| 1 | // dwarf_reader.cc -- parse dwarf2/3 debug information |
| 2 | |
| 3 | // Copyright (C) 2007-2019 Free Software Foundation, Inc. |
| 4 | // Written by Ian Lance Taylor <iant@google.com>. |
| 5 | |
| 6 | // This file is part of gold. |
| 7 | |
| 8 | // This program is free software; you can redistribute it and/or modify |
| 9 | // it under the terms of the GNU General Public License as published by |
| 10 | // the Free Software Foundation; either version 3 of the License, or |
| 11 | // (at your option) any later version. |
| 12 | |
| 13 | // This program is distributed in the hope that it will be useful, |
| 14 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | // GNU General Public License for more details. |
| 17 | |
| 18 | // You should have received a copy of the GNU General Public License |
| 19 | // along with this program; if not, write to the Free Software |
| 20 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| 21 | // MA 02110-1301, USA. |
| 22 | |
| 23 | #include "gold.h" |
| 24 | |
| 25 | #include <algorithm> |
| 26 | #include <utility> |
| 27 | #include <vector> |
| 28 | |
| 29 | #include "elfcpp_swap.h" |
| 30 | #include "dwarf.h" |
| 31 | #include "object.h" |
| 32 | #include "reloc.h" |
| 33 | #include "dwarf_reader.h" |
| 34 | #include "int_encoding.h" |
| 35 | #include "compressed_output.h" |
| 36 | |
| 37 | namespace gold { |
| 38 | |
| 39 | // Class Sized_elf_reloc_mapper |
| 40 | |
| 41 | // Initialize the relocation tracker for section RELOC_SHNDX. |
| 42 | |
| 43 | template<int size, bool big_endian> |
| 44 | bool |
| 45 | Sized_elf_reloc_mapper<size, big_endian>::do_initialize( |
| 46 | unsigned int reloc_shndx, unsigned int reloc_type) |
| 47 | { |
| 48 | this->reloc_type_ = reloc_type; |
| 49 | return this->track_relocs_.initialize(this->object_, reloc_shndx, |
| 50 | reloc_type); |
| 51 | } |
| 52 | |
| 53 | // Looks in the symtab to see what section a symbol is in. |
| 54 | |
| 55 | template<int size, bool big_endian> |
| 56 | unsigned int |
| 57 | Sized_elf_reloc_mapper<size, big_endian>::symbol_section( |
| 58 | unsigned int symndx, Address* value, bool* is_ordinary) |
| 59 | { |
| 60 | const int symsize = elfcpp::Elf_sizes<size>::sym_size; |
| 61 | gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_); |
| 62 | elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize); |
| 63 | *value = elfsym.get_st_value(); |
| 64 | return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(), |
| 65 | is_ordinary); |
| 66 | } |
| 67 | |
| 68 | // Return the section index and offset within the section of |
| 69 | // the target of the relocation for RELOC_OFFSET. |
| 70 | |
| 71 | template<int size, bool big_endian> |
| 72 | unsigned int |
| 73 | Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target( |
| 74 | off_t reloc_offset, off_t* target_offset) |
| 75 | { |
| 76 | this->track_relocs_.advance(reloc_offset); |
| 77 | if (reloc_offset != this->track_relocs_.next_offset()) |
| 78 | return 0; |
| 79 | unsigned int symndx = this->track_relocs_.next_symndx(); |
| 80 | typename elfcpp::Elf_types<size>::Elf_Addr value; |
| 81 | bool is_ordinary; |
| 82 | unsigned int target_shndx = this->symbol_section(symndx, &value, |
| 83 | &is_ordinary); |
| 84 | if (!is_ordinary) |
| 85 | return 0; |
| 86 | if (this->reloc_type_ == elfcpp::SHT_RELA) |
| 87 | value += this->track_relocs_.next_addend(); |
| 88 | *target_offset = value; |
| 89 | return target_shndx; |
| 90 | } |
| 91 | |
| 92 | static inline Elf_reloc_mapper* |
| 93 | make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab, |
| 94 | off_t symtab_size) |
| 95 | { |
| 96 | if (object->elfsize() == 32) |
| 97 | { |
| 98 | if (object->is_big_endian()) |
| 99 | { |
| 100 | #ifdef HAVE_TARGET_32_BIG |
| 101 | return new Sized_elf_reloc_mapper<32, true>(object, symtab, |
| 102 | symtab_size); |
| 103 | #else |
| 104 | gold_unreachable(); |
| 105 | #endif |
| 106 | } |
| 107 | else |
| 108 | { |
| 109 | #ifdef HAVE_TARGET_32_LITTLE |
| 110 | return new Sized_elf_reloc_mapper<32, false>(object, symtab, |
| 111 | symtab_size); |
| 112 | #else |
| 113 | gold_unreachable(); |
| 114 | #endif |
| 115 | } |
| 116 | } |
| 117 | else if (object->elfsize() == 64) |
| 118 | { |
| 119 | if (object->is_big_endian()) |
| 120 | { |
| 121 | #ifdef HAVE_TARGET_64_BIG |
| 122 | return new Sized_elf_reloc_mapper<64, true>(object, symtab, |
| 123 | symtab_size); |
| 124 | #else |
| 125 | gold_unreachable(); |
| 126 | #endif |
| 127 | } |
| 128 | else |
| 129 | { |
| 130 | #ifdef HAVE_TARGET_64_LITTLE |
| 131 | return new Sized_elf_reloc_mapper<64, false>(object, symtab, |
| 132 | symtab_size); |
| 133 | #else |
| 134 | gold_unreachable(); |
| 135 | #endif |
| 136 | } |
| 137 | } |
| 138 | else |
| 139 | gold_unreachable(); |
| 140 | } |
| 141 | |
| 142 | // class Dwarf_abbrev_table |
| 143 | |
| 144 | void |
| 145 | Dwarf_abbrev_table::clear_abbrev_codes() |
| 146 | { |
| 147 | for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code) |
| 148 | { |
| 149 | if (this->low_abbrev_codes_[code] != NULL) |
| 150 | { |
| 151 | delete this->low_abbrev_codes_[code]; |
| 152 | this->low_abbrev_codes_[code] = NULL; |
| 153 | } |
| 154 | } |
| 155 | for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin(); |
| 156 | it != this->high_abbrev_codes_.end(); |
| 157 | ++it) |
| 158 | { |
| 159 | if (it->second != NULL) |
| 160 | delete it->second; |
| 161 | } |
| 162 | this->high_abbrev_codes_.clear(); |
| 163 | } |
| 164 | |
| 165 | // Read the abbrev table from an object file. |
| 166 | |
| 167 | bool |
| 168 | Dwarf_abbrev_table::do_read_abbrevs( |
| 169 | Relobj* object, |
| 170 | unsigned int abbrev_shndx, |
| 171 | off_t abbrev_offset) |
| 172 | { |
| 173 | this->clear_abbrev_codes(); |
| 174 | |
| 175 | // If we don't have relocations, abbrev_shndx will be 0, and |
| 176 | // we'll have to hunt for the .debug_abbrev section. |
| 177 | if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0) |
| 178 | abbrev_shndx = this->abbrev_shndx_; |
| 179 | else if (abbrev_shndx == 0) |
| 180 | { |
| 181 | for (unsigned int i = 1; i < object->shnum(); ++i) |
| 182 | { |
| 183 | std::string name = object->section_name(i); |
| 184 | if (name == ".debug_abbrev" || name == ".zdebug_abbrev") |
| 185 | { |
| 186 | abbrev_shndx = i; |
| 187 | // Correct the offset. For incremental update links, we have a |
| 188 | // relocated offset that is relative to the output section, but |
| 189 | // here we need an offset relative to the input section. |
| 190 | abbrev_offset -= object->output_section_offset(i); |
| 191 | break; |
| 192 | } |
| 193 | } |
| 194 | if (abbrev_shndx == 0) |
| 195 | return false; |
| 196 | } |
| 197 | |
| 198 | // Get the section contents and decompress if necessary. |
| 199 | if (abbrev_shndx != this->abbrev_shndx_) |
| 200 | { |
| 201 | if (this->owns_buffer_ && this->buffer_ != NULL) |
| 202 | { |
| 203 | delete[] this->buffer_; |
| 204 | this->owns_buffer_ = false; |
| 205 | } |
| 206 | |
| 207 | section_size_type buffer_size; |
| 208 | this->buffer_ = |
| 209 | object->decompressed_section_contents(abbrev_shndx, |
| 210 | &buffer_size, |
| 211 | &this->owns_buffer_); |
| 212 | this->buffer_end_ = this->buffer_ + buffer_size; |
| 213 | this->abbrev_shndx_ = abbrev_shndx; |
| 214 | } |
| 215 | |
| 216 | this->buffer_pos_ = this->buffer_ + abbrev_offset; |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | // Lookup the abbrev code entry for CODE. This function is called |
| 221 | // only when the abbrev code is not in the direct lookup table. |
| 222 | // It may be in the hash table, it may not have been read yet, |
| 223 | // or it may not exist in the abbrev table. |
| 224 | |
| 225 | const Dwarf_abbrev_table::Abbrev_code* |
| 226 | Dwarf_abbrev_table::do_get_abbrev(unsigned int code) |
| 227 | { |
| 228 | // See if the abbrev code is already in the hash table. |
| 229 | Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code); |
| 230 | if (it != this->high_abbrev_codes_.end()) |
| 231 | return it->second; |
| 232 | |
| 233 | // Read and store abbrev code definitions until we find the |
| 234 | // one we're looking for. |
| 235 | for (;;) |
| 236 | { |
| 237 | // Read the abbrev code. A zero here indicates the end of the |
| 238 | // abbrev table. |
| 239 | size_t len; |
| 240 | if (this->buffer_pos_ >= this->buffer_end_) |
| 241 | return NULL; |
| 242 | uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| 243 | if (nextcode == 0) |
| 244 | { |
| 245 | this->buffer_pos_ = this->buffer_end_; |
| 246 | return NULL; |
| 247 | } |
| 248 | this->buffer_pos_ += len; |
| 249 | |
| 250 | // Read the tag. |
| 251 | if (this->buffer_pos_ >= this->buffer_end_) |
| 252 | return NULL; |
| 253 | uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| 254 | this->buffer_pos_ += len; |
| 255 | |
| 256 | // Read the has_children flag. |
| 257 | if (this->buffer_pos_ >= this->buffer_end_) |
| 258 | return NULL; |
| 259 | bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes; |
| 260 | this->buffer_pos_ += 1; |
| 261 | |
| 262 | // Read the list of (attribute, form) pairs. |
| 263 | Abbrev_code* entry = new Abbrev_code(tag, has_children); |
| 264 | for (;;) |
| 265 | { |
| 266 | // Read the attribute. |
| 267 | if (this->buffer_pos_ >= this->buffer_end_) |
| 268 | return NULL; |
| 269 | uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| 270 | this->buffer_pos_ += len; |
| 271 | |
| 272 | // Read the form. |
| 273 | if (this->buffer_pos_ >= this->buffer_end_) |
| 274 | return NULL; |
| 275 | uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| 276 | this->buffer_pos_ += len; |
| 277 | |
| 278 | // A (0,0) pair terminates the list. |
| 279 | if (attr == 0 && form == 0) |
| 280 | break; |
| 281 | |
| 282 | if (attr == elfcpp::DW_AT_sibling) |
| 283 | entry->has_sibling_attribute = true; |
| 284 | |
| 285 | entry->add_attribute(attr, form); |
| 286 | } |
| 287 | |
| 288 | this->store_abbrev(nextcode, entry); |
| 289 | if (nextcode == code) |
| 290 | return entry; |
| 291 | } |
| 292 | |
| 293 | return NULL; |
| 294 | } |
| 295 | |
| 296 | // class Dwarf_ranges_table |
| 297 | |
| 298 | // Read the ranges table from an object file. |
| 299 | |
| 300 | bool |
| 301 | Dwarf_ranges_table::read_ranges_table( |
| 302 | Relobj* object, |
| 303 | const unsigned char* symtab, |
| 304 | off_t symtab_size, |
| 305 | unsigned int ranges_shndx) |
| 306 | { |
| 307 | // If we've already read this abbrev table, return immediately. |
| 308 | if (this->ranges_shndx_ > 0 |
| 309 | && this->ranges_shndx_ == ranges_shndx) |
| 310 | return true; |
| 311 | |
| 312 | // If we don't have relocations, ranges_shndx will be 0, and |
| 313 | // we'll have to hunt for the .debug_ranges section. |
| 314 | if (ranges_shndx == 0 && this->ranges_shndx_ > 0) |
| 315 | ranges_shndx = this->ranges_shndx_; |
| 316 | else if (ranges_shndx == 0) |
| 317 | { |
| 318 | for (unsigned int i = 1; i < object->shnum(); ++i) |
| 319 | { |
| 320 | std::string name = object->section_name(i); |
| 321 | if (name == ".debug_ranges" || name == ".zdebug_ranges") |
| 322 | { |
| 323 | ranges_shndx = i; |
| 324 | this->output_section_offset_ = object->output_section_offset(i); |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | if (ranges_shndx == 0) |
| 329 | return false; |
| 330 | } |
| 331 | |
| 332 | // Get the section contents and decompress if necessary. |
| 333 | if (ranges_shndx != this->ranges_shndx_) |
| 334 | { |
| 335 | if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL) |
| 336 | { |
| 337 | delete[] this->ranges_buffer_; |
| 338 | this->owns_ranges_buffer_ = false; |
| 339 | } |
| 340 | |
| 341 | section_size_type buffer_size; |
| 342 | this->ranges_buffer_ = |
| 343 | object->decompressed_section_contents(ranges_shndx, |
| 344 | &buffer_size, |
| 345 | &this->owns_ranges_buffer_); |
| 346 | this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size; |
| 347 | this->ranges_shndx_ = ranges_shndx; |
| 348 | } |
| 349 | |
| 350 | if (this->ranges_reloc_mapper_ != NULL) |
| 351 | { |
| 352 | delete this->ranges_reloc_mapper_; |
| 353 | this->ranges_reloc_mapper_ = NULL; |
| 354 | } |
| 355 | |
| 356 | // For incremental objects, we have no relocations. |
| 357 | if (object->is_incremental()) |
| 358 | return true; |
| 359 | |
| 360 | // Find the relocation section for ".debug_ranges". |
| 361 | unsigned int reloc_shndx = 0; |
| 362 | unsigned int reloc_type = 0; |
| 363 | for (unsigned int i = 0; i < object->shnum(); ++i) |
| 364 | { |
| 365 | reloc_type = object->section_type(i); |
| 366 | if ((reloc_type == elfcpp::SHT_REL |
| 367 | || reloc_type == elfcpp::SHT_RELA) |
| 368 | && object->section_info(i) == ranges_shndx) |
| 369 | { |
| 370 | reloc_shndx = i; |
| 371 | break; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab, |
| 376 | symtab_size); |
| 377 | this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type); |
| 378 | this->reloc_type_ = reloc_type; |
| 379 | |
| 380 | return true; |
| 381 | } |
| 382 | |
| 383 | // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET. |
| 384 | |
| 385 | Dwarf_range_list* |
| 386 | Dwarf_ranges_table::read_range_list( |
| 387 | Relobj* object, |
| 388 | const unsigned char* symtab, |
| 389 | off_t symtab_size, |
| 390 | unsigned int addr_size, |
| 391 | unsigned int ranges_shndx, |
| 392 | off_t offset) |
| 393 | { |
| 394 | Dwarf_range_list* ranges; |
| 395 | |
| 396 | if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx)) |
| 397 | return NULL; |
| 398 | |
| 399 | // Correct the offset. For incremental update links, we have a |
| 400 | // relocated offset that is relative to the output section, but |
| 401 | // here we need an offset relative to the input section. |
| 402 | offset -= this->output_section_offset_; |
| 403 | |
| 404 | // Read the range list at OFFSET. |
| 405 | ranges = new Dwarf_range_list(); |
| 406 | off_t base = 0; |
| 407 | for (; |
| 408 | this->ranges_buffer_ + offset < this->ranges_buffer_end_; |
| 409 | offset += 2 * addr_size) |
| 410 | { |
| 411 | off_t start; |
| 412 | off_t end; |
| 413 | |
| 414 | // Read the raw contents of the section. |
| 415 | if (addr_size == 4) |
| 416 | { |
| 417 | start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_ |
| 418 | + offset); |
| 419 | end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_ |
| 420 | + offset + 4); |
| 421 | } |
| 422 | else |
| 423 | { |
| 424 | start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_ |
| 425 | + offset); |
| 426 | end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_ |
| 427 | + offset + 8); |
| 428 | } |
| 429 | |
| 430 | // Check for relocations and adjust the values. |
| 431 | unsigned int shndx1 = 0; |
| 432 | unsigned int shndx2 = 0; |
| 433 | if (this->ranges_reloc_mapper_ != NULL) |
| 434 | { |
| 435 | shndx1 = this->lookup_reloc(offset, &start); |
| 436 | shndx2 = this->lookup_reloc(offset + addr_size, &end); |
| 437 | } |
| 438 | |
| 439 | // End of list is marked by a pair of zeroes. |
| 440 | if (shndx1 == 0 && start == 0 && end == 0) |
| 441 | break; |
| 442 | |
| 443 | // A "base address selection entry" is identified by |
| 444 | // 0xffffffff for the first value of the pair. The second |
| 445 | // value is used as a base for subsequent range list entries. |
| 446 | if (shndx1 == 0 && start == -1) |
| 447 | base = end; |
| 448 | else if (shndx1 == shndx2) |
| 449 | { |
| 450 | if (shndx1 == 0 || object->is_section_included(shndx1)) |
| 451 | ranges->add(shndx1, base + start, base + end); |
| 452 | } |
| 453 | else |
| 454 | gold_warning(_("%s: DWARF info may be corrupt; offsets in a " |
| 455 | "range list entry are in different sections"), |
| 456 | object->name().c_str()); |
| 457 | } |
| 458 | |
| 459 | return ranges; |
| 460 | } |
| 461 | |
| 462 | // Look for a relocation at offset OFF in the range table, |
| 463 | // and return the section index and offset of the target. |
| 464 | |
| 465 | unsigned int |
| 466 | Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off) |
| 467 | { |
| 468 | off_t value; |
| 469 | unsigned int shndx = |
| 470 | this->ranges_reloc_mapper_->get_reloc_target(off, &value); |
| 471 | if (shndx == 0) |
| 472 | return 0; |
| 473 | if (this->reloc_type_ == elfcpp::SHT_REL) |
| 474 | *target_off += value; |
| 475 | else |
| 476 | *target_off = value; |
| 477 | return shndx; |
| 478 | } |
| 479 | |
| 480 | // class Dwarf_pubnames_table |
| 481 | |
| 482 | // Read the pubnames section from the object file. |
| 483 | |
| 484 | bool |
| 485 | Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab, |
| 486 | off_t symtab_size) |
| 487 | { |
| 488 | section_size_type buffer_size; |
| 489 | unsigned int shndx = 0; |
| 490 | const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames"; |
| 491 | const char* gnu_name = (this->is_pubtypes_ |
| 492 | ? "gnu_pubtypes" |
| 493 | : "gnu_pubnames"); |
| 494 | |
| 495 | for (unsigned int i = 1; i < object->shnum(); ++i) |
| 496 | { |
| 497 | std::string section_name = object->section_name(i); |
| 498 | const char* section_name_suffix = section_name.c_str(); |
| 499 | if (is_prefix_of(".debug_", section_name_suffix)) |
| 500 | section_name_suffix += 7; |
| 501 | else if (is_prefix_of(".zdebug_", section_name_suffix)) |
| 502 | section_name_suffix += 8; |
| 503 | else |
| 504 | continue; |
| 505 | if (strcmp(section_name_suffix, name) == 0) |
| 506 | { |
| 507 | shndx = i; |
| 508 | break; |
| 509 | } |
| 510 | else if (strcmp(section_name_suffix, gnu_name) == 0) |
| 511 | { |
| 512 | shndx = i; |
| 513 | this->is_gnu_style_ = true; |
| 514 | break; |
| 515 | } |
| 516 | } |
| 517 | if (shndx == 0) |
| 518 | return false; |
| 519 | |
| 520 | this->buffer_ = object->decompressed_section_contents(shndx, |
| 521 | &buffer_size, |
| 522 | &this->owns_buffer_); |
| 523 | if (this->buffer_ == NULL) |
| 524 | return false; |
| 525 | this->buffer_end_ = this->buffer_ + buffer_size; |
| 526 | |
| 527 | // For incremental objects, we have no relocations. |
| 528 | if (object->is_incremental()) |
| 529 | return true; |
| 530 | |
| 531 | // Find the relocation section |
| 532 | unsigned int reloc_shndx = 0; |
| 533 | unsigned int reloc_type = 0; |
| 534 | for (unsigned int i = 0; i < object->shnum(); ++i) |
| 535 | { |
| 536 | reloc_type = object->section_type(i); |
| 537 | if ((reloc_type == elfcpp::SHT_REL |
| 538 | || reloc_type == elfcpp::SHT_RELA) |
| 539 | && object->section_info(i) == shndx) |
| 540 | { |
| 541 | reloc_shndx = i; |
| 542 | break; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size); |
| 547 | this->reloc_mapper_->initialize(reloc_shndx, reloc_type); |
| 548 | this->reloc_type_ = reloc_type; |
| 549 | |
| 550 | return true; |
| 551 | } |
| 552 | |
| 553 | // Read the header for the set at OFFSET. |
| 554 | |
| 555 | bool |
| 556 | Dwarf_pubnames_table::read_header(off_t offset) |
| 557 | { |
| 558 | // Make sure we have actually read the section. |
| 559 | gold_assert(this->buffer_ != NULL); |
| 560 | |
| 561 | if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_) |
| 562 | return false; |
| 563 | |
| 564 | const unsigned char* pinfo = this->buffer_ + offset; |
| 565 | |
| 566 | // Read the unit_length field. |
| 567 | uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo); |
| 568 | pinfo += 4; |
| 569 | if (unit_length == 0xffffffff) |
| 570 | { |
| 571 | unit_length = this->dwinfo_->read_from_pointer<64>(pinfo); |
| 572 | this->unit_length_ = unit_length + 12; |
| 573 | pinfo += 8; |
| 574 | this->offset_size_ = 8; |
| 575 | } |
| 576 | else |
| 577 | { |
| 578 | this->unit_length_ = unit_length + 4; |
| 579 | this->offset_size_ = 4; |
| 580 | } |
| 581 | this->end_of_table_ = pinfo + unit_length; |
| 582 | |
| 583 | // If unit_length is too big, maybe we should reject the whole table, |
| 584 | // but in cases we know about, it seems OK to assume that the table |
| 585 | // is valid through the actual end of the section. |
| 586 | if (this->end_of_table_ > this->buffer_end_) |
| 587 | this->end_of_table_ = this->buffer_end_; |
| 588 | |
| 589 | // Check the version. |
| 590 | unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo); |
| 591 | pinfo += 2; |
| 592 | if (version != 2) |
| 593 | return false; |
| 594 | |
| 595 | this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_, |
| 596 | &this->cu_offset_); |
| 597 | |
| 598 | // Skip the debug_info_offset and debug_info_size fields. |
| 599 | pinfo += 2 * this->offset_size_; |
| 600 | |
| 601 | if (pinfo >= this->buffer_end_) |
| 602 | return false; |
| 603 | |
| 604 | this->pinfo_ = pinfo; |
| 605 | return true; |
| 606 | } |
| 607 | |
| 608 | // Read the next name from the set. |
| 609 | |
| 610 | const char* |
| 611 | Dwarf_pubnames_table::next_name(uint8_t* flag_byte) |
| 612 | { |
| 613 | const unsigned char* pinfo = this->pinfo_; |
| 614 | |
| 615 | // Check for end of list. The table should be terminated by an |
| 616 | // entry containing nothing but a DIE offset of 0. |
| 617 | if (pinfo + this->offset_size_ >= this->end_of_table_) |
| 618 | return NULL; |
| 619 | |
| 620 | // Skip the offset within the CU. If this is zero, but we're not |
| 621 | // at the end of the table, then we have a real pubnames entry |
| 622 | // whose DIE offset is 0 (likely to be a GCC bug). Since we |
| 623 | // don't actually use the DIE offset in building .gdb_index, |
| 624 | // it's harmless. |
| 625 | pinfo += this->offset_size_; |
| 626 | |
| 627 | if (this->is_gnu_style_) |
| 628 | *flag_byte = *pinfo++; |
| 629 | else |
| 630 | *flag_byte = 0; |
| 631 | |
| 632 | // Return a pointer to the string at the current location, |
| 633 | // and advance the pointer to the next entry. |
| 634 | const char* ret = reinterpret_cast<const char*>(pinfo); |
| 635 | while (pinfo < this->buffer_end_ && *pinfo != '\0') |
| 636 | ++pinfo; |
| 637 | if (pinfo < this->buffer_end_) |
| 638 | ++pinfo; |
| 639 | |
| 640 | this->pinfo_ = pinfo; |
| 641 | return ret; |
| 642 | } |
| 643 | |
| 644 | // class Dwarf_die |
| 645 | |
| 646 | Dwarf_die::Dwarf_die( |
| 647 | Dwarf_info_reader* dwinfo, |
| 648 | off_t die_offset, |
| 649 | Dwarf_die* parent) |
| 650 | : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset), |
| 651 | child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(), |
| 652 | attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL), |
| 653 | linkage_name_off_(-1), string_shndx_(0), specification_(0), |
| 654 | abstract_origin_(0) |
| 655 | { |
| 656 | size_t len; |
| 657 | const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset); |
| 658 | if (pdie == NULL) |
| 659 | return; |
| 660 | unsigned int code = read_unsigned_LEB_128(pdie, &len); |
| 661 | if (code == 0) |
| 662 | { |
| 663 | if (parent != NULL) |
| 664 | parent->set_sibling_offset(die_offset + len); |
| 665 | return; |
| 666 | } |
| 667 | this->attr_offset_ = len; |
| 668 | |
| 669 | // Lookup the abbrev code in the abbrev table. |
| 670 | this->abbrev_code_ = dwinfo->get_abbrev(code); |
| 671 | } |
| 672 | |
| 673 | // Read all the attributes of the DIE. |
| 674 | |
| 675 | bool |
| 676 | Dwarf_die::read_attributes() |
| 677 | { |
| 678 | if (this->attributes_read_) |
| 679 | return true; |
| 680 | |
| 681 | gold_assert(this->abbrev_code_ != NULL); |
| 682 | |
| 683 | const unsigned char* pdie = |
| 684 | this->dwinfo_->buffer_at_offset(this->die_offset_); |
| 685 | if (pdie == NULL) |
| 686 | return false; |
| 687 | const unsigned char* pattr = pdie + this->attr_offset_; |
| 688 | |
| 689 | unsigned int nattr = this->abbrev_code_->attributes.size(); |
| 690 | this->attributes_.reserve(nattr); |
| 691 | for (unsigned int i = 0; i < nattr; ++i) |
| 692 | { |
| 693 | size_t len; |
| 694 | unsigned int attr = this->abbrev_code_->attributes[i].attr; |
| 695 | unsigned int form = this->abbrev_code_->attributes[i].form; |
| 696 | if (form == elfcpp::DW_FORM_indirect) |
| 697 | { |
| 698 | form = read_unsigned_LEB_128(pattr, &len); |
| 699 | pattr += len; |
| 700 | } |
| 701 | off_t attr_off = this->die_offset_ + (pattr - pdie); |
| 702 | bool ref_form = false; |
| 703 | Attribute_value attr_value; |
| 704 | attr_value.attr = attr; |
| 705 | attr_value.form = form; |
| 706 | attr_value.aux.shndx = 0; |
| 707 | switch(form) |
| 708 | { |
| 709 | case elfcpp::DW_FORM_flag_present: |
| 710 | attr_value.val.intval = 1; |
| 711 | break; |
| 712 | case elfcpp::DW_FORM_strp: |
| 713 | { |
| 714 | off_t str_off; |
| 715 | if (this->dwinfo_->offset_size() == 4) |
| 716 | str_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 717 | else |
| 718 | str_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| 719 | unsigned int shndx = |
| 720 | this->dwinfo_->lookup_reloc(attr_off, &str_off); |
| 721 | attr_value.aux.shndx = shndx; |
| 722 | attr_value.val.refval = str_off; |
| 723 | break; |
| 724 | } |
| 725 | case elfcpp::DW_FORM_sec_offset: |
| 726 | { |
| 727 | off_t sec_off; |
| 728 | if (this->dwinfo_->offset_size() == 4) |
| 729 | sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 730 | else |
| 731 | sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| 732 | unsigned int shndx = |
| 733 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 734 | attr_value.aux.shndx = shndx; |
| 735 | attr_value.val.refval = sec_off; |
| 736 | ref_form = true; |
| 737 | break; |
| 738 | } |
| 739 | case elfcpp::DW_FORM_addr: |
| 740 | { |
| 741 | off_t sec_off; |
| 742 | if (this->dwinfo_->address_size() == 4) |
| 743 | sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 744 | else |
| 745 | sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| 746 | unsigned int shndx = |
| 747 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 748 | attr_value.aux.shndx = shndx; |
| 749 | attr_value.val.refval = sec_off; |
| 750 | ref_form = true; |
| 751 | break; |
| 752 | } |
| 753 | case elfcpp::DW_FORM_ref_addr: |
| 754 | { |
| 755 | off_t sec_off; |
| 756 | if (this->dwinfo_->ref_addr_size() == 4) |
| 757 | sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 758 | else |
| 759 | sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| 760 | unsigned int shndx = |
| 761 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 762 | attr_value.aux.shndx = shndx; |
| 763 | attr_value.val.refval = sec_off; |
| 764 | ref_form = true; |
| 765 | break; |
| 766 | } |
| 767 | case elfcpp::DW_FORM_block1: |
| 768 | attr_value.aux.blocklen = *pattr++; |
| 769 | attr_value.val.blockval = pattr; |
| 770 | pattr += attr_value.aux.blocklen; |
| 771 | break; |
| 772 | case elfcpp::DW_FORM_block2: |
| 773 | attr_value.aux.blocklen = |
| 774 | this->dwinfo_->read_from_pointer<16>(&pattr); |
| 775 | attr_value.val.blockval = pattr; |
| 776 | pattr += attr_value.aux.blocklen; |
| 777 | break; |
| 778 | case elfcpp::DW_FORM_block4: |
| 779 | attr_value.aux.blocklen = |
| 780 | this->dwinfo_->read_from_pointer<32>(&pattr); |
| 781 | attr_value.val.blockval = pattr; |
| 782 | pattr += attr_value.aux.blocklen; |
| 783 | break; |
| 784 | case elfcpp::DW_FORM_block: |
| 785 | case elfcpp::DW_FORM_exprloc: |
| 786 | attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len); |
| 787 | attr_value.val.blockval = pattr + len; |
| 788 | pattr += len + attr_value.aux.blocklen; |
| 789 | break; |
| 790 | case elfcpp::DW_FORM_data1: |
| 791 | case elfcpp::DW_FORM_flag: |
| 792 | attr_value.val.intval = *pattr++; |
| 793 | break; |
| 794 | case elfcpp::DW_FORM_ref1: |
| 795 | attr_value.val.refval = *pattr++; |
| 796 | ref_form = true; |
| 797 | break; |
| 798 | case elfcpp::DW_FORM_data2: |
| 799 | attr_value.val.intval = |
| 800 | this->dwinfo_->read_from_pointer<16>(&pattr); |
| 801 | break; |
| 802 | case elfcpp::DW_FORM_ref2: |
| 803 | attr_value.val.refval = |
| 804 | this->dwinfo_->read_from_pointer<16>(&pattr); |
| 805 | ref_form = true; |
| 806 | break; |
| 807 | case elfcpp::DW_FORM_data4: |
| 808 | { |
| 809 | off_t sec_off; |
| 810 | sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 811 | unsigned int shndx = |
| 812 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 813 | attr_value.aux.shndx = shndx; |
| 814 | attr_value.val.intval = sec_off; |
| 815 | break; |
| 816 | } |
| 817 | case elfcpp::DW_FORM_ref4: |
| 818 | { |
| 819 | off_t sec_off; |
| 820 | sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 821 | unsigned int shndx = |
| 822 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 823 | attr_value.aux.shndx = shndx; |
| 824 | attr_value.val.refval = sec_off; |
| 825 | ref_form = true; |
| 826 | break; |
| 827 | } |
| 828 | case elfcpp::DW_FORM_data8: |
| 829 | { |
| 830 | off_t sec_off; |
| 831 | sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| 832 | unsigned int shndx = |
| 833 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 834 | attr_value.aux.shndx = shndx; |
| 835 | attr_value.val.intval = sec_off; |
| 836 | break; |
| 837 | } |
| 838 | case elfcpp::DW_FORM_ref_sig8: |
| 839 | attr_value.val.uintval = |
| 840 | this->dwinfo_->read_from_pointer<64>(&pattr); |
| 841 | break; |
| 842 | case elfcpp::DW_FORM_ref8: |
| 843 | { |
| 844 | off_t sec_off; |
| 845 | sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| 846 | unsigned int shndx = |
| 847 | this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| 848 | attr_value.aux.shndx = shndx; |
| 849 | attr_value.val.refval = sec_off; |
| 850 | ref_form = true; |
| 851 | break; |
| 852 | } |
| 853 | case elfcpp::DW_FORM_ref_udata: |
| 854 | attr_value.val.refval = read_unsigned_LEB_128(pattr, &len); |
| 855 | ref_form = true; |
| 856 | pattr += len; |
| 857 | break; |
| 858 | case elfcpp::DW_FORM_udata: |
| 859 | case elfcpp::DW_FORM_GNU_addr_index: |
| 860 | case elfcpp::DW_FORM_GNU_str_index: |
| 861 | attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len); |
| 862 | pattr += len; |
| 863 | break; |
| 864 | case elfcpp::DW_FORM_sdata: |
| 865 | attr_value.val.intval = read_signed_LEB_128(pattr, &len); |
| 866 | pattr += len; |
| 867 | break; |
| 868 | case elfcpp::DW_FORM_string: |
| 869 | attr_value.val.stringval = reinterpret_cast<const char*>(pattr); |
| 870 | len = strlen(attr_value.val.stringval); |
| 871 | pattr += len + 1; |
| 872 | break; |
| 873 | default: |
| 874 | return false; |
| 875 | } |
| 876 | |
| 877 | // Cache the most frequently-requested attributes. |
| 878 | switch (attr) |
| 879 | { |
| 880 | case elfcpp::DW_AT_name: |
| 881 | if (form == elfcpp::DW_FORM_string) |
| 882 | this->name_ = attr_value.val.stringval; |
| 883 | else if (form == elfcpp::DW_FORM_strp) |
| 884 | { |
| 885 | // All indirect strings should refer to the same |
| 886 | // string section, so we just save the last one seen. |
| 887 | this->string_shndx_ = attr_value.aux.shndx; |
| 888 | this->name_off_ = attr_value.val.refval; |
| 889 | } |
| 890 | break; |
| 891 | case elfcpp::DW_AT_linkage_name: |
| 892 | case elfcpp::DW_AT_MIPS_linkage_name: |
| 893 | if (form == elfcpp::DW_FORM_string) |
| 894 | this->linkage_name_ = attr_value.val.stringval; |
| 895 | else if (form == elfcpp::DW_FORM_strp) |
| 896 | { |
| 897 | // All indirect strings should refer to the same |
| 898 | // string section, so we just save the last one seen. |
| 899 | this->string_shndx_ = attr_value.aux.shndx; |
| 900 | this->linkage_name_off_ = attr_value.val.refval; |
| 901 | } |
| 902 | break; |
| 903 | case elfcpp::DW_AT_specification: |
| 904 | if (ref_form) |
| 905 | this->specification_ = attr_value.val.refval; |
| 906 | break; |
| 907 | case elfcpp::DW_AT_abstract_origin: |
| 908 | if (ref_form) |
| 909 | this->abstract_origin_ = attr_value.val.refval; |
| 910 | break; |
| 911 | case elfcpp::DW_AT_sibling: |
| 912 | if (ref_form && attr_value.aux.shndx == 0) |
| 913 | this->sibling_offset_ = attr_value.val.refval; |
| 914 | default: |
| 915 | break; |
| 916 | } |
| 917 | |
| 918 | this->attributes_.push_back(attr_value); |
| 919 | } |
| 920 | |
| 921 | // Now that we know where the next DIE begins, record the offset |
| 922 | // to avoid later recalculation. |
| 923 | if (this->has_children()) |
| 924 | this->child_offset_ = this->die_offset_ + (pattr - pdie); |
| 925 | else |
| 926 | this->sibling_offset_ = this->die_offset_ + (pattr - pdie); |
| 927 | |
| 928 | this->attributes_read_ = true; |
| 929 | return true; |
| 930 | } |
| 931 | |
| 932 | // Skip all the attributes of the DIE and return the offset of the next DIE. |
| 933 | |
| 934 | off_t |
| 935 | Dwarf_die::skip_attributes() |
| 936 | { |
| 937 | gold_assert(this->abbrev_code_ != NULL); |
| 938 | |
| 939 | const unsigned char* pdie = |
| 940 | this->dwinfo_->buffer_at_offset(this->die_offset_); |
| 941 | if (pdie == NULL) |
| 942 | return 0; |
| 943 | const unsigned char* pattr = pdie + this->attr_offset_; |
| 944 | |
| 945 | for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i) |
| 946 | { |
| 947 | size_t len; |
| 948 | unsigned int form = this->abbrev_code_->attributes[i].form; |
| 949 | if (form == elfcpp::DW_FORM_indirect) |
| 950 | { |
| 951 | form = read_unsigned_LEB_128(pattr, &len); |
| 952 | pattr += len; |
| 953 | } |
| 954 | switch(form) |
| 955 | { |
| 956 | case elfcpp::DW_FORM_flag_present: |
| 957 | break; |
| 958 | case elfcpp::DW_FORM_strp: |
| 959 | case elfcpp::DW_FORM_sec_offset: |
| 960 | pattr += this->dwinfo_->offset_size(); |
| 961 | break; |
| 962 | case elfcpp::DW_FORM_addr: |
| 963 | pattr += this->dwinfo_->address_size(); |
| 964 | break; |
| 965 | case elfcpp::DW_FORM_ref_addr: |
| 966 | pattr += this->dwinfo_->ref_addr_size(); |
| 967 | break; |
| 968 | case elfcpp::DW_FORM_block1: |
| 969 | pattr += 1 + *pattr; |
| 970 | break; |
| 971 | case elfcpp::DW_FORM_block2: |
| 972 | { |
| 973 | uint16_t block_size; |
| 974 | block_size = this->dwinfo_->read_from_pointer<16>(&pattr); |
| 975 | pattr += block_size; |
| 976 | break; |
| 977 | } |
| 978 | case elfcpp::DW_FORM_block4: |
| 979 | { |
| 980 | uint32_t block_size; |
| 981 | block_size = this->dwinfo_->read_from_pointer<32>(&pattr); |
| 982 | pattr += block_size; |
| 983 | break; |
| 984 | } |
| 985 | case elfcpp::DW_FORM_block: |
| 986 | case elfcpp::DW_FORM_exprloc: |
| 987 | { |
| 988 | uint64_t block_size; |
| 989 | block_size = read_unsigned_LEB_128(pattr, &len); |
| 990 | pattr += len + block_size; |
| 991 | break; |
| 992 | } |
| 993 | case elfcpp::DW_FORM_data1: |
| 994 | case elfcpp::DW_FORM_ref1: |
| 995 | case elfcpp::DW_FORM_flag: |
| 996 | pattr += 1; |
| 997 | break; |
| 998 | case elfcpp::DW_FORM_data2: |
| 999 | case elfcpp::DW_FORM_ref2: |
| 1000 | pattr += 2; |
| 1001 | break; |
| 1002 | case elfcpp::DW_FORM_data4: |
| 1003 | case elfcpp::DW_FORM_ref4: |
| 1004 | pattr += 4; |
| 1005 | break; |
| 1006 | case elfcpp::DW_FORM_data8: |
| 1007 | case elfcpp::DW_FORM_ref8: |
| 1008 | case elfcpp::DW_FORM_ref_sig8: |
| 1009 | pattr += 8; |
| 1010 | break; |
| 1011 | case elfcpp::DW_FORM_ref_udata: |
| 1012 | case elfcpp::DW_FORM_udata: |
| 1013 | case elfcpp::DW_FORM_GNU_addr_index: |
| 1014 | case elfcpp::DW_FORM_GNU_str_index: |
| 1015 | read_unsigned_LEB_128(pattr, &len); |
| 1016 | pattr += len; |
| 1017 | break; |
| 1018 | case elfcpp::DW_FORM_sdata: |
| 1019 | read_signed_LEB_128(pattr, &len); |
| 1020 | pattr += len; |
| 1021 | break; |
| 1022 | case elfcpp::DW_FORM_string: |
| 1023 | len = strlen(reinterpret_cast<const char*>(pattr)); |
| 1024 | pattr += len + 1; |
| 1025 | break; |
| 1026 | default: |
| 1027 | return 0; |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | return this->die_offset_ + (pattr - pdie); |
| 1032 | } |
| 1033 | |
| 1034 | // Get the name of the DIE and cache it. |
| 1035 | |
| 1036 | void |
| 1037 | Dwarf_die::set_name() |
| 1038 | { |
| 1039 | if (this->name_ != NULL || !this->read_attributes()) |
| 1040 | return; |
| 1041 | if (this->name_off_ != -1) |
| 1042 | this->name_ = this->dwinfo_->get_string(this->name_off_, |
| 1043 | this->string_shndx_); |
| 1044 | } |
| 1045 | |
| 1046 | // Get the linkage name of the DIE and cache it. |
| 1047 | |
| 1048 | void |
| 1049 | Dwarf_die::set_linkage_name() |
| 1050 | { |
| 1051 | if (this->linkage_name_ != NULL || !this->read_attributes()) |
| 1052 | return; |
| 1053 | if (this->linkage_name_off_ != -1) |
| 1054 | this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_, |
| 1055 | this->string_shndx_); |
| 1056 | } |
| 1057 | |
| 1058 | // Return the value of attribute ATTR. |
| 1059 | |
| 1060 | const Dwarf_die::Attribute_value* |
| 1061 | Dwarf_die::attribute(unsigned int attr) |
| 1062 | { |
| 1063 | if (!this->read_attributes()) |
| 1064 | return NULL; |
| 1065 | for (unsigned int i = 0; i < this->attributes_.size(); ++i) |
| 1066 | { |
| 1067 | if (this->attributes_[i].attr == attr) |
| 1068 | return &this->attributes_[i]; |
| 1069 | } |
| 1070 | return NULL; |
| 1071 | } |
| 1072 | |
| 1073 | const char* |
| 1074 | Dwarf_die::string_attribute(unsigned int attr) |
| 1075 | { |
| 1076 | const Attribute_value* attr_val = this->attribute(attr); |
| 1077 | if (attr_val == NULL) |
| 1078 | return NULL; |
| 1079 | switch (attr_val->form) |
| 1080 | { |
| 1081 | case elfcpp::DW_FORM_string: |
| 1082 | return attr_val->val.stringval; |
| 1083 | case elfcpp::DW_FORM_strp: |
| 1084 | return this->dwinfo_->get_string(attr_val->val.refval, |
| 1085 | attr_val->aux.shndx); |
| 1086 | default: |
| 1087 | return NULL; |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | int64_t |
| 1092 | Dwarf_die::int_attribute(unsigned int attr) |
| 1093 | { |
| 1094 | const Attribute_value* attr_val = this->attribute(attr); |
| 1095 | if (attr_val == NULL) |
| 1096 | return 0; |
| 1097 | switch (attr_val->form) |
| 1098 | { |
| 1099 | case elfcpp::DW_FORM_flag_present: |
| 1100 | case elfcpp::DW_FORM_data1: |
| 1101 | case elfcpp::DW_FORM_flag: |
| 1102 | case elfcpp::DW_FORM_data2: |
| 1103 | case elfcpp::DW_FORM_data4: |
| 1104 | case elfcpp::DW_FORM_data8: |
| 1105 | case elfcpp::DW_FORM_sdata: |
| 1106 | return attr_val->val.intval; |
| 1107 | default: |
| 1108 | return 0; |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | uint64_t |
| 1113 | Dwarf_die::uint_attribute(unsigned int attr) |
| 1114 | { |
| 1115 | const Attribute_value* attr_val = this->attribute(attr); |
| 1116 | if (attr_val == NULL) |
| 1117 | return 0; |
| 1118 | switch (attr_val->form) |
| 1119 | { |
| 1120 | case elfcpp::DW_FORM_flag_present: |
| 1121 | case elfcpp::DW_FORM_data1: |
| 1122 | case elfcpp::DW_FORM_flag: |
| 1123 | case elfcpp::DW_FORM_data4: |
| 1124 | case elfcpp::DW_FORM_data8: |
| 1125 | case elfcpp::DW_FORM_ref_sig8: |
| 1126 | case elfcpp::DW_FORM_udata: |
| 1127 | return attr_val->val.uintval; |
| 1128 | default: |
| 1129 | return 0; |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | off_t |
| 1134 | Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx) |
| 1135 | { |
| 1136 | const Attribute_value* attr_val = this->attribute(attr); |
| 1137 | if (attr_val == NULL) |
| 1138 | return -1; |
| 1139 | switch (attr_val->form) |
| 1140 | { |
| 1141 | case elfcpp::DW_FORM_sec_offset: |
| 1142 | case elfcpp::DW_FORM_addr: |
| 1143 | case elfcpp::DW_FORM_ref_addr: |
| 1144 | case elfcpp::DW_FORM_ref1: |
| 1145 | case elfcpp::DW_FORM_ref2: |
| 1146 | case elfcpp::DW_FORM_ref4: |
| 1147 | case elfcpp::DW_FORM_ref8: |
| 1148 | case elfcpp::DW_FORM_ref_udata: |
| 1149 | *shndx = attr_val->aux.shndx; |
| 1150 | return attr_val->val.refval; |
| 1151 | case elfcpp::DW_FORM_ref_sig8: |
| 1152 | *shndx = attr_val->aux.shndx; |
| 1153 | return attr_val->val.uintval; |
| 1154 | case elfcpp::DW_FORM_data4: |
| 1155 | case elfcpp::DW_FORM_data8: |
| 1156 | *shndx = attr_val->aux.shndx; |
| 1157 | return attr_val->val.intval; |
| 1158 | default: |
| 1159 | return -1; |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | off_t |
| 1164 | Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx) |
| 1165 | { |
| 1166 | const Attribute_value* attr_val = this->attribute(attr); |
| 1167 | if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr) |
| 1168 | return -1; |
| 1169 | |
| 1170 | *shndx = attr_val->aux.shndx; |
| 1171 | return attr_val->val.refval; |
| 1172 | } |
| 1173 | |
| 1174 | // Return the offset of this DIE's first child. |
| 1175 | |
| 1176 | off_t |
| 1177 | Dwarf_die::child_offset() |
| 1178 | { |
| 1179 | gold_assert(this->abbrev_code_ != NULL); |
| 1180 | if (!this->has_children()) |
| 1181 | return 0; |
| 1182 | if (this->child_offset_ == 0) |
| 1183 | this->child_offset_ = this->skip_attributes(); |
| 1184 | return this->child_offset_; |
| 1185 | } |
| 1186 | |
| 1187 | // Return the offset of this DIE's next sibling. |
| 1188 | |
| 1189 | off_t |
| 1190 | Dwarf_die::sibling_offset() |
| 1191 | { |
| 1192 | gold_assert(this->abbrev_code_ != NULL); |
| 1193 | |
| 1194 | if (this->sibling_offset_ != 0) |
| 1195 | return this->sibling_offset_; |
| 1196 | |
| 1197 | if (!this->has_children()) |
| 1198 | { |
| 1199 | this->sibling_offset_ = this->skip_attributes(); |
| 1200 | return this->sibling_offset_; |
| 1201 | } |
| 1202 | |
| 1203 | if (this->has_sibling_attribute()) |
| 1204 | { |
| 1205 | if (!this->read_attributes()) |
| 1206 | return 0; |
| 1207 | if (this->sibling_offset_ != 0) |
| 1208 | return this->sibling_offset_; |
| 1209 | } |
| 1210 | |
| 1211 | // Skip over the children. |
| 1212 | off_t child_offset = this->child_offset(); |
| 1213 | while (child_offset > 0) |
| 1214 | { |
| 1215 | Dwarf_die die(this->dwinfo_, child_offset, this); |
| 1216 | // The Dwarf_die ctor will set this DIE's sibling offset |
| 1217 | // when it reads a zero abbrev code. |
| 1218 | if (die.tag() == 0) |
| 1219 | break; |
| 1220 | child_offset = die.sibling_offset(); |
| 1221 | } |
| 1222 | |
| 1223 | // This should be set by now. If not, there was a problem reading |
| 1224 | // the DWARF info, and we return 0. |
| 1225 | return this->sibling_offset_; |
| 1226 | } |
| 1227 | |
| 1228 | // class Dwarf_info_reader |
| 1229 | |
| 1230 | // Begin parsing the debug info. This calls visit_compilation_unit() |
| 1231 | // or visit_type_unit() for each compilation or type unit found in the |
| 1232 | // section, and visit_die() for each top-level DIE. |
| 1233 | |
| 1234 | void |
| 1235 | Dwarf_info_reader::parse() |
| 1236 | { |
| 1237 | if (this->object_->is_big_endian()) |
| 1238 | { |
| 1239 | #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) |
| 1240 | this->do_parse<true>(); |
| 1241 | #else |
| 1242 | gold_unreachable(); |
| 1243 | #endif |
| 1244 | } |
| 1245 | else |
| 1246 | { |
| 1247 | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) |
| 1248 | this->do_parse<false>(); |
| 1249 | #else |
| 1250 | gold_unreachable(); |
| 1251 | #endif |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | template<bool big_endian> |
| 1256 | void |
| 1257 | Dwarf_info_reader::do_parse() |
| 1258 | { |
| 1259 | // Get the section contents and decompress if necessary. |
| 1260 | section_size_type buffer_size; |
| 1261 | bool buffer_is_new; |
| 1262 | this->buffer_ = this->object_->decompressed_section_contents(this->shndx_, |
| 1263 | &buffer_size, |
| 1264 | &buffer_is_new); |
| 1265 | if (this->buffer_ == NULL || buffer_size == 0) |
| 1266 | return; |
| 1267 | this->buffer_end_ = this->buffer_ + buffer_size; |
| 1268 | |
| 1269 | // The offset of this input section in the output section. |
| 1270 | off_t section_offset = this->object_->output_section_offset(this->shndx_); |
| 1271 | |
| 1272 | // Start tracking relocations for this section. |
| 1273 | this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_, |
| 1274 | this->symtab_size_); |
| 1275 | this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_); |
| 1276 | |
| 1277 | // Loop over compilation units (or type units). |
| 1278 | unsigned int abbrev_shndx = this->abbrev_shndx_; |
| 1279 | off_t abbrev_offset = 0; |
| 1280 | const unsigned char* pinfo = this->buffer_; |
| 1281 | while (pinfo < this->buffer_end_) |
| 1282 | { |
| 1283 | // Read the compilation (or type) unit header. |
| 1284 | const unsigned char* cu_start = pinfo; |
| 1285 | this->cu_offset_ = cu_start - this->buffer_; |
| 1286 | this->cu_length_ = this->buffer_end_ - cu_start; |
| 1287 | |
| 1288 | // Read unit_length (4 or 12 bytes). |
| 1289 | if (!this->check_buffer(pinfo + 4)) |
| 1290 | break; |
| 1291 | uint32_t unit_length = |
| 1292 | elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo); |
| 1293 | pinfo += 4; |
| 1294 | if (unit_length == 0xffffffff) |
| 1295 | { |
| 1296 | if (!this->check_buffer(pinfo + 8)) |
| 1297 | break; |
| 1298 | unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| 1299 | pinfo += 8; |
| 1300 | this->offset_size_ = 8; |
| 1301 | } |
| 1302 | else |
| 1303 | this->offset_size_ = 4; |
| 1304 | if (!this->check_buffer(pinfo + unit_length)) |
| 1305 | break; |
| 1306 | const unsigned char* cu_end = pinfo + unit_length; |
| 1307 | this->cu_length_ = cu_end - cu_start; |
| 1308 | if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1)) |
| 1309 | break; |
| 1310 | |
| 1311 | // Read version (2 bytes). |
| 1312 | this->cu_version_ = |
| 1313 | elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo); |
| 1314 | pinfo += 2; |
| 1315 | |
| 1316 | // Read debug_abbrev_offset (4 or 8 bytes). |
| 1317 | if (this->offset_size_ == 4) |
| 1318 | abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo); |
| 1319 | else |
| 1320 | abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| 1321 | if (this->reloc_shndx_ > 0) |
| 1322 | { |
| 1323 | off_t reloc_offset = pinfo - this->buffer_; |
| 1324 | off_t value; |
| 1325 | abbrev_shndx = |
| 1326 | this->reloc_mapper_->get_reloc_target(reloc_offset, &value); |
| 1327 | if (abbrev_shndx == 0) |
| 1328 | return; |
| 1329 | if (this->reloc_type_ == elfcpp::SHT_REL) |
| 1330 | abbrev_offset += value; |
| 1331 | else |
| 1332 | abbrev_offset = value; |
| 1333 | } |
| 1334 | pinfo += this->offset_size_; |
| 1335 | |
| 1336 | // Read address_size (1 byte). |
| 1337 | this->address_size_ = *pinfo++; |
| 1338 | |
| 1339 | // For type units, read the two extra fields. |
| 1340 | uint64_t signature = 0; |
| 1341 | off_t type_offset = 0; |
| 1342 | if (this->is_type_unit_) |
| 1343 | { |
| 1344 | if (!this->check_buffer(pinfo + 8 + this->offset_size_)) |
| 1345 | break; |
| 1346 | |
| 1347 | // Read type_signature (8 bytes). |
| 1348 | signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| 1349 | pinfo += 8; |
| 1350 | |
| 1351 | // Read type_offset (4 or 8 bytes). |
| 1352 | if (this->offset_size_ == 4) |
| 1353 | type_offset = |
| 1354 | elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo); |
| 1355 | else |
| 1356 | type_offset = |
| 1357 | elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| 1358 | pinfo += this->offset_size_; |
| 1359 | } |
| 1360 | |
| 1361 | // Read the .debug_abbrev table. |
| 1362 | this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx, |
| 1363 | abbrev_offset); |
| 1364 | |
| 1365 | // Visit the root DIE. |
| 1366 | Dwarf_die root_die(this, |
| 1367 | pinfo - (this->buffer_ + this->cu_offset_), |
| 1368 | NULL); |
| 1369 | if (root_die.tag() != 0) |
| 1370 | { |
| 1371 | // Visit the CU or TU. |
| 1372 | if (this->is_type_unit_) |
| 1373 | this->visit_type_unit(section_offset + this->cu_offset_, |
| 1374 | cu_end - cu_start, type_offset, signature, |
| 1375 | &root_die); |
| 1376 | else |
| 1377 | this->visit_compilation_unit(section_offset + this->cu_offset_, |
| 1378 | cu_end - cu_start, &root_die); |
| 1379 | } |
| 1380 | |
| 1381 | // Advance to the next CU. |
| 1382 | pinfo = cu_end; |
| 1383 | } |
| 1384 | |
| 1385 | if (buffer_is_new) |
| 1386 | { |
| 1387 | delete[] this->buffer_; |
| 1388 | this->buffer_ = NULL; |
| 1389 | } |
| 1390 | } |
| 1391 | |
| 1392 | // Read the DWARF string table. |
| 1393 | |
| 1394 | bool |
| 1395 | Dwarf_info_reader::do_read_string_table(unsigned int string_shndx) |
| 1396 | { |
| 1397 | Relobj* object = this->object_; |
| 1398 | |
| 1399 | // If we don't have relocations, string_shndx will be 0, and |
| 1400 | // we'll have to hunt for the .debug_str section. |
| 1401 | if (string_shndx == 0) |
| 1402 | { |
| 1403 | for (unsigned int i = 1; i < this->object_->shnum(); ++i) |
| 1404 | { |
| 1405 | std::string name = object->section_name(i); |
| 1406 | if (name == ".debug_str" || name == ".zdebug_str") |
| 1407 | { |
| 1408 | string_shndx = i; |
| 1409 | this->string_output_section_offset_ = |
| 1410 | object->output_section_offset(i); |
| 1411 | break; |
| 1412 | } |
| 1413 | } |
| 1414 | if (string_shndx == 0) |
| 1415 | return false; |
| 1416 | } |
| 1417 | |
| 1418 | if (this->owns_string_buffer_ && this->string_buffer_ != NULL) |
| 1419 | { |
| 1420 | delete[] this->string_buffer_; |
| 1421 | this->owns_string_buffer_ = false; |
| 1422 | } |
| 1423 | |
| 1424 | // Get the secton contents and decompress if necessary. |
| 1425 | section_size_type buffer_size; |
| 1426 | const unsigned char* buffer = |
| 1427 | object->decompressed_section_contents(string_shndx, |
| 1428 | &buffer_size, |
| 1429 | &this->owns_string_buffer_); |
| 1430 | this->string_buffer_ = reinterpret_cast<const char*>(buffer); |
| 1431 | this->string_buffer_end_ = this->string_buffer_ + buffer_size; |
| 1432 | this->string_shndx_ = string_shndx; |
| 1433 | return true; |
| 1434 | } |
| 1435 | |
| 1436 | // Read a possibly unaligned integer of SIZE. |
| 1437 | template <int valsize> |
| 1438 | inline typename elfcpp::Valtype_base<valsize>::Valtype |
| 1439 | Dwarf_info_reader::read_from_pointer(const unsigned char* source) |
| 1440 | { |
| 1441 | typename elfcpp::Valtype_base<valsize>::Valtype return_value; |
| 1442 | if (this->object_->is_big_endian()) |
| 1443 | return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source); |
| 1444 | else |
| 1445 | return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source); |
| 1446 | return return_value; |
| 1447 | } |
| 1448 | |
| 1449 | // Read a possibly unaligned integer of SIZE. Update SOURCE after read. |
| 1450 | template <int valsize> |
| 1451 | inline typename elfcpp::Valtype_base<valsize>::Valtype |
| 1452 | Dwarf_info_reader::read_from_pointer(const unsigned char** source) |
| 1453 | { |
| 1454 | typename elfcpp::Valtype_base<valsize>::Valtype return_value; |
| 1455 | if (this->object_->is_big_endian()) |
| 1456 | return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source); |
| 1457 | else |
| 1458 | return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source); |
| 1459 | *source += valsize / 8; |
| 1460 | return return_value; |
| 1461 | } |
| 1462 | |
| 1463 | // Look for a relocation at offset ATTR_OFF in the dwarf info, |
| 1464 | // and return the section index and offset of the target. |
| 1465 | |
| 1466 | unsigned int |
| 1467 | Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off) |
| 1468 | { |
| 1469 | off_t value; |
| 1470 | attr_off += this->cu_offset_; |
| 1471 | unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value); |
| 1472 | if (shndx == 0) |
| 1473 | return 0; |
| 1474 | if (this->reloc_type_ == elfcpp::SHT_REL) |
| 1475 | *target_off += value; |
| 1476 | else |
| 1477 | *target_off = value; |
| 1478 | return shndx; |
| 1479 | } |
| 1480 | |
| 1481 | // Return a string from the DWARF string table. |
| 1482 | |
| 1483 | const char* |
| 1484 | Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx) |
| 1485 | { |
| 1486 | if (!this->read_string_table(string_shndx)) |
| 1487 | return NULL; |
| 1488 | |
| 1489 | // Correct the offset. For incremental update links, we have a |
| 1490 | // relocated offset that is relative to the output section, but |
| 1491 | // here we need an offset relative to the input section. |
| 1492 | str_off -= this->string_output_section_offset_; |
| 1493 | |
| 1494 | const char* p = this->string_buffer_ + str_off; |
| 1495 | |
| 1496 | if (p < this->string_buffer_ || p >= this->string_buffer_end_) |
| 1497 | return NULL; |
| 1498 | |
| 1499 | return p; |
| 1500 | } |
| 1501 | |
| 1502 | // The following are default, do-nothing, implementations of the |
| 1503 | // hook methods normally provided by a derived class. We provide |
| 1504 | // default implementations rather than no implementation so that |
| 1505 | // a derived class needs to implement only the hooks that it needs |
| 1506 | // to use. |
| 1507 | |
| 1508 | // Process a compilation unit and parse its child DIE. |
| 1509 | |
| 1510 | void |
| 1511 | Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*) |
| 1512 | { |
| 1513 | } |
| 1514 | |
| 1515 | // Process a type unit and parse its child DIE. |
| 1516 | |
| 1517 | void |
| 1518 | Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*) |
| 1519 | { |
| 1520 | } |
| 1521 | |
| 1522 | // Print a warning about a corrupt debug section. |
| 1523 | |
| 1524 | void |
| 1525 | Dwarf_info_reader::warn_corrupt_debug_section() const |
| 1526 | { |
| 1527 | gold_warning(_("%s: corrupt debug info in %s"), |
| 1528 | this->object_->name().c_str(), |
| 1529 | this->object_->section_name(this->shndx_).c_str()); |
| 1530 | } |
| 1531 | |
| 1532 | // class Sized_dwarf_line_info |
| 1533 | |
| 1534 | struct LineStateMachine |
| 1535 | { |
| 1536 | int file_num; |
| 1537 | uint64_t address; |
| 1538 | int line_num; |
| 1539 | int column_num; |
| 1540 | unsigned int shndx; // the section address refers to |
| 1541 | bool is_stmt; // stmt means statement. |
| 1542 | bool basic_block; |
| 1543 | bool end_sequence; |
| 1544 | }; |
| 1545 | |
| 1546 | static void |
| 1547 | ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt) |
| 1548 | { |
| 1549 | lsm->file_num = 1; |
| 1550 | lsm->address = 0; |
| 1551 | lsm->line_num = 1; |
| 1552 | lsm->column_num = 0; |
| 1553 | lsm->shndx = -1U; |
| 1554 | lsm->is_stmt = default_is_stmt; |
| 1555 | lsm->basic_block = false; |
| 1556 | lsm->end_sequence = false; |
| 1557 | } |
| 1558 | |
| 1559 | template<int size, bool big_endian> |
| 1560 | Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info( |
| 1561 | Object* object, |
| 1562 | unsigned int read_shndx) |
| 1563 | : data_valid_(false), buffer_(NULL), buffer_start_(NULL), |
| 1564 | reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(), |
| 1565 | current_header_index_(-1) |
| 1566 | { |
| 1567 | unsigned int debug_shndx; |
| 1568 | |
| 1569 | for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx) |
| 1570 | { |
| 1571 | // FIXME: do this more efficiently: section_name() isn't super-fast |
| 1572 | std::string name = object->section_name(debug_shndx); |
| 1573 | if (name == ".debug_line" || name == ".zdebug_line") |
| 1574 | { |
| 1575 | section_size_type buffer_size; |
| 1576 | bool is_new = false; |
| 1577 | this->buffer_ = object->decompressed_section_contents(debug_shndx, |
| 1578 | &buffer_size, |
| 1579 | &is_new); |
| 1580 | if (is_new) |
| 1581 | this->buffer_start_ = this->buffer_; |
| 1582 | this->buffer_end_ = this->buffer_ + buffer_size; |
| 1583 | break; |
| 1584 | } |
| 1585 | } |
| 1586 | if (this->buffer_ == NULL) |
| 1587 | return; |
| 1588 | |
| 1589 | // Find the relocation section for ".debug_line". |
| 1590 | // We expect these for relobjs (.o's) but not dynobjs (.so's). |
| 1591 | unsigned int reloc_shndx = 0; |
| 1592 | for (unsigned int i = 0; i < object->shnum(); ++i) |
| 1593 | { |
| 1594 | unsigned int reloc_sh_type = object->section_type(i); |
| 1595 | if ((reloc_sh_type == elfcpp::SHT_REL |
| 1596 | || reloc_sh_type == elfcpp::SHT_RELA) |
| 1597 | && object->section_info(i) == debug_shndx) |
| 1598 | { |
| 1599 | reloc_shndx = i; |
| 1600 | this->track_relocs_type_ = reloc_sh_type; |
| 1601 | break; |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | // Finally, we need the symtab section to interpret the relocs. |
| 1606 | if (reloc_shndx != 0) |
| 1607 | { |
| 1608 | unsigned int symtab_shndx; |
| 1609 | for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx) |
| 1610 | if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB) |
| 1611 | { |
| 1612 | this->symtab_buffer_ = object->section_contents( |
| 1613 | symtab_shndx, &this->symtab_buffer_size_, false); |
| 1614 | break; |
| 1615 | } |
| 1616 | if (this->symtab_buffer_ == NULL) |
| 1617 | return; |
| 1618 | } |
| 1619 | |
| 1620 | this->reloc_mapper_ = |
| 1621 | new Sized_elf_reloc_mapper<size, big_endian>(object, |
| 1622 | this->symtab_buffer_, |
| 1623 | this->symtab_buffer_size_); |
| 1624 | if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_)) |
| 1625 | return; |
| 1626 | |
| 1627 | // Now that we have successfully read all the data, parse the debug |
| 1628 | // info. |
| 1629 | this->data_valid_ = true; |
| 1630 | this->read_line_mappings(read_shndx); |
| 1631 | } |
| 1632 | |
| 1633 | // Read the DWARF header. |
| 1634 | |
| 1635 | template<int size, bool big_endian> |
| 1636 | const unsigned char* |
| 1637 | Sized_dwarf_line_info<size, big_endian>::read_header_prolog( |
| 1638 | const unsigned char* lineptr) |
| 1639 | { |
| 1640 | uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr); |
| 1641 | lineptr += 4; |
| 1642 | |
| 1643 | // In DWARF2/3, if the initial length is all 1 bits, then the offset |
| 1644 | // size is 8 and we need to read the next 8 bytes for the real length. |
| 1645 | if (initial_length == 0xffffffff) |
| 1646 | { |
| 1647 | header_.offset_size = 8; |
| 1648 | initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr); |
| 1649 | lineptr += 8; |
| 1650 | } |
| 1651 | else |
| 1652 | header_.offset_size = 4; |
| 1653 | |
| 1654 | header_.total_length = initial_length; |
| 1655 | |
| 1656 | gold_assert(lineptr + header_.total_length <= buffer_end_); |
| 1657 | |
| 1658 | header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr); |
| 1659 | lineptr += 2; |
| 1660 | |
| 1661 | if (header_.offset_size == 4) |
| 1662 | header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr); |
| 1663 | else |
| 1664 | header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr); |
| 1665 | lineptr += header_.offset_size; |
| 1666 | |
| 1667 | header_.min_insn_length = *lineptr; |
| 1668 | lineptr += 1; |
| 1669 | |
| 1670 | if (header_.version < 4) |
| 1671 | header_.max_ops_per_insn = 1; |
| 1672 | else |
| 1673 | { |
| 1674 | // DWARF 4 added the maximum_operations_per_instruction field. |
| 1675 | header_.max_ops_per_insn = *lineptr; |
| 1676 | lineptr += 1; |
| 1677 | // TODO: Add support for values other than 1. |
| 1678 | gold_assert(header_.max_ops_per_insn == 1); |
| 1679 | } |
| 1680 | |
| 1681 | header_.default_is_stmt = *lineptr; |
| 1682 | lineptr += 1; |
| 1683 | |
| 1684 | header_.line_base = *reinterpret_cast<const signed char*>(lineptr); |
| 1685 | lineptr += 1; |
| 1686 | |
| 1687 | header_.line_range = *lineptr; |
| 1688 | lineptr += 1; |
| 1689 | |
| 1690 | header_.opcode_base = *lineptr; |
| 1691 | lineptr += 1; |
| 1692 | |
| 1693 | header_.std_opcode_lengths.resize(header_.opcode_base + 1); |
| 1694 | header_.std_opcode_lengths[0] = 0; |
| 1695 | for (int i = 1; i < header_.opcode_base; i++) |
| 1696 | { |
| 1697 | header_.std_opcode_lengths[i] = *lineptr; |
| 1698 | lineptr += 1; |
| 1699 | } |
| 1700 | |
| 1701 | return lineptr; |
| 1702 | } |
| 1703 | |
| 1704 | // The header for a debug_line section is mildly complicated, because |
| 1705 | // the line info is very tightly encoded. |
| 1706 | |
| 1707 | template<int size, bool big_endian> |
| 1708 | const unsigned char* |
| 1709 | Sized_dwarf_line_info<size, big_endian>::read_header_tables( |
| 1710 | const unsigned char* lineptr) |
| 1711 | { |
| 1712 | ++this->current_header_index_; |
| 1713 | |
| 1714 | // Create a new directories_ entry and a new files_ entry for our new |
| 1715 | // header. We initialize each with a single empty element, because |
| 1716 | // dwarf indexes directory and filenames starting at 1. |
| 1717 | gold_assert(static_cast<int>(this->directories_.size()) |
| 1718 | == this->current_header_index_); |
| 1719 | gold_assert(static_cast<int>(this->files_.size()) |
| 1720 | == this->current_header_index_); |
| 1721 | this->directories_.push_back(std::vector<std::string>(1)); |
| 1722 | this->files_.push_back(std::vector<std::pair<int, std::string> >(1)); |
| 1723 | |
| 1724 | // It is legal for the directory entry table to be empty. |
| 1725 | if (*lineptr) |
| 1726 | { |
| 1727 | int dirindex = 1; |
| 1728 | while (*lineptr) |
| 1729 | { |
| 1730 | const char* dirname = reinterpret_cast<const char*>(lineptr); |
| 1731 | gold_assert(dirindex |
| 1732 | == static_cast<int>(this->directories_.back().size())); |
| 1733 | this->directories_.back().push_back(dirname); |
| 1734 | lineptr += this->directories_.back().back().size() + 1; |
| 1735 | dirindex++; |
| 1736 | } |
| 1737 | } |
| 1738 | lineptr++; |
| 1739 | |
| 1740 | // It is also legal for the file entry table to be empty. |
| 1741 | if (*lineptr) |
| 1742 | { |
| 1743 | int fileindex = 1; |
| 1744 | size_t len; |
| 1745 | while (*lineptr) |
| 1746 | { |
| 1747 | const char* filename = reinterpret_cast<const char*>(lineptr); |
| 1748 | lineptr += strlen(filename) + 1; |
| 1749 | |
| 1750 | uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len); |
| 1751 | lineptr += len; |
| 1752 | |
| 1753 | if (dirindex >= this->directories_.back().size()) |
| 1754 | dirindex = 0; |
| 1755 | int dirindexi = static_cast<int>(dirindex); |
| 1756 | |
| 1757 | read_unsigned_LEB_128(lineptr, &len); // mod_time |
| 1758 | lineptr += len; |
| 1759 | |
| 1760 | read_unsigned_LEB_128(lineptr, &len); // filelength |
| 1761 | lineptr += len; |
| 1762 | |
| 1763 | gold_assert(fileindex |
| 1764 | == static_cast<int>(this->files_.back().size())); |
| 1765 | this->files_.back().push_back(std::make_pair(dirindexi, filename)); |
| 1766 | fileindex++; |
| 1767 | } |
| 1768 | } |
| 1769 | lineptr++; |
| 1770 | |
| 1771 | return lineptr; |
| 1772 | } |
| 1773 | |
| 1774 | // Process a single opcode in the .debug.line structure. |
| 1775 | |
| 1776 | template<int size, bool big_endian> |
| 1777 | bool |
| 1778 | Sized_dwarf_line_info<size, big_endian>::process_one_opcode( |
| 1779 | const unsigned char* start, struct LineStateMachine* lsm, size_t* len) |
| 1780 | { |
| 1781 | size_t oplen = 0; |
| 1782 | size_t templen; |
| 1783 | unsigned char opcode = *start; |
| 1784 | oplen++; |
| 1785 | start++; |
| 1786 | |
| 1787 | // If the opcode is great than the opcode_base, it is a special |
| 1788 | // opcode. Most line programs consist mainly of special opcodes. |
| 1789 | if (opcode >= header_.opcode_base) |
| 1790 | { |
| 1791 | opcode -= header_.opcode_base; |
| 1792 | const int advance_address = ((opcode / header_.line_range) |
| 1793 | * header_.min_insn_length); |
| 1794 | lsm->address += advance_address; |
| 1795 | |
| 1796 | const int advance_line = ((opcode % header_.line_range) |
| 1797 | + header_.line_base); |
| 1798 | lsm->line_num += advance_line; |
| 1799 | lsm->basic_block = true; |
| 1800 | *len = oplen; |
| 1801 | return true; |
| 1802 | } |
| 1803 | |
| 1804 | // Otherwise, we have the regular opcodes |
| 1805 | switch (opcode) |
| 1806 | { |
| 1807 | case elfcpp::DW_LNS_copy: |
| 1808 | lsm->basic_block = false; |
| 1809 | *len = oplen; |
| 1810 | return true; |
| 1811 | |
| 1812 | case elfcpp::DW_LNS_advance_pc: |
| 1813 | { |
| 1814 | const uint64_t advance_address |
| 1815 | = read_unsigned_LEB_128(start, &templen); |
| 1816 | oplen += templen; |
| 1817 | lsm->address += header_.min_insn_length * advance_address; |
| 1818 | } |
| 1819 | break; |
| 1820 | |
| 1821 | case elfcpp::DW_LNS_advance_line: |
| 1822 | { |
| 1823 | const uint64_t advance_line = read_signed_LEB_128(start, &templen); |
| 1824 | oplen += templen; |
| 1825 | lsm->line_num += advance_line; |
| 1826 | } |
| 1827 | break; |
| 1828 | |
| 1829 | case elfcpp::DW_LNS_set_file: |
| 1830 | { |
| 1831 | const uint64_t fileno = read_unsigned_LEB_128(start, &templen); |
| 1832 | oplen += templen; |
| 1833 | lsm->file_num = fileno; |
| 1834 | } |
| 1835 | break; |
| 1836 | |
| 1837 | case elfcpp::DW_LNS_set_column: |
| 1838 | { |
| 1839 | const uint64_t colno = read_unsigned_LEB_128(start, &templen); |
| 1840 | oplen += templen; |
| 1841 | lsm->column_num = colno; |
| 1842 | } |
| 1843 | break; |
| 1844 | |
| 1845 | case elfcpp::DW_LNS_negate_stmt: |
| 1846 | lsm->is_stmt = !lsm->is_stmt; |
| 1847 | break; |
| 1848 | |
| 1849 | case elfcpp::DW_LNS_set_basic_block: |
| 1850 | lsm->basic_block = true; |
| 1851 | break; |
| 1852 | |
| 1853 | case elfcpp::DW_LNS_fixed_advance_pc: |
| 1854 | { |
| 1855 | int advance_address; |
| 1856 | advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start); |
| 1857 | oplen += 2; |
| 1858 | lsm->address += advance_address; |
| 1859 | } |
| 1860 | break; |
| 1861 | |
| 1862 | case elfcpp::DW_LNS_const_add_pc: |
| 1863 | { |
| 1864 | const int advance_address = (header_.min_insn_length |
| 1865 | * ((255 - header_.opcode_base) |
| 1866 | / header_.line_range)); |
| 1867 | lsm->address += advance_address; |
| 1868 | } |
| 1869 | break; |
| 1870 | |
| 1871 | case elfcpp::DW_LNS_extended_op: |
| 1872 | { |
| 1873 | const uint64_t extended_op_len |
| 1874 | = read_unsigned_LEB_128(start, &templen); |
| 1875 | start += templen; |
| 1876 | oplen += templen + extended_op_len; |
| 1877 | |
| 1878 | const unsigned char extended_op = *start; |
| 1879 | start++; |
| 1880 | |
| 1881 | switch (extended_op) |
| 1882 | { |
| 1883 | case elfcpp::DW_LNE_end_sequence: |
| 1884 | // This means that the current byte is the one immediately |
| 1885 | // after a set of instructions. Record the current line |
| 1886 | // for up to one less than the current address. |
| 1887 | lsm->line_num = -1; |
| 1888 | lsm->end_sequence = true; |
| 1889 | *len = oplen; |
| 1890 | return true; |
| 1891 | |
| 1892 | case elfcpp::DW_LNE_set_address: |
| 1893 | { |
| 1894 | lsm->address = |
| 1895 | elfcpp::Swap_unaligned<size, big_endian>::readval(start); |
| 1896 | typename Reloc_map::const_iterator it |
| 1897 | = this->reloc_map_.find(start - this->buffer_); |
| 1898 | if (it != reloc_map_.end()) |
| 1899 | { |
| 1900 | // If this is a SHT_RELA section, then ignore the |
| 1901 | // section contents. This assumes that this is a |
| 1902 | // straight reloc which just uses the reloc addend. |
| 1903 | // The reloc addend has already been included in the |
| 1904 | // symbol value. |
| 1905 | if (this->track_relocs_type_ == elfcpp::SHT_RELA) |
| 1906 | lsm->address = 0; |
| 1907 | // Add in the symbol value. |
| 1908 | lsm->address += it->second.second; |
| 1909 | lsm->shndx = it->second.first; |
| 1910 | } |
| 1911 | else |
| 1912 | { |
| 1913 | // If we're a normal .o file, with relocs, every |
| 1914 | // set_address should have an associated relocation. |
| 1915 | if (this->input_is_relobj()) |
| 1916 | this->data_valid_ = false; |
| 1917 | } |
| 1918 | break; |
| 1919 | } |
| 1920 | case elfcpp::DW_LNE_define_file: |
| 1921 | { |
| 1922 | const char* filename = reinterpret_cast<const char*>(start); |
| 1923 | templen = strlen(filename) + 1; |
| 1924 | start += templen; |
| 1925 | |
| 1926 | uint64_t dirindex = read_unsigned_LEB_128(start, &templen); |
| 1927 | |
| 1928 | if (dirindex >= this->directories_.back().size()) |
| 1929 | dirindex = 0; |
| 1930 | int dirindexi = static_cast<int>(dirindex); |
| 1931 | |
| 1932 | // This opcode takes two additional ULEB128 parameters |
| 1933 | // (mod_time and filelength), but we don't use those |
| 1934 | // values. Because OPLEN already tells us how far to |
| 1935 | // skip to the next opcode, we don't need to read |
| 1936 | // them at all. |
| 1937 | |
| 1938 | this->files_.back().push_back(std::make_pair(dirindexi, |
| 1939 | filename)); |
| 1940 | } |
| 1941 | break; |
| 1942 | } |
| 1943 | } |
| 1944 | break; |
| 1945 | |
| 1946 | default: |
| 1947 | { |
| 1948 | // Ignore unknown opcode silently |
| 1949 | for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++) |
| 1950 | { |
| 1951 | size_t templen; |
| 1952 | read_unsigned_LEB_128(start, &templen); |
| 1953 | start += templen; |
| 1954 | oplen += templen; |
| 1955 | } |
| 1956 | } |
| 1957 | break; |
| 1958 | } |
| 1959 | *len = oplen; |
| 1960 | return false; |
| 1961 | } |
| 1962 | |
| 1963 | // Read the debug information at LINEPTR and store it in the line |
| 1964 | // number map. |
| 1965 | |
| 1966 | template<int size, bool big_endian> |
| 1967 | unsigned const char* |
| 1968 | Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr, |
| 1969 | unsigned int shndx) |
| 1970 | { |
| 1971 | struct LineStateMachine lsm; |
| 1972 | |
| 1973 | // LENGTHSTART is the place the length field is based on. It is the |
| 1974 | // point in the header after the initial length field. |
| 1975 | const unsigned char* lengthstart = buffer_; |
| 1976 | |
| 1977 | // In 64 bit dwarf, the initial length is 12 bytes, because of the |
| 1978 | // 0xffffffff at the start. |
| 1979 | if (header_.offset_size == 8) |
| 1980 | lengthstart += 12; |
| 1981 | else |
| 1982 | lengthstart += 4; |
| 1983 | |
| 1984 | while (lineptr < lengthstart + header_.total_length) |
| 1985 | { |
| 1986 | ResetLineStateMachine(&lsm, header_.default_is_stmt); |
| 1987 | while (!lsm.end_sequence) |
| 1988 | { |
| 1989 | size_t oplength; |
| 1990 | bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength); |
| 1991 | if (add_line |
| 1992 | && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx)) |
| 1993 | { |
| 1994 | Offset_to_lineno_entry entry |
| 1995 | = { static_cast<off_t>(lsm.address), |
| 1996 | this->current_header_index_, |
| 1997 | static_cast<unsigned int>(lsm.file_num), |
| 1998 | true, lsm.line_num }; |
| 1999 | std::vector<Offset_to_lineno_entry>& |
| 2000 | map(this->line_number_map_[lsm.shndx]); |
| 2001 | // If we see two consecutive entries with the same |
| 2002 | // offset and a real line number, then mark the first |
| 2003 | // one as non-canonical. |
| 2004 | if (!map.empty() |
| 2005 | && (map.back().offset == static_cast<off_t>(lsm.address)) |
| 2006 | && lsm.line_num != -1 |
| 2007 | && map.back().line_num != -1) |
| 2008 | map.back().last_line_for_offset = false; |
| 2009 | map.push_back(entry); |
| 2010 | } |
| 2011 | lineptr += oplength; |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | return lengthstart + header_.total_length; |
| 2016 | } |
| 2017 | |
| 2018 | // Read the relocations into a Reloc_map. |
| 2019 | |
| 2020 | template<int size, bool big_endian> |
| 2021 | void |
| 2022 | Sized_dwarf_line_info<size, big_endian>::read_relocs() |
| 2023 | { |
| 2024 | if (this->symtab_buffer_ == NULL) |
| 2025 | return; |
| 2026 | |
| 2027 | off_t value; |
| 2028 | off_t reloc_offset; |
| 2029 | while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1) |
| 2030 | { |
| 2031 | const unsigned int shndx = |
| 2032 | this->reloc_mapper_->get_reloc_target(reloc_offset, &value); |
| 2033 | |
| 2034 | // There is no reason to record non-ordinary section indexes, or |
| 2035 | // SHN_UNDEF, because they will never match the real section. |
| 2036 | if (shndx != 0) |
| 2037 | this->reloc_map_[reloc_offset] = std::make_pair(shndx, value); |
| 2038 | |
| 2039 | this->reloc_mapper_->advance(reloc_offset + 1); |
| 2040 | } |
| 2041 | } |
| 2042 | |
| 2043 | // Read the line number info. |
| 2044 | |
| 2045 | template<int size, bool big_endian> |
| 2046 | void |
| 2047 | Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx) |
| 2048 | { |
| 2049 | gold_assert(this->data_valid_ == true); |
| 2050 | |
| 2051 | this->read_relocs(); |
| 2052 | while (this->buffer_ < this->buffer_end_) |
| 2053 | { |
| 2054 | const unsigned char* lineptr = this->buffer_; |
| 2055 | lineptr = this->read_header_prolog(lineptr); |
| 2056 | lineptr = this->read_header_tables(lineptr); |
| 2057 | lineptr = this->read_lines(lineptr, shndx); |
| 2058 | this->buffer_ = lineptr; |
| 2059 | } |
| 2060 | |
| 2061 | // Sort the lines numbers, so addr2line can use binary search. |
| 2062 | for (typename Lineno_map::iterator it = line_number_map_.begin(); |
| 2063 | it != line_number_map_.end(); |
| 2064 | ++it) |
| 2065 | // Each vector needs to be sorted by offset. |
| 2066 | std::sort(it->second.begin(), it->second.end()); |
| 2067 | } |
| 2068 | |
| 2069 | // Some processing depends on whether the input is a .o file or not. |
| 2070 | // For instance, .o files have relocs, and have .debug_lines |
| 2071 | // information on a per section basis. .so files, on the other hand, |
| 2072 | // lack relocs, and offsets are unique, so we can ignore the section |
| 2073 | // information. |
| 2074 | |
| 2075 | template<int size, bool big_endian> |
| 2076 | bool |
| 2077 | Sized_dwarf_line_info<size, big_endian>::input_is_relobj() |
| 2078 | { |
| 2079 | // Only .o files have relocs and the symtab buffer that goes with them. |
| 2080 | return this->symtab_buffer_ != NULL; |
| 2081 | } |
| 2082 | |
| 2083 | // Given an Offset_to_lineno_entry vector, and an offset, figure out |
| 2084 | // if the offset points into a function according to the vector (see |
| 2085 | // comments below for the algorithm). If it does, return an iterator |
| 2086 | // into the vector that points to the line-number that contains that |
| 2087 | // offset. If not, it returns vector::end(). |
| 2088 | |
| 2089 | static std::vector<Offset_to_lineno_entry>::const_iterator |
| 2090 | offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets, |
| 2091 | off_t offset) |
| 2092 | { |
| 2093 | const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 }; |
| 2094 | |
| 2095 | // lower_bound() returns the smallest offset which is >= lookup_key. |
| 2096 | // If no offset in offsets is >= lookup_key, returns end(). |
| 2097 | std::vector<Offset_to_lineno_entry>::const_iterator it |
| 2098 | = std::lower_bound(offsets->begin(), offsets->end(), lookup_key); |
| 2099 | |
| 2100 | // This code is easiest to understand with a concrete example. |
| 2101 | // Here's a possible offsets array: |
| 2102 | // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0 |
| 2103 | // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1 |
| 2104 | // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2 |
| 2105 | // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3 |
| 2106 | // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4 |
| 2107 | // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5 |
| 2108 | // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6 |
| 2109 | // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7 |
| 2110 | // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8 |
| 2111 | // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9 |
| 2112 | // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10 |
| 2113 | // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11 |
| 2114 | // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12 |
| 2115 | // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13 |
| 2116 | // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14 |
| 2117 | // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15 |
| 2118 | // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16 |
| 2119 | // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17 |
| 2120 | // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18 |
| 2121 | // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19 |
| 2122 | // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20 |
| 2123 | // The entries with line_num == -1 mark the end of a function: the |
| 2124 | // associated offset is one past the last instruction in the |
| 2125 | // function. This can correspond to the beginning of the next |
| 2126 | // function (as is true for offset 3232); alternately, there can be |
| 2127 | // a gap between the end of one function and the start of the next |
| 2128 | // (as is true for some others, most obviously from 3236->5764). |
| 2129 | // |
| 2130 | // Case 1: lookup_key has offset == 10. lower_bound returns |
| 2131 | // offsets[0]. Since it's not an exact match and we're |
| 2132 | // at the beginning of offsets, we return end() (invalid). |
| 2133 | // Case 2: lookup_key has offset 10000. lower_bound returns |
| 2134 | // offset[21] (end()). We return end() (invalid). |
| 2135 | // Case 3: lookup_key has offset == 3211. lower_bound matches |
| 2136 | // offsets[0] exactly, and that's the entry we return. |
| 2137 | // Case 4: lookup_key has offset == 3232. lower_bound returns |
| 2138 | // offsets[4]. That's an exact match, but indicates |
| 2139 | // end-of-function. We check if offsets[5] is also an |
| 2140 | // exact match but not end-of-function. It is, so we |
| 2141 | // return offsets[5]. |
| 2142 | // Case 5: lookup_key has offset == 3214. lower_bound returns |
| 2143 | // offsets[1]. Since it's not an exact match, we back |
| 2144 | // up to the offset that's < lookup_key, offsets[0]. |
| 2145 | // We note offsets[0] is a valid entry (not end-of-function), |
| 2146 | // so that's the entry we return. |
| 2147 | // Case 6: lookup_key has offset == 4000. lower_bound returns |
| 2148 | // offsets[8]. Since it's not an exact match, we back |
| 2149 | // up to offsets[7]. Since offsets[7] indicates |
| 2150 | // end-of-function, we know lookup_key is between |
| 2151 | // functions, so we return end() (not a valid offset). |
| 2152 | // Case 7: lookup_key has offset == 5794. lower_bound returns |
| 2153 | // offsets[19]. Since it's not an exact match, we back |
| 2154 | // up to offsets[16]. Note we back up to the *first* |
| 2155 | // entry with offset 5793, not just offsets[19-1]. |
| 2156 | // We note offsets[16] is a valid entry, so we return it. |
| 2157 | // If offsets[16] had had line_num == -1, we would have |
| 2158 | // checked offsets[17]. The reason for this is that |
| 2159 | // 16 and 17 can be in an arbitrary order, since we sort |
| 2160 | // only by offset and last_line_for_offset. (Note it |
| 2161 | // doesn't help to use line_number as a tertiary sort key, |
| 2162 | // since sometimes we want the -1 to be first and sometimes |
| 2163 | // we want it to be last.) |
| 2164 | |
| 2165 | // This deals with cases (1) and (2). |
| 2166 | if ((it == offsets->begin() && offset < it->offset) |
| 2167 | || it == offsets->end()) |
| 2168 | return offsets->end(); |
| 2169 | |
| 2170 | // This deals with cases (3) and (4). |
| 2171 | if (offset == it->offset) |
| 2172 | { |
| 2173 | while (it != offsets->end() |
| 2174 | && it->offset == offset |
| 2175 | && it->line_num == -1) |
| 2176 | ++it; |
| 2177 | if (it == offsets->end() || it->offset != offset) |
| 2178 | return offsets->end(); |
| 2179 | else |
| 2180 | return it; |
| 2181 | } |
| 2182 | |
| 2183 | // This handles the first part of case (7) -- we back up to the |
| 2184 | // *first* entry that has the offset that's behind us. |
| 2185 | gold_assert(it != offsets->begin()); |
| 2186 | std::vector<Offset_to_lineno_entry>::const_iterator range_end = it; |
| 2187 | --it; |
| 2188 | const off_t range_value = it->offset; |
| 2189 | while (it != offsets->begin() && (it-1)->offset == range_value) |
| 2190 | --it; |
| 2191 | |
| 2192 | // This handles cases (5), (6), and (7): if any entry in the |
| 2193 | // equal_range [it, range_end) has a line_num != -1, it's a valid |
| 2194 | // match. If not, we're not in a function. The line number we saw |
| 2195 | // last for an offset will be sorted first, so it'll get returned if |
| 2196 | // it's present. |
| 2197 | for (; it != range_end; ++it) |
| 2198 | if (it->line_num != -1) |
| 2199 | return it; |
| 2200 | return offsets->end(); |
| 2201 | } |
| 2202 | |
| 2203 | // Returns the canonical filename:lineno for the address passed in. |
| 2204 | // If other_lines is not NULL, appends the non-canonical lines |
| 2205 | // assigned to the same address. |
| 2206 | |
| 2207 | template<int size, bool big_endian> |
| 2208 | std::string |
| 2209 | Sized_dwarf_line_info<size, big_endian>::do_addr2line( |
| 2210 | unsigned int shndx, |
| 2211 | off_t offset, |
| 2212 | std::vector<std::string>* other_lines) |
| 2213 | { |
| 2214 | if (this->data_valid_ == false) |
| 2215 | return ""; |
| 2216 | |
| 2217 | const std::vector<Offset_to_lineno_entry>* offsets; |
| 2218 | // If we do not have reloc information, then our input is a .so or |
| 2219 | // some similar data structure where all the information is held in |
| 2220 | // the offset. In that case, we ignore the input shndx. |
| 2221 | if (this->input_is_relobj()) |
| 2222 | offsets = &this->line_number_map_[shndx]; |
| 2223 | else |
| 2224 | offsets = &this->line_number_map_[-1U]; |
| 2225 | if (offsets->empty()) |
| 2226 | return ""; |
| 2227 | |
| 2228 | typename std::vector<Offset_to_lineno_entry>::const_iterator it |
| 2229 | = offset_to_iterator(offsets, offset); |
| 2230 | if (it == offsets->end()) |
| 2231 | return ""; |
| 2232 | |
| 2233 | std::string result = this->format_file_lineno(*it); |
| 2234 | gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s", |
| 2235 | result.c_str()); |
| 2236 | if (other_lines != NULL) |
| 2237 | { |
| 2238 | unsigned int last_file_num = it->file_num; |
| 2239 | int last_line_num = it->line_num; |
| 2240 | // Return up to 4 more locations from the beginning of the function |
| 2241 | // for fuzzy matching. |
| 2242 | for (++it; it != offsets->end(); ++it) |
| 2243 | { |
| 2244 | if (it->offset == offset && it->line_num == -1) |
| 2245 | continue; // The end of a previous function. |
| 2246 | if (it->line_num == -1) |
| 2247 | break; // The end of the current function. |
| 2248 | if (it->file_num != last_file_num || it->line_num != last_line_num) |
| 2249 | { |
| 2250 | other_lines->push_back(this->format_file_lineno(*it)); |
| 2251 | gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s", |
| 2252 | other_lines->back().c_str()); |
| 2253 | last_file_num = it->file_num; |
| 2254 | last_line_num = it->line_num; |
| 2255 | } |
| 2256 | if (it->offset > offset && other_lines->size() >= 4) |
| 2257 | break; |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | return result; |
| 2262 | } |
| 2263 | |
| 2264 | // Convert the file_num + line_num into a string. |
| 2265 | |
| 2266 | template<int size, bool big_endian> |
| 2267 | std::string |
| 2268 | Sized_dwarf_line_info<size, big_endian>::format_file_lineno( |
| 2269 | const Offset_to_lineno_entry& loc) const |
| 2270 | { |
| 2271 | std::string ret; |
| 2272 | |
| 2273 | gold_assert(loc.header_num < static_cast<int>(this->files_.size())); |
| 2274 | gold_assert(loc.file_num |
| 2275 | < static_cast<unsigned int>(this->files_[loc.header_num].size())); |
| 2276 | const std::pair<int, std::string>& filename_pair |
| 2277 | = this->files_[loc.header_num][loc.file_num]; |
| 2278 | const std::string& filename = filename_pair.second; |
| 2279 | |
| 2280 | gold_assert(loc.header_num < static_cast<int>(this->directories_.size())); |
| 2281 | gold_assert(filename_pair.first |
| 2282 | < static_cast<int>(this->directories_[loc.header_num].size())); |
| 2283 | const std::string& dirname |
| 2284 | = this->directories_[loc.header_num][filename_pair.first]; |
| 2285 | |
| 2286 | if (!dirname.empty()) |
| 2287 | { |
| 2288 | ret += dirname; |
| 2289 | ret += "/"; |
| 2290 | } |
| 2291 | ret += filename; |
| 2292 | if (ret.empty()) |
| 2293 | ret = "(unknown)"; |
| 2294 | |
| 2295 | char buffer[64]; // enough to hold a line number |
| 2296 | snprintf(buffer, sizeof(buffer), "%d", loc.line_num); |
| 2297 | ret += ":"; |
| 2298 | ret += buffer; |
| 2299 | |
| 2300 | return ret; |
| 2301 | } |
| 2302 | |
| 2303 | // Dwarf_line_info routines. |
| 2304 | |
| 2305 | static unsigned int next_generation_count = 0; |
| 2306 | |
| 2307 | struct Addr2line_cache_entry |
| 2308 | { |
| 2309 | Object* object; |
| 2310 | unsigned int shndx; |
| 2311 | Dwarf_line_info* dwarf_line_info; |
| 2312 | unsigned int generation_count; |
| 2313 | unsigned int access_count; |
| 2314 | |
| 2315 | Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d) |
| 2316 | : object(o), shndx(s), dwarf_line_info(d), |
| 2317 | generation_count(next_generation_count), access_count(0) |
| 2318 | { |
| 2319 | if (next_generation_count < (1U << 31)) |
| 2320 | ++next_generation_count; |
| 2321 | } |
| 2322 | }; |
| 2323 | // We expect this cache to be small, so don't bother with a hashtable |
| 2324 | // or priority queue or anything: just use a simple vector. |
| 2325 | static std::vector<Addr2line_cache_entry> addr2line_cache; |
| 2326 | |
| 2327 | std::string |
| 2328 | Dwarf_line_info::one_addr2line(Object* object, |
| 2329 | unsigned int shndx, off_t offset, |
| 2330 | size_t cache_size, |
| 2331 | std::vector<std::string>* other_lines) |
| 2332 | { |
| 2333 | Dwarf_line_info* lineinfo = NULL; |
| 2334 | std::vector<Addr2line_cache_entry>::iterator it; |
| 2335 | |
| 2336 | // First, check the cache. If we hit, update the counts. |
| 2337 | for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it) |
| 2338 | { |
| 2339 | if (it->object == object && it->shndx == shndx) |
| 2340 | { |
| 2341 | lineinfo = it->dwarf_line_info; |
| 2342 | it->generation_count = next_generation_count; |
| 2343 | // We cap generation_count at 2^31 -1 to avoid overflow. |
| 2344 | if (next_generation_count < (1U << 31)) |
| 2345 | ++next_generation_count; |
| 2346 | // We cap access_count at 31 so 2^access_count doesn't overflow |
| 2347 | if (it->access_count < 31) |
| 2348 | ++it->access_count; |
| 2349 | break; |
| 2350 | } |
| 2351 | } |
| 2352 | |
| 2353 | // If we don't hit the cache, create a new object and insert into the |
| 2354 | // cache. |
| 2355 | if (lineinfo == NULL) |
| 2356 | { |
| 2357 | switch (parameters->size_and_endianness()) |
| 2358 | { |
| 2359 | #ifdef HAVE_TARGET_32_LITTLE |
| 2360 | case Parameters::TARGET_32_LITTLE: |
| 2361 | lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break; |
| 2362 | #endif |
| 2363 | #ifdef HAVE_TARGET_32_BIG |
| 2364 | case Parameters::TARGET_32_BIG: |
| 2365 | lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break; |
| 2366 | #endif |
| 2367 | #ifdef HAVE_TARGET_64_LITTLE |
| 2368 | case Parameters::TARGET_64_LITTLE: |
| 2369 | lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break; |
| 2370 | #endif |
| 2371 | #ifdef HAVE_TARGET_64_BIG |
| 2372 | case Parameters::TARGET_64_BIG: |
| 2373 | lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break; |
| 2374 | #endif |
| 2375 | default: |
| 2376 | gold_unreachable(); |
| 2377 | } |
| 2378 | addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo)); |
| 2379 | } |
| 2380 | |
| 2381 | // Now that we have our object, figure out the answer |
| 2382 | std::string retval = lineinfo->addr2line(shndx, offset, other_lines); |
| 2383 | |
| 2384 | // Finally, if our cache has grown too big, delete old objects. We |
| 2385 | // assume the common (probably only) case is deleting only one object. |
| 2386 | // We use a pretty simple scheme to evict: function of LRU and MFU. |
| 2387 | while (addr2line_cache.size() > cache_size) |
| 2388 | { |
| 2389 | unsigned int lowest_score = ~0U; |
| 2390 | std::vector<Addr2line_cache_entry>::iterator lowest |
| 2391 | = addr2line_cache.end(); |
| 2392 | for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it) |
| 2393 | { |
| 2394 | const unsigned int score = (it->generation_count |
| 2395 | + (1U << it->access_count)); |
| 2396 | if (score < lowest_score) |
| 2397 | { |
| 2398 | lowest_score = score; |
| 2399 | lowest = it; |
| 2400 | } |
| 2401 | } |
| 2402 | if (lowest != addr2line_cache.end()) |
| 2403 | { |
| 2404 | delete lowest->dwarf_line_info; |
| 2405 | addr2line_cache.erase(lowest); |
| 2406 | } |
| 2407 | } |
| 2408 | |
| 2409 | return retval; |
| 2410 | } |
| 2411 | |
| 2412 | void |
| 2413 | Dwarf_line_info::clear_addr2line_cache() |
| 2414 | { |
| 2415 | for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin(); |
| 2416 | it != addr2line_cache.end(); |
| 2417 | ++it) |
| 2418 | delete it->dwarf_line_info; |
| 2419 | addr2line_cache.clear(); |
| 2420 | } |
| 2421 | |
| 2422 | #ifdef HAVE_TARGET_32_LITTLE |
| 2423 | template |
| 2424 | class Sized_dwarf_line_info<32, false>; |
| 2425 | #endif |
| 2426 | |
| 2427 | #ifdef HAVE_TARGET_32_BIG |
| 2428 | template |
| 2429 | class Sized_dwarf_line_info<32, true>; |
| 2430 | #endif |
| 2431 | |
| 2432 | #ifdef HAVE_TARGET_64_LITTLE |
| 2433 | template |
| 2434 | class Sized_dwarf_line_info<64, false>; |
| 2435 | #endif |
| 2436 | |
| 2437 | #ifdef HAVE_TARGET_64_BIG |
| 2438 | template |
| 2439 | class Sized_dwarf_line_info<64, true>; |
| 2440 | #endif |
| 2441 | |
| 2442 | } // End namespace gold. |