1237 switch (TYPE_CODE (check_typedef (value_type (val))))
1238 {
1239 case TYPE_CODE_VOID:
1240 new_kind = INTERNALVAR_VOID;
1241 break;
1242
1243 case TYPE_CODE_INTERNAL_FUNCTION:
1244 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1245 new_kind = INTERNALVAR_FUNCTION;
1246 get_internalvar_function (VALUE_INTERNALVAR (val),
1247 &new_data.fn.function);
1248 /* Copies created here are never canonical. */
1249 break;
1250
1251 case TYPE_CODE_INT:
1252 new_kind = INTERNALVAR_SCALAR;
1253 new_data.scalar.type = value_type (val);
1254 new_data.scalar.val.l = value_as_long (val);
1255 break;
1256
1257 case TYPE_CODE_PTR:
1258 new_kind = INTERNALVAR_SCALAR;
1259 new_data.scalar.type = value_type (val);
1260 new_data.scalar.val.a = value_as_address (val);
1261 break;
1262
1263 default:
1264 new_kind = INTERNALVAR_VALUE;
1265 new_data.value = value_copy (val);
1266 new_data.value->modifiable = 1;
1267
1268 /* Force the value to be fetched from the target now, to avoid problems
1269 later when this internalvar is referenced and the target is gone or
1270 has changed. */
1271 if (value_lazy (new_data.value))
1272 value_fetch_lazy (new_data.value);
1273
1274 /* Release the value from the value chain to prevent it from being
1275 deleted by free_all_values. From here on this function should not
1276 call error () until new_data is installed into the var->u to avoid
1277 leaking memory. */
1278 release_value (new_data.value);
1279 break;
1280 }
1281
1282 /* Clean up old contents. */
1283 clear_internalvar (var);
1284
1285 /* Switch over. */
1286 var->kind = new_kind;
1287 var->u = new_data;
1288 /* End code which must not call error(). */
1289}
1290
1291void
1292set_internalvar_integer (struct internalvar *var, LONGEST l)
1293{
1294 /* Clean up old contents. */
1295 clear_internalvar (var);
1296
1297 var->kind = INTERNALVAR_SCALAR;
1298 var->u.scalar.type = NULL;
1299 var->u.scalar.val.l = l;
1300}
1301
1302void
1303set_internalvar_string (struct internalvar *var, const char *string)
1304{
1305 /* Clean up old contents. */
1306 clear_internalvar (var);
1307
1308 var->kind = INTERNALVAR_STRING;
1309 var->u.string = xstrdup (string);
1310}
1311
1312static void
1313set_internalvar_function (struct internalvar *var, struct internal_function *f)
1314{
1315 /* Clean up old contents. */
1316 clear_internalvar (var);
1317
1318 var->kind = INTERNALVAR_FUNCTION;
1319 var->u.fn.function = f;
1320 var->u.fn.canonical = 1;
1321 /* Variables installed here are always the canonical version. */
1322}
1323
1324void
1325clear_internalvar (struct internalvar *var)
1326{
1327 /* Clean up old contents. */
1328 switch (var->kind)
1329 {
1330 case INTERNALVAR_VALUE:
1331 value_free (var->u.value);
1332 break;
1333
1334 case INTERNALVAR_STRING:
1335 xfree (var->u.string);
1336 break;
1337
1338 default:
1339 break;
1340 }
1341
1342 /* Reset to void kind. */
1343 var->kind = INTERNALVAR_VOID;
1344}
1345
1346char *
1347internalvar_name (struct internalvar *var)
1348{
1349 return var->name;
1350}
1351
1352static struct internal_function *
1353create_internal_function (const char *name,
1354 internal_function_fn handler, void *cookie)
1355{
1356 struct internal_function *ifn = XNEW (struct internal_function);
1357 ifn->name = xstrdup (name);
1358 ifn->handler = handler;
1359 ifn->cookie = cookie;
1360 return ifn;
1361}
1362
1363char *
1364value_internal_function_name (struct value *val)
1365{
1366 struct internal_function *ifn;
1367 int result;
1368
1369 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1370 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1371 gdb_assert (result);
1372
1373 return ifn->name;
1374}
1375
1376struct value *
1377call_internal_function (struct gdbarch *gdbarch,
1378 const struct language_defn *language,
1379 struct value *func, int argc, struct value **argv)
1380{
1381 struct internal_function *ifn;
1382 int result;
1383
1384 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1385 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1386 gdb_assert (result);
1387
1388 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1389}
1390
1391/* The 'function' command. This does nothing -- it is just a
1392 placeholder to let "help function NAME" work. This is also used as
1393 the implementation of the sub-command that is created when
1394 registering an internal function. */
1395static void
1396function_command (char *command, int from_tty)
1397{
1398 /* Do nothing. */
1399}
1400
1401/* Clean up if an internal function's command is destroyed. */
1402static void
1403function_destroyer (struct cmd_list_element *self, void *ignore)
1404{
1405 xfree (self->name);
1406 xfree (self->doc);
1407}
1408
1409/* Add a new internal function. NAME is the name of the function; DOC
1410 is a documentation string describing the function. HANDLER is
1411 called when the function is invoked. COOKIE is an arbitrary
1412 pointer which is passed to HANDLER and is intended for "user
1413 data". */
1414void
1415add_internal_function (const char *name, const char *doc,
1416 internal_function_fn handler, void *cookie)
1417{
1418 struct cmd_list_element *cmd;
1419 struct internal_function *ifn;
1420 struct internalvar *var = lookup_internalvar (name);
1421
1422 ifn = create_internal_function (name, handler, cookie);
1423 set_internalvar_function (var, ifn);
1424
1425 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1426 &functionlist);
1427 cmd->destroyer = function_destroyer;
1428}
1429
1430/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1431 prevent cycles / duplicates. */
1432
1433static void
1434preserve_one_value (struct value *value, struct objfile *objfile,
1435 htab_t copied_types)
1436{
1437 if (TYPE_OBJFILE (value->type) == objfile)
1438 value->type = copy_type_recursive (objfile, value->type, copied_types);
1439
1440 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1441 value->enclosing_type = copy_type_recursive (objfile,
1442 value->enclosing_type,
1443 copied_types);
1444}
1445
1446/* Likewise for internal variable VAR. */
1447
1448static void
1449preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1450 htab_t copied_types)
1451{
1452 switch (var->kind)
1453 {
1454 case INTERNALVAR_SCALAR:
1455 if (var->u.scalar.type && TYPE_OBJFILE (var->u.scalar.type) == objfile)
1456 var->u.scalar.type
1457 = copy_type_recursive (objfile, var->u.scalar.type, copied_types);
1458 break;
1459
1460 case INTERNALVAR_VALUE:
1461 preserve_one_value (var->u.value, objfile, copied_types);
1462 break;
1463 }
1464}
1465
1466/* Update the internal variables and value history when OBJFILE is
1467 discarded; we must copy the types out of the objfile. New global types
1468 will be created for every convenience variable which currently points to
1469 this objfile's types, and the convenience variables will be adjusted to
1470 use the new global types. */
1471
1472void
1473preserve_values (struct objfile *objfile)
1474{
1475 htab_t copied_types;
1476 struct value_history_chunk *cur;
1477 struct internalvar *var;
1478 struct value *val;
1479 int i;
1480
1481 /* Create the hash table. We allocate on the objfile's obstack, since
1482 it is soon to be deleted. */
1483 copied_types = create_copied_types_hash (objfile);
1484
1485 for (cur = value_history_chain; cur; cur = cur->next)
1486 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1487 if (cur->values[i])
1488 preserve_one_value (cur->values[i], objfile, copied_types);
1489
1490 for (var = internalvars; var; var = var->next)
1491 preserve_one_internalvar (var, objfile, copied_types);
1492
1493 for (val = values_in_python; val; val = val->next)
1494 preserve_one_value (val, objfile, copied_types);
1495
1496 htab_delete (copied_types);
1497}
1498
1499static void
1500show_convenience (char *ignore, int from_tty)
1501{
1502 struct gdbarch *gdbarch = get_current_arch ();
1503 struct internalvar *var;
1504 int varseen = 0;
1505 struct value_print_options opts;
1506
1507 get_user_print_options (&opts);
1508 for (var = internalvars; var; var = var->next)
1509 {
1510 if (!varseen)
1511 {
1512 varseen = 1;
1513 }
1514 printf_filtered (("$%s = "), var->name);
1515 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1516 &opts);
1517 printf_filtered (("\n"));
1518 }
1519 if (!varseen)
1520 printf_unfiltered (_("\
1521No debugger convenience variables now defined.\n\
1522Convenience variables have names starting with \"$\";\n\
1523use \"set\" as in \"set $foo = 5\" to define them.\n"));
1524}
1525\f
1526/* Extract a value as a C number (either long or double).
1527 Knows how to convert fixed values to double, or
1528 floating values to long.
1529 Does not deallocate the value. */
1530
1531LONGEST
1532value_as_long (struct value *val)
1533{
1534 /* This coerces arrays and functions, which is necessary (e.g.
1535 in disassemble_command). It also dereferences references, which
1536 I suspect is the most logical thing to do. */
1537 val = coerce_array (val);
1538 return unpack_long (value_type (val), value_contents (val));
1539}
1540
1541DOUBLEST
1542value_as_double (struct value *val)
1543{
1544 DOUBLEST foo;
1545 int inv;
1546
1547 foo = unpack_double (value_type (val), value_contents (val), &inv);
1548 if (inv)
1549 error (_("Invalid floating value found in program."));
1550 return foo;
1551}
1552
1553/* Extract a value as a C pointer. Does not deallocate the value.
1554 Note that val's type may not actually be a pointer; value_as_long
1555 handles all the cases. */
1556CORE_ADDR
1557value_as_address (struct value *val)
1558{
1559 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1560
1561 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1562 whether we want this to be true eventually. */
1563#if 0
1564 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1565 non-address (e.g. argument to "signal", "info break", etc.), or
1566 for pointers to char, in which the low bits *are* significant. */
1567 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1568#else
1569
1570 /* There are several targets (IA-64, PowerPC, and others) which
1571 don't represent pointers to functions as simply the address of
1572 the function's entry point. For example, on the IA-64, a
1573 function pointer points to a two-word descriptor, generated by
1574 the linker, which contains the function's entry point, and the
1575 value the IA-64 "global pointer" register should have --- to
1576 support position-independent code. The linker generates
1577 descriptors only for those functions whose addresses are taken.
1578
1579 On such targets, it's difficult for GDB to convert an arbitrary
1580 function address into a function pointer; it has to either find
1581 an existing descriptor for that function, or call malloc and
1582 build its own. On some targets, it is impossible for GDB to
1583 build a descriptor at all: the descriptor must contain a jump
1584 instruction; data memory cannot be executed; and code memory
1585 cannot be modified.
1586
1587 Upon entry to this function, if VAL is a value of type `function'
1588 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1589 value_address (val) is the address of the function. This is what
1590 you'll get if you evaluate an expression like `main'. The call
1591 to COERCE_ARRAY below actually does all the usual unary
1592 conversions, which includes converting values of type `function'
1593 to `pointer to function'. This is the challenging conversion
1594 discussed above. Then, `unpack_long' will convert that pointer
1595 back into an address.
1596
1597 So, suppose the user types `disassemble foo' on an architecture
1598 with a strange function pointer representation, on which GDB
1599 cannot build its own descriptors, and suppose further that `foo'
1600 has no linker-built descriptor. The address->pointer conversion
1601 will signal an error and prevent the command from running, even
1602 though the next step would have been to convert the pointer
1603 directly back into the same address.
1604
1605 The following shortcut avoids this whole mess. If VAL is a
1606 function, just return its address directly. */
1607 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1608 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1609 return value_address (val);
1610
1611 val = coerce_array (val);
1612
1613 /* Some architectures (e.g. Harvard), map instruction and data
1614 addresses onto a single large unified address space. For
1615 instance: An architecture may consider a large integer in the
1616 range 0x10000000 .. 0x1000ffff to already represent a data
1617 addresses (hence not need a pointer to address conversion) while
1618 a small integer would still need to be converted integer to
1619 pointer to address. Just assume such architectures handle all
1620 integer conversions in a single function. */
1621
1622 /* JimB writes:
1623
1624 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1625 must admonish GDB hackers to make sure its behavior matches the
1626 compiler's, whenever possible.
1627
1628 In general, I think GDB should evaluate expressions the same way
1629 the compiler does. When the user copies an expression out of
1630 their source code and hands it to a `print' command, they should
1631 get the same value the compiler would have computed. Any
1632 deviation from this rule can cause major confusion and annoyance,
1633 and needs to be justified carefully. In other words, GDB doesn't
1634 really have the freedom to do these conversions in clever and
1635 useful ways.
1636
1637 AndrewC pointed out that users aren't complaining about how GDB
1638 casts integers to pointers; they are complaining that they can't
1639 take an address from a disassembly listing and give it to `x/i'.
1640 This is certainly important.
1641
1642 Adding an architecture method like integer_to_address() certainly
1643 makes it possible for GDB to "get it right" in all circumstances
1644 --- the target has complete control over how things get done, so
1645 people can Do The Right Thing for their target without breaking
1646 anyone else. The standard doesn't specify how integers get
1647 converted to pointers; usually, the ABI doesn't either, but
1648 ABI-specific code is a more reasonable place to handle it. */
1649
1650 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1651 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1652 && gdbarch_integer_to_address_p (gdbarch))
1653 return gdbarch_integer_to_address (gdbarch, value_type (val),
1654 value_contents (val));
1655
1656 return unpack_long (value_type (val), value_contents (val));
1657#endif
1658}
1659\f
1660/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1661 as a long, or as a double, assuming the raw data is described
1662 by type TYPE. Knows how to convert different sizes of values
1663 and can convert between fixed and floating point. We don't assume
1664 any alignment for the raw data. Return value is in host byte order.
1665
1666 If you want functions and arrays to be coerced to pointers, and
1667 references to be dereferenced, call value_as_long() instead.
1668
1669 C++: It is assumed that the front-end has taken care of
1670 all matters concerning pointers to members. A pointer
1671 to member which reaches here is considered to be equivalent
1672 to an INT (or some size). After all, it is only an offset. */
1673
1674LONGEST
1675unpack_long (struct type *type, const gdb_byte *valaddr)
1676{
1677 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1678 enum type_code code = TYPE_CODE (type);
1679 int len = TYPE_LENGTH (type);
1680 int nosign = TYPE_UNSIGNED (type);
1681
1682 switch (code)
1683 {
1684 case TYPE_CODE_TYPEDEF:
1685 return unpack_long (check_typedef (type), valaddr);
1686 case TYPE_CODE_ENUM:
1687 case TYPE_CODE_FLAGS:
1688 case TYPE_CODE_BOOL:
1689 case TYPE_CODE_INT:
1690 case TYPE_CODE_CHAR:
1691 case TYPE_CODE_RANGE:
1692 case TYPE_CODE_MEMBERPTR:
1693 if (nosign)
1694 return extract_unsigned_integer (valaddr, len, byte_order);
1695 else
1696 return extract_signed_integer (valaddr, len, byte_order);
1697
1698 case TYPE_CODE_FLT:
1699 return extract_typed_floating (valaddr, type);
1700
1701 case TYPE_CODE_DECFLOAT:
1702 /* libdecnumber has a function to convert from decimal to integer, but
1703 it doesn't work when the decimal number has a fractional part. */
1704 return decimal_to_doublest (valaddr, len, byte_order);
1705
1706 case TYPE_CODE_PTR:
1707 case TYPE_CODE_REF:
1708 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1709 whether we want this to be true eventually. */
1710 return extract_typed_address (valaddr, type);
1711
1712 default:
1713 error (_("Value can't be converted to integer."));
1714 }
1715 return 0; /* Placate lint. */
1716}
1717
1718/* Return a double value from the specified type and address.
1719 INVP points to an int which is set to 0 for valid value,
1720 1 for invalid value (bad float format). In either case,
1721 the returned double is OK to use. Argument is in target
1722 format, result is in host format. */
1723
1724DOUBLEST
1725unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1726{
1727 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1728 enum type_code code;
1729 int len;
1730 int nosign;
1731
1732 *invp = 0; /* Assume valid. */
1733 CHECK_TYPEDEF (type);
1734 code = TYPE_CODE (type);
1735 len = TYPE_LENGTH (type);
1736 nosign = TYPE_UNSIGNED (type);
1737 if (code == TYPE_CODE_FLT)
1738 {
1739 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1740 floating-point value was valid (using the macro
1741 INVALID_FLOAT). That test/macro have been removed.
1742
1743 It turns out that only the VAX defined this macro and then
1744 only in a non-portable way. Fixing the portability problem
1745 wouldn't help since the VAX floating-point code is also badly
1746 bit-rotten. The target needs to add definitions for the
1747 methods gdbarch_float_format and gdbarch_double_format - these
1748 exactly describe the target floating-point format. The
1749 problem here is that the corresponding floatformat_vax_f and
1750 floatformat_vax_d values these methods should be set to are
1751 also not defined either. Oops!
1752
1753 Hopefully someone will add both the missing floatformat
1754 definitions and the new cases for floatformat_is_valid (). */
1755
1756 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1757 {
1758 *invp = 1;
1759 return 0.0;
1760 }
1761
1762 return extract_typed_floating (valaddr, type);
1763 }
1764 else if (code == TYPE_CODE_DECFLOAT)
1765 return decimal_to_doublest (valaddr, len, byte_order);
1766 else if (nosign)
1767 {
1768 /* Unsigned -- be sure we compensate for signed LONGEST. */
1769 return (ULONGEST) unpack_long (type, valaddr);
1770 }
1771 else
1772 {
1773 /* Signed -- we are OK with unpack_long. */
1774 return unpack_long (type, valaddr);
1775 }
1776}
1777
1778/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1779 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1780 We don't assume any alignment for the raw data. Return value is in
1781 host byte order.
1782
1783 If you want functions and arrays to be coerced to pointers, and
1784 references to be dereferenced, call value_as_address() instead.
1785
1786 C++: It is assumed that the front-end has taken care of
1787 all matters concerning pointers to members. A pointer
1788 to member which reaches here is considered to be equivalent
1789 to an INT (or some size). After all, it is only an offset. */
1790
1791CORE_ADDR
1792unpack_pointer (struct type *type, const gdb_byte *valaddr)
1793{
1794 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1795 whether we want this to be true eventually. */
1796 return unpack_long (type, valaddr);
1797}
1798
1799\f
1800/* Get the value of the FIELDN'th field (which must be static) of
1801 TYPE. Return NULL if the field doesn't exist or has been
1802 optimized out. */
1803
1804struct value *
1805value_static_field (struct type *type, int fieldno)
1806{
1807 struct value *retval;
1808
1809 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1810 {
1811 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1812 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1813 }
1814 else
1815 {
1816 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1817 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1818 if (sym == NULL)
1819 {
1820 /* With some compilers, e.g. HP aCC, static data members are reported
1821 as non-debuggable symbols */
1822 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1823 if (!msym)
1824 return NULL;
1825 else
1826 {
1827 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1828 SYMBOL_VALUE_ADDRESS (msym));
1829 }
1830 }
1831 else
1832 {
1833 /* SYM should never have a SYMBOL_CLASS which will require
1834 read_var_value to use the FRAME parameter. */
1835 if (symbol_read_needs_frame (sym))
1836 warning (_("static field's value depends on the current "
1837 "frame - bad debug info?"));
1838 retval = read_var_value (sym, NULL);
1839 }
1840 if (retval && VALUE_LVAL (retval) == lval_memory)
1841 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1842 value_address (retval));
1843 }
1844 return retval;
1845}
1846
1847/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1848 You have to be careful here, since the size of the data area for the value
1849 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1850 than the old enclosing type, you have to allocate more space for the data.
1851 The return value is a pointer to the new version of this value structure. */
1852
1853struct value *
1854value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1855{
1856 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1857 val->contents =
1858 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1859
1860 val->enclosing_type = new_encl_type;
1861 return val;
1862}
1863
1864/* Given a value ARG1 (offset by OFFSET bytes)
1865 of a struct or union type ARG_TYPE,
1866 extract and return the value of one of its (non-static) fields.
1867 FIELDNO says which field. */
1868
1869struct value *
1870value_primitive_field (struct value *arg1, int offset,
1871 int fieldno, struct type *arg_type)
1872{
1873 struct value *v;
1874 struct type *type;
1875
1876 CHECK_TYPEDEF (arg_type);
1877 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1878
1879 /* Handle packed fields */
1880
1881 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1882 {
1883 /* Create a new value for the bitfield, with bitpos and bitsize
1884 set. If possible, arrange offset and bitpos so that we can
1885 do a single aligned read of the size of the containing type.
1886 Otherwise, adjust offset to the byte containing the first
1887 bit. Assume that the address, offset, and embedded offset
1888 are sufficiently aligned. */
1889 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1890 int container_bitsize = TYPE_LENGTH (type) * 8;
1891
1892 v = allocate_value_lazy (type);
1893 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1894 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1895 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1896 v->bitpos = bitpos % container_bitsize;
1897 else
1898 v->bitpos = bitpos % 8;
1899 v->offset = value_offset (arg1) + value_embedded_offset (arg1)
1900 + (bitpos - v->bitpos) / 8;
1901 v->parent = arg1;
1902 value_incref (v->parent);
1903 if (!value_lazy (arg1))
1904 value_fetch_lazy (v);
1905 }
1906 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1907 {
1908 /* This field is actually a base subobject, so preserve the
1909 entire object's contents for later references to virtual
1910 bases, etc. */
1911
1912 /* Lazy register values with offsets are not supported. */
1913 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1914 value_fetch_lazy (arg1);
1915
1916 if (value_lazy (arg1))
1917 v = allocate_value_lazy (value_enclosing_type (arg1));
1918 else
1919 {
1920 v = allocate_value (value_enclosing_type (arg1));
1921 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1922 TYPE_LENGTH (value_enclosing_type (arg1)));
1923 }
1924 v->type = type;
1925 v->offset = value_offset (arg1);
1926 v->embedded_offset = (offset + value_embedded_offset (arg1)
1927 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1928 }
1929 else
1930 {
1931 /* Plain old data member */
1932 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1933
1934 /* Lazy register values with offsets are not supported. */
1935 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1936 value_fetch_lazy (arg1);
1937
1938 if (value_lazy (arg1))
1939 v = allocate_value_lazy (type);
1940 else
1941 {
1942 v = allocate_value (type);
1943 memcpy (value_contents_raw (v),
1944 value_contents_raw (arg1) + offset,
1945 TYPE_LENGTH (type));
1946 }
1947 v->offset = (value_offset (arg1) + offset
1948 + value_embedded_offset (arg1));
1949 }
1950 set_value_component_location (v, arg1);
1951 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1952 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1953 return v;
1954}
1955
1956/* Given a value ARG1 of a struct or union type,
1957 extract and return the value of one of its (non-static) fields.
1958 FIELDNO says which field. */
1959
1960struct value *
1961value_field (struct value *arg1, int fieldno)
1962{
1963 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1964}
1965
1966/* Return a non-virtual function as a value.
1967 F is the list of member functions which contains the desired method.
1968 J is an index into F which provides the desired method.
1969
1970 We only use the symbol for its address, so be happy with either a
1971 full symbol or a minimal symbol.
1972 */
1973
1974struct value *
1975value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1976 int offset)
1977{
1978 struct value *v;
1979 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1980 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1981 struct symbol *sym;
1982 struct minimal_symbol *msym;
1983
1984 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1985 if (sym != NULL)
1986 {
1987 msym = NULL;
1988 }
1989 else
1990 {
1991 gdb_assert (sym == NULL);
1992 msym = lookup_minimal_symbol (physname, NULL, NULL);
1993 if (msym == NULL)
1994 return NULL;
1995 }
1996
1997 v = allocate_value (ftype);
1998 if (sym)
1999 {
2000 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2001 }
2002 else
2003 {
2004 /* The minimal symbol might point to a function descriptor;
2005 resolve it to the actual code address instead. */
2006 struct objfile *objfile = msymbol_objfile (msym);
2007 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2008
2009 set_value_address (v,
2010 gdbarch_convert_from_func_ptr_addr
2011 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2012 }
2013
2014 if (arg1p)
2015 {
2016 if (type != value_type (*arg1p))
2017 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2018 value_addr (*arg1p)));
2019
2020 /* Move the `this' pointer according to the offset.
2021 VALUE_OFFSET (*arg1p) += offset;
2022 */
2023 }
2024
2025 return v;
2026}
2027
2028\f
2029/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2030 object at VALADDR. The bitfield starts at BITPOS bits and contains
2031 BITSIZE bits.
2032
2033 Extracting bits depends on endianness of the machine. Compute the
2034 number of least significant bits to discard. For big endian machines,
2035 we compute the total number of bits in the anonymous object, subtract
2036 off the bit count from the MSB of the object to the MSB of the
2037 bitfield, then the size of the bitfield, which leaves the LSB discard
2038 count. For little endian machines, the discard count is simply the
2039 number of bits from the LSB of the anonymous object to the LSB of the
2040 bitfield.
2041
2042 If the field is signed, we also do sign extension. */
2043
2044LONGEST
2045unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2046 int bitpos, int bitsize)
2047{
2048 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2049 ULONGEST val;
2050 ULONGEST valmask;
2051 int lsbcount;
2052
2053 val = extract_unsigned_integer (valaddr + bitpos / 8,
2054 sizeof (val), byte_order);
2055 CHECK_TYPEDEF (field_type);
2056
2057 /* Extract bits. See comment above. */
2058
2059 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2060 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
2061 else
2062 lsbcount = (bitpos % 8);
2063 val >>= lsbcount;
2064
2065 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2066 If the field is signed, and is negative, then sign extend. */
2067
2068 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2069 {
2070 valmask = (((ULONGEST) 1) << bitsize) - 1;
2071 val &= valmask;
2072 if (!TYPE_UNSIGNED (field_type))
2073 {
2074 if (val & (valmask ^ (valmask >> 1)))
2075 {
2076 val |= ~valmask;
2077 }
2078 }
2079 }
2080 return (val);
2081}
2082
2083/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2084 VALADDR. See unpack_bits_as_long for more details. */
2085
2086LONGEST
2087unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2088{
2089 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2090 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2091 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2092
2093 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2094}
2095
2096/* Modify the value of a bitfield. ADDR points to a block of memory in
2097 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2098 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2099 indicate which bits (in target bit order) comprise the bitfield.
2100 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2101 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2102
2103void
2104modify_field (struct type *type, gdb_byte *addr,
2105 LONGEST fieldval, int bitpos, int bitsize)
2106{
2107 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2108 ULONGEST oword;
2109 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2110
2111 /* If a negative fieldval fits in the field in question, chop
2112 off the sign extension bits. */
2113 if ((~fieldval & ~(mask >> 1)) == 0)
2114 fieldval &= mask;
2115
2116 /* Warn if value is too big to fit in the field in question. */
2117 if (0 != (fieldval & ~mask))
2118 {
2119 /* FIXME: would like to include fieldval in the message, but
2120 we don't have a sprintf_longest. */
2121 warning (_("Value does not fit in %d bits."), bitsize);
2122
2123 /* Truncate it, otherwise adjoining fields may be corrupted. */
2124 fieldval &= mask;
2125 }
2126
2127 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2128
2129 /* Shifting for bit field depends on endianness of the target machine. */
2130 if (gdbarch_bits_big_endian (get_type_arch (type)))
2131 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2132
2133 oword &= ~(mask << bitpos);
2134 oword |= fieldval << bitpos;
2135
2136 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2137}
2138\f
2139/* Pack NUM into BUF using a target format of TYPE. */
2140
2141void
2142pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2143{
2144 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2145 int len;
2146
2147 type = check_typedef (type);
2148 len = TYPE_LENGTH (type);
2149
2150 switch (TYPE_CODE (type))
2151 {
2152 case TYPE_CODE_INT:
2153 case TYPE_CODE_CHAR:
2154 case TYPE_CODE_ENUM:
2155 case TYPE_CODE_FLAGS:
2156 case TYPE_CODE_BOOL:
2157 case TYPE_CODE_RANGE:
2158 case TYPE_CODE_MEMBERPTR:
2159 store_signed_integer (buf, len, byte_order, num);
2160 break;
2161
2162 case TYPE_CODE_REF:
2163 case TYPE_CODE_PTR:
2164 store_typed_address (buf, type, (CORE_ADDR) num);
2165 break;
2166
2167 default:
2168 error (_("Unexpected type (%d) encountered for integer constant."),
2169 TYPE_CODE (type));
2170 }
2171}
2172
2173
2174/* Convert C numbers into newly allocated values. */
2175
2176struct value *
2177value_from_longest (struct type *type, LONGEST num)
2178{
2179 struct value *val = allocate_value (type);
2180
2181 pack_long (value_contents_raw (val), type, num);
2182
2183 return val;
2184}
2185
2186
2187/* Create a value representing a pointer of type TYPE to the address
2188 ADDR. */
2189struct value *
2190value_from_pointer (struct type *type, CORE_ADDR addr)
2191{
2192 struct value *val = allocate_value (type);
2193 store_typed_address (value_contents_raw (val), type, addr);
2194 return val;
2195}
2196
2197
2198/* Create a value of type TYPE whose contents come from VALADDR, if it
2199 is non-null, and whose memory address (in the inferior) is
2200 ADDRESS. */
2201
2202struct value *
2203value_from_contents_and_address (struct type *type,
2204 const gdb_byte *valaddr,
2205 CORE_ADDR address)
2206{
2207 struct value *v = allocate_value (type);
2208 if (valaddr == NULL)
2209 set_value_lazy (v, 1);
2210 else
2211 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2212 set_value_address (v, address);
2213 VALUE_LVAL (v) = lval_memory;
2214 return v;
2215}
2216
2217struct value *
2218value_from_double (struct type *type, DOUBLEST num)
2219{
2220 struct value *val = allocate_value (type);
2221 struct type *base_type = check_typedef (type);
2222 enum type_code code = TYPE_CODE (base_type);
2223 int len = TYPE_LENGTH (base_type);
2224
2225 if (code == TYPE_CODE_FLT)
2226 {
2227 store_typed_floating (value_contents_raw (val), base_type, num);
2228 }
2229 else
2230 error (_("Unexpected type encountered for floating constant."));
2231
2232 return val;
2233}
2234
2235struct value *
2236value_from_decfloat (struct type *type, const gdb_byte *dec)
2237{
2238 struct value *val = allocate_value (type);
2239
2240 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2241
2242 return val;
2243}
2244
2245struct value *
2246coerce_ref (struct value *arg)
2247{
2248 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2249 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2250 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2251 unpack_pointer (value_type (arg),
2252 value_contents (arg)));
2253 return arg;
2254}
2255
2256struct value *
2257coerce_array (struct value *arg)
2258{
2259 struct type *type;
2260
2261 arg = coerce_ref (arg);
2262 type = check_typedef (value_type (arg));
2263
2264 switch (TYPE_CODE (type))
2265 {
2266 case TYPE_CODE_ARRAY:
2267 if (current_language->c_style_arrays)
2268 arg = value_coerce_array (arg);
2269 break;
2270 case TYPE_CODE_FUNC:
2271 arg = value_coerce_function (arg);
2272 break;
2273 }
2274 return arg;
2275}
2276\f
2277
2278/* Return true if the function returning the specified type is using
2279 the convention of returning structures in memory (passing in the
2280 address as a hidden first parameter). */
2281
2282int
2283using_struct_return (struct gdbarch *gdbarch,
2284 struct type *func_type, struct type *value_type)
2285{
2286 enum type_code code = TYPE_CODE (value_type);
2287
2288 if (code == TYPE_CODE_ERROR)
2289 error (_("Function return type unknown."));
2290
2291 if (code == TYPE_CODE_VOID)
2292 /* A void return value is never in memory. See also corresponding
2293 code in "print_return_value". */
2294 return 0;
2295
2296 /* Probe the architecture for the return-value convention. */
2297 return (gdbarch_return_value (gdbarch, func_type, value_type,
2298 NULL, NULL, NULL)
2299 != RETURN_VALUE_REGISTER_CONVENTION);
2300}
2301
2302/* Set the initialized field in a value struct. */
2303
2304void
2305set_value_initialized (struct value *val, int status)
2306{
2307 val->initialized = status;
2308}
2309
2310/* Return the initialized field in a value struct. */
2311
2312int
2313value_initialized (struct value *val)
2314{
2315 return val->initialized;
2316}
2317
2318void
2319_initialize_values (void)
2320{
2321 add_cmd ("convenience", no_class, show_convenience, _("\
2322Debugger convenience (\"$foo\") variables.\n\
2323These variables are created when you assign them values;\n\
2324thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2325\n\
2326A few convenience variables are given values automatically:\n\
2327\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2328\"$__\" holds the contents of the last address examined with \"x\"."),
2329 &showlist);
2330
2331 add_cmd ("values", no_class, show_values,
2332 _("Elements of value history around item number IDX (or last ten)."),
2333 &showlist);
2334
2335 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2336Initialize a convenience variable if necessary.\n\
2337init-if-undefined VARIABLE = EXPRESSION\n\
2338Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2339exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2340VARIABLE is already initialized."));
2341
2342 add_prefix_cmd ("function", no_class, function_command, _("\
2343Placeholder command for showing help on convenience functions."),
2344 &functionlist, "function ", 0, &cmdlist);
2345}
This page took 0.028604 seconds and 4 git commands to generate.