* Makefile.am: Use a temporary file to build chew.
[deliverable/binutils-gdb.git] / gdb / value.c
... / ...
CommitLineData
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
36#include "doublest.h"
37#include "gdb_assert.h"
38#include "regcache.h"
39#include "block.h"
40
41/* Prototypes for exported functions. */
42
43void _initialize_values (void);
44
45struct value
46{
47 /* Type of value; either not an lval, or one of the various
48 different possible kinds of lval. */
49 enum lval_type lval;
50
51 /* Is it modifiable? Only relevant if lval != not_lval. */
52 int modifiable;
53
54 /* Location of value (if lval). */
55 union
56 {
57 /* If lval == lval_memory, this is the address in the inferior.
58 If lval == lval_register, this is the byte offset into the
59 registers structure. */
60 CORE_ADDR address;
61
62 /* Pointer to internal variable. */
63 struct internalvar *internalvar;
64 } location;
65
66 /* Describes offset of a value within lval of a structure in bytes.
67 If lval == lval_memory, this is an offset to the address. If
68 lval == lval_register, this is a further offset from
69 location.address within the registers structure. Note also the
70 member embedded_offset below. */
71 int offset;
72
73 /* Only used for bitfields; number of bits contained in them. */
74 int bitsize;
75
76 /* Only used for bitfields; position of start of field. For
77 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
78 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
79 int bitpos;
80
81 /* Frame register value is relative to. This will be described in
82 the lval enum above as "lval_register". */
83 struct frame_id frame_id;
84
85 /* Type of the value. */
86 struct type *type;
87
88 /* If a value represents a C++ object, then the `type' field gives
89 the object's compile-time type. If the object actually belongs
90 to some class derived from `type', perhaps with other base
91 classes and additional members, then `type' is just a subobject
92 of the real thing, and the full object is probably larger than
93 `type' would suggest.
94
95 If `type' is a dynamic class (i.e. one with a vtable), then GDB
96 can actually determine the object's run-time type by looking at
97 the run-time type information in the vtable. When this
98 information is available, we may elect to read in the entire
99 object, for several reasons:
100
101 - When printing the value, the user would probably rather see the
102 full object, not just the limited portion apparent from the
103 compile-time type.
104
105 - If `type' has virtual base classes, then even printing `type'
106 alone may require reaching outside the `type' portion of the
107 object to wherever the virtual base class has been stored.
108
109 When we store the entire object, `enclosing_type' is the run-time
110 type -- the complete object -- and `embedded_offset' is the
111 offset of `type' within that larger type, in bytes. The
112 value_contents() macro takes `embedded_offset' into account, so
113 most GDB code continues to see the `type' portion of the value,
114 just as the inferior would.
115
116 If `type' is a pointer to an object, then `enclosing_type' is a
117 pointer to the object's run-time type, and `pointed_to_offset' is
118 the offset in bytes from the full object to the pointed-to object
119 -- that is, the value `embedded_offset' would have if we followed
120 the pointer and fetched the complete object. (I don't really see
121 the point. Why not just determine the run-time type when you
122 indirect, and avoid the special case? The contents don't matter
123 until you indirect anyway.)
124
125 If we're not doing anything fancy, `enclosing_type' is equal to
126 `type', and `embedded_offset' is zero, so everything works
127 normally. */
128 struct type *enclosing_type;
129 int embedded_offset;
130 int pointed_to_offset;
131
132 /* Values are stored in a chain, so that they can be deleted easily
133 over calls to the inferior. Values assigned to internal
134 variables or put into the value history are taken off this
135 list. */
136 struct value *next;
137
138 /* Register number if the value is from a register. */
139 short regnum;
140
141 /* If zero, contents of this value are in the contents field. If
142 nonzero, contents are in inferior memory at address in the
143 location.address field plus the offset field (and the lval field
144 should be lval_memory).
145
146 WARNING: This field is used by the code which handles watchpoints
147 (see breakpoint.c) to decide whether a particular value can be
148 watched by hardware watchpoints. If the lazy flag is set for
149 some member of a value chain, it is assumed that this member of
150 the chain doesn't need to be watched as part of watching the
151 value itself. This is how GDB avoids watching the entire struct
152 or array when the user wants to watch a single struct member or
153 array element. If you ever change the way lazy flag is set and
154 reset, be sure to consider this use as well! */
155 char lazy;
156
157 /* If nonzero, this is the value of a variable which does not
158 actually exist in the program. */
159 char optimized_out;
160
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
168 bfd_byte contents[1];
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176};
177
178/* Prototypes for local functions. */
179
180static void show_values (char *, int);
181
182static void show_convenience (char *, int);
183
184
185/* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191#define VALUE_HISTORY_CHUNK 60
192
193struct value_history_chunk
194 {
195 struct value_history_chunk *next;
196 struct value *values[VALUE_HISTORY_CHUNK];
197 };
198
199/* Chain of chunks now in use. */
200
201static struct value_history_chunk *value_history_chain;
202
203static int value_history_count; /* Abs number of last entry stored */
204\f
205/* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
209static struct value *all_values;
210
211/* Allocate a value that has the correct length for type TYPE. */
212
213struct value *
214allocate_value (struct type *type)
215{
216 struct value *val;
217 struct type *atype = check_typedef (type);
218
219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
220 val->next = all_values;
221 all_values = val;
222 val->type = type;
223 val->enclosing_type = type;
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
226 VALUE_FRAME_ID (val) = null_frame_id;
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
230 VALUE_REGNUM (val) = -1;
231 val->lazy = 0;
232 val->optimized_out = 0;
233 val->embedded_offset = 0;
234 val->pointed_to_offset = 0;
235 val->modifiable = 1;
236 return val;
237}
238
239/* Allocate a value that has the correct length
240 for COUNT repetitions type TYPE. */
241
242struct value *
243allocate_repeat_value (struct type *type, int count)
244{
245 int low_bound = current_language->string_lower_bound; /* ??? */
246 /* FIXME-type-allocation: need a way to free this type when we are
247 done with it. */
248 struct type *range_type
249 = create_range_type ((struct type *) NULL, builtin_type_int,
250 low_bound, count + low_bound - 1);
251 /* FIXME-type-allocation: need a way to free this type when we are
252 done with it. */
253 return allocate_value (create_array_type ((struct type *) NULL,
254 type, range_type));
255}
256
257/* Accessor methods. */
258
259struct value *
260value_next (struct value *value)
261{
262 return value->next;
263}
264
265struct type *
266value_type (struct value *value)
267{
268 return value->type;
269}
270void
271deprecated_set_value_type (struct value *value, struct type *type)
272{
273 value->type = type;
274}
275
276int
277value_offset (struct value *value)
278{
279 return value->offset;
280}
281void
282set_value_offset (struct value *value, int offset)
283{
284 value->offset = offset;
285}
286
287int
288value_bitpos (struct value *value)
289{
290 return value->bitpos;
291}
292void
293set_value_bitpos (struct value *value, int bit)
294{
295 value->bitpos = bit;
296}
297
298int
299value_bitsize (struct value *value)
300{
301 return value->bitsize;
302}
303void
304set_value_bitsize (struct value *value, int bit)
305{
306 value->bitsize = bit;
307}
308
309bfd_byte *
310value_contents_raw (struct value *value)
311{
312 return value->aligner.contents + value->embedded_offset;
313}
314
315bfd_byte *
316value_contents_all_raw (struct value *value)
317{
318 return value->aligner.contents;
319}
320
321struct type *
322value_enclosing_type (struct value *value)
323{
324 return value->enclosing_type;
325}
326
327const bfd_byte *
328value_contents_all (struct value *value)
329{
330 if (value->lazy)
331 value_fetch_lazy (value);
332 return value->aligner.contents;
333}
334
335int
336value_lazy (struct value *value)
337{
338 return value->lazy;
339}
340
341void
342set_value_lazy (struct value *value, int val)
343{
344 value->lazy = val;
345}
346
347const bfd_byte *
348value_contents (struct value *value)
349{
350 return value_contents_writeable (value);
351}
352
353bfd_byte *
354value_contents_writeable (struct value *value)
355{
356 if (value->lazy)
357 value_fetch_lazy (value);
358 return value->aligner.contents;
359}
360
361/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
362 this function is different from value_equal; in C the operator ==
363 can return 0 even if the two values being compared are equal. */
364
365int
366value_contents_equal (struct value *val1, struct value *val2)
367{
368 struct type *type1;
369 struct type *type2;
370 int len;
371
372 type1 = check_typedef (value_type (val1));
373 type2 = check_typedef (value_type (val2));
374 len = TYPE_LENGTH (type1);
375 if (len != TYPE_LENGTH (type2))
376 return 0;
377
378 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
379}
380
381int
382value_optimized_out (struct value *value)
383{
384 return value->optimized_out;
385}
386
387void
388set_value_optimized_out (struct value *value, int val)
389{
390 value->optimized_out = val;
391}
392
393int
394value_embedded_offset (struct value *value)
395{
396 return value->embedded_offset;
397}
398
399void
400set_value_embedded_offset (struct value *value, int val)
401{
402 value->embedded_offset = val;
403}
404
405int
406value_pointed_to_offset (struct value *value)
407{
408 return value->pointed_to_offset;
409}
410
411void
412set_value_pointed_to_offset (struct value *value, int val)
413{
414 value->pointed_to_offset = val;
415}
416
417enum lval_type *
418deprecated_value_lval_hack (struct value *value)
419{
420 return &value->lval;
421}
422
423CORE_ADDR *
424deprecated_value_address_hack (struct value *value)
425{
426 return &value->location.address;
427}
428
429struct internalvar **
430deprecated_value_internalvar_hack (struct value *value)
431{
432 return &value->location.internalvar;
433}
434
435struct frame_id *
436deprecated_value_frame_id_hack (struct value *value)
437{
438 return &value->frame_id;
439}
440
441short *
442deprecated_value_regnum_hack (struct value *value)
443{
444 return &value->regnum;
445}
446
447int
448deprecated_value_modifiable (struct value *value)
449{
450 return value->modifiable;
451}
452void
453deprecated_set_value_modifiable (struct value *value, int modifiable)
454{
455 value->modifiable = modifiable;
456}
457\f
458/* Return a mark in the value chain. All values allocated after the
459 mark is obtained (except for those released) are subject to being freed
460 if a subsequent value_free_to_mark is passed the mark. */
461struct value *
462value_mark (void)
463{
464 return all_values;
465}
466
467/* Free all values allocated since MARK was obtained by value_mark
468 (except for those released). */
469void
470value_free_to_mark (struct value *mark)
471{
472 struct value *val;
473 struct value *next;
474
475 for (val = all_values; val && val != mark; val = next)
476 {
477 next = val->next;
478 value_free (val);
479 }
480 all_values = val;
481}
482
483/* Free all the values that have been allocated (except for those released).
484 Called after each command, successful or not. */
485
486void
487free_all_values (void)
488{
489 struct value *val;
490 struct value *next;
491
492 for (val = all_values; val; val = next)
493 {
494 next = val->next;
495 value_free (val);
496 }
497
498 all_values = 0;
499}
500
501/* Remove VAL from the chain all_values
502 so it will not be freed automatically. */
503
504void
505release_value (struct value *val)
506{
507 struct value *v;
508
509 if (all_values == val)
510 {
511 all_values = val->next;
512 return;
513 }
514
515 for (v = all_values; v; v = v->next)
516 {
517 if (v->next == val)
518 {
519 v->next = val->next;
520 break;
521 }
522 }
523}
524
525/* Release all values up to mark */
526struct value *
527value_release_to_mark (struct value *mark)
528{
529 struct value *val;
530 struct value *next;
531
532 for (val = next = all_values; next; next = next->next)
533 if (next->next == mark)
534 {
535 all_values = next->next;
536 next->next = NULL;
537 return val;
538 }
539 all_values = 0;
540 return val;
541}
542
543/* Return a copy of the value ARG.
544 It contains the same contents, for same memory address,
545 but it's a different block of storage. */
546
547struct value *
548value_copy (struct value *arg)
549{
550 struct type *encl_type = value_enclosing_type (arg);
551 struct value *val = allocate_value (encl_type);
552 val->type = arg->type;
553 VALUE_LVAL (val) = VALUE_LVAL (arg);
554 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
555 val->offset = arg->offset;
556 val->bitpos = arg->bitpos;
557 val->bitsize = arg->bitsize;
558 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
559 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
560 val->lazy = arg->lazy;
561 val->optimized_out = arg->optimized_out;
562 val->embedded_offset = value_embedded_offset (arg);
563 val->pointed_to_offset = arg->pointed_to_offset;
564 val->modifiable = arg->modifiable;
565 if (!value_lazy (val))
566 {
567 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
568 TYPE_LENGTH (value_enclosing_type (arg)));
569
570 }
571 return val;
572}
573\f
574/* Access to the value history. */
575
576/* Record a new value in the value history.
577 Returns the absolute history index of the entry.
578 Result of -1 indicates the value was not saved; otherwise it is the
579 value history index of this new item. */
580
581int
582record_latest_value (struct value *val)
583{
584 int i;
585
586 /* We don't want this value to have anything to do with the inferior anymore.
587 In particular, "set $1 = 50" should not affect the variable from which
588 the value was taken, and fast watchpoints should be able to assume that
589 a value on the value history never changes. */
590 if (value_lazy (val))
591 value_fetch_lazy (val);
592 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
593 from. This is a bit dubious, because then *&$1 does not just return $1
594 but the current contents of that location. c'est la vie... */
595 val->modifiable = 0;
596 release_value (val);
597
598 /* Here we treat value_history_count as origin-zero
599 and applying to the value being stored now. */
600
601 i = value_history_count % VALUE_HISTORY_CHUNK;
602 if (i == 0)
603 {
604 struct value_history_chunk *new
605 = (struct value_history_chunk *)
606 xmalloc (sizeof (struct value_history_chunk));
607 memset (new->values, 0, sizeof new->values);
608 new->next = value_history_chain;
609 value_history_chain = new;
610 }
611
612 value_history_chain->values[i] = val;
613
614 /* Now we regard value_history_count as origin-one
615 and applying to the value just stored. */
616
617 return ++value_history_count;
618}
619
620/* Return a copy of the value in the history with sequence number NUM. */
621
622struct value *
623access_value_history (int num)
624{
625 struct value_history_chunk *chunk;
626 int i;
627 int absnum = num;
628
629 if (absnum <= 0)
630 absnum += value_history_count;
631
632 if (absnum <= 0)
633 {
634 if (num == 0)
635 error (_("The history is empty."));
636 else if (num == 1)
637 error (_("There is only one value in the history."));
638 else
639 error (_("History does not go back to $$%d."), -num);
640 }
641 if (absnum > value_history_count)
642 error (_("History has not yet reached $%d."), absnum);
643
644 absnum--;
645
646 /* Now absnum is always absolute and origin zero. */
647
648 chunk = value_history_chain;
649 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
650 i > 0; i--)
651 chunk = chunk->next;
652
653 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
654}
655
656/* Clear the value history entirely.
657 Must be done when new symbol tables are loaded,
658 because the type pointers become invalid. */
659
660void
661clear_value_history (void)
662{
663 struct value_history_chunk *next;
664 int i;
665 struct value *val;
666
667 while (value_history_chain)
668 {
669 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
670 if ((val = value_history_chain->values[i]) != NULL)
671 xfree (val);
672 next = value_history_chain->next;
673 xfree (value_history_chain);
674 value_history_chain = next;
675 }
676 value_history_count = 0;
677}
678
679static void
680show_values (char *num_exp, int from_tty)
681{
682 int i;
683 struct value *val;
684 static int num = 1;
685
686 if (num_exp)
687 {
688 /* "info history +" should print from the stored position.
689 "info history <exp>" should print around value number <exp>. */
690 if (num_exp[0] != '+' || num_exp[1] != '\0')
691 num = parse_and_eval_long (num_exp) - 5;
692 }
693 else
694 {
695 /* "info history" means print the last 10 values. */
696 num = value_history_count - 9;
697 }
698
699 if (num <= 0)
700 num = 1;
701
702 for (i = num; i < num + 10 && i <= value_history_count; i++)
703 {
704 val = access_value_history (i);
705 printf_filtered (("$%d = "), i);
706 value_print (val, gdb_stdout, 0, Val_pretty_default);
707 printf_filtered (("\n"));
708 }
709
710 /* The next "info history +" should start after what we just printed. */
711 num += 10;
712
713 /* Hitting just return after this command should do the same thing as
714 "info history +". If num_exp is null, this is unnecessary, since
715 "info history +" is not useful after "info history". */
716 if (from_tty && num_exp)
717 {
718 num_exp[0] = '+';
719 num_exp[1] = '\0';
720 }
721}
722\f
723/* Internal variables. These are variables within the debugger
724 that hold values assigned by debugger commands.
725 The user refers to them with a '$' prefix
726 that does not appear in the variable names stored internally. */
727
728static struct internalvar *internalvars;
729
730/* Look up an internal variable with name NAME. NAME should not
731 normally include a dollar sign.
732
733 If the specified internal variable does not exist,
734 one is created, with a void value. */
735
736struct internalvar *
737lookup_internalvar (char *name)
738{
739 struct internalvar *var;
740
741 for (var = internalvars; var; var = var->next)
742 if (strcmp (var->name, name) == 0)
743 return var;
744
745 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
746 var->name = concat (name, NULL);
747 var->value = allocate_value (builtin_type_void);
748 release_value (var->value);
749 var->next = internalvars;
750 internalvars = var;
751 return var;
752}
753
754struct value *
755value_of_internalvar (struct internalvar *var)
756{
757 struct value *val;
758
759 val = value_copy (var->value);
760 if (value_lazy (val))
761 value_fetch_lazy (val);
762 VALUE_LVAL (val) = lval_internalvar;
763 VALUE_INTERNALVAR (val) = var;
764 return val;
765}
766
767void
768set_internalvar_component (struct internalvar *var, int offset, int bitpos,
769 int bitsize, struct value *newval)
770{
771 bfd_byte *addr = value_contents_writeable (var->value) + offset;
772
773 if (bitsize)
774 modify_field (addr, value_as_long (newval),
775 bitpos, bitsize);
776 else
777 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
778}
779
780void
781set_internalvar (struct internalvar *var, struct value *val)
782{
783 struct value *newval;
784
785 newval = value_copy (val);
786 newval->modifiable = 1;
787
788 /* Force the value to be fetched from the target now, to avoid problems
789 later when this internalvar is referenced and the target is gone or
790 has changed. */
791 if (value_lazy (newval))
792 value_fetch_lazy (newval);
793
794 /* Begin code which must not call error(). If var->value points to
795 something free'd, an error() obviously leaves a dangling pointer.
796 But we also get a danling pointer if var->value points to
797 something in the value chain (i.e., before release_value is
798 called), because after the error free_all_values will get called before
799 long. */
800 xfree (var->value);
801 var->value = newval;
802 release_value (newval);
803 /* End code which must not call error(). */
804}
805
806char *
807internalvar_name (struct internalvar *var)
808{
809 return var->name;
810}
811
812/* Free all internalvars. Done when new symtabs are loaded,
813 because that makes the values invalid. */
814
815void
816clear_internalvars (void)
817{
818 struct internalvar *var;
819
820 while (internalvars)
821 {
822 var = internalvars;
823 internalvars = var->next;
824 xfree (var->name);
825 xfree (var->value);
826 xfree (var);
827 }
828}
829
830static void
831show_convenience (char *ignore, int from_tty)
832{
833 struct internalvar *var;
834 int varseen = 0;
835
836 for (var = internalvars; var; var = var->next)
837 {
838 if (!varseen)
839 {
840 varseen = 1;
841 }
842 printf_filtered (("$%s = "), var->name);
843 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
844 printf_filtered (("\n"));
845 }
846 if (!varseen)
847 printf_unfiltered (_("\
848No debugger convenience variables now defined.\n\
849Convenience variables have names starting with \"$\";\n\
850use \"set\" as in \"set $foo = 5\" to define them.\n"));
851}
852\f
853/* Extract a value as a C number (either long or double).
854 Knows how to convert fixed values to double, or
855 floating values to long.
856 Does not deallocate the value. */
857
858LONGEST
859value_as_long (struct value *val)
860{
861 /* This coerces arrays and functions, which is necessary (e.g.
862 in disassemble_command). It also dereferences references, which
863 I suspect is the most logical thing to do. */
864 val = coerce_array (val);
865 return unpack_long (value_type (val), value_contents (val));
866}
867
868DOUBLEST
869value_as_double (struct value *val)
870{
871 DOUBLEST foo;
872 int inv;
873
874 foo = unpack_double (value_type (val), value_contents (val), &inv);
875 if (inv)
876 error (_("Invalid floating value found in program."));
877 return foo;
878}
879/* Extract a value as a C pointer. Does not deallocate the value.
880 Note that val's type may not actually be a pointer; value_as_long
881 handles all the cases. */
882CORE_ADDR
883value_as_address (struct value *val)
884{
885 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
886 whether we want this to be true eventually. */
887#if 0
888 /* ADDR_BITS_REMOVE is wrong if we are being called for a
889 non-address (e.g. argument to "signal", "info break", etc.), or
890 for pointers to char, in which the low bits *are* significant. */
891 return ADDR_BITS_REMOVE (value_as_long (val));
892#else
893
894 /* There are several targets (IA-64, PowerPC, and others) which
895 don't represent pointers to functions as simply the address of
896 the function's entry point. For example, on the IA-64, a
897 function pointer points to a two-word descriptor, generated by
898 the linker, which contains the function's entry point, and the
899 value the IA-64 "global pointer" register should have --- to
900 support position-independent code. The linker generates
901 descriptors only for those functions whose addresses are taken.
902
903 On such targets, it's difficult for GDB to convert an arbitrary
904 function address into a function pointer; it has to either find
905 an existing descriptor for that function, or call malloc and
906 build its own. On some targets, it is impossible for GDB to
907 build a descriptor at all: the descriptor must contain a jump
908 instruction; data memory cannot be executed; and code memory
909 cannot be modified.
910
911 Upon entry to this function, if VAL is a value of type `function'
912 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
913 VALUE_ADDRESS (val) is the address of the function. This is what
914 you'll get if you evaluate an expression like `main'. The call
915 to COERCE_ARRAY below actually does all the usual unary
916 conversions, which includes converting values of type `function'
917 to `pointer to function'. This is the challenging conversion
918 discussed above. Then, `unpack_long' will convert that pointer
919 back into an address.
920
921 So, suppose the user types `disassemble foo' on an architecture
922 with a strange function pointer representation, on which GDB
923 cannot build its own descriptors, and suppose further that `foo'
924 has no linker-built descriptor. The address->pointer conversion
925 will signal an error and prevent the command from running, even
926 though the next step would have been to convert the pointer
927 directly back into the same address.
928
929 The following shortcut avoids this whole mess. If VAL is a
930 function, just return its address directly. */
931 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
932 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
933 return VALUE_ADDRESS (val);
934
935 val = coerce_array (val);
936
937 /* Some architectures (e.g. Harvard), map instruction and data
938 addresses onto a single large unified address space. For
939 instance: An architecture may consider a large integer in the
940 range 0x10000000 .. 0x1000ffff to already represent a data
941 addresses (hence not need a pointer to address conversion) while
942 a small integer would still need to be converted integer to
943 pointer to address. Just assume such architectures handle all
944 integer conversions in a single function. */
945
946 /* JimB writes:
947
948 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
949 must admonish GDB hackers to make sure its behavior matches the
950 compiler's, whenever possible.
951
952 In general, I think GDB should evaluate expressions the same way
953 the compiler does. When the user copies an expression out of
954 their source code and hands it to a `print' command, they should
955 get the same value the compiler would have computed. Any
956 deviation from this rule can cause major confusion and annoyance,
957 and needs to be justified carefully. In other words, GDB doesn't
958 really have the freedom to do these conversions in clever and
959 useful ways.
960
961 AndrewC pointed out that users aren't complaining about how GDB
962 casts integers to pointers; they are complaining that they can't
963 take an address from a disassembly listing and give it to `x/i'.
964 This is certainly important.
965
966 Adding an architecture method like integer_to_address() certainly
967 makes it possible for GDB to "get it right" in all circumstances
968 --- the target has complete control over how things get done, so
969 people can Do The Right Thing for their target without breaking
970 anyone else. The standard doesn't specify how integers get
971 converted to pointers; usually, the ABI doesn't either, but
972 ABI-specific code is a more reasonable place to handle it. */
973
974 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
975 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
976 && gdbarch_integer_to_address_p (current_gdbarch))
977 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
978 value_contents (val));
979
980 return unpack_long (value_type (val), value_contents (val));
981#endif
982}
983\f
984/* Unpack raw data (copied from debugee, target byte order) at VALADDR
985 as a long, or as a double, assuming the raw data is described
986 by type TYPE. Knows how to convert different sizes of values
987 and can convert between fixed and floating point. We don't assume
988 any alignment for the raw data. Return value is in host byte order.
989
990 If you want functions and arrays to be coerced to pointers, and
991 references to be dereferenced, call value_as_long() instead.
992
993 C++: It is assumed that the front-end has taken care of
994 all matters concerning pointers to members. A pointer
995 to member which reaches here is considered to be equivalent
996 to an INT (or some size). After all, it is only an offset. */
997
998LONGEST
999unpack_long (struct type *type, const bfd_byte *valaddr)
1000{
1001 enum type_code code = TYPE_CODE (type);
1002 int len = TYPE_LENGTH (type);
1003 int nosign = TYPE_UNSIGNED (type);
1004
1005 if (current_language->la_language == language_scm
1006 && is_scmvalue_type (type))
1007 return scm_unpack (type, valaddr, TYPE_CODE_INT);
1008
1009 switch (code)
1010 {
1011 case TYPE_CODE_TYPEDEF:
1012 return unpack_long (check_typedef (type), valaddr);
1013 case TYPE_CODE_ENUM:
1014 case TYPE_CODE_BOOL:
1015 case TYPE_CODE_INT:
1016 case TYPE_CODE_CHAR:
1017 case TYPE_CODE_RANGE:
1018 if (nosign)
1019 return extract_unsigned_integer (valaddr, len);
1020 else
1021 return extract_signed_integer (valaddr, len);
1022
1023 case TYPE_CODE_FLT:
1024 return extract_typed_floating (valaddr, type);
1025
1026 case TYPE_CODE_PTR:
1027 case TYPE_CODE_REF:
1028 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1029 whether we want this to be true eventually. */
1030 return extract_typed_address (valaddr, type);
1031
1032 case TYPE_CODE_MEMBER:
1033 error (_("not implemented: member types in unpack_long"));
1034
1035 default:
1036 error (_("Value can't be converted to integer."));
1037 }
1038 return 0; /* Placate lint. */
1039}
1040
1041/* Return a double value from the specified type and address.
1042 INVP points to an int which is set to 0 for valid value,
1043 1 for invalid value (bad float format). In either case,
1044 the returned double is OK to use. Argument is in target
1045 format, result is in host format. */
1046
1047DOUBLEST
1048unpack_double (struct type *type, const bfd_byte *valaddr, int *invp)
1049{
1050 enum type_code code;
1051 int len;
1052 int nosign;
1053
1054 *invp = 0; /* Assume valid. */
1055 CHECK_TYPEDEF (type);
1056 code = TYPE_CODE (type);
1057 len = TYPE_LENGTH (type);
1058 nosign = TYPE_UNSIGNED (type);
1059 if (code == TYPE_CODE_FLT)
1060 {
1061 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1062 floating-point value was valid (using the macro
1063 INVALID_FLOAT). That test/macro have been removed.
1064
1065 It turns out that only the VAX defined this macro and then
1066 only in a non-portable way. Fixing the portability problem
1067 wouldn't help since the VAX floating-point code is also badly
1068 bit-rotten. The target needs to add definitions for the
1069 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
1070 exactly describe the target floating-point format. The
1071 problem here is that the corresponding floatformat_vax_f and
1072 floatformat_vax_d values these methods should be set to are
1073 also not defined either. Oops!
1074
1075 Hopefully someone will add both the missing floatformat
1076 definitions and the new cases for floatformat_is_valid (). */
1077
1078 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1079 {
1080 *invp = 1;
1081 return 0.0;
1082 }
1083
1084 return extract_typed_floating (valaddr, type);
1085 }
1086 else if (nosign)
1087 {
1088 /* Unsigned -- be sure we compensate for signed LONGEST. */
1089 return (ULONGEST) unpack_long (type, valaddr);
1090 }
1091 else
1092 {
1093 /* Signed -- we are OK with unpack_long. */
1094 return unpack_long (type, valaddr);
1095 }
1096}
1097
1098/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1099 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1100 We don't assume any alignment for the raw data. Return value is in
1101 host byte order.
1102
1103 If you want functions and arrays to be coerced to pointers, and
1104 references to be dereferenced, call value_as_address() instead.
1105
1106 C++: It is assumed that the front-end has taken care of
1107 all matters concerning pointers to members. A pointer
1108 to member which reaches here is considered to be equivalent
1109 to an INT (or some size). After all, it is only an offset. */
1110
1111CORE_ADDR
1112unpack_pointer (struct type *type, const bfd_byte *valaddr)
1113{
1114 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1115 whether we want this to be true eventually. */
1116 return unpack_long (type, valaddr);
1117}
1118
1119\f
1120/* Get the value of the FIELDN'th field (which must be static) of
1121 TYPE. Return NULL if the field doesn't exist or has been
1122 optimized out. */
1123
1124struct value *
1125value_static_field (struct type *type, int fieldno)
1126{
1127 struct value *retval;
1128
1129 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1130 {
1131 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1132 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1133 }
1134 else
1135 {
1136 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1137 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1138 if (sym == NULL)
1139 {
1140 /* With some compilers, e.g. HP aCC, static data members are reported
1141 as non-debuggable symbols */
1142 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1143 if (!msym)
1144 return NULL;
1145 else
1146 {
1147 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1148 SYMBOL_VALUE_ADDRESS (msym));
1149 }
1150 }
1151 else
1152 {
1153 /* SYM should never have a SYMBOL_CLASS which will require
1154 read_var_value to use the FRAME parameter. */
1155 if (symbol_read_needs_frame (sym))
1156 warning (_("static field's value depends on the current "
1157 "frame - bad debug info?"));
1158 retval = read_var_value (sym, NULL);
1159 }
1160 if (retval && VALUE_LVAL (retval) == lval_memory)
1161 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1162 VALUE_ADDRESS (retval));
1163 }
1164 return retval;
1165}
1166
1167/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1168 You have to be careful here, since the size of the data area for the value
1169 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1170 than the old enclosing type, you have to allocate more space for the data.
1171 The return value is a pointer to the new version of this value structure. */
1172
1173struct value *
1174value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1175{
1176 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1177 {
1178 val->enclosing_type = new_encl_type;
1179 return val;
1180 }
1181 else
1182 {
1183 struct value *new_val;
1184 struct value *prev;
1185
1186 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1187
1188 new_val->enclosing_type = new_encl_type;
1189
1190 /* We have to make sure this ends up in the same place in the value
1191 chain as the original copy, so it's clean-up behavior is the same.
1192 If the value has been released, this is a waste of time, but there
1193 is no way to tell that in advance, so... */
1194
1195 if (val != all_values)
1196 {
1197 for (prev = all_values; prev != NULL; prev = prev->next)
1198 {
1199 if (prev->next == val)
1200 {
1201 prev->next = new_val;
1202 break;
1203 }
1204 }
1205 }
1206
1207 return new_val;
1208 }
1209}
1210
1211/* Given a value ARG1 (offset by OFFSET bytes)
1212 of a struct or union type ARG_TYPE,
1213 extract and return the value of one of its (non-static) fields.
1214 FIELDNO says which field. */
1215
1216struct value *
1217value_primitive_field (struct value *arg1, int offset,
1218 int fieldno, struct type *arg_type)
1219{
1220 struct value *v;
1221 struct type *type;
1222
1223 CHECK_TYPEDEF (arg_type);
1224 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1225
1226 /* Handle packed fields */
1227
1228 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1229 {
1230 v = value_from_longest (type,
1231 unpack_field_as_long (arg_type,
1232 value_contents (arg1)
1233 + offset,
1234 fieldno));
1235 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1236 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1237 v->offset = value_offset (arg1) + offset
1238 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1239 }
1240 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1241 {
1242 /* This field is actually a base subobject, so preserve the
1243 entire object's contents for later references to virtual
1244 bases, etc. */
1245 v = allocate_value (value_enclosing_type (arg1));
1246 v->type = type;
1247 if (value_lazy (arg1))
1248 set_value_lazy (v, 1);
1249 else
1250 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1251 TYPE_LENGTH (value_enclosing_type (arg1)));
1252 v->offset = value_offset (arg1);
1253 v->embedded_offset = (offset + value_embedded_offset (arg1)
1254 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1255 }
1256 else
1257 {
1258 /* Plain old data member */
1259 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1260 v = allocate_value (type);
1261 if (value_lazy (arg1))
1262 set_value_lazy (v, 1);
1263 else
1264 memcpy (value_contents_raw (v),
1265 value_contents_raw (arg1) + offset,
1266 TYPE_LENGTH (type));
1267 v->offset = (value_offset (arg1) + offset
1268 + value_embedded_offset (arg1));
1269 }
1270 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1271 if (VALUE_LVAL (arg1) == lval_internalvar)
1272 VALUE_LVAL (v) = lval_internalvar_component;
1273 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1274 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1275 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1276/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1277 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1278 return v;
1279}
1280
1281/* Given a value ARG1 of a struct or union type,
1282 extract and return the value of one of its (non-static) fields.
1283 FIELDNO says which field. */
1284
1285struct value *
1286value_field (struct value *arg1, int fieldno)
1287{
1288 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1289}
1290
1291/* Return a non-virtual function as a value.
1292 F is the list of member functions which contains the desired method.
1293 J is an index into F which provides the desired method.
1294
1295 We only use the symbol for its address, so be happy with either a
1296 full symbol or a minimal symbol.
1297 */
1298
1299struct value *
1300value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1301 int offset)
1302{
1303 struct value *v;
1304 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1305 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1306 struct symbol *sym;
1307 struct minimal_symbol *msym;
1308
1309 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1310 if (sym != NULL)
1311 {
1312 msym = NULL;
1313 }
1314 else
1315 {
1316 gdb_assert (sym == NULL);
1317 msym = lookup_minimal_symbol (physname, NULL, NULL);
1318 if (msym == NULL)
1319 return NULL;
1320 }
1321
1322 v = allocate_value (ftype);
1323 if (sym)
1324 {
1325 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1326 }
1327 else
1328 {
1329 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1330 }
1331
1332 if (arg1p)
1333 {
1334 if (type != value_type (*arg1p))
1335 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1336 value_addr (*arg1p)));
1337
1338 /* Move the `this' pointer according to the offset.
1339 VALUE_OFFSET (*arg1p) += offset;
1340 */
1341 }
1342
1343 return v;
1344}
1345
1346\f
1347/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1348 VALADDR.
1349
1350 Extracting bits depends on endianness of the machine. Compute the
1351 number of least significant bits to discard. For big endian machines,
1352 we compute the total number of bits in the anonymous object, subtract
1353 off the bit count from the MSB of the object to the MSB of the
1354 bitfield, then the size of the bitfield, which leaves the LSB discard
1355 count. For little endian machines, the discard count is simply the
1356 number of bits from the LSB of the anonymous object to the LSB of the
1357 bitfield.
1358
1359 If the field is signed, we also do sign extension. */
1360
1361LONGEST
1362unpack_field_as_long (struct type *type, const bfd_byte *valaddr, int fieldno)
1363{
1364 ULONGEST val;
1365 ULONGEST valmask;
1366 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1367 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1368 int lsbcount;
1369 struct type *field_type;
1370
1371 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1372 field_type = TYPE_FIELD_TYPE (type, fieldno);
1373 CHECK_TYPEDEF (field_type);
1374
1375 /* Extract bits. See comment above. */
1376
1377 if (BITS_BIG_ENDIAN)
1378 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1379 else
1380 lsbcount = (bitpos % 8);
1381 val >>= lsbcount;
1382
1383 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1384 If the field is signed, and is negative, then sign extend. */
1385
1386 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1387 {
1388 valmask = (((ULONGEST) 1) << bitsize) - 1;
1389 val &= valmask;
1390 if (!TYPE_UNSIGNED (field_type))
1391 {
1392 if (val & (valmask ^ (valmask >> 1)))
1393 {
1394 val |= ~valmask;
1395 }
1396 }
1397 }
1398 return (val);
1399}
1400
1401/* Modify the value of a bitfield. ADDR points to a block of memory in
1402 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1403 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1404 indicate which bits (in target bit order) comprise the bitfield.
1405 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1406 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1407
1408void
1409modify_field (bfd_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1410{
1411 ULONGEST oword;
1412 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1413
1414 /* If a negative fieldval fits in the field in question, chop
1415 off the sign extension bits. */
1416 if ((~fieldval & ~(mask >> 1)) == 0)
1417 fieldval &= mask;
1418
1419 /* Warn if value is too big to fit in the field in question. */
1420 if (0 != (fieldval & ~mask))
1421 {
1422 /* FIXME: would like to include fieldval in the message, but
1423 we don't have a sprintf_longest. */
1424 warning (_("Value does not fit in %d bits."), bitsize);
1425
1426 /* Truncate it, otherwise adjoining fields may be corrupted. */
1427 fieldval &= mask;
1428 }
1429
1430 oword = extract_unsigned_integer (addr, sizeof oword);
1431
1432 /* Shifting for bit field depends on endianness of the target machine. */
1433 if (BITS_BIG_ENDIAN)
1434 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1435
1436 oword &= ~(mask << bitpos);
1437 oword |= fieldval << bitpos;
1438
1439 store_unsigned_integer (addr, sizeof oword, oword);
1440}
1441\f
1442/* Convert C numbers into newly allocated values */
1443
1444struct value *
1445value_from_longest (struct type *type, LONGEST num)
1446{
1447 struct value *val = allocate_value (type);
1448 enum type_code code;
1449 int len;
1450retry:
1451 code = TYPE_CODE (type);
1452 len = TYPE_LENGTH (type);
1453
1454 switch (code)
1455 {
1456 case TYPE_CODE_TYPEDEF:
1457 type = check_typedef (type);
1458 goto retry;
1459 case TYPE_CODE_INT:
1460 case TYPE_CODE_CHAR:
1461 case TYPE_CODE_ENUM:
1462 case TYPE_CODE_BOOL:
1463 case TYPE_CODE_RANGE:
1464 store_signed_integer (value_contents_raw (val), len, num);
1465 break;
1466
1467 case TYPE_CODE_REF:
1468 case TYPE_CODE_PTR:
1469 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1470 break;
1471
1472 default:
1473 error (_("Unexpected type (%d) encountered for integer constant."), code);
1474 }
1475 return val;
1476}
1477
1478
1479/* Create a value representing a pointer of type TYPE to the address
1480 ADDR. */
1481struct value *
1482value_from_pointer (struct type *type, CORE_ADDR addr)
1483{
1484 struct value *val = allocate_value (type);
1485 store_typed_address (value_contents_raw (val), type, addr);
1486 return val;
1487}
1488
1489
1490/* Create a value for a string constant to be stored locally
1491 (not in the inferior's memory space, but in GDB memory).
1492 This is analogous to value_from_longest, which also does not
1493 use inferior memory. String shall NOT contain embedded nulls. */
1494
1495struct value *
1496value_from_string (char *ptr)
1497{
1498 struct value *val;
1499 int len = strlen (ptr);
1500 int lowbound = current_language->string_lower_bound;
1501 struct type *string_char_type;
1502 struct type *rangetype;
1503 struct type *stringtype;
1504
1505 rangetype = create_range_type ((struct type *) NULL,
1506 builtin_type_int,
1507 lowbound, len + lowbound - 1);
1508 string_char_type = language_string_char_type (current_language,
1509 current_gdbarch);
1510 stringtype = create_array_type ((struct type *) NULL,
1511 string_char_type,
1512 rangetype);
1513 val = allocate_value (stringtype);
1514 memcpy (value_contents_raw (val), ptr, len);
1515 return val;
1516}
1517
1518struct value *
1519value_from_double (struct type *type, DOUBLEST num)
1520{
1521 struct value *val = allocate_value (type);
1522 struct type *base_type = check_typedef (type);
1523 enum type_code code = TYPE_CODE (base_type);
1524 int len = TYPE_LENGTH (base_type);
1525
1526 if (code == TYPE_CODE_FLT)
1527 {
1528 store_typed_floating (value_contents_raw (val), base_type, num);
1529 }
1530 else
1531 error (_("Unexpected type encountered for floating constant."));
1532
1533 return val;
1534}
1535
1536struct value *
1537coerce_ref (struct value *arg)
1538{
1539 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1540 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1541 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1542 unpack_pointer (value_type (arg),
1543 value_contents (arg)));
1544 return arg;
1545}
1546
1547struct value *
1548coerce_array (struct value *arg)
1549{
1550 arg = coerce_ref (arg);
1551 if (current_language->c_style_arrays
1552 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1553 arg = value_coerce_array (arg);
1554 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1555 arg = value_coerce_function (arg);
1556 return arg;
1557}
1558
1559struct value *
1560coerce_number (struct value *arg)
1561{
1562 arg = coerce_array (arg);
1563 arg = coerce_enum (arg);
1564 return arg;
1565}
1566
1567struct value *
1568coerce_enum (struct value *arg)
1569{
1570 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1571 arg = value_cast (builtin_type_unsigned_int, arg);
1572 return arg;
1573}
1574\f
1575
1576/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1577 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1578 is the type (which is known to be struct, union or array).
1579
1580 On most machines, the struct convention is used unless we are
1581 using gcc and the type is of a special size. */
1582/* As of about 31 Mar 93, GCC was changed to be compatible with the
1583 native compiler. GCC 2.3.3 was the last release that did it the
1584 old way. Since gcc2_compiled was not changed, we have no
1585 way to correctly win in all cases, so we just do the right thing
1586 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1587 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1588 would cause more chaos than dealing with some struct returns being
1589 handled wrong. */
1590/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1591 dead. */
1592
1593int
1594generic_use_struct_convention (int gcc_p, struct type *value_type)
1595{
1596 return !(TYPE_LENGTH (value_type) == 1
1597 || TYPE_LENGTH (value_type) == 2
1598 || TYPE_LENGTH (value_type) == 4
1599 || TYPE_LENGTH (value_type) == 8);
1600}
1601
1602/* Return true if the function returning the specified type is using
1603 the convention of returning structures in memory (passing in the
1604 address as a hidden first parameter). GCC_P is nonzero if compiled
1605 with GCC. */
1606
1607int
1608using_struct_return (struct type *value_type, int gcc_p)
1609{
1610 enum type_code code = TYPE_CODE (value_type);
1611
1612 if (code == TYPE_CODE_ERROR)
1613 error (_("Function return type unknown."));
1614
1615 if (code == TYPE_CODE_VOID)
1616 /* A void return value is never in memory. See also corresponding
1617 code in "print_return_value". */
1618 return 0;
1619
1620 /* Probe the architecture for the return-value convention. */
1621 return (gdbarch_return_value (current_gdbarch, value_type,
1622 NULL, NULL, NULL)
1623 != RETURN_VALUE_REGISTER_CONVENTION);
1624}
1625
1626void
1627_initialize_values (void)
1628{
1629 add_cmd ("convenience", no_class, show_convenience, _("\
1630Debugger convenience (\"$foo\") variables.\n\
1631These variables are created when you assign them values;\n\
1632thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1633\n\
1634A few convenience variables are given values automatically:\n\
1635\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1636\"$__\" holds the contents of the last address examined with \"x\"."),
1637 &showlist);
1638
1639 add_cmd ("values", no_class, show_values,
1640 _("Elements of value history around item number IDX (or last ten)."),
1641 &showlist);
1642}
This page took 0.027625 seconds and 4 git commands to generate.