perf_counter: Split the mmap control page in two parts
[deliverable/linux.git] / include / linux / perf_counter.h
... / ...
CommitLineData
1/*
2 * Performance counters:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_COUNTER_H
15#define _LINUX_PERF_COUNTER_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34
35 PERF_TYPE_MAX, /* non-ABI */
36};
37
38/*
39 * Generalized performance counter event types, used by the
40 * attr.event_id parameter of the sys_perf_counter_open()
41 * syscall:
42 */
43enum perf_hw_id {
44 /*
45 * Common hardware events, generalized by the kernel:
46 */
47 PERF_COUNT_HW_CPU_CYCLES = 0,
48 PERF_COUNT_HW_INSTRUCTIONS = 1,
49 PERF_COUNT_HW_CACHE_REFERENCES = 2,
50 PERF_COUNT_HW_CACHE_MISSES = 3,
51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
52 PERF_COUNT_HW_BRANCH_MISSES = 5,
53 PERF_COUNT_HW_BUS_CYCLES = 6,
54
55 PERF_COUNT_HW_MAX, /* non-ABI */
56};
57
58/*
59 * Generalized hardware cache counters:
60 *
61 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62 * { read, write, prefetch } x
63 * { accesses, misses }
64 */
65enum perf_hw_cache_id {
66 PERF_COUNT_HW_CACHE_L1D = 0,
67 PERF_COUNT_HW_CACHE_L1I = 1,
68 PERF_COUNT_HW_CACHE_LL = 2,
69 PERF_COUNT_HW_CACHE_DTLB = 3,
70 PERF_COUNT_HW_CACHE_ITLB = 4,
71 PERF_COUNT_HW_CACHE_BPU = 5,
72
73 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
74};
75
76enum perf_hw_cache_op_id {
77 PERF_COUNT_HW_CACHE_OP_READ = 0,
78 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
79 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
80
81 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
82};
83
84enum perf_hw_cache_op_result_id {
85 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
86 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
87
88 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
89};
90
91/*
92 * Special "software" counters provided by the kernel, even if the hardware
93 * does not support performance counters. These counters measure various
94 * physical and sw events of the kernel (and allow the profiling of them as
95 * well):
96 */
97enum perf_sw_ids {
98 PERF_COUNT_SW_CPU_CLOCK = 0,
99 PERF_COUNT_SW_TASK_CLOCK = 1,
100 PERF_COUNT_SW_PAGE_FAULTS = 2,
101 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
102 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
103 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
104 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
105
106 PERF_COUNT_SW_MAX, /* non-ABI */
107};
108
109/*
110 * Bits that can be set in attr.sample_type to request information
111 * in the overflow packets.
112 */
113enum perf_counter_sample_format {
114 PERF_SAMPLE_IP = 1U << 0,
115 PERF_SAMPLE_TID = 1U << 1,
116 PERF_SAMPLE_TIME = 1U << 2,
117 PERF_SAMPLE_ADDR = 1U << 3,
118 PERF_SAMPLE_GROUP = 1U << 4,
119 PERF_SAMPLE_CALLCHAIN = 1U << 5,
120 PERF_SAMPLE_ID = 1U << 6,
121 PERF_SAMPLE_CPU = 1U << 7,
122 PERF_SAMPLE_PERIOD = 1U << 8,
123
124 PERF_SAMPLE_MAX = 1U << 9, /* non-ABI */
125};
126
127/*
128 * Bits that can be set in attr.read_format to request that
129 * reads on the counter should return the indicated quantities,
130 * in increasing order of bit value, after the counter value.
131 */
132enum perf_counter_read_format {
133 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
134 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
135 PERF_FORMAT_ID = 1U << 2,
136
137 PERF_FORMAT_MAX = 1U << 3, /* non-ABI */
138};
139
140#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
141
142/*
143 * Hardware event to monitor via a performance monitoring counter:
144 */
145struct perf_counter_attr {
146
147 /*
148 * Major type: hardware/software/tracepoint/etc.
149 */
150 __u32 type;
151
152 /*
153 * Size of the attr structure, for fwd/bwd compat.
154 */
155 __u32 size;
156
157 /*
158 * Type specific configuration information.
159 */
160 __u64 config;
161
162 union {
163 __u64 sample_period;
164 __u64 sample_freq;
165 };
166
167 __u64 sample_type;
168 __u64 read_format;
169
170 __u64 disabled : 1, /* off by default */
171 inherit : 1, /* children inherit it */
172 pinned : 1, /* must always be on PMU */
173 exclusive : 1, /* only group on PMU */
174 exclude_user : 1, /* don't count user */
175 exclude_kernel : 1, /* ditto kernel */
176 exclude_hv : 1, /* ditto hypervisor */
177 exclude_idle : 1, /* don't count when idle */
178 mmap : 1, /* include mmap data */
179 comm : 1, /* include comm data */
180 freq : 1, /* use freq, not period */
181
182 __reserved_1 : 53;
183
184 __u32 wakeup_events; /* wakeup every n events */
185 __u32 __reserved_2;
186
187 __u64 __reserved_3;
188};
189
190/*
191 * Ioctls that can be done on a perf counter fd:
192 */
193#define PERF_COUNTER_IOC_ENABLE _IO ('$', 0)
194#define PERF_COUNTER_IOC_DISABLE _IO ('$', 1)
195#define PERF_COUNTER_IOC_REFRESH _IO ('$', 2)
196#define PERF_COUNTER_IOC_RESET _IO ('$', 3)
197#define PERF_COUNTER_IOC_PERIOD _IOW('$', 4, u64)
198
199enum perf_counter_ioc_flags {
200 PERF_IOC_FLAG_GROUP = 1U << 0,
201};
202
203/*
204 * Structure of the page that can be mapped via mmap
205 */
206struct perf_counter_mmap_page {
207 __u32 version; /* version number of this structure */
208 __u32 compat_version; /* lowest version this is compat with */
209
210 /*
211 * Bits needed to read the hw counters in user-space.
212 *
213 * u32 seq;
214 * s64 count;
215 *
216 * do {
217 * seq = pc->lock;
218 *
219 * barrier()
220 * if (pc->index) {
221 * count = pmc_read(pc->index - 1);
222 * count += pc->offset;
223 * } else
224 * goto regular_read;
225 *
226 * barrier();
227 * } while (pc->lock != seq);
228 *
229 * NOTE: for obvious reason this only works on self-monitoring
230 * processes.
231 */
232 __u32 lock; /* seqlock for synchronization */
233 __u32 index; /* hardware counter identifier */
234 __s64 offset; /* add to hardware counter value */
235
236 /*
237 * Hole for extension of the self monitor capabilities
238 */
239
240 __u64 __reserved[125]; /* align to 1k */
241
242 /*
243 * Control data for the mmap() data buffer.
244 *
245 * User-space reading the @data_head value should issue an rmb(), on
246 * SMP capable platforms, after reading this value -- see
247 * perf_counter_wakeup().
248 *
249 * When the mapping is PROT_WRITE the @data_tail value should be
250 * written by userspace to reflect the last read data. In this case
251 * the kernel will not over-write unread data.
252 */
253 __u64 data_head; /* head in the data section */
254 __u64 data_tail; /* user-space written tail */
255};
256
257#define PERF_EVENT_MISC_CPUMODE_MASK (3 << 0)
258#define PERF_EVENT_MISC_CPUMODE_UNKNOWN (0 << 0)
259#define PERF_EVENT_MISC_KERNEL (1 << 0)
260#define PERF_EVENT_MISC_USER (2 << 0)
261#define PERF_EVENT_MISC_HYPERVISOR (3 << 0)
262#define PERF_EVENT_MISC_OVERFLOW (1 << 2)
263
264struct perf_event_header {
265 __u32 type;
266 __u16 misc;
267 __u16 size;
268};
269
270enum perf_event_type {
271
272 /*
273 * The MMAP events record the PROT_EXEC mappings so that we can
274 * correlate userspace IPs to code. They have the following structure:
275 *
276 * struct {
277 * struct perf_event_header header;
278 *
279 * u32 pid, tid;
280 * u64 addr;
281 * u64 len;
282 * u64 pgoff;
283 * char filename[];
284 * };
285 */
286 PERF_EVENT_MMAP = 1,
287
288 /*
289 * struct {
290 * struct perf_event_header header;
291 * u64 id;
292 * u64 lost;
293 * };
294 */
295 PERF_EVENT_LOST = 2,
296
297 /*
298 * struct {
299 * struct perf_event_header header;
300 *
301 * u32 pid, tid;
302 * char comm[];
303 * };
304 */
305 PERF_EVENT_COMM = 3,
306
307 /*
308 * struct {
309 * struct perf_event_header header;
310 * u64 time;
311 * u64 id;
312 * u64 sample_period;
313 * };
314 */
315 PERF_EVENT_PERIOD = 4,
316
317 /*
318 * struct {
319 * struct perf_event_header header;
320 * u64 time;
321 * u64 id;
322 * };
323 */
324 PERF_EVENT_THROTTLE = 5,
325 PERF_EVENT_UNTHROTTLE = 6,
326
327 /*
328 * struct {
329 * struct perf_event_header header;
330 * u32 pid, ppid;
331 * };
332 */
333 PERF_EVENT_FORK = 7,
334
335 /*
336 * When header.misc & PERF_EVENT_MISC_OVERFLOW the event_type field
337 * will be PERF_SAMPLE_*
338 *
339 * struct {
340 * struct perf_event_header header;
341 *
342 * { u64 ip; } && PERF_SAMPLE_IP
343 * { u32 pid, tid; } && PERF_SAMPLE_TID
344 * { u64 time; } && PERF_SAMPLE_TIME
345 * { u64 addr; } && PERF_SAMPLE_ADDR
346 * { u64 config; } && PERF_SAMPLE_CONFIG
347 * { u32 cpu, res; } && PERF_SAMPLE_CPU
348 *
349 * { u64 nr;
350 * { u64 id, val; } cnt[nr]; } && PERF_SAMPLE_GROUP
351 *
352 * { u64 nr,
353 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
354 * };
355 */
356};
357
358enum perf_callchain_context {
359 PERF_CONTEXT_HV = (__u64)-32,
360 PERF_CONTEXT_KERNEL = (__u64)-128,
361 PERF_CONTEXT_USER = (__u64)-512,
362
363 PERF_CONTEXT_GUEST = (__u64)-2048,
364 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
365 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
366
367 PERF_CONTEXT_MAX = (__u64)-4095,
368};
369
370#ifdef __KERNEL__
371/*
372 * Kernel-internal data types and definitions:
373 */
374
375#ifdef CONFIG_PERF_COUNTERS
376# include <asm/perf_counter.h>
377#endif
378
379#include <linux/list.h>
380#include <linux/mutex.h>
381#include <linux/rculist.h>
382#include <linux/rcupdate.h>
383#include <linux/spinlock.h>
384#include <linux/hrtimer.h>
385#include <linux/fs.h>
386#include <linux/pid_namespace.h>
387#include <asm/atomic.h>
388
389#define PERF_MAX_STACK_DEPTH 255
390
391struct perf_callchain_entry {
392 __u64 nr;
393 __u64 ip[PERF_MAX_STACK_DEPTH];
394};
395
396struct task_struct;
397
398/**
399 * struct hw_perf_counter - performance counter hardware details:
400 */
401struct hw_perf_counter {
402#ifdef CONFIG_PERF_COUNTERS
403 union {
404 struct { /* hardware */
405 u64 config;
406 unsigned long config_base;
407 unsigned long counter_base;
408 int idx;
409 };
410 union { /* software */
411 atomic64_t count;
412 struct hrtimer hrtimer;
413 };
414 };
415 atomic64_t prev_count;
416 u64 sample_period;
417 u64 last_period;
418 atomic64_t period_left;
419 u64 interrupts;
420
421 u64 freq_count;
422 u64 freq_interrupts;
423 u64 freq_stamp;
424#endif
425};
426
427struct perf_counter;
428
429/**
430 * struct pmu - generic performance monitoring unit
431 */
432struct pmu {
433 int (*enable) (struct perf_counter *counter);
434 void (*disable) (struct perf_counter *counter);
435 void (*read) (struct perf_counter *counter);
436 void (*unthrottle) (struct perf_counter *counter);
437};
438
439/**
440 * enum perf_counter_active_state - the states of a counter
441 */
442enum perf_counter_active_state {
443 PERF_COUNTER_STATE_ERROR = -2,
444 PERF_COUNTER_STATE_OFF = -1,
445 PERF_COUNTER_STATE_INACTIVE = 0,
446 PERF_COUNTER_STATE_ACTIVE = 1,
447};
448
449struct file;
450
451struct perf_mmap_data {
452 struct rcu_head rcu_head;
453 int nr_pages; /* nr of data pages */
454 int writable; /* are we writable */
455 int nr_locked; /* nr pages mlocked */
456
457 atomic_t poll; /* POLL_ for wakeups */
458 atomic_t events; /* event limit */
459
460 atomic_long_t head; /* write position */
461 atomic_long_t done_head; /* completed head */
462
463 atomic_t lock; /* concurrent writes */
464 atomic_t wakeup; /* needs a wakeup */
465 atomic_t lost; /* nr records lost */
466
467 struct perf_counter_mmap_page *user_page;
468 void *data_pages[0];
469};
470
471struct perf_pending_entry {
472 struct perf_pending_entry *next;
473 void (*func)(struct perf_pending_entry *);
474};
475
476/**
477 * struct perf_counter - performance counter kernel representation:
478 */
479struct perf_counter {
480#ifdef CONFIG_PERF_COUNTERS
481 struct list_head list_entry;
482 struct list_head event_entry;
483 struct list_head sibling_list;
484 int nr_siblings;
485 struct perf_counter *group_leader;
486 const struct pmu *pmu;
487
488 enum perf_counter_active_state state;
489 atomic64_t count;
490
491 /*
492 * These are the total time in nanoseconds that the counter
493 * has been enabled (i.e. eligible to run, and the task has
494 * been scheduled in, if this is a per-task counter)
495 * and running (scheduled onto the CPU), respectively.
496 *
497 * They are computed from tstamp_enabled, tstamp_running and
498 * tstamp_stopped when the counter is in INACTIVE or ACTIVE state.
499 */
500 u64 total_time_enabled;
501 u64 total_time_running;
502
503 /*
504 * These are timestamps used for computing total_time_enabled
505 * and total_time_running when the counter is in INACTIVE or
506 * ACTIVE state, measured in nanoseconds from an arbitrary point
507 * in time.
508 * tstamp_enabled: the notional time when the counter was enabled
509 * tstamp_running: the notional time when the counter was scheduled on
510 * tstamp_stopped: in INACTIVE state, the notional time when the
511 * counter was scheduled off.
512 */
513 u64 tstamp_enabled;
514 u64 tstamp_running;
515 u64 tstamp_stopped;
516
517 struct perf_counter_attr attr;
518 struct hw_perf_counter hw;
519
520 struct perf_counter_context *ctx;
521 struct file *filp;
522
523 /*
524 * These accumulate total time (in nanoseconds) that children
525 * counters have been enabled and running, respectively.
526 */
527 atomic64_t child_total_time_enabled;
528 atomic64_t child_total_time_running;
529
530 /*
531 * Protect attach/detach and child_list:
532 */
533 struct mutex child_mutex;
534 struct list_head child_list;
535 struct perf_counter *parent;
536
537 int oncpu;
538 int cpu;
539
540 struct list_head owner_entry;
541 struct task_struct *owner;
542
543 /* mmap bits */
544 struct mutex mmap_mutex;
545 atomic_t mmap_count;
546 struct perf_mmap_data *data;
547
548 /* poll related */
549 wait_queue_head_t waitq;
550 struct fasync_struct *fasync;
551
552 /* delayed work for NMIs and such */
553 int pending_wakeup;
554 int pending_kill;
555 int pending_disable;
556 struct perf_pending_entry pending;
557
558 atomic_t event_limit;
559
560 void (*destroy)(struct perf_counter *);
561 struct rcu_head rcu_head;
562
563 struct pid_namespace *ns;
564 u64 id;
565#endif
566};
567
568/**
569 * struct perf_counter_context - counter context structure
570 *
571 * Used as a container for task counters and CPU counters as well:
572 */
573struct perf_counter_context {
574 /*
575 * Protect the states of the counters in the list,
576 * nr_active, and the list:
577 */
578 spinlock_t lock;
579 /*
580 * Protect the list of counters. Locking either mutex or lock
581 * is sufficient to ensure the list doesn't change; to change
582 * the list you need to lock both the mutex and the spinlock.
583 */
584 struct mutex mutex;
585
586 struct list_head counter_list;
587 struct list_head event_list;
588 int nr_counters;
589 int nr_active;
590 int is_active;
591 atomic_t refcount;
592 struct task_struct *task;
593
594 /*
595 * Context clock, runs when context enabled.
596 */
597 u64 time;
598 u64 timestamp;
599
600 /*
601 * These fields let us detect when two contexts have both
602 * been cloned (inherited) from a common ancestor.
603 */
604 struct perf_counter_context *parent_ctx;
605 u64 parent_gen;
606 u64 generation;
607 int pin_count;
608 struct rcu_head rcu_head;
609};
610
611/**
612 * struct perf_counter_cpu_context - per cpu counter context structure
613 */
614struct perf_cpu_context {
615 struct perf_counter_context ctx;
616 struct perf_counter_context *task_ctx;
617 int active_oncpu;
618 int max_pertask;
619 int exclusive;
620
621 /*
622 * Recursion avoidance:
623 *
624 * task, softirq, irq, nmi context
625 */
626 int recursion[4];
627};
628
629#ifdef CONFIG_PERF_COUNTERS
630
631/*
632 * Set by architecture code:
633 */
634extern int perf_max_counters;
635
636extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter);
637
638extern void perf_counter_task_sched_in(struct task_struct *task, int cpu);
639extern void perf_counter_task_sched_out(struct task_struct *task,
640 struct task_struct *next, int cpu);
641extern void perf_counter_task_tick(struct task_struct *task, int cpu);
642extern int perf_counter_init_task(struct task_struct *child);
643extern void perf_counter_exit_task(struct task_struct *child);
644extern void perf_counter_free_task(struct task_struct *task);
645extern void set_perf_counter_pending(void);
646extern void perf_counter_do_pending(void);
647extern void perf_counter_print_debug(void);
648extern void __perf_disable(void);
649extern bool __perf_enable(void);
650extern void perf_disable(void);
651extern void perf_enable(void);
652extern int perf_counter_task_disable(void);
653extern int perf_counter_task_enable(void);
654extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
655 struct perf_cpu_context *cpuctx,
656 struct perf_counter_context *ctx, int cpu);
657extern void perf_counter_update_userpage(struct perf_counter *counter);
658
659struct perf_sample_data {
660 struct pt_regs *regs;
661 u64 addr;
662 u64 period;
663};
664
665extern int perf_counter_overflow(struct perf_counter *counter, int nmi,
666 struct perf_sample_data *data);
667
668/*
669 * Return 1 for a software counter, 0 for a hardware counter
670 */
671static inline int is_software_counter(struct perf_counter *counter)
672{
673 return (counter->attr.type != PERF_TYPE_RAW) &&
674 (counter->attr.type != PERF_TYPE_HARDWARE) &&
675 (counter->attr.type != PERF_TYPE_HW_CACHE);
676}
677
678extern atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
679
680extern void __perf_swcounter_event(u32, u64, int, struct pt_regs *, u64);
681
682static inline void
683perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
684{
685 if (atomic_read(&perf_swcounter_enabled[event]))
686 __perf_swcounter_event(event, nr, nmi, regs, addr);
687}
688
689extern void __perf_counter_mmap(struct vm_area_struct *vma);
690
691static inline void perf_counter_mmap(struct vm_area_struct *vma)
692{
693 if (vma->vm_flags & VM_EXEC)
694 __perf_counter_mmap(vma);
695}
696
697extern void perf_counter_comm(struct task_struct *tsk);
698extern void perf_counter_fork(struct task_struct *tsk);
699
700extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
701
702extern int sysctl_perf_counter_paranoid;
703extern int sysctl_perf_counter_mlock;
704extern int sysctl_perf_counter_sample_rate;
705
706extern void perf_counter_init(void);
707
708#ifndef perf_misc_flags
709#define perf_misc_flags(regs) (user_mode(regs) ? PERF_EVENT_MISC_USER : \
710 PERF_EVENT_MISC_KERNEL)
711#define perf_instruction_pointer(regs) instruction_pointer(regs)
712#endif
713
714#else
715static inline void
716perf_counter_task_sched_in(struct task_struct *task, int cpu) { }
717static inline void
718perf_counter_task_sched_out(struct task_struct *task,
719 struct task_struct *next, int cpu) { }
720static inline void
721perf_counter_task_tick(struct task_struct *task, int cpu) { }
722static inline int perf_counter_init_task(struct task_struct *child) { return 0; }
723static inline void perf_counter_exit_task(struct task_struct *child) { }
724static inline void perf_counter_free_task(struct task_struct *task) { }
725static inline void perf_counter_do_pending(void) { }
726static inline void perf_counter_print_debug(void) { }
727static inline void perf_disable(void) { }
728static inline void perf_enable(void) { }
729static inline int perf_counter_task_disable(void) { return -EINVAL; }
730static inline int perf_counter_task_enable(void) { return -EINVAL; }
731
732static inline void
733perf_swcounter_event(u32 event, u64 nr, int nmi,
734 struct pt_regs *regs, u64 addr) { }
735
736static inline void perf_counter_mmap(struct vm_area_struct *vma) { }
737static inline void perf_counter_comm(struct task_struct *tsk) { }
738static inline void perf_counter_fork(struct task_struct *tsk) { }
739static inline void perf_counter_init(void) { }
740#endif
741
742#endif /* __KERNEL__ */
743#endif /* _LINUX_PERF_COUNTER_H */
This page took 0.027234 seconds and 5 git commands to generate.