New test for interpreter-exec command.
[deliverable/binutils-gdb.git] / gdb / value.c
... / ...
CommitLineData
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
36#include "doublest.h"
37#include "gdb_assert.h"
38#include "regcache.h"
39#include "block.h"
40
41/* Prototypes for exported functions. */
42
43void _initialize_values (void);
44
45/* Prototypes for local functions. */
46
47static void show_values (char *, int);
48
49static void show_convenience (char *, int);
50
51
52/* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58#define VALUE_HISTORY_CHUNK 60
59
60struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66/* Chain of chunks now in use. */
67
68static struct value_history_chunk *value_history_chain;
69
70static int value_history_count; /* Abs number of last entry stored */
71\f
72/* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76static struct value *all_values;
77
78/* Allocate a value that has the correct length for type TYPE. */
79
80struct value *
81allocate_value (struct type *type)
82{
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 val->enclosing_type = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104}
105
106/* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109struct value *
110allocate_repeat_value (struct type *type, int count)
111{
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122}
123
124/* Accessor methods. */
125
126struct type *
127value_type (struct value *value)
128{
129 return value->type;
130}
131
132int
133value_offset (struct value *value)
134{
135 return value->offset;
136}
137
138int
139value_bitpos (struct value *value)
140{
141 return value->bitpos;
142}
143
144int
145value_bitsize (struct value *value)
146{
147 return value->bitsize;
148}
149
150bfd_byte *
151value_contents_raw (struct value *value)
152{
153 return value->aligner.contents + value->embedded_offset;
154}
155
156bfd_byte *
157value_contents_all_raw (struct value *value)
158{
159 return value->aligner.contents;
160}
161
162struct type *
163value_enclosing_type (struct value *value)
164{
165 return value->enclosing_type;
166}
167
168\f
169/* Return a mark in the value chain. All values allocated after the
170 mark is obtained (except for those released) are subject to being freed
171 if a subsequent value_free_to_mark is passed the mark. */
172struct value *
173value_mark (void)
174{
175 return all_values;
176}
177
178/* Free all values allocated since MARK was obtained by value_mark
179 (except for those released). */
180void
181value_free_to_mark (struct value *mark)
182{
183 struct value *val;
184 struct value *next;
185
186 for (val = all_values; val && val != mark; val = next)
187 {
188 next = val->next;
189 value_free (val);
190 }
191 all_values = val;
192}
193
194/* Free all the values that have been allocated (except for those released).
195 Called after each command, successful or not. */
196
197void
198free_all_values (void)
199{
200 struct value *val;
201 struct value *next;
202
203 for (val = all_values; val; val = next)
204 {
205 next = val->next;
206 value_free (val);
207 }
208
209 all_values = 0;
210}
211
212/* Remove VAL from the chain all_values
213 so it will not be freed automatically. */
214
215void
216release_value (struct value *val)
217{
218 struct value *v;
219
220 if (all_values == val)
221 {
222 all_values = val->next;
223 return;
224 }
225
226 for (v = all_values; v; v = v->next)
227 {
228 if (v->next == val)
229 {
230 v->next = val->next;
231 break;
232 }
233 }
234}
235
236/* Release all values up to mark */
237struct value *
238value_release_to_mark (struct value *mark)
239{
240 struct value *val;
241 struct value *next;
242
243 for (val = next = all_values; next; next = next->next)
244 if (next->next == mark)
245 {
246 all_values = next->next;
247 next->next = NULL;
248 return val;
249 }
250 all_values = 0;
251 return val;
252}
253
254/* Return a copy of the value ARG.
255 It contains the same contents, for same memory address,
256 but it's a different block of storage. */
257
258struct value *
259value_copy (struct value *arg)
260{
261 struct type *encl_type = value_enclosing_type (arg);
262 struct value *val = allocate_value (encl_type);
263 val->type = arg->type;
264 VALUE_LVAL (val) = VALUE_LVAL (arg);
265 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
266 val->offset = arg->offset;
267 val->bitpos = arg->bitpos;
268 val->bitsize = arg->bitsize;
269 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
270 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
271 VALUE_LAZY (val) = VALUE_LAZY (arg);
272 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
273 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
274 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
275 val->modifiable = arg->modifiable;
276 if (!VALUE_LAZY (val))
277 {
278 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
279 TYPE_LENGTH (value_enclosing_type (arg)));
280
281 }
282 return val;
283}
284\f
285/* Access to the value history. */
286
287/* Record a new value in the value history.
288 Returns the absolute history index of the entry.
289 Result of -1 indicates the value was not saved; otherwise it is the
290 value history index of this new item. */
291
292int
293record_latest_value (struct value *val)
294{
295 int i;
296
297 /* We don't want this value to have anything to do with the inferior anymore.
298 In particular, "set $1 = 50" should not affect the variable from which
299 the value was taken, and fast watchpoints should be able to assume that
300 a value on the value history never changes. */
301 if (VALUE_LAZY (val))
302 value_fetch_lazy (val);
303 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
304 from. This is a bit dubious, because then *&$1 does not just return $1
305 but the current contents of that location. c'est la vie... */
306 val->modifiable = 0;
307 release_value (val);
308
309 /* Here we treat value_history_count as origin-zero
310 and applying to the value being stored now. */
311
312 i = value_history_count % VALUE_HISTORY_CHUNK;
313 if (i == 0)
314 {
315 struct value_history_chunk *new
316 = (struct value_history_chunk *)
317 xmalloc (sizeof (struct value_history_chunk));
318 memset (new->values, 0, sizeof new->values);
319 new->next = value_history_chain;
320 value_history_chain = new;
321 }
322
323 value_history_chain->values[i] = val;
324
325 /* Now we regard value_history_count as origin-one
326 and applying to the value just stored. */
327
328 return ++value_history_count;
329}
330
331/* Return a copy of the value in the history with sequence number NUM. */
332
333struct value *
334access_value_history (int num)
335{
336 struct value_history_chunk *chunk;
337 int i;
338 int absnum = num;
339
340 if (absnum <= 0)
341 absnum += value_history_count;
342
343 if (absnum <= 0)
344 {
345 if (num == 0)
346 error ("The history is empty.");
347 else if (num == 1)
348 error ("There is only one value in the history.");
349 else
350 error ("History does not go back to $$%d.", -num);
351 }
352 if (absnum > value_history_count)
353 error ("History has not yet reached $%d.", absnum);
354
355 absnum--;
356
357 /* Now absnum is always absolute and origin zero. */
358
359 chunk = value_history_chain;
360 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
361 i > 0; i--)
362 chunk = chunk->next;
363
364 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
365}
366
367/* Clear the value history entirely.
368 Must be done when new symbol tables are loaded,
369 because the type pointers become invalid. */
370
371void
372clear_value_history (void)
373{
374 struct value_history_chunk *next;
375 int i;
376 struct value *val;
377
378 while (value_history_chain)
379 {
380 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
381 if ((val = value_history_chain->values[i]) != NULL)
382 xfree (val);
383 next = value_history_chain->next;
384 xfree (value_history_chain);
385 value_history_chain = next;
386 }
387 value_history_count = 0;
388}
389
390static void
391show_values (char *num_exp, int from_tty)
392{
393 int i;
394 struct value *val;
395 static int num = 1;
396
397 if (num_exp)
398 {
399 /* "info history +" should print from the stored position.
400 "info history <exp>" should print around value number <exp>. */
401 if (num_exp[0] != '+' || num_exp[1] != '\0')
402 num = parse_and_eval_long (num_exp) - 5;
403 }
404 else
405 {
406 /* "info history" means print the last 10 values. */
407 num = value_history_count - 9;
408 }
409
410 if (num <= 0)
411 num = 1;
412
413 for (i = num; i < num + 10 && i <= value_history_count; i++)
414 {
415 val = access_value_history (i);
416 printf_filtered ("$%d = ", i);
417 value_print (val, gdb_stdout, 0, Val_pretty_default);
418 printf_filtered ("\n");
419 }
420
421 /* The next "info history +" should start after what we just printed. */
422 num += 10;
423
424 /* Hitting just return after this command should do the same thing as
425 "info history +". If num_exp is null, this is unnecessary, since
426 "info history +" is not useful after "info history". */
427 if (from_tty && num_exp)
428 {
429 num_exp[0] = '+';
430 num_exp[1] = '\0';
431 }
432}
433\f
434/* Internal variables. These are variables within the debugger
435 that hold values assigned by debugger commands.
436 The user refers to them with a '$' prefix
437 that does not appear in the variable names stored internally. */
438
439static struct internalvar *internalvars;
440
441/* Look up an internal variable with name NAME. NAME should not
442 normally include a dollar sign.
443
444 If the specified internal variable does not exist,
445 one is created, with a void value. */
446
447struct internalvar *
448lookup_internalvar (char *name)
449{
450 struct internalvar *var;
451
452 for (var = internalvars; var; var = var->next)
453 if (strcmp (var->name, name) == 0)
454 return var;
455
456 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
457 var->name = concat (name, NULL);
458 var->value = allocate_value (builtin_type_void);
459 release_value (var->value);
460 var->next = internalvars;
461 internalvars = var;
462 return var;
463}
464
465struct value *
466value_of_internalvar (struct internalvar *var)
467{
468 struct value *val;
469
470 val = value_copy (var->value);
471 if (VALUE_LAZY (val))
472 value_fetch_lazy (val);
473 VALUE_LVAL (val) = lval_internalvar;
474 VALUE_INTERNALVAR (val) = var;
475 return val;
476}
477
478void
479set_internalvar_component (struct internalvar *var, int offset, int bitpos,
480 int bitsize, struct value *newval)
481{
482 char *addr = VALUE_CONTENTS (var->value) + offset;
483
484 if (bitsize)
485 modify_field (addr, value_as_long (newval),
486 bitpos, bitsize);
487 else
488 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval)));
489}
490
491void
492set_internalvar (struct internalvar *var, struct value *val)
493{
494 struct value *newval;
495
496 newval = value_copy (val);
497 newval->modifiable = 1;
498
499 /* Force the value to be fetched from the target now, to avoid problems
500 later when this internalvar is referenced and the target is gone or
501 has changed. */
502 if (VALUE_LAZY (newval))
503 value_fetch_lazy (newval);
504
505 /* Begin code which must not call error(). If var->value points to
506 something free'd, an error() obviously leaves a dangling pointer.
507 But we also get a danling pointer if var->value points to
508 something in the value chain (i.e., before release_value is
509 called), because after the error free_all_values will get called before
510 long. */
511 xfree (var->value);
512 var->value = newval;
513 release_value (newval);
514 /* End code which must not call error(). */
515}
516
517char *
518internalvar_name (struct internalvar *var)
519{
520 return var->name;
521}
522
523/* Free all internalvars. Done when new symtabs are loaded,
524 because that makes the values invalid. */
525
526void
527clear_internalvars (void)
528{
529 struct internalvar *var;
530
531 while (internalvars)
532 {
533 var = internalvars;
534 internalvars = var->next;
535 xfree (var->name);
536 xfree (var->value);
537 xfree (var);
538 }
539}
540
541static void
542show_convenience (char *ignore, int from_tty)
543{
544 struct internalvar *var;
545 int varseen = 0;
546
547 for (var = internalvars; var; var = var->next)
548 {
549 if (!varseen)
550 {
551 varseen = 1;
552 }
553 printf_filtered ("$%s = ", var->name);
554 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
555 printf_filtered ("\n");
556 }
557 if (!varseen)
558 printf_unfiltered ("No debugger convenience variables now defined.\n\
559Convenience variables have names starting with \"$\";\n\
560use \"set\" as in \"set $foo = 5\" to define them.\n");
561}
562\f
563/* Extract a value as a C number (either long or double).
564 Knows how to convert fixed values to double, or
565 floating values to long.
566 Does not deallocate the value. */
567
568LONGEST
569value_as_long (struct value *val)
570{
571 /* This coerces arrays and functions, which is necessary (e.g.
572 in disassemble_command). It also dereferences references, which
573 I suspect is the most logical thing to do. */
574 val = coerce_array (val);
575 return unpack_long (value_type (val), VALUE_CONTENTS (val));
576}
577
578DOUBLEST
579value_as_double (struct value *val)
580{
581 DOUBLEST foo;
582 int inv;
583
584 foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv);
585 if (inv)
586 error ("Invalid floating value found in program.");
587 return foo;
588}
589/* Extract a value as a C pointer. Does not deallocate the value.
590 Note that val's type may not actually be a pointer; value_as_long
591 handles all the cases. */
592CORE_ADDR
593value_as_address (struct value *val)
594{
595 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
596 whether we want this to be true eventually. */
597#if 0
598 /* ADDR_BITS_REMOVE is wrong if we are being called for a
599 non-address (e.g. argument to "signal", "info break", etc.), or
600 for pointers to char, in which the low bits *are* significant. */
601 return ADDR_BITS_REMOVE (value_as_long (val));
602#else
603
604 /* There are several targets (IA-64, PowerPC, and others) which
605 don't represent pointers to functions as simply the address of
606 the function's entry point. For example, on the IA-64, a
607 function pointer points to a two-word descriptor, generated by
608 the linker, which contains the function's entry point, and the
609 value the IA-64 "global pointer" register should have --- to
610 support position-independent code. The linker generates
611 descriptors only for those functions whose addresses are taken.
612
613 On such targets, it's difficult for GDB to convert an arbitrary
614 function address into a function pointer; it has to either find
615 an existing descriptor for that function, or call malloc and
616 build its own. On some targets, it is impossible for GDB to
617 build a descriptor at all: the descriptor must contain a jump
618 instruction; data memory cannot be executed; and code memory
619 cannot be modified.
620
621 Upon entry to this function, if VAL is a value of type `function'
622 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
623 VALUE_ADDRESS (val) is the address of the function. This is what
624 you'll get if you evaluate an expression like `main'. The call
625 to COERCE_ARRAY below actually does all the usual unary
626 conversions, which includes converting values of type `function'
627 to `pointer to function'. This is the challenging conversion
628 discussed above. Then, `unpack_long' will convert that pointer
629 back into an address.
630
631 So, suppose the user types `disassemble foo' on an architecture
632 with a strange function pointer representation, on which GDB
633 cannot build its own descriptors, and suppose further that `foo'
634 has no linker-built descriptor. The address->pointer conversion
635 will signal an error and prevent the command from running, even
636 though the next step would have been to convert the pointer
637 directly back into the same address.
638
639 The following shortcut avoids this whole mess. If VAL is a
640 function, just return its address directly. */
641 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
642 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
643 return VALUE_ADDRESS (val);
644
645 val = coerce_array (val);
646
647 /* Some architectures (e.g. Harvard), map instruction and data
648 addresses onto a single large unified address space. For
649 instance: An architecture may consider a large integer in the
650 range 0x10000000 .. 0x1000ffff to already represent a data
651 addresses (hence not need a pointer to address conversion) while
652 a small integer would still need to be converted integer to
653 pointer to address. Just assume such architectures handle all
654 integer conversions in a single function. */
655
656 /* JimB writes:
657
658 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
659 must admonish GDB hackers to make sure its behavior matches the
660 compiler's, whenever possible.
661
662 In general, I think GDB should evaluate expressions the same way
663 the compiler does. When the user copies an expression out of
664 their source code and hands it to a `print' command, they should
665 get the same value the compiler would have computed. Any
666 deviation from this rule can cause major confusion and annoyance,
667 and needs to be justified carefully. In other words, GDB doesn't
668 really have the freedom to do these conversions in clever and
669 useful ways.
670
671 AndrewC pointed out that users aren't complaining about how GDB
672 casts integers to pointers; they are complaining that they can't
673 take an address from a disassembly listing and give it to `x/i'.
674 This is certainly important.
675
676 Adding an architecture method like integer_to_address() certainly
677 makes it possible for GDB to "get it right" in all circumstances
678 --- the target has complete control over how things get done, so
679 people can Do The Right Thing for their target without breaking
680 anyone else. The standard doesn't specify how integers get
681 converted to pointers; usually, the ABI doesn't either, but
682 ABI-specific code is a more reasonable place to handle it. */
683
684 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
685 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
686 && gdbarch_integer_to_address_p (current_gdbarch))
687 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
688 VALUE_CONTENTS (val));
689
690 return unpack_long (value_type (val), VALUE_CONTENTS (val));
691#endif
692}
693\f
694/* Unpack raw data (copied from debugee, target byte order) at VALADDR
695 as a long, or as a double, assuming the raw data is described
696 by type TYPE. Knows how to convert different sizes of values
697 and can convert between fixed and floating point. We don't assume
698 any alignment for the raw data. Return value is in host byte order.
699
700 If you want functions and arrays to be coerced to pointers, and
701 references to be dereferenced, call value_as_long() instead.
702
703 C++: It is assumed that the front-end has taken care of
704 all matters concerning pointers to members. A pointer
705 to member which reaches here is considered to be equivalent
706 to an INT (or some size). After all, it is only an offset. */
707
708LONGEST
709unpack_long (struct type *type, const char *valaddr)
710{
711 enum type_code code = TYPE_CODE (type);
712 int len = TYPE_LENGTH (type);
713 int nosign = TYPE_UNSIGNED (type);
714
715 if (current_language->la_language == language_scm
716 && is_scmvalue_type (type))
717 return scm_unpack (type, valaddr, TYPE_CODE_INT);
718
719 switch (code)
720 {
721 case TYPE_CODE_TYPEDEF:
722 return unpack_long (check_typedef (type), valaddr);
723 case TYPE_CODE_ENUM:
724 case TYPE_CODE_BOOL:
725 case TYPE_CODE_INT:
726 case TYPE_CODE_CHAR:
727 case TYPE_CODE_RANGE:
728 if (nosign)
729 return extract_unsigned_integer (valaddr, len);
730 else
731 return extract_signed_integer (valaddr, len);
732
733 case TYPE_CODE_FLT:
734 return extract_typed_floating (valaddr, type);
735
736 case TYPE_CODE_PTR:
737 case TYPE_CODE_REF:
738 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
739 whether we want this to be true eventually. */
740 return extract_typed_address (valaddr, type);
741
742 case TYPE_CODE_MEMBER:
743 error ("not implemented: member types in unpack_long");
744
745 default:
746 error ("Value can't be converted to integer.");
747 }
748 return 0; /* Placate lint. */
749}
750
751/* Return a double value from the specified type and address.
752 INVP points to an int which is set to 0 for valid value,
753 1 for invalid value (bad float format). In either case,
754 the returned double is OK to use. Argument is in target
755 format, result is in host format. */
756
757DOUBLEST
758unpack_double (struct type *type, const char *valaddr, int *invp)
759{
760 enum type_code code;
761 int len;
762 int nosign;
763
764 *invp = 0; /* Assume valid. */
765 CHECK_TYPEDEF (type);
766 code = TYPE_CODE (type);
767 len = TYPE_LENGTH (type);
768 nosign = TYPE_UNSIGNED (type);
769 if (code == TYPE_CODE_FLT)
770 {
771 /* NOTE: cagney/2002-02-19: There was a test here to see if the
772 floating-point value was valid (using the macro
773 INVALID_FLOAT). That test/macro have been removed.
774
775 It turns out that only the VAX defined this macro and then
776 only in a non-portable way. Fixing the portability problem
777 wouldn't help since the VAX floating-point code is also badly
778 bit-rotten. The target needs to add definitions for the
779 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
780 exactly describe the target floating-point format. The
781 problem here is that the corresponding floatformat_vax_f and
782 floatformat_vax_d values these methods should be set to are
783 also not defined either. Oops!
784
785 Hopefully someone will add both the missing floatformat
786 definitions and the new cases for floatformat_is_valid (). */
787
788 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
789 {
790 *invp = 1;
791 return 0.0;
792 }
793
794 return extract_typed_floating (valaddr, type);
795 }
796 else if (nosign)
797 {
798 /* Unsigned -- be sure we compensate for signed LONGEST. */
799 return (ULONGEST) unpack_long (type, valaddr);
800 }
801 else
802 {
803 /* Signed -- we are OK with unpack_long. */
804 return unpack_long (type, valaddr);
805 }
806}
807
808/* Unpack raw data (copied from debugee, target byte order) at VALADDR
809 as a CORE_ADDR, assuming the raw data is described by type TYPE.
810 We don't assume any alignment for the raw data. Return value is in
811 host byte order.
812
813 If you want functions and arrays to be coerced to pointers, and
814 references to be dereferenced, call value_as_address() instead.
815
816 C++: It is assumed that the front-end has taken care of
817 all matters concerning pointers to members. A pointer
818 to member which reaches here is considered to be equivalent
819 to an INT (or some size). After all, it is only an offset. */
820
821CORE_ADDR
822unpack_pointer (struct type *type, const char *valaddr)
823{
824 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
825 whether we want this to be true eventually. */
826 return unpack_long (type, valaddr);
827}
828
829\f
830/* Get the value of the FIELDN'th field (which must be static) of
831 TYPE. Return NULL if the field doesn't exist or has been
832 optimized out. */
833
834struct value *
835value_static_field (struct type *type, int fieldno)
836{
837 struct value *retval;
838
839 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
840 {
841 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
842 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
843 }
844 else
845 {
846 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
847 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
848 if (sym == NULL)
849 {
850 /* With some compilers, e.g. HP aCC, static data members are reported
851 as non-debuggable symbols */
852 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
853 if (!msym)
854 return NULL;
855 else
856 {
857 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
858 SYMBOL_VALUE_ADDRESS (msym));
859 }
860 }
861 else
862 {
863 /* SYM should never have a SYMBOL_CLASS which will require
864 read_var_value to use the FRAME parameter. */
865 if (symbol_read_needs_frame (sym))
866 warning ("static field's value depends on the current "
867 "frame - bad debug info?");
868 retval = read_var_value (sym, NULL);
869 }
870 if (retval && VALUE_LVAL (retval) == lval_memory)
871 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
872 VALUE_ADDRESS (retval));
873 }
874 return retval;
875}
876
877/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
878 You have to be careful here, since the size of the data area for the value
879 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
880 than the old enclosing type, you have to allocate more space for the data.
881 The return value is a pointer to the new version of this value structure. */
882
883struct value *
884value_change_enclosing_type (struct value *val, struct type *new_encl_type)
885{
886 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
887 {
888 val->enclosing_type = new_encl_type;
889 return val;
890 }
891 else
892 {
893 struct value *new_val;
894 struct value *prev;
895
896 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
897
898 new_val->enclosing_type = new_encl_type;
899
900 /* We have to make sure this ends up in the same place in the value
901 chain as the original copy, so it's clean-up behavior is the same.
902 If the value has been released, this is a waste of time, but there
903 is no way to tell that in advance, so... */
904
905 if (val != all_values)
906 {
907 for (prev = all_values; prev != NULL; prev = prev->next)
908 {
909 if (prev->next == val)
910 {
911 prev->next = new_val;
912 break;
913 }
914 }
915 }
916
917 return new_val;
918 }
919}
920
921/* Given a value ARG1 (offset by OFFSET bytes)
922 of a struct or union type ARG_TYPE,
923 extract and return the value of one of its (non-static) fields.
924 FIELDNO says which field. */
925
926struct value *
927value_primitive_field (struct value *arg1, int offset,
928 int fieldno, struct type *arg_type)
929{
930 struct value *v;
931 struct type *type;
932
933 CHECK_TYPEDEF (arg_type);
934 type = TYPE_FIELD_TYPE (arg_type, fieldno);
935
936 /* Handle packed fields */
937
938 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
939 {
940 v = value_from_longest (type,
941 unpack_field_as_long (arg_type,
942 VALUE_CONTENTS (arg1)
943 + offset,
944 fieldno));
945 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
946 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
947 v->offset = value_offset (arg1) + offset
948 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
949 }
950 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
951 {
952 /* This field is actually a base subobject, so preserve the
953 entire object's contents for later references to virtual
954 bases, etc. */
955 v = allocate_value (value_enclosing_type (arg1));
956 v->type = type;
957 if (VALUE_LAZY (arg1))
958 VALUE_LAZY (v) = 1;
959 else
960 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
961 TYPE_LENGTH (value_enclosing_type (arg1)));
962 v->offset = value_offset (arg1);
963 VALUE_EMBEDDED_OFFSET (v)
964 = offset +
965 VALUE_EMBEDDED_OFFSET (arg1) +
966 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
967 }
968 else
969 {
970 /* Plain old data member */
971 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
972 v = allocate_value (type);
973 if (VALUE_LAZY (arg1))
974 VALUE_LAZY (v) = 1;
975 else
976 memcpy (value_contents_raw (v),
977 value_contents_raw (arg1) + offset,
978 TYPE_LENGTH (type));
979 v->offset = (value_offset (arg1) + offset
980 + VALUE_EMBEDDED_OFFSET (arg1));
981 }
982 VALUE_LVAL (v) = VALUE_LVAL (arg1);
983 if (VALUE_LVAL (arg1) == lval_internalvar)
984 VALUE_LVAL (v) = lval_internalvar_component;
985 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
986 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
987 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
988/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
989 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
990 return v;
991}
992
993/* Given a value ARG1 of a struct or union type,
994 extract and return the value of one of its (non-static) fields.
995 FIELDNO says which field. */
996
997struct value *
998value_field (struct value *arg1, int fieldno)
999{
1000 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1001}
1002
1003/* Return a non-virtual function as a value.
1004 F is the list of member functions which contains the desired method.
1005 J is an index into F which provides the desired method.
1006
1007 We only use the symbol for its address, so be happy with either a
1008 full symbol or a minimal symbol.
1009 */
1010
1011struct value *
1012value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1013 int offset)
1014{
1015 struct value *v;
1016 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1017 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1018 struct symbol *sym;
1019 struct minimal_symbol *msym;
1020
1021 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1022 if (sym != NULL)
1023 {
1024 msym = NULL;
1025 }
1026 else
1027 {
1028 gdb_assert (sym == NULL);
1029 msym = lookup_minimal_symbol (physname, NULL, NULL);
1030 if (msym == NULL)
1031 return NULL;
1032 }
1033
1034 v = allocate_value (ftype);
1035 if (sym)
1036 {
1037 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1038 }
1039 else
1040 {
1041 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1042 }
1043
1044 if (arg1p)
1045 {
1046 if (type != value_type (*arg1p))
1047 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1048 value_addr (*arg1p)));
1049
1050 /* Move the `this' pointer according to the offset.
1051 VALUE_OFFSET (*arg1p) += offset;
1052 */
1053 }
1054
1055 return v;
1056}
1057
1058\f
1059/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1060 VALADDR.
1061
1062 Extracting bits depends on endianness of the machine. Compute the
1063 number of least significant bits to discard. For big endian machines,
1064 we compute the total number of bits in the anonymous object, subtract
1065 off the bit count from the MSB of the object to the MSB of the
1066 bitfield, then the size of the bitfield, which leaves the LSB discard
1067 count. For little endian machines, the discard count is simply the
1068 number of bits from the LSB of the anonymous object to the LSB of the
1069 bitfield.
1070
1071 If the field is signed, we also do sign extension. */
1072
1073LONGEST
1074unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1075{
1076 ULONGEST val;
1077 ULONGEST valmask;
1078 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1079 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1080 int lsbcount;
1081 struct type *field_type;
1082
1083 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1084 field_type = TYPE_FIELD_TYPE (type, fieldno);
1085 CHECK_TYPEDEF (field_type);
1086
1087 /* Extract bits. See comment above. */
1088
1089 if (BITS_BIG_ENDIAN)
1090 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1091 else
1092 lsbcount = (bitpos % 8);
1093 val >>= lsbcount;
1094
1095 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1096 If the field is signed, and is negative, then sign extend. */
1097
1098 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1099 {
1100 valmask = (((ULONGEST) 1) << bitsize) - 1;
1101 val &= valmask;
1102 if (!TYPE_UNSIGNED (field_type))
1103 {
1104 if (val & (valmask ^ (valmask >> 1)))
1105 {
1106 val |= ~valmask;
1107 }
1108 }
1109 }
1110 return (val);
1111}
1112
1113/* Modify the value of a bitfield. ADDR points to a block of memory in
1114 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1115 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1116 indicate which bits (in target bit order) comprise the bitfield.
1117 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1118 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1119
1120void
1121modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1122{
1123 ULONGEST oword;
1124 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1125
1126 /* If a negative fieldval fits in the field in question, chop
1127 off the sign extension bits. */
1128 if ((~fieldval & ~(mask >> 1)) == 0)
1129 fieldval &= mask;
1130
1131 /* Warn if value is too big to fit in the field in question. */
1132 if (0 != (fieldval & ~mask))
1133 {
1134 /* FIXME: would like to include fieldval in the message, but
1135 we don't have a sprintf_longest. */
1136 warning ("Value does not fit in %d bits.", bitsize);
1137
1138 /* Truncate it, otherwise adjoining fields may be corrupted. */
1139 fieldval &= mask;
1140 }
1141
1142 oword = extract_unsigned_integer (addr, sizeof oword);
1143
1144 /* Shifting for bit field depends on endianness of the target machine. */
1145 if (BITS_BIG_ENDIAN)
1146 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1147
1148 oword &= ~(mask << bitpos);
1149 oword |= fieldval << bitpos;
1150
1151 store_unsigned_integer (addr, sizeof oword, oword);
1152}
1153\f
1154/* Convert C numbers into newly allocated values */
1155
1156struct value *
1157value_from_longest (struct type *type, LONGEST num)
1158{
1159 struct value *val = allocate_value (type);
1160 enum type_code code;
1161 int len;
1162retry:
1163 code = TYPE_CODE (type);
1164 len = TYPE_LENGTH (type);
1165
1166 switch (code)
1167 {
1168 case TYPE_CODE_TYPEDEF:
1169 type = check_typedef (type);
1170 goto retry;
1171 case TYPE_CODE_INT:
1172 case TYPE_CODE_CHAR:
1173 case TYPE_CODE_ENUM:
1174 case TYPE_CODE_BOOL:
1175 case TYPE_CODE_RANGE:
1176 store_signed_integer (value_contents_raw (val), len, num);
1177 break;
1178
1179 case TYPE_CODE_REF:
1180 case TYPE_CODE_PTR:
1181 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1182 break;
1183
1184 default:
1185 error ("Unexpected type (%d) encountered for integer constant.", code);
1186 }
1187 return val;
1188}
1189
1190
1191/* Create a value representing a pointer of type TYPE to the address
1192 ADDR. */
1193struct value *
1194value_from_pointer (struct type *type, CORE_ADDR addr)
1195{
1196 struct value *val = allocate_value (type);
1197 store_typed_address (value_contents_raw (val), type, addr);
1198 return val;
1199}
1200
1201
1202/* Create a value for a string constant to be stored locally
1203 (not in the inferior's memory space, but in GDB memory).
1204 This is analogous to value_from_longest, which also does not
1205 use inferior memory. String shall NOT contain embedded nulls. */
1206
1207struct value *
1208value_from_string (char *ptr)
1209{
1210 struct value *val;
1211 int len = strlen (ptr);
1212 int lowbound = current_language->string_lower_bound;
1213 struct type *string_char_type;
1214 struct type *rangetype;
1215 struct type *stringtype;
1216
1217 rangetype = create_range_type ((struct type *) NULL,
1218 builtin_type_int,
1219 lowbound, len + lowbound - 1);
1220 string_char_type = language_string_char_type (current_language,
1221 current_gdbarch);
1222 stringtype = create_array_type ((struct type *) NULL,
1223 string_char_type,
1224 rangetype);
1225 val = allocate_value (stringtype);
1226 memcpy (value_contents_raw (val), ptr, len);
1227 return val;
1228}
1229
1230struct value *
1231value_from_double (struct type *type, DOUBLEST num)
1232{
1233 struct value *val = allocate_value (type);
1234 struct type *base_type = check_typedef (type);
1235 enum type_code code = TYPE_CODE (base_type);
1236 int len = TYPE_LENGTH (base_type);
1237
1238 if (code == TYPE_CODE_FLT)
1239 {
1240 store_typed_floating (value_contents_raw (val), base_type, num);
1241 }
1242 else
1243 error ("Unexpected type encountered for floating constant.");
1244
1245 return val;
1246}
1247
1248struct value *
1249coerce_ref (struct value *arg)
1250{
1251 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1252 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1253 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1254 unpack_pointer (value_type (arg),
1255 VALUE_CONTENTS (arg)));
1256 return arg;
1257}
1258
1259struct value *
1260coerce_array (struct value *arg)
1261{
1262 arg = coerce_ref (arg);
1263 if (current_language->c_style_arrays
1264 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1265 arg = value_coerce_array (arg);
1266 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1267 arg = value_coerce_function (arg);
1268 return arg;
1269}
1270
1271struct value *
1272coerce_number (struct value *arg)
1273{
1274 arg = coerce_array (arg);
1275 arg = coerce_enum (arg);
1276 return arg;
1277}
1278
1279struct value *
1280coerce_enum (struct value *arg)
1281{
1282 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1283 arg = value_cast (builtin_type_unsigned_int, arg);
1284 return arg;
1285}
1286\f
1287
1288/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1289 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1290 is the type (which is known to be struct, union or array).
1291
1292 On most machines, the struct convention is used unless we are
1293 using gcc and the type is of a special size. */
1294/* As of about 31 Mar 93, GCC was changed to be compatible with the
1295 native compiler. GCC 2.3.3 was the last release that did it the
1296 old way. Since gcc2_compiled was not changed, we have no
1297 way to correctly win in all cases, so we just do the right thing
1298 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1299 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1300 would cause more chaos than dealing with some struct returns being
1301 handled wrong. */
1302/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1303 dead. */
1304
1305int
1306generic_use_struct_convention (int gcc_p, struct type *value_type)
1307{
1308 return !(TYPE_LENGTH (value_type) == 1
1309 || TYPE_LENGTH (value_type) == 2
1310 || TYPE_LENGTH (value_type) == 4
1311 || TYPE_LENGTH (value_type) == 8);
1312}
1313
1314/* Return true if the function returning the specified type is using
1315 the convention of returning structures in memory (passing in the
1316 address as a hidden first parameter). GCC_P is nonzero if compiled
1317 with GCC. */
1318
1319int
1320using_struct_return (struct type *value_type, int gcc_p)
1321{
1322 enum type_code code = TYPE_CODE (value_type);
1323
1324 if (code == TYPE_CODE_ERROR)
1325 error ("Function return type unknown.");
1326
1327 if (code == TYPE_CODE_VOID)
1328 /* A void return value is never in memory. See also corresponding
1329 code in "print_return_value". */
1330 return 0;
1331
1332 /* Probe the architecture for the return-value convention. */
1333 return (gdbarch_return_value (current_gdbarch, value_type,
1334 NULL, NULL, NULL)
1335 != RETURN_VALUE_REGISTER_CONVENTION);
1336}
1337
1338void
1339_initialize_values (void)
1340{
1341 add_cmd ("convenience", no_class, show_convenience,
1342 "Debugger convenience (\"$foo\") variables.\n\
1343These variables are created when you assign them values;\n\
1344thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1345A few convenience variables are given values automatically:\n\
1346\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1347\"$__\" holds the contents of the last address examined with \"x\".",
1348 &showlist);
1349
1350 add_cmd ("values", no_class, show_values,
1351 "Elements of value history around item number IDX (or last ten).",
1352 &showlist);
1353}
This page took 0.027518 seconds and 4 git commands to generate.