*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / varobj.c
... / ...
CommitLineData
1/* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "defs.h"
20#include "exceptions.h"
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
27#include "block.h"
28#include "valprint.h"
29
30#include "gdb_assert.h"
31#include "gdb_string.h"
32#include "gdb_regex.h"
33
34#include "varobj.h"
35#include "vec.h"
36#include "gdbthread.h"
37#include "inferior.h"
38
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
42#else
43typedef int PyObject;
44#endif
45
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
55
56/* String representations of gdb's format codes */
57char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60/* String representations of gdb's known languages */
61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
77{
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113};
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
119{
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211};
212
213struct cpstack
214{
215 char *name;
216 struct cpstack *next;
217};
218
219/* A list of varobjs */
220
221struct vlist
222{
223 struct varobj *var;
224 struct vlist *next;
225};
226
227/* Private function prototypes */
228
229/* Helper functions for the above subcommands. */
230
231static int delete_variable (struct cpstack **, struct varobj *, int);
232
233static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236static int install_variable (struct varobj *);
237
238static void uninstall_variable (struct varobj *);
239
240static struct varobj *create_child (struct varobj *, int, char *);
241
242static struct varobj *
243create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246/* Utility routines */
247
248static struct varobj *new_variable (void);
249
250static struct varobj *new_root_variable (void);
251
252static void free_variable (struct varobj *var);
253
254static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256static struct type *get_type (struct varobj *var);
257
258static struct type *get_value_type (struct varobj *var);
259
260static struct type *get_target_type (struct type *);
261
262static enum varobj_display_formats variable_default_display (struct varobj *);
263
264static void cppush (struct cpstack **pstack, char *name);
265
266static char *cppop (struct cpstack **pstack);
267
268static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271/* Language-specific routines. */
272
273static enum varobj_languages variable_language (struct varobj *var);
274
275static int number_of_children (struct varobj *);
276
277static char *name_of_variable (struct varobj *);
278
279static char *name_of_child (struct varobj *, int);
280
281static struct value *value_of_root (struct varobj **var_handle, int *);
282
283static struct value *value_of_child (struct varobj *parent, int index);
284
285static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292static int varobj_value_is_changeable_p (struct varobj *var);
293
294static int is_root_p (struct varobj *var);
295
296#if HAVE_PYTHON
297
298static struct varobj *
299varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301#endif /* HAVE_PYTHON */
302
303/* C implementation */
304
305static int c_number_of_children (struct varobj *var);
306
307static char *c_name_of_variable (struct varobj *parent);
308
309static char *c_name_of_child (struct varobj *parent, int index);
310
311static char *c_path_expr_of_child (struct varobj *child);
312
313static struct value *c_value_of_root (struct varobj **var_handle);
314
315static struct value *c_value_of_child (struct varobj *parent, int index);
316
317static struct type *c_type_of_child (struct varobj *parent, int index);
318
319static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322/* C++ implementation */
323
324static int cplus_number_of_children (struct varobj *var);
325
326static void cplus_class_num_children (struct type *type, int children[3]);
327
328static char *cplus_name_of_variable (struct varobj *parent);
329
330static char *cplus_name_of_child (struct varobj *parent, int index);
331
332static char *cplus_path_expr_of_child (struct varobj *child);
333
334static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343/* Java implementation */
344
345static int java_number_of_children (struct varobj *var);
346
347static char *java_name_of_variable (struct varobj *parent);
348
349static char *java_name_of_child (struct varobj *parent, int index);
350
351static char *java_path_expr_of_child (struct varobj *child);
352
353static struct value *java_value_of_root (struct varobj **var_handle);
354
355static struct value *java_value_of_child (struct varobj *parent, int index);
356
357static struct type *java_type_of_child (struct varobj *parent, int index);
358
359static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362/* The language specific vector */
363
364struct language_specific
365{
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395};
396
397/* Array of known source language routines. */
398static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446};
447
448/* A little convenience enum for dealing with C++/Java */
449enum vsections
450{
451 v_public = 0, v_private, v_protected
452};
453
454/* Private data */
455
456/* Mappings of varobj_display_formats enums to gdb's format codes */
457static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459/* Header of the list of root variable objects */
460static struct varobj_root *rootlist;
461
462/* Prime number indicating the number of buckets in the hash table */
463/* A prime large enough to avoid too many colisions */
464#define VAROBJ_TABLE_SIZE 227
465
466/* Pointer to the varobj hash table (built at run time) */
467static struct vlist **varobj_table;
468
469/* Is the variable X one of our "fake" children? */
470#define CPLUS_FAKE_CHILD(x) \
471((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472\f
473
474/* API Implementation */
475static int
476is_root_p (struct varobj *var)
477{
478 return (var->root->rootvar == var);
479}
480
481#ifdef HAVE_PYTHON
482/* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484struct cleanup *
485varobj_ensure_python_env (struct varobj *var)
486{
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489}
490#endif
491
492/* Creates a varobj (not its children) */
493
494/* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497static struct frame_info *
498find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499{
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515
516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518
519 if (frame_base == frame_addr)
520 return frame;
521 }
522
523 return NULL;
524}
525
526struct varobj *
527varobj_create (char *objname,
528 char *expression, CORE_ADDR frame, enum varobj_type type)
529{
530 struct varobj *var;
531 struct cleanup *old_chain;
532
533 /* Fill out a varobj structure for the (root) variable being constructed. */
534 var = new_root_variable ();
535 old_chain = make_cleanup_free_variable (var);
536
537 if (expression != NULL)
538 {
539 struct frame_info *fi;
540 struct frame_id old_id = null_frame_id;
541 struct block *block;
542 char *p;
543 enum varobj_languages lang;
544 struct value *value = NULL;
545
546 /* Parse and evaluate the expression, filling in as much of the
547 variable's data as possible. */
548
549 if (has_stack_frames ())
550 {
551 /* Allow creator to specify context of variable */
552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 fi = get_selected_frame (NULL);
554 else
555 /* FIXME: cagney/2002-11-23: This code should be doing a
556 lookup using the frame ID and not just the frame's
557 ``address''. This, of course, means an interface
558 change. However, with out that interface change ISAs,
559 such as the ia64 with its two stacks, won't work.
560 Similar goes for the case where there is a frameless
561 function. */
562 fi = find_frame_addr_in_frame_chain (frame);
563 }
564 else
565 fi = NULL;
566
567 /* frame = -2 means always use selected frame */
568 if (type == USE_SELECTED_FRAME)
569 var->root->floating = 1;
570
571 block = NULL;
572 if (fi != NULL)
573 block = get_frame_block (fi, 0);
574
575 p = expression;
576 innermost_block = NULL;
577 /* Wrap the call to parse expression, so we can
578 return a sensible error. */
579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
580 {
581 return NULL;
582 }
583
584 /* Don't allow variables to be created for types. */
585 if (var->root->exp->elts[0].opcode == OP_TYPE)
586 {
587 do_cleanups (old_chain);
588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 " as an expression.\n");
590 return NULL;
591 }
592
593 var->format = variable_default_display (var);
594 var->root->valid_block = innermost_block;
595 var->name = xstrdup (expression);
596 /* For a root var, the name and the expr are the same. */
597 var->path_expr = xstrdup (expression);
598
599 /* When the frame is different from the current frame,
600 we must select the appropriate frame before parsing
601 the expression, otherwise the value will not be current.
602 Since select_frame is so benign, just call it for all cases. */
603 if (innermost_block)
604 {
605 /* User could specify explicit FRAME-ADDR which was not found but
606 EXPRESSION is frame specific and we would not be able to evaluate
607 it correctly next time. With VALID_BLOCK set we must also set
608 FRAME and THREAD_ID. */
609 if (fi == NULL)
610 error (_("Failed to find the specified frame"));
611
612 var->root->frame = get_frame_id (fi);
613 var->root->thread_id = pid_to_thread_id (inferior_ptid);
614 old_id = get_frame_id (get_selected_frame (NULL));
615 select_frame (fi);
616 }
617
618 /* We definitely need to catch errors here.
619 If evaluate_expression succeeds we got the value we wanted.
620 But if it fails, we still go on with a call to evaluate_type() */
621 if (!gdb_evaluate_expression (var->root->exp, &value))
622 {
623 /* Error getting the value. Try to at least get the
624 right type. */
625 struct value *type_only_value = evaluate_type (var->root->exp);
626
627 var->type = value_type (type_only_value);
628 }
629 else
630 var->type = value_type (value);
631
632 install_new_value (var, value, 1 /* Initial assignment */);
633
634 /* Set language info */
635 lang = variable_language (var);
636 var->root->lang = &languages[lang];
637
638 /* Set ourselves as our root */
639 var->root->rootvar = var;
640
641 /* Reset the selected frame */
642 if (frame_id_p (old_id))
643 select_frame (frame_find_by_id (old_id));
644 }
645
646 /* If the variable object name is null, that means this
647 is a temporary variable, so don't install it. */
648
649 if ((var != NULL) && (objname != NULL))
650 {
651 var->obj_name = xstrdup (objname);
652
653 /* If a varobj name is duplicated, the install will fail so
654 we must clenup */
655 if (!install_variable (var))
656 {
657 do_cleanups (old_chain);
658 return NULL;
659 }
660 }
661
662 discard_cleanups (old_chain);
663 return var;
664}
665
666/* Generates an unique name that can be used for a varobj */
667
668char *
669varobj_gen_name (void)
670{
671 static int id = 0;
672 char *obj_name;
673
674 /* generate a name for this object */
675 id++;
676 obj_name = xstrprintf ("var%d", id);
677
678 return obj_name;
679}
680
681/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
682 error if OBJNAME cannot be found. */
683
684struct varobj *
685varobj_get_handle (char *objname)
686{
687 struct vlist *cv;
688 const char *chp;
689 unsigned int index = 0;
690 unsigned int i = 1;
691
692 for (chp = objname; *chp; chp++)
693 {
694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 }
696
697 cv = *(varobj_table + index);
698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
699 cv = cv->next;
700
701 if (cv == NULL)
702 error (_("Variable object not found"));
703
704 return cv->var;
705}
706
707/* Given the handle, return the name of the object */
708
709char *
710varobj_get_objname (struct varobj *var)
711{
712 return var->obj_name;
713}
714
715/* Given the handle, return the expression represented by the object */
716
717char *
718varobj_get_expression (struct varobj *var)
719{
720 return name_of_variable (var);
721}
722
723/* Deletes a varobj and all its children if only_children == 0,
724 otherwise deletes only the children; returns a malloc'ed list of all the
725 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
726
727int
728varobj_delete (struct varobj *var, char ***dellist, int only_children)
729{
730 int delcount;
731 int mycount;
732 struct cpstack *result = NULL;
733 char **cp;
734
735 /* Initialize a stack for temporary results */
736 cppush (&result, NULL);
737
738 if (only_children)
739 /* Delete only the variable children */
740 delcount = delete_variable (&result, var, 1 /* only the children */ );
741 else
742 /* Delete the variable and all its children */
743 delcount = delete_variable (&result, var, 0 /* parent+children */ );
744
745 /* We may have been asked to return a list of what has been deleted */
746 if (dellist != NULL)
747 {
748 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
749
750 cp = *dellist;
751 mycount = delcount;
752 *cp = cppop (&result);
753 while ((*cp != NULL) && (mycount > 0))
754 {
755 mycount--;
756 cp++;
757 *cp = cppop (&result);
758 }
759
760 if (mycount || (*cp != NULL))
761 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
762 mycount);
763 }
764
765 return delcount;
766}
767
768#if HAVE_PYTHON
769
770/* Convenience function for varobj_set_visualizer. Instantiate a
771 pretty-printer for a given value. */
772static PyObject *
773instantiate_pretty_printer (PyObject *constructor, struct value *value)
774{
775 PyObject *val_obj = NULL;
776 PyObject *printer;
777
778 val_obj = value_to_value_object (value);
779 if (! val_obj)
780 return NULL;
781
782 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
783 Py_DECREF (val_obj);
784 return printer;
785 return NULL;
786}
787
788#endif
789
790/* Set/Get variable object display format */
791
792enum varobj_display_formats
793varobj_set_display_format (struct varobj *var,
794 enum varobj_display_formats format)
795{
796 switch (format)
797 {
798 case FORMAT_NATURAL:
799 case FORMAT_BINARY:
800 case FORMAT_DECIMAL:
801 case FORMAT_HEXADECIMAL:
802 case FORMAT_OCTAL:
803 var->format = format;
804 break;
805
806 default:
807 var->format = variable_default_display (var);
808 }
809
810 if (varobj_value_is_changeable_p (var)
811 && var->value && !value_lazy (var->value))
812 {
813 xfree (var->print_value);
814 var->print_value = value_get_print_value (var->value, var->format, var);
815 }
816
817 return var->format;
818}
819
820enum varobj_display_formats
821varobj_get_display_format (struct varobj *var)
822{
823 return var->format;
824}
825
826char *
827varobj_get_display_hint (struct varobj *var)
828{
829 char *result = NULL;
830
831#if HAVE_PYTHON
832 struct cleanup *back_to = varobj_ensure_python_env (var);
833
834 if (var->pretty_printer)
835 result = gdbpy_get_display_hint (var->pretty_printer);
836
837 do_cleanups (back_to);
838#endif
839
840 return result;
841}
842
843/* Return true if the varobj has items after TO, false otherwise. */
844
845int
846varobj_has_more (struct varobj *var, int to)
847{
848 if (VEC_length (varobj_p, var->children) > to)
849 return 1;
850 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
851 && var->saved_item != NULL);
852}
853
854/* If the variable object is bound to a specific thread, that
855 is its evaluation can always be done in context of a frame
856 inside that thread, returns GDB id of the thread -- which
857 is always positive. Otherwise, returns -1. */
858int
859varobj_get_thread_id (struct varobj *var)
860{
861 if (var->root->valid_block && var->root->thread_id > 0)
862 return var->root->thread_id;
863 else
864 return -1;
865}
866
867void
868varobj_set_frozen (struct varobj *var, int frozen)
869{
870 /* When a variable is unfrozen, we don't fetch its value.
871 The 'not_fetched' flag remains set, so next -var-update
872 won't complain.
873
874 We don't fetch the value, because for structures the client
875 should do -var-update anyway. It would be bad to have different
876 client-size logic for structure and other types. */
877 var->frozen = frozen;
878}
879
880int
881varobj_get_frozen (struct varobj *var)
882{
883 return var->frozen;
884}
885
886/* A helper function that restricts a range to what is actually
887 available in a VEC. This follows the usual rules for the meaning
888 of FROM and TO -- if either is negative, the entire range is
889 used. */
890
891static void
892restrict_range (VEC (varobj_p) *children, int *from, int *to)
893{
894 if (*from < 0 || *to < 0)
895 {
896 *from = 0;
897 *to = VEC_length (varobj_p, children);
898 }
899 else
900 {
901 if (*from > VEC_length (varobj_p, children))
902 *from = VEC_length (varobj_p, children);
903 if (*to > VEC_length (varobj_p, children))
904 *to = VEC_length (varobj_p, children);
905 if (*from > *to)
906 *from = *to;
907 }
908}
909
910#if HAVE_PYTHON
911
912/* A helper for update_dynamic_varobj_children that installs a new
913 child when needed. */
914
915static void
916install_dynamic_child (struct varobj *var,
917 VEC (varobj_p) **changed,
918 VEC (varobj_p) **new,
919 VEC (varobj_p) **unchanged,
920 int *cchanged,
921 int index,
922 const char *name,
923 struct value *value)
924{
925 if (VEC_length (varobj_p, var->children) < index + 1)
926 {
927 /* There's no child yet. */
928 struct varobj *child = varobj_add_child (var, name, value);
929
930 if (new)
931 {
932 VEC_safe_push (varobj_p, *new, child);
933 *cchanged = 1;
934 }
935 }
936 else
937 {
938 varobj_p existing = VEC_index (varobj_p, var->children, index);
939
940 if (install_new_value (existing, value, 0))
941 {
942 if (changed)
943 VEC_safe_push (varobj_p, *changed, existing);
944 }
945 else if (unchanged)
946 VEC_safe_push (varobj_p, *unchanged, existing);
947 }
948}
949
950static int
951dynamic_varobj_has_child_method (struct varobj *var)
952{
953 struct cleanup *back_to;
954 PyObject *printer = var->pretty_printer;
955 int result;
956
957 back_to = varobj_ensure_python_env (var);
958 result = PyObject_HasAttr (printer, gdbpy_children_cst);
959 do_cleanups (back_to);
960 return result;
961}
962
963#endif
964
965static int
966update_dynamic_varobj_children (struct varobj *var,
967 VEC (varobj_p) **changed,
968 VEC (varobj_p) **new,
969 VEC (varobj_p) **unchanged,
970 int *cchanged,
971 int update_children,
972 int from,
973 int to)
974{
975#if HAVE_PYTHON
976 struct cleanup *back_to;
977 PyObject *children;
978 int i;
979 PyObject *printer = var->pretty_printer;
980
981 back_to = varobj_ensure_python_env (var);
982
983 *cchanged = 0;
984 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
985 {
986 do_cleanups (back_to);
987 return 0;
988 }
989
990 if (update_children || !var->child_iter)
991 {
992 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
993 NULL);
994
995 if (!children)
996 {
997 gdbpy_print_stack ();
998 error (_("Null value returned for children"));
999 }
1000
1001 make_cleanup_py_decref (children);
1002
1003 if (!PyIter_Check (children))
1004 error (_("Returned value is not iterable"));
1005
1006 Py_XDECREF (var->child_iter);
1007 var->child_iter = PyObject_GetIter (children);
1008 if (!var->child_iter)
1009 {
1010 gdbpy_print_stack ();
1011 error (_("Could not get children iterator"));
1012 }
1013
1014 Py_XDECREF (var->saved_item);
1015 var->saved_item = NULL;
1016
1017 i = 0;
1018 }
1019 else
1020 i = VEC_length (varobj_p, var->children);
1021
1022 /* We ask for one extra child, so that MI can report whether there
1023 are more children. */
1024 for (; to < 0 || i < to + 1; ++i)
1025 {
1026 PyObject *item;
1027
1028 /* See if there was a leftover from last time. */
1029 if (var->saved_item)
1030 {
1031 item = var->saved_item;
1032 var->saved_item = NULL;
1033 }
1034 else
1035 item = PyIter_Next (var->child_iter);
1036
1037 if (!item)
1038 break;
1039
1040 /* We don't want to push the extra child on any report list. */
1041 if (to < 0 || i < to)
1042 {
1043 PyObject *py_v;
1044 char *name;
1045 struct value *v;
1046 struct cleanup *inner;
1047 int can_mention = from < 0 || i >= from;
1048
1049 inner = make_cleanup_py_decref (item);
1050
1051 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1052 error (_("Invalid item from the child list"));
1053
1054 v = convert_value_from_python (py_v);
1055 if (v == NULL)
1056 gdbpy_print_stack ();
1057 install_dynamic_child (var, can_mention ? changed : NULL,
1058 can_mention ? new : NULL,
1059 can_mention ? unchanged : NULL,
1060 can_mention ? cchanged : NULL, i, name, v);
1061 do_cleanups (inner);
1062 }
1063 else
1064 {
1065 Py_XDECREF (var->saved_item);
1066 var->saved_item = item;
1067
1068 /* We want to truncate the child list just before this
1069 element. */
1070 break;
1071 }
1072 }
1073
1074 if (i < VEC_length (varobj_p, var->children))
1075 {
1076 int j;
1077
1078 *cchanged = 1;
1079 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1080 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1081 VEC_truncate (varobj_p, var->children, i);
1082 }
1083
1084 /* If there are fewer children than requested, note that the list of
1085 children changed. */
1086 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1087 *cchanged = 1;
1088
1089 var->num_children = VEC_length (varobj_p, var->children);
1090
1091 do_cleanups (back_to);
1092
1093 return 1;
1094#else
1095 gdb_assert (0 && "should never be called if Python is not enabled");
1096#endif
1097}
1098
1099int
1100varobj_get_num_children (struct varobj *var)
1101{
1102 if (var->num_children == -1)
1103 {
1104 if (var->pretty_printer)
1105 {
1106 int dummy;
1107
1108 /* If we have a dynamic varobj, don't report -1 children.
1109 So, try to fetch some children first. */
1110 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1111 0, 0, 0);
1112 }
1113 else
1114 var->num_children = number_of_children (var);
1115 }
1116
1117 return var->num_children >= 0 ? var->num_children : 0;
1118}
1119
1120/* Creates a list of the immediate children of a variable object;
1121 the return code is the number of such children or -1 on error */
1122
1123VEC (varobj_p)*
1124varobj_list_children (struct varobj *var, int *from, int *to)
1125{
1126 char *name;
1127 int i, children_changed;
1128
1129 var->children_requested = 1;
1130
1131 if (var->pretty_printer)
1132 {
1133 /* This, in theory, can result in the number of children changing without
1134 frontend noticing. But well, calling -var-list-children on the same
1135 varobj twice is not something a sane frontend would do. */
1136 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1137 0, 0, *to);
1138 restrict_range (var->children, from, to);
1139 return var->children;
1140 }
1141
1142 if (var->num_children == -1)
1143 var->num_children = number_of_children (var);
1144
1145 /* If that failed, give up. */
1146 if (var->num_children == -1)
1147 return var->children;
1148
1149 /* If we're called when the list of children is not yet initialized,
1150 allocate enough elements in it. */
1151 while (VEC_length (varobj_p, var->children) < var->num_children)
1152 VEC_safe_push (varobj_p, var->children, NULL);
1153
1154 for (i = 0; i < var->num_children; i++)
1155 {
1156 varobj_p existing = VEC_index (varobj_p, var->children, i);
1157
1158 if (existing == NULL)
1159 {
1160 /* Either it's the first call to varobj_list_children for
1161 this variable object, and the child was never created,
1162 or it was explicitly deleted by the client. */
1163 name = name_of_child (var, i);
1164 existing = create_child (var, i, name);
1165 VEC_replace (varobj_p, var->children, i, existing);
1166 }
1167 }
1168
1169 restrict_range (var->children, from, to);
1170 return var->children;
1171}
1172
1173#if HAVE_PYTHON
1174
1175static struct varobj *
1176varobj_add_child (struct varobj *var, const char *name, struct value *value)
1177{
1178 varobj_p v = create_child_with_value (var,
1179 VEC_length (varobj_p, var->children),
1180 name, value);
1181
1182 VEC_safe_push (varobj_p, var->children, v);
1183 return v;
1184}
1185
1186#endif /* HAVE_PYTHON */
1187
1188/* Obtain the type of an object Variable as a string similar to the one gdb
1189 prints on the console */
1190
1191char *
1192varobj_get_type (struct varobj *var)
1193{
1194 /* For the "fake" variables, do not return a type. (It's type is
1195 NULL, too.)
1196 Do not return a type for invalid variables as well. */
1197 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1198 return NULL;
1199
1200 return type_to_string (var->type);
1201}
1202
1203/* Obtain the type of an object variable. */
1204
1205struct type *
1206varobj_get_gdb_type (struct varobj *var)
1207{
1208 return var->type;
1209}
1210
1211/* Return a pointer to the full rooted expression of varobj VAR.
1212 If it has not been computed yet, compute it. */
1213char *
1214varobj_get_path_expr (struct varobj *var)
1215{
1216 if (var->path_expr != NULL)
1217 return var->path_expr;
1218 else
1219 {
1220 /* For root varobjs, we initialize path_expr
1221 when creating varobj, so here it should be
1222 child varobj. */
1223 gdb_assert (!is_root_p (var));
1224 return (*var->root->lang->path_expr_of_child) (var);
1225 }
1226}
1227
1228enum varobj_languages
1229varobj_get_language (struct varobj *var)
1230{
1231 return variable_language (var);
1232}
1233
1234int
1235varobj_get_attributes (struct varobj *var)
1236{
1237 int attributes = 0;
1238
1239 if (varobj_editable_p (var))
1240 /* FIXME: define masks for attributes */
1241 attributes |= 0x00000001; /* Editable */
1242
1243 return attributes;
1244}
1245
1246int
1247varobj_pretty_printed_p (struct varobj *var)
1248{
1249 return var->pretty_printer != NULL;
1250}
1251
1252char *
1253varobj_get_formatted_value (struct varobj *var,
1254 enum varobj_display_formats format)
1255{
1256 return my_value_of_variable (var, format);
1257}
1258
1259char *
1260varobj_get_value (struct varobj *var)
1261{
1262 return my_value_of_variable (var, var->format);
1263}
1264
1265/* Set the value of an object variable (if it is editable) to the
1266 value of the given expression */
1267/* Note: Invokes functions that can call error() */
1268
1269int
1270varobj_set_value (struct varobj *var, char *expression)
1271{
1272 struct value *val;
1273
1274 /* The argument "expression" contains the variable's new value.
1275 We need to first construct a legal expression for this -- ugh! */
1276 /* Does this cover all the bases? */
1277 struct expression *exp;
1278 struct value *value;
1279 int saved_input_radix = input_radix;
1280 char *s = expression;
1281
1282 gdb_assert (varobj_editable_p (var));
1283
1284 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1285 exp = parse_exp_1 (&s, 0, 0);
1286 if (!gdb_evaluate_expression (exp, &value))
1287 {
1288 /* We cannot proceed without a valid expression. */
1289 xfree (exp);
1290 return 0;
1291 }
1292
1293 /* All types that are editable must also be changeable. */
1294 gdb_assert (varobj_value_is_changeable_p (var));
1295
1296 /* The value of a changeable variable object must not be lazy. */
1297 gdb_assert (!value_lazy (var->value));
1298
1299 /* Need to coerce the input. We want to check if the
1300 value of the variable object will be different
1301 after assignment, and the first thing value_assign
1302 does is coerce the input.
1303 For example, if we are assigning an array to a pointer variable we
1304 should compare the pointer with the the array's address, not with the
1305 array's content. */
1306 value = coerce_array (value);
1307
1308 /* The new value may be lazy. gdb_value_assign, or
1309 rather value_contents, will take care of this.
1310 If fetching of the new value will fail, gdb_value_assign
1311 with catch the exception. */
1312 if (!gdb_value_assign (var->value, value, &val))
1313 return 0;
1314
1315 /* If the value has changed, record it, so that next -var-update can
1316 report this change. If a variable had a value of '1', we've set it
1317 to '333' and then set again to '1', when -var-update will report this
1318 variable as changed -- because the first assignment has set the
1319 'updated' flag. There's no need to optimize that, because return value
1320 of -var-update should be considered an approximation. */
1321 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1322 input_radix = saved_input_radix;
1323 return 1;
1324}
1325
1326#if HAVE_PYTHON
1327
1328/* A helper function to install a constructor function and visualizer
1329 in a varobj. */
1330
1331static void
1332install_visualizer (struct varobj *var, PyObject *constructor,
1333 PyObject *visualizer)
1334{
1335 Py_XDECREF (var->constructor);
1336 var->constructor = constructor;
1337
1338 Py_XDECREF (var->pretty_printer);
1339 var->pretty_printer = visualizer;
1340
1341 Py_XDECREF (var->child_iter);
1342 var->child_iter = NULL;
1343}
1344
1345/* Install the default visualizer for VAR. */
1346
1347static void
1348install_default_visualizer (struct varobj *var)
1349{
1350 if (pretty_printing)
1351 {
1352 PyObject *pretty_printer = NULL;
1353
1354 if (var->value)
1355 {
1356 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1357 if (! pretty_printer)
1358 {
1359 gdbpy_print_stack ();
1360 error (_("Cannot instantiate printer for default visualizer"));
1361 }
1362 }
1363
1364 if (pretty_printer == Py_None)
1365 {
1366 Py_DECREF (pretty_printer);
1367 pretty_printer = NULL;
1368 }
1369
1370 install_visualizer (var, NULL, pretty_printer);
1371 }
1372}
1373
1374/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1375 make a new object. */
1376
1377static void
1378construct_visualizer (struct varobj *var, PyObject *constructor)
1379{
1380 PyObject *pretty_printer;
1381
1382 Py_INCREF (constructor);
1383 if (constructor == Py_None)
1384 pretty_printer = NULL;
1385 else
1386 {
1387 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1388 if (! pretty_printer)
1389 {
1390 gdbpy_print_stack ();
1391 Py_DECREF (constructor);
1392 constructor = Py_None;
1393 Py_INCREF (constructor);
1394 }
1395
1396 if (pretty_printer == Py_None)
1397 {
1398 Py_DECREF (pretty_printer);
1399 pretty_printer = NULL;
1400 }
1401 }
1402
1403 install_visualizer (var, constructor, pretty_printer);
1404}
1405
1406#endif /* HAVE_PYTHON */
1407
1408/* A helper function for install_new_value. This creates and installs
1409 a visualizer for VAR, if appropriate. */
1410
1411static void
1412install_new_value_visualizer (struct varobj *var)
1413{
1414#if HAVE_PYTHON
1415 /* If the constructor is None, then we want the raw value. If VAR
1416 does not have a value, just skip this. */
1417 if (var->constructor != Py_None && var->value)
1418 {
1419 struct cleanup *cleanup;
1420
1421 cleanup = varobj_ensure_python_env (var);
1422
1423 if (!var->constructor)
1424 install_default_visualizer (var);
1425 else
1426 construct_visualizer (var, var->constructor);
1427
1428 do_cleanups (cleanup);
1429 }
1430#else
1431 /* Do nothing. */
1432#endif
1433}
1434
1435/* Assign a new value to a variable object. If INITIAL is non-zero,
1436 this is the first assignement after the variable object was just
1437 created, or changed type. In that case, just assign the value
1438 and return 0.
1439 Otherwise, assign the new value, and return 1 if the value is different
1440 from the current one, 0 otherwise. The comparison is done on textual
1441 representation of value. Therefore, some types need not be compared. E.g.
1442 for structures the reported value is always "{...}", so no comparison is
1443 necessary here. If the old value was NULL and new one is not, or vice versa,
1444 we always return 1.
1445
1446 The VALUE parameter should not be released -- the function will
1447 take care of releasing it when needed. */
1448static int
1449install_new_value (struct varobj *var, struct value *value, int initial)
1450{
1451 int changeable;
1452 int need_to_fetch;
1453 int changed = 0;
1454 int intentionally_not_fetched = 0;
1455 char *print_value = NULL;
1456
1457 /* We need to know the varobj's type to decide if the value should
1458 be fetched or not. C++ fake children (public/protected/private) don't have
1459 a type. */
1460 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1461 changeable = varobj_value_is_changeable_p (var);
1462
1463 /* If the type has custom visualizer, we consider it to be always
1464 changeable. FIXME: need to make sure this behaviour will not
1465 mess up read-sensitive values. */
1466 if (var->pretty_printer)
1467 changeable = 1;
1468
1469 need_to_fetch = changeable;
1470
1471 /* We are not interested in the address of references, and given
1472 that in C++ a reference is not rebindable, it cannot
1473 meaningfully change. So, get hold of the real value. */
1474 if (value)
1475 value = coerce_ref (value);
1476
1477 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1478 /* For unions, we need to fetch the value implicitly because
1479 of implementation of union member fetch. When gdb
1480 creates a value for a field and the value of the enclosing
1481 structure is not lazy, it immediately copies the necessary
1482 bytes from the enclosing values. If the enclosing value is
1483 lazy, the call to value_fetch_lazy on the field will read
1484 the data from memory. For unions, that means we'll read the
1485 same memory more than once, which is not desirable. So
1486 fetch now. */
1487 need_to_fetch = 1;
1488
1489 /* The new value might be lazy. If the type is changeable,
1490 that is we'll be comparing values of this type, fetch the
1491 value now. Otherwise, on the next update the old value
1492 will be lazy, which means we've lost that old value. */
1493 if (need_to_fetch && value && value_lazy (value))
1494 {
1495 struct varobj *parent = var->parent;
1496 int frozen = var->frozen;
1497
1498 for (; !frozen && parent; parent = parent->parent)
1499 frozen |= parent->frozen;
1500
1501 if (frozen && initial)
1502 {
1503 /* For variables that are frozen, or are children of frozen
1504 variables, we don't do fetch on initial assignment.
1505 For non-initial assignemnt we do the fetch, since it means we're
1506 explicitly asked to compare the new value with the old one. */
1507 intentionally_not_fetched = 1;
1508 }
1509 else if (!gdb_value_fetch_lazy (value))
1510 {
1511 /* Set the value to NULL, so that for the next -var-update,
1512 we don't try to compare the new value with this value,
1513 that we couldn't even read. */
1514 value = NULL;
1515 }
1516 }
1517
1518
1519 /* Below, we'll be comparing string rendering of old and new
1520 values. Don't get string rendering if the value is
1521 lazy -- if it is, the code above has decided that the value
1522 should not be fetched. */
1523 if (value && !value_lazy (value) && !var->pretty_printer)
1524 print_value = value_get_print_value (value, var->format, var);
1525
1526 /* If the type is changeable, compare the old and the new values.
1527 If this is the initial assignment, we don't have any old value
1528 to compare with. */
1529 if (!initial && changeable)
1530 {
1531 /* If the value of the varobj was changed by -var-set-value, then the
1532 value in the varobj and in the target is the same. However, that value
1533 is different from the value that the varobj had after the previous
1534 -var-update. So need to the varobj as changed. */
1535 if (var->updated)
1536 {
1537 changed = 1;
1538 }
1539 else if (! var->pretty_printer)
1540 {
1541 /* Try to compare the values. That requires that both
1542 values are non-lazy. */
1543 if (var->not_fetched && value_lazy (var->value))
1544 {
1545 /* This is a frozen varobj and the value was never read.
1546 Presumably, UI shows some "never read" indicator.
1547 Now that we've fetched the real value, we need to report
1548 this varobj as changed so that UI can show the real
1549 value. */
1550 changed = 1;
1551 }
1552 else if (var->value == NULL && value == NULL)
1553 /* Equal. */
1554 ;
1555 else if (var->value == NULL || value == NULL)
1556 {
1557 changed = 1;
1558 }
1559 else
1560 {
1561 gdb_assert (!value_lazy (var->value));
1562 gdb_assert (!value_lazy (value));
1563
1564 gdb_assert (var->print_value != NULL && print_value != NULL);
1565 if (strcmp (var->print_value, print_value) != 0)
1566 changed = 1;
1567 }
1568 }
1569 }
1570
1571 if (!initial && !changeable)
1572 {
1573 /* For values that are not changeable, we don't compare the values.
1574 However, we want to notice if a value was not NULL and now is NULL,
1575 or vise versa, so that we report when top-level varobjs come in scope
1576 and leave the scope. */
1577 changed = (var->value != NULL) != (value != NULL);
1578 }
1579
1580 /* We must always keep the new value, since children depend on it. */
1581 if (var->value != NULL && var->value != value)
1582 value_free (var->value);
1583 var->value = value;
1584 if (value != NULL)
1585 value_incref (value);
1586 if (value && value_lazy (value) && intentionally_not_fetched)
1587 var->not_fetched = 1;
1588 else
1589 var->not_fetched = 0;
1590 var->updated = 0;
1591
1592 install_new_value_visualizer (var);
1593
1594 /* If we installed a pretty-printer, re-compare the printed version
1595 to see if the variable changed. */
1596 if (var->pretty_printer)
1597 {
1598 xfree (print_value);
1599 print_value = value_get_print_value (var->value, var->format, var);
1600 if ((var->print_value == NULL && print_value != NULL)
1601 || (var->print_value != NULL && print_value == NULL)
1602 || (var->print_value != NULL && print_value != NULL
1603 && strcmp (var->print_value, print_value) != 0))
1604 changed = 1;
1605 }
1606 if (var->print_value)
1607 xfree (var->print_value);
1608 var->print_value = print_value;
1609
1610 gdb_assert (!var->value || value_type (var->value));
1611
1612 return changed;
1613}
1614
1615/* Return the requested range for a varobj. VAR is the varobj. FROM
1616 and TO are out parameters; *FROM and *TO will be set to the
1617 selected sub-range of VAR. If no range was selected using
1618 -var-set-update-range, then both will be -1. */
1619void
1620varobj_get_child_range (struct varobj *var, int *from, int *to)
1621{
1622 *from = var->from;
1623 *to = var->to;
1624}
1625
1626/* Set the selected sub-range of children of VAR to start at index
1627 FROM and end at index TO. If either FROM or TO is less than zero,
1628 this is interpreted as a request for all children. */
1629void
1630varobj_set_child_range (struct varobj *var, int from, int to)
1631{
1632 var->from = from;
1633 var->to = to;
1634}
1635
1636void
1637varobj_set_visualizer (struct varobj *var, const char *visualizer)
1638{
1639#if HAVE_PYTHON
1640 PyObject *mainmod, *globals, *constructor;
1641 struct cleanup *back_to;
1642
1643 back_to = varobj_ensure_python_env (var);
1644
1645 mainmod = PyImport_AddModule ("__main__");
1646 globals = PyModule_GetDict (mainmod);
1647 Py_INCREF (globals);
1648 make_cleanup_py_decref (globals);
1649
1650 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1651
1652 if (! constructor)
1653 {
1654 gdbpy_print_stack ();
1655 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1656 }
1657
1658 construct_visualizer (var, constructor);
1659 Py_XDECREF (constructor);
1660
1661 /* If there are any children now, wipe them. */
1662 varobj_delete (var, NULL, 1 /* children only */);
1663 var->num_children = -1;
1664
1665 do_cleanups (back_to);
1666#else
1667 error (_("Python support required"));
1668#endif
1669}
1670
1671/* Update the values for a variable and its children. This is a
1672 two-pronged attack. First, re-parse the value for the root's
1673 expression to see if it's changed. Then go all the way
1674 through its children, reconstructing them and noting if they've
1675 changed.
1676
1677 The EXPLICIT parameter specifies if this call is result
1678 of MI request to update this specific variable, or
1679 result of implicit -var-update *. For implicit request, we don't
1680 update frozen variables.
1681
1682 NOTE: This function may delete the caller's varobj. If it
1683 returns TYPE_CHANGED, then it has done this and VARP will be modified
1684 to point to the new varobj. */
1685
1686VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1687{
1688 int changed = 0;
1689 int type_changed = 0;
1690 int i;
1691 struct value *new;
1692 VEC (varobj_update_result) *stack = NULL;
1693 VEC (varobj_update_result) *result = NULL;
1694
1695 /* Frozen means frozen -- we don't check for any change in
1696 this varobj, including its going out of scope, or
1697 changing type. One use case for frozen varobjs is
1698 retaining previously evaluated expressions, and we don't
1699 want them to be reevaluated at all. */
1700 if (!explicit && (*varp)->frozen)
1701 return result;
1702
1703 if (!(*varp)->root->is_valid)
1704 {
1705 varobj_update_result r = {0};
1706
1707 r.varobj = *varp;
1708 r.status = VAROBJ_INVALID;
1709 VEC_safe_push (varobj_update_result, result, &r);
1710 return result;
1711 }
1712
1713 if ((*varp)->root->rootvar == *varp)
1714 {
1715 varobj_update_result r = {0};
1716
1717 r.varobj = *varp;
1718 r.status = VAROBJ_IN_SCOPE;
1719
1720 /* Update the root variable. value_of_root can return NULL
1721 if the variable is no longer around, i.e. we stepped out of
1722 the frame in which a local existed. We are letting the
1723 value_of_root variable dispose of the varobj if the type
1724 has changed. */
1725 new = value_of_root (varp, &type_changed);
1726 r.varobj = *varp;
1727
1728 r.type_changed = type_changed;
1729 if (install_new_value ((*varp), new, type_changed))
1730 r.changed = 1;
1731
1732 if (new == NULL)
1733 r.status = VAROBJ_NOT_IN_SCOPE;
1734 r.value_installed = 1;
1735
1736 if (r.status == VAROBJ_NOT_IN_SCOPE)
1737 {
1738 if (r.type_changed || r.changed)
1739 VEC_safe_push (varobj_update_result, result, &r);
1740 return result;
1741 }
1742
1743 VEC_safe_push (varobj_update_result, stack, &r);
1744 }
1745 else
1746 {
1747 varobj_update_result r = {0};
1748
1749 r.varobj = *varp;
1750 VEC_safe_push (varobj_update_result, stack, &r);
1751 }
1752
1753 /* Walk through the children, reconstructing them all. */
1754 while (!VEC_empty (varobj_update_result, stack))
1755 {
1756 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1757 struct varobj *v = r.varobj;
1758
1759 VEC_pop (varobj_update_result, stack);
1760
1761 /* Update this variable, unless it's a root, which is already
1762 updated. */
1763 if (!r.value_installed)
1764 {
1765 new = value_of_child (v->parent, v->index);
1766 if (install_new_value (v, new, 0 /* type not changed */))
1767 {
1768 r.changed = 1;
1769 v->updated = 0;
1770 }
1771 }
1772
1773 /* We probably should not get children of a varobj that has a
1774 pretty-printer, but for which -var-list-children was never
1775 invoked. */
1776 if (v->pretty_printer)
1777 {
1778 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1779 int i, children_changed = 0;
1780
1781 if (v->frozen)
1782 continue;
1783
1784 if (!v->children_requested)
1785 {
1786 int dummy;
1787
1788 /* If we initially did not have potential children, but
1789 now we do, consider the varobj as changed.
1790 Otherwise, if children were never requested, consider
1791 it as unchanged -- presumably, such varobj is not yet
1792 expanded in the UI, so we need not bother getting
1793 it. */
1794 if (!varobj_has_more (v, 0))
1795 {
1796 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1797 &dummy, 0, 0, 0);
1798 if (varobj_has_more (v, 0))
1799 r.changed = 1;
1800 }
1801
1802 if (r.changed)
1803 VEC_safe_push (varobj_update_result, result, &r);
1804
1805 continue;
1806 }
1807
1808 /* If update_dynamic_varobj_children returns 0, then we have
1809 a non-conforming pretty-printer, so we skip it. */
1810 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1811 &children_changed, 1,
1812 v->from, v->to))
1813 {
1814 if (children_changed || new)
1815 {
1816 r.children_changed = 1;
1817 r.new = new;
1818 }
1819 /* Push in reverse order so that the first child is
1820 popped from the work stack first, and so will be
1821 added to result first. This does not affect
1822 correctness, just "nicer". */
1823 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1824 {
1825 varobj_p tmp = VEC_index (varobj_p, changed, i);
1826 varobj_update_result r = {0};
1827
1828 r.varobj = tmp;
1829 r.changed = 1;
1830 r.value_installed = 1;
1831 VEC_safe_push (varobj_update_result, stack, &r);
1832 }
1833 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1834 {
1835 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1836
1837 if (!tmp->frozen)
1838 {
1839 varobj_update_result r = {0};
1840
1841 r.varobj = tmp;
1842 r.value_installed = 1;
1843 VEC_safe_push (varobj_update_result, stack, &r);
1844 }
1845 }
1846 if (r.changed || r.children_changed)
1847 VEC_safe_push (varobj_update_result, result, &r);
1848
1849 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1850 has been put into the result vector. */
1851 VEC_free (varobj_p, changed);
1852 VEC_free (varobj_p, unchanged);
1853
1854 continue;
1855 }
1856 }
1857
1858 /* Push any children. Use reverse order so that the first
1859 child is popped from the work stack first, and so
1860 will be added to result first. This does not
1861 affect correctness, just "nicer". */
1862 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1863 {
1864 varobj_p c = VEC_index (varobj_p, v->children, i);
1865
1866 /* Child may be NULL if explicitly deleted by -var-delete. */
1867 if (c != NULL && !c->frozen)
1868 {
1869 varobj_update_result r = {0};
1870
1871 r.varobj = c;
1872 VEC_safe_push (varobj_update_result, stack, &r);
1873 }
1874 }
1875
1876 if (r.changed || r.type_changed)
1877 VEC_safe_push (varobj_update_result, result, &r);
1878 }
1879
1880 VEC_free (varobj_update_result, stack);
1881
1882 return result;
1883}
1884\f
1885
1886/* Helper functions */
1887
1888/*
1889 * Variable object construction/destruction
1890 */
1891
1892static int
1893delete_variable (struct cpstack **resultp, struct varobj *var,
1894 int only_children_p)
1895{
1896 int delcount = 0;
1897
1898 delete_variable_1 (resultp, &delcount, var,
1899 only_children_p, 1 /* remove_from_parent_p */ );
1900
1901 return delcount;
1902}
1903
1904/* Delete the variable object VAR and its children */
1905/* IMPORTANT NOTE: If we delete a variable which is a child
1906 and the parent is not removed we dump core. It must be always
1907 initially called with remove_from_parent_p set */
1908static void
1909delete_variable_1 (struct cpstack **resultp, int *delcountp,
1910 struct varobj *var, int only_children_p,
1911 int remove_from_parent_p)
1912{
1913 int i;
1914
1915 /* Delete any children of this variable, too. */
1916 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1917 {
1918 varobj_p child = VEC_index (varobj_p, var->children, i);
1919
1920 if (!child)
1921 continue;
1922 if (!remove_from_parent_p)
1923 child->parent = NULL;
1924 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1925 }
1926 VEC_free (varobj_p, var->children);
1927
1928 /* if we were called to delete only the children we are done here */
1929 if (only_children_p)
1930 return;
1931
1932 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1933 /* If the name is null, this is a temporary variable, that has not
1934 yet been installed, don't report it, it belongs to the caller... */
1935 if (var->obj_name != NULL)
1936 {
1937 cppush (resultp, xstrdup (var->obj_name));
1938 *delcountp = *delcountp + 1;
1939 }
1940
1941 /* If this variable has a parent, remove it from its parent's list */
1942 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1943 (as indicated by remove_from_parent_p) we don't bother doing an
1944 expensive list search to find the element to remove when we are
1945 discarding the list afterwards */
1946 if ((remove_from_parent_p) && (var->parent != NULL))
1947 {
1948 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1949 }
1950
1951 if (var->obj_name != NULL)
1952 uninstall_variable (var);
1953
1954 /* Free memory associated with this variable */
1955 free_variable (var);
1956}
1957
1958/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1959static int
1960install_variable (struct varobj *var)
1961{
1962 struct vlist *cv;
1963 struct vlist *newvl;
1964 const char *chp;
1965 unsigned int index = 0;
1966 unsigned int i = 1;
1967
1968 for (chp = var->obj_name; *chp; chp++)
1969 {
1970 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1971 }
1972
1973 cv = *(varobj_table + index);
1974 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1975 cv = cv->next;
1976
1977 if (cv != NULL)
1978 error (_("Duplicate variable object name"));
1979
1980 /* Add varobj to hash table */
1981 newvl = xmalloc (sizeof (struct vlist));
1982 newvl->next = *(varobj_table + index);
1983 newvl->var = var;
1984 *(varobj_table + index) = newvl;
1985
1986 /* If root, add varobj to root list */
1987 if (is_root_p (var))
1988 {
1989 /* Add to list of root variables */
1990 if (rootlist == NULL)
1991 var->root->next = NULL;
1992 else
1993 var->root->next = rootlist;
1994 rootlist = var->root;
1995 }
1996
1997 return 1; /* OK */
1998}
1999
2000/* Unistall the object VAR. */
2001static void
2002uninstall_variable (struct varobj *var)
2003{
2004 struct vlist *cv;
2005 struct vlist *prev;
2006 struct varobj_root *cr;
2007 struct varobj_root *prer;
2008 const char *chp;
2009 unsigned int index = 0;
2010 unsigned int i = 1;
2011
2012 /* Remove varobj from hash table */
2013 for (chp = var->obj_name; *chp; chp++)
2014 {
2015 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2016 }
2017
2018 cv = *(varobj_table + index);
2019 prev = NULL;
2020 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2021 {
2022 prev = cv;
2023 cv = cv->next;
2024 }
2025
2026 if (varobjdebug)
2027 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2028
2029 if (cv == NULL)
2030 {
2031 warning
2032 ("Assertion failed: Could not find variable object \"%s\" to delete",
2033 var->obj_name);
2034 return;
2035 }
2036
2037 if (prev == NULL)
2038 *(varobj_table + index) = cv->next;
2039 else
2040 prev->next = cv->next;
2041
2042 xfree (cv);
2043
2044 /* If root, remove varobj from root list */
2045 if (is_root_p (var))
2046 {
2047 /* Remove from list of root variables */
2048 if (rootlist == var->root)
2049 rootlist = var->root->next;
2050 else
2051 {
2052 prer = NULL;
2053 cr = rootlist;
2054 while ((cr != NULL) && (cr->rootvar != var))
2055 {
2056 prer = cr;
2057 cr = cr->next;
2058 }
2059 if (cr == NULL)
2060 {
2061 warning
2062 ("Assertion failed: Could not find varobj \"%s\" in root list",
2063 var->obj_name);
2064 return;
2065 }
2066 if (prer == NULL)
2067 rootlist = NULL;
2068 else
2069 prer->next = cr->next;
2070 }
2071 }
2072
2073}
2074
2075/* Create and install a child of the parent of the given name */
2076static struct varobj *
2077create_child (struct varobj *parent, int index, char *name)
2078{
2079 return create_child_with_value (parent, index, name,
2080 value_of_child (parent, index));
2081}
2082
2083static struct varobj *
2084create_child_with_value (struct varobj *parent, int index, const char *name,
2085 struct value *value)
2086{
2087 struct varobj *child;
2088 char *childs_name;
2089
2090 child = new_variable ();
2091
2092 /* name is allocated by name_of_child */
2093 /* FIXME: xstrdup should not be here. */
2094 child->name = xstrdup (name);
2095 child->index = index;
2096 child->parent = parent;
2097 child->root = parent->root;
2098 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2099 child->obj_name = childs_name;
2100 install_variable (child);
2101
2102 /* Compute the type of the child. Must do this before
2103 calling install_new_value. */
2104 if (value != NULL)
2105 /* If the child had no evaluation errors, var->value
2106 will be non-NULL and contain a valid type. */
2107 child->type = value_type (value);
2108 else
2109 /* Otherwise, we must compute the type. */
2110 child->type = (*child->root->lang->type_of_child) (child->parent,
2111 child->index);
2112 install_new_value (child, value, 1);
2113
2114 return child;
2115}
2116\f
2117
2118/*
2119 * Miscellaneous utility functions.
2120 */
2121
2122/* Allocate memory and initialize a new variable */
2123static struct varobj *
2124new_variable (void)
2125{
2126 struct varobj *var;
2127
2128 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2129 var->name = NULL;
2130 var->path_expr = NULL;
2131 var->obj_name = NULL;
2132 var->index = -1;
2133 var->type = NULL;
2134 var->value = NULL;
2135 var->num_children = -1;
2136 var->parent = NULL;
2137 var->children = NULL;
2138 var->format = 0;
2139 var->root = NULL;
2140 var->updated = 0;
2141 var->print_value = NULL;
2142 var->frozen = 0;
2143 var->not_fetched = 0;
2144 var->children_requested = 0;
2145 var->from = -1;
2146 var->to = -1;
2147 var->constructor = 0;
2148 var->pretty_printer = 0;
2149 var->child_iter = 0;
2150 var->saved_item = 0;
2151
2152 return var;
2153}
2154
2155/* Allocate memory and initialize a new root variable */
2156static struct varobj *
2157new_root_variable (void)
2158{
2159 struct varobj *var = new_variable ();
2160
2161 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2162 var->root->lang = NULL;
2163 var->root->exp = NULL;
2164 var->root->valid_block = NULL;
2165 var->root->frame = null_frame_id;
2166 var->root->floating = 0;
2167 var->root->rootvar = NULL;
2168 var->root->is_valid = 1;
2169
2170 return var;
2171}
2172
2173/* Free any allocated memory associated with VAR. */
2174static void
2175free_variable (struct varobj *var)
2176{
2177#if HAVE_PYTHON
2178 if (var->pretty_printer)
2179 {
2180 struct cleanup *cleanup = varobj_ensure_python_env (var);
2181 Py_XDECREF (var->constructor);
2182 Py_XDECREF (var->pretty_printer);
2183 Py_XDECREF (var->child_iter);
2184 Py_XDECREF (var->saved_item);
2185 do_cleanups (cleanup);
2186 }
2187#endif
2188
2189 value_free (var->value);
2190
2191 /* Free the expression if this is a root variable. */
2192 if (is_root_p (var))
2193 {
2194 xfree (var->root->exp);
2195 xfree (var->root);
2196 }
2197
2198 xfree (var->name);
2199 xfree (var->obj_name);
2200 xfree (var->print_value);
2201 xfree (var->path_expr);
2202 xfree (var);
2203}
2204
2205static void
2206do_free_variable_cleanup (void *var)
2207{
2208 free_variable (var);
2209}
2210
2211static struct cleanup *
2212make_cleanup_free_variable (struct varobj *var)
2213{
2214 return make_cleanup (do_free_variable_cleanup, var);
2215}
2216
2217/* This returns the type of the variable. It also skips past typedefs
2218 to return the real type of the variable.
2219
2220 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2221 except within get_target_type and get_type. */
2222static struct type *
2223get_type (struct varobj *var)
2224{
2225 struct type *type;
2226
2227 type = var->type;
2228 if (type != NULL)
2229 type = check_typedef (type);
2230
2231 return type;
2232}
2233
2234/* Return the type of the value that's stored in VAR,
2235 or that would have being stored there if the
2236 value were accessible.
2237
2238 This differs from VAR->type in that VAR->type is always
2239 the true type of the expession in the source language.
2240 The return value of this function is the type we're
2241 actually storing in varobj, and using for displaying
2242 the values and for comparing previous and new values.
2243
2244 For example, top-level references are always stripped. */
2245static struct type *
2246get_value_type (struct varobj *var)
2247{
2248 struct type *type;
2249
2250 if (var->value)
2251 type = value_type (var->value);
2252 else
2253 type = var->type;
2254
2255 type = check_typedef (type);
2256
2257 if (TYPE_CODE (type) == TYPE_CODE_REF)
2258 type = get_target_type (type);
2259
2260 type = check_typedef (type);
2261
2262 return type;
2263}
2264
2265/* This returns the target type (or NULL) of TYPE, also skipping
2266 past typedefs, just like get_type ().
2267
2268 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2269 except within get_target_type and get_type. */
2270static struct type *
2271get_target_type (struct type *type)
2272{
2273 if (type != NULL)
2274 {
2275 type = TYPE_TARGET_TYPE (type);
2276 if (type != NULL)
2277 type = check_typedef (type);
2278 }
2279
2280 return type;
2281}
2282
2283/* What is the default display for this variable? We assume that
2284 everything is "natural". Any exceptions? */
2285static enum varobj_display_formats
2286variable_default_display (struct varobj *var)
2287{
2288 return FORMAT_NATURAL;
2289}
2290
2291/* FIXME: The following should be generic for any pointer */
2292static void
2293cppush (struct cpstack **pstack, char *name)
2294{
2295 struct cpstack *s;
2296
2297 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2298 s->name = name;
2299 s->next = *pstack;
2300 *pstack = s;
2301}
2302
2303/* FIXME: The following should be generic for any pointer */
2304static char *
2305cppop (struct cpstack **pstack)
2306{
2307 struct cpstack *s;
2308 char *v;
2309
2310 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2311 return NULL;
2312
2313 s = *pstack;
2314 v = s->name;
2315 *pstack = (*pstack)->next;
2316 xfree (s);
2317
2318 return v;
2319}
2320\f
2321/*
2322 * Language-dependencies
2323 */
2324
2325/* Common entry points */
2326
2327/* Get the language of variable VAR. */
2328static enum varobj_languages
2329variable_language (struct varobj *var)
2330{
2331 enum varobj_languages lang;
2332
2333 switch (var->root->exp->language_defn->la_language)
2334 {
2335 default:
2336 case language_c:
2337 lang = vlang_c;
2338 break;
2339 case language_cplus:
2340 lang = vlang_cplus;
2341 break;
2342 case language_java:
2343 lang = vlang_java;
2344 break;
2345 }
2346
2347 return lang;
2348}
2349
2350/* Return the number of children for a given variable.
2351 The result of this function is defined by the language
2352 implementation. The number of children returned by this function
2353 is the number of children that the user will see in the variable
2354 display. */
2355static int
2356number_of_children (struct varobj *var)
2357{
2358 return (*var->root->lang->number_of_children) (var);;
2359}
2360
2361/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2362static char *
2363name_of_variable (struct varobj *var)
2364{
2365 return (*var->root->lang->name_of_variable) (var);
2366}
2367
2368/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2369static char *
2370name_of_child (struct varobj *var, int index)
2371{
2372 return (*var->root->lang->name_of_child) (var, index);
2373}
2374
2375/* What is the ``struct value *'' of the root variable VAR?
2376 For floating variable object, evaluation can get us a value
2377 of different type from what is stored in varobj already. In
2378 that case:
2379 - *type_changed will be set to 1
2380 - old varobj will be freed, and new one will be
2381 created, with the same name.
2382 - *var_handle will be set to the new varobj
2383 Otherwise, *type_changed will be set to 0. */
2384static struct value *
2385value_of_root (struct varobj **var_handle, int *type_changed)
2386{
2387 struct varobj *var;
2388
2389 if (var_handle == NULL)
2390 return NULL;
2391
2392 var = *var_handle;
2393
2394 /* This should really be an exception, since this should
2395 only get called with a root variable. */
2396
2397 if (!is_root_p (var))
2398 return NULL;
2399
2400 if (var->root->floating)
2401 {
2402 struct varobj *tmp_var;
2403 char *old_type, *new_type;
2404
2405 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2406 USE_SELECTED_FRAME);
2407 if (tmp_var == NULL)
2408 {
2409 return NULL;
2410 }
2411 old_type = varobj_get_type (var);
2412 new_type = varobj_get_type (tmp_var);
2413 if (strcmp (old_type, new_type) == 0)
2414 {
2415 /* The expression presently stored inside var->root->exp
2416 remembers the locations of local variables relatively to
2417 the frame where the expression was created (in DWARF location
2418 button, for example). Naturally, those locations are not
2419 correct in other frames, so update the expression. */
2420
2421 struct expression *tmp_exp = var->root->exp;
2422
2423 var->root->exp = tmp_var->root->exp;
2424 tmp_var->root->exp = tmp_exp;
2425
2426 varobj_delete (tmp_var, NULL, 0);
2427 *type_changed = 0;
2428 }
2429 else
2430 {
2431 tmp_var->obj_name = xstrdup (var->obj_name);
2432 tmp_var->from = var->from;
2433 tmp_var->to = var->to;
2434 varobj_delete (var, NULL, 0);
2435
2436 install_variable (tmp_var);
2437 *var_handle = tmp_var;
2438 var = *var_handle;
2439 *type_changed = 1;
2440 }
2441 xfree (old_type);
2442 xfree (new_type);
2443 }
2444 else
2445 {
2446 *type_changed = 0;
2447 }
2448
2449 return (*var->root->lang->value_of_root) (var_handle);
2450}
2451
2452/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2453static struct value *
2454value_of_child (struct varobj *parent, int index)
2455{
2456 struct value *value;
2457
2458 value = (*parent->root->lang->value_of_child) (parent, index);
2459
2460 return value;
2461}
2462
2463/* GDB already has a command called "value_of_variable". Sigh. */
2464static char *
2465my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2466{
2467 if (var->root->is_valid)
2468 {
2469 if (var->pretty_printer)
2470 return value_get_print_value (var->value, var->format, var);
2471 return (*var->root->lang->value_of_variable) (var, format);
2472 }
2473 else
2474 return NULL;
2475}
2476
2477static char *
2478value_get_print_value (struct value *value, enum varobj_display_formats format,
2479 struct varobj *var)
2480{
2481 struct ui_file *stb;
2482 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2483 gdb_byte *thevalue = NULL;
2484 struct value_print_options opts;
2485 struct type *type = NULL;
2486 long len = 0;
2487 char *encoding = NULL;
2488 struct gdbarch *gdbarch = NULL;
2489 /* Initialize it just to avoid a GCC false warning. */
2490 CORE_ADDR str_addr = 0;
2491 int string_print = 0;
2492
2493 if (value == NULL)
2494 return NULL;
2495
2496 gdbarch = get_type_arch (value_type (value));
2497#if HAVE_PYTHON
2498 {
2499 PyObject *value_formatter = var->pretty_printer;
2500
2501 varobj_ensure_python_env (var);
2502
2503 if (value_formatter)
2504 {
2505 /* First check to see if we have any children at all. If so,
2506 we simply return {...}. */
2507 if (dynamic_varobj_has_child_method (var))
2508 return xstrdup ("{...}");
2509
2510 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2511 {
2512 char *hint;
2513 struct value *replacement;
2514 PyObject *output = NULL;
2515
2516 hint = gdbpy_get_display_hint (value_formatter);
2517 if (hint)
2518 {
2519 if (!strcmp (hint, "string"))
2520 string_print = 1;
2521 xfree (hint);
2522 }
2523
2524 output = apply_varobj_pretty_printer (value_formatter,
2525 &replacement);
2526 if (output)
2527 {
2528 make_cleanup_py_decref (output);
2529
2530 if (gdbpy_is_lazy_string (output))
2531 {
2532 gdbpy_extract_lazy_string (output, &str_addr, &type,
2533 &len, &encoding);
2534 make_cleanup (free_current_contents, &encoding);
2535 string_print = 1;
2536 }
2537 else
2538 {
2539 PyObject *py_str
2540 = python_string_to_target_python_string (output);
2541
2542 if (py_str)
2543 {
2544 char *s = PyString_AsString (py_str);
2545
2546 len = PyString_Size (py_str);
2547 thevalue = xmemdup (s, len + 1, len + 1);
2548 type = builtin_type (gdbarch)->builtin_char;
2549 Py_DECREF (py_str);
2550
2551 if (!string_print)
2552 {
2553 do_cleanups (old_chain);
2554 return thevalue;
2555 }
2556
2557 make_cleanup (xfree, thevalue);
2558 }
2559 else
2560 gdbpy_print_stack ();
2561 }
2562 }
2563 if (replacement)
2564 value = replacement;
2565 }
2566 }
2567 }
2568#endif
2569
2570 stb = mem_fileopen ();
2571 make_cleanup_ui_file_delete (stb);
2572
2573 get_formatted_print_options (&opts, format_code[(int) format]);
2574 opts.deref_ref = 0;
2575 opts.raw = 1;
2576 if (thevalue)
2577 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2578 else if (string_print)
2579 val_print_string (type, encoding, str_addr, len, stb, &opts);
2580 else
2581 common_val_print (value, stb, 0, &opts, current_language);
2582 thevalue = ui_file_xstrdup (stb, NULL);
2583
2584 do_cleanups (old_chain);
2585 return thevalue;
2586}
2587
2588int
2589varobj_editable_p (struct varobj *var)
2590{
2591 struct type *type;
2592
2593 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2594 return 0;
2595
2596 type = get_value_type (var);
2597
2598 switch (TYPE_CODE (type))
2599 {
2600 case TYPE_CODE_STRUCT:
2601 case TYPE_CODE_UNION:
2602 case TYPE_CODE_ARRAY:
2603 case TYPE_CODE_FUNC:
2604 case TYPE_CODE_METHOD:
2605 return 0;
2606 break;
2607
2608 default:
2609 return 1;
2610 break;
2611 }
2612}
2613
2614/* Return non-zero if changes in value of VAR
2615 must be detected and reported by -var-update.
2616 Return zero is -var-update should never report
2617 changes of such values. This makes sense for structures
2618 (since the changes in children values will be reported separately),
2619 or for artifical objects (like 'public' pseudo-field in C++).
2620
2621 Return value of 0 means that gdb need not call value_fetch_lazy
2622 for the value of this variable object. */
2623static int
2624varobj_value_is_changeable_p (struct varobj *var)
2625{
2626 int r;
2627 struct type *type;
2628
2629 if (CPLUS_FAKE_CHILD (var))
2630 return 0;
2631
2632 type = get_value_type (var);
2633
2634 switch (TYPE_CODE (type))
2635 {
2636 case TYPE_CODE_STRUCT:
2637 case TYPE_CODE_UNION:
2638 case TYPE_CODE_ARRAY:
2639 r = 0;
2640 break;
2641
2642 default:
2643 r = 1;
2644 }
2645
2646 return r;
2647}
2648
2649/* Return 1 if that varobj is floating, that is is always evaluated in the
2650 selected frame, and not bound to thread/frame. Such variable objects
2651 are created using '@' as frame specifier to -var-create. */
2652int
2653varobj_floating_p (struct varobj *var)
2654{
2655 return var->root->floating;
2656}
2657
2658/* Given the value and the type of a variable object,
2659 adjust the value and type to those necessary
2660 for getting children of the variable object.
2661 This includes dereferencing top-level references
2662 to all types and dereferencing pointers to
2663 structures.
2664
2665 Both TYPE and *TYPE should be non-null. VALUE
2666 can be null if we want to only translate type.
2667 *VALUE can be null as well -- if the parent
2668 value is not known.
2669
2670 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2671 depending on whether pointer was dereferenced
2672 in this function. */
2673static void
2674adjust_value_for_child_access (struct value **value,
2675 struct type **type,
2676 int *was_ptr)
2677{
2678 gdb_assert (type && *type);
2679
2680 if (was_ptr)
2681 *was_ptr = 0;
2682
2683 *type = check_typedef (*type);
2684
2685 /* The type of value stored in varobj, that is passed
2686 to us, is already supposed to be
2687 reference-stripped. */
2688
2689 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2690
2691 /* Pointers to structures are treated just like
2692 structures when accessing children. Don't
2693 dererences pointers to other types. */
2694 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2695 {
2696 struct type *target_type = get_target_type (*type);
2697 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2698 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2699 {
2700 if (value && *value)
2701 {
2702 int success = gdb_value_ind (*value, value);
2703
2704 if (!success)
2705 *value = NULL;
2706 }
2707 *type = target_type;
2708 if (was_ptr)
2709 *was_ptr = 1;
2710 }
2711 }
2712
2713 /* The 'get_target_type' function calls check_typedef on
2714 result, so we can immediately check type code. No
2715 need to call check_typedef here. */
2716}
2717
2718/* C */
2719static int
2720c_number_of_children (struct varobj *var)
2721{
2722 struct type *type = get_value_type (var);
2723 int children = 0;
2724 struct type *target;
2725
2726 adjust_value_for_child_access (NULL, &type, NULL);
2727 target = get_target_type (type);
2728
2729 switch (TYPE_CODE (type))
2730 {
2731 case TYPE_CODE_ARRAY:
2732 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2733 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2734 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2735 else
2736 /* If we don't know how many elements there are, don't display
2737 any. */
2738 children = 0;
2739 break;
2740
2741 case TYPE_CODE_STRUCT:
2742 case TYPE_CODE_UNION:
2743 children = TYPE_NFIELDS (type);
2744 break;
2745
2746 case TYPE_CODE_PTR:
2747 /* The type here is a pointer to non-struct. Typically, pointers
2748 have one child, except for function ptrs, which have no children,
2749 and except for void*, as we don't know what to show.
2750
2751 We can show char* so we allow it to be dereferenced. If you decide
2752 to test for it, please mind that a little magic is necessary to
2753 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2754 TYPE_NAME == "char" */
2755 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2756 || TYPE_CODE (target) == TYPE_CODE_VOID)
2757 children = 0;
2758 else
2759 children = 1;
2760 break;
2761
2762 default:
2763 /* Other types have no children */
2764 break;
2765 }
2766
2767 return children;
2768}
2769
2770static char *
2771c_name_of_variable (struct varobj *parent)
2772{
2773 return xstrdup (parent->name);
2774}
2775
2776/* Return the value of element TYPE_INDEX of a structure
2777 value VALUE. VALUE's type should be a structure,
2778 or union, or a typedef to struct/union.
2779
2780 Returns NULL if getting the value fails. Never throws. */
2781static struct value *
2782value_struct_element_index (struct value *value, int type_index)
2783{
2784 struct value *result = NULL;
2785 volatile struct gdb_exception e;
2786 struct type *type = value_type (value);
2787
2788 type = check_typedef (type);
2789
2790 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2791 || TYPE_CODE (type) == TYPE_CODE_UNION);
2792
2793 TRY_CATCH (e, RETURN_MASK_ERROR)
2794 {
2795 if (field_is_static (&TYPE_FIELD (type, type_index)))
2796 result = value_static_field (type, type_index);
2797 else
2798 result = value_primitive_field (value, 0, type_index, type);
2799 }
2800 if (e.reason < 0)
2801 {
2802 return NULL;
2803 }
2804 else
2805 {
2806 return result;
2807 }
2808}
2809
2810/* Obtain the information about child INDEX of the variable
2811 object PARENT.
2812 If CNAME is not null, sets *CNAME to the name of the child relative
2813 to the parent.
2814 If CVALUE is not null, sets *CVALUE to the value of the child.
2815 If CTYPE is not null, sets *CTYPE to the type of the child.
2816
2817 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2818 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2819 to NULL. */
2820static void
2821c_describe_child (struct varobj *parent, int index,
2822 char **cname, struct value **cvalue, struct type **ctype,
2823 char **cfull_expression)
2824{
2825 struct value *value = parent->value;
2826 struct type *type = get_value_type (parent);
2827 char *parent_expression = NULL;
2828 int was_ptr;
2829
2830 if (cname)
2831 *cname = NULL;
2832 if (cvalue)
2833 *cvalue = NULL;
2834 if (ctype)
2835 *ctype = NULL;
2836 if (cfull_expression)
2837 {
2838 *cfull_expression = NULL;
2839 parent_expression = varobj_get_path_expr (parent);
2840 }
2841 adjust_value_for_child_access (&value, &type, &was_ptr);
2842
2843 switch (TYPE_CODE (type))
2844 {
2845 case TYPE_CODE_ARRAY:
2846 if (cname)
2847 *cname = xstrdup (int_string (index
2848 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2849 10, 1, 0, 0));
2850
2851 if (cvalue && value)
2852 {
2853 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2854
2855 gdb_value_subscript (value, real_index, cvalue);
2856 }
2857
2858 if (ctype)
2859 *ctype = get_target_type (type);
2860
2861 if (cfull_expression)
2862 *cfull_expression =
2863 xstrprintf ("(%s)[%s]", parent_expression,
2864 int_string (index
2865 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2866 10, 1, 0, 0));
2867
2868
2869 break;
2870
2871 case TYPE_CODE_STRUCT:
2872 case TYPE_CODE_UNION:
2873 if (cname)
2874 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2875
2876 if (cvalue && value)
2877 {
2878 /* For C, varobj index is the same as type index. */
2879 *cvalue = value_struct_element_index (value, index);
2880 }
2881
2882 if (ctype)
2883 *ctype = TYPE_FIELD_TYPE (type, index);
2884
2885 if (cfull_expression)
2886 {
2887 char *join = was_ptr ? "->" : ".";
2888
2889 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2890 TYPE_FIELD_NAME (type, index));
2891 }
2892
2893 break;
2894
2895 case TYPE_CODE_PTR:
2896 if (cname)
2897 *cname = xstrprintf ("*%s", parent->name);
2898
2899 if (cvalue && value)
2900 {
2901 int success = gdb_value_ind (value, cvalue);
2902
2903 if (!success)
2904 *cvalue = NULL;
2905 }
2906
2907 /* Don't use get_target_type because it calls
2908 check_typedef and here, we want to show the true
2909 declared type of the variable. */
2910 if (ctype)
2911 *ctype = TYPE_TARGET_TYPE (type);
2912
2913 if (cfull_expression)
2914 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2915
2916 break;
2917
2918 default:
2919 /* This should not happen */
2920 if (cname)
2921 *cname = xstrdup ("???");
2922 if (cfull_expression)
2923 *cfull_expression = xstrdup ("???");
2924 /* Don't set value and type, we don't know then. */
2925 }
2926}
2927
2928static char *
2929c_name_of_child (struct varobj *parent, int index)
2930{
2931 char *name;
2932
2933 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2934 return name;
2935}
2936
2937static char *
2938c_path_expr_of_child (struct varobj *child)
2939{
2940 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2941 &child->path_expr);
2942 return child->path_expr;
2943}
2944
2945/* If frame associated with VAR can be found, switch
2946 to it and return 1. Otherwise, return 0. */
2947static int
2948check_scope (struct varobj *var)
2949{
2950 struct frame_info *fi;
2951 int scope;
2952
2953 fi = frame_find_by_id (var->root->frame);
2954 scope = fi != NULL;
2955
2956 if (fi)
2957 {
2958 CORE_ADDR pc = get_frame_pc (fi);
2959
2960 if (pc < BLOCK_START (var->root->valid_block) ||
2961 pc >= BLOCK_END (var->root->valid_block))
2962 scope = 0;
2963 else
2964 select_frame (fi);
2965 }
2966 return scope;
2967}
2968
2969static struct value *
2970c_value_of_root (struct varobj **var_handle)
2971{
2972 struct value *new_val = NULL;
2973 struct varobj *var = *var_handle;
2974 int within_scope = 0;
2975 struct cleanup *back_to;
2976
2977 /* Only root variables can be updated... */
2978 if (!is_root_p (var))
2979 /* Not a root var */
2980 return NULL;
2981
2982 back_to = make_cleanup_restore_current_thread ();
2983
2984 /* Determine whether the variable is still around. */
2985 if (var->root->valid_block == NULL || var->root->floating)
2986 within_scope = 1;
2987 else if (var->root->thread_id == 0)
2988 {
2989 /* The program was single-threaded when the variable object was
2990 created. Technically, it's possible that the program became
2991 multi-threaded since then, but we don't support such
2992 scenario yet. */
2993 within_scope = check_scope (var);
2994 }
2995 else
2996 {
2997 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2998 if (in_thread_list (ptid))
2999 {
3000 switch_to_thread (ptid);
3001 within_scope = check_scope (var);
3002 }
3003 }
3004
3005 if (within_scope)
3006 {
3007 /* We need to catch errors here, because if evaluate
3008 expression fails we want to just return NULL. */
3009 gdb_evaluate_expression (var->root->exp, &new_val);
3010 return new_val;
3011 }
3012
3013 do_cleanups (back_to);
3014
3015 return NULL;
3016}
3017
3018static struct value *
3019c_value_of_child (struct varobj *parent, int index)
3020{
3021 struct value *value = NULL;
3022
3023 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3024 return value;
3025}
3026
3027static struct type *
3028c_type_of_child (struct varobj *parent, int index)
3029{
3030 struct type *type = NULL;
3031
3032 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3033 return type;
3034}
3035
3036static char *
3037c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3038{
3039 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3040 it will print out its children instead of "{...}". So we need to
3041 catch that case explicitly. */
3042 struct type *type = get_type (var);
3043
3044 /* If we have a custom formatter, return whatever string it has
3045 produced. */
3046 if (var->pretty_printer && var->print_value)
3047 return xstrdup (var->print_value);
3048
3049 /* Strip top-level references. */
3050 while (TYPE_CODE (type) == TYPE_CODE_REF)
3051 type = check_typedef (TYPE_TARGET_TYPE (type));
3052
3053 switch (TYPE_CODE (type))
3054 {
3055 case TYPE_CODE_STRUCT:
3056 case TYPE_CODE_UNION:
3057 return xstrdup ("{...}");
3058 /* break; */
3059
3060 case TYPE_CODE_ARRAY:
3061 {
3062 char *number;
3063
3064 number = xstrprintf ("[%d]", var->num_children);
3065 return (number);
3066 }
3067 /* break; */
3068
3069 default:
3070 {
3071 if (var->value == NULL)
3072 {
3073 /* This can happen if we attempt to get the value of a struct
3074 member when the parent is an invalid pointer. This is an
3075 error condition, so we should tell the caller. */
3076 return NULL;
3077 }
3078 else
3079 {
3080 if (var->not_fetched && value_lazy (var->value))
3081 /* Frozen variable and no value yet. We don't
3082 implicitly fetch the value. MI response will
3083 use empty string for the value, which is OK. */
3084 return NULL;
3085
3086 gdb_assert (varobj_value_is_changeable_p (var));
3087 gdb_assert (!value_lazy (var->value));
3088
3089 /* If the specified format is the current one,
3090 we can reuse print_value */
3091 if (format == var->format)
3092 return xstrdup (var->print_value);
3093 else
3094 return value_get_print_value (var->value, format, var);
3095 }
3096 }
3097 }
3098}
3099\f
3100
3101/* C++ */
3102
3103static int
3104cplus_number_of_children (struct varobj *var)
3105{
3106 struct type *type;
3107 int children, dont_know;
3108
3109 dont_know = 1;
3110 children = 0;
3111
3112 if (!CPLUS_FAKE_CHILD (var))
3113 {
3114 type = get_value_type (var);
3115 adjust_value_for_child_access (NULL, &type, NULL);
3116
3117 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3118 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3119 {
3120 int kids[3];
3121
3122 cplus_class_num_children (type, kids);
3123 if (kids[v_public] != 0)
3124 children++;
3125 if (kids[v_private] != 0)
3126 children++;
3127 if (kids[v_protected] != 0)
3128 children++;
3129
3130 /* Add any baseclasses */
3131 children += TYPE_N_BASECLASSES (type);
3132 dont_know = 0;
3133
3134 /* FIXME: save children in var */
3135 }
3136 }
3137 else
3138 {
3139 int kids[3];
3140
3141 type = get_value_type (var->parent);
3142 adjust_value_for_child_access (NULL, &type, NULL);
3143
3144 cplus_class_num_children (type, kids);
3145 if (strcmp (var->name, "public") == 0)
3146 children = kids[v_public];
3147 else if (strcmp (var->name, "private") == 0)
3148 children = kids[v_private];
3149 else
3150 children = kids[v_protected];
3151 dont_know = 0;
3152 }
3153
3154 if (dont_know)
3155 children = c_number_of_children (var);
3156
3157 return children;
3158}
3159
3160/* Compute # of public, private, and protected variables in this class.
3161 That means we need to descend into all baseclasses and find out
3162 how many are there, too. */
3163static void
3164cplus_class_num_children (struct type *type, int children[3])
3165{
3166 int i, vptr_fieldno;
3167 struct type *basetype = NULL;
3168
3169 children[v_public] = 0;
3170 children[v_private] = 0;
3171 children[v_protected] = 0;
3172
3173 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3174 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3175 {
3176 /* If we have a virtual table pointer, omit it. Even if virtual
3177 table pointers are not specifically marked in the debug info,
3178 they should be artificial. */
3179 if ((type == basetype && i == vptr_fieldno)
3180 || TYPE_FIELD_ARTIFICIAL (type, i))
3181 continue;
3182
3183 if (TYPE_FIELD_PROTECTED (type, i))
3184 children[v_protected]++;
3185 else if (TYPE_FIELD_PRIVATE (type, i))
3186 children[v_private]++;
3187 else
3188 children[v_public]++;
3189 }
3190}
3191
3192static char *
3193cplus_name_of_variable (struct varobj *parent)
3194{
3195 return c_name_of_variable (parent);
3196}
3197
3198enum accessibility { private_field, protected_field, public_field };
3199
3200/* Check if field INDEX of TYPE has the specified accessibility.
3201 Return 0 if so and 1 otherwise. */
3202static int
3203match_accessibility (struct type *type, int index, enum accessibility acc)
3204{
3205 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3206 return 1;
3207 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3208 return 1;
3209 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3210 && !TYPE_FIELD_PROTECTED (type, index))
3211 return 1;
3212 else
3213 return 0;
3214}
3215
3216static void
3217cplus_describe_child (struct varobj *parent, int index,
3218 char **cname, struct value **cvalue, struct type **ctype,
3219 char **cfull_expression)
3220{
3221 struct value *value;
3222 struct type *type;
3223 int was_ptr;
3224 char *parent_expression = NULL;
3225
3226 if (cname)
3227 *cname = NULL;
3228 if (cvalue)
3229 *cvalue = NULL;
3230 if (ctype)
3231 *ctype = NULL;
3232 if (cfull_expression)
3233 *cfull_expression = NULL;
3234
3235 if (CPLUS_FAKE_CHILD (parent))
3236 {
3237 value = parent->parent->value;
3238 type = get_value_type (parent->parent);
3239 if (cfull_expression)
3240 parent_expression = varobj_get_path_expr (parent->parent);
3241 }
3242 else
3243 {
3244 value = parent->value;
3245 type = get_value_type (parent);
3246 if (cfull_expression)
3247 parent_expression = varobj_get_path_expr (parent);
3248 }
3249
3250 adjust_value_for_child_access (&value, &type, &was_ptr);
3251
3252 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3253 || TYPE_CODE (type) == TYPE_CODE_UNION)
3254 {
3255 char *join = was_ptr ? "->" : ".";
3256
3257 if (CPLUS_FAKE_CHILD (parent))
3258 {
3259 /* The fields of the class type are ordered as they
3260 appear in the class. We are given an index for a
3261 particular access control type ("public","protected",
3262 or "private"). We must skip over fields that don't
3263 have the access control we are looking for to properly
3264 find the indexed field. */
3265 int type_index = TYPE_N_BASECLASSES (type);
3266 enum accessibility acc = public_field;
3267 int vptr_fieldno;
3268 struct type *basetype = NULL;
3269
3270 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3271 if (strcmp (parent->name, "private") == 0)
3272 acc = private_field;
3273 else if (strcmp (parent->name, "protected") == 0)
3274 acc = protected_field;
3275
3276 while (index >= 0)
3277 {
3278 if ((type == basetype && type_index == vptr_fieldno)
3279 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3280 ; /* ignore vptr */
3281 else if (match_accessibility (type, type_index, acc))
3282 --index;
3283 ++type_index;
3284 }
3285 --type_index;
3286
3287 if (cname)
3288 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3289
3290 if (cvalue && value)
3291 *cvalue = value_struct_element_index (value, type_index);
3292
3293 if (ctype)
3294 *ctype = TYPE_FIELD_TYPE (type, type_index);
3295
3296 if (cfull_expression)
3297 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3298 join,
3299 TYPE_FIELD_NAME (type, type_index));
3300 }
3301 else if (index < TYPE_N_BASECLASSES (type))
3302 {
3303 /* This is a baseclass. */
3304 if (cname)
3305 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3306
3307 if (cvalue && value)
3308 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3309
3310 if (ctype)
3311 {
3312 *ctype = TYPE_FIELD_TYPE (type, index);
3313 }
3314
3315 if (cfull_expression)
3316 {
3317 char *ptr = was_ptr ? "*" : "";
3318
3319 /* Cast the parent to the base' type. Note that in gdb,
3320 expression like
3321 (Base1)d
3322 will create an lvalue, for all appearences, so we don't
3323 need to use more fancy:
3324 *(Base1*)(&d)
3325 construct. */
3326 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3327 ptr,
3328 TYPE_FIELD_NAME (type, index),
3329 ptr,
3330 parent_expression);
3331 }
3332 }
3333 else
3334 {
3335 char *access = NULL;
3336 int children[3];
3337
3338 cplus_class_num_children (type, children);
3339
3340 /* Everything beyond the baseclasses can
3341 only be "public", "private", or "protected"
3342
3343 The special "fake" children are always output by varobj in
3344 this order. So if INDEX == 2, it MUST be "protected". */
3345 index -= TYPE_N_BASECLASSES (type);
3346 switch (index)
3347 {
3348 case 0:
3349 if (children[v_public] > 0)
3350 access = "public";
3351 else if (children[v_private] > 0)
3352 access = "private";
3353 else
3354 access = "protected";
3355 break;
3356 case 1:
3357 if (children[v_public] > 0)
3358 {
3359 if (children[v_private] > 0)
3360 access = "private";
3361 else
3362 access = "protected";
3363 }
3364 else if (children[v_private] > 0)
3365 access = "protected";
3366 break;
3367 case 2:
3368 /* Must be protected */
3369 access = "protected";
3370 break;
3371 default:
3372 /* error! */
3373 break;
3374 }
3375
3376 gdb_assert (access);
3377 if (cname)
3378 *cname = xstrdup (access);
3379
3380 /* Value and type and full expression are null here. */
3381 }
3382 }
3383 else
3384 {
3385 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3386 }
3387}
3388
3389static char *
3390cplus_name_of_child (struct varobj *parent, int index)
3391{
3392 char *name = NULL;
3393
3394 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3395 return name;
3396}
3397
3398static char *
3399cplus_path_expr_of_child (struct varobj *child)
3400{
3401 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3402 &child->path_expr);
3403 return child->path_expr;
3404}
3405
3406static struct value *
3407cplus_value_of_root (struct varobj **var_handle)
3408{
3409 return c_value_of_root (var_handle);
3410}
3411
3412static struct value *
3413cplus_value_of_child (struct varobj *parent, int index)
3414{
3415 struct value *value = NULL;
3416
3417 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3418 return value;
3419}
3420
3421static struct type *
3422cplus_type_of_child (struct varobj *parent, int index)
3423{
3424 struct type *type = NULL;
3425
3426 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3427 return type;
3428}
3429
3430static char *
3431cplus_value_of_variable (struct varobj *var,
3432 enum varobj_display_formats format)
3433{
3434
3435 /* If we have one of our special types, don't print out
3436 any value. */
3437 if (CPLUS_FAKE_CHILD (var))
3438 return xstrdup ("");
3439
3440 return c_value_of_variable (var, format);
3441}
3442\f
3443/* Java */
3444
3445static int
3446java_number_of_children (struct varobj *var)
3447{
3448 return cplus_number_of_children (var);
3449}
3450
3451static char *
3452java_name_of_variable (struct varobj *parent)
3453{
3454 char *p, *name;
3455
3456 name = cplus_name_of_variable (parent);
3457 /* If the name has "-" in it, it is because we
3458 needed to escape periods in the name... */
3459 p = name;
3460
3461 while (*p != '\000')
3462 {
3463 if (*p == '-')
3464 *p = '.';
3465 p++;
3466 }
3467
3468 return name;
3469}
3470
3471static char *
3472java_name_of_child (struct varobj *parent, int index)
3473{
3474 char *name, *p;
3475
3476 name = cplus_name_of_child (parent, index);
3477 /* Escape any periods in the name... */
3478 p = name;
3479
3480 while (*p != '\000')
3481 {
3482 if (*p == '.')
3483 *p = '-';
3484 p++;
3485 }
3486
3487 return name;
3488}
3489
3490static char *
3491java_path_expr_of_child (struct varobj *child)
3492{
3493 return NULL;
3494}
3495
3496static struct value *
3497java_value_of_root (struct varobj **var_handle)
3498{
3499 return cplus_value_of_root (var_handle);
3500}
3501
3502static struct value *
3503java_value_of_child (struct varobj *parent, int index)
3504{
3505 return cplus_value_of_child (parent, index);
3506}
3507
3508static struct type *
3509java_type_of_child (struct varobj *parent, int index)
3510{
3511 return cplus_type_of_child (parent, index);
3512}
3513
3514static char *
3515java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3516{
3517 return cplus_value_of_variable (var, format);
3518}
3519
3520/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3521 with an arbitrary caller supplied DATA pointer. */
3522
3523void
3524all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3525{
3526 struct varobj_root *var_root, *var_root_next;
3527
3528 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3529
3530 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3531 {
3532 var_root_next = var_root->next;
3533
3534 (*func) (var_root->rootvar, data);
3535 }
3536}
3537\f
3538extern void _initialize_varobj (void);
3539void
3540_initialize_varobj (void)
3541{
3542 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3543
3544 varobj_table = xmalloc (sizeof_table);
3545 memset (varobj_table, 0, sizeof_table);
3546
3547 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3548 &varobjdebug, _("\
3549Set varobj debugging."), _("\
3550Show varobj debugging."), _("\
3551When non-zero, varobj debugging is enabled."),
3552 NULL,
3553 show_varobjdebug,
3554 &setlist, &showlist);
3555}
3556
3557/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3558 defined on globals. It is a helper for varobj_invalidate. */
3559
3560static void
3561varobj_invalidate_iter (struct varobj *var, void *unused)
3562{
3563 /* Floating varobjs are reparsed on each stop, so we don't care if the
3564 presently parsed expression refers to something that's gone. */
3565 if (var->root->floating)
3566 return;
3567
3568 /* global var must be re-evaluated. */
3569 if (var->root->valid_block == NULL)
3570 {
3571 struct varobj *tmp_var;
3572
3573 /* Try to create a varobj with same expression. If we succeed
3574 replace the old varobj, otherwise invalidate it. */
3575 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3576 USE_CURRENT_FRAME);
3577 if (tmp_var != NULL)
3578 {
3579 tmp_var->obj_name = xstrdup (var->obj_name);
3580 varobj_delete (var, NULL, 0);
3581 install_variable (tmp_var);
3582 }
3583 else
3584 var->root->is_valid = 0;
3585 }
3586 else /* locals must be invalidated. */
3587 var->root->is_valid = 0;
3588}
3589
3590/* Invalidate the varobjs that are tied to locals and re-create the ones that
3591 are defined on globals.
3592 Invalidated varobjs will be always printed in_scope="invalid". */
3593
3594void
3595varobj_invalidate (void)
3596{
3597 all_root_varobjs (varobj_invalidate_iter, NULL);
3598}
This page took 0.036396 seconds and 4 git commands to generate.