Update formatting.
[deliverable/binutils-gdb.git] / gold / target.h
... / ...
CommitLineData
1// target.h -- target support for gold -*- C++ -*-
2
3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// The abstract class Target is the interface for target specific
24// support. It defines abstract methods which each target must
25// implement. Typically there will be one target per processor, but
26// in some cases it may be necessary to have subclasses.
27
28// For speed and consistency we want to use inline functions to handle
29// relocation processing. So besides implementations of the abstract
30// methods, each target is expected to define a template
31// specialization of the relocation functions.
32
33#ifndef GOLD_TARGET_H
34#define GOLD_TARGET_H
35
36#include "elfcpp.h"
37#include "options.h"
38#include "parameters.h"
39
40namespace gold
41{
42
43class General_options;
44class Object;
45template<int size, bool big_endian>
46class Sized_relobj;
47class Relocatable_relocs;
48template<int size, bool big_endian>
49class Relocate_info;
50class Symbol;
51template<int size>
52class Sized_symbol;
53class Symbol_table;
54class Output_section;
55
56// The abstract class for target specific handling.
57
58class Target
59{
60 public:
61 virtual ~Target()
62 { }
63
64 // Return the bit size that this target implements. This should
65 // return 32 or 64.
66 int
67 get_size() const
68 { return this->pti_->size; }
69
70 // Return whether this target is big-endian.
71 bool
72 is_big_endian() const
73 { return this->pti_->is_big_endian; }
74
75 // Machine code to store in e_machine field of ELF header.
76 elfcpp::EM
77 machine_code() const
78 { return this->pti_->machine_code; }
79
80 // Whether this target has a specific make_symbol function.
81 bool
82 has_make_symbol() const
83 { return this->pti_->has_make_symbol; }
84
85 // Whether this target has a specific resolve function.
86 bool
87 has_resolve() const
88 { return this->pti_->has_resolve; }
89
90 // Whether this target has a specific code fill function.
91 bool
92 has_code_fill() const
93 { return this->pti_->has_code_fill; }
94
95 // Return the default name of the dynamic linker.
96 const char*
97 dynamic_linker() const
98 { return this->pti_->dynamic_linker; }
99
100 // Return the default address to use for the text segment.
101 uint64_t
102 default_text_segment_address() const
103 { return this->pti_->default_text_segment_address; }
104
105 // Return the ABI specified page size.
106 uint64_t
107 abi_pagesize() const
108 {
109 if (parameters->options().max_page_size() > 0)
110 return parameters->options().max_page_size();
111 else
112 return this->pti_->abi_pagesize;
113 }
114
115 // Return the common page size used on actual systems.
116 uint64_t
117 common_pagesize() const
118 {
119 if (parameters->options().common_page_size() > 0)
120 return std::min(parameters->options().common_page_size(),
121 this->abi_pagesize());
122 else
123 return std::min(this->pti_->common_pagesize,
124 this->abi_pagesize());
125 }
126
127 // If we see some object files with .note.GNU-stack sections, and
128 // some objects files without them, this returns whether we should
129 // consider the object files without them to imply that the stack
130 // should be executable.
131 bool
132 is_default_stack_executable() const
133 { return this->pti_->is_default_stack_executable; }
134
135 // Return a character which may appear as a prefix for a wrap
136 // symbol. If this character appears, we strip it when checking for
137 // wrapping and add it back when forming the final symbol name.
138 // This should be '\0' if not special prefix is required, which is
139 // the normal case.
140 char
141 wrap_char() const
142 { return this->pti_->wrap_char; }
143
144 // This is called to tell the target to complete any sections it is
145 // handling. After this all sections must have their final size.
146 void
147 finalize_sections(Layout* layout)
148 { return this->do_finalize_sections(layout); }
149
150 // Return the value to use for a global symbol which needs a special
151 // value in the dynamic symbol table. This will only be called if
152 // the backend first calls symbol->set_needs_dynsym_value().
153 uint64_t
154 dynsym_value(const Symbol* sym) const
155 { return this->do_dynsym_value(sym); }
156
157 // Return a string to use to fill out a code section. This is
158 // basically one or more NOPS which must fill out the specified
159 // length in bytes.
160 std::string
161 code_fill(section_size_type length) const
162 { return this->do_code_fill(length); }
163
164 // Return whether SYM is known to be defined by the ABI. This is
165 // used to avoid inappropriate warnings about undefined symbols.
166 bool
167 is_defined_by_abi(const Symbol* sym) const
168 { return this->do_is_defined_by_abi(sym); }
169
170 protected:
171 // This struct holds the constant information for a child class. We
172 // use a struct to avoid the overhead of virtual function calls for
173 // simple information.
174 struct Target_info
175 {
176 // Address size (32 or 64).
177 int size;
178 // Whether the target is big endian.
179 bool is_big_endian;
180 // The code to store in the e_machine field of the ELF header.
181 elfcpp::EM machine_code;
182 // Whether this target has a specific make_symbol function.
183 bool has_make_symbol;
184 // Whether this target has a specific resolve function.
185 bool has_resolve;
186 // Whether this target has a specific code fill function.
187 bool has_code_fill;
188 // Whether an object file with no .note.GNU-stack sections implies
189 // that the stack should be executable.
190 bool is_default_stack_executable;
191 // Prefix character to strip when checking for wrapping.
192 char wrap_char;
193 // The default dynamic linker name.
194 const char* dynamic_linker;
195 // The default text segment address.
196 uint64_t default_text_segment_address;
197 // The ABI specified page size.
198 uint64_t abi_pagesize;
199 // The common page size used by actual implementations.
200 uint64_t common_pagesize;
201 };
202
203 Target(const Target_info* pti)
204 : pti_(pti)
205 { }
206
207 // Virtual function which may be implemented by the child class.
208 virtual void
209 do_finalize_sections(Layout*)
210 { }
211
212 // Virtual function which may be implemented by the child class.
213 virtual uint64_t
214 do_dynsym_value(const Symbol*) const
215 { gold_unreachable(); }
216
217 // Virtual function which must be implemented by the child class if
218 // needed.
219 virtual std::string
220 do_code_fill(section_size_type) const
221 { gold_unreachable(); }
222
223 // Virtual function which may be implemented by the child class.
224 virtual bool
225 do_is_defined_by_abi(const Symbol*) const
226 { return false; }
227
228 private:
229 Target(const Target&);
230 Target& operator=(const Target&);
231
232 // The target information.
233 const Target_info* pti_;
234};
235
236// The abstract class for a specific size and endianness of target.
237// Each actual target implementation class should derive from an
238// instantiation of Sized_target.
239
240template<int size, bool big_endian>
241class Sized_target : public Target
242{
243 public:
244 // Make a new symbol table entry for the target. This should be
245 // overridden by a target which needs additional information in the
246 // symbol table. This will only be called if has_make_symbol()
247 // returns true.
248 virtual Sized_symbol<size>*
249 make_symbol() const
250 { gold_unreachable(); }
251
252 // Resolve a symbol for the target. This should be overridden by a
253 // target which needs to take special action. TO is the
254 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
255 // VERSION is the version of SYM. This will only be called if
256 // has_resolve() returns true.
257 virtual void
258 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
259 const char*)
260 { gold_unreachable(); }
261
262 // Process the relocs for a section, and record information of the
263 // mapping from source to destination sections. This mapping is later
264 // used to determine unreferenced garbage sections. This procedure is
265 // only called during garbage collection.
266 virtual void
267 gc_process_relocs(const General_options& options,
268 Symbol_table* symtab,
269 Layout* layout,
270 Sized_relobj<size, big_endian>* object,
271 unsigned int data_shndx,
272 unsigned int sh_type,
273 const unsigned char* prelocs,
274 size_t reloc_count,
275 Output_section* output_section,
276 bool needs_special_offset_handling,
277 size_t local_symbol_count,
278 const unsigned char* plocal_symbols) = 0;
279
280 // Scan the relocs for a section, and record any information
281 // required for the symbol. OPTIONS is the command line options.
282 // SYMTAB is the symbol table. OBJECT is the object in which the
283 // section appears. DATA_SHNDX is the section index that these
284 // relocs apply to. SH_TYPE is the type of the relocation section,
285 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
286 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
287 // number of local symbols. OUTPUT_SECTION is the output section.
288 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
289 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
290 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
291 // pointers to the global symbol table from OBJECT.
292 virtual void
293 scan_relocs(const General_options& options,
294 Symbol_table* symtab,
295 Layout* layout,
296 Sized_relobj<size, big_endian>* object,
297 unsigned int data_shndx,
298 unsigned int sh_type,
299 const unsigned char* prelocs,
300 size_t reloc_count,
301 Output_section* output_section,
302 bool needs_special_offset_handling,
303 size_t local_symbol_count,
304 const unsigned char* plocal_symbols) = 0;
305
306 // Relocate section data. SH_TYPE is the type of the relocation
307 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
308 // information. RELOC_COUNT is the number of relocs.
309 // OUTPUT_SECTION is the output section.
310 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
311 // to correspond to the output section. VIEW is a view into the
312 // output file holding the section contents, VIEW_ADDRESS is the
313 // virtual address of the view, and VIEW_SIZE is the size of the
314 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
315 // parameters refer to the complete output section data, not just
316 // the input section data.
317 virtual void
318 relocate_section(const Relocate_info<size, big_endian>*,
319 unsigned int sh_type,
320 const unsigned char* prelocs,
321 size_t reloc_count,
322 Output_section* output_section,
323 bool needs_special_offset_handling,
324 unsigned char* view,
325 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
326 section_size_type view_size) = 0;
327
328 // Scan the relocs during a relocatable link. The parameters are
329 // like scan_relocs, with an additional Relocatable_relocs
330 // parameter, used to record the disposition of the relocs.
331 virtual void
332 scan_relocatable_relocs(const General_options& options,
333 Symbol_table* symtab,
334 Layout* layout,
335 Sized_relobj<size, big_endian>* object,
336 unsigned int data_shndx,
337 unsigned int sh_type,
338 const unsigned char* prelocs,
339 size_t reloc_count,
340 Output_section* output_section,
341 bool needs_special_offset_handling,
342 size_t local_symbol_count,
343 const unsigned char* plocal_symbols,
344 Relocatable_relocs*) = 0;
345
346 // Relocate a section during a relocatable link. The parameters are
347 // like relocate_section, with additional parameters for the view of
348 // the output reloc section.
349 virtual void
350 relocate_for_relocatable(const Relocate_info<size, big_endian>*,
351 unsigned int sh_type,
352 const unsigned char* prelocs,
353 size_t reloc_count,
354 Output_section* output_section,
355 off_t offset_in_output_section,
356 const Relocatable_relocs*,
357 unsigned char* view,
358 typename elfcpp::Elf_types<size>::Elf_Addr
359 view_address,
360 section_size_type view_size,
361 unsigned char* reloc_view,
362 section_size_type reloc_view_size) = 0;
363
364 protected:
365 Sized_target(const Target::Target_info* pti)
366 : Target(pti)
367 {
368 gold_assert(pti->size == size);
369 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
370 }
371};
372
373} // End namespace gold.
374
375#endif // !defined(GOLD_TARGET_H)
This page took 0.024033 seconds and 4 git commands to generate.