sched/numa: Update NUMA hinting faults once per scan
[deliverable/linux.git] / include / linux / sched.h
... / ...
CommitLineData
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8 int sched_priority;
9};
10
11#include <asm/param.h> /* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/rbtree.h>
20#include <linux/thread_info.h>
21#include <linux/cpumask.h>
22#include <linux/errno.h>
23#include <linux/nodemask.h>
24#include <linux/mm_types.h>
25#include <linux/preempt.h>
26
27#include <asm/page.h>
28#include <asm/ptrace.h>
29#include <asm/cputime.h>
30
31#include <linux/smp.h>
32#include <linux/sem.h>
33#include <linux/signal.h>
34#include <linux/compiler.h>
35#include <linux/completion.h>
36#include <linux/pid.h>
37#include <linux/percpu.h>
38#include <linux/topology.h>
39#include <linux/proportions.h>
40#include <linux/seccomp.h>
41#include <linux/rcupdate.h>
42#include <linux/rculist.h>
43#include <linux/rtmutex.h>
44
45#include <linux/time.h>
46#include <linux/param.h>
47#include <linux/resource.h>
48#include <linux/timer.h>
49#include <linux/hrtimer.h>
50#include <linux/task_io_accounting.h>
51#include <linux/latencytop.h>
52#include <linux/cred.h>
53#include <linux/llist.h>
54#include <linux/uidgid.h>
55#include <linux/gfp.h>
56
57#include <asm/processor.h>
58
59struct exec_domain;
60struct futex_pi_state;
61struct robust_list_head;
62struct bio_list;
63struct fs_struct;
64struct perf_event_context;
65struct blk_plug;
66
67/*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73/*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
81 * 11 bit fractions.
82 */
83extern unsigned long avenrun[]; /* Load averages */
84extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86#define FSHIFT 11 /* nr of bits of precision */
87#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90#define EXP_5 2014 /* 1/exp(5sec/5min) */
91#define EXP_15 2037 /* 1/exp(5sec/15min) */
92
93#define CALC_LOAD(load,exp,n) \
94 load *= exp; \
95 load += n*(FIXED_1-exp); \
96 load >>= FSHIFT;
97
98extern unsigned long total_forks;
99extern int nr_threads;
100DECLARE_PER_CPU(unsigned long, process_counts);
101extern int nr_processes(void);
102extern unsigned long nr_running(void);
103extern unsigned long nr_iowait(void);
104extern unsigned long nr_iowait_cpu(int cpu);
105extern unsigned long this_cpu_load(void);
106
107
108extern void calc_global_load(unsigned long ticks);
109extern void update_cpu_load_nohz(void);
110
111extern unsigned long get_parent_ip(unsigned long addr);
112
113extern void dump_cpu_task(int cpu);
114
115struct seq_file;
116struct cfs_rq;
117struct task_group;
118#ifdef CONFIG_SCHED_DEBUG
119extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120extern void proc_sched_set_task(struct task_struct *p);
121extern void
122print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123#endif
124
125/*
126 * Task state bitmask. NOTE! These bits are also
127 * encoded in fs/proc/array.c: get_task_state().
128 *
129 * We have two separate sets of flags: task->state
130 * is about runnability, while task->exit_state are
131 * about the task exiting. Confusing, but this way
132 * modifying one set can't modify the other one by
133 * mistake.
134 */
135#define TASK_RUNNING 0
136#define TASK_INTERRUPTIBLE 1
137#define TASK_UNINTERRUPTIBLE 2
138#define __TASK_STOPPED 4
139#define __TASK_TRACED 8
140/* in tsk->exit_state */
141#define EXIT_ZOMBIE 16
142#define EXIT_DEAD 32
143/* in tsk->state again */
144#define TASK_DEAD 64
145#define TASK_WAKEKILL 128
146#define TASK_WAKING 256
147#define TASK_PARKED 512
148#define TASK_STATE_MAX 1024
149
150#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151
152extern char ___assert_task_state[1 - 2*!!(
153 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154
155/* Convenience macros for the sake of set_task_state */
156#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
158#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
159
160/* Convenience macros for the sake of wake_up */
161#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163
164/* get_task_state() */
165#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
166 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167 __TASK_TRACED)
168
169#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
170#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
171#define task_is_dead(task) ((task)->exit_state != 0)
172#define task_is_stopped_or_traced(task) \
173 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174#define task_contributes_to_load(task) \
175 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176 (task->flags & PF_FROZEN) == 0)
177
178#define __set_task_state(tsk, state_value) \
179 do { (tsk)->state = (state_value); } while (0)
180#define set_task_state(tsk, state_value) \
181 set_mb((tsk)->state, (state_value))
182
183/*
184 * set_current_state() includes a barrier so that the write of current->state
185 * is correctly serialised wrt the caller's subsequent test of whether to
186 * actually sleep:
187 *
188 * set_current_state(TASK_UNINTERRUPTIBLE);
189 * if (do_i_need_to_sleep())
190 * schedule();
191 *
192 * If the caller does not need such serialisation then use __set_current_state()
193 */
194#define __set_current_state(state_value) \
195 do { current->state = (state_value); } while (0)
196#define set_current_state(state_value) \
197 set_mb(current->state, (state_value))
198
199/* Task command name length */
200#define TASK_COMM_LEN 16
201
202#include <linux/spinlock.h>
203
204/*
205 * This serializes "schedule()" and also protects
206 * the run-queue from deletions/modifications (but
207 * _adding_ to the beginning of the run-queue has
208 * a separate lock).
209 */
210extern rwlock_t tasklist_lock;
211extern spinlock_t mmlist_lock;
212
213struct task_struct;
214
215#ifdef CONFIG_PROVE_RCU
216extern int lockdep_tasklist_lock_is_held(void);
217#endif /* #ifdef CONFIG_PROVE_RCU */
218
219extern void sched_init(void);
220extern void sched_init_smp(void);
221extern asmlinkage void schedule_tail(struct task_struct *prev);
222extern void init_idle(struct task_struct *idle, int cpu);
223extern void init_idle_bootup_task(struct task_struct *idle);
224
225extern int runqueue_is_locked(int cpu);
226
227#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228extern void nohz_balance_enter_idle(int cpu);
229extern void set_cpu_sd_state_idle(void);
230extern int get_nohz_timer_target(void);
231#else
232static inline void nohz_balance_enter_idle(int cpu) { }
233static inline void set_cpu_sd_state_idle(void) { }
234#endif
235
236/*
237 * Only dump TASK_* tasks. (0 for all tasks)
238 */
239extern void show_state_filter(unsigned long state_filter);
240
241static inline void show_state(void)
242{
243 show_state_filter(0);
244}
245
246extern void show_regs(struct pt_regs *);
247
248/*
249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250 * task), SP is the stack pointer of the first frame that should be shown in the back
251 * trace (or NULL if the entire call-chain of the task should be shown).
252 */
253extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255void io_schedule(void);
256long io_schedule_timeout(long timeout);
257
258extern void cpu_init (void);
259extern void trap_init(void);
260extern void update_process_times(int user);
261extern void scheduler_tick(void);
262
263extern void sched_show_task(struct task_struct *p);
264
265#ifdef CONFIG_LOCKUP_DETECTOR
266extern void touch_softlockup_watchdog(void);
267extern void touch_softlockup_watchdog_sync(void);
268extern void touch_all_softlockup_watchdogs(void);
269extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270 void __user *buffer,
271 size_t *lenp, loff_t *ppos);
272extern unsigned int softlockup_panic;
273void lockup_detector_init(void);
274#else
275static inline void touch_softlockup_watchdog(void)
276{
277}
278static inline void touch_softlockup_watchdog_sync(void)
279{
280}
281static inline void touch_all_softlockup_watchdogs(void)
282{
283}
284static inline void lockup_detector_init(void)
285{
286}
287#endif
288
289/* Attach to any functions which should be ignored in wchan output. */
290#define __sched __attribute__((__section__(".sched.text")))
291
292/* Linker adds these: start and end of __sched functions */
293extern char __sched_text_start[], __sched_text_end[];
294
295/* Is this address in the __sched functions? */
296extern int in_sched_functions(unsigned long addr);
297
298#define MAX_SCHEDULE_TIMEOUT LONG_MAX
299extern signed long schedule_timeout(signed long timeout);
300extern signed long schedule_timeout_interruptible(signed long timeout);
301extern signed long schedule_timeout_killable(signed long timeout);
302extern signed long schedule_timeout_uninterruptible(signed long timeout);
303asmlinkage void schedule(void);
304extern void schedule_preempt_disabled(void);
305
306struct nsproxy;
307struct user_namespace;
308
309#ifdef CONFIG_MMU
310extern void arch_pick_mmap_layout(struct mm_struct *mm);
311extern unsigned long
312arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
313 unsigned long, unsigned long);
314extern unsigned long
315arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
316 unsigned long len, unsigned long pgoff,
317 unsigned long flags);
318#else
319static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
320#endif
321
322
323extern void set_dumpable(struct mm_struct *mm, int value);
324extern int get_dumpable(struct mm_struct *mm);
325
326/* mm flags */
327/* dumpable bits */
328#define MMF_DUMPABLE 0 /* core dump is permitted */
329#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
330
331#define MMF_DUMPABLE_BITS 2
332#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
333
334/* coredump filter bits */
335#define MMF_DUMP_ANON_PRIVATE 2
336#define MMF_DUMP_ANON_SHARED 3
337#define MMF_DUMP_MAPPED_PRIVATE 4
338#define MMF_DUMP_MAPPED_SHARED 5
339#define MMF_DUMP_ELF_HEADERS 6
340#define MMF_DUMP_HUGETLB_PRIVATE 7
341#define MMF_DUMP_HUGETLB_SHARED 8
342
343#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
344#define MMF_DUMP_FILTER_BITS 7
345#define MMF_DUMP_FILTER_MASK \
346 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
347#define MMF_DUMP_FILTER_DEFAULT \
348 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
349 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
350
351#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
352# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
353#else
354# define MMF_DUMP_MASK_DEFAULT_ELF 0
355#endif
356 /* leave room for more dump flags */
357#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
358#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
359#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
360
361#define MMF_HAS_UPROBES 19 /* has uprobes */
362#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
363
364#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
365
366struct sighand_struct {
367 atomic_t count;
368 struct k_sigaction action[_NSIG];
369 spinlock_t siglock;
370 wait_queue_head_t signalfd_wqh;
371};
372
373struct pacct_struct {
374 int ac_flag;
375 long ac_exitcode;
376 unsigned long ac_mem;
377 cputime_t ac_utime, ac_stime;
378 unsigned long ac_minflt, ac_majflt;
379};
380
381struct cpu_itimer {
382 cputime_t expires;
383 cputime_t incr;
384 u32 error;
385 u32 incr_error;
386};
387
388/**
389 * struct cputime - snaphsot of system and user cputime
390 * @utime: time spent in user mode
391 * @stime: time spent in system mode
392 *
393 * Gathers a generic snapshot of user and system time.
394 */
395struct cputime {
396 cputime_t utime;
397 cputime_t stime;
398};
399
400/**
401 * struct task_cputime - collected CPU time counts
402 * @utime: time spent in user mode, in &cputime_t units
403 * @stime: time spent in kernel mode, in &cputime_t units
404 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
405 *
406 * This is an extension of struct cputime that includes the total runtime
407 * spent by the task from the scheduler point of view.
408 *
409 * As a result, this structure groups together three kinds of CPU time
410 * that are tracked for threads and thread groups. Most things considering
411 * CPU time want to group these counts together and treat all three
412 * of them in parallel.
413 */
414struct task_cputime {
415 cputime_t utime;
416 cputime_t stime;
417 unsigned long long sum_exec_runtime;
418};
419/* Alternate field names when used to cache expirations. */
420#define prof_exp stime
421#define virt_exp utime
422#define sched_exp sum_exec_runtime
423
424#define INIT_CPUTIME \
425 (struct task_cputime) { \
426 .utime = 0, \
427 .stime = 0, \
428 .sum_exec_runtime = 0, \
429 }
430
431#define PREEMPT_ENABLED (PREEMPT_NEED_RESCHED)
432
433#ifdef CONFIG_PREEMPT_COUNT
434#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
435#else
436#define PREEMPT_DISABLED PREEMPT_ENABLED
437#endif
438
439/*
440 * Disable preemption until the scheduler is running.
441 * Reset by start_kernel()->sched_init()->init_idle().
442 *
443 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
444 * before the scheduler is active -- see should_resched().
445 */
446#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
447
448/**
449 * struct thread_group_cputimer - thread group interval timer counts
450 * @cputime: thread group interval timers.
451 * @running: non-zero when there are timers running and
452 * @cputime receives updates.
453 * @lock: lock for fields in this struct.
454 *
455 * This structure contains the version of task_cputime, above, that is
456 * used for thread group CPU timer calculations.
457 */
458struct thread_group_cputimer {
459 struct task_cputime cputime;
460 int running;
461 raw_spinlock_t lock;
462};
463
464#include <linux/rwsem.h>
465struct autogroup;
466
467/*
468 * NOTE! "signal_struct" does not have its own
469 * locking, because a shared signal_struct always
470 * implies a shared sighand_struct, so locking
471 * sighand_struct is always a proper superset of
472 * the locking of signal_struct.
473 */
474struct signal_struct {
475 atomic_t sigcnt;
476 atomic_t live;
477 int nr_threads;
478
479 wait_queue_head_t wait_chldexit; /* for wait4() */
480
481 /* current thread group signal load-balancing target: */
482 struct task_struct *curr_target;
483
484 /* shared signal handling: */
485 struct sigpending shared_pending;
486
487 /* thread group exit support */
488 int group_exit_code;
489 /* overloaded:
490 * - notify group_exit_task when ->count is equal to notify_count
491 * - everyone except group_exit_task is stopped during signal delivery
492 * of fatal signals, group_exit_task processes the signal.
493 */
494 int notify_count;
495 struct task_struct *group_exit_task;
496
497 /* thread group stop support, overloads group_exit_code too */
498 int group_stop_count;
499 unsigned int flags; /* see SIGNAL_* flags below */
500
501 /*
502 * PR_SET_CHILD_SUBREAPER marks a process, like a service
503 * manager, to re-parent orphan (double-forking) child processes
504 * to this process instead of 'init'. The service manager is
505 * able to receive SIGCHLD signals and is able to investigate
506 * the process until it calls wait(). All children of this
507 * process will inherit a flag if they should look for a
508 * child_subreaper process at exit.
509 */
510 unsigned int is_child_subreaper:1;
511 unsigned int has_child_subreaper:1;
512
513 /* POSIX.1b Interval Timers */
514 int posix_timer_id;
515 struct list_head posix_timers;
516
517 /* ITIMER_REAL timer for the process */
518 struct hrtimer real_timer;
519 struct pid *leader_pid;
520 ktime_t it_real_incr;
521
522 /*
523 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
524 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
525 * values are defined to 0 and 1 respectively
526 */
527 struct cpu_itimer it[2];
528
529 /*
530 * Thread group totals for process CPU timers.
531 * See thread_group_cputimer(), et al, for details.
532 */
533 struct thread_group_cputimer cputimer;
534
535 /* Earliest-expiration cache. */
536 struct task_cputime cputime_expires;
537
538 struct list_head cpu_timers[3];
539
540 struct pid *tty_old_pgrp;
541
542 /* boolean value for session group leader */
543 int leader;
544
545 struct tty_struct *tty; /* NULL if no tty */
546
547#ifdef CONFIG_SCHED_AUTOGROUP
548 struct autogroup *autogroup;
549#endif
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t utime, stime, cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560 struct cputime prev_cputime;
561#endif
562 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
563 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
564 unsigned long inblock, oublock, cinblock, coublock;
565 unsigned long maxrss, cmaxrss;
566 struct task_io_accounting ioac;
567
568 /*
569 * Cumulative ns of schedule CPU time fo dead threads in the
570 * group, not including a zombie group leader, (This only differs
571 * from jiffies_to_ns(utime + stime) if sched_clock uses something
572 * other than jiffies.)
573 */
574 unsigned long long sum_sched_runtime;
575
576 /*
577 * We don't bother to synchronize most readers of this at all,
578 * because there is no reader checking a limit that actually needs
579 * to get both rlim_cur and rlim_max atomically, and either one
580 * alone is a single word that can safely be read normally.
581 * getrlimit/setrlimit use task_lock(current->group_leader) to
582 * protect this instead of the siglock, because they really
583 * have no need to disable irqs.
584 */
585 struct rlimit rlim[RLIM_NLIMITS];
586
587#ifdef CONFIG_BSD_PROCESS_ACCT
588 struct pacct_struct pacct; /* per-process accounting information */
589#endif
590#ifdef CONFIG_TASKSTATS
591 struct taskstats *stats;
592#endif
593#ifdef CONFIG_AUDIT
594 unsigned audit_tty;
595 unsigned audit_tty_log_passwd;
596 struct tty_audit_buf *tty_audit_buf;
597#endif
598#ifdef CONFIG_CGROUPS
599 /*
600 * group_rwsem prevents new tasks from entering the threadgroup and
601 * member tasks from exiting,a more specifically, setting of
602 * PF_EXITING. fork and exit paths are protected with this rwsem
603 * using threadgroup_change_begin/end(). Users which require
604 * threadgroup to remain stable should use threadgroup_[un]lock()
605 * which also takes care of exec path. Currently, cgroup is the
606 * only user.
607 */
608 struct rw_semaphore group_rwsem;
609#endif
610
611 oom_flags_t oom_flags;
612 short oom_score_adj; /* OOM kill score adjustment */
613 short oom_score_adj_min; /* OOM kill score adjustment min value.
614 * Only settable by CAP_SYS_RESOURCE. */
615
616 struct mutex cred_guard_mutex; /* guard against foreign influences on
617 * credential calculations
618 * (notably. ptrace) */
619};
620
621/*
622 * Bits in flags field of signal_struct.
623 */
624#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
625#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
626#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
627#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
628/*
629 * Pending notifications to parent.
630 */
631#define SIGNAL_CLD_STOPPED 0x00000010
632#define SIGNAL_CLD_CONTINUED 0x00000020
633#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
636
637/* If true, all threads except ->group_exit_task have pending SIGKILL */
638static inline int signal_group_exit(const struct signal_struct *sig)
639{
640 return (sig->flags & SIGNAL_GROUP_EXIT) ||
641 (sig->group_exit_task != NULL);
642}
643
644/*
645 * Some day this will be a full-fledged user tracking system..
646 */
647struct user_struct {
648 atomic_t __count; /* reference count */
649 atomic_t processes; /* How many processes does this user have? */
650 atomic_t files; /* How many open files does this user have? */
651 atomic_t sigpending; /* How many pending signals does this user have? */
652#ifdef CONFIG_INOTIFY_USER
653 atomic_t inotify_watches; /* How many inotify watches does this user have? */
654 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
655#endif
656#ifdef CONFIG_FANOTIFY
657 atomic_t fanotify_listeners;
658#endif
659#ifdef CONFIG_EPOLL
660 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661#endif
662#ifdef CONFIG_POSIX_MQUEUE
663 /* protected by mq_lock */
664 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
665#endif
666 unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668#ifdef CONFIG_KEYS
669 struct key *uid_keyring; /* UID specific keyring */
670 struct key *session_keyring; /* UID's default session keyring */
671#endif
672
673 /* Hash table maintenance information */
674 struct hlist_node uidhash_node;
675 kuid_t uid;
676
677#ifdef CONFIG_PERF_EVENTS
678 atomic_long_t locked_vm;
679#endif
680};
681
682extern int uids_sysfs_init(void);
683
684extern struct user_struct *find_user(kuid_t);
685
686extern struct user_struct root_user;
687#define INIT_USER (&root_user)
688
689
690struct backing_dev_info;
691struct reclaim_state;
692
693#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694struct sched_info {
695 /* cumulative counters */
696 unsigned long pcount; /* # of times run on this cpu */
697 unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699 /* timestamps */
700 unsigned long long last_arrival,/* when we last ran on a cpu */
701 last_queued; /* when we were last queued to run */
702};
703#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705#ifdef CONFIG_TASK_DELAY_ACCT
706struct task_delay_info {
707 spinlock_t lock;
708 unsigned int flags; /* Private per-task flags */
709
710 /* For each stat XXX, add following, aligned appropriately
711 *
712 * struct timespec XXX_start, XXX_end;
713 * u64 XXX_delay;
714 * u32 XXX_count;
715 *
716 * Atomicity of updates to XXX_delay, XXX_count protected by
717 * single lock above (split into XXX_lock if contention is an issue).
718 */
719
720 /*
721 * XXX_count is incremented on every XXX operation, the delay
722 * associated with the operation is added to XXX_delay.
723 * XXX_delay contains the accumulated delay time in nanoseconds.
724 */
725 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726 u64 blkio_delay; /* wait for sync block io completion */
727 u64 swapin_delay; /* wait for swapin block io completion */
728 u32 blkio_count; /* total count of the number of sync block */
729 /* io operations performed */
730 u32 swapin_count; /* total count of the number of swapin block */
731 /* io operations performed */
732
733 struct timespec freepages_start, freepages_end;
734 u64 freepages_delay; /* wait for memory reclaim */
735 u32 freepages_count; /* total count of memory reclaim */
736};
737#endif /* CONFIG_TASK_DELAY_ACCT */
738
739static inline int sched_info_on(void)
740{
741#ifdef CONFIG_SCHEDSTATS
742 return 1;
743#elif defined(CONFIG_TASK_DELAY_ACCT)
744 extern int delayacct_on;
745 return delayacct_on;
746#else
747 return 0;
748#endif
749}
750
751enum cpu_idle_type {
752 CPU_IDLE,
753 CPU_NOT_IDLE,
754 CPU_NEWLY_IDLE,
755 CPU_MAX_IDLE_TYPES
756};
757
758/*
759 * Increase resolution of cpu_power calculations
760 */
761#define SCHED_POWER_SHIFT 10
762#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
763
764/*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767#ifdef CONFIG_SMP
768#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
769#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
770#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
771#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
772#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
773#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
774#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
775#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
776#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
777#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
778#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
779#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
780
781extern int __weak arch_sd_sibiling_asym_packing(void);
782
783struct sched_domain_attr {
784 int relax_domain_level;
785};
786
787#define SD_ATTR_INIT (struct sched_domain_attr) { \
788 .relax_domain_level = -1, \
789}
790
791extern int sched_domain_level_max;
792
793struct sched_group;
794
795struct sched_domain {
796 /* These fields must be setup */
797 struct sched_domain *parent; /* top domain must be null terminated */
798 struct sched_domain *child; /* bottom domain must be null terminated */
799 struct sched_group *groups; /* the balancing groups of the domain */
800 unsigned long min_interval; /* Minimum balance interval ms */
801 unsigned long max_interval; /* Maximum balance interval ms */
802 unsigned int busy_factor; /* less balancing by factor if busy */
803 unsigned int imbalance_pct; /* No balance until over watermark */
804 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
805 unsigned int busy_idx;
806 unsigned int idle_idx;
807 unsigned int newidle_idx;
808 unsigned int wake_idx;
809 unsigned int forkexec_idx;
810 unsigned int smt_gain;
811
812 int nohz_idle; /* NOHZ IDLE status */
813 int flags; /* See SD_* */
814 int level;
815
816 /* Runtime fields. */
817 unsigned long last_balance; /* init to jiffies. units in jiffies */
818 unsigned int balance_interval; /* initialise to 1. units in ms. */
819 unsigned int nr_balance_failed; /* initialise to 0 */
820
821 u64 last_update;
822
823 /* idle_balance() stats */
824 u64 max_newidle_lb_cost;
825 unsigned long next_decay_max_lb_cost;
826
827#ifdef CONFIG_SCHEDSTATS
828 /* load_balance() stats */
829 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
837
838 /* Active load balancing */
839 unsigned int alb_count;
840 unsigned int alb_failed;
841 unsigned int alb_pushed;
842
843 /* SD_BALANCE_EXEC stats */
844 unsigned int sbe_count;
845 unsigned int sbe_balanced;
846 unsigned int sbe_pushed;
847
848 /* SD_BALANCE_FORK stats */
849 unsigned int sbf_count;
850 unsigned int sbf_balanced;
851 unsigned int sbf_pushed;
852
853 /* try_to_wake_up() stats */
854 unsigned int ttwu_wake_remote;
855 unsigned int ttwu_move_affine;
856 unsigned int ttwu_move_balance;
857#endif
858#ifdef CONFIG_SCHED_DEBUG
859 char *name;
860#endif
861 union {
862 void *private; /* used during construction */
863 struct rcu_head rcu; /* used during destruction */
864 };
865
866 unsigned int span_weight;
867 /*
868 * Span of all CPUs in this domain.
869 *
870 * NOTE: this field is variable length. (Allocated dynamically
871 * by attaching extra space to the end of the structure,
872 * depending on how many CPUs the kernel has booted up with)
873 */
874 unsigned long span[0];
875};
876
877static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
878{
879 return to_cpumask(sd->span);
880}
881
882extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
883 struct sched_domain_attr *dattr_new);
884
885/* Allocate an array of sched domains, for partition_sched_domains(). */
886cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
887void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
888
889bool cpus_share_cache(int this_cpu, int that_cpu);
890
891#else /* CONFIG_SMP */
892
893struct sched_domain_attr;
894
895static inline void
896partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
897 struct sched_domain_attr *dattr_new)
898{
899}
900
901static inline bool cpus_share_cache(int this_cpu, int that_cpu)
902{
903 return true;
904}
905
906#endif /* !CONFIG_SMP */
907
908
909struct io_context; /* See blkdev.h */
910
911
912#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
913extern void prefetch_stack(struct task_struct *t);
914#else
915static inline void prefetch_stack(struct task_struct *t) { }
916#endif
917
918struct audit_context; /* See audit.c */
919struct mempolicy;
920struct pipe_inode_info;
921struct uts_namespace;
922
923struct load_weight {
924 unsigned long weight, inv_weight;
925};
926
927struct sched_avg {
928 /*
929 * These sums represent an infinite geometric series and so are bound
930 * above by 1024/(1-y). Thus we only need a u32 to store them for all
931 * choices of y < 1-2^(-32)*1024.
932 */
933 u32 runnable_avg_sum, runnable_avg_period;
934 u64 last_runnable_update;
935 s64 decay_count;
936 unsigned long load_avg_contrib;
937};
938
939#ifdef CONFIG_SCHEDSTATS
940struct sched_statistics {
941 u64 wait_start;
942 u64 wait_max;
943 u64 wait_count;
944 u64 wait_sum;
945 u64 iowait_count;
946 u64 iowait_sum;
947
948 u64 sleep_start;
949 u64 sleep_max;
950 s64 sum_sleep_runtime;
951
952 u64 block_start;
953 u64 block_max;
954 u64 exec_max;
955 u64 slice_max;
956
957 u64 nr_migrations_cold;
958 u64 nr_failed_migrations_affine;
959 u64 nr_failed_migrations_running;
960 u64 nr_failed_migrations_hot;
961 u64 nr_forced_migrations;
962
963 u64 nr_wakeups;
964 u64 nr_wakeups_sync;
965 u64 nr_wakeups_migrate;
966 u64 nr_wakeups_local;
967 u64 nr_wakeups_remote;
968 u64 nr_wakeups_affine;
969 u64 nr_wakeups_affine_attempts;
970 u64 nr_wakeups_passive;
971 u64 nr_wakeups_idle;
972};
973#endif
974
975struct sched_entity {
976 struct load_weight load; /* for load-balancing */
977 struct rb_node run_node;
978 struct list_head group_node;
979 unsigned int on_rq;
980
981 u64 exec_start;
982 u64 sum_exec_runtime;
983 u64 vruntime;
984 u64 prev_sum_exec_runtime;
985
986 u64 nr_migrations;
987
988#ifdef CONFIG_SCHEDSTATS
989 struct sched_statistics statistics;
990#endif
991
992#ifdef CONFIG_FAIR_GROUP_SCHED
993 struct sched_entity *parent;
994 /* rq on which this entity is (to be) queued: */
995 struct cfs_rq *cfs_rq;
996 /* rq "owned" by this entity/group: */
997 struct cfs_rq *my_q;
998#endif
999
1000#ifdef CONFIG_SMP
1001 /* Per-entity load-tracking */
1002 struct sched_avg avg;
1003#endif
1004};
1005
1006struct sched_rt_entity {
1007 struct list_head run_list;
1008 unsigned long timeout;
1009 unsigned long watchdog_stamp;
1010 unsigned int time_slice;
1011
1012 struct sched_rt_entity *back;
1013#ifdef CONFIG_RT_GROUP_SCHED
1014 struct sched_rt_entity *parent;
1015 /* rq on which this entity is (to be) queued: */
1016 struct rt_rq *rt_rq;
1017 /* rq "owned" by this entity/group: */
1018 struct rt_rq *my_q;
1019#endif
1020};
1021
1022
1023struct rcu_node;
1024
1025enum perf_event_task_context {
1026 perf_invalid_context = -1,
1027 perf_hw_context = 0,
1028 perf_sw_context,
1029 perf_nr_task_contexts,
1030};
1031
1032struct task_struct {
1033 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1034 void *stack;
1035 atomic_t usage;
1036 unsigned int flags; /* per process flags, defined below */
1037 unsigned int ptrace;
1038
1039#ifdef CONFIG_SMP
1040 struct llist_node wake_entry;
1041 int on_cpu;
1042 struct task_struct *last_wakee;
1043 unsigned long wakee_flips;
1044 unsigned long wakee_flip_decay_ts;
1045#endif
1046 int on_rq;
1047
1048 int prio, static_prio, normal_prio;
1049 unsigned int rt_priority;
1050 const struct sched_class *sched_class;
1051 struct sched_entity se;
1052 struct sched_rt_entity rt;
1053#ifdef CONFIG_CGROUP_SCHED
1054 struct task_group *sched_task_group;
1055#endif
1056
1057#ifdef CONFIG_PREEMPT_NOTIFIERS
1058 /* list of struct preempt_notifier: */
1059 struct hlist_head preempt_notifiers;
1060#endif
1061
1062 /*
1063 * fpu_counter contains the number of consecutive context switches
1064 * that the FPU is used. If this is over a threshold, the lazy fpu
1065 * saving becomes unlazy to save the trap. This is an unsigned char
1066 * so that after 256 times the counter wraps and the behavior turns
1067 * lazy again; this to deal with bursty apps that only use FPU for
1068 * a short time
1069 */
1070 unsigned char fpu_counter;
1071#ifdef CONFIG_BLK_DEV_IO_TRACE
1072 unsigned int btrace_seq;
1073#endif
1074
1075 unsigned int policy;
1076 int nr_cpus_allowed;
1077 cpumask_t cpus_allowed;
1078
1079#ifdef CONFIG_PREEMPT_RCU
1080 int rcu_read_lock_nesting;
1081 char rcu_read_unlock_special;
1082 struct list_head rcu_node_entry;
1083#endif /* #ifdef CONFIG_PREEMPT_RCU */
1084#ifdef CONFIG_TREE_PREEMPT_RCU
1085 struct rcu_node *rcu_blocked_node;
1086#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1087#ifdef CONFIG_RCU_BOOST
1088 struct rt_mutex *rcu_boost_mutex;
1089#endif /* #ifdef CONFIG_RCU_BOOST */
1090
1091#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1092 struct sched_info sched_info;
1093#endif
1094
1095 struct list_head tasks;
1096#ifdef CONFIG_SMP
1097 struct plist_node pushable_tasks;
1098#endif
1099
1100 struct mm_struct *mm, *active_mm;
1101#ifdef CONFIG_COMPAT_BRK
1102 unsigned brk_randomized:1;
1103#endif
1104#if defined(SPLIT_RSS_COUNTING)
1105 struct task_rss_stat rss_stat;
1106#endif
1107/* task state */
1108 int exit_state;
1109 int exit_code, exit_signal;
1110 int pdeath_signal; /* The signal sent when the parent dies */
1111 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1112
1113 /* Used for emulating ABI behavior of previous Linux versions */
1114 unsigned int personality;
1115
1116 unsigned did_exec:1;
1117 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1118 * execve */
1119 unsigned in_iowait:1;
1120
1121 /* task may not gain privileges */
1122 unsigned no_new_privs:1;
1123
1124 /* Revert to default priority/policy when forking */
1125 unsigned sched_reset_on_fork:1;
1126 unsigned sched_contributes_to_load:1;
1127
1128 pid_t pid;
1129 pid_t tgid;
1130
1131#ifdef CONFIG_CC_STACKPROTECTOR
1132 /* Canary value for the -fstack-protector gcc feature */
1133 unsigned long stack_canary;
1134#endif
1135 /*
1136 * pointers to (original) parent process, youngest child, younger sibling,
1137 * older sibling, respectively. (p->father can be replaced with
1138 * p->real_parent->pid)
1139 */
1140 struct task_struct __rcu *real_parent; /* real parent process */
1141 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1142 /*
1143 * children/sibling forms the list of my natural children
1144 */
1145 struct list_head children; /* list of my children */
1146 struct list_head sibling; /* linkage in my parent's children list */
1147 struct task_struct *group_leader; /* threadgroup leader */
1148
1149 /*
1150 * ptraced is the list of tasks this task is using ptrace on.
1151 * This includes both natural children and PTRACE_ATTACH targets.
1152 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1153 */
1154 struct list_head ptraced;
1155 struct list_head ptrace_entry;
1156
1157 /* PID/PID hash table linkage. */
1158 struct pid_link pids[PIDTYPE_MAX];
1159 struct list_head thread_group;
1160
1161 struct completion *vfork_done; /* for vfork() */
1162 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1163 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1164
1165 cputime_t utime, stime, utimescaled, stimescaled;
1166 cputime_t gtime;
1167#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1168 struct cputime prev_cputime;
1169#endif
1170#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1171 seqlock_t vtime_seqlock;
1172 unsigned long long vtime_snap;
1173 enum {
1174 VTIME_SLEEPING = 0,
1175 VTIME_USER,
1176 VTIME_SYS,
1177 } vtime_snap_whence;
1178#endif
1179 unsigned long nvcsw, nivcsw; /* context switch counts */
1180 struct timespec start_time; /* monotonic time */
1181 struct timespec real_start_time; /* boot based time */
1182/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1183 unsigned long min_flt, maj_flt;
1184
1185 struct task_cputime cputime_expires;
1186 struct list_head cpu_timers[3];
1187
1188/* process credentials */
1189 const struct cred __rcu *real_cred; /* objective and real subjective task
1190 * credentials (COW) */
1191 const struct cred __rcu *cred; /* effective (overridable) subjective task
1192 * credentials (COW) */
1193 char comm[TASK_COMM_LEN]; /* executable name excluding path
1194 - access with [gs]et_task_comm (which lock
1195 it with task_lock())
1196 - initialized normally by setup_new_exec */
1197/* file system info */
1198 int link_count, total_link_count;
1199#ifdef CONFIG_SYSVIPC
1200/* ipc stuff */
1201 struct sysv_sem sysvsem;
1202#endif
1203#ifdef CONFIG_DETECT_HUNG_TASK
1204/* hung task detection */
1205 unsigned long last_switch_count;
1206#endif
1207/* CPU-specific state of this task */
1208 struct thread_struct thread;
1209/* filesystem information */
1210 struct fs_struct *fs;
1211/* open file information */
1212 struct files_struct *files;
1213/* namespaces */
1214 struct nsproxy *nsproxy;
1215/* signal handlers */
1216 struct signal_struct *signal;
1217 struct sighand_struct *sighand;
1218
1219 sigset_t blocked, real_blocked;
1220 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1221 struct sigpending pending;
1222
1223 unsigned long sas_ss_sp;
1224 size_t sas_ss_size;
1225 int (*notifier)(void *priv);
1226 void *notifier_data;
1227 sigset_t *notifier_mask;
1228 struct callback_head *task_works;
1229
1230 struct audit_context *audit_context;
1231#ifdef CONFIG_AUDITSYSCALL
1232 kuid_t loginuid;
1233 unsigned int sessionid;
1234#endif
1235 struct seccomp seccomp;
1236
1237/* Thread group tracking */
1238 u32 parent_exec_id;
1239 u32 self_exec_id;
1240/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1241 * mempolicy */
1242 spinlock_t alloc_lock;
1243
1244 /* Protection of the PI data structures: */
1245 raw_spinlock_t pi_lock;
1246
1247#ifdef CONFIG_RT_MUTEXES
1248 /* PI waiters blocked on a rt_mutex held by this task */
1249 struct plist_head pi_waiters;
1250 /* Deadlock detection and priority inheritance handling */
1251 struct rt_mutex_waiter *pi_blocked_on;
1252#endif
1253
1254#ifdef CONFIG_DEBUG_MUTEXES
1255 /* mutex deadlock detection */
1256 struct mutex_waiter *blocked_on;
1257#endif
1258#ifdef CONFIG_TRACE_IRQFLAGS
1259 unsigned int irq_events;
1260 unsigned long hardirq_enable_ip;
1261 unsigned long hardirq_disable_ip;
1262 unsigned int hardirq_enable_event;
1263 unsigned int hardirq_disable_event;
1264 int hardirqs_enabled;
1265 int hardirq_context;
1266 unsigned long softirq_disable_ip;
1267 unsigned long softirq_enable_ip;
1268 unsigned int softirq_disable_event;
1269 unsigned int softirq_enable_event;
1270 int softirqs_enabled;
1271 int softirq_context;
1272#endif
1273#ifdef CONFIG_LOCKDEP
1274# define MAX_LOCK_DEPTH 48UL
1275 u64 curr_chain_key;
1276 int lockdep_depth;
1277 unsigned int lockdep_recursion;
1278 struct held_lock held_locks[MAX_LOCK_DEPTH];
1279 gfp_t lockdep_reclaim_gfp;
1280#endif
1281
1282/* journalling filesystem info */
1283 void *journal_info;
1284
1285/* stacked block device info */
1286 struct bio_list *bio_list;
1287
1288#ifdef CONFIG_BLOCK
1289/* stack plugging */
1290 struct blk_plug *plug;
1291#endif
1292
1293/* VM state */
1294 struct reclaim_state *reclaim_state;
1295
1296 struct backing_dev_info *backing_dev_info;
1297
1298 struct io_context *io_context;
1299
1300 unsigned long ptrace_message;
1301 siginfo_t *last_siginfo; /* For ptrace use. */
1302 struct task_io_accounting ioac;
1303#if defined(CONFIG_TASK_XACCT)
1304 u64 acct_rss_mem1; /* accumulated rss usage */
1305 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1306 cputime_t acct_timexpd; /* stime + utime since last update */
1307#endif
1308#ifdef CONFIG_CPUSETS
1309 nodemask_t mems_allowed; /* Protected by alloc_lock */
1310 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1311 int cpuset_mem_spread_rotor;
1312 int cpuset_slab_spread_rotor;
1313#endif
1314#ifdef CONFIG_CGROUPS
1315 /* Control Group info protected by css_set_lock */
1316 struct css_set __rcu *cgroups;
1317 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1318 struct list_head cg_list;
1319#endif
1320#ifdef CONFIG_FUTEX
1321 struct robust_list_head __user *robust_list;
1322#ifdef CONFIG_COMPAT
1323 struct compat_robust_list_head __user *compat_robust_list;
1324#endif
1325 struct list_head pi_state_list;
1326 struct futex_pi_state *pi_state_cache;
1327#endif
1328#ifdef CONFIG_PERF_EVENTS
1329 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1330 struct mutex perf_event_mutex;
1331 struct list_head perf_event_list;
1332#endif
1333#ifdef CONFIG_NUMA
1334 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1335 short il_next;
1336 short pref_node_fork;
1337#endif
1338#ifdef CONFIG_NUMA_BALANCING
1339 int numa_scan_seq;
1340 int numa_migrate_seq;
1341 unsigned int numa_scan_period;
1342 unsigned int numa_scan_period_max;
1343 u64 node_stamp; /* migration stamp */
1344 struct callback_head numa_work;
1345
1346 /*
1347 * Exponential decaying average of faults on a per-node basis.
1348 * Scheduling placement decisions are made based on the these counts.
1349 * The values remain static for the duration of a PTE scan
1350 */
1351 unsigned long *numa_faults;
1352
1353 /*
1354 * numa_faults_buffer records faults per node during the current
1355 * scan window. When the scan completes, the counts in numa_faults
1356 * decay and these values are copied.
1357 */
1358 unsigned long *numa_faults_buffer;
1359
1360 int numa_preferred_nid;
1361#endif /* CONFIG_NUMA_BALANCING */
1362
1363 struct rcu_head rcu;
1364
1365 /*
1366 * cache last used pipe for splice
1367 */
1368 struct pipe_inode_info *splice_pipe;
1369
1370 struct page_frag task_frag;
1371
1372#ifdef CONFIG_TASK_DELAY_ACCT
1373 struct task_delay_info *delays;
1374#endif
1375#ifdef CONFIG_FAULT_INJECTION
1376 int make_it_fail;
1377#endif
1378 /*
1379 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1380 * balance_dirty_pages() for some dirty throttling pause
1381 */
1382 int nr_dirtied;
1383 int nr_dirtied_pause;
1384 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1385
1386#ifdef CONFIG_LATENCYTOP
1387 int latency_record_count;
1388 struct latency_record latency_record[LT_SAVECOUNT];
1389#endif
1390 /*
1391 * time slack values; these are used to round up poll() and
1392 * select() etc timeout values. These are in nanoseconds.
1393 */
1394 unsigned long timer_slack_ns;
1395 unsigned long default_timer_slack_ns;
1396
1397#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1398 /* Index of current stored address in ret_stack */
1399 int curr_ret_stack;
1400 /* Stack of return addresses for return function tracing */
1401 struct ftrace_ret_stack *ret_stack;
1402 /* time stamp for last schedule */
1403 unsigned long long ftrace_timestamp;
1404 /*
1405 * Number of functions that haven't been traced
1406 * because of depth overrun.
1407 */
1408 atomic_t trace_overrun;
1409 /* Pause for the tracing */
1410 atomic_t tracing_graph_pause;
1411#endif
1412#ifdef CONFIG_TRACING
1413 /* state flags for use by tracers */
1414 unsigned long trace;
1415 /* bitmask and counter of trace recursion */
1416 unsigned long trace_recursion;
1417#endif /* CONFIG_TRACING */
1418#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1419 struct memcg_batch_info {
1420 int do_batch; /* incremented when batch uncharge started */
1421 struct mem_cgroup *memcg; /* target memcg of uncharge */
1422 unsigned long nr_pages; /* uncharged usage */
1423 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1424 } memcg_batch;
1425 unsigned int memcg_kmem_skip_account;
1426 struct memcg_oom_info {
1427 unsigned int may_oom:1;
1428 unsigned int in_memcg_oom:1;
1429 unsigned int oom_locked:1;
1430 int wakeups;
1431 struct mem_cgroup *wait_on_memcg;
1432 } memcg_oom;
1433#endif
1434#ifdef CONFIG_UPROBES
1435 struct uprobe_task *utask;
1436#endif
1437#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1438 unsigned int sequential_io;
1439 unsigned int sequential_io_avg;
1440#endif
1441};
1442
1443/* Future-safe accessor for struct task_struct's cpus_allowed. */
1444#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1445
1446#ifdef CONFIG_NUMA_BALANCING
1447extern void task_numa_fault(int node, int pages, bool migrated);
1448extern void set_numabalancing_state(bool enabled);
1449#else
1450static inline void task_numa_fault(int node, int pages, bool migrated)
1451{
1452}
1453static inline void set_numabalancing_state(bool enabled)
1454{
1455}
1456#endif
1457
1458static inline struct pid *task_pid(struct task_struct *task)
1459{
1460 return task->pids[PIDTYPE_PID].pid;
1461}
1462
1463static inline struct pid *task_tgid(struct task_struct *task)
1464{
1465 return task->group_leader->pids[PIDTYPE_PID].pid;
1466}
1467
1468/*
1469 * Without tasklist or rcu lock it is not safe to dereference
1470 * the result of task_pgrp/task_session even if task == current,
1471 * we can race with another thread doing sys_setsid/sys_setpgid.
1472 */
1473static inline struct pid *task_pgrp(struct task_struct *task)
1474{
1475 return task->group_leader->pids[PIDTYPE_PGID].pid;
1476}
1477
1478static inline struct pid *task_session(struct task_struct *task)
1479{
1480 return task->group_leader->pids[PIDTYPE_SID].pid;
1481}
1482
1483struct pid_namespace;
1484
1485/*
1486 * the helpers to get the task's different pids as they are seen
1487 * from various namespaces
1488 *
1489 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1490 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1491 * current.
1492 * task_xid_nr_ns() : id seen from the ns specified;
1493 *
1494 * set_task_vxid() : assigns a virtual id to a task;
1495 *
1496 * see also pid_nr() etc in include/linux/pid.h
1497 */
1498pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1499 struct pid_namespace *ns);
1500
1501static inline pid_t task_pid_nr(struct task_struct *tsk)
1502{
1503 return tsk->pid;
1504}
1505
1506static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1507 struct pid_namespace *ns)
1508{
1509 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1510}
1511
1512static inline pid_t task_pid_vnr(struct task_struct *tsk)
1513{
1514 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1515}
1516
1517
1518static inline pid_t task_tgid_nr(struct task_struct *tsk)
1519{
1520 return tsk->tgid;
1521}
1522
1523pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1524
1525static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1526{
1527 return pid_vnr(task_tgid(tsk));
1528}
1529
1530
1531static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1532 struct pid_namespace *ns)
1533{
1534 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1535}
1536
1537static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1538{
1539 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1540}
1541
1542
1543static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1544 struct pid_namespace *ns)
1545{
1546 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1547}
1548
1549static inline pid_t task_session_vnr(struct task_struct *tsk)
1550{
1551 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1552}
1553
1554/* obsolete, do not use */
1555static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1556{
1557 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1558}
1559
1560/**
1561 * pid_alive - check that a task structure is not stale
1562 * @p: Task structure to be checked.
1563 *
1564 * Test if a process is not yet dead (at most zombie state)
1565 * If pid_alive fails, then pointers within the task structure
1566 * can be stale and must not be dereferenced.
1567 *
1568 * Return: 1 if the process is alive. 0 otherwise.
1569 */
1570static inline int pid_alive(struct task_struct *p)
1571{
1572 return p->pids[PIDTYPE_PID].pid != NULL;
1573}
1574
1575/**
1576 * is_global_init - check if a task structure is init
1577 * @tsk: Task structure to be checked.
1578 *
1579 * Check if a task structure is the first user space task the kernel created.
1580 *
1581 * Return: 1 if the task structure is init. 0 otherwise.
1582 */
1583static inline int is_global_init(struct task_struct *tsk)
1584{
1585 return tsk->pid == 1;
1586}
1587
1588extern struct pid *cad_pid;
1589
1590extern void free_task(struct task_struct *tsk);
1591#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1592
1593extern void __put_task_struct(struct task_struct *t);
1594
1595static inline void put_task_struct(struct task_struct *t)
1596{
1597 if (atomic_dec_and_test(&t->usage))
1598 __put_task_struct(t);
1599}
1600
1601#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1602extern void task_cputime(struct task_struct *t,
1603 cputime_t *utime, cputime_t *stime);
1604extern void task_cputime_scaled(struct task_struct *t,
1605 cputime_t *utimescaled, cputime_t *stimescaled);
1606extern cputime_t task_gtime(struct task_struct *t);
1607#else
1608static inline void task_cputime(struct task_struct *t,
1609 cputime_t *utime, cputime_t *stime)
1610{
1611 if (utime)
1612 *utime = t->utime;
1613 if (stime)
1614 *stime = t->stime;
1615}
1616
1617static inline void task_cputime_scaled(struct task_struct *t,
1618 cputime_t *utimescaled,
1619 cputime_t *stimescaled)
1620{
1621 if (utimescaled)
1622 *utimescaled = t->utimescaled;
1623 if (stimescaled)
1624 *stimescaled = t->stimescaled;
1625}
1626
1627static inline cputime_t task_gtime(struct task_struct *t)
1628{
1629 return t->gtime;
1630}
1631#endif
1632extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1633extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1634
1635/*
1636 * Per process flags
1637 */
1638#define PF_EXITING 0x00000004 /* getting shut down */
1639#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1640#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1641#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1642#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1643#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1644#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1645#define PF_DUMPCORE 0x00000200 /* dumped core */
1646#define PF_SIGNALED 0x00000400 /* killed by a signal */
1647#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1648#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1649#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1650#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1651#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1652#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1653#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1654#define PF_KSWAPD 0x00040000 /* I am kswapd */
1655#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1656#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1657#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1658#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1659#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1660#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1661#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1662#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1663#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1664#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1665#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1666#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1667#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1668
1669/*
1670 * Only the _current_ task can read/write to tsk->flags, but other
1671 * tasks can access tsk->flags in readonly mode for example
1672 * with tsk_used_math (like during threaded core dumping).
1673 * There is however an exception to this rule during ptrace
1674 * or during fork: the ptracer task is allowed to write to the
1675 * child->flags of its traced child (same goes for fork, the parent
1676 * can write to the child->flags), because we're guaranteed the
1677 * child is not running and in turn not changing child->flags
1678 * at the same time the parent does it.
1679 */
1680#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1681#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1682#define clear_used_math() clear_stopped_child_used_math(current)
1683#define set_used_math() set_stopped_child_used_math(current)
1684#define conditional_stopped_child_used_math(condition, child) \
1685 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1686#define conditional_used_math(condition) \
1687 conditional_stopped_child_used_math(condition, current)
1688#define copy_to_stopped_child_used_math(child) \
1689 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1690/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1691#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1692#define used_math() tsk_used_math(current)
1693
1694/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1695static inline gfp_t memalloc_noio_flags(gfp_t flags)
1696{
1697 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1698 flags &= ~__GFP_IO;
1699 return flags;
1700}
1701
1702static inline unsigned int memalloc_noio_save(void)
1703{
1704 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1705 current->flags |= PF_MEMALLOC_NOIO;
1706 return flags;
1707}
1708
1709static inline void memalloc_noio_restore(unsigned int flags)
1710{
1711 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1712}
1713
1714/*
1715 * task->jobctl flags
1716 */
1717#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1718
1719#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1720#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1721#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1722#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1723#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1724#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1725#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1726
1727#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1728#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1729#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1730#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1731#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1732#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1733#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1734
1735#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1736#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1737
1738extern bool task_set_jobctl_pending(struct task_struct *task,
1739 unsigned int mask);
1740extern void task_clear_jobctl_trapping(struct task_struct *task);
1741extern void task_clear_jobctl_pending(struct task_struct *task,
1742 unsigned int mask);
1743
1744#ifdef CONFIG_PREEMPT_RCU
1745
1746#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1747#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1748
1749static inline void rcu_copy_process(struct task_struct *p)
1750{
1751 p->rcu_read_lock_nesting = 0;
1752 p->rcu_read_unlock_special = 0;
1753#ifdef CONFIG_TREE_PREEMPT_RCU
1754 p->rcu_blocked_node = NULL;
1755#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1756#ifdef CONFIG_RCU_BOOST
1757 p->rcu_boost_mutex = NULL;
1758#endif /* #ifdef CONFIG_RCU_BOOST */
1759 INIT_LIST_HEAD(&p->rcu_node_entry);
1760}
1761
1762#else
1763
1764static inline void rcu_copy_process(struct task_struct *p)
1765{
1766}
1767
1768#endif
1769
1770static inline void tsk_restore_flags(struct task_struct *task,
1771 unsigned long orig_flags, unsigned long flags)
1772{
1773 task->flags &= ~flags;
1774 task->flags |= orig_flags & flags;
1775}
1776
1777#ifdef CONFIG_SMP
1778extern void do_set_cpus_allowed(struct task_struct *p,
1779 const struct cpumask *new_mask);
1780
1781extern int set_cpus_allowed_ptr(struct task_struct *p,
1782 const struct cpumask *new_mask);
1783#else
1784static inline void do_set_cpus_allowed(struct task_struct *p,
1785 const struct cpumask *new_mask)
1786{
1787}
1788static inline int set_cpus_allowed_ptr(struct task_struct *p,
1789 const struct cpumask *new_mask)
1790{
1791 if (!cpumask_test_cpu(0, new_mask))
1792 return -EINVAL;
1793 return 0;
1794}
1795#endif
1796
1797#ifdef CONFIG_NO_HZ_COMMON
1798void calc_load_enter_idle(void);
1799void calc_load_exit_idle(void);
1800#else
1801static inline void calc_load_enter_idle(void) { }
1802static inline void calc_load_exit_idle(void) { }
1803#endif /* CONFIG_NO_HZ_COMMON */
1804
1805#ifndef CONFIG_CPUMASK_OFFSTACK
1806static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1807{
1808 return set_cpus_allowed_ptr(p, &new_mask);
1809}
1810#endif
1811
1812/*
1813 * Do not use outside of architecture code which knows its limitations.
1814 *
1815 * sched_clock() has no promise of monotonicity or bounded drift between
1816 * CPUs, use (which you should not) requires disabling IRQs.
1817 *
1818 * Please use one of the three interfaces below.
1819 */
1820extern unsigned long long notrace sched_clock(void);
1821/*
1822 * See the comment in kernel/sched/clock.c
1823 */
1824extern u64 cpu_clock(int cpu);
1825extern u64 local_clock(void);
1826extern u64 sched_clock_cpu(int cpu);
1827
1828
1829extern void sched_clock_init(void);
1830
1831#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1832static inline void sched_clock_tick(void)
1833{
1834}
1835
1836static inline void sched_clock_idle_sleep_event(void)
1837{
1838}
1839
1840static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1841{
1842}
1843#else
1844/*
1845 * Architectures can set this to 1 if they have specified
1846 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1847 * but then during bootup it turns out that sched_clock()
1848 * is reliable after all:
1849 */
1850extern int sched_clock_stable;
1851
1852extern void sched_clock_tick(void);
1853extern void sched_clock_idle_sleep_event(void);
1854extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1855#endif
1856
1857#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1858/*
1859 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1860 * The reason for this explicit opt-in is not to have perf penalty with
1861 * slow sched_clocks.
1862 */
1863extern void enable_sched_clock_irqtime(void);
1864extern void disable_sched_clock_irqtime(void);
1865#else
1866static inline void enable_sched_clock_irqtime(void) {}
1867static inline void disable_sched_clock_irqtime(void) {}
1868#endif
1869
1870extern unsigned long long
1871task_sched_runtime(struct task_struct *task);
1872
1873/* sched_exec is called by processes performing an exec */
1874#ifdef CONFIG_SMP
1875extern void sched_exec(void);
1876#else
1877#define sched_exec() {}
1878#endif
1879
1880extern void sched_clock_idle_sleep_event(void);
1881extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1882
1883#ifdef CONFIG_HOTPLUG_CPU
1884extern void idle_task_exit(void);
1885#else
1886static inline void idle_task_exit(void) {}
1887#endif
1888
1889#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1890extern void wake_up_nohz_cpu(int cpu);
1891#else
1892static inline void wake_up_nohz_cpu(int cpu) { }
1893#endif
1894
1895#ifdef CONFIG_NO_HZ_FULL
1896extern bool sched_can_stop_tick(void);
1897extern u64 scheduler_tick_max_deferment(void);
1898#else
1899static inline bool sched_can_stop_tick(void) { return false; }
1900#endif
1901
1902#ifdef CONFIG_SCHED_AUTOGROUP
1903extern void sched_autogroup_create_attach(struct task_struct *p);
1904extern void sched_autogroup_detach(struct task_struct *p);
1905extern void sched_autogroup_fork(struct signal_struct *sig);
1906extern void sched_autogroup_exit(struct signal_struct *sig);
1907#ifdef CONFIG_PROC_FS
1908extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1909extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1910#endif
1911#else
1912static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1913static inline void sched_autogroup_detach(struct task_struct *p) { }
1914static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1915static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1916#endif
1917
1918extern bool yield_to(struct task_struct *p, bool preempt);
1919extern void set_user_nice(struct task_struct *p, long nice);
1920extern int task_prio(const struct task_struct *p);
1921extern int task_nice(const struct task_struct *p);
1922extern int can_nice(const struct task_struct *p, const int nice);
1923extern int task_curr(const struct task_struct *p);
1924extern int idle_cpu(int cpu);
1925extern int sched_setscheduler(struct task_struct *, int,
1926 const struct sched_param *);
1927extern int sched_setscheduler_nocheck(struct task_struct *, int,
1928 const struct sched_param *);
1929extern struct task_struct *idle_task(int cpu);
1930/**
1931 * is_idle_task - is the specified task an idle task?
1932 * @p: the task in question.
1933 *
1934 * Return: 1 if @p is an idle task. 0 otherwise.
1935 */
1936static inline bool is_idle_task(const struct task_struct *p)
1937{
1938 return p->pid == 0;
1939}
1940extern struct task_struct *curr_task(int cpu);
1941extern void set_curr_task(int cpu, struct task_struct *p);
1942
1943void yield(void);
1944
1945/*
1946 * The default (Linux) execution domain.
1947 */
1948extern struct exec_domain default_exec_domain;
1949
1950union thread_union {
1951 struct thread_info thread_info;
1952 unsigned long stack[THREAD_SIZE/sizeof(long)];
1953};
1954
1955#ifndef __HAVE_ARCH_KSTACK_END
1956static inline int kstack_end(void *addr)
1957{
1958 /* Reliable end of stack detection:
1959 * Some APM bios versions misalign the stack
1960 */
1961 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1962}
1963#endif
1964
1965extern union thread_union init_thread_union;
1966extern struct task_struct init_task;
1967
1968extern struct mm_struct init_mm;
1969
1970extern struct pid_namespace init_pid_ns;
1971
1972/*
1973 * find a task by one of its numerical ids
1974 *
1975 * find_task_by_pid_ns():
1976 * finds a task by its pid in the specified namespace
1977 * find_task_by_vpid():
1978 * finds a task by its virtual pid
1979 *
1980 * see also find_vpid() etc in include/linux/pid.h
1981 */
1982
1983extern struct task_struct *find_task_by_vpid(pid_t nr);
1984extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1985 struct pid_namespace *ns);
1986
1987/* per-UID process charging. */
1988extern struct user_struct * alloc_uid(kuid_t);
1989static inline struct user_struct *get_uid(struct user_struct *u)
1990{
1991 atomic_inc(&u->__count);
1992 return u;
1993}
1994extern void free_uid(struct user_struct *);
1995
1996#include <asm/current.h>
1997
1998extern void xtime_update(unsigned long ticks);
1999
2000extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2001extern int wake_up_process(struct task_struct *tsk);
2002extern void wake_up_new_task(struct task_struct *tsk);
2003#ifdef CONFIG_SMP
2004 extern void kick_process(struct task_struct *tsk);
2005#else
2006 static inline void kick_process(struct task_struct *tsk) { }
2007#endif
2008extern void sched_fork(struct task_struct *p);
2009extern void sched_dead(struct task_struct *p);
2010
2011extern void proc_caches_init(void);
2012extern void flush_signals(struct task_struct *);
2013extern void __flush_signals(struct task_struct *);
2014extern void ignore_signals(struct task_struct *);
2015extern void flush_signal_handlers(struct task_struct *, int force_default);
2016extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2017
2018static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2019{
2020 unsigned long flags;
2021 int ret;
2022
2023 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2024 ret = dequeue_signal(tsk, mask, info);
2025 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2026
2027 return ret;
2028}
2029
2030extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2031 sigset_t *mask);
2032extern void unblock_all_signals(void);
2033extern void release_task(struct task_struct * p);
2034extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2035extern int force_sigsegv(int, struct task_struct *);
2036extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2037extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2038extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2039extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2040 const struct cred *, u32);
2041extern int kill_pgrp(struct pid *pid, int sig, int priv);
2042extern int kill_pid(struct pid *pid, int sig, int priv);
2043extern int kill_proc_info(int, struct siginfo *, pid_t);
2044extern __must_check bool do_notify_parent(struct task_struct *, int);
2045extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2046extern void force_sig(int, struct task_struct *);
2047extern int send_sig(int, struct task_struct *, int);
2048extern int zap_other_threads(struct task_struct *p);
2049extern struct sigqueue *sigqueue_alloc(void);
2050extern void sigqueue_free(struct sigqueue *);
2051extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2052extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2053
2054static inline void restore_saved_sigmask(void)
2055{
2056 if (test_and_clear_restore_sigmask())
2057 __set_current_blocked(&current->saved_sigmask);
2058}
2059
2060static inline sigset_t *sigmask_to_save(void)
2061{
2062 sigset_t *res = &current->blocked;
2063 if (unlikely(test_restore_sigmask()))
2064 res = &current->saved_sigmask;
2065 return res;
2066}
2067
2068static inline int kill_cad_pid(int sig, int priv)
2069{
2070 return kill_pid(cad_pid, sig, priv);
2071}
2072
2073/* These can be the second arg to send_sig_info/send_group_sig_info. */
2074#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2075#define SEND_SIG_PRIV ((struct siginfo *) 1)
2076#define SEND_SIG_FORCED ((struct siginfo *) 2)
2077
2078/*
2079 * True if we are on the alternate signal stack.
2080 */
2081static inline int on_sig_stack(unsigned long sp)
2082{
2083#ifdef CONFIG_STACK_GROWSUP
2084 return sp >= current->sas_ss_sp &&
2085 sp - current->sas_ss_sp < current->sas_ss_size;
2086#else
2087 return sp > current->sas_ss_sp &&
2088 sp - current->sas_ss_sp <= current->sas_ss_size;
2089#endif
2090}
2091
2092static inline int sas_ss_flags(unsigned long sp)
2093{
2094 return (current->sas_ss_size == 0 ? SS_DISABLE
2095 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2096}
2097
2098static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2099{
2100 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2101#ifdef CONFIG_STACK_GROWSUP
2102 return current->sas_ss_sp;
2103#else
2104 return current->sas_ss_sp + current->sas_ss_size;
2105#endif
2106 return sp;
2107}
2108
2109/*
2110 * Routines for handling mm_structs
2111 */
2112extern struct mm_struct * mm_alloc(void);
2113
2114/* mmdrop drops the mm and the page tables */
2115extern void __mmdrop(struct mm_struct *);
2116static inline void mmdrop(struct mm_struct * mm)
2117{
2118 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2119 __mmdrop(mm);
2120}
2121
2122/* mmput gets rid of the mappings and all user-space */
2123extern void mmput(struct mm_struct *);
2124/* Grab a reference to a task's mm, if it is not already going away */
2125extern struct mm_struct *get_task_mm(struct task_struct *task);
2126/*
2127 * Grab a reference to a task's mm, if it is not already going away
2128 * and ptrace_may_access with the mode parameter passed to it
2129 * succeeds.
2130 */
2131extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2132/* Remove the current tasks stale references to the old mm_struct */
2133extern void mm_release(struct task_struct *, struct mm_struct *);
2134/* Allocate a new mm structure and copy contents from tsk->mm */
2135extern struct mm_struct *dup_mm(struct task_struct *tsk);
2136
2137extern int copy_thread(unsigned long, unsigned long, unsigned long,
2138 struct task_struct *);
2139extern void flush_thread(void);
2140extern void exit_thread(void);
2141
2142extern void exit_files(struct task_struct *);
2143extern void __cleanup_sighand(struct sighand_struct *);
2144
2145extern void exit_itimers(struct signal_struct *);
2146extern void flush_itimer_signals(void);
2147
2148extern void do_group_exit(int);
2149
2150extern int allow_signal(int);
2151extern int disallow_signal(int);
2152
2153extern int do_execve(const char *,
2154 const char __user * const __user *,
2155 const char __user * const __user *);
2156extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2157struct task_struct *fork_idle(int);
2158extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2159
2160extern void set_task_comm(struct task_struct *tsk, char *from);
2161extern char *get_task_comm(char *to, struct task_struct *tsk);
2162
2163#ifdef CONFIG_SMP
2164void scheduler_ipi(void);
2165extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2166#else
2167static inline void scheduler_ipi(void) { }
2168static inline unsigned long wait_task_inactive(struct task_struct *p,
2169 long match_state)
2170{
2171 return 1;
2172}
2173#endif
2174
2175#define next_task(p) \
2176 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2177
2178#define for_each_process(p) \
2179 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2180
2181extern bool current_is_single_threaded(void);
2182
2183/*
2184 * Careful: do_each_thread/while_each_thread is a double loop so
2185 * 'break' will not work as expected - use goto instead.
2186 */
2187#define do_each_thread(g, t) \
2188 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2189
2190#define while_each_thread(g, t) \
2191 while ((t = next_thread(t)) != g)
2192
2193static inline int get_nr_threads(struct task_struct *tsk)
2194{
2195 return tsk->signal->nr_threads;
2196}
2197
2198static inline bool thread_group_leader(struct task_struct *p)
2199{
2200 return p->exit_signal >= 0;
2201}
2202
2203/* Do to the insanities of de_thread it is possible for a process
2204 * to have the pid of the thread group leader without actually being
2205 * the thread group leader. For iteration through the pids in proc
2206 * all we care about is that we have a task with the appropriate
2207 * pid, we don't actually care if we have the right task.
2208 */
2209static inline bool has_group_leader_pid(struct task_struct *p)
2210{
2211 return task_pid(p) == p->signal->leader_pid;
2212}
2213
2214static inline
2215bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2216{
2217 return p1->signal == p2->signal;
2218}
2219
2220static inline struct task_struct *next_thread(const struct task_struct *p)
2221{
2222 return list_entry_rcu(p->thread_group.next,
2223 struct task_struct, thread_group);
2224}
2225
2226static inline int thread_group_empty(struct task_struct *p)
2227{
2228 return list_empty(&p->thread_group);
2229}
2230
2231#define delay_group_leader(p) \
2232 (thread_group_leader(p) && !thread_group_empty(p))
2233
2234/*
2235 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2236 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2237 * pins the final release of task.io_context. Also protects ->cpuset and
2238 * ->cgroup.subsys[]. And ->vfork_done.
2239 *
2240 * Nests both inside and outside of read_lock(&tasklist_lock).
2241 * It must not be nested with write_lock_irq(&tasklist_lock),
2242 * neither inside nor outside.
2243 */
2244static inline void task_lock(struct task_struct *p)
2245{
2246 spin_lock(&p->alloc_lock);
2247}
2248
2249static inline void task_unlock(struct task_struct *p)
2250{
2251 spin_unlock(&p->alloc_lock);
2252}
2253
2254extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2255 unsigned long *flags);
2256
2257static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2258 unsigned long *flags)
2259{
2260 struct sighand_struct *ret;
2261
2262 ret = __lock_task_sighand(tsk, flags);
2263 (void)__cond_lock(&tsk->sighand->siglock, ret);
2264 return ret;
2265}
2266
2267static inline void unlock_task_sighand(struct task_struct *tsk,
2268 unsigned long *flags)
2269{
2270 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2271}
2272
2273#ifdef CONFIG_CGROUPS
2274static inline void threadgroup_change_begin(struct task_struct *tsk)
2275{
2276 down_read(&tsk->signal->group_rwsem);
2277}
2278static inline void threadgroup_change_end(struct task_struct *tsk)
2279{
2280 up_read(&tsk->signal->group_rwsem);
2281}
2282
2283/**
2284 * threadgroup_lock - lock threadgroup
2285 * @tsk: member task of the threadgroup to lock
2286 *
2287 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2288 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2289 * change ->group_leader/pid. This is useful for cases where the threadgroup
2290 * needs to stay stable across blockable operations.
2291 *
2292 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2293 * synchronization. While held, no new task will be added to threadgroup
2294 * and no existing live task will have its PF_EXITING set.
2295 *
2296 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2297 * sub-thread becomes a new leader.
2298 */
2299static inline void threadgroup_lock(struct task_struct *tsk)
2300{
2301 down_write(&tsk->signal->group_rwsem);
2302}
2303
2304/**
2305 * threadgroup_unlock - unlock threadgroup
2306 * @tsk: member task of the threadgroup to unlock
2307 *
2308 * Reverse threadgroup_lock().
2309 */
2310static inline void threadgroup_unlock(struct task_struct *tsk)
2311{
2312 up_write(&tsk->signal->group_rwsem);
2313}
2314#else
2315static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2316static inline void threadgroup_change_end(struct task_struct *tsk) {}
2317static inline void threadgroup_lock(struct task_struct *tsk) {}
2318static inline void threadgroup_unlock(struct task_struct *tsk) {}
2319#endif
2320
2321#ifndef __HAVE_THREAD_FUNCTIONS
2322
2323#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2324#define task_stack_page(task) ((task)->stack)
2325
2326static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2327{
2328 *task_thread_info(p) = *task_thread_info(org);
2329 task_thread_info(p)->task = p;
2330}
2331
2332static inline unsigned long *end_of_stack(struct task_struct *p)
2333{
2334 return (unsigned long *)(task_thread_info(p) + 1);
2335}
2336
2337#endif
2338
2339static inline int object_is_on_stack(void *obj)
2340{
2341 void *stack = task_stack_page(current);
2342
2343 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2344}
2345
2346extern void thread_info_cache_init(void);
2347
2348#ifdef CONFIG_DEBUG_STACK_USAGE
2349static inline unsigned long stack_not_used(struct task_struct *p)
2350{
2351 unsigned long *n = end_of_stack(p);
2352
2353 do { /* Skip over canary */
2354 n++;
2355 } while (!*n);
2356
2357 return (unsigned long)n - (unsigned long)end_of_stack(p);
2358}
2359#endif
2360
2361/* set thread flags in other task's structures
2362 * - see asm/thread_info.h for TIF_xxxx flags available
2363 */
2364static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2365{
2366 set_ti_thread_flag(task_thread_info(tsk), flag);
2367}
2368
2369static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2370{
2371 clear_ti_thread_flag(task_thread_info(tsk), flag);
2372}
2373
2374static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2375{
2376 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2377}
2378
2379static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2380{
2381 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2382}
2383
2384static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2385{
2386 return test_ti_thread_flag(task_thread_info(tsk), flag);
2387}
2388
2389static inline void set_tsk_need_resched(struct task_struct *tsk)
2390{
2391 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2392}
2393
2394static inline void clear_tsk_need_resched(struct task_struct *tsk)
2395{
2396 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2397}
2398
2399static inline int test_tsk_need_resched(struct task_struct *tsk)
2400{
2401 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2402}
2403
2404static inline int restart_syscall(void)
2405{
2406 set_tsk_thread_flag(current, TIF_SIGPENDING);
2407 return -ERESTARTNOINTR;
2408}
2409
2410static inline int signal_pending(struct task_struct *p)
2411{
2412 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2413}
2414
2415static inline int __fatal_signal_pending(struct task_struct *p)
2416{
2417 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2418}
2419
2420static inline int fatal_signal_pending(struct task_struct *p)
2421{
2422 return signal_pending(p) && __fatal_signal_pending(p);
2423}
2424
2425static inline int signal_pending_state(long state, struct task_struct *p)
2426{
2427 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2428 return 0;
2429 if (!signal_pending(p))
2430 return 0;
2431
2432 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2433}
2434
2435/*
2436 * cond_resched() and cond_resched_lock(): latency reduction via
2437 * explicit rescheduling in places that are safe. The return
2438 * value indicates whether a reschedule was done in fact.
2439 * cond_resched_lock() will drop the spinlock before scheduling,
2440 * cond_resched_softirq() will enable bhs before scheduling.
2441 */
2442extern int _cond_resched(void);
2443
2444#define cond_resched() ({ \
2445 __might_sleep(__FILE__, __LINE__, 0); \
2446 _cond_resched(); \
2447})
2448
2449extern int __cond_resched_lock(spinlock_t *lock);
2450
2451#ifdef CONFIG_PREEMPT_COUNT
2452#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2453#else
2454#define PREEMPT_LOCK_OFFSET 0
2455#endif
2456
2457#define cond_resched_lock(lock) ({ \
2458 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2459 __cond_resched_lock(lock); \
2460})
2461
2462extern int __cond_resched_softirq(void);
2463
2464#define cond_resched_softirq() ({ \
2465 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2466 __cond_resched_softirq(); \
2467})
2468
2469static inline void cond_resched_rcu(void)
2470{
2471#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2472 rcu_read_unlock();
2473 cond_resched();
2474 rcu_read_lock();
2475#endif
2476}
2477
2478/*
2479 * Does a critical section need to be broken due to another
2480 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2481 * but a general need for low latency)
2482 */
2483static inline int spin_needbreak(spinlock_t *lock)
2484{
2485#ifdef CONFIG_PREEMPT
2486 return spin_is_contended(lock);
2487#else
2488 return 0;
2489#endif
2490}
2491
2492/*
2493 * Idle thread specific functions to determine the need_resched
2494 * polling state. We have two versions, one based on TS_POLLING in
2495 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2496 * thread_info.flags
2497 */
2498#ifdef TS_POLLING
2499static inline int tsk_is_polling(struct task_struct *p)
2500{
2501 return task_thread_info(p)->status & TS_POLLING;
2502}
2503static inline void __current_set_polling(void)
2504{
2505 current_thread_info()->status |= TS_POLLING;
2506}
2507
2508static inline bool __must_check current_set_polling_and_test(void)
2509{
2510 __current_set_polling();
2511
2512 /*
2513 * Polling state must be visible before we test NEED_RESCHED,
2514 * paired by resched_task()
2515 */
2516 smp_mb();
2517
2518 return unlikely(tif_need_resched());
2519}
2520
2521static inline void __current_clr_polling(void)
2522{
2523 current_thread_info()->status &= ~TS_POLLING;
2524}
2525
2526static inline bool __must_check current_clr_polling_and_test(void)
2527{
2528 __current_clr_polling();
2529
2530 /*
2531 * Polling state must be visible before we test NEED_RESCHED,
2532 * paired by resched_task()
2533 */
2534 smp_mb();
2535
2536 return unlikely(tif_need_resched());
2537}
2538#elif defined(TIF_POLLING_NRFLAG)
2539static inline int tsk_is_polling(struct task_struct *p)
2540{
2541 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2542}
2543
2544static inline void __current_set_polling(void)
2545{
2546 set_thread_flag(TIF_POLLING_NRFLAG);
2547}
2548
2549static inline bool __must_check current_set_polling_and_test(void)
2550{
2551 __current_set_polling();
2552
2553 /*
2554 * Polling state must be visible before we test NEED_RESCHED,
2555 * paired by resched_task()
2556 *
2557 * XXX: assumes set/clear bit are identical barrier wise.
2558 */
2559 smp_mb__after_clear_bit();
2560
2561 return unlikely(tif_need_resched());
2562}
2563
2564static inline void __current_clr_polling(void)
2565{
2566 clear_thread_flag(TIF_POLLING_NRFLAG);
2567}
2568
2569static inline bool __must_check current_clr_polling_and_test(void)
2570{
2571 __current_clr_polling();
2572
2573 /*
2574 * Polling state must be visible before we test NEED_RESCHED,
2575 * paired by resched_task()
2576 */
2577 smp_mb__after_clear_bit();
2578
2579 return unlikely(tif_need_resched());
2580}
2581
2582#else
2583static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2584static inline void __current_set_polling(void) { }
2585static inline void __current_clr_polling(void) { }
2586
2587static inline bool __must_check current_set_polling_and_test(void)
2588{
2589 return unlikely(tif_need_resched());
2590}
2591static inline bool __must_check current_clr_polling_and_test(void)
2592{
2593 return unlikely(tif_need_resched());
2594}
2595#endif
2596
2597static __always_inline bool need_resched(void)
2598{
2599 return unlikely(tif_need_resched());
2600}
2601
2602/*
2603 * Thread group CPU time accounting.
2604 */
2605void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2606void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2607
2608static inline void thread_group_cputime_init(struct signal_struct *sig)
2609{
2610 raw_spin_lock_init(&sig->cputimer.lock);
2611}
2612
2613/*
2614 * Reevaluate whether the task has signals pending delivery.
2615 * Wake the task if so.
2616 * This is required every time the blocked sigset_t changes.
2617 * callers must hold sighand->siglock.
2618 */
2619extern void recalc_sigpending_and_wake(struct task_struct *t);
2620extern void recalc_sigpending(void);
2621
2622extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2623
2624static inline void signal_wake_up(struct task_struct *t, bool resume)
2625{
2626 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2627}
2628static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2629{
2630 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2631}
2632
2633/*
2634 * Wrappers for p->thread_info->cpu access. No-op on UP.
2635 */
2636#ifdef CONFIG_SMP
2637
2638static inline unsigned int task_cpu(const struct task_struct *p)
2639{
2640 return task_thread_info(p)->cpu;
2641}
2642
2643extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2644
2645#else
2646
2647static inline unsigned int task_cpu(const struct task_struct *p)
2648{
2649 return 0;
2650}
2651
2652static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2653{
2654}
2655
2656#endif /* CONFIG_SMP */
2657
2658extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2659extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2660
2661#ifdef CONFIG_CGROUP_SCHED
2662extern struct task_group root_task_group;
2663#endif /* CONFIG_CGROUP_SCHED */
2664
2665extern int task_can_switch_user(struct user_struct *up,
2666 struct task_struct *tsk);
2667
2668#ifdef CONFIG_TASK_XACCT
2669static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2670{
2671 tsk->ioac.rchar += amt;
2672}
2673
2674static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2675{
2676 tsk->ioac.wchar += amt;
2677}
2678
2679static inline void inc_syscr(struct task_struct *tsk)
2680{
2681 tsk->ioac.syscr++;
2682}
2683
2684static inline void inc_syscw(struct task_struct *tsk)
2685{
2686 tsk->ioac.syscw++;
2687}
2688#else
2689static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2690{
2691}
2692
2693static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2694{
2695}
2696
2697static inline void inc_syscr(struct task_struct *tsk)
2698{
2699}
2700
2701static inline void inc_syscw(struct task_struct *tsk)
2702{
2703}
2704#endif
2705
2706#ifndef TASK_SIZE_OF
2707#define TASK_SIZE_OF(tsk) TASK_SIZE
2708#endif
2709
2710#ifdef CONFIG_MM_OWNER
2711extern void mm_update_next_owner(struct mm_struct *mm);
2712extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2713#else
2714static inline void mm_update_next_owner(struct mm_struct *mm)
2715{
2716}
2717
2718static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2719{
2720}
2721#endif /* CONFIG_MM_OWNER */
2722
2723static inline unsigned long task_rlimit(const struct task_struct *tsk,
2724 unsigned int limit)
2725{
2726 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2727}
2728
2729static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2730 unsigned int limit)
2731{
2732 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2733}
2734
2735static inline unsigned long rlimit(unsigned int limit)
2736{
2737 return task_rlimit(current, limit);
2738}
2739
2740static inline unsigned long rlimit_max(unsigned int limit)
2741{
2742 return task_rlimit_max(current, limit);
2743}
2744
2745#endif
This page took 0.04461 seconds and 5 git commands to generate.